Nothing Special   »   [go: up one dir, main page]

WO2007094255A1 - D/a converter - Google Patents

D/a converter Download PDF

Info

Publication number
WO2007094255A1
WO2007094255A1 PCT/JP2007/052351 JP2007052351W WO2007094255A1 WO 2007094255 A1 WO2007094255 A1 WO 2007094255A1 JP 2007052351 W JP2007052351 W JP 2007052351W WO 2007094255 A1 WO2007094255 A1 WO 2007094255A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantizer
circuit
dza
value
reference value
Prior art date
Application number
PCT/JP2007/052351
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Harigae
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2008500475A priority Critical patent/JP4699510B2/en
Priority to US12/279,391 priority patent/US7817074B2/en
Priority to EP07708287A priority patent/EP1988635A1/en
Publication of WO2007094255A1 publication Critical patent/WO2007094255A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/3031Structural details of digital delta-sigma modulators characterised by the order of the loop filter, e.g. having a first order loop filter in the feedforward path
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/352Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic
    • H03M3/354Continuously compensating for, or preventing, undesired influence of physical parameters of deviations from the desired transfer characteristic at one point, i.e. by adjusting a single reference value, e.g. bias or gain error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M7/00Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
    • H03M7/30Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
    • H03M7/3002Conversion to or from differential modulation
    • H03M7/3004Digital delta-sigma modulation
    • H03M7/3015Structural details of digital delta-sigma modulators
    • H03M7/302Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M7/3024Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • H03M7/3026Structural details of digital delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only the quantiser being a multiple bit one
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/50Digital/analogue converters using delta-sigma modulation as an intermediate step

