Nothing Special   »   [go: up one dir, main page]

WO2007003375A1 - Method and device for joining joining structures, particularly during the assembly of vehicle components - Google Patents

Method and device for joining joining structures, particularly during the assembly of vehicle components Download PDF

Info

Publication number
WO2007003375A1
WO2007003375A1 PCT/EP2006/006389 EP2006006389W WO2007003375A1 WO 2007003375 A1 WO2007003375 A1 WO 2007003375A1 EP 2006006389 W EP2006006389 W EP 2006006389W WO 2007003375 A1 WO2007003375 A1 WO 2007003375A1
Authority
WO
WIPO (PCT)
Prior art keywords
joining
model
structures
positioning
joining structure
Prior art date
Application number
PCT/EP2006/006389
Other languages
German (de)
French (fr)
Inventor
Ewald Quell
Original Assignee
Edag Engineering + Design Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Edag Engineering + Design Ag filed Critical Edag Engineering + Design Ag
Publication of WO2007003375A1 publication Critical patent/WO2007003375A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D65/00Designing, manufacturing, e.g. assembling, facilitating disassembly, or structurally modifying motor vehicles or trailers, not otherwise provided for
    • B62D65/02Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components
    • B62D65/06Joining sub-units or components to, or positioning sub-units or components with respect to, body shell or other sub-units or components the sub-units or components being doors, windows, openable roofs, lids, bonnets, or weather strips or seals therefor

Definitions

  • the invention relates to the accurate fitting of joining structures for producing a joining composite from the joining structures.
  • the invention relates to the mounting of attachments to vehicle structures, such as the mounting of a vehicle door, hood, flap or light on a body or a body part.
  • WO 96/36525 discloses a method for the automatic assembly of a component on a motor vehicle body.
  • the components and bodies are measured in pairs relative to each other to fit accuracy and positioned until they occupy a joining position relative to each other, in which the requirements for accuracy of fit are met. In the joining position, the component is then mounted.
  • WO 96/36525 proposes to re-measure the fitting assembly formed from the vehicle body and the component after installation in order to compensate for setting of the component due to its own weight in subsequent components of the series.
  • the measured data obtained after assembly at the joint assembly are used as correction data for the assembly of the following components in the series.
  • the bodies with the assembled components are painted after the assembly of the components or subjected to another joint manufacturing process. If the component is, for example, a vehicle door, it is dismantled again after the manufacturing process that has passed through together with the body in order, for example, to improve the accessibility for mounting a seating group. Afterwards, the component has to be reassembled.
  • the assembly, disassembly and reassembly is complex and therefore time-consuming and costly.
  • a the Reason for comparable effort is operated for the accurate installation of, for example, tail lights.
  • a contour-conforming model is provided for at least one of the joining structures.
  • the model and the other of the joining structures are positioned relative to one another in a joining position which the first and the second joining structure are to occupy in the subsequent joining assembly, wherein the model and the respective joining structure are measured relative to one another for the exact positioning.
  • the model is at least as far contour true, as required for measuring in order to determine and adjust a sufficient accuracy of fit.
  • the model and vehicle structure are evaluated for uniformity of a gap existing between the model and the vehicle structure; H. to a representative gap, measured.
  • the gap width is preferably measured as the gap width and pitch, and the joining position is optimized to these two dimensions or, if appropriate, also checked only for compliance with predetermined nominal values.
  • the geometry of the model coincides with the modeled vehicle structure at least at discrete measuring points. For the measurement of the gap dimension, the model and the modeled vehicle structure thus coincide, at least at discrete measuring points, with an edge of the modeled vehicle structure delimiting the gap.
  • a connecting device for the precise joining of the joining structures is produced on the second joining structure or attached. This is preferably still while the model and the second joining structure occupy the joining position.
  • the connecting device is held immovable relative to the model during measurement and positioning, so that it participates in its movements during positioning, and is also automatically positioned relative to the second joining structure and can be fastened to the second joining structure, for example by means of screwed or welded connection ,
  • the connecting device can also be formed on the second joining structure, for example milled or drilled or produced in any other way.
  • the connecting device is preferably a prefabricated hinge element of a hinge, generally a hinge, which is attached to the second vehicle structure.
  • the connection device to be fastened can be held by a positioning device which also holds and moves the model.
  • a holding device is attached directly to the model for attaching the connecting device, which holds the connecting device releasably.
  • the holding device whether part of the positioning device or preferably of the model, may in particular be a tensioning device which removably clamps or clamps the connecting device.
  • the connecting device when the connecting device is fastened, as long as the model and the second joining structure are still in the joining position, it should not be ruled out that first moves the model from the joining position and then only the connecting means on the second Joining structure is fixed, for example on the basis of a previously attached to the second joining structure mark or in that the positioning recognizes the position that has taken the connection means after the accurate positioning.
  • the connecting device is respectively produced or fastened to the second joining structure as a function of the measurement on which the positioning in the joining position is based.
  • the invention simplifies the assembly of the joining structures. If it concerns vehicle bodies or body parts and, for example, doors, these must Joining structures are not first grooved and mounted in one step, for example painted together, then dismantled and finally reassembled. Rather, these or joining structures of other types are connected only once, by final assembly.
  • the handling of a model for positioning the respective joining structure and the model relative to one another and, based thereon, providing the joining structure with the connecting device is simpler than the production of the fitting accuracy by directly connecting the joining structures. If in a series production the positioning device, preferably a robot with sufficiently many degrees of freedom of translation and rotation, always hold only the same model and does not have to grasp and move a new joining structure for each joining compound, this simplifies and accelerates the joining process.
  • the flexibility of production is also increased.
  • the joining structure forming the subsequent joining structure may be separated from each other, for example at different locations at the same manufacturer or possibly also at different manufacturers before they are merged in the final assembly.
  • a model can be cut out or broken at the point in question far more generously than the modeled joining structure, since the model is not subject to the limitations of the modeled joining structure, but only has to be sufficiently contour-accurate for the measurement, possibly only at discrete measuring points.
  • the first joining structure is equipped in a similar manner with a connecting device by this connection means on the first joining structure so shaped or otherwise generated or attached as a prefabricated connection means that the required fit between the first joining structure and a contoured model of the second joining structure and is guaranteed later in the joint assembly of the joining structures.
  • the model of the second joining structure and the production or attachment of the connecting device to the first joint structure the above statements apply equally.
  • the first joining structure is an attachment, it may be advantageous if the positioning device holds and moves the first joining structure instead of the model.
  • a model for at least one of the joining structures preferably one model per joining structure type
  • changes in the geometry of respectively identical joining structures can be detected reliably and quickly, since always against the same structure, namely the respective model , is measured.
  • measured data obtained by means of one model and measurement data obtained by means of the other model can be exchanged between the corresponding joining devices.
  • the relevant deviation can advantageously be compensated in the production or attachment of one or the other of the connecting devices or in a clever combination in both connecting devices.
  • connection device of the first joining structure and the connecting device of the second joining structure can be used for compensation, more degrees of freedom are also available for the modification.
  • joining structures are, for example, vehicle bodies and vehicle doors, and if the connecting devices are each hinge elements of a hinge, then these connecting devices can be translationally or rotationally displaced with respect to their positions relative to the respective joining structure, for example about two mutually perpendicular or at least non-parallel axes of rotation common spatial coordinate system and along at least one translation axis of the coordinate system, wherein the translation axes are preferably at right angles to each other, but at least not parallel.
  • each of the surfaces are two degrees of freedom of translation and a degree of freedom of rotation to Available.
  • the surfaces of the joint structures should not be parallel in the condition of the joint assembly which is relevant to the accuracy of fit.
  • one of the joining structures and the model of the other joining structure are preferably connected to each other and again in the connected state to fit accuracy measured.
  • the model should have the same weight as the modeled joint structure.
  • the positioning device with which the model is positioned, advantageously releases the model at least so far that the weight of the model acts on the connecting devices connected to one another in the joint assembly and, for example, the sagging of a vehicle door can be simulated.
  • the positioning device can exert a controlled force by means of which the conditions can be simulated in the later joint assembly formed from the joining structures.
  • Correction data for a compensating modification of the connecting devices of subsequent joining structures are formed from the simulation measurement data obtained by means of the model.
  • correction data for a compensating modification of the connection devices of the modeled joining structures can be formed.
  • a device according to the invention for joining first and second joining structures comprises a contoured model of either the first joining structures or the second joining structures or one such model per joining structure type.
  • the device which in preferred embodiments comprises two sub-devices, one of which works with the one model and the other with the other model, is preferably used in the assembly of attachments and vehicle structures, preferably bodies or body parts.
  • one of the subdevices is preferably a joining station within a production line having at least one upstream or downstream further processing station.
  • the other sub-device can be arranged next to the production line or set up at a supplier.
  • the device with the model of the attachment parts is preferably arranged in a production line for vehicles.
  • a positioning device for the vehicle structures may be formed by a conventional conveyor line.
  • a robot forms the positioning device for the model.
  • the vehicle structures are conveyed in the conveying line to such an automatic handling machine, stopped for positioning and transported away after positioning and optionally repeated measurement in the conveyor line.
  • the automatic handling device determines the position of the respective vehicle structure located in the working area, preferably visually, and positions the model precisely in relation to the vehicle structure.
  • the device further comprises a measuring device for measuring the positions that occupy the model and the vehicle structure relative to each other, and a control that controls the movements of the handling machine based on the measured data to move the model in the exact fitting position.
  • the measurement is preferably carried out optically, preferably by means of laser.
  • the light-section method is suitable. This type of measurement is best suited for the determination of gap width and precipitation.
  • the measurement is preferably carried out at predetermined measuring points along the outer contour of the model which is decisive for the accuracy of fit, for which representative measuring points are selected.
  • the weighting factors can be manually set and automatically predetermined in this way or, alternatively, predetermined automatically on the basis of a correspondingly programmed algorithm.
  • the device has the ability to optimize the weighting factors within a series.
  • Figure 1 is a joint assembly of a vehicle side wall and a model of a
  • Vehicle door Figure 2 a joint assembly of the vehicle door and a model of
  • Figure 3 is a data coupling between joining devices
  • Figure 4 shows a device for joining tail lights.
  • a side wall 2 of a body shell for a vehicle and a model 3 of a vehicle door to be mounted on the side wall 2 form a joint assembly.
  • the body shells are transported with the side walls 2 stretched on a conveyor line to a joining station formed along the conveyor line, in which the model 3 and the side wall 2 of each located in the joining station body shell are joined.
  • the joining station is equipped with a robot which holds the model 3 and moves relative to the respective side wall 2 in a joining position. In the joining position, the side wall 2 and the model 3 are accurately connected to the joining compound.
  • a joining device arranged in the joining station comprises the robot as a positioning device for the model 3 and the conveying line as a positioning device for the side walls 2 transported in series to the joining station.
  • a machining device for fastening articulated elements 12 can be provided in addition to the robot or on an arm of the Robotic attached, which is independent of a model 3 holding arm of the robot movable.
  • the positioning device fixes the model 4 in a measuring room.
  • the measuring space can form the usual Cartesian vehicle coordinate system with the X-axis pointing in the longitudinal direction of the vehicle, with Z as the vertical axis and the Y-axis pointing in the lateral direction. The coordinate system is shown by way of example in FIG. 1 relative to the side wall 2.
  • the robot serves as a carrier for a plurality of measuring members 6 of a measuring device for measuring a gap, which is established during the joining between the side wall 2 and the model 3.
  • the measuring points are selected along the outer contour of the model 3 delimiting the gap on the one side such that critical points for the quality of the gap are detected by the measurement.
  • the measuring members 6 are arranged distributed along the outer contour of the model 3 accordingly.
  • the measuring members 6 can be attached directly to the model 3.
  • the robot keeps the measuring members 6 separate from the model 3 in the arrangement suitable for the measurement, as shown by way of example in FIG.
  • the gap is optically measured.
  • the measuring elements 6 are lasers in combination with cameras for receiving the reflected laser light.
  • the measurement is performed in a light-section method, preferably with the EDAG BestFit Assembly System.
  • a holding member for holding the model 3 is attached on one arm of the robot.
  • a docking member 5 is attached or formed, on which the holding member holds the model 3 relative to a base of the robot in a position defined by the location and the orientation.
  • the geometry of the model 3 must match the modeled door only at the measuring points and with respect to the positions of the hinge elements 12.
  • the model 3 is provided with a holding device 13, which holds the hinge elements 12 in position relative to the model 3 as in the case of the door to be connected in a final assembly with the side wall 2 releasably, preferably fixed.
  • the hinge elements 12 form the connecting means of the side wall 2 for the subsequent assembly of a door, for which the model 3 is mounted in the joining station representative.
  • the holding device 13 is released from the hinge elements 12, to be able to move the model 3 out of the door opening again.
  • the holding device 13 is preferably formed so that the model 3 can again be moved from the door opening exactly as it was previously moved to the joining position.
  • the holding device 13 may have two clamping jaws per articulated element 12, which are automatically movable into and out of the clamping engagement with the respective joint element 12, so that the model 3 can be moved out of the door opening along the Y-axis.
  • the holding device 13 itself as joint elements which correspond to the joint elements of the door hinge which is still to be formed in a final assembly.
  • the hinge elements 12 and the holding device 13 in this case would form an arrangement which is at least substantially similar to the later hinge.
  • the robot could hold the hinge elements 12 in position with the model 3.
  • the robot moves the model 3 into the door opening of the side wall 2.
  • it grasps the side wall 2, preferably optically, and positions the model 3 accordingly.
  • the gap formed between the side wall 2 and the model 3 is measured by means of the measuring members 6.
  • the measurement data obtained from the measurement are fed to a controller or controller of the robot.
  • the controller automatically controls or controls the movements of the robot according to a programmed algorithm so that the model 3 relative to the side wall
  • the model 3 After fixing the hinge elements 12, the model 3 is mechanically decoupled from the robot, so that it can sit in the created connection, in the exemplary embodiment, the hinge 12, 13 under its own weight.
  • the model 3 is as heavy as the modeled door, so that by means of the model 3, the setting process of the later final mounted door in the simulation is taken into account. Once the setting process is completed, the gap is measured again. From this Repeat measurement wins the joining device correction data for a compensating Vorhalt in subsequent joining operations of the same series.
  • the robot resumes the model 3 again.
  • the connection of the joint elements 12 and 13 is released, and the robot moves the model 3 from the joining position, so that in the production line, the next body shell with side wall 2 can be transported into the joining station.
  • the mechanical decoupling for the simulation of the setting process can take place between the docking member 5 and the holding member of the robot fixed thereto or between the holding member and a base of the robot. If the retaining member is decoupled from the base, for example, then a joint with joint elements which can be locked relative to one another connects the retaining member to the base. Optionally, two such joints with mutually perpendicular or at least not parallel hinge axes connect the retainer to the base. A single hinge may also be formed so as to provide the flexibility required to simulate the setting process alone. For the blocking of the joint or the plurality of joints, a blocking device is provided, which can be released for mechanical decoupling in order to obtain the required mobility between the joint elements.
  • the joint or the plurality of joints is stiff again by means of the blocking device to move the model 3 from the joining position or for the next joining operation again in the new joining position relative to the next side wall 2.
  • the docking member 5 and the retaining member may form such a joint.
  • FIG. 2 shows a further joining composite, which forms a vehicle door 1 to be mounted on the side wall 2 of FIG. 1 and a model 4 of the side wall 2.
  • the joint assembly 1, 4 can be installed in a joining station in addition to the production line, as well as at another place of manufacture, for example in the formation of the door 1, in principle, also at a possible supplier.
  • the doors 1 must be brought together with the side walls 2 only for final assembly.
  • a joining device for joining doors 1 each with the model 4 comprises a positioning device for the model 4.
  • the joining device further comprises, as a positioning device for the doors 1, a robot which may be a duplicate of the robot of the joining device described with reference to FIG. Furthermore, the joining device comprises a measuring device with measuring elements 7.
  • the measuring device can also be a duplicate of the measuring device of FIG. 1, in particular the measuring elements 6 and 7 can each be the same.
  • the measuring points are preferably selected along the outer contour of the door 1 as the measuring points of the arrangement of Figure 1, accordingly, the measuring members 7 as the measuring members 6 are arranged.
  • the docking member 5 may correspond to the docking member 5 of the model 3 comprehensive joining device. While the docking member 5 of the model 3 is attached directly to the model 3 or formed thereon, in the joining device comprising the model 4, a tensioning device 8 is additionally provided, by means of which the docking member 5 is detachably fixed to the door 1.
  • a holding device 14 is comparable to the holding device 13 is formed.
  • Joint elements 11 form a connecting device of the door 1.
  • the hinge elements 11 form after mounting the door 1 together with the hinge elements 12 of the side wall 2, a hinge for the door 1.
  • the said with respect to the holding device 13 applies equally to the holding device 14, in particular it may be formed as a clamping device for releasably clamping the hinge elements 11 or comprise hinge elements corresponding to the hinge elements 12 of the later hinge, relative to which the hinge elements 11 are fixed for joining with the model 4.
  • the robot moves the door 1 into the door opening of the model 4 and positions it there accurately relative to the model 4.
  • the positioning takes place with constant feedback of the measurement data supplied by the measuring elements 7, so that the joining position is obtained according to the predetermined quality criteria optimal gap.
  • the hinge elements 11 are attached to the door 1.
  • the hinge elements 11 form the connecting device of the door 1 for the subsequent final assembly.
  • the door 1 is mechanically decoupled from the robot, so that they can sit under their own weight in the hinge 11, 14.
  • the gap is measured again. From the measured data obtained by the repeated measurement correction data for subsequent joining operations of the same series are obtained.
  • the door 1 is resumed by the robot and moved after the release of the hinge elements 11 and 14 from the joining position.
  • the clamping device 8 is released from the door 1.
  • the robot is now free again to receive the next door 1.
  • the door 1 can be painted and finished before finally being mounted on the side wall 2.
  • the robot handling the doors 1 may be formed with respect to the holding of the doors and the mechanical decoupling for the setting of the doors 1 like the model 3 handling robot.
  • FIG. 3 shows a schematic representation of a data-related coupling of the two joining devices via a common control plane.
  • the measurement data obtained before and after the setting of the model 3 and the setting of the doors 1, preferably also the correction data are fed to the respective other joining device, preferably by radio or via fixed data lines.
  • an optimal correction strategy is determined by means of a computer.
  • the length of the doors 1 measured in the X direction and also the Y position of the roof-near upper edge of the side wall 2 have changed relative to the bottom-near lower edge of the door opening. Due to the use of models 3 and 4 with always the same geometry, as far as it is relevant for the measurement, the cause of the deviation can be identified and assigned to the respective component, either the doors 1 or the side walls 2.
  • connection means 11 and 12 can be determined according to location and orientation both on the doors 1 and on the side walls 2 be modified so that the determined deviation can be compensated in the sense of an approximation to an optimum under the given circumstances Spaltgüte.
  • the joint elements 12 are fastened, for example, to a flat mounting surface of the side wall 2, which is spanned by the X and Z axes of the measuring coordinate system, and furthermore the joint elements 11 are fastened to a flat mounting surface of the door 1, which is in the modeled closed state the door 1 and the model 3 extends in a Y-Z plane of Messkoordinatensystems, so the length deviation in the side walls 2 along the X-axis and detected between the upper and the lower edge of the door opening deviation by a rotation angle change of the Joint elements 11 formed connecting device of the doors 1 are compensated for the X-axis.
  • the statistical evaluation of the measurement and correction data provides default values that are fed to the joining devices for carrying out the respective modification.
  • the data comparison is performed via the control level, which has access to the stored measurement and correction data in order to manage it and to evaluate it statistically for modifications in the sense of a tolerance-optimized final assembly.
  • FIG. 4 shows a joining station for joining tail light models 3 to bodyshells 2.
  • the conveying line on which the bodyshells 2 are transported into the joining station and again out of the joining station is indicated as a dashed line.
  • Pro model 3 is provided for its handling a positioning device 15 formed as a robot.
  • the two positioning devices 15 are arranged next to the conveyor line.
  • the maximum range of motion of the respective robot arm is indicated for fixed positioning devices 15 by circles.
  • the joining operation for the tail light models 3 corresponds to the joining operation for the doors 1.
  • the joining station is equipped with a station computer 9. Via the station computer 9, the data comparison with the joining device for the joining operation of the taillights and the body model is performed.
  • the joining station is equipped with several models 3 for different taillights. In the embodiment, there are two different models 3, for the shelves within the manipulation circuits of the position means 15 are indicated. This increases the flexibility of the joining station. Corresponding to the number of retained models 3, bodies 2 can be prepared for the final assembly of rear lights. A model change can be made without further delay, even without delay in the conveyor line. Accordingly, for other attachments, such as doors 1, 3 models can be kept for different vehicle types in the joining station in question.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automobile Manufacture Line, Endless Track Vehicle, Trailer (AREA)
  • Automatic Assembly (AREA)

