WO2007097356A1 - Ultrafine coaxial line and ultrafine coaxial barrel and production method for them - Google Patents
Ultrafine coaxial line and ultrafine coaxial barrel and production method for them Download PDFInfo
- Publication number
- WO2007097356A1 WO2007097356A1 PCT/JP2007/053161 JP2007053161W WO2007097356A1 WO 2007097356 A1 WO2007097356 A1 WO 2007097356A1 JP 2007053161 W JP2007053161 W JP 2007053161W WO 2007097356 A1 WO2007097356 A1 WO 2007097356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- coaxial
- outer periphery
- barrel
- core material
- ultrafine
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
- C25D7/06—Wires; Strips; Foils
- C25D7/0607—Wires
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/06772—High frequency probes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B13/00—Apparatus or processes specially adapted for manufacturing conductors or cables
- H01B13/016—Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables
Definitions
- Ultrafine coaxial wire Ultrafine coaxial barrel, and methods of manufacturing the same
- the present invention relates to an ultrafine coaxial wire having an outer diameter of, for example, 200 m or less and a manufacturing method thereof, and an ultrafine coaxial barrel and a manufacturing method thereof.
- a probe in which several tens or hundreds of probe pins are arranged on a printed wiring board is used for an energization inspection of an integrated circuit or a liquid crystal device of a semiconductor wafer constituting an integrated circuit such as an IC or LSI.
- a card is used.
- the tip of the probe pin is brought into contact with a plurality of electrode pads such as an integrated circuit chip of a semiconductor wafer or a liquid crystal display device, and a predetermined inspection signal is input from the inspection device side to inspect the electrical characteristics. Speak.
- the probe card As described above, as the integrated circuits such as ICs and LSIs become smaller, higher density, larger capacity, and higher performance, the probe card also has a smaller diameter in the probe card. However, high-density mounting is required, but the probe pin can withstand an energization test that breaks the electrode pad oxide film and contacts the electrode pad hundreds of thousands of times and millions of times. It must also have high electrical conductivity, elasticity, strength, corrosion resistance, and good workability for placement on a probe card.
- the probe pin is required to satisfy the requirements for a reduction in diameter, and at the same time, have high conductivity, elasticity, strength, corrosion resistance, and good workability for placement in the probe card. Will be. In the past, proposals have been made regarding the small diameter of coaxial wires that should deal with this situation.
- IC chips semiconductor devices
- the electrical connection state and input / output characteristics of each IC chip are examined. Therefore, an electrical measurement called a probe test is performed. In this way, the quality of these IC chips is determined in the state of the semiconductor wafer before each IC chip is divided.
- a probe card is used that has a plurality of probes arranged corresponding to the electrode pad arrangement of the IC chip formed on the semiconductor wafer.
- the probe card is electrically connected to the tester, and a probe corresponding thereto is brought into contact with each electrode pad of the IC chip to be inspected, and a test signal is transmitted between the tester and the IC chip to be inspected. Used to transmit.
- the coaxial probe has the same coaxial line structure as that of the coaxial cable, and has a lower transmission loss at high frequencies, less noise entering the transmission signal, and stable characteristic impedance compared to the parallel two-wire line. It has the advantage of being
- a conventional coaxial probe is formed by slidably inserting a conductive needle (center conductor) for signal transmission made of a conductive member into a cylindrical barrel.
- the tip of the conductive needle also exposes the opening force of the cylindrical barrel tip so that it contacts the electrode pad of the IC chip.
- the rear end portion of the conductive needle is electrically connected to a conductive needle electrode pad provided on the probe card substrate, and this conductive needle pad is electrically connected to the tester.
- the cylindrical barrel is made of a conductive member including an insulating layer on the inner peripheral side, and the rear end of the barrel is electrically connected to an external conductor electrode pad provided on the probe card substrate, This external conductor electrode pad is electrically connected to the ground of the tester.
- a cylindrical barrel made of a conductive member including an insulating layer on the inner peripheral side is generally formed of a conductive metal, for example, a copper alloy or an aluminum alloy, and is included in the inner peripheral side.
- the insulating layer is formed of an insulator having a low relative dielectric constant, for example, Teflon (registered trademark) in order to reduce transmission loss.
- the outer diameter of the cylindrical barrel has reached about 1.1 mm.
- the operating speed of the semiconductor device is increased and the integration density of the semiconductor device is rapidly increased. Therefore, the distance between the electrode pads of the IC chip is reduced (narrow pitch).
- a coaxial probe is required which can mount a large number of probes on a probe card at a narrow pitch by reducing the outer diameter.
- a coaxial probe having a small diameter is proposed by using an aerodynamic insulator that can cope with such circumstances (Patent Document 2).
- Patent Document 1 JP 2001-296314
- Patent Document 2 JP 2002-257849
- the conventionally proposed coaxial cable has a diameter of a unit of millimeter, so that the performance of devices such as electronic devices, IC testers, and medical devices is improved, ICs, LSIs, etc. It was not possible to meet the demands for ultra-thin wires due to miniaturization, high density, large capacity, high performance, etc.
- the present invention is an ultrafine coaxial wire that is extremely fine and has stable current carrying properties, excellent high frequency characteristics, and the like, for example, a fine wire that is mainly provided with a core material having high current carrying properties.
- the present invention has an object to propose a coaxial barrel that can be miniaturized in diameter and can be used in a coaxial probe, and a method of manufacturing the same. Means for solving the problem
- the ultra-fine coaxial wire proposed by the present invention is a coaxial wire having an outer diameter of 200 m or less centering on a noble metal or a core material having its alloying force, and has self-elasticity.
- it is characterized by having a Vickers hardness of 450 HV or more, more preferably a Vickers hardness of 500 to 600 HV.
- the term “having self-elasticity” means that the micro coaxial wire of the present invention is used as a probe pin, and the probe pin having the micro coaxial wire force of the present invention is printed with several hundreds of thousands of forces.
- a probe card is arranged on a wiring board, and a plurality of electrode pads such as an integrated circuit chip on a semiconductor wafer and a liquid crystal display device are inspected at the tip force conduction test of the probe pin (the micro coaxial cable of the present invention) in the probe card.
- Each probe pin extra fine coaxial line of the present invention
- the pressure applied to the surface of the electrode pad as described above is, for example, 4-5 g or more required to break the acid film. Having elasticity that can be withstood by elastic deformation.
- the microcoaxial wire of the present invention is adopted as the probe pin as described above, and the probe pin that also has the microcoaxial line force of the present invention is used.
- a probe card is configured and an energization inspection is performed, it is required because it is required to break a film, for example, an oxide film, formed on the surface of the electrode pad as described above.
- the micro-coaxial wire of the present invention is employed in the probe pin as described above. Even if it is used, there is a need for probe pins while meeting the small diameter required for integrated circuits such as ICs and LSIs that are becoming smaller, higher density, larger capacity, and higher performance. It is possible to have elasticity and strength.
- the micro coaxial wire of the present invention has self-elasticity and has a picker hardness of 500 to 600 HV!
- the core It is desirable that the outer diameter of the material is 20 ⁇ m or more.
- the core material can be any of gold, silver, platinum group, and alloys thereof.
- the alloy include an alloy of a platinum group (for example, platinum, rhodium, iridium) and gold, silver, or copper.
- the probe pin when the ultrafine coaxial wire of the present invention is used for, for example, a probe pin, the probe pin has an outer diameter of 200 ⁇ m or less (for example, 50 to 60 ⁇ m).
- the core material is required to have a certain size. Therefore, as described above, the outer diameter of the core material is desirably 20 m or more.
- the micro coaxial line of the present invention as the outer layer formed on the outer periphery of the core material, for example, the micro coaxial line of the present invention is adopted as a probe pin, and the probe pin also has the micro coaxial line force of the present invention.
- a probe card is configured using a power supply and an energization test is performed, it has elasticity and rigidity that can withstand the required pressure while having the necessary conductivity, and the adjacent ultra-thin coaxial lines come into contact with each other It is also formed to prevent the resistance value from fluctuating.
- a film having an insulator strength such as fluorine resin or polyimide or acrylic melamine resin can be formed on the outermost periphery.
- the outer layer formed on the outer periphery of the core material may be a thin film that can achieve the purpose of insulation, for example, but from the viewpoint of securing the current-carrying characteristics as described above, It is desirable to have an outer diameter of 20 m or more. Furthermore, it is conductive, such as platinum, platinum group alloys (for example, platinum, rhodium, iridium, etc.), gold, silver or any of those alloys. It is desirable that the core material is made of a material having a high height.
- the ultrafine coaxial line of the present invention described above can be an ultrafine coaxial line in which a plurality of layers are concentrically laminated on the outer periphery of the core material, that is, an ultrafine multiple coaxial line.
- a metal film having good conductivity such as gold or noradium is applied to the outer periphery of the fine coaxial wire coated with the insulator, and a film made of an insulator is formed on the outer periphery of the plating layer. Then, an ultrafine multiple coaxial wire coated with nickel can be obtained by electroplating.
- the micro coaxial barrel proposed by the present invention includes an insulating layer on the inner peripheral side, and the insulating layer is formed on the outer periphery of the tubular first nickel layer.
- the inner diameter is 50 m or more and the outer diameter is 80 m or more.
- the ultra-fine coaxial barrel of the present invention can be used as a barrel for a coaxial probe.
- the first gold film may be formed on the inner periphery of the tubular first nickel layer.
- the micro coaxial barrel includes a second gold film formed on the outer periphery of the insulating layer.
- the micro coaxial barrel of the present invention described above can be used as a barrel for a coaxial probe.
- a coaxial probe can be configured by slidably inserting a signal transmission conductive needle made of a conductive member into the micro coaxial barrel of the present invention described above.
- this coaxial probe utilizes the ultra-fine coaxial barrel of the present invention
- a tubular first nickel layer and a first gold film formed on the inside thereof are formed on the inner peripheral side of the insulating layer
- the outer peripheral side of the insulating layer may be configured to include a micro coaxial barrel in which a second gold film and a tubular second nickel layer formed on the outer periphery thereof are laminated concentrically.
- the tubular insulating layer, the first and second gold skin films, and the first and second nickel layers in the micro coaxial barrel of the present invention have an inner diameter of 50 m or more, although they are fine. It is a tubular body, and can be formed to have the desired wall thickness with an outer diameter of 80 m or more so that it has the electrical characteristics, strength and elasticity required for the coaxial probe. .
- the method of manufacturing the micro coaxial wire proposed by the present invention is to form a film on the outer periphery of the core material by electroplating after cleaning the outer periphery of the core material.
- An ultrafine coaxial wire having an outer diameter of 200 m or less and having self-elasticity and having a Vickers hardness of 450 HV or more, more preferably a Vickers hardness of 500 to 600 HV is produced.
- the core material may be made of a noble metal having an outer diameter of 20 ⁇ m or more or an alloy thereof.
- the noble metal or its alloy can be any of gold, silver, platinum group, and alloys thereof. This alloy includes, for example, an alloy of platinum group (eg, platinum, rhodium, iridium) and gold, silver, or copper.
- the film formed on the outer periphery of the core material by electroplating can be a base metal such as nickel.
- nickel is formed in a tubular shape on the outer periphery of the core member by using an electric wire to obtain an ultrafine coaxial line having self-elasticity while having an outer diameter of 200 m or less. be able to.
- the Vickers hardness of the manufactured micro coaxial cable by adjusting the curing agent and the brightening agent added to the electrolyte used for the electroplating. While having a diameter of 200 ⁇ m or less, it is possible to produce a micro coaxial cable having self-elasticity and having a Vickers hardness of 450 HV or more, preferably 500 to 600 HV.
- the electrolytic solution is a nickel sulfonate solution
- the coating formed on the outer periphery of the core material by electroplating may have a form in which a plurality of layers are concentrically stacked on the outer periphery of the core material. it can.