Definitions

  • the present invention relates to a DZA converter for converting a digital signal into an analog signal, and more particularly to a DZA converter having a delta sigma modulation circuit.
  • a DZA converter using a delta sigma modulation circuit is known as a means for converting a digital signal into an analog signal.
  • An example of a conventional DZA converter is shown in FIG.
  • a digital input 401 is PCM data of a long word length, for example, 16 bits.
  • the digital input 401 is noise shaved by the delta sigma modulation circuit 402 and converted into several bits of digital data.
  • the output of the delta sigma modulation circuit 402 becomes an analog output 408 by the local DZ A conversion circuit 407.
  • a digital input 401 is added to a negative feedback signal from a delay unit 406 in a calo calculator 403, and is further integrated in an integrator 404.
  • the output of the integrator 404 is requantized to about several bits by the quantizer 405 and input to the local DZA conversion circuit 407. Also, the output of the quantizer 405 is input to the delay unit 406 as a feedback signal.
  • the quantizer 405 requantizes the input digital value in accordance with the quantization reference value.
  • the quantization reference value is set corresponding to the quantization value which is a discrete value that the quantizer 405 can output.
  • Figure 6 shows the input / output characteristics of the conventional DZA variation 100b quantizer 405.
  • “ ⁇ ” indicates a quantization reference value.
  • the quantizer 405 requantizes the input into five steps of + 2 ⁇ 2.
  • the quantization reference values for these five values have linear characteristics (see dashed line X). For example, when the input to the quantizer 405 is M, the output of the quantizer 405 is 1, and the quantization error at this time is 0. Similarly, when the input to the quantizer 405 is 2M, the output of the quantizer 405 is 2, and the quantization error at this time is 0.
  • the threshold level between adjacent quantization values is an intermediate value with respect to the quantization reference value.
  • the threshold value of quantization value 0 and quantization value 1 is MZ2.
  • distortion generated when a pulse width modulation circuit is used as the local DZA conversion circuit 407 will be described.
  • the pulse width modulation circuit 407 converts a digital signal of several bits into two values (1 bit) of H level and L level. It is ideal that the binarized signal is a signal as shown in FIG. 7 (a), but actually it is shown in FIG. 7 (b) due to the influence of analog factors such as wiring impedance. Such waveform distortion occurs. The occurrence of such waveform distortion degrades the characteristic of the analog output for each value of the output of the quantizer 405. That is, an ideal analog output has a characteristic showing linearity with respect to a quantizer output (input to the pulse width modulation circuit 407), but an actual analog output shows a non-linear characteristic.
  • Patent Document 1 a signal amplification apparatus as shown in Patent Document 1 has been proposed.
  • the distortion amount is calculated from the rising difference and the falling difference between the pulse width modulated signal and the signal obtained by amplifying the pulse width modulated signal to a predetermined size, and the distortion is calculated. Distortion is reduced by subtracting the amount from the quantizer output.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-110376
  • the amount of distortion is large, the amount of correction added to the feedback loop may be large and oscillation may occur.
  • the gain of the delta sigma modulation means is reduced on the assumption that the distortion amount is large and the case is taken into consideration, there is a problem that the signal amplification rate becomes small when the distortion amount is small.
  • An object of the present invention is to provide a DZA variation that achieves a high signal amplification factor without causing any distortion and causing less distortion and an increase in circuit scale. Means to solve the problem
  • a digital signal is input, and a delta sigma modulation circuit including a quantizer that quantizes based on a quantization reference value and an output of the delta sigma modulation circuit are converted to an analog signal. And a control circuit that corrects the quantization reference value of the quantizer.
  • a quantization reference value is set for each of a plurality of discrete output values that the quantizer can output.
  • the control circuit is connected to the subsequent stage of the delta sigma modulation circuit, and corrects the quantization reference value so as to cancel distortion generated in the subsequent stage circuit including at least the local DZA conversion circuit.
  • the quantization reference value of the quantizer corresponding to the output value N of the quantizer is M and the ideal analog output signal value for the output value N of the quantizer is P, then When the actual analog output signal power SP X ⁇ is obtained with respect to the analog output signal value P, the effects of this distortion are canceled, and quantization is performed so that the resulting actual analog output signal becomes ⁇ .
  • the reference value is corrected to MX a.
  • distortion can be reduced simply by setting the quantization reference value of the quantum inductor by the control circuit without requiring an additional circuit such as a level converter.
  • a high signal amplification factor can be secured.
  • FIG. 1 is a diagram showing the configuration of a DZA converter according to the present invention.
  • FIG. 3A A diagram showing input / output characteristics of the quantizer before the quantization reference value correction according to the present invention
  • FIG. 3B A diagram showing input / output characteristics of a quantizer after quantization reference value correction according to the present invention.
  • [4] A diagram showing the configuration of a local DZA conversion circuit capable of outputting multistage pulse signals
  • FIG. 1 is a block diagram showing an embodiment of the DZA variant of the present invention.
  • the DZA converter 100 includes a delta sigma modulation circuit 102 that delta sigma modulates an input signal, a control circuit 109 that controls the quantization operation of the digital sigma modulation circuit 102, and PWM (Pulse Width Modulation) of the output of the delta sigma modulation circuit 102.
  • a local DZA conversion circuit 107 that modulates and outputs as an analog output.
  • the digital sigma modulation circuit 102 includes an adder 103, an integrator 104, a quantizer 105, and a delay unit 106.
  • the delta sigma modulation circuit 102 receives, as an input signal, a digital input 101 which is long word length, for example, 16-bit PCM data.
  • Digital input 101 is summed with the negative feedback signal from delay 106 by summer 103 and then integrated by integrator 104.
  • the output of the integrator 104 is input to the quantizer 105 and requantized by the quantizer 105.
  • the output of the quantizer 105 is input to the local DZA conversion circuit 107.
  • the local DZA conversion circuit 107 PWM modulates the output of the quantizer 105 and outputs it as an analog output 108.
  • the quantizer 105 will be described.
  • the quantizer 105 converts the input digital value (the output of the integrator 104) into discrete value quantization values in accordance with the quantization reference value and outputs the result.
  • the quantizer 105 performs requantization to convert 16-bit data into 3-bit data.
  • the quantization reference value is set corresponding to each quantization value.
  • the quantization reference value is equal to the input value of the quantizer 105 when the quantization error is quantized at zero.
  • the error between the input value of the quantizer 105 and the quantization reference value is fed back, added to the digital input value 101 of the next period, and the quantizer 105 adds the error to the digital input value. Requantization is performed. Therefore, by varying the quantization reference value, the input / output characteristics of the quantizer 105 are varied.
  • the quantization reference value of the quantizer 105 is corrected (adjusted) by the control circuit 109.
  • the quantization reference value of the quantizer 105 is determined in consideration of the distortion characteristic that may occur in the local DZA conversion circuit 107 and the analog circuit in the subsequent stage.