Abstract

The invention relates to a method for joining a first joining structure (1) and a second joining structure (2), during which: d) a model (3), which is true to the contours of the first joining structure (1), and the second joining structure (2) are positioned together in a joining position; e) the model (3) and the second joining structure (2) are measured with regard to accurate fit with one another in the joining position, and; f) a connecting device (12) for connecting the joining structures (1, 2) with accurate fit is created or fastened to the second joining structure (2) according to the measurement.

Description

Verfahren und Vorrichtung zum Fügen von Fügestrukturen, insbesondere in der Method and device for joining joining structures, in particular in the
Montage von FahrzeugbauteilenAssembly of vehicle components
Die Erfindung betrifft das passgenaue Fügen von Fügestrukturen zur Herstellung eines Fügeverbunds aus den Fügestrukturen. Insbesondere betrifft die Erfindung die Montage von Anbauteilen an Fahrzeugstrukturen, beispielsweise die Montage einer Fahrzeugtür, -haube, -klappe oder -leuchte an einer Karosserie oder einem Karosserieteil.The invention relates to the accurate fitting of joining structures for producing a joining composite from the joining structures. In particular, the invention relates to the mounting of attachments to vehicle structures, such as the mounting of a vehicle door, hood, flap or light on a body or a body part.
Die WO 96/36525 offenbart ein Verfahren für die automatische Montage eines Bauteils an einer Kraftfahrzeugkarosserie. Die Bauteile und Karosserien werden je paarweise relativ zueinander auf Passgenauigkeit vermessen und positioniert, bis sie relativ zueinander eine Fügeposition einnehmen, in der die Anforderungen an die Passgenauigkeit erfüllt werden. In der Fügeposition wird anschließend das Bauteil montiert. Zur Optimierung des Prozesses schlägt die WO 96/36525 vor, den aus der Fahrzeugkarosserie und dem Bauteil gebildeten Fügeverbund nach der Montage erneut auf Passgenauigkeit zu vermessen, um ein Setzen des Bauteils aufgrund seines Eigengewichts bei nachfolgenden Bauteilen der Serie zu kompensieren. Die nach der Montage am Fügeverbund gewonnenen Messdaten werden als Korrekturdaten für die Montage der in der Serie nachfolgenden Bauteile verwendet.WO 96/36525 discloses a method for the automatic assembly of a component on a motor vehicle body. The components and bodies are measured in pairs relative to each other to fit accuracy and positioned until they occupy a joining position relative to each other, in which the requirements for accuracy of fit are met. In the joining position, the component is then mounted. In order to optimize the process, WO 96/36525 proposes to re-measure the fitting assembly formed from the vehicle body and the component after installation in order to compensate for setting of the component due to its own weight in subsequent components of the series. The measured data obtained after assembly at the joint assembly are used as correction data for the assembly of the following components in the series.
In üblichen Serienfertigungen werden nach der Montage der Bauteile die Karosserien mit den montierten Bauteilen lackiert oder einem anderen gemeinsamen Fertigungsprozess unterworfen. Handelt es sich bei dem Bauteil um beispielsweise eine Fahrzeugtür, wird diese nach dem mit der Karosserie gemeinsam durchlaufenen Fertigungsprozess wieder abmontiert, um beispielsweise die Zugänglichkeit für die Montage einer Sitzgruppe zu verbessern. Danach muss das Bauteil wieder montiert werden. Die Montage, Demontage und erneute Montage ist aufwändig und daher zeitraubend und kostentreibend. Ein dem Grunde nach vergleichbarer Aufwand wird für die passgenaue Montage von beispielsweise Heckleuchten betrieben.In conventional series production, the bodies with the assembled components are painted after the assembly of the components or subjected to another joint manufacturing process. If the component is, for example, a vehicle door, it is dismantled again after the manufacturing process that has passed through together with the body in order, for example, to improve the accessibility for mounting a seating group. Afterwards, the component has to be reassembled. The assembly, disassembly and reassembly is complex and therefore time-consuming and costly. A the Reason for comparable effort is operated for the accurate installation of, for example, tail lights.
Es ist eine Aufgabe der Erfindung, die automatische und passgenaue Montage von miteinander zu verbindenden Fügestrukturen, wie beispielsweise Anbauteile und Karosserieteile von Fahrzeugen sie darstellen, zu vereinfachen.It is an object of the invention to simplify the automatic and accurate assembly of joining structures to be joined together, such as attachments and body parts of vehicles they represent.
In einem Verfahren zum Fügen, vorzugsweise mit zumindest formschlüssigem Verbinden, einer ersten Fügestruktur und einer zweiten Fügestruktur, wird nach der Erfindung für wenigstens eine der Fügestrukturen ein konturgetreues Modell bereitgestellt. Das Modell und die andere der Fügestrukturen werden zueinander in einer Fügeposition, den im späteren Fügeverbund die erste und die zweite Fügestruktur relativ zueinander einnehmen sollen, positioniert, wobei das Modell und die betreffende Fügestruktur relativ zueinander für die passgenaue Positionierung vermessen werden. Das Modell ist zumindest so weit konturgetreu, wie dies zum Messen zwecks Ermittlung und Einstellung einer ausreichenden Passgenauigkeit erforderlich ist.In a method for joining, preferably with at least positive connection, a first joining structure and a second joining structure, according to the invention a contour-conforming model is provided for at least one of the joining structures. The model and the other of the joining structures are positioned relative to one another in a joining position which the first and the second joining structure are to occupy in the subsequent joining assembly, wherein the model and the respective joining structure are measured relative to one another for the exact positioning. The model is at least as far contour true, as required for measuring in order to determine and adjust a sufficient accuracy of fit.
In bevorzugten Ausführungen werden das Modell und die Fahrzeugstruktur auf Gleichmäßigkeit eines zwischen dem Modell und der Fahrzeugstruktur bestehenden Spalts, d. h. auf ein hierfür repräsentatives Spaltmaß, vermessen. Als Spaltmaß werden bevorzugt Spaltbreite und Fallung gemessen und die Fügeposition wird auf diese beiden Maße optimiert oder gegebenenfalls auch nur auf Einhaltung vorgegebener Sollwerte überprüft. Die Geometrie des Modells stimmt mit der modellierten Fahrzeugstruktur zumindest an diskreten Messstellen überein. Für die Messung des Spaltmaßes stimmen das Modell und die modellierte Fahrzeugstruktur somit über einen den Spalt begrenzenden Rand der modellierten Fahrzeugstruktur zumindest an diskreten Messstellen überein.In preferred embodiments, the model and vehicle structure are evaluated for uniformity of a gap existing between the model and the vehicle structure; H. to a representative gap, measured. The gap width is preferably measured as the gap width and pitch, and the joining position is optimized to these two dimensions or, if appropriate, also checked only for compliance with predetermined nominal values. The geometry of the model coincides with the modeled vehicle structure at least at discrete measuring points. For the measurement of the gap dimension, the model and the modeled vehicle structure thus coincide, at least at discrete measuring points, with an edge of the modeled vehicle structure delimiting the gap.
Im Folgenden sei angenommen, dass die erste Fügestruktur modelliert wird.In the following it is assumed that the first joint structure is modeled.
Ergibt die Messung, dass das Modell und die zweite Fügestruktur relativ zueinander in der Fügeposition positioniert sind, wird an der zweiten Fügestruktur eine Verbindungseinrichtung zum passgenauen Verbinden der Fügestrukturen erzeugt oder befestigt. Dies erfolgt vorzugsweise noch während das Modell und die zweite Fügestruktur die Fügeposition einnehmen. Die Verbindungseinrichtung wird während des Messens und Positionierens relativ zu dem Modell unbeweglich gehalten, so dass sie dessen Bewegungen bei dem Positionieren mitmacht, und automatisch ebenfalls relativ zu der zweiten Fügestruktur positioniert ist und an der zweiten Fügestruktur befestigt werden kann, beispielsweise mittels Schraub- oder Schweißverbindung. Anstatt einer vorgefertigten, nur noch zu befestigenden Verbindungseinrichtung kann die Verbindungseinrichtung auch an der zweiten Fügestruktur geformt, beispielsweise gefräst oder gebohrt oder auf andere Weise erzeugt werden. Eine Erzeugung durch Bohren oder Fräsen bietet sich beispielsweise für die Montage einer Leuchte an. Bei der Montage einer Fahrzeugtür ist die Verbindungseinrichtung vorzugsweise ein vorgefertigtes Gelenkelement eines Drehgelenks, im Allgemeinen eines Scharniers, das an der zweiten Fahrzeugstruktur befestigt wird. Die zu befestigende Verbindungseinrichtung kann von einer Positioniereinrichtung gehalten werden, die auch das Modell hält und bewegt. Vorzugsweise ist zum Anbringen der Verbindungseinrichtung unmittelbar an dem Modell eine Halteeinrichtung befestigt, welche die Verbindungseinrichtung lösbar hält. Die Halteeinrichtung, ob Bestandteil der Positioniereinrichtung oder bevorzugt des Modells, kann insbesondere eine Spanneinrichtung sein, welche die Verbindungseinrichtung lösbar spannt bzw. klemmt. Obgleich im Falle einer vorgefertigten Verbindungseinrichtung bevorzugt wird, wenn die Verbindungseinrichtung befestigt wird, solange das Modell und die zweite Fügestruktur sich noch in der Fügeposition befinden, soll nicht ausgeschlossen sein, dass zuerst das Modell aus der Fügeposition bewegt und dann erst die Verbindungseinrichtung an der zweiten Fügestruktur befestigt wird, beispielsweise auf der Basis einer zuvor an der zweiten Fügestruktur angebrachten Markierung oder indem die Positioniereinrichtung sich die Position merkt, die die Verbindungseinrichtung nach dem passgenauen Positionieren eingenommen hat. In den unterschiedlichen Varianten wird die Verbindungseinrichtung jeweils in Abhängigkeit von der Messung, auf der auch die Positionierung in der Fügeposition basiert, an der zweiten Fügestruktur erzeugt oder befestigt.If the measurement shows that the model and the second joining structure are positioned relative to one another in the joining position, a connecting device for the precise joining of the joining structures is produced on the second joining structure or attached. This is preferably still while the model and the second joining structure occupy the joining position. The connecting device is held immovable relative to the model during measurement and positioning, so that it participates in its movements during positioning, and is also automatically positioned relative to the second joining structure and can be fastened to the second joining structure, for example by means of screwed or welded connection , Instead of a prefabricated, only to be fastened connecting device, the connecting device can also be formed on the second joining structure, for example milled or drilled or produced in any other way. A generation by drilling or milling offers, for example, for the installation of a lamp. When mounting a vehicle door, the connecting device is preferably a prefabricated hinge element of a hinge, generally a hinge, which is attached to the second vehicle structure. The connection device to be fastened can be held by a positioning device which also holds and moves the model. Preferably, a holding device is attached directly to the model for attaching the connecting device, which holds the connecting device releasably. The holding device, whether part of the positioning device or preferably of the model, may in particular be a tensioning device which removably clamps or clamps the connecting device. Although it is preferred in the case of a prefabricated connecting device, when the connecting device is fastened, as long as the model and the second joining structure are still in the joining position, it should not be ruled out that first moves the model from the joining position and then only the connecting means on the second Joining structure is fixed, for example on the basis of a previously attached to the second joining structure mark or in that the positioning recognizes the position that has taken the connection means after the accurate positioning. In the different variants, the connecting device is respectively produced or fastened to the second joining structure as a function of the measurement on which the positioning in the joining position is based.
Die Erfindung vereinfacht die Montage der Fügestrukturen. Handelt es sich um Fahrzeugkarosserien oder -karosserieteile und beispielsweise Türen, so müssen diese Fügestrukturen nicht zuerst in einem Schritt passgenau gefugt und montiert, gemeinsam beispielsweise lackiert, anschließend demontiert und schließlich erneut montiert werden. Vielmehr werden diese oder Fügestrukturen anderer Art nur einmal, per Endmontage, miteinander verbunden. Die Handhabung eines Modells zum Positionieren der jeweiligen Fügestruktur und des Modells relativ zueinander und darauf basierend das Ausrüsten der Fügestruktur mit der Verbindungseinrichtung ist einfacher als die Herstellung der Passgenauigkeit durch unmittelbares Verbinden der Fügestrukturen. Wenn in einer Serienfertigung die Positioniereinrichtung, vorzugsweise ein Roboter mit ausreichend vielen Bewegungsfreiheitsgraden der Translation und Rotation, stets nur das gleiche Modell halten und nicht für jeden Fügeverbund eine neue Fügestruktur greifen und bewegen muss, vereinfacht und beschleunigt dies den Fügeprozess. Indem die Fügestrukturen erstmals für die Endmontage zusammengeführt werden müssen, wird auch die Flexibilität der Fertigung erhöht. So können die den späteren Fügeverbund bildenden Fügestrukturen voneinander getrennt sein, beispielsweise an unterschiedlichen Orten beim gleichen Hersteller oder gegebenenfalls auch bei unterschiedlichen Herstellern, bevor sie in der Endmontage zusammengeführt werden.The invention simplifies the assembly of the joining structures. If it concerns vehicle bodies or body parts and, for example, doors, these must Joining structures are not first grooved and mounted in one step, for example painted together, then dismantled and finally reassembled. Rather, these or joining structures of other types are connected only once, by final assembly. The handling of a model for positioning the respective joining structure and the model relative to one another and, based thereon, providing the joining structure with the connecting device is simpler than the production of the fitting accuracy by directly connecting the joining structures. If in a series production the positioning device, preferably a robot with sufficiently many degrees of freedom of translation and rotation, always hold only the same model and does not have to grasp and move a new joining structure for each joining compound, this simplifies and accelerates the joining process. By bringing the joining structures together for the first time for final assembly, the flexibility of production is also increased. Thus, the joining structure forming the subsequent joining structure may be separated from each other, for example at different locations at the same manufacturer or possibly also at different manufacturers before they are merged in the final assembly.