- An insulator film may be formed on the outermost periphery.
- the micro coaxial cable manufactured as described above is used.
- An insulator such as fluorine resin, Teflon (registered trademark) resin, polyimide, and acrylic melamine resin can be covered with a thickness of 20 ⁇ m or less on the outer periphery of the axis.
- the process of the method for producing the micro coaxial cable of the present invention was performed by cleaning the outer periphery of the core material. Thereafter, a film is formed on the outer periphery of the core material by electroplating, and then the above-described insulating film is formed on the outermost periphery by vapor deposition, baking, smashing, or the like.
- the outer diameter is 200 ⁇ m or less, and it has self-elasticity and has a Vickers hardness of 450 HV or more, preferably 500 to 600 HV. It is possible to manufacture a very fine coaxial line. That is, it is possible to manufacture ultra-fine coaxial wires and ultra-fine multi-coaxial wires having a smaller diameter by the method for producing ultra-fine coaxial wires of the present invention, thereby reducing the size and density of integrated circuits such as ICs and LSIs. It is possible to provide an extra-fine coaxial wire having the elasticity and strength required for a probe pin while meeting the demand for finer diameters required for the increase in size, capacity, and performance.
- the outer diameter is required to be about 200 m.
- the outer diameter is 200 / zm or less while having a self-elasticity, and a Vickers hardness of 450 HV or more, preferably 500, so as to meet the demands for the production. It is possible to produce very fine coaxial lines with ⁇ 600HV.
- the ultrafine pin probe of the present invention manufactured as described above is cut into a predetermined length, and one end is tapered to cue the core material, thereby locating the ultrafine pin probe. Can be manufactured.
- the ultrafine coaxial wire of the present invention is such that a coating such as a nickel is formed on the outer periphery of the core material by the electric cable. It is a coaxial line or a multi-coaxial line in which a film is formed with the same thickness on the outer periphery of the wire. Therefore, it is suitable for processing the tip to taper the core material to make an ultra-fine pin probe.
- the method of manufacturing an ultra-fine coaxial barrel proposed by the present invention includes a first gold film formed on the outer periphery of a metal core wire having a small diameter by an electric forging method, and then The first nickel layer is formed on the outer periphery of one gold film by an electric forging method, the insulating film is formed on the outer periphery of the first nickel layer, the second gold film is formed on the outer periphery of the insulating film, and the outer periphery of the second gold film is formed.
- a second nickel layer is sequentially formed by an electric forging method, and an ultrafine coaxial barrel including an insulating layer on the inner peripheral side is manufactured by pulling out the fine metal core wire.
- micro coaxial barrel manufactured in this way can be used as a barrel for a coaxial probe as described above, and the method for manufacturing the micro coaxial barrel of the present invention described above uses a barrel for a coaxial probe. It can also be implemented as a manufacturing method.
- the inner diameter of the first gold film can be 50 m or more, and the outer diameter of the second nickel layer can be 80 ⁇ m or more.
- the outer diameter is 200 ⁇ m or less, it has self-elasticity and has a Vickers hardness of 450 HV or more. Ultra-fine coaxial with the elasticity and strength required for probe pins while meeting the small diameter required for integrated circuits such as LSI, miniaturization, high density, large capacity, and high performance Lines can be provided.
- a tubular body having an inner diameter of 50 ⁇ m or more, an outer diameter of 80 ⁇ m or more, including an insulating layer on the inner peripheral side, and usable as a barrel for a coaxial probe.
- a coaxial barrel can be provided.
- the ultra-fine coaxial barrel of the present invention that can be used as a barrel for a coaxial probe in this way, a conductive needle for signal transmission made of a conductive member is mounted on the inside of the barrel. It is possible to provide a coaxial probe having a small diameter.
- the outer circumference of a fine-diameter metal core wire (for example, SUS wire) is formed on the outer periphery by the electric forging method.
- a gold film is formed, and a first nickel layer, an insulating layer, a second gold film, and a second nickel layer are sequentially stacked concentrically around the outer periphery of the first gold film.
- each concentric layer or film is formed by an electric forging method, vapor deposition, baking, immersion treatment, or the like. Therefore, the thickness of each layer and film can be arbitrarily adjusted.
- FIG. 1 outlines an example of the arrangement of a continuous processing apparatus in which the method for producing a micro coaxial cable of the present invention is implemented.
- the supply unit 1 includes a core material 10 made of platinum, such as platinum, rhodium, iridium, or the like, or gold, silver, copper, or an alloy thereof having a high conductivity as if they are shifted. Rotated and equipped with reel 7.
- the core material 10 is unwound from the reel 7 of the supply unit 1 by the transport roller 6 in the storage unit 5 having a cutting unit (not shown), passes through the cleaning unit 2 and the energization 'transport unit 3, and then the nickel electric power unit. It is conveyed to 4.
- the cleaning unit 2 is charged with a predetermined weak alkaline solution or weak acid solution, and the outer periphery of the core member 10 is cleaned here.
- a nickel electrolyte unit 4 is filled with a predetermined electrolyte, for example, a nickel sulfonate solution.
- the nickel electrolyte unit 4 is electrically connected to the outer periphery of the core 10 that is transported through the nickel electrode unit 4. Therefore, the nickel film 11 having a predetermined thickness is formed.
- the Vickers hardness of the manufactured micro coaxial cable 20 can be adjusted by adding an appropriate amount of a curing agent or a brightening agent to the electrolyte solution (nickel sulfonate solution) in the nickel battery unit 4. .
- the conveyance speed by the conveyance roller 6 in the storage unit 5 is adjusted according to how thick the nickel film is formed on the outer periphery of the core material 10.
- a nickel film 11 having a predetermined thickness is formed on the outer periphery of the core member 10 by means of electric iron to manufacture the micro coaxial cable 20 (FIG. 2 (b)) of the present invention. Speak.
- a plurality of units between the supply unit 1 and the storage unit 5 can be used.
- fluorine resin Teflon (registered trademark) resin
- polyimide polyimide
- Atari An insulating film 12 such as lumelamine can be used as the ultrafine coaxial line 2 Oa (FIG. 2 (c)) formed on the outer peripheral surface of the nickel film 11.
- the micro coaxial cable 20a (Fig. 2 (c)) whose outermost periphery is coated with the insulator 12 is transferred from the reel 7 of the supply unit 1 shown in Fig. 1 to the cleaning unit 2, and then shown in the drawing. Although not provided, it passes through the gold plating unit, the palladium plating unit, or the iridium plating unit arranged in front of the nickel electric power unit 4, and on the outermost insulating film 12 of the micro coaxial wire 20a, A gold film, a noradium film, or an iridium film indicated by reference numeral 13 is formed, and further, the nickel layer 14 is formed by being conveyed to the nickel electric unit 4 and heated to form a multiple coaxial line 20b (Fig. 2 (d)) can also be produced.
- the ultrathin multiplex of the present invention in which the conductive film 13 such as gold, palladium, iridium or the like is formed on the outside of the microcoaxial wire 20a and the nickel film 14 is formed on the outside thereof.
- Coaxial wire 20b will be manufactured.
- Fig. 2 is an enlarged view of the outline of the cross-sectional structure of the ultrafine coaxial line manufactured by the manufacturing method of the present invention.
- a nickel coating 11 is formed on the outer periphery of the core material 10 shown in FIG. 2 (a) (for example, an iridium platinum alloy wire having a diameter of 25 m), and the ultrafine coaxial wire of the present invention having an outer diameter of 39 / zm 20 (Fig. 2 (b)) is manufactured.
- the ultra-fine coaxial wires 20, 20a, 20b of the present invention manufactured as described above are cut to a desired length by a cutting unit (not shown), and one end thereof is tapered to be cored. Material 10 can be cued to produce an ultra-fine pin probe.
- micro coaxial barrel of the present invention that can be used as a barrel for a coaxial probe and a method for manufacturing the same will be described.
- FIG. 3 illustrates the structure of the micro coaxial barrel 31 of the present invention.
- the micro coaxial barrel 31 is made of a conductive member including an insulating layer on the inner peripheral side, and has a cylindrical shape as illustrated.
- a signal transmitting conductive needle 30 made of a conductive member is slidably inserted into the ultrafine coaxial barrel 31 and used as a coaxial probe.
- the cylindrical fine coaxial barrel 31 made of a conductive member has an inner peripheral force directed toward the outer peripheral side, There is also a structural force in which the first gold film 32, the first nickel layer 33, the insulating layer 34, the second gold film 35, and the second nickel layer 36 are laminated concentrically.
- the outer diameter of the tubular second nickel layer 36 that is, the outer diameter of the barrel 31 is 80 ⁇ m or more.
- the inner diameter of the tubular first gold film 32 that is, the inner diameter of the barrel 31 is 50 ⁇ m or more.
- micro coaxial barrel 31 used as the coaxial probe of the present invention is manufactured as follows.
- the first gold film 32 is applied to the outer periphery of a metal core wire (for example, SUS wire) having a total length of 400 mm and an outer diameter of 50 ⁇ m or more by an electric forging method to a thickness of about 0.5 to 1 ⁇ m.
- a metal core wire for example, SUS wire
- a first nickel layer 33 is formed on the outer periphery of the first gold film 32 with a thickness of about 2 to 3 ⁇ m by electroforming.
- the insulating layer 34 is formed with a thickness of about 2 to 5 m in order to form the ultra-thin coaxial barrel 31 including the insulating layer on the inner peripheral side.
- the insulating layer 34 is formed, for example, by depositing and baking Teflon (registered trademark) resin or melamine resin, or by dipping treatment.
- a second gold film 5 is formed on the outer periphery of the insulating layer 34 with a thickness of about 0.5 to 1 m.
- the second nickel layer 36 is formed on the outer periphery of the second gold film 35 by an electric forging method with a thickness of about 5 to L0 ⁇ m.
- the second gold film 35 is prepared in order to form the second nickel layer 36 on the outer periphery of the insulating layer 34 by electroforming.
- the innermost metal core wire is pulled out, and as shown in FIGS. 3 (a) and 3 (b), the total length is 400 mm.
- An ultrafine coaxial barrel 31 made of a conductive member having an outer diameter of 80 m or more and an inner diameter of 50 m or more and including an insulating layer on the inner peripheral side can be manufactured.
- the outer periphery of the second nickel layer 36 is not subjected to an electric forging method, vapor deposition, baking, or immersion treatment. It is also possible to stack a plurality of members concentrically with each other.
- the first gold film 32 is formed on the outer periphery of a metal core wire (for example, SUS wire) having a small diameter by an electric forging method.
- the first nickel layer 33 , the insulating layer 34, the second gold film 35, and the second nickel layer 36 are sequentially laminated concentrically on the outer periphery of the metal, while the metal core wire having a small diameter is drawn out to form a hollow A cylindrical ultra-thin coaxial barrel 31 is used. Therefore, it is possible to arbitrarily adjust the inner diameter of the micro coaxial barrel 31 by changing the diameter of a fine metal core wire (for example, SUS wire).
- a fine metal core wire for example, SUS wire
- each concentric layer and film can be formed by an electro forging method, vapor deposition, baking, immersion treatment, etc., the thickness of each layer and film can be arbitrarily adjusted.
- FIG. 1 outlines an example of an arrangement configuration of a continuous processing apparatus in which the method for producing a micro coaxial cable of the present invention is implemented, (a) is a plan view and (b) is a side view.
- FIG. 2 is an enlarged view of an example of a cross-sectional structure of a micro coaxial cable manufactured by the manufacturing method of the present invention.
- (A) is a cross-sectional view of a core material
- (b) is a micro coaxial cable.
- Cross-sectional view (c) is a cross-sectional view of a micro coaxial line on which an insulating film is further formed
- (d) is a cross-sectional view of a multi-coaxial line
- FIG. 3 is a view for explaining the structure of a micro coaxial barrel for a coaxial probe according to the present invention, wherein (a) is a longitudinal sectional view, and (b) is a lateral sectional view with a part omitted.
- FIG. 4 is a lateral cross-sectional view showing a part of a coaxial probe using the ultrafine coaxial barrel of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Measuring Leads Or Probes (AREA)
Abstract
[PROBLEMS] A ultrafine coaxial line which is very fine and is provided with stable conductivity and excellent high frequency characteristics and a production method therefore, and a ultrafine coaxial barrel which can be fined in diameter and is used as a barrel for an coaxial probe and a production method therefore. [MEANS OF SOLVING PROBLEMS] A ultrafine coaxial line which is a coaxial line having core material consisting of noble metal or its alloy as its center and having an outer diameter of up to 200 μm, and which has self-resiliency and a Vickers hardness of at least 450 HV. A ultrafine coaxial barrel containing an insulation layer on the inner peripheral side thereof and is used as a barrel for a coaxial probe, wherein the insulation layer is formed on the outer periphery of a tubular first nickel layer and the barrel’ outer diameter is at least 80 μm.
Description
明 細 書 Specification
極細同軸線及び極細同軸バレル並びにこれらの製造方法 Ultrafine coaxial wire, ultrafine coaxial barrel, and methods of manufacturing the same
技術分野 Technical field
[0001] この発明は、極細、例えば、外径が 200 m以下の極細同軸線とその製造方法、 ならびに、極細同軸バレルとその製造方法に関する。 TECHNICAL FIELD [0001] The present invention relates to an ultrafine coaxial wire having an outer diameter of, for example, 200 m or less and a manufacturing method thereof, and an ultrafine coaxial barrel and a manufacturing method thereof.
背景技術 Background art
[0002] 電子機器、 ICテスタ、医療機器などの機器の高性能化や、 IC、 LSIなどの集積回路 の小型化、高密度化、大容量化、高性能化などに伴い、これらに使用される電線にも 極細化が要求されるようになっている。更に、機器の高性能化 (例えば、画像の高精 細化、通信速度の高速ィ匕など)に伴い、安定した通電性、信号伝送におけるより高い 伝送品質、高周波帯域での利用に適した優れた高周波特性なども要求されて 、る。 [0002] As electronic devices, IC testers, medical devices, and other devices become more sophisticated and integrated circuits such as ICs and LSIs become smaller, higher density, larger capacity, and higher performance, they are used in these. There is also a demand for ultra-thin wires. In addition, along with higher performance of devices (for example, higher resolution of images, higher speed of communication speed, etc.), stable energization, higher transmission quality in signal transmission, and superior performance suitable for use in high frequency bands High frequency characteristics are also required.
[0003] 例えば、プリント基板上の回路パターンを検査するプリント基板検査装置に用いら れるコンタクトプローブ (特許文献 1)のプローブピンの場合には次のようなことが要求 されるにいたつている。 [0003] For example, in the case of a probe pin of a contact probe (Patent Document 1) used in a printed circuit board inspection apparatus for inspecting a circuit pattern on a printed circuit board, the following is required.
[0004] 通常、 IC、 LSIといった集積回路を構成する半導体ウェハーの集積回路や液晶装置 等の通電検査には、プリント配線基板に数十本力 数百本のプローブピンが配列さ れているプローブカードが用いられる。通電検査にあたっては、半導体ウェハーの集 積回路チップや液晶表示装置等の複数の電極パッドにプローブピンの先端を接触さ せ、検査装置側から所定の検査信号を入力して電気特性の検査を行って ヽる。 [0004] Usually, a probe in which several tens or hundreds of probe pins are arranged on a printed wiring board is used for an energization inspection of an integrated circuit or a liquid crystal device of a semiconductor wafer constituting an integrated circuit such as an IC or LSI. A card is used. In conducting an electrical current inspection, the tip of the probe pin is brought into contact with a plurality of electrode pads such as an integrated circuit chip of a semiconductor wafer or a liquid crystal display device, and a predetermined inspection signal is input from the inspection device side to inspect the electrical characteristics. Speak.
[0005] ここで、前述したように、 IC、 LSIなどの集積回路の小型化、高密度化、大容量化、 高性能化が進むのに伴い、プローブカードにおいても、プローブピンの細径化、高密 度実装化が要求されるようになっているが、プローブピンは、電極パッドの酸化膜を 破って電極パッドに何十万回、百万回と繰り返し接触が行われる通電検査に耐え得 る、高い導電性、弾性、強度、耐腐食性、プローブカードに配設するための加工性の 良さをも備えて 、る必要がある。 [0005] Here, as described above, as the integrated circuits such as ICs and LSIs become smaller, higher density, larger capacity, and higher performance, the probe card also has a smaller diameter in the probe card. However, high-density mounting is required, but the probe pin can withstand an energization test that breaks the electrode pad oxide film and contacts the electrode pad hundreds of thousands of times and millions of times. It must also have high electrical conductivity, elasticity, strength, corrosion resistance, and good workability for placement on a probe card.
[0006] そこで、プローブピンについては、細径化の要求を満たしつつ、同時に、高い導電 性、弾性、強度、耐腐食性、プローブカードに配設するための加工性の良さが要求さ
れることになる。このような事情に対応すベぐ従来から、同軸線の細径ィヒに関する提 案が行われている。 [0006] Therefore, the probe pin is required to satisfy the requirements for a reduction in diameter, and at the same time, have high conductivity, elasticity, strength, corrosion resistance, and good workability for placement in the probe card. Will be. In the past, proposals have been made regarding the small diameter of coaxial wires that should deal with this situation.
[0007] 前述したように、半導体デバイスの製造工程においては、半導体ウェハ上に多数の ICチップ(半導体デバイス)が形成された後、各 ICチップについてその電気的結線 状態や入出力特性などを調べるためにプローブテストと呼ばれる電気的測定が行わ れる。こうして各 ICチップが分割される前の半導体ウェハの状態において、これらの I Cチップの良否が判定される。このプローブテストでは、半導体ウェハ上に形成され た ICチップの電極パッド配列に対応して配列されて 、る複数のプローブを備えて!/ヽ るプローブカードが使用される。 As described above, in the semiconductor device manufacturing process, after a large number of IC chips (semiconductor devices) are formed on a semiconductor wafer, the electrical connection state and input / output characteristics of each IC chip are examined. Therefore, an electrical measurement called a probe test is performed. In this way, the quality of these IC chips is determined in the state of the semiconductor wafer before each IC chip is divided. In this probe test, a probe card is used that has a plurality of probes arranged corresponding to the electrode pad arrangement of the IC chip formed on the semiconductor wafer.
[0008] プローブカードは、テスタに電気的に接続されるとともに、検査対象の ICチップの各 電極パッドにこれに対応するプローブを接触させて、テスタと検査対象 ICチップとの 間でテスト信号を伝送するために用いられる。 [0008] The probe card is electrically connected to the tester, and a probe corresponding thereto is brought into contact with each electrode pad of the IC chip to be inspected, and a test signal is transmitted between the tester and the IC chip to be inspected. Used to transmit.
[0009] 近年、半導体デバイスの動作速度が高速化し、これに伴ってプローブテストにおい ては、数百 MHzという高周波数のテスト信号を用いて ICチップの検査を行うことが必 要となっている。このような高周波信号を用いるプローブテストにおいては、プローブ カード用の同軸プローブが用いられる。 [0009] In recent years, the operating speed of semiconductor devices has increased, and in connection with this, it has become necessary to inspect IC chips using test signals with a high frequency of several hundred MHz in probe tests. . In the probe test using such a high frequency signal, a coaxial probe for a probe card is used.
[0010] 同軸プローブは、同軸ケーブルと同様に同軸線路構造を持っており、平行 2本線 路に比べて、高周波における伝送損失が小さいこと、伝送信号に入り込むノイズが少 ないこと、特性インピーダンスが安定していること、という長所を有している。 [0010] The coaxial probe has the same coaxial line structure as that of the coaxial cable, and has a lower transmission loss at high frequencies, less noise entering the transmission signal, and stable characteristic impedance compared to the parallel two-wire line. It has the advantage of being
[0011] 従来の同軸プローブは、円柱状のバレルの内部に、導電部材からなる信号伝達用 の導電針(中心導体)が摺動自在に装入されて形成されている。導電針の先端部は 円柱状のバレルの先端開口力も露出し、 ICチップの電極パッドに当接するようになつ ている。一方、導電針の後端部はプローブカードの基板に設けられた導電針用電極 パッドに電気的に接続され、この導電針用パッドがテスタに電気的に接続される。円 柱状のバレルは、内周側に絶縁層を含む導電部材製であって、このバレルの後端は 、プローブカードの基板に設けられている外部導体用電極パッドに電気的に接続さ れ、この外部導体用電極パッドがテスタのグランドに電気的に接続されるようになって いる。
[0012] 内周側に絶縁層を含む導電部材製の円柱状バレルは、従来、導電性金属、例え ば銅合金あるいはアルミニウム合金力も形成されるのが一般的であり、この内周側に 含まれている絶縁層は、伝送損失の低減を図るために比誘電率の小さい絶縁物、例 えば、テフロン (登録商標)で形成されている。 [0011] A conventional coaxial probe is formed by slidably inserting a conductive needle (center conductor) for signal transmission made of a conductive member into a cylindrical barrel. The tip of the conductive needle also exposes the opening force of the cylindrical barrel tip so that it contacts the electrode pad of the IC chip. On the other hand, the rear end portion of the conductive needle is electrically connected to a conductive needle electrode pad provided on the probe card substrate, and this conductive needle pad is electrically connected to the tester. The cylindrical barrel is made of a conductive member including an insulating layer on the inner peripheral side, and the rear end of the barrel is electrically connected to an external conductor electrode pad provided on the probe card substrate, This external conductor electrode pad is electrically connected to the ground of the tester. [0012] Conventionally, a cylindrical barrel made of a conductive member including an insulating layer on the inner peripheral side is generally formed of a conductive metal, for example, a copper alloy or an aluminum alloy, and is included in the inner peripheral side. The insulating layer is formed of an insulator having a low relative dielectric constant, for example, Teflon (registered trademark) in order to reduce transmission loss.
[0013] このような従来の同軸プローブにおいて絶縁層をテフロン (登録商標)から構成し、 その特性インピーダンスを 50 Ωとすると、円柱状のバレルの外径は 1. 1mm程度に までなつていた。 In such a conventional coaxial probe, if the insulating layer is made of Teflon (registered trademark) and the characteristic impedance is 50 Ω, the outer diameter of the cylindrical barrel has reached about 1.1 mm.
[0014] 前述したように半導体デバイスの動作速度が高速ィ匕するとともに、半導体デバイス の集積度が急速に高くなつて 、るため、 ICチップの電極パッド間の間隔寸法の縮小 ィ匕 (狭ピッチ化)が進み、これに対応するために、外径の細径ィ匕を図ることにより、プロ ーブカードに多数本を狭ピッチにて実装できるようにした同軸プローブが必要とされ ている。 [0014] As described above, the operating speed of the semiconductor device is increased and the integration density of the semiconductor device is rapidly increased. Therefore, the distance between the electrode pads of the IC chip is reduced (narrow pitch). In order to cope with this, a coaxial probe is required which can mount a large number of probes on a probe card at a narrow pitch by reducing the outer diameter.
[0015] このような事情に対応すベぐ空気力 なる絶縁体を利用することにより細径ィ匕を図 つた同軸プローブが提案されている(特許文献 2)。 [0015] A coaxial probe having a small diameter is proposed by using an aerodynamic insulator that can cope with such circumstances (Patent Document 2).