Durch Verwendung eines Modells kann ferner die Zugänglichkeit zu der zweiten Fügestruktur verbessert werden, um dort die Erzeugung oder Befestigung der Verbindungseinrichtung zu erleichtern. So kann ein Modell an betreffender Stelle weit großzügiger als die modellierte Fügestruktur ausgespart oder durchbrochen sein, da das Modell nicht den Beschränkungen der modellierten Fügestruktur unterliegt, sondern lediglich für die Messung ausreichend konturgetreu sein muss, gegebenenfalls nur an diskreten Messstellen.Further, by using a model, accessibility to the second joining structure can be improved to facilitate the creation or attachment of the connection means. Thus, a model can be cut out or broken at the point in question far more generously than the modeled joining structure, since the model is not subject to the limitations of the modeled joining structure, but only has to be sufficiently contour-accurate for the measurement, possibly only at discrete measuring points.
In einer Weiterentwicklung wird die erste Fügestruktur in analoger Weise mit einer Verbindungseinrichtung ausgerüstet, indem diese Verbindungseinrichtung an der ersten Fügestruktur so geformt oder sonstwie erzeugt oder als vorgefertigte Verbindungseinrichtung befestigt wird, dass die geforderte Passgenauigkeit zwischen der ersten Fügestruktur und einem konturgetreuen Modell der zweiten Fügestruktur und später im Fügeverbund der Fügestrukturen gewährleistet ist. Hinsichtlich des Modells der zweiten Fügestruktur und der Erzeugung oder Befestigung der Verbindungseinrichtung an der ersten Fügestruktur gelten die vorstehenden Ausführungen gleichermaßen. Falls die erste Fügestruktur ein Anbauteil ist, kann es allerdings von Vorteil sein, wenn die Positioniereinrichtung die erste Fügestruktur hält und bewegt, statt des Modells.In a further development, the first joining structure is equipped in a similar manner with a connecting device by this connection means on the first joining structure so shaped or otherwise generated or attached as a prefabricated connection means that the required fit between the first joining structure and a contoured model of the second joining structure and is guaranteed later in the joint assembly of the joining structures. With regard to the model of the second joining structure and the production or attachment of the connecting device to the first joint structure, the above statements apply equally. However, if the first joining structure is an attachment, it may be advantageous if the positioning device holds and moves the first joining structure instead of the model.
Wegen der Verwendung eines Modells für wenigstens eine der Fügestrukturen, vorzugsweise je eines Modells pro Fügestrukturart, können Änderungen in der Geometrie von jeweils artgleichen Fügestrukturen, beispielsweise Karosserien oder Karosserieteilen, sicher und rasch erkannt werden, da stets gegen die gleiche Struktur, nämlich das jeweilige Modell, gemessen wird. Insbesondere können mittels des einen Modells gewonnene Messdaten und mittels des anderen Modells gewonnene Messdaten zwischen den entsprechenden Fügevorrichtungen ausgetauscht werden. Wird beispielsweise ein bestimmter Trend bezüglich der Geometrie, beispielsweise Abweichungen in der Länge oder Höhe einer Türöffnung, festgestellt, kann vorteilhafterweise in der Erzeugung oder Befestigung der einen oder der anderen der Verbindungseinrichtungen oder in geschickter Kombination bei beiden Verbindungseinrichtungen die betreffende Abweichung kompensiert werden. Dabei wird nach einem geeigneten Algorithmus entschieden, welche der Verbindungseinrichtungen in welcher Weise hinsichtlich der festgestellten Abweichung zu deren Kompensation modifiziert werden sollte.Because of the use of a model for at least one of the joining structures, preferably one model per joining structure type, changes in the geometry of respectively identical joining structures, for example bodies or body parts, can be detected reliably and quickly, since always against the same structure, namely the respective model , is measured. In particular, measured data obtained by means of one model and measurement data obtained by means of the other model can be exchanged between the corresponding joining devices. If, for example, a certain trend with respect to the geometry, for example deviations in the length or height of a door opening, is established, the relevant deviation can advantageously be compensated in the production or attachment of one or the other of the connecting devices or in a clever combination in both connecting devices. In this case, it is decided by a suitable algorithm which of the connection devices should be modified in which way with regard to the detected deviation for its compensation.
Da sowohl die Verbindungseinrichtung der ersten Fügestruktur als auch die Verbindungseinrichtung der zweiten Fügestruktur für die Kompensation genutzt werden kann, stehen auch mehr Freiheitsgrade für die Modifikation zur Verfügung. Handelt es sich bei den Fügestrukturen beispielsweise um Fahrzeugkarosserien und Fahrzeugtüren, und sind die Verbindungseinrichtungen jeweils Gelenkelemente eines Scharniers, so können diese Verbindungseinrichtungen hinsichtlich ihrer Positionen relativ zu der jeweiligen Fügestruktur translatorisch oder rotatorisch verlagert werden, beispielsweise um zwei zueinander rechtwinklige oder zumindest nicht parallele Rotationsachsen eines gemeinsamen Raumkoordinatensystems und längs je wenigstens einer Translationsachse des Koordinatensystems, wobei auch die Translationsachsen vorzugsweise rechtwinklig zueinander weisen, zumindest jedoch nicht parallel sind. Bei Befestigung der Verbindungseinrichtungen je auf einer beispielsweise planen Fläche stehen bezüglich jeder der Flächen zwei Freiheitsgrade der Translation und ein Freiheitsgrad der Rotation zur Verfügung. Die betreffenden Flächen der Fügestrukturen sollten in dem Zustand des Fügeverbunds, der für die Passgenauigkeit maßgeblich ist, nicht parallel sein.Since both the connection device of the first joining structure and the connecting device of the second joining structure can be used for compensation, more degrees of freedom are also available for the modification. If the joining structures are, for example, vehicle bodies and vehicle doors, and if the connecting devices are each hinge elements of a hinge, then these connecting devices can be translationally or rotationally displaced with respect to their positions relative to the respective joining structure, for example about two mutually perpendicular or at least non-parallel axes of rotation common spatial coordinate system and along at least one translation axis of the coordinate system, wherein the translation axes are preferably at right angles to each other, but at least not parallel. When mounting the connecting devices depending on a flat surface, for example, with respect to each of the surfaces are two degrees of freedom of translation and a degree of freedom of rotation to Available. The surfaces of the joint structures should not be parallel in the condition of the joint assembly which is relevant to the accuracy of fit.
Wirkt nach der Montage der Fügestrukturen auf die miteinander verbundenen Verbindungseinrichtungen der Fügestrukturen beispielsweise das Gewicht von einer der Fügestrukturen und beeinflusst die Belastung maßgeblich die Passgenauigkeit, so werden die eine der Fügestrukturen und das Modell der anderen Fügestruktur vorzugsweise miteinander verbunden und im verbundenen Zustand nochmals auf Passgenauigkeit vermessen. Für die Simulation und Messung sollte das Modell das gleiche Gewicht wie die modellierte Fügestruktur haben. Für die Messung gibt die Positioniereinrichtung, mit der das Modell positioniert wird, das Modell vorteilhafterweise zumindest so weit frei, dass auf die im Fügeverbund miteinander verbundenen Verbindungseinrichtungen das Gewicht des Modells wirkt und so beispielsweise das Sacken einer Fahrzeugtür simuliert werden kann. Alternativ kann die Positioniereinrichtung kontrolliert eine Kraft ausüben, mittels der die Bedingungen im späteren, aus den Fügestrukturen gebildeten Fügeverbund simuliert werden können.For example, after the assembly of the joining structures onto the interconnected connecting devices of the joining structures, the weight of one of the joining structures has an influence and the load significantly influences the fit, one of the joining structures and the model of the other joining structure are preferably connected to each other and again in the connected state to fit accuracy measured. For simulation and measurement, the model should have the same weight as the modeled joint structure. For the measurement, the positioning device, with which the model is positioned, advantageously releases the model at least so far that the weight of the model acts on the connecting devices connected to one another in the joint assembly and, for example, the sagging of a vehicle door can be simulated. Alternatively, the positioning device can exert a controlled force by means of which the conditions can be simulated in the later joint assembly formed from the joining structures.
Aus den mittels des Modells gewonnenen Messdaten der Simulation werden Korrekrurdaten für eine kompensierende Modifikation der Verbindungseinrichtungen nachfolgender Fügestrukturen, die der Art nach der mit dem Modell verbundenen Fügestruktur entsprechen, gebildet. Alternativ oder zusätzlich können Korrekturdaten für eine kompensierende Modifikation der Verbindungseinrichtungen der modellierten Fügestrukturen gebildet werden.Correction data for a compensating modification of the connecting devices of subsequent joining structures, which correspond in type to the joining structure connected to the model, are formed from the simulation measurement data obtained by means of the model. Alternatively or additionally, correction data for a compensating modification of the connection devices of the modeled joining structures can be formed.
Eine erfindungsgemäße Vorrichtung zum Fügen von ersten und zweiten Fügestrukturen umfasst ein konturgetreues Modell von entweder den ersten Fügestrukturen oder den zweiten Fügestrukturen oder je ein solches Modell pro Fügestrukturart. Die Vorrichtung, die in bevorzugten Ausführungen zwei Teilvorrichtungen umfasst, von denen die eine mit dem einen Modell und die andere mit dem anderen Modell arbeitet, wird bevorzugt in der Montage von Anbauteilen und Fahrzeugstrukturen, vorzugsweise Karosserien oder Karosserieteile, eingesetzt. Bevorzugt ist bei separaten Teilvorrichtungen eine der Teilvorrichtungen eine Fügestation innerhalb einer Fertigungsstraße mit wenigstens einer vorgeordneten oder nachgeordneten weiteren Bearbeitungsstation. Die andere Teilvorrichtung kann neben der Fertigungsstraße angeordnet oder bei einem Lieferanten aufgestellt sein.A device according to the invention for joining first and second joining structures comprises a contoured model of either the first joining structures or the second joining structures or one such model per joining structure type. The device, which in preferred embodiments comprises two sub-devices, one of which works with the one model and the other with the other model, is preferably used in the assembly of attachments and vehicle structures, preferably bodies or body parts. In the case of separate subdevices, one of the subdevices is preferably a joining station within a production line having at least one upstream or downstream further processing station. The other sub-device can be arranged next to the production line or set up at a supplier.
Handelt es sich bei den Fügestrukturen um Fahrzeugstrukturen und daran zu montierenden Anbauteilen, so ist die Vorrichtung mit dem Modell der Anbauteile vorzugsweise in einer Fertigungsstraße für Fahrzeuge angeordnet. Eine Positioniereinrichtung für die Fahrzeugstrukturen kann von einer herkömmlichen Förderlinie gebildet werden. Vorzugsweise bildet ein Roboter die Positioniereinrichtung für das Modell. Die Fahrzeugstrukturen werden in der Förderlinie zu solch einem Handhabungsautomaten gefördert, für das Positionieren stillgesetzt und nach dem Positionieren und einem gegebenenfalls nochmaligen Vermessen in der Förderlinie abgefördert. Der Handhabungsautomat ermittelt die Position der jeweils im Arbeitsbereich befindlichen Fahrzeugstruktur, vorzugsweise optisch, und positioniert das Modell passgenau relativ zu der Fahrzeugstruktur. Hierfür umfasst die Vorrichtung ferner eine Messeinrichtung zum Messen der Positionen, die das Modell und die Fahrzeugstruktur relativ zueinander einnehmen, und eine Regelung, die anhand der Messdaten die Bewegungen des Handhabungsautomaten steuert, um das Modell in die passgenaue Fügeposition zu bewegen.If the joining structures are vehicle structures and attachment parts to be mounted thereon, the device with the model of the attachment parts is preferably arranged in a production line for vehicles. A positioning device for the vehicle structures may be formed by a conventional conveyor line. Preferably, a robot forms the positioning device for the model. The vehicle structures are conveyed in the conveying line to such an automatic handling machine, stopped for positioning and transported away after positioning and optionally repeated measurement in the conveyor line. The automatic handling device determines the position of the respective vehicle structure located in the working area, preferably visually, and positions the model precisely in relation to the vehicle structure. For this purpose, the device further comprises a measuring device for measuring the positions that occupy the model and the vehicle structure relative to each other, and a control that controls the movements of the handling machine based on the measured data to move the model in the exact fitting position.
Die Messung erfolgt vorzugsweise optisch, bevorzugt mittels Laser. Geeignet ist insbesondere das Lichtschnittverfahren. Diese Art der Messung eignet sich bestens für die Ermittlung von Spaltbreite und Fallung. Die Messung wird vorzugsweise an vorbestimmten Messstellen längs der für die Passgenauigkeit maßgeblichen Außenkontur des Modells durchgeführt, wofür repräsentative Messstellen gewählt werden. Zur Erzielung eines optisch möglichst gleichmäßigen Spalts kann es von Vorteil sein, die Messstellen in Bezug auf ihre Wertigkeit zu gewichten. Die Gewichtungsfaktoren können manuell einstellbar und auf diese Weise vorgebbar oder alternativ auf der Basis eines entsprechend programmierten Algorithmus automatisch vorgegeben werden. Vorzugsweise verfugt die Vorrichtung über die Fähigkeit, die Gewichtungsfaktoren innerhalb einer Serie zu optimieren. Auch die Unteransprüche und deren Kombinationen beschreiben vorteilhafte Merkmale der Erfindung.The measurement is preferably carried out optically, preferably by means of laser. In particular, the light-section method is suitable. This type of measurement is best suited for the determination of gap width and precipitation. The measurement is preferably carried out at predetermined measuring points along the outer contour of the model which is decisive for the accuracy of fit, for which representative measuring points are selected. In order to achieve a gap which is as uniform as possible in terms of optical properties, it may be advantageous to weight the measuring points in terms of their significance. The weighting factors can be manually set and automatically predetermined in this way or, alternatively, predetermined automatically on the basis of a correspondingly programmed algorithm. Preferably, the device has the ability to optimize the weighting factors within a series. The subclaims and their combinations describe advantageous features of the invention.
Ausfuhrungsbeispiele der Erfindung werden nachfolgend anhand von Figuren erläutert. An den Ausfuhrungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche und auch die vorstehend erläuterten Ausgestaltungen vorteilhaft weiter. Es zeigen:Exemplary embodiments of the invention are explained below with reference to figures. The features disclosed in the exemplary embodiments form, individually and in each combination of features, the subject matter of the claims and also the embodiments explained above. Show it:
Figur 1 einen Fügeverbund aus einer Fahrzeugseitenwand und einem Modell einerFigure 1 is a joint assembly of a vehicle side wall and a model of a
Fahrzeugtür, Figur 2 einen Fügeverbund aus der Fahrzeugtür und einem Modell derVehicle door, Figure 2 a joint assembly of the vehicle door and a model of