特許文献 1 :特開 2001— 296314 Patent Document 1: JP 2001-296314
特許文献 2:特開 2002— 257849 Patent Document 2: JP 2002-257849
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0016] 前述したように、従来提案されている同軸ケーブルは、径の大きさがミリメートル単 位のもので、電子機器、 ICテスタ、医療機器などの機器の高性能化や、 IC、 LSIなど の集積回路の小型化、高密度化、大容量化、高性能化などに伴う電線の極細化の 要求に応え得るものではなかった。 [0016] As described above, the conventionally proposed coaxial cable has a diameter of a unit of millimeter, so that the performance of devices such as electronic devices, IC testers, and medical devices is improved, ICs, LSIs, etc. It was not possible to meet the demands for ultra-thin wires due to miniaturization, high density, large capacity, high performance, etc.
[0017] そこで、本発明は、極細であって、なおかつ、安定した通電性、優れた高周波特性 などを備えている極細同軸線、例えば、通電性が高い芯材を中心に備えている極細[0017] Therefore, the present invention is an ultrafine coaxial wire that is extremely fine and has stable current carrying properties, excellent high frequency characteristics, and the like, for example, a fine wire that is mainly provided with a core material having high current carrying properties.
、例えば、径が 200 m以下の極細同軸線とその製造方法、及び、この新しい用途 を提案することを目的にして 、る。 For example, for the purpose of proposing a micro coaxial cable having a diameter of 200 m or less, a manufacturing method thereof, and this new application.
[0018] また、本発明は、径の微細化を図ることができ、同軸プローブに用いることのできる 同軸バレル及びこれを製造する方法を提案することを目的にして ヽる。
課題を解決するための手段 [0018] Further, the present invention has an object to propose a coaxial barrel that can be miniaturized in diameter and can be used in a coaxial probe, and a method of manufacturing the same. Means for solving the problem
[0019] 前記目的を達成するため、本発明が提案する極細同軸線は、貴金属又はその合 金力もなる芯材を中心とする外径 200 m以下の同軸線であって、自己弾性を有す ると共〖こ、ビッカース硬度 450HV以上、より好ましくは、ビッカース硬度 500〜600H Vを有することを特徴するものである。 [0019] In order to achieve the above-mentioned object, the ultra-fine coaxial wire proposed by the present invention is a coaxial wire having an outer diameter of 200 m or less centering on a noble metal or a core material having its alloying force, and has self-elasticity. Thus, it is characterized by having a Vickers hardness of 450 HV or more, more preferably a Vickers hardness of 500 to 600 HV.
[0020] ここで、本発明において、自己弾性を有するとは、本発明の極細同軸線がプローブ ピンに採用され、この本発明の極細同軸線力 なるプローブピンが数百本力 数千 本プリント配線基板に配列されてプローブカードが構成され、当該プローブカードに おけるプローブピン (本発明の極細同軸線)の先端力 通電検査にあたって、半導体 ウェハーの集積回路チップや液晶表示装置等の複数の電極パッドに接触する際に、 各プローブピン (本発明の極細同軸線)ごとの突出量の差を吸収できる程度に、各プ ローブピン (本発明の極細同軸線)が当接方向に弾性変形し得ることをいう。具体的 には、前記のような通電検査にあたって、前記のような電極パッドの表面に形成され ている皮膜、例えば、酸ィ匕皮膜を破るのに必要とされる 4〜5g以上の加圧に弾性変 形によって耐えることのできる弾性を有することをいう。 Here, in the present invention, the term “having self-elasticity” means that the micro coaxial wire of the present invention is used as a probe pin, and the probe pin having the micro coaxial wire force of the present invention is printed with several hundreds of thousands of forces. A probe card is arranged on a wiring board, and a plurality of electrode pads such as an integrated circuit chip on a semiconductor wafer and a liquid crystal display device are inspected at the tip force conduction test of the probe pin (the micro coaxial cable of the present invention) in the probe card. Each probe pin (extra fine coaxial line of the present invention) can be elastically deformed in the abutting direction to such an extent that the difference in protrusion amount of each probe pin (extra fine coaxial line of the present invention) can be absorbed. Say. Specifically, in the energization inspection as described above, the pressure applied to the surface of the electrode pad as described above is, for example, 4-5 g or more required to break the acid film. Having elasticity that can be withstood by elastic deformation.
[0021] なお、本発明の極細同軸線が有するビッカース硬度 450HV以上は、前記のように 本発明の極細同軸線がプローブピンに採用され、この本発明の極細同軸線力もなる プローブピンを用いてプローブカードが構成されて通電検査が行われるにあたって、 前記のような電極パッドの表面に形成されている皮膜、例えば、酸化皮膜を破ること が要求されることから求められるものである。 [0021] It should be noted that for the Vickers hardness of 450 HV or more possessed by the microcoaxial wire of the present invention, the microcoaxial wire of the present invention is adopted as the probe pin as described above, and the probe pin that also has the microcoaxial line force of the present invention is used. When a probe card is configured and an energization inspection is performed, it is required because it is required to break a film, for example, an oxide film, formed on the surface of the electrode pad as described above.
[0022] 前記のように、外径 200 m以下でありながら、自己弾性を有し、ビッカース硬度 45 OHV以上を有することによって、例えば、本発明の極細同軸線が前記のようにプロ ーブピンに採用される場合であっても、 IC、 LSIなどの集積回路の小型化、高密度化 、大容量化、高性能化に伴なつて要求される細径ィヒに応えつつ、プローブピンに要 求される弾性、強度を備えたものとすることができる。 [0022] As described above, by having self-elasticity and having a Vickers hardness of 45 OHV or more while having an outer diameter of 200 m or less, for example, the micro-coaxial wire of the present invention is employed in the probe pin as described above. Even if it is used, there is a need for probe pins while meeting the small diameter required for integrated circuits such as ICs and LSIs that are becoming smaller, higher density, larger capacity, and higher performance. It is possible to have elasticity and strength.
[0023] なお、かかる観点から、本発明の極細同軸線は、自己弾性を有すると共に、ピツカ ース硬度 500〜600HVを有することがより好まし!/ヽ。 [0023] From this point of view, it is more preferable that the micro coaxial wire of the present invention has self-elasticity and has a picker hardness of 500 to 600 HV!
[0024] 前記本発明の極細同軸線において、必要な通電性を確保するという観点から、芯
材の外径は 20 μ m以上であることが望ましい。 [0024] In the ultrafine coaxial wire of the present invention, from the viewpoint of ensuring necessary electrical conductivity, the core It is desirable that the outer diameter of the material is 20 μm or more.
[0025] なお、ここで、芯材は、金、銀、白金族および、これらの合金のいずれかとすることが できる。前記の合金には、例えば、白金族 (例えば、白金、ロジウム、イリジウム)と、金 、銀、あるいは銅との合金などが含まれる。 Here, the core material can be any of gold, silver, platinum group, and alloys thereof. Examples of the alloy include an alloy of a platinum group (for example, platinum, rhodium, iridium) and gold, silver, or copper.
[0026] 本発明の極細同軸線を、前述したように、例えば、プローブピンに使用する場合、 外径 200 μ m以下(例えば、 50〜60 μ mの細さ)でありながら、プローブピンに要求 される通電特性を確保するため、芯材にはある程度の径の大きさが要求される。そこ で、前述したように、芯材の外径は 20 m以上にすることが望ましい。 [0026] As described above, when the ultrafine coaxial wire of the present invention is used for, for example, a probe pin, the probe pin has an outer diameter of 200 μm or less (for example, 50 to 60 μm). In order to ensure the required energization characteristics, the core material is required to have a certain size. Therefore, as described above, the outer diameter of the core material is desirably 20 m or more.
[0027] 一方、本発明の極細同軸線において、芯材の外周に形成される外層は、例えば、 本発明の極細同軸線がプローブピンに採用され、この本発明の極細同軸線力もなる プローブピンを用いてプローブカードが構成されて通電検査が行われる際に、必要 な導電性を持ちつつ必要な加圧に耐えられる弾性や剛性を有して、隣接する極細同 軸線同士が接触して電気抵抗値に変動が生じることを防止するためにも形成される ものである。 On the other hand, in the micro coaxial line of the present invention, as the outer layer formed on the outer periphery of the core material, for example, the micro coaxial line of the present invention is adopted as a probe pin, and the probe pin also has the micro coaxial line force of the present invention. When a probe card is configured using a power supply and an energization test is performed, it has elasticity and rigidity that can withstand the required pressure while having the necessary conductivity, and the adjacent ultra-thin coaxial lines come into contact with each other It is also formed to prevent the resistance value from fluctuating.
[0028] なお、更に、絶縁性を必要とする場合は、フッ素榭脂や、ポリイミドゃアクリルメラミン 榭脂等の絶縁体力もなる皮膜を最外周に形成することができる。 [0028] When insulation is further required, a film having an insulator strength such as fluorine resin or polyimide or acrylic melamine resin can be formed on the outermost periphery.
[0029] 芯材の外周に形成される外層は、例えば、絶縁などの目的を達成できる程度の薄 い皮膜であって差し支えないが、前記のように通電特性を確保する観点から、芯材の 外径は 20 m以上とすることが望ましぐ更に、白金や、白金族 (例えば、白金、ロジ ゥム、イリジウム等)の合金、金、銀やそれらの合金のいずれかのように導電性の高い ものによって芯材を構成することが望ま 、。 [0029] The outer layer formed on the outer periphery of the core material may be a thin film that can achieve the purpose of insulation, for example, but from the viewpoint of securing the current-carrying characteristics as described above, It is desirable to have an outer diameter of 20 m or more. Furthermore, it is conductive, such as platinum, platinum group alloys (for example, platinum, rhodium, iridium, etc.), gold, silver or any of those alloys. It is desirable that the core material is made of a material having a high height.
[0030] 以上説明した本発明の極細同軸線は、芯材の外周に複数層が同心円状に積層さ れている極細同軸線、すなわち、極細多重同軸線にすることができる。 [0030] The ultrafine coaxial line of the present invention described above can be an ultrafine coaxial line in which a plurality of layers are concentrically laminated on the outer periphery of the core material, that is, an ultrafine multiple coaxial line.
[0031] この場合、例えば、上記絶縁体を被覆した極細同軸線の外周に金、ノラジウム等の 導電性の良い金属メツキを施し、当該メツキ層の外周に絶縁体カゝらなる皮膜形成した り、電铸加工によりニッケルを被覆した極細多重同軸線とすることができる。 [0031] In this case, for example, a metal film having good conductivity such as gold or noradium is applied to the outer periphery of the fine coaxial wire coated with the insulator, and a film made of an insulator is formed on the outer periphery of the plating layer. Then, an ultrafine multiple coaxial wire coated with nickel can be obtained by electroplating.
[0032] なお、必要な弾性ゃ細径化、経済性、電気特性を考慮して、芯材の外径は 20 μ m 以上であっても可能な限り細いものとしておくことが望ましい。
[0033] 次に、前記目的を達成するため、本発明が提案する極細同軸バレルは、内周側に 絶縁層を含み、前記絶縁層が管状の第一のニッケル層の外周に形成されているとと もに、内径が 50 m以上で、外径が 80 m以上であることを特徴とするものである。 [0032] In consideration of the required elastic diameter reduction, economic efficiency, and electrical characteristics, it is desirable to keep the core material as thin as possible even if the outer diameter is 20 μm or more. [0033] Next, in order to achieve the above object, the micro coaxial barrel proposed by the present invention includes an insulating layer on the inner peripheral side, and the insulating layer is formed on the outer periphery of the tubular first nickel layer. In addition, the inner diameter is 50 m or more and the outer diameter is 80 m or more.
[0034] この本発明の極細同軸バレルは、同軸プローブ用のバレルとして使用することがで きる。 [0034] The ultra-fine coaxial barrel of the present invention can be used as a barrel for a coaxial probe.
[0035] 前記において、管状の第一のニッケル層の内周に第一の金皮膜が形成されている 形態にすることができる。 [0035] In the above, the first gold film may be formed on the inner periphery of the tubular first nickel layer.
[0036] また、前記の極細同軸バレルは、絶縁層の外周に形成されている第二の金皮膜と[0036] The micro coaxial barrel includes a second gold film formed on the outer periphery of the insulating layer.
、その外周に形成されている管状の第二のニッケル層とを含む形態にすることができ る。 And a tubular second nickel layer formed on the outer periphery thereof.
[0037] 以上に説明した本発明の極細同軸バレルは、前述したように、同軸プローブ用の バレルとして使用することができる。この場合、以上に説明した本発明の極細同軸バ レルの内部に、導電部材からなる信号伝達用の導電針を摺動自在に装入すること〖こ よって、同軸プローブを構成することができる。 [0037] As described above, the micro coaxial barrel of the present invention described above can be used as a barrel for a coaxial probe. In this case, a coaxial probe can be configured by slidably inserting a signal transmission conductive needle made of a conductive member into the micro coaxial barrel of the present invention described above.
[0038] この同軸プローブは、前記本発明の極細同軸バレルを利用しているので、絶縁層 の内周側に、管状の第一のニッケル層とその内側に形成される第一の金皮膜、前記 絶縁層の外周側に第二の金皮膜とその外周に形成される管状の第二のニッケル層 とが同心円状に積層されてなる極細同軸バレルを含んで構成することができる。 [0038] Since this coaxial probe utilizes the ultra-fine coaxial barrel of the present invention, a tubular first nickel layer and a first gold film formed on the inside thereof are formed on the inner peripheral side of the insulating layer, The outer peripheral side of the insulating layer may be configured to include a micro coaxial barrel in which a second gold film and a tubular second nickel layer formed on the outer periphery thereof are laminated concentrically.
[0039] この本発明の極細同軸バレルにおける前記管状の絶縁層や、第一、第二の金皮 膜、第一、第二のニッケル層は、微細径でありながら、内径 50 m以上を有する管状 体であって、その上で、同軸プローブに要求される電気特性や強度 ·弾性を有するよ うに、外径 80 m以上で、それぞれが所望の肉厚を有するように形成することができ る。 [0039] The tubular insulating layer, the first and second gold skin films, and the first and second nickel layers in the micro coaxial barrel of the present invention have an inner diameter of 50 m or more, although they are fine. It is a tubular body, and can be formed to have the desired wall thickness with an outer diameter of 80 m or more so that it has the electrical characteristics, strength and elasticity required for the coaxial probe. .
[0040] 次に、前記目的を達成するため、本発明が提案する極細同軸線を製造する方法は 、芯材の外周を洗浄した後、電铸加工により当該芯材の外周に皮膜を形成する、外 径 200 m以下の同軸線であって、自己弾性を有すると共に、ビッカース硬度 450H V以上、より好ましくは、ビッカース硬度 500〜600HVを有する極細同軸線を製造す るものである。
[0041] ここで、前述したように、芯材は、外径 20 μ m以上の貴金属又はその合金製とする ことができる。この貴金属又はその合金としては、前述したように、金、銀、白金族およ び、これらの合金のいずれ力とすることができる。この合金には、例えば、白金族 (例 えば、白金、ロジウム、イリジウム)と、金、銀、あるいは銅との合金などが含まれる。 [0040] Next, in order to achieve the above object, the method of manufacturing the micro coaxial wire proposed by the present invention is to form a film on the outer periphery of the core material by electroplating after cleaning the outer periphery of the core material. An ultrafine coaxial wire having an outer diameter of 200 m or less and having self-elasticity and having a Vickers hardness of 450 HV or more, more preferably a Vickers hardness of 500 to 600 HV is produced. [0041] Here, as described above, the core material may be made of a noble metal having an outer diameter of 20 μm or more or an alloy thereof. As described above, the noble metal or its alloy can be any of gold, silver, platinum group, and alloys thereof. This alloy includes, for example, an alloy of platinum group (eg, platinum, rhodium, iridium) and gold, silver, or copper.
[0042] 電铸加工により当該芯材の外周に形成する皮膜は、ニッケル等の卑金属にするこ とがでさる。 [0042] The film formed on the outer periphery of the core material by electroplating can be a base metal such as nickel.
[0043] ニッケルについては、本発明者らが開発したマイクロチューブの製造方法と、その 実施により、残留応力と添加剤との関係から、電铸によって管状に形成すると非常に 高 ヽ弾性が発揮されるようになることを本発明者らは従来力も知って ヽた。 [0043] With regard to nickel, due to the manufacturing method of the microtube developed by the present inventors and its implementation, due to the relationship between the residual stress and the additive, very high elasticity is exhibited when formed into a tube by electroplating. The present inventors knew that it would be possible to achieve this.
[0044] 本発明においては、ニッケルを電铸によって芯材の外周に管状に形成することによ つて、前述したように、外径 200 m以下でありながら、自己弾性を有する極細同軸 線を得ることができる。 [0044] In the present invention, as described above, nickel is formed in a tubular shape on the outer periphery of the core member by using an electric wire to obtain an ultrafine coaxial line having self-elasticity while having an outer diameter of 200 m or less. be able to.
[0045] また、電铸に用いる電解液に添加する硬化剤や光沢剤を調整することによって、製 造された極細同軸線のビッカース硬度を調整することが可能であり、前述したように、 外径 200 μ m以下でありながら、自己弾性を有し、ビッカース硬度 450HV以上、好 ましくは 500〜600HVを有する極細同軸線を製造することができる。 [0045] Further, it is possible to adjust the Vickers hardness of the manufactured micro coaxial cable by adjusting the curing agent and the brightening agent added to the electrolyte used for the electroplating. While having a diameter of 200 μm or less, it is possible to produce a micro coaxial cable having self-elasticity and having a Vickers hardness of 450 HV or more, preferably 500 to 600 HV.
[0046] 例えば、電解液をスルフォン酸ニッケル液としたときに、硬化剤や光沢剤を適量添 加することによって、製造される極細同軸線のビッカース硬度を調整することが可能 である。 [0046] For example, when the electrolytic solution is a nickel sulfonate solution, it is possible to adjust the Vickers hardness of the manufactured fine coaxial line by adding an appropriate amount of a curing agent or a brightening agent.
[0047] 以上説明した本発明の極細同軸線を製造する方法において、電铸加工により芯材 の外周に形成する皮膜は、芯材の外周に複数層を同心円状に積層する形態にする ことができる。 [0047] In the method for producing the micro coaxial wire of the present invention described above, the coating formed on the outer periphery of the core material by electroplating may have a form in which a plurality of layers are concentrically stacked on the outer periphery of the core material. it can.
[0048] また、最外周に絶縁体皮膜を形成するようにすることもできる。 [0048] An insulator film may be formed on the outermost periphery.
[0049] 例えば、以上説明した本発明の極細同軸線を製造する方法にぉ 、て、製造した極 細同軸線により優れた絶縁性を必要とする場合は、前記のようにして製造した極細同 軸線の外周に、フッ素榭脂系、テフロン (登録商標)榭脂系、ポリイミド、アクリルメラミ ン榭脂等の絶縁体を 20 μ m以下の厚さで皮覆することが出来る。 [0049] For example, when the method for manufacturing the micro coaxial cable of the present invention described above requires excellent insulation by the manufactured micro coaxial cable, the micro coaxial cable manufactured as described above is used. An insulator such as fluorine resin, Teflon (registered trademark) resin, polyimide, and acrylic melamine resin can be covered with a thickness of 20 μm or less on the outer periphery of the axis.
[0050] この場合、本発明の極細同軸線を製造する方法の工程は、芯材の外周を洗浄した
後、電铸加工により当該芯材の外周に皮膜を形成し、その後、蒸着、焼付け、浸潰な どによって、前述した絶縁皮膜を最外周に形成するものになる。 [0050] In this case, the process of the method for producing the micro coaxial cable of the present invention was performed by cleaning the outer periphery of the core material. Thereafter, a film is formed on the outer periphery of the core material by electroplating, and then the above-described insulating film is formed on the outermost periphery by vapor deposition, baking, smashing, or the like.
[0051] 以上説明した本発明のいずれの極細同軸線を製造する方法においても、外径 200 μ m以下でありながら、自己弾性を有し、ビッカース硬度 450HV以上、好ましくは 50 0〜600HVを有する極細同軸線を製造することが可能である。すなわち、より径の細 い極細同軸線、極細多重同軸線を、本発明の極細同軸線を製造する方法によって 製造することができ、これにより、 IC、 LSIなどの集積回路の小型化、高密度化、大容 量化、高性能化に伴なつて要求されるより一層の細径ィヒに応えつつ、プローブピン に要求される弾性、強度を備えた極細同軸線を提供することができる。 [0051] In any of the above-described methods for producing a micro coaxial cable according to the present invention, the outer diameter is 200 µm or less, and it has self-elasticity and has a Vickers hardness of 450 HV or more, preferably 500 to 600 HV. It is possible to manufacture a very fine coaxial line. That is, it is possible to manufacture ultra-fine coaxial wires and ultra-fine multi-coaxial wires having a smaller diameter by the method for producing ultra-fine coaxial wires of the present invention, thereby reducing the size and density of integrated circuits such as ICs and LSIs. It is possible to provide an extra-fine coaxial wire having the elasticity and strength required for a probe pin while meeting the demand for finer diameters required for the increase in size, capacity, and performance.
[0052] しかし、大容量の電気を流す場合、太いものが要求されることがある。このような場 合には外径 200 m程度の太さまで要求される。本発明の前述したいずれの極細同 軸線を製造する方法においても、カゝかる要求に応えられるよう、外径 200 /z m以下で ありながら、自己弾性を有し、ビッカース硬度 450HV以上、好ましくは 500〜600H Vを有する極細同軸線を製造することが可能である。 [0052] However, when flowing a large amount of electricity, a thick one may be required. In such a case, the outer diameter is required to be about 200 m. In any of the above-described methods of manufacturing the ultra-thin coaxial line of the present invention, the outer diameter is 200 / zm or less while having a self-elasticity, and a Vickers hardness of 450 HV or more, preferably 500, so as to meet the demands for the production. It is possible to produce very fine coaxial lines with ~ 600HV.
[0053] なお、前記のようにして製造した本発明の極細同軸線を所定の長さに切断し、一方 の端を先細にカ卩ェして芯材を頭出しすることによって、極細ピンプローブを製造する ことができる。 [0053] It should be noted that the ultrafine pin probe of the present invention manufactured as described above is cut into a predetermined length, and one end is tapered to cue the core material, thereby locating the ultrafine pin probe. Can be manufactured.
[0054] すなわち、本発明の極細同軸線は前述したように、電铸カ卩ェにより芯材の外周に- ッケル等の皮膜が形成されるものであるので、芯材に対して、芯材の外周に同一の 肉厚で皮膜が形成されている同軸線、あるいは多重同軸線になっている。そこで、先 端を先細に加工して芯材を頭出して極細ピンプローブとすることに適している。 [0054] That is, as described above, the ultrafine coaxial wire of the present invention is such that a coating such as a nickel is formed on the outer periphery of the core material by the electric cable. It is a coaxial line or a multi-coaxial line in which a film is formed with the same thickness on the outer periphery of the wire. Therefore, it is suitable for processing the tip to taper the core material to make an ultra-fine pin probe.