Fahrzeugseitenwand,Vehicle side wall,
Figur 3 eine Datenkopplung zwischen Fügevorrichtungen undFigure 3 is a data coupling between joining devices and
Figur 4 eine Vorrichtung zum Fügen von Heckleuchten.Figure 4 shows a device for joining tail lights.
In Figur 1 bilden eine Seitenwand 2 einer Rohkarosserie für ein Fahrzeug und ein Modell 3 einer an der Seitenwand 2 zu montierenden Fahrzeugtür einen Fügeverbund. In einer Serienfertigung werden die Rohkarosserien mit den Seitenwänden 2 auf einer Förderlinie gespannt zu einer längs der Förderlinie gebildeten Fügestation transportiert, in der das Modell 3 und die Seitenwand 2 der jeweils in der Fügestation befindlichen Rohkarosserie gefügt werden. Die Fügestation ist mit einem Roboter ausgestattet, der das Modell 3 hält und relativ zu der jeweiligen Seitenwand 2 in eine Fügeposition bewegt. In der Fügeposition werden die Seitenwand 2 und das Modell 3 passgenau zu dem Fügeverbund verbunden.In FIG. 1, a side wall 2 of a body shell for a vehicle and a model 3 of a vehicle door to be mounted on the side wall 2 form a joint assembly. In a mass production, the body shells are transported with the side walls 2 stretched on a conveyor line to a joining station formed along the conveyor line, in which the model 3 and the side wall 2 of each located in the joining station body shell are joined. The joining station is equipped with a robot which holds the model 3 and moves relative to the respective side wall 2 in a joining position. In the joining position, the side wall 2 and the model 3 are accurately connected to the joining compound.
Eine in der Fügestation angeordnete Fügevorrichtung umfasst den Roboter als Positioniereinrichtung für das Modell 3 und die Förderlinie als Positioniereinrichtung für die in der Serie in die Fügestation transportierten Seitenwände 2. Eine Bearbeitungseinrichtung zum Befestigen von Gelenkelementen 12 kann zusätzlich zu dem Roboter vorgesehen oder an einem Arm des Roboters befestigt sein, der unabhängig von einem das Modell 3 haltenden Arm des Roboters bewegbar ist. Die Positioniereinrichtung fixiert das Modell 4 in einem Messraum. Den Messraum kann insbesondere das übliche kartesische Fahrzeugkoordinatensystem bilden mit der in Längsrichtung des Fahrzeugs weisenden X-Achse, mit Z als der Hochachse und der in Seitenrichtung weisenden Y- Achse. Das Koordinatensystem ist beispielhaft in Figur 1 relativ zu der Seitenwand 2 dargestellt.A joining device arranged in the joining station comprises the robot as a positioning device for the model 3 and the conveying line as a positioning device for the side walls 2 transported in series to the joining station. A machining device for fastening articulated elements 12 can be provided in addition to the robot or on an arm of the Robotic attached, which is independent of a model 3 holding arm of the robot movable. The positioning device fixes the model 4 in a measuring room. In particular, the measuring space can form the usual Cartesian vehicle coordinate system with the X-axis pointing in the longitudinal direction of the vehicle, with Z as the vertical axis and the Y-axis pointing in the lateral direction. The coordinate system is shown by way of example in FIG. 1 relative to the side wall 2.
Der Roboter dient als Träger für mehrere Messglieder 6 einer Messeinrichtung zum Vermessen eines Spalts, der sich bei dem Fügen zwischen der Seitenwand 2 und dem Modell 3 einstellt. Durch die Messung werden als Spaltmaße die Spaltbreite und die Fallung an diskreten Messstellen ermittelt. Die Messstellen sind längs der den Spalt zur einen Seite begrenzenden äußeren Kontur des Modells 3 so gewählt, dass für die Spaltgüte kritische Stellen durch die Messung erfasst werden. Die Messglieder 6 sind entlang der äußeren Kontur des Modells 3 entsprechend verteilt angeordnet. Die Messglieder 6 können unmittelbar an dem Modell 3 befestigt sein. Vorzugsweise hält jedoch der Roboter die Messglieder 6 separat von dem Modell 3 in der für die Messung geeigneten Anordnung, wie Figur 1 sie beispielhaft zeigt. Der Spalt wird optisch vermessen. Die Messglieder 6 sind Laser in Kombination mit Kameras zur Aufnahme des reflektierten Laserlichts. Die Messung wird in einem Lichtschnittverfahren vorgenommen, vorzugsweise mit dem EDAG BestFit Assembly System. An einem Arm des Roboters ist ein Halteorgan zum Halten des Modells 3 befestigt. An dem Modell 3 ist ein Andockglied 5 befestigt oder geformt, an dem das Halteorgan das Modell 3 relativ zu einer Basis des Roboters in einer dem Ort und der Ausrichtung nach definierten Position festhält.The robot serves as a carrier for a plurality of measuring members 6 of a measuring device for measuring a gap, which is established during the joining between the side wall 2 and the model 3. Through the measurement, the gap width and the precipitation at discrete measuring points are determined as gap dimensions. The measuring points are selected along the outer contour of the model 3 delimiting the gap on the one side such that critical points for the quality of the gap are detected by the measurement. The measuring members 6 are arranged distributed along the outer contour of the model 3 accordingly. The measuring members 6 can be attached directly to the model 3. Preferably, however, the robot keeps the measuring members 6 separate from the model 3 in the arrangement suitable for the measurement, as shown by way of example in FIG. The gap is optically measured. The measuring elements 6 are lasers in combination with cameras for receiving the reflected laser light. The measurement is performed in a light-section method, preferably with the EDAG BestFit Assembly System. On one arm of the robot, a holding member for holding the model 3 is attached. On the model 3, a docking member 5 is attached or formed, on which the holding member holds the model 3 relative to a base of the robot in a position defined by the location and the orientation.
Die Geometrie des Modells 3 muss mit der modellierten Tür nur an den Messstellen und hinsichtlich der Positionen der Gelenkelemente 12 übereinstimmen.The geometry of the model 3 must match the modeled door only at the measuring points and with respect to the positions of the hinge elements 12.
Das Modell 3 ist mit einer Halteeinrichtung 13 ausgestattet, welche die Gelenkelemente 12 der Position nach relativ zu dem Modell 3 wie bei der in einer Endmontage mit der Seitenwand 2 zu verbindenden Tür lösbar hält, vorzugsweise fixiert. Die Gelenkelemente 12 bilden die Verbindungseinrichtung der Seitenwand 2 für die spätere Montage einer Tür, für die das Modell 3 in der Fügestation stellvertretend montiert wird. Nach dem Befestigen der Gelenkelemente 12 wird die Halteeinrichtung 13 von den Gelenkelementen 12 gelöst, um das Modell 3 wieder aus der Türöffnung bewegen zu können. Die Halteeinrichtung 13 ist vorzugsweise so gebildet, dass das Modell 3 nach dem Lösen wieder genau so aus der Türöffnung bewegt werden kann, wie es zuvor in die Fügeposition bewegt wurde. So kann die Halteeinrichtung 13 beispielsweise pro Gelenkelement 12 zwei Klemmbacken aufweisen, die automatisch in und aus dem Klemmeingriff mit dem jeweiligen Gelenkelement 12 bewegbar sind, so dass das Modell 3 entlang der Y-Achse aus der Türöffnung bewegt werden kann. Alternativ wäre es auch denkbar, die Halteeinrichtung 13 selbst als Gelenkelemente zu bilden, die den Gelenkelementen des in einer Endmontage noch zu bildenden Türscharniers entsprechen. Die Gelenkelemente 12 und die Halteeinrichtung 13 würden in diesem Fall eine zumindest im Wesentlichen dem späteren Scharnier gleichende Anordnung bilden. In solch einer Ausbildung könnte beispielsweise der Roboter die Gelenkelemente 12 in Position zu dem Modell 3 halten.The model 3 is provided with a holding device 13, which holds the hinge elements 12 in position relative to the model 3 as in the case of the door to be connected in a final assembly with the side wall 2 releasably, preferably fixed. The hinge elements 12 form the connecting means of the side wall 2 for the subsequent assembly of a door, for which the model 3 is mounted in the joining station representative. After fastening the hinge elements 12, the holding device 13 is released from the hinge elements 12, to be able to move the model 3 out of the door opening again. The holding device 13 is preferably formed so that the model 3 can again be moved from the door opening exactly as it was previously moved to the joining position. Thus, for example, the holding device 13 may have two clamping jaws per articulated element 12, which are automatically movable into and out of the clamping engagement with the respective joint element 12, so that the model 3 can be moved out of the door opening along the Y-axis. Alternatively, it would also be conceivable to form the holding device 13 itself as joint elements which correspond to the joint elements of the door hinge which is still to be formed in a final assembly. The hinge elements 12 and the holding device 13 in this case would form an arrangement which is at least substantially similar to the later hinge. For example, in such an embodiment, the robot could hold the hinge elements 12 in position with the model 3.
Zum Fügen bewegt der Roboter das Modell 3 in die Türöffnung der Seitenwand 2. Hierfür erfasst er die Seitenwand 2, vorzugsweise optisch, und positioniert das Modell 3 entsprechend. Zum genaueren Positionieren wird der zwischen der Seitenwand 2 und dem Modell 3 gebildete Spalt mittels der Messglieder 6 vermessen. Die aus der Messung gewonnenen Messdaten werden einer Steuerung oder Regelung des Roboters zugeführt. Die Steuerung oder Regelung steuert oder regelt die Bewegungen des Roboters nach einem programmierten Algorithmus automatisch so, dass das Modell 3 relativ zu der SeitenwandFor joining, the robot moves the model 3 into the door opening of the side wall 2. For this purpose it grasps the side wall 2, preferably optically, and positions the model 3 accordingly. For more precise positioning, the gap formed between the side wall 2 and the model 3 is measured by means of the measuring members 6. The measurement data obtained from the measurement are fed to a controller or controller of the robot. The controller automatically controls or controls the movements of the robot according to a programmed algorithm so that the model 3 relative to the side wall
2 in einer Fügeposition positioniert wird, in der ein nach Breite und Fallung unter vorgebbaren Gütekriterien optimaler Spalt sich einstellt. Während der Roboter das Modell2 is positioned in a joining position in which an optimum gap is set according to width and pitch under predefinable quality criteria. While the robot is the model
3 in der Fügeposition hält, befestigt die Bearbeitungseinrichtung die Gelenkelemente 12 an der Seitenwand 2.3 holds in the joining position, the processing device attached to the hinge elements 12 on the side wall. 2
Nach dem Befestigen der Gelenkelemente 12 wird das Modell 3 von dem Roboter mechanisch entkoppelt, so dass es sich in der geschaffenen Verbindung, im Ausführungsbeispiel dem Scharnier 12, 13 unter seinem Eigengewicht setzen kann. Das Modell 3 ist so schwer wie die modellierte Tür, so dass mittels des Modells 3 auch der Setzvorgang der später endmontierten Tür in der Simulation berücksichtigt wird. Sobald der Setzvorgang abgeschlossen ist, wird der Spalt erneut vermessen. Aus dieser nochmaligen Messung gewinnt die Fügevorrichtung Korrekturdaten für einen kompensierenden Vorhalt in nachfolgenden Fügeoperationen der gleichen Serie.After fixing the hinge elements 12, the model 3 is mechanically decoupled from the robot, so that it can sit in the created connection, in the exemplary embodiment, the hinge 12, 13 under its own weight. The model 3 is as heavy as the modeled door, so that by means of the model 3, the setting process of the later final mounted door in the simulation is taken into account. Once the setting process is completed, the gap is measured again. From this Repeat measurement wins the joining device correction data for a compensating Vorhalt in subsequent joining operations of the same series.
Nachdem der Messvorgang abgeschlossen ist, nimmt der Roboter wieder das Modell 3 auf. Die Verbindung der Gelenkelemente 12 und 13 wird gelöst, und der Roboter bewegt das Modell 3 aus der Fügeposition, so dass in der Fertigungslinie die nächste Rohkarosserie mit Seitenwand 2 in die Fügestation transportiert werden kann.After the measuring process is completed, the robot resumes the model 3 again. The connection of the joint elements 12 and 13 is released, and the robot moves the model 3 from the joining position, so that in the production line, the next body shell with side wall 2 can be transported into the joining station.
Die mechanische Entkopplung für die Simulation des Setzvorgangs kann zwischen dem Andockglied 5 und dem daran fixierten Halteorgan des Roboters oder zwischen dem Halteorgan und einer Basis des Roboters stattfinden. Wird das Halteorgan beispielsweise von der Basis entkoppelt, so verbindet ein Gelenk mit relativ zueinander blockierbaren Gelenkelementen das Halteorgan mit der Basis. Gegebenenfalls können auch zwei derartige Gelenke mit zueinander rechtwinkligen oder zumindest nicht parallelen Gelenkachsen das Halteorgan mit der Basis verbinden. Ein einziges Gelenk kann auch so gebildet sein, dass es die zur Simulation des Setzvorgangs erforderliche Nachgiebigkeit alleine schafft. Für die Blockierung des Gelenks oder der mehreren Gelenke ist eine Blockiereinrichtung vorgesehen, die für die mechanische Entkopplung gelöst werden kann, um die erforderliche Beweglichkeit zwischen den Gelenkelementen zu erhalten. Nach Abschluss des Messvorgangs wird das Gelenk oder werden die mehreren Gelenke mittels der Blockiereinrichtung wieder steifgestellt, um das Modell 3 aus der Fügeposition oder für die nächste Fügeoperation wieder in die neue Fügeposition relativ zur nächsten Seitenwand 2 bewegen zu können. Alternativ können unmittelbar das Andockglied 5 und das Halteorgan ein derartiges Gelenk bilden.The mechanical decoupling for the simulation of the setting process can take place between the docking member 5 and the holding member of the robot fixed thereto or between the holding member and a base of the robot. If the retaining member is decoupled from the base, for example, then a joint with joint elements which can be locked relative to one another connects the retaining member to the base. Optionally, two such joints with mutually perpendicular or at least not parallel hinge axes connect the retainer to the base. A single hinge may also be formed so as to provide the flexibility required to simulate the setting process alone. For the blocking of the joint or the plurality of joints, a blocking device is provided, which can be released for mechanical decoupling in order to obtain the required mobility between the joint elements. After completion of the measuring operation, the joint or the plurality of joints is stiff again by means of the blocking device to move the model 3 from the joining position or for the next joining operation again in the new joining position relative to the next side wall 2. Alternatively, immediately the docking member 5 and the retaining member may form such a joint.
Figur 2 zeigt einen weiteren Fügeverbund, den eine an der Seitenwand 2 der Figur 1 zu montierende Fahrzeugtür 1 und ein Modell 4 der Seitenwand 2 bilden. Der Fügeverbund 1 , 4 kann in einer Fügestation neben der Fertigungslinie, ebenso aber auch an einem anderen Ort der Fertigung, beispielsweise bei der Formung der Tür 1, grundsätzlich auch bei einem etwaigen Lieferanten aufgestellt sein. Die Türen 1 müssen erst für die Endmontage mit den Seitenwänden 2 zusammengeführt werden. Eine Fügevorrichtung zum Fügen von Türen 1 je mit dem Modell 4 umfasst eine Positioniereinrichtung für das Modell 4.FIG. 2 shows a further joining composite, which forms a vehicle door 1 to be mounted on the side wall 2 of FIG. 1 and a model 4 of the side wall 2. The joint assembly 1, 4 can be installed in a joining station in addition to the production line, as well as at another place of manufacture, for example in the formation of the door 1, in principle, also at a possible supplier. The doors 1 must be brought together with the side walls 2 only for final assembly. A joining device for joining doors 1 each with the model 4 comprises a positioning device for the model 4.
Die Fügevorrichtung umfasst ferner als Positioniereinrichtung für die Türen 1 einen Roboter, der ein Duplikat des Roboters der zur Figur 1 beschriebenen Fügevorrichtung sein kann. Ferner umfasst die Fügevorrichtung eine Messeinrichtung mit Messgliedern 7. Die Messeinrichtung kann ebenfalls ein Duplikat der Messeinrichtung der Figur 1 sein, insbesondere können die Messglieder 6 und 7 jeweils die gleichen sein. Die Messstellen sind vorzugsweise längs der äußeren Kontur der Tür 1 wie die Messstellen der Anordnung der Figur 1 gewählt, entsprechend sind auch die Messglieder 7 wie die Messglieder 6 angeordnet. Das Andockglied 5 kann dem Andockglied 5 der das Modell 3 umfassenden Fügevorrichtung entsprechen. Während das Andockglied 5 des Modells 3 unmittelbar an dem Modell 3 befestigt oder daran geformt ist, ist bei der das Modell 4 umfassenden Fügevorrichtung zusätzlich eine Spanneinrichtung 8 vorgesehen, mittels der das Andockglied 5 an der Tür 1 lösbar fixiert ist.The joining device further comprises, as a positioning device for the doors 1, a robot which may be a duplicate of the robot of the joining device described with reference to FIG. Furthermore, the joining device comprises a measuring device with measuring elements 7. The measuring device can also be a duplicate of the measuring device of FIG. 1, in particular the measuring elements 6 and 7 can each be the same. The measuring points are preferably selected along the outer contour of the door 1 as the measuring points of the arrangement of Figure 1, accordingly, the measuring members 7 as the measuring members 6 are arranged. The docking member 5 may correspond to the docking member 5 of the model 3 comprehensive joining device. While the docking member 5 of the model 3 is attached directly to the model 3 or formed thereon, in the joining device comprising the model 4, a tensioning device 8 is additionally provided, by means of which the docking member 5 is detachably fixed to the door 1.
An dem Modell 4 ist eine Halteeinrichtung 14 vergleichbar der Halteeinrichtung 13 gebildet. Gelenkelemente 11 bilden eine Verbindungseinrichtung der Tür 1. Die Gelenkelemente 11 bilden nach der Montage der Tür 1 zusammen mit den Gelenkelementen 12 der Seitenwand 2 ein Scharnier für die Tür 1. Das in Bezug auf die Halteeinrichtung 13 Gesagte gilt für die Halteeinrichtung 14 gleichermaßen, insbesondere kann sie als Spanneinrichtung zum lösbaren Klemmen der Gelenkelemente 11 gebildet sein oder Gelenkelemente entsprechend den Gelenkelementen 12 des späteren Scharniers umfassen, relativ zu denen die Gelenkelemente 11 für das Fügen mit dem Modell 4 fixiert werden.On the model 4, a holding device 14 is comparable to the holding device 13 is formed. Joint elements 11 form a connecting device of the door 1. The hinge elements 11 form after mounting the door 1 together with the hinge elements 12 of the side wall 2, a hinge for the door 1. The said with respect to the holding device 13 applies equally to the holding device 14, in particular it may be formed as a clamping device for releasably clamping the hinge elements 11 or comprise hinge elements corresponding to the hinge elements 12 of the later hinge, relative to which the hinge elements 11 are fixed for joining with the model 4.
Der Roboter bewegt wie anhand der Fügeoperation mit dem Modell 3 bereits beschrieben die Tür 1 in die Türöffnung des Modells 4 und positioniert sie dort passgenau relativ zu dem Modell 4. Die Positionierung erfolgt unter ständiger Rückführung der von den Messgliedern 7 gelieferten Messdaten, so dass in der Fügeposition ein nach den vorgegebenen Gütekriterien optimaler Spalt erhalten wird. Mittels einer Bearbeitungseinrichtung, die an einem weiteren Arm des Roboters befestigt oder von einem anderen Roboter gebildet sein kann, werden die Gelenkelemente 11 an der Tür 1 befestigt. Die Gelenkelemente 11 bilden die Verbindungseinrichtung der Tür 1 für die spätere Endmontage.As already described with reference to the joining operation with the model 3, the robot moves the door 1 into the door opening of the model 4 and positions it there accurately relative to the model 4. The positioning takes place with constant feedback of the measurement data supplied by the measuring elements 7, so that the joining position is obtained according to the predetermined quality criteria optimal gap. By means of a processing device attached to another arm of the robot or from may be formed by another robot, the hinge elements 11 are attached to the door 1. The hinge elements 11 form the connecting device of the door 1 for the subsequent final assembly.
Nachdem die Tür 1 und das Modell 4 mittels des Scharniers 11, 14 zu einem Fügeverbund miteinander verbunden sind, wird die Tür 1 von dem Roboter mechanisch entkoppelt, so dass sie sich unter ihrem Eigengewicht im Scharnier 11, 14 setzen kann. Sobald der Setzvorgang abgeschlossen ist, wird der Spalt nochmals vermessen. Aus den durch die nochmalige Messung gewonnenen Messdaten werden Korrekturdaten für nachfolgende Fügeoperationen der gleichen Serie gewonnen. Schließlich wird die Tür 1 vom Roboter wieder aufgenommen und nach dem Lösen der Gelenkelemente 11 und 14 aus der Fügeposition bewegt. Die Spanneinrichtung 8 wird von der Tür 1 gelöst. Der Roboter ist nun wieder frei für die Aufnahme der nächsten Tür 1. Die Tür 1 kann lackiert und ausgerüstet werden, bevor sie schließlich an der Seitenwand 2 endmontiert wird.After the door 1 and the model 4 are connected to each other by means of the hinge 11, 14 to a joint assembly, the door 1 is mechanically decoupled from the robot, so that they can sit under their own weight in the hinge 11, 14. Once the setting process is completed, the gap is measured again. From the measured data obtained by the repeated measurement correction data for subsequent joining operations of the same series are obtained. Finally, the door 1 is resumed by the robot and moved after the release of the hinge elements 11 and 14 from the joining position. The clamping device 8 is released from the door 1. The robot is now free again to receive the next door 1. The door 1 can be painted and finished before finally being mounted on the side wall 2.
Der die Türen 1 handhabende Roboter kann im Hinblick auf das Halten der Türen und das mechanische Entkoppeln für das Setzen der Türen 1 wie der das Modell 3 handhabende Roboter gebildet sein.The robot handling the doors 1 may be formed with respect to the holding of the doors and the mechanical decoupling for the setting of the doors 1 like the model 3 handling robot.
Figur 3 zeigt in einer schematischen Darstellung eine datenmäßige Kopplung der beiden Fügevorrichtungen über eine gemeinsame Leitebene. Für eine toleranzoptimierte Endmontage werden die vor und nach dem Setzen des Modells 3 und dem Setzen der Türen 1 gewonnenen Messdaten, vorzugsweise auch die Korrekturdaten, der jeweils anderen Fügevorrichtung zugeführt, vorzugsweise per Funk oder über feste Datenleitungen.FIG. 3 shows a schematic representation of a data-related coupling of the two joining devices via a common control plane. For a tolerance-optimized final assembly, the measurement data obtained before and after the setting of the model 3 and the setting of the doors 1, preferably also the correction data, are fed to the respective other joining device, preferably by radio or via fixed data lines.
Wird anhand der Daten mittels statistischer Auswertung beispielsweise festgestellt, dass sich hinsichtlich einer Abweichung von einer idealen Geometrie der Türen 1 oder der Seitenwände 2 ein Trend etabliert hat, wird mittels Computer eine optimale Korrekturstrategie ermittelt. Beispielhaft sei angenommen, dass sich die in X-Richtung gemessene Länge der Türen 1 und ferner die Y-Lage des dachnahen oberen Rands der Seitenwand 2 relativ zu dem bodennahen unteren Rand der Türöffnung geändert haben. Aufgrund der Verwendung von Modellen 3 und 4 mit stets gleicher Geometrie, soweit diese für die Messung relevant ist, kann die Ursache der Abweichung identifiziert und dem jeweiligen Bauteil, entweder den Türen 1 oder den Seitenwänden 2, zugeordnet werden. Da sowohl an den Türen 1 als auch an den Seitenwänden 2 deren Verbindungseinrichtungen 1 1 und 12 im Wege einer Messung und Positionierung geschaffen werden, können die Positionen der Verbindungseinrichtungen 11 und 12 nach Ort und Ausrichtung sowohl an den Türen 1 als auch an den Seitenwänden 2 so modifiziert werden, dass die festgestellte Abweichung im Sinne einer Annäherung an eine unter den gegebenen Umständen optimale Spaltgüte kompensiert werden kann. Werden die Gelenkelemente 12 beispielsweise an einer planen Montagefläche der Seitenwand 2 befestigt, die von der X- und der Z- Achse des Messkoordinatensystems aufgespannt wird, und werden ferner die Gelenkelemente 1 1 an einer planen Montagefläche der Tür 1 befestigt, die sich im modellierten Schließzustand der Tür 1 und des Modells 3 in einer Y- Z-Ebene des Messkoordinatensystems erstreckt, so kann die Längenabweichung bei den Seitenwänden 2 längs der X-Achse und die zwischen dem oberen und dem unteren Rand der Türöffnung festgestellte Abweichung durch eine Drehwinkeländerung der durch die Gelenkelemente 11 gebildete Verbindungseinrichtung der Türen 1 um die X-Achse kompensiert werden. Die statistische Auswertung der Mess- und Korrekturdaten liefert hierfür Vorgabewerte, die den Fügevorrichtungen zur Vornahme der jeweiligen Modifikation zugeführt werden. Im Ausfuhrungsbeispiel wird der Datenabgleich über die Leitebene vorgenommen, die Zugriff auf die gespeicherten Mess- und Korrekturdaten hat, um diese zu verwalten und statistisch für Modifikationen im Sinne einer toleranzoptimierten Endmontage auszuwerten.If, for example, it is determined on the basis of the data by means of statistical evaluation that a trend has established with respect to a deviation from an ideal geometry of the doors 1 or the side walls 2, an optimal correction strategy is determined by means of a computer. By way of example, it is assumed that the length of the doors 1 measured in the X direction and also the Y position of the roof-near upper edge of the side wall 2 have changed relative to the bottom-near lower edge of the door opening. Due to the use of models 3 and 4 with always the same geometry, as far as it is relevant for the measurement, the cause of the deviation can be identified and assigned to the respective component, either the doors 1 or the side walls 2. Since both on the doors 1 and on the side walls 2 whose connection means 1 1 and 12 are provided by way of measurement and positioning, the positions of the connection means 11 and 12 can be determined according to location and orientation both on the doors 1 and on the side walls 2 be modified so that the determined deviation can be compensated in the sense of an approximation to an optimum under the given circumstances Spaltgüte. If the joint elements 12 are fastened, for example, to a flat mounting surface of the side wall 2, which is spanned by the X and Z axes of the measuring coordinate system, and furthermore the joint elements 11 are fastened to a flat mounting surface of the door 1, which is in the modeled closed state the door 1 and the model 3 extends in a Y-Z plane of Messkoordinatensystems, so the length deviation in the side walls 2 along the X-axis and detected between the upper and the lower edge of the door opening deviation by a rotation angle change of the Joint elements 11 formed connecting device of the doors 1 are compensated for the X-axis. For this purpose, the statistical evaluation of the measurement and correction data provides default values that are fed to the joining devices for carrying out the respective modification. In the exemplary embodiment, the data comparison is performed via the control level, which has access to the stored measurement and correction data in order to manage it and to evaluate it statistically for modifications in the sense of a tolerance-optimized final assembly.
Figur 4 zeigt eine Fügestation zum Fügen von Heckleuchtenmodellen 3 an Rohkarosserien 2. Die Förderlinie, auf der die Rohkarosserien 2 in die Fügestation und wieder aus der Fügestation transportiert werden, ist als Strichlinie angedeutet. Pro Modell 3 ist für dessen Handhabung eine als Roboter gebildete Positioniereinrichtung 15 vorgesehen. Die beiden Positioniereinrichtungen 15 sind neben der Förderlinie angeordnet. Der maximale Bewegungsradius des jeweiligen Roboterarms ist für feststehende Positioniereinrichtungen 15 durch Kreise angedeutet. Mit dem jeweils in der Fügeposition befindlichen Modell 3 werden an der Rohkarosserie 2, beispielsweise an deren Heck oder Seitenwänden, die Verbindungseinrichtungen für die beiden Heckleuchten erzeugt oder befestigt. Mit Ausnahme des simulierten Setzvorgangs entspricht die Fügeoperation für die Heckleuchtenmodelle 3 der Fügeoperation für die Türen 1. Auch im Übrigen, insbesondere den Datenabgleich, gelten die dortigen Ausführungen gleichermaßen für die Heckleuchtenmodelle 3.FIG. 4 shows a joining station for joining tail light models 3 to bodyshells 2. The conveying line on which the bodyshells 2 are transported into the joining station and again out of the joining station is indicated as a dashed line. Pro model 3 is provided for its handling a positioning device 15 formed as a robot. The two positioning devices 15 are arranged next to the conveyor line. The maximum range of motion of the respective robot arm is indicated for fixed positioning devices 15 by circles. With each located in the joining position model 3 are on the body shell 2, for example, at the rear or side walls, the Connecting devices for the two taillights created or attached. With the exception of the simulated setting operation, the joining operation for the tail light models 3 corresponds to the joining operation for the doors 1. The remainder, in particular the data adjustment, applies equally to the designs there for the tail light models 3.
Die Fügestation ist mit einem Stationscomputer 9 ausgestattet. Über den Stationscomputer 9 wird der Datenabgleich mit der Fügevorrichtung für die Fügeoperation der Heckleuchten und des Karosseriemodells durchgeführt. Die Fügestation ist mit mehreren Modellen 3 für unterschiedliche Heckleuchten ausgestattet. Im Ausführungsbeispiel handelt es sich um zwei unterschiedliche Modelle 3, für die Ablagen innerhalb der Manipulationskreise der Positionseinrichtung 15 angedeutet sind. Dies erhöht die Flexibilität der Fügestation. Entsprechend der Anzahl der vorgehaltenen Modelle 3 können Karosserien 2 für die Endmontage von Heckleuchten vorbereitet werden. Ein Modellwechsel kann ohne weiteres, auch ohne Verzögerung in der Förderlinie vorgenommen werden. Entsprechend können auch für andere Anbauteile, beispielsweise Türen 1, Modelle 3 für unterschiedliche Fahrzeugtypen in der betreffenden Fügestation vorgehalten werden. The joining station is equipped with a station computer 9. Via the station computer 9, the data comparison with the joining device for the joining operation of the taillights and the body model is performed. The joining station is equipped with several models 3 for different taillights. In the embodiment, there are two different models 3, for the shelves within the manipulation circuits of the position means 15 are indicated. This increases the flexibility of the joining station. Corresponding to the number of retained models 3, bodies 2 can be prepared for the final assembly of rear lights. A model change can be made without further delay, even without delay in the conveyor line. Accordingly, for other attachments, such as doors 1, 3 models can be kept for different vehicle types in the joining station in question.