[0055] 次に、前記課題を解決するため、本発明が提案する極細同軸バレルを製造する方 法は、微細径の金属芯線の外周に電気铸造法により第一の金皮膜、次いで、当該 第一の金皮膜の外周に電気铸造法により第一のニッケル層、当該第一のニッケル層 の外周に絶縁皮膜、当該絶縁皮膜の外周に第二の金皮膜、当該第二の金皮膜の 外周に電気铸造法により第二のニッケル層を順次形成するとともに、前記微細径の 金属芯線を引き抜くことにより、内周側に絶縁層を含む極細同軸バレルを製造するも のである。
[0056] このようにして製造した極細同軸バレルは前述したように同軸プローブ用のバレル として使用することができ、前述した本発明の極細同軸バレルを製造する方法は、同 軸プローブ用のバレルを製造する方法として実施することもできる。 [0055] Next, in order to solve the above-mentioned problem, the method of manufacturing an ultra-fine coaxial barrel proposed by the present invention includes a first gold film formed on the outer periphery of a metal core wire having a small diameter by an electric forging method, and then The first nickel layer is formed on the outer periphery of one gold film by an electric forging method, the insulating film is formed on the outer periphery of the first nickel layer, the second gold film is formed on the outer periphery of the insulating film, and the outer periphery of the second gold film is formed. A second nickel layer is sequentially formed by an electric forging method, and an ultrafine coaxial barrel including an insulating layer on the inner peripheral side is manufactured by pulling out the fine metal core wire. [0056] The micro coaxial barrel manufactured in this way can be used as a barrel for a coaxial probe as described above, and the method for manufacturing the micro coaxial barrel of the present invention described above uses a barrel for a coaxial probe. It can also be implemented as a manufacturing method.
[0057] ここで、前記第一の金皮膜の内径が 50 m以上で、第二のニッケル層の外径は 80 μ m以上にすることができる。 Here, the inner diameter of the first gold film can be 50 m or more, and the outer diameter of the second nickel layer can be 80 μm or more.
発明の効果 The invention's effect
[0058] この発明によれば、外径 200 μ m以下でありながら、自己弾性を有し、ビッカース硬 度 450HV以上を有することによって、例えば、プローブピンに採用される場合であつ ても、 IC、 LSIなどの集積回路の小型化、高密度化、大容量化、高性能化に伴なつて 要求される細径ィヒに応えつつ、プローブピンに要求される弾性、強度を備えた極細 同軸線を提供することができる。 [0058] According to the present invention, even though the outer diameter is 200 μm or less, it has self-elasticity and has a Vickers hardness of 450 HV or more. Ultra-fine coaxial with the elasticity and strength required for probe pins while meeting the small diameter required for integrated circuits such as LSI, miniaturization, high density, large capacity, and high performance Lines can be provided.
[0059] また、この発明によれば、内径 50 μ m以上を有する管状体であって、外径 80 μ m 以上で、内周側に絶縁層を含み、同軸プローブ用のバレルとして使用できる極細同 軸バレルを提供することができる。 [0059] Further, according to the present invention, a tubular body having an inner diameter of 50 μm or more, an outer diameter of 80 μm or more, including an insulating layer on the inner peripheral side, and usable as a barrel for a coaxial probe. A coaxial barrel can be provided.
[0060] 更に、このように同軸プローブ用のバレルとして使用できる本発明の極細同軸バレ ルを利用し、当該バレルの内部に、導電部材からなる信号伝達用の導電針が摺動自 在に装入されている微細径の同軸プローブを提供することができる。 [0060] Further, by using the ultra-fine coaxial barrel of the present invention that can be used as a barrel for a coaxial probe in this way, a conductive needle for signal transmission made of a conductive member is mounted on the inside of the barrel. It is possible to provide a coaxial probe having a small diameter.
[0061] これにより、 IC、 LSIなどの集積回路の小型化、高密度化、大容量化、高性能化の 進展に伴う同軸プローブの微細径化、プローブカードへの高密度実装化に対応する ことができる。 [0061] This supports the miniaturization of integrated circuits such as ICs and LSIs, the increase in density, the increase in capacity, and the reduction in the diameter of coaxial probes with the progress of higher performance, and the implementation of high-density mounting on probe cards. be able to.
[0062] 同軸プローブ用のバレルとして使用できる本発明の極細同軸バレルを製造する本 発明の方法によれば、微細径の金属芯線 (例えば、 SUS線)の外周に電気铸造法に より第一の金皮膜を形成し、この第一の金皮膜の外周に、第一のニッケル層、絶縁 層、第二の金皮膜、第二のニッケル層を同心円状に順次積層し、一方、微細径の金 属芯線を引き抜いて、中空の円柱状の極細同軸バレルを製造することができる。そこ で、微細径の金属芯線 (例えば、 SUS線)の径を変更することにより、同軸プローブ 用のバレルの内径を任意に調整することが可能である。 [0062] According to the method of the present invention for producing the ultra-fine coaxial barrel of the present invention that can be used as a barrel for a coaxial probe, the outer circumference of a fine-diameter metal core wire (for example, SUS wire) is formed on the outer periphery by the electric forging method. A gold film is formed, and a first nickel layer, an insulating layer, a second gold film, and a second nickel layer are sequentially stacked concentrically around the outer periphery of the first gold film. By pulling out the core wire, a hollow cylindrical ultrafine coaxial barrel can be manufactured. Therefore, it is possible to arbitrarily adjust the inner diameter of the barrel for the coaxial probe by changing the diameter of the fine metal core wire (for example, SUS wire).
[0063] また、電気铸造法や、蒸着、焼付け、浸漬処理などによって同心円状の各層、皮膜
を形成できるので、各層、皮膜の肉厚も任意に調整することができる。 [0063] In addition, each concentric layer or film is formed by an electric forging method, vapor deposition, baking, immersion treatment, or the like. Therefore, the thickness of each layer and film can be arbitrarily adjusted.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0064] 以下、添付図面を参照して本発明の好ましい実施形態を説明する。 Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.
[0065] 図 1は、本発明の極細同軸線の製造方法が実施される連続処理装置の配置構成 の一例を概説するものである。 [0065] FIG. 1 outlines an example of the arrangement of a continuous processing apparatus in which the method for producing a micro coaxial cable of the present invention is implemented.
[0066] 供給ユニット 1には、白金、ロジウム、イリジウム等の白金の合金、金、銀、銅やそれ らの合金の 、ずれかのように導電性の高 、ものからなる芯材 10が卷回されて 、るリ ール 7が備えられている。 [0066] The supply unit 1 includes a core material 10 made of platinum, such as platinum, rhodium, iridium, or the like, or gold, silver, copper, or an alloy thereof having a high conductivity as if they are shifted. Rotated and equipped with reel 7.
[0067] 不図示の切断ユニットを備えている収納ユニット 5における搬送ローラ 6によって芯 材 10は供給ユニット 1のリール 7から繰り出され、洗浄ユニット 2、通電'搬送ユニット 3 を経て、ニッケル電铸ユニット 4へ搬送される。 [0067] The core material 10 is unwound from the reel 7 of the supply unit 1 by the transport roller 6 in the storage unit 5 having a cutting unit (not shown), passes through the cleaning unit 2 and the energization 'transport unit 3, and then the nickel electric power unit. It is conveyed to 4.
[0068] 洗浄ユニット 2には所定の弱アルカリ液あるいは、弱酸性液が装入されていて、ここ で、芯材 10の外周が洗浄される。 [0068] The cleaning unit 2 is charged with a predetermined weak alkaline solution or weak acid solution, and the outer periphery of the core member 10 is cleaned here.
[0069] ニッケル電铸ユニット 4には、所定の電解液、例えば、スルフォン酸ニッケル液が入 れられており、ニッケル電铸ユニット 4内を搬送されていく芯材 10の外周に、電铸によ つて所定の肉厚のニッケル皮膜 11が形成される。 [0069] A nickel electrolyte unit 4 is filled with a predetermined electrolyte, for example, a nickel sulfonate solution. The nickel electrolyte unit 4 is electrically connected to the outer periphery of the core 10 that is transported through the nickel electrode unit 4. Therefore, the nickel film 11 having a predetermined thickness is formed.
[0070] なお、ニッケル電铸ユニット 4内の電解液 (スルフォン酸ニッケル液)に、硬化剤や光 沢剤を適量添加して、製造される極細同軸線 20のビッカース硬度を調整することが できる。 [0070] It should be noted that the Vickers hardness of the manufactured micro coaxial cable 20 can be adjusted by adding an appropriate amount of a curing agent or a brightening agent to the electrolyte solution (nickel sulfonate solution) in the nickel battery unit 4. .
[0071] 収納ユニット 5における搬送ローラ 6による搬送速度は、どの程度の肉厚のニッケル 皮膜を芯材 10の外周に形成するかに応じて調整する。 The conveyance speed by the conveyance roller 6 in the storage unit 5 is adjusted according to how thick the nickel film is formed on the outer periphery of the core material 10.
[0072] 図 1図示の実施形態では、芯材 10の外周に電铸によって所定の肉厚のニッケル皮 膜 11を形成し、本発明の極細同軸線 20 (図 2 (b) )を製造して ヽる。 [0072] In the embodiment shown in FIG. 1, a nickel film 11 having a predetermined thickness is formed on the outer periphery of the core member 10 by means of electric iron to manufacture the micro coaxial cable 20 (FIG. 2 (b)) of the present invention. Speak.
[0073] この他に、図示していないが、供給ユニット 1から収納ユニット 5までの間に、複数のIn addition to this, although not shown, a plurality of units between the supply unit 1 and the storage unit 5 can be used.
、異なる電铸ユニットを配備し、供給ユニット 1から収納ユニット 5までの一連の工程で, Deploying different electronic units, in a series of processes from supply unit 1 to storage unit 5
、複数層が同心円状に積層されている極細多重同軸線を製造することが可能である It is possible to produce an ultra-fine multiple coaxial line in which a plurality of layers are laminated concentrically
[0074] また、所望に応じて、フッ素榭脂系、テフロン (登録商標)榭脂系、ポリイミド、アタリ
ルメラミン等の絶縁皮膜 12を、ニッケル皮膜 11の外周表面に形成した極細同軸線 2 Oa (図 2 (c) )とすることもできる。 [0074] In addition, as required, fluorine resin, Teflon (registered trademark) resin, polyimide, Atari An insulating film 12 such as lumelamine can be used as the ultrafine coaxial line 2 Oa (FIG. 2 (c)) formed on the outer peripheral surface of the nickel film 11.
[0075] また、最外周が絶縁体 12で被覆された極細同軸線 20a (図 2 (c) )を、図 1図示の供 給ユニット 1のリール 7から洗浄ユニット 2に搬送し、次に図示されていないが、ニッケ ル電铸ユニット 4の前に配備した、金めつきユニット、パラジウムめっきユニット、あるい はイリジウムめっきユニットを通過させ、極細同軸線 20aの最外周の絶縁皮膜 12上に 、符号 13で示す金皮膜、ノラジウム皮膜、あるいはイリジウム皮膜などを形成し、更 に、ニッケル電铸ユニット 4に搬送して電铸カ卩ェしてニッケル層 14を形成し、多重同 軸線 20b (図 2 (d) )を製造することもできる。 [0075] Further, the micro coaxial cable 20a (Fig. 2 (c)) whose outermost periphery is coated with the insulator 12 is transferred from the reel 7 of the supply unit 1 shown in Fig. 1 to the cleaning unit 2, and then shown in the drawing. Although not provided, it passes through the gold plating unit, the palladium plating unit, or the iridium plating unit arranged in front of the nickel electric power unit 4, and on the outermost insulating film 12 of the micro coaxial wire 20a, A gold film, a noradium film, or an iridium film indicated by reference numeral 13 is formed, and further, the nickel layer 14 is formed by being conveyed to the nickel electric unit 4 and heated to form a multiple coaxial line 20b (Fig. 2 (d)) can also be produced.