Claims

Ansprüche claims
1. Verfahren zum Fügen einer ersten Fügestruktur (1) und einer zweiten Fügestruktur (2), bei dem a) ein konturgetreues Modell (3) der ersten Fügestruktur (1) und die zweite Fügestruktur (2) zueinander in einer Fügeposition positioniert, b) das Modell (3) und die zweite Fügestruktur (2) in der Fügeposition relativ zueinander auf Passgenauigkeit vermessen c) und an der zweiten Fügestruktur (2) in Abhängigkeit von der Messung eine Verbindungseinrichtung (12) zum passgenauen Verbinden der Fügestrukturen (1, 2) erzeugt oder befestigt wird.1. A method for joining a first joining structure (1) and a second joining structure (2), in which a) a contour-conforming model (3) of the first joining structure (1) and the second joining structure (2) positioned to one another in a joining position, b) the model (3) and the second joining structure (2) in the joining position relative to each other measured to fit accuracy c) and at the second joining structure (2) depending on the measurement, a connecting device (12) for accurately connecting the joining structures (1, 2) is generated or attached.
2. Verfahren nach Anspruch 1, bei dem ferner a) die erste Fügestruktur (1) und ein konturgetreues Modell (4) der zweiten Fügestruktur (1) zueinander in einer Fügeposition positioniert, b) die erste Fügestruktur (1) und das Modell (4) der zweiten Fügestruktur (2) in der Fügeposition relativ zueinander auf Passgenauigkeit vermessen c) und an der ersten Fügestruktur (1) in Abhängigkeit von der Messung eine Verbindungseinrichtung (11) zum passgenauen Verbinden der Fügestrukturen (1, 2) erzeugt oder befestigt wird.2. The method according to claim 1, further comprising a) positioning the first joining structure (1) and a contoured model (4) of the second joining structure (1) to one another in a joining position, b) the first joining structure (1) and the model (4 ) of the second joining structure (2) in the joining position relative to each other to measure accuracy of fit c) and on the first joining structure (1) depending on the measurement, a connecting device (11) for accurately connecting the joining structures (1, 2) is generated or fixed.
3. Verfahren nach einer Kombination der Ansprüche 1 und 2, bei dem aus der Messung an der zweiten Fügestrukrur (2) und dem Modell (3) der ersten Fügestruktur (1) gewonnene Messdaten ausgewertet werden und die Verbindungseinrichtung (11) in Abhängigkeit von der Auswertung an der ersten Fügestruktur (1) erzeugt oder befestigt wird. 3. Method according to a combination of claims 1 and 2, in which measurement data obtained from the measurement at the second joining structure (2) and the model (3) of the first joining structure (1) are evaluated and the connecting device (11) as a function of the Evaluation on the first joining structure (1) is generated or attached.
4. Verfahren nach einer Kombination wenigstens der Ansprüche 1 und 2, bei dem aus der Messung an der ersten Fügestruktur (1) und dem Modell (4) der zweiten Fügestruktur (2) gewonnene Messdaten ausgewertet werden und die Verbindungseinrichtung (12) in Abhängigkeit von der Auswertung an der zweiten Fügestruktur (2) erzeugt oder befestigt wird.4. A method according to a combination of at least one of claims 1 and 2, wherein measured data obtained from the measurement at the first joining structure (1) and the model (4) of the second joining structure (2) are evaluated and the connecting device (12) as a function of the evaluation on the second joining structure (2) is generated or attached.
5. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Verbindungseinrichtung (11, 12) relativ zu dem Modell (3, 4) unbeweglich ist, vorzugsweise von einer das Modell (11, 12) positionierenden Positioniereinrichtung gehalten wird, und bei dem die Verbindungseinrichtung (11, 12) in der Fügeposition des Modells (3, 4) und der Fügestruktur (2, 1) an der Fügestruktur (1, 2) befestigt wird.A method according to any one of the preceding claims, wherein the connecting means (11, 12) is immovable relative to the model (3, 4), preferably held by a positioning means positioning the model (11, 12), and wherein the connecting means (11, 12) in the joining position of the model (3, 4) and the joining structure (2, 1) is attached to the joining structure (1, 2).
6. Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Modell (3 oder 4) und die damit in der Fügeposition befindliche Fügestruktur (2 oder 1) temporär miteinander zu einem Fügeverbund (2, 3 oder 1 , 4) verbunden und der Fügeverbund (2, 3 oder 1, 4) auf Passgenauigkeit vermessen wird.6. The method according to any one of the preceding claims, wherein the model (3 or 4) and thus located in the joining position joining structure (2 or 1) temporarily with each other to a joint assembly (2, 3 or 1, 4) connected and the joint assembly ( 2, 3 or 1, 4) is measured for accuracy of fit.
7. Verfahren nach dem vorhergehenden Anspruch, bei dem das Modell (3 oder 4) und die Fügestruktur (2 oder 1) passgenau zueinander in der Fügeposition positioniert, zu einem Fügeverbund (2, 3 oder 1, 4) miteinander verbunden und im Fügeverbund nochmals auf Passgenauigkeit vermessen werden.7. The method according to the preceding claim, wherein the model (3 or 4) and the joining structure (2 or 1) accurately positioned to each other in the joining position, connected to a joint assembly (2, 3 or 1, 4) and again in the joint assembly be measured to fit.
8. Verfahren nach dem vorhergehenden Anspruch, bei dem die Verbindungseinrichtung (12 oder 11) bei Feststellung einer im Fügeverbund festgestellten Passungenauigkeit korrigiert wird.8. The method according to the preceding claim, wherein the connecting means (12 or 11) is corrected upon detection of a detected in the joint assembly fit inaccuracy.
9. Verfahren nach einem der zwei vorhergehenden Ansprüche, bei dem eine im Fügeverbund festgestellte Passungenauigkeit bei einer nachfolgend mit dem Modell (3 oder 4) vermessenen weiteren Fügestruktur (2 oder 1) berücksichtigt wird. 9. Method according to one of the two preceding claims, in which a fit inaccuracy found in the joint assembly is taken into account in a further joining structure (2 or 1) measured subsequently with the model (3 or 4).
10. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Verbindungseinrichtung (11 oder 12) der Fügestruktur (1 oder 2) in Bezug auf eine, gegebenenfalls zwei Translationsachse(n) (Y, Z oder X, Z) und eine Rotationsachse (X oder Y) eines Raumkoordinatensystems (X, Y, Z) des oder der in der Fügeposition befindlichen Modells (4 oder 3) oder Fügestruktur (1 oder 2) erzeugt oder befestigt oder im Falle einer mittels der Messung festgestellten Passungenauigkeit korrigiert wird.10. The method according to any one of the preceding claims, wherein the connecting means (11 or 12) of the joining structure (1 or 2) with respect to one, optionally two translation axis (s) (Y, Z or X, Z) and a rotation axis (X or Y) of a spatial coordinate system (X, Y, Z) of the model (4 or 3) or joining structure (1 or 2) located in the joining position or is corrected or corrected in the event of a fit inaccuracy determined by the measurement.
11. Verfahren nach dem vorhergehenden Anspruch, bei dem die Translationsachsen (X, Z und Y, Z) zueinander nicht parallel und die Rotationsachsen (X und Y) zueinander nicht parallel sind.11. Method according to the preceding claim, in which the translation axes (X, Z and Y, Z) are not parallel to one another and the axes of rotation (X and Y) are not parallel to one another.
12. Verfahren nach einem der vorhergehenden Ansprüche, bei dem zum Fügen von artgleichen ersten Fügestrukturen (1) und artgleichen zweiten Fügestrukturen (2) ein Modell (3) der ersten Fügestruktur (1) und die zweiten Fügestrukturen (2) zueinander jeweils in einer Fügeposition und ein Modell (4) der zweiten12. The method according to any one of the preceding claims, wherein for joining of similar first joining structures (1) and similar second joining structures (2) a model (3) of the first joining structure (1) and the second joining structures (2) to each other in a joining position and a model (4) of the second
Fügestruktur (2) und die ersten Fügestrukturen (1) zueinander jeweils in einerJoining structure (2) and the first joining structures (1) to each other in one
Fügeposition positioniert werden, die Modelle (3, 4) und die Fügestrukturen (1, 2) in der jeweiligen Fügeposition relativ zueinander auf Passgenauigkeit vermessen und an den Fügestrukturen (1, 2) in Abhängigkeit von der Messung jeweils eineBe positioned positioning, the models (3, 4) and the joining structures (1, 2) measured in the respective joining position relative to each other to fit accuracy and the joining structures (1, 2) depending on the measurement in each case one
Verbindungseinrichtung (11, 12) zum passgenauen Verbinden der erstenConnecting device (11, 12) for accurately connecting the first
Fügestrukturen (1) mit je einer der zweiten Fügestrukturen (2) erzeugt oder befestigt werden.Joining structures (1) are produced or fixed with one of the second joining structures (2).
13. Verfahren nach dem vorhergehenden Anspruch, bei dem aus der Messung an dem Modell (3) und wenigstens einer der zweiten Fügestrukturen (2) gewonnene Messdaten ausgewertet werden und eine Verbindungseinrichtung (12) an einer nachfolgenden weiteren zweiten Fügestruktur (2) in Abhängigkeit von der Auswertung erzeugt oder befestigt wird. 13. Method according to the preceding claim, in which measurement data obtained from the measurement on the model (3) and at least one of the second joining structures (2) are evaluated and a connecting device (12) on a subsequent further second joining structure (2) as a function of the evaluation is generated or attached.
14. Verfahren nach einem der zwei vorhergehenden Ansprüche, bei dem aus der Messung an dem Modell (4) und wenigstens einer der ersten Fügestrukturen (1) gewonnene Messdaten ausgewertet werden und eine Verbindungseinrichtung (11) an einer nachfolgenden weiteren ersten Fügestruktur (1) in Abhängigkeit von der Auswertung erzeugt oder befestigt wird.14. Method according to one of the two preceding claims, in which measurement data obtained from the measurement on the model (4) and at least one of the first joining structures (1) are evaluated and a connecting device (11) on a subsequent further first joining structure (1) in FIG Depending on the evaluation generated or attached.
15. Verfahren nach einem der drei vorhergehenden Ansprüche, bei dem aus Messungen an wenigstens einem der Modelle (3, 4) und damit jeweils in Fügeposition befindlichen Fügestrukturen (2, 1) ein Trend bezüglich der Geometrie dieser Fügestrukturen (2, 1) ermittelt und bei der Erzeugung oder Befestigung der Verbindungseinrichtungen (11, 12) an den durch das wenigstens eine der Modelle (3, 4) repräsentierten Fügestrukturen (1, 2) oder den anderen Fügestrukturen (2, 1) berücksichtigt wird.15. The method according to one of the three preceding claims, wherein from measurements on at least one of the models (3, 4) and thus in each joining position joint structures (2, 1) determines a trend with respect to the geometry of these joining structures (2, 1) and is taken into account in the production or fastening of the connecting devices (11, 12) to the joining structures (1, 2) or the other joining structures (2, 1) represented by the at least one of the models (3, 4).
16. Verfahren nach einem der vorhergehenden Ansprüche, bei dem über den Umfang des Modells (3, 4) an zumindest diskreten Messorten je ein Spaltmaß, vorzugsweise Spaltbreite und Fallung, zwischen dem Modell (3, 4) und der jeweiligen Fügestruktur (2, 1) ermittelt und die Verbindungseinrichtung (11, 12) jeweils auf Annäherung eines vorgegebenen Spaltmaßes, vorzugsweise zusätzlich auf Minimierung der Spaltmaße, erzeugt oder befestigt wird.16. The method according to any one of the preceding claims, wherein over the circumference of the model (3, 4) at least discrete measuring locations depending on a gap, preferably gap width and precipitation, between the model (3, 4) and the respective joining structure (2, 1 ) and the connecting device (11, 12) in each case on approximation of a predetermined gap, preferably in addition to minimizing the gap dimensions, generated or fixed.
17. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die miteinander zu verbindenden Fügestrukturen (1, 2) ein Anbauteil und eine Struktur, vorzugsweise eine Karosserie oder ein Karosserieteil, für ein Fahrzeug sind.17. The method according to any one of the preceding claims, wherein the joining structures (1, 2) to be joined together are an attachment and a structure, preferably a body or a body part, for a vehicle.
18. Verfahren nach dem vorhergehenden Anspruch, bei dem die erste Fügestruktur (1) eine Fahrzeugtür, eine Haube, eine Klappe oder eine Leuchte ist.18. The method according to the preceding claim, wherein the first joining structure (1) is a vehicle door, a hood, a flap or a lamp.
19. Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Verbindungseinrichtung (11, 12) wenigstens ein erstes Gelenkelement wenigstens eines Gelenks, vorzugsweise eines Drehgelenks oder Scharniers, zum beweglichen Verbinden der ersten Fügestruktur (1) mit der zweiten Fügestruktur (2) ist. 19. The method according to any one of the preceding claims, wherein the connecting means (11, 12) at least one first hinge element of at least one joint, preferably a hinge or hinge, for movably connecting the first joining structure (1) with the second joining structure (2).