[0076] このようにすれば、極細同軸線 20aの外側に、金や、パラジウム、イリジウムなどの 導電性の皮膜 13が形成され、その外側にニッケル皮膜 14が形成されている本発明 の極細多重同軸線 20bを製造することになる。 In this way, the ultrathin multiplex of the present invention in which the conductive film 13 such as gold, palladium, iridium or the like is formed on the outside of the microcoaxial wire 20a and the nickel film 14 is formed on the outside thereof. Coaxial wire 20b will be manufactured.
[0077] さらに、上記ユニットを必要に応じて連ねることで、何層もの導電性を持ち、かつ弹 性を有する極細多重同軸線が製造できる。 [0077] Furthermore, by connecting the above units as necessary, it is possible to manufacture a multi-layered coaxial cable having many layers of electrical conductivity and electrical properties.
[0078] 図 2は、本発明の製造方法によって製造された極細同軸線の断面構造の概略を拡 大して説明するものである。例えば、図 2 (a)図示の芯材 10 (例えば、直径 25 mの イリジウム'白金合金線)の外周に、ニッケル皮膜 11が形成され、外径 39 /z mの本発 明の極細同軸線 20 (図 2 (b) )が製造される。 [0078] Fig. 2 is an enlarged view of the outline of the cross-sectional structure of the ultrafine coaxial line manufactured by the manufacturing method of the present invention. For example, a nickel coating 11 is formed on the outer periphery of the core material 10 shown in FIG. 2 (a) (for example, an iridium platinum alloy wire having a diameter of 25 m), and the ultrafine coaxial wire of the present invention having an outer diameter of 39 / zm 20 (Fig. 2 (b)) is manufactured.
[0079] 以上のようにして製造された本発明の極細同軸線 20、 20a、 20bを不図示の切断 ユニットによって所望の長さに切断し、この一方の端を先細にカ卩ェして芯材 10を頭 出して極細ピンプローブを製造することができる。 [0079] The ultra-fine coaxial wires 20, 20a, 20b of the present invention manufactured as described above are cut to a desired length by a cutting unit (not shown), and one end thereof is tapered to be cored. Material 10 can be cued to produce an ultra-fine pin probe.
[0080] 次に、図 3、図 4を参照して同軸プローブ用のバレルとして使用できる本発明の極 細同軸バレル及びこれを製造する方法を説明する。 Next, with reference to FIGS. 3 and 4, the micro coaxial barrel of the present invention that can be used as a barrel for a coaxial probe and a method for manufacturing the same will be described.
[0081] 図 3は、本発明の極細同軸バレル 31の構造を説明するものである。この極細同軸 バレル 31は、内周側に絶縁層を含む導電部材製であって、図示のように、円柱状で ある。この極細同軸バレル 31の内部に図 4図示のように、導電部材からなる信号伝達 用の導電針 30が摺動自在に装入されて同軸プローブとして使用される。 FIG. 3 illustrates the structure of the micro coaxial barrel 31 of the present invention. The micro coaxial barrel 31 is made of a conductive member including an insulating layer on the inner peripheral side, and has a cylindrical shape as illustrated. As shown in FIG. 4, a signal transmitting conductive needle 30 made of a conductive member is slidably inserted into the ultrafine coaxial barrel 31 and used as a coaxial probe.
[0082] この導電部材製で円柱状の極細同軸バレル 31は、内周側力も外周側に向力つて、
第一の金皮膜 32、第一のニッケル層 33、絶縁層 34、第二の金皮膜 35、第二の-ッ ケル層 36が同心円状に積層されている構造力もなる。 The cylindrical fine coaxial barrel 31 made of a conductive member has an inner peripheral force directed toward the outer peripheral side, There is also a structural force in which the first gold film 32, the first nickel layer 33, the insulating layer 34, the second gold film 35, and the second nickel layer 36 are laminated concentrically.
[0083] 管状の第二のニッケル層 36の外径、すなわち、バレル 31の外径は 80 μ m以上に なっている。 [0083] The outer diameter of the tubular second nickel layer 36, that is, the outer diameter of the barrel 31 is 80 μm or more.
[0084] 一方、管状の第一の金皮膜 32の内径、すなわち、バレル 31の内径は 50 μ m以上 となっている。 On the other hand, the inner diameter of the tubular first gold film 32, that is, the inner diameter of the barrel 31 is 50 μm or more.
[0085] この本発明の同軸プローブとして使用される極細同軸バレル 31は次のようにして製 造される。 [0085] The micro coaxial barrel 31 used as the coaxial probe of the present invention is manufactured as follows.
[0086] 全長 400mm、外径 50 μ m以上の微細径の金属芯線(例えば、 SUS線)の外周に 電気铸造法により第一の金皮膜 32を 0. 5〜1 μ m程度の肉厚で形成する。 [0086] The first gold film 32 is applied to the outer periphery of a metal core wire (for example, SUS wire) having a total length of 400 mm and an outer diameter of 50 μm or more by an electric forging method to a thickness of about 0.5 to 1 μm. Form.
[0087] 次いで、第一の金皮膜 32の外周に電気铸造法により第一のニッケル層 33を 2〜3 μ m程度の肉厚で形成する。 Next, a first nickel layer 33 is formed on the outer periphery of the first gold film 32 with a thickness of about 2 to 3 μm by electroforming.
[0088] 次に、内周側に絶縁層を含む極細同軸バレル 31とするため、絶縁層 34を 2〜5 m程度の肉厚で形成する。絶縁層 34は、例えば、テフロン (登録商標)榭脂や、メラミ ン榭脂を蒸着、焼付けすることにより、または、浸漬処理により形成する。 Next, the insulating layer 34 is formed with a thickness of about 2 to 5 m in order to form the ultra-thin coaxial barrel 31 including the insulating layer on the inner peripheral side. The insulating layer 34 is formed, for example, by depositing and baking Teflon (registered trademark) resin or melamine resin, or by dipping treatment.
[0089] 次いで、絶縁層 34の外周に第二の金皮膜 5を 0. 5〜1 m程度の肉厚で形成する [0089] Next, a second gold film 5 is formed on the outer periphery of the insulating layer 34 with a thickness of about 0.5 to 1 m.
[0090] そして、第二の金皮膜 35の外周に電気铸造法により第二のニッケル層 36を 5〜: L0 μ m程度の肉厚で形成する。 [0090] Then, the second nickel layer 36 is formed on the outer periphery of the second gold film 35 by an electric forging method with a thickness of about 5 to L0 μm.
[0091] 前記第二の金皮膜 35は、第二のニッケル層 36を電気铸造法により絶縁層 34の外 周に形成するために作製するものである。 [0091] The second gold film 35 is prepared in order to form the second nickel layer 36 on the outer periphery of the insulating layer 34 by electroforming.
[0092] ここで、最内側の金属芯線を引き抜いて、図 3 (a)、(b)図示のように、全長 400mm[0092] Here, the innermost metal core wire is pulled out, and as shown in FIGS. 3 (a) and 3 (b), the total length is 400 mm.
、外径 80 m以上、内径 50 m以上の、内周側に絶縁層を含む導電部材製の極細 同軸バレル 31を製造することができる。 An ultrafine coaxial barrel 31 made of a conductive member having an outer diameter of 80 m or more and an inner diameter of 50 m or more and including an insulating layer on the inner peripheral side can be manufactured.
[0093] なお、長尺のものを前記のようにして製造した後、これを所望の長さに切断して本 発明の極細同軸バレル 31とすることもでき、これを同軸プローブ用のノ レルとして禾 IJ 用できる。 [0093] It should be noted that, after a long product is manufactured as described above, it can be cut to a desired length to obtain the ultra-fine coaxial barrel 31 of the present invention, which is a coaxial probe core. Can be used for 禾 IJ.
[0094] また、第二のニッケル層 36の外周に、電気铸造法や、蒸着、焼付け、浸漬処理な
どによって、同心円状に、更に、複数の部材を積層することもできる。 [0094] Further, the outer periphery of the second nickel layer 36 is not subjected to an electric forging method, vapor deposition, baking, or immersion treatment. It is also possible to stack a plurality of members concentrically with each other.
[0095] 本発明の方法においては、前記のように、微細径の金属芯線 (例えば、 SUS線)の 外周に電気铸造法により第一の金皮膜 32を形成し、この第一の金皮膜 32の外周に 、第一のニッケル層 33、絶縁層 34、第二の金皮膜 35、第二のニッケル層 36を同心 円状に順次積層し、一方、微細径の金属芯線を引き抜いて、中空の円柱状の極細 同軸バレル 31としている。そこで、微細径の金属芯線 (例えば、 SUS線)の径を変更 することにより、極細同軸バレル 31の内径を任意に調整することが可能である。 In the method of the present invention, as described above, the first gold film 32 is formed on the outer periphery of a metal core wire (for example, SUS wire) having a small diameter by an electric forging method. The first nickel layer 33 , the insulating layer 34, the second gold film 35, and the second nickel layer 36 are sequentially laminated concentrically on the outer periphery of the metal, while the metal core wire having a small diameter is drawn out to form a hollow A cylindrical ultra-thin coaxial barrel 31 is used. Therefore, it is possible to arbitrarily adjust the inner diameter of the micro coaxial barrel 31 by changing the diameter of a fine metal core wire (for example, SUS wire).
[0096] また、電気铸造法や、蒸着、焼付け、浸漬処理などによって同心円状の各層、皮膜 を形成できるので、各層、皮膜の肉厚も任意に調整することができる。 [0096] Further, since each concentric layer and film can be formed by an electro forging method, vapor deposition, baking, immersion treatment, etc., the thickness of each layer and film can be arbitrarily adjusted.
図面の簡単な説明 Brief Description of Drawings
[0097] [図 1]本発明の極細同軸線の製造方法が実施される連続処理装置の配置構成の一 例を概説するもので、 (a)は平面図、(b)は側面図。 [0097] FIG. 1 outlines an example of an arrangement configuration of a continuous processing apparatus in which the method for producing a micro coaxial cable of the present invention is implemented, (a) is a plan view and (b) is a side view.
[図 2]本発明の製造方法によって製造された極細同軸線の断面構造の一例の概略を 拡大して説明するもので、 (a)は芯材の断面図、(b)は極細同軸線の断面図、(c)は 更に絶縁皮膜が形成されている極細同軸線の断面図、(d)は多重同軸線の断面図 FIG. 2 is an enlarged view of an example of a cross-sectional structure of a micro coaxial cable manufactured by the manufacturing method of the present invention. (A) is a cross-sectional view of a core material, and (b) is a micro coaxial cable. Cross-sectional view, (c) is a cross-sectional view of a micro coaxial line on which an insulating film is further formed, and (d) is a cross-sectional view of a multi-coaxial line
[図 3]本発明の同軸プローブ用の極細同軸バレルの構造を説明する図であって、(a) は縦方向断面図、(b)は一部を省略した横方向断面図。 FIG. 3 is a view for explaining the structure of a micro coaxial barrel for a coaxial probe according to the present invention, wherein (a) is a longitudinal sectional view, and (b) is a lateral sectional view with a part omitted.
[図 4]本発明の極細同軸バレルを用いた同軸プローブの一部を省略して表した横方 向断面図。 FIG. 4 is a lateral cross-sectional view showing a part of a coaxial probe using the ultrafine coaxial barrel of the present invention.