20. Verfahren nach dem vorhergehenden Anspruch, bei dem das erste Gelenkelement an der ersten Fügestruktur (1) und ein zweites Gelenkelement an der zweiten Fügestruktur (2) erzeugt oder befestigt wird und die Gelenkelemente für das Verbinden der Fügestrukturen (1, 2) zu dem wenigstens einen Gelenk miteinander verbunden werden.20. Method according to the preceding claim, in which the first joint element is produced or attached to the first joint structure (1) and a second joint element is attached to the second joint structure (2) and the joint elements for connecting the joint structures (1, 2) to the at least one joint are connected to each other.
21. Vorrichtung zum Fügen von artgleichen ersten Fügestrukturen (1) und artgleichen zweiten Fügestrukturen (2), die Vorrichtung umfassend: a) ein konturgetreues Modell (3) der ersten Fügestrukturen (1), b) eine Positioniereinrichtung zum Positionieren des Modells (3), c) eine weitere Positioniereinrichtung zum Positionieren der zweiten Fügestrukturen (2), d) wobei das Modell (3) und die zweiten Fügestrukturen (2) mittels der Positioniereinrichtungen jeweils in einer Fügeposition positionierbar sind, e) eine Messeinrichtung (6) zum Messen der Positionen, die das Modell (3) und die jeweilige zweite Fügegstruktur (2) in der Fügeposition relativ zueinander einnehmen, f) eine mit der Messeinrichtung (6) verbundene Steuerung oder Regelung, mittels der wenigstens eine der Positioniereinrichtungen in Abhängigkeit von einem Ergebnis der Messung gesteuert oder geregelt bewegbar ist, um das Modell (3) und die jeweilige zweite Fügestruktur (2) zueinander passgenau in der Fügeposition zu positionieren, g) und eine Bearbeitungseinrichtung zum Erzeugen oder Befestigen einer Verbindungseinrichtung (12) an der jeweiligen zweiten Fügestruktur (2).21. Device for joining identical first joining structures (1) and similar second joining structures (2), the device comprising: a) a contoured model (3) of the first joining structures (1), b) a positioning device for positioning the model (3) c) a further positioning device for positioning the second joining structures (2), d) wherein the model (3) and the second joining structures (2) can each be positioned in a joining position by means of the positioning devices, e) a measuring device (6) for measuring the Positions which take the model (3) and the respective second joining structure (2) in the joining position relative to one another, f) control or regulation connected to the measuring device (6), by means of which at least one of the positioning devices is dependent on a result of the measurement controlled or regulated is movable to the model (3) and the respective second joining structure (2) to each other precisely in the joining position z u position, g) and a processing device for generating or fixing a connecting device (12) on the respective second joining structure (2).
22. Vorrichtung nach dem vorhergehenden Anspruch, wobei die Positioniereinrichtung zum Positionieren der Fügestrukturen (1, 2) eine Fördereinrichtung für eine Förderung der Fügestrukturen (1, 2) zu und von der Positioniereinrichtung zum Positionieren des Modells (4, 3) umfasst.22. Device according to the preceding claim, wherein the positioning device for positioning the joining structures (1, 2) comprises a conveyor for conveying the joining structures (1, 2) to and from the positioning device for positioning the model (4, 3).
23. Vorrichtung zum Fügen von artgleichen ersten Fügestrukturen (1) und artgleichen zweiten Fügestrukturen (2), die Vorrichtung umfassend: a) ein konturgetreues Modell (4) der zweiten Fügestrukturen (2), b) eine Positioniereinrichtung zum Positionieren des Modells (4), c) eine weitere Positioniereinrichtung zum Positionieren der ersten Fügestrukturen23. Device for joining identical first joining structures (1) and similar second joining structures (2), the device comprising: a) a contour-conforming model (4) of the second joining structures (2), b) a positioning device for positioning the model (4), c) a further positioning device for positioning the first joining structures
(1), d) wobei das Modell (4) und die ersten Fügestrukturen (1) mittels der(1), d) wherein the model (4) and the first joining structures (1) by means of
Positioniereinrichtungen jeweils in einer Fügeposition positionierbar sind, e) eine Messeinrichtung (7) zum Messen der Positionen, die das Modell (4) und die jeweilige erste Fügestruktur (1) in der Fügeposition relativ zueinander einnehmen, f) eine mit der Messeinrichtung (7) verbundene Steuerung oder Regelung, mittels der wenigstens eine der Positioniereinrichtungen in Abhängigkeit von einem Ergebnis der Messung gesteuert oder geregelt bewegbar ist, um das Modell (4) und die jeweilige erste Fügestruktur (1) zueinander passgenau in der Fügeposition zu positionieren, g) und eine Bearbeitungseinrichtung zum Erzeugen oder Befestigen einer Verbindungseinrichtung (11) an der jeweiligen ersten Fügestruktur (1).Positioning devices can each be positioned in a joining position, e) a measuring device (7) for measuring the positions which the model (4) and the respective first joining structure (1) occupy relative to one another in the joining position, f) one with the measuring device (7) connected control by means of which at least one of the positioning devices is controlled or regulated in dependence on a result of the measurement, in order to position the model (4) and the respective first joining structure (1) precisely in the joining position, g) and a Processing device for producing or fixing a connecting device (11) on the respective first joining structure (1).
24. Vorrichtung nach Anspruch 21 in Kombination mit der Vorrichtung nach dem vorhergehenden Anspruch.24. The device according to claim 21 in combination with the device according to the preceding claim.
25. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei wenigstens eine der Positioniereinrichtungen einen Roboter mit so viel Freiheitsgraden der Bewegung umfasst oder von solch einem Roboter gebildet wird, dass das von dem Roboter gehaltene Modell (3) oder die von dem Roboter jeweils gehaltene Fügestruktur (1) allein mittels des Roboters passgenau in die Fügeposition bewegbar ist.25. Device according to one of the preceding claims, wherein at least one of the positioning means comprises a robot with so many degrees of freedom of movement or is formed by such a robot that held by the robot model (3) or held by the robot respectively joint structure ( 1) can be moved accurately by means of the robot in the joining position.
26. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei eine der Positioniereinrichtungen eine Basis, ein mit der Basis beweglich verbundenes Gelenk, ein in dem Gelenk abgestütztes Halteorgan oder Andockglied (5) zum Halten des Modells (3) oder einer (1) der Fügestrukturen (1, 2) und eine Blockiereinrichtung für das Gelenk umfasst, wobei das Gelenk mittels der Blockiereinrichtung für die Positionierung des Modells (3) oder der einen (1) der Fügestrukturen (1, 2) blockierbar und die Blockierung lösbar ist, um das Modell (3) oder die eine (1) der Fügestrukturen (1, 2) mechanisch von der Basis zu entkoppeln.26. Device according to one of the preceding claims, wherein one of the positioning means comprises a base, a joint movably connected to the base, a holding member or docking member (5) supported in the joint for holding the model (3) or one (1) of the joining structures ( 1, 2) and a blocking device for the joint, wherein the joint by means of the blocking device for the positioning of the model (3) or the one (1) of the joining structures (1, 2) blockable and the blocking is releasable to mechanically decouple the model (3) or the one (1) of the joining structures (1, 2) from the base.
27. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Positioniereinrichtung zum Positionieren von einer (2) der Fügestrukturen (1, 2) oder deren Modell (4) eine Fixiereinrichtung für ein ortsfestes Fixieren der einen (2) der Fügestrukturen (1, 2) oder deren Modell (4) umfasst.27. Device according to one of the preceding claims, wherein the positioning device for positioning of one (2) of the joining structures (1, 2) or their model (4) a fixing device for a fixed fixing of the one (2) of the joining structures (1, 2) or its model (4).
28. Vorrichtung nach einem der vorhergehenden Ansprüche, ferner umfassend eine Halteeinrichtung (13, 14), die mit dem Modell (3, 4) oder der Positioniereinrichtung für das Modell (3, 4) fest verbunden ist und die Verbindungseinrichtung (12, 11) lösbar hält, vorzugsweise spannt.28. Device according to one of the preceding claims, further comprising a holding device (13, 14) which is fixedly connected to the model (3, 4) or the positioning device for the model (3, 4) and the connecting means (12, 11) releasably holds, preferably tensioned.
29. Vorrichtung nach einem der vorhergehenden Ansprüche, wobei die Vorrichtung in einer Fertigungsstraße für Fahrzeuge angeordnet ist. 29. Device according to one of the preceding claims, wherein the device is arranged in a production line for vehicles.
PCT/EP2006/006389 2005-06-30 2006-06-30 Method and device for joining joining structures, particularly during the assembly of vehicle components WO2007003375A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005030944.5 2005-06-30
DE200510030944 DE102005030944B4 (en) 2005-06-30 2005-06-30 Method and device for joining joining structures, in particular in the assembly of vehicle components

Publications (1)

Publication Number Publication Date
WO2007003375A1 true WO2007003375A1 (en) 2007-01-11

Family

ID=36951990

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/006389 WO2007003375A1 (en) 2005-06-30 2006-06-30 Method and device for joining joining structures, particularly during the assembly of vehicle components

Country Status (2)

Country Link
DE (1) DE102005030944B4 (en)
WO (1) WO2007003375A1 (en)

Cited By (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8176792B2 (en) 2008-06-04 2012-05-15 Honda Motor Co., Ltd. Inspection system and inspecting method
EP2878522A1 (en) 2013-11-28 2015-06-03 Siemens Aktiengesellschaft Method for mounting a door on a vehicle body
CN106989705A (en) * 2016-01-21 2017-07-28 上海大众联合发展车身配件有限公司 A kind of auxiliary detection tool for being used to detect vehicle body taillight FX
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US10668965B2 (en) 2014-05-16 2020-06-02 Divergent Technologies, Inc. Nodes with integrated adhesive ports and channels for construction of complex structures
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10960468B2 (en) 2014-07-02 2021-03-30 Divergent Technologies, Inc. Stress-based method for optimization of joint members within a complex structure
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11001047B2 (en) 2017-08-15 2021-05-11 Divergent Technologies, Inc. Methods for additively manufactured identification features
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US11192168B2 (en) 2016-06-09 2021-12-07 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
CN114719706A (en) * 2022-03-30 2022-07-08 东风汽车集团股份有限公司 Rear headlamp key assembly size detection tool with matching function and detection method
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
USD983090S1 (en) 2018-11-21 2023-04-11 Czv, Inc. Motor vehicle body and/or replica
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11845130B2 (en) 2021-03-09 2023-12-19 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US12083596B2 (en) 2020-12-21 2024-09-10 Divergent Technologies, Inc. Thermal elements for disassembly of node-based adhesively bonded structures
US12090551B2 (en) 2021-04-23 2024-09-17 Divergent Technologies, Inc. Removal of supports, and other materials from surface, and within hollow 3D printed parts
US12103008B2 (en) 2020-09-22 2024-10-01 Divergent Technologies, Inc. Methods and apparatuses for ball milling to produce powder for additive manufacturing
US12111638B2 (en) 2020-06-10 2024-10-08 Divergent Technologies, Inc. Adaptive production system
US12115583B2 (en) 2018-11-08 2024-10-15 Divergent Technologies, Inc. Systems and methods for adhesive-based part retention features in additively manufactured structures

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010016215A1 (en) * 2010-03-30 2011-10-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for measuring geometry and structure of e.g. support frame in motor car, involves supporting component in stress-free manner by support unit of receiving device and evaluating measurement multiple times with different bases

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726292C1 (en) * 1987-08-07 1989-02-23 Audi Ag Method for installing vehicle doors
WO1996036525A1 (en) 1995-05-19 1996-11-21 Edag Engineering + Design Ag Process for automatically fitting a motor vehicle body component
WO2002045901A1 (en) * 2000-12-07 2002-06-13 Uniport S.A.S. Method and device for assembling a vehicle door
DE10347554A1 (en) * 2003-10-14 2005-05-25 Adam Opel Ag Assembly line jig process for automobile body compares component actual position with a target position and adjusts accordingly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4311647C2 (en) * 1993-04-08 1995-11-16 Bayerische Motoren Werke Ag Device for replicating a vehicle body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3726292C1 (en) * 1987-08-07 1989-02-23 Audi Ag Method for installing vehicle doors
WO1996036525A1 (en) 1995-05-19 1996-11-21 Edag Engineering + Design Ag Process for automatically fitting a motor vehicle body component
WO2002045901A1 (en) * 2000-12-07 2002-06-13 Uniport S.A.S. Method and device for assembling a vehicle door
DE10347554A1 (en) * 2003-10-14 2005-05-25 Adam Opel Ag Assembly line jig process for automobile body compares component actual position with a target position and adjusts accordingly