符号の説明 Explanation of symbols
[0098] 1 供給ユニット [0098] 1 Supply unit
2 洗浄ユニット 2 Cleaning unit
3 通電,搬送ユニット 3 Energizing and conveying unit
4 ニッケル電铸ユニット 4 Nickel electric unit
5 収納ユニット 5 Storage unit
6 搬送ローラ 6 Transport roller
7 リール
芯材 7 reel Core material
電铸ニッケル層 Electrical nickel layer
絶縁層 Insulation layer
導電性の皮膜 Conductive film
電铸ニッケル層 Electrical nickel layer
極細同軸線 Extra fine coaxial wire
a 絶縁体で被覆された極細同軸線b 極細多重同軸線 a Ultra-fine coaxial cable covered with an insulator b Ultra-fine multi-coaxial cable
信号伝達用の導電針 Conductive needle for signal transmission
極細同軸バレル Extra-fine coaxial barrel
第一の金皮膜 First gold film
第一のニッケル層 First nickel layer
絶縁層 Insulation layer
第二の金皮膜 Second gold film
第二のニッケル層
Second nickel layer
Claims
請求の範囲 The scope of the claims
[I] 貴金属又はその合金力もなる芯材を中心とする外径 200 m以下の同軸線であつ て、自己弾性を有すると共に、ビッカース硬度 450HV以上を有する極細同軸線。 [I] An ultra-fine coaxial wire having a self-elasticity and a Vickers hardness of 450 HV or more, which is a coaxial wire having an outer diameter of 200 m or less centering on a noble metal or a core material that also has an alloy strength thereof.
[2] 芯材の外径が 20 μ m以上であることを特徴する請求項 1記載の極細同軸線。 [2] The ultrafine coaxial wire according to [1], wherein the core has an outer diameter of 20 μm or more.
[3] 芯材が、金、銀、白金族および、これらの合金のいずれかからなることを特徴する請 求項 1又は 2記載の極細同軸線。 [3] The ultrafine coaxial wire according to claim 1 or 2, wherein the core material is made of any of gold, silver, platinum group, and alloys thereof.
[4] 芯材の外周に複数層が同心円状に積層されていることを特徴とする請求項 1乃至 3 の!、ずれか一項記載の極細同軸線。 [4] The structure according to any one of claims 1 to 3, wherein a plurality of layers are concentrically laminated on the outer periphery of the core material! The ultra-fine coaxial wire according to claim 1.
[5] 最外周に絶縁体皮膜が形成されて!ヽることを特徴とする請求項 1乃至 4の ヽずれか 一項記載の極細同軸線。 [5] The micro coaxial cable according to any one of claims 1 to 4, wherein an insulating film is formed on the outermost periphery.
[6] 内周側に絶縁層を含む同軸バレルであって、前記絶縁層が管状の第一のニッケル 層の外周に形成されているとともに、内径が 50 m以上で、外径が 80 m以上であ ることを特徴とする極細同軸バレル。 [6] A coaxial barrel including an insulating layer on the inner peripheral side, wherein the insulating layer is formed on the outer periphery of the tubular first nickel layer, and has an inner diameter of 50 m or more and an outer diameter of 80 m or more. An ultra-fine coaxial barrel characterized by
[7] 管状の第一のニッケル層の内周に第一の金皮膜が形成されていることを特徴とす る請求項 6記載の極細同軸バレル。 7. The micro coaxial barrel according to claim 6, wherein a first gold film is formed on the inner periphery of the tubular first nickel layer.
[8] 絶縁層の外周に形成されている第二の金皮膜と、その外周に形成されている管状 の第二のニッケル層とを含むことを特徴とする請求項 6又は 7記載の極細同軸バレル 8. The microcoaxial according to claim 6 or 7, comprising a second gold film formed on the outer periphery of the insulating layer and a tubular second nickel layer formed on the outer periphery thereof. Barrel
[9] 芯材の外周を洗浄した後、電铸加工により当該芯材の外周に皮膜を形成する、外 径 200 m以下の同軸線であって、自己弾性を有すると共に、ビッカース硬度 450H V以上を有する極細同軸線を製造する方法。 [9] A coaxial wire with an outer diameter of 200 m or less that forms a coating on the outer periphery of the core material after washing the outer periphery of the core material, and has self-elasticity and a Vickers hardness of 450 HV or higher A method of manufacturing a micro coaxial cable having
[10] 電铸加工により芯材の外周に形成する皮膜は、芯材の外周に複数層を同心円状 に積層するものであることを特徴とする請求項 9記載の極細同軸線を製造する方法。 10. The method for producing an ultrafine coaxial wire according to claim 9, wherein the coating formed on the outer periphery of the core material by electroplating is a method in which a plurality of layers are concentrically laminated on the outer periphery of the core material. .
[II] 最外周に絶縁体皮膜を形成することを特徴とする請求項 9又は 10記載の極細同軸 線を製造する方法。 [II] The method for producing an ultrafine coaxial wire according to claim 9 or 10, wherein an insulating film is formed on the outermost periphery.
[12] 微細径の金属芯線の外周に電気铸造法により第一の金皮膜、次いで、当該第一 の金皮膜の外周に電気铸造法により第一のニッケル層、当該第一のニッケル層の外 周に絶縁皮膜、当該絶縁皮膜の外周に第二の金皮膜、当該第二の金皮膜の外周
に電気铸造法により第二のニッケル層を順次形成するとともに、前記微細径の金属 芯線を引き抜くことにより、内周側に絶縁層を含む極細同軸バレルを製造する方法。 第一の金皮膜の内径が 50 μ m以上で、第二のニッケル層の外径が 80 μ m以上で あることを特徴とする請求項 12記載の極細同軸バレルを製造する方法。
[12] The first gold film is formed on the outer periphery of the fine metal core wire by an electric forging method, and then the first nickel layer is formed on the outer periphery of the first gold film by the electric forging method. Insulating film on the periphery, second gold film on the outer periphery of the insulating film, outer periphery of the second gold film A method of manufacturing an ultrafine coaxial barrel including an insulating layer on the inner peripheral side by sequentially forming a second nickel layer by electroforming and drawing the fine metal core wire. 13. The method for producing an ultrafine coaxial barrel according to claim 12, wherein the inner diameter of the first gold film is 50 μm or more and the outer diameter of the second nickel layer is 80 μm or more.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006043247A JP2007225286A (en) | 2006-02-21 | 2006-02-21 | Very thin coaxial line, manufacturing method therefor, and method of manufacturing very thin pin probe using the same |
JP2006-043248 | 2006-02-21 | ||
JP2006043248A JP2007225287A (en) | 2006-02-21 | 2006-02-21 | Coaxial probe, barrel for coaxial probe, and manufacturing method therefor |
JP2006-043247 | 2006-02-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007097356A1 true WO2007097356A1 (en) | 2007-08-30 |
Family
ID=38437395
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/053161 WO2007097356A1 (en) | 2006-02-21 | 2007-02-21 | Ultrafine coaxial line and ultrafine coaxial barrel and production method for them |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007097356A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168754A (en) * | 2008-01-18 | 2009-07-30 | Ishikawa Giken:Kk | Contact probe |
JP2011117882A (en) * | 2009-12-07 | 2011-06-16 | Rika Denshi Co Ltd | Contact probe |
WO2014049870A1 (en) * | 2012-09-28 | 2014-04-03 | 富士機械製造株式会社 | Coil for high frequency power and method for manufacturing same |
TWI838601B (en) * | 2020-02-04 | 2024-04-11 | 德商賀利氏德國有限責任兩合公司 | Clad wire and method for producing clad wires |
TWI855403B (en) | 2022-10-24 | 2024-09-11 | 洛克半導體材料股份有限公司 | Test probe and probe card |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799220A (en) * | 1993-08-04 | 1995-04-11 | Tokyo Electron Ltd | Probe card, coaxial probe needle for probe card and their production |
JP2002148279A (en) * | 2000-11-10 | 2002-05-22 | Toppan Printing Co Ltd | Coaxial probe for electricity inspection |
WO2003067268A1 (en) * | 2002-02-07 | 2003-08-14 | Yokowo Co., Ltd. | Capacity load type probe, and test jig using the same |
JP2004115838A (en) * | 2002-09-24 | 2004-04-15 | Optical Forming Kk | Production method for electroformed pipe, electroformed pipe, and fine wire rod for producing electroformed pipe |
JP2005037381A (en) * | 2003-06-30 | 2005-02-10 | Kanai Hiroaki | Probe pin |
JP2005126810A (en) * | 2003-10-22 | 2005-05-19 | Handa Toshihiro | Method of producing fine tube by electroforming, core wire, and core removal device |
-
2007
- 2007-02-21 WO PCT/JP2007/053161 patent/WO2007097356A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0799220A (en) * | 1993-08-04 | 1995-04-11 | Tokyo Electron Ltd | Probe card, coaxial probe needle for probe card and their production |
JP2002148279A (en) * | 2000-11-10 | 2002-05-22 | Toppan Printing Co Ltd | Coaxial probe for electricity inspection |
WO2003067268A1 (en) * | 2002-02-07 | 2003-08-14 | Yokowo Co., Ltd. | Capacity load type probe, and test jig using the same |
JP2004115838A (en) * | 2002-09-24 | 2004-04-15 | Optical Forming Kk | Production method for electroformed pipe, electroformed pipe, and fine wire rod for producing electroformed pipe |
JP2005037381A (en) * | 2003-06-30 | 2005-02-10 | Kanai Hiroaki | Probe pin |
JP2005126810A (en) * | 2003-10-22 | 2005-05-19 | Handa Toshihiro | Method of producing fine tube by electroforming, core wire, and core removal device |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009168754A (en) * | 2008-01-18 | 2009-07-30 | Ishikawa Giken:Kk | Contact probe |
JP2011117882A (en) * | 2009-12-07 | 2011-06-16 | Rika Denshi Co Ltd | Contact probe |
WO2014049870A1 (en) * | 2012-09-28 | 2014-04-03 | 富士機械製造株式会社 | Coil for high frequency power and method for manufacturing same |
TWI838601B (en) * | 2020-02-04 | 2024-04-11 | 德商賀利氏德國有限責任兩合公司 | Clad wire and method for producing clad wires |
TWI855403B (en) | 2022-10-24 | 2024-09-11 | 洛克半導體材料股份有限公司 | Test probe and probe card |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0138618B1 (en) | Vertical probe tester card with coaxial probes | |
US20140028343A1 (en) | Inspection jig and contact | |
US20150233973A1 (en) | Method of Manufacturing a Test Socket Body of an Impedance-Matched Test Socket | |
US20040212383A1 (en) | IC socket | |
US20110063066A1 (en) | Space transformer for probe card and method of repairing space transformer | |
US11408915B2 (en) | Cylindrical body and method for producing same | |
KR20040105783A (en) | Connector for measuring electric resistance, apparatus and method for measuring electric resistance of circuit board | |
US20110043238A1 (en) | Method of manufacturing needle for probe card using fine processing technology, needle manufactured by the method and probe card comprising the needle | |
WO2007097356A1 (en) | Ultrafine coaxial line and ultrafine coaxial barrel and production method for them | |
JP2009074963A (en) | Contact probe unit and its manufacturing method | |
KR102072634B1 (en) | Probe card needle with improved corrosion and electrical properties | |
US20050162177A1 (en) | Multi-signal single beam probe | |
JP2002124319A (en) | Anisotropic conductive film and inspection method of semiconductor element or electronic component using same | |
TW591477B (en) | Semiconductor inspection device | |
KR101139921B1 (en) | MVP Probe Card Board Manufacturing Method For Wafer Level Test | |
US7629803B1 (en) | Probe card assembly and test probes therein | |
JP2009210443A (en) | Contact probe and method for manufacturing the same | |
JP2024059935A (en) | Probe manufacturing method | |
JP2008045950A (en) | Probe card | |
JP2007225286A (en) | Very thin coaxial line, manufacturing method therefor, and method of manufacturing very thin pin probe using the same | |
JPH07321169A (en) | Probe structure | |
JPH0799220A (en) | Probe card, coaxial probe needle for probe card and their production | |
JP2021189064A (en) | Probe needle and probe unit | |
JPH09101326A (en) | Probe structure | |
KR20040064998A (en) | High performance functional micro wire and needle of probe card using high performance functional micro wire |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (FORM 1205A) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07714661 Country of ref document: EP Kind code of ref document: A1 |