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009023428B4 (en) * 2008-06-04 2016-09-15 Honda Motor Co., Ltd. Verification system and verification procedure
US8176792B2 (en) 2008-06-04 2012-05-15 Honda Motor Co., Ltd. Inspection system and inspecting method
EP2878522A1 (en) 2013-11-28 2015-06-03 Siemens Aktiengesellschaft Method for mounting a door on a vehicle body
WO2015078696A2 (en) 2013-11-28 2015-06-04 Siemens Aktiengesellschaft Method for installing an add-on part on a vehicle body
US10040496B2 (en) 2013-11-28 2018-08-07 Siemens Aktiengesellschaft Method for installing an add-on part on a vehicle body
US10668965B2 (en) 2014-05-16 2020-06-02 Divergent Technologies, Inc. Nodes with integrated adhesive ports and channels for construction of complex structures
US10960468B2 (en) 2014-07-02 2021-03-30 Divergent Technologies, Inc. Stress-based method for optimization of joint members within a complex structure
CN106989705A (en) * 2016-01-21 2017-07-28 上海大众联合发展车身配件有限公司 A kind of auxiliary detection tool for being used to detect vehicle body taillight FX
US11192168B2 (en) 2016-06-09 2021-12-07 Divergent Technologies, Inc. Systems and methods for arc and node design and manufacture
US10759090B2 (en) 2017-02-10 2020-09-01 Divergent Technologies, Inc. Methods for producing panels using 3D-printed tooling shells
US11155005B2 (en) 2017-02-10 2021-10-26 Divergent Technologies, Inc. 3D-printed tooling and methods for producing same
US11247367B2 (en) 2017-02-10 2022-02-15 Divergent Technologies, Inc. 3D-printed tooling shells
US10898968B2 (en) 2017-04-28 2021-01-26 Divergent Technologies, Inc. Scatter reduction in additive manufacturing
US10703419B2 (en) 2017-05-19 2020-07-07 Divergent Technologies, Inc. Apparatus and methods for joining panels
US11358337B2 (en) 2017-05-24 2022-06-14 Divergent Technologies, Inc. Robotic assembly of transport structures using on-site additive manufacturing
US11123973B2 (en) 2017-06-07 2021-09-21 Divergent Technologies, Inc. Interconnected deflectable panel and node
US10919230B2 (en) 2017-06-09 2021-02-16 Divergent Technologies, Inc. Node with co-printed interconnect and methods for producing same
US10781846B2 (en) 2017-06-19 2020-09-22 Divergent Technologies, Inc. 3-D-printed components including fasteners and methods for producing same
US10994876B2 (en) 2017-06-30 2021-05-04 Divergent Technologies, Inc. Automated wrapping of components in transport structures
US11022375B2 (en) 2017-07-06 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing microtube heat exchangers
US11773956B2 (en) 2017-07-07 2023-10-03 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US10895315B2 (en) 2017-07-07 2021-01-19 Divergent Technologies, Inc. Systems and methods for implementing node to node connections in mechanized assemblies
US11897163B2 (en) 2017-07-25 2024-02-13 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10940609B2 (en) 2017-07-25 2021-03-09 Divergent Technologies, Inc. Methods and apparatus for additively manufactured endoskeleton-based transport structures
US10751800B2 (en) 2017-07-25 2020-08-25 Divergent Technologies, Inc. Methods and apparatus for additively manufactured exoskeleton-based transport structures
US11174884B2 (en) 2017-08-08 2021-11-16 Divergent Technologies. Inc. Systems and methods for joining node and tube structures
US10605285B2 (en) 2017-08-08 2020-03-31 Divergent Technologies, Inc. Systems and methods for joining node and tube structures
US11001047B2 (en) 2017-08-15 2021-05-11 Divergent Technologies, Inc. Methods for additively manufactured identification features
US11306751B2 (en) 2017-08-31 2022-04-19 Divergent Technologies, Inc. Apparatus and methods for connecting tubes in transport structures
US10960611B2 (en) 2017-09-06 2021-03-30 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11548236B2 (en) 2017-09-06 2023-01-10 Divergent Technologies, Inc. Methods and apparatuses for universal interface between parts in transport structures
US11292058B2 (en) 2017-09-12 2022-04-05 Divergent Technologies, Inc. Apparatus and methods for optimization of powder removal features in additively manufactured components
US10668816B2 (en) 2017-10-11 2020-06-02 Divergent Technologies, Inc. Solar extended range electric vehicle with panel deployment and emitter tracking
US11584094B2 (en) 2017-10-11 2023-02-21 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US10814564B2 (en) 2017-10-11 2020-10-27 Divergent Technologies, Inc. Composite material inlay in additively manufactured structures
US11786971B2 (en) 2017-11-10 2023-10-17 Divergent Technologies, Inc. Structures and methods for high volume production of complex structures using interface nodes
US10926599B2 (en) 2017-12-01 2021-02-23 Divergent Technologies, Inc. Suspension systems using hydraulic dampers
US11110514B2 (en) 2017-12-14 2021-09-07 Divergent Technologies, Inc. Apparatus and methods for connecting nodes to tubes in transport structures
US11085473B2 (en) 2017-12-22 2021-08-10 Divergent Technologies, Inc. Methods and apparatus for forming node to panel joints
US11754107B2 (en) 2017-12-22 2023-09-12 Divergent Technologies Inc. Methods and apparatus for forming node to panel joints
US11534828B2 (en) 2017-12-27 2022-12-27 Divergent Technologies, Inc. Assembling structures comprising 3D printed components and standardized components utilizing adhesive circuits
US11420262B2 (en) 2018-01-31 2022-08-23 Divergent Technologies, Inc. Systems and methods for co-casting of additively manufactured interface nodes
US10751934B2 (en) 2018-02-01 2020-08-25 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11673316B2 (en) 2018-02-01 2023-06-13 Divergent Technologies, Inc. Apparatus and methods for additive manufacturing with variable extruder profiles
US11224943B2 (en) 2018-03-07 2022-01-18 Divergent Technologies, Inc. Variable beam geometry laser-based powder bed fusion
US11267236B2 (en) 2018-03-16 2022-03-08 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US12059867B2 (en) 2018-03-16 2024-08-13 Divergent Technologies, Inc. Single shear joint for node-to-node connections
US11254381B2 (en) 2018-03-19 2022-02-22 Divergent Technologies, Inc. Manufacturing cell based vehicle manufacturing system and method
US11872689B2 (en) 2018-03-19 2024-01-16 Divergent Technologies, Inc. End effector features for additively manufactured components
US11408216B2 (en) 2018-03-20 2022-08-09 Divergent Technologies, Inc. Systems and methods for co-printed or concurrently assembled hinge structures
US11613078B2 (en) 2018-04-20 2023-03-28 Divergent Technologies, Inc. Apparatus and methods for additively manufacturing adhesive inlet and outlet ports
US11214317B2 (en) 2018-04-24 2022-01-04 Divergent Technologies, Inc. Systems and methods for joining nodes and other structures
US11020800B2 (en) 2018-05-01 2021-06-01 Divergent Technologies, Inc. Apparatus and methods for sealing powder holes in additively manufactured parts
US10682821B2 (en) 2018-05-01 2020-06-16 Divergent Technologies, Inc. Flexible tooling system and method for manufacturing of composite structures
US11389816B2 (en) 2018-05-09 2022-07-19 Divergent Technologies, Inc. Multi-circuit single port design in additively manufactured node
US10691104B2 (en) 2018-05-16 2020-06-23 Divergent Technologies, Inc. Additively manufacturing structures for increased spray forming resolution or increased fatigue life
US11590727B2 (en) 2018-05-21 2023-02-28 Divergent Technologies, Inc. Custom additively manufactured core structures
US11441586B2 (en) 2018-05-25 2022-09-13 Divergent Technologies, Inc. Apparatus for injecting fluids in node based connections
US11292056B2 (en) 2018-07-06 2022-04-05 Divergent Technologies, Inc. Cold-spray nozzle
US11269311B2 (en) 2018-07-26 2022-03-08 Divergent Technologies, Inc. Spray forming structural joints
US10836120B2 (en) 2018-08-27 2020-11-17 Divergent Technologies, Inc . Hybrid composite structures with integrated 3-D printed elements
US11433557B2 (en) 2018-08-28 2022-09-06 Divergent Technologies, Inc. Buffer block apparatuses and supporting apparatuses
US11826953B2 (en) 2018-09-12 2023-11-28 Divergent Technologies, Inc. Surrogate supports in additive manufacturing
US11072371B2 (en) 2018-10-05 2021-07-27 Divergent Technologies, Inc. Apparatus and methods for additively manufactured structures with augmented energy absorption properties
US11260582B2 (en) 2018-10-16 2022-03-01 Divergent Technologies, Inc. Methods and apparatus for manufacturing optimized panels and other composite structures
US12115583B2 (en) 2018-11-08 2024-10-15 Divergent Technologies, Inc. Systems and methods for adhesive-based part retention features in additively manufactured structures
US11504912B2 (en) 2018-11-20 2022-11-22 Divergent Technologies, Inc. Selective end effector modular attachment device
USD983090S1 (en) 2018-11-21 2023-04-11 Czv, Inc. Motor vehicle body and/or replica
US11529741B2 (en) 2018-12-17 2022-12-20 Divergent Technologies, Inc. System and method for positioning one or more robotic apparatuses
US10663110B1 (en) 2018-12-17 2020-05-26 Divergent Technologies, Inc. Metrology apparatus to facilitate capture of metrology data
US11449021B2 (en) 2018-12-17 2022-09-20 Divergent Technologies, Inc. Systems and methods for high accuracy fixtureless assembly
US11885000B2 (en) 2018-12-21 2024-01-30 Divergent Technologies, Inc. In situ thermal treatment for PBF systems
US11203240B2 (en) 2019-04-19 2021-12-21 Divergent Technologies, Inc. Wishbone style control arm assemblies and methods for producing same
US11912339B2 (en) 2020-01-10 2024-02-27 Divergent Technologies, Inc. 3-D printed chassis structure with self-supporting ribs
US11590703B2 (en) 2020-01-24 2023-02-28 Divergent Technologies, Inc. Infrared radiation sensing and beam control in electron beam additive manufacturing
US11884025B2 (en) 2020-02-14 2024-01-30 Divergent Technologies, Inc. Three-dimensional printer and methods for assembling parts via integration of additive and conventional manufacturing operations
US11479015B2 (en) 2020-02-14 2022-10-25 Divergent Technologies, Inc. Custom formed panels for transport structures and methods for assembling same
US11535322B2 (en) 2020-02-25 2022-12-27 Divergent Technologies, Inc. Omni-positional adhesion device
US11421577B2 (en) 2020-02-25 2022-08-23 Divergent Technologies, Inc. Exhaust headers with integrated heat shielding and thermal syphoning
US11413686B2 (en) 2020-03-06 2022-08-16 Divergent Technologies, Inc. Methods and apparatuses for sealing mechanisms for realizing adhesive connections with additively manufactured components
US12111638B2 (en) 2020-06-10 2024-10-08 Divergent Technologies, Inc. Adaptive production system
US11850804B2 (en) 2020-07-28 2023-12-26 Divergent Technologies, Inc. Radiation-enabled retention features for fixtureless assembly of node-based structures
US11806941B2 (en) 2020-08-21 2023-11-07 Divergent Technologies, Inc. Mechanical part retention features for additively manufactured structures
US12103008B2 (en) 2020-09-22 2024-10-01 Divergent Technologies, Inc. Methods and apparatuses for ball milling to produce powder for additive manufacturing
US12083596B2 (en) 2020-12-21 2024-09-10 Divergent Technologies, Inc. Thermal elements for disassembly of node-based adhesively bonded structures
US11872626B2 (en) 2020-12-24 2024-01-16 Divergent Technologies, Inc. Systems and methods for floating pin joint design
US11947335B2 (en) 2020-12-30 2024-04-02 Divergent Technologies, Inc. Multi-component structure optimization for combining 3-D printed and commercially available parts
US11928966B2 (en) 2021-01-13 2024-03-12 Divergent Technologies, Inc. Virtual railroad
US11845130B2 (en) 2021-03-09 2023-12-19 Divergent Technologies, Inc. Rotational additive manufacturing systems and methods
US12090551B2 (en) 2021-04-23 2024-09-17 Divergent Technologies, Inc. Removal of supports, and other materials from surface, and within hollow 3D printed parts
US11865617B2 (en) 2021-08-25 2024-01-09 Divergent Technologies, Inc. Methods and apparatuses for wide-spectrum consumption of output of atomization processes across multi-process and multi-scale additive manufacturing modalities
CN114719706A (en) * 2022-03-30 2022-07-08 东风汽车集团股份有限公司 Rear headlamp key assembly size detection tool with matching function and detection method

Also Published As

Publication number Publication date
DE102005030944B4 (en) 2007-08-02
DE102005030944A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
DE102005030944B4 (en) Method and device for joining joining structures, in particular in the assembly of vehicle components
EP1537008B1 (en) Method and device for producing a connecting area on a production part
DE3883356T2 (en) Process for automatic assembly of vehicles and establishment of the production line.
WO2019042504A1 (en) Carriage for transporting and positioning an aircraft component
EP1602456B1 (en) Method and device for controlling manipulators
DE3632477C2 (en)
DE60108735T2 (en) Device and method for fastening aircraft parts
EP2766135B1 (en) Apparatus and method for realizing a plurality of riveted connections along the surface of a workpiece
DE102005046793B4 (en) Method for increasing the accuracy of fit of a vehicle attachment and joint assembly of a vehicle structural part and a vehicle attachment
DE102014107855A1 (en) Method and device for aligning segments
EP1503874A2 (en) Production device, especially a bending press, and method for operating said production device
DE102016121007A1 (en) ADDITIVE MANUFACTURE OF A BODY COMPONENT ON A TUBE FRAME
DE10258633A1 (en) Method and device for positioning components to be joined
EP2878522B1 (en) Method for mounting a door on a vehicle body
DE202005019619U1 (en) Assembly system for doors on vehicle bodies
DE10347554A1 (en) Assembly line jig process for automobile body compares component actual position with a target position and adjusts accordingly
EP1341642B1 (en) Method and device for assembling a vehicle door
DE202017102466U1 (en) Device for detecting the exact position and position of a component in a processing station
DE19612580C1 (en) Method for positioning attachments and extensions on the large sections of a modular rail vehicle
DE102018132639A1 (en) Method for measuring a workpiece arranged in a clamping device
DE102010024190A1 (en) Method for mounting door at body of passenger car, involves manually moving mounting tool relative to body of motor vehicle by assembling device with attachment part in pre-assembled position of attachment part
EP0976473B1 (en) Riveting apparatus for the manufacture of a barrel-shaped workpiece, preferably an aircraft fuselage
DE102019111205B4 (en) Method for checking a calibration of a robot, robot and evaluation device
DE20220528U1 (en) Method for applying connecting fittings to workpiece using non calibrated sensors fitted to the operating tools and with the measured positions compared with reference positions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06762320

Country of ref document: EP

Kind code of ref document: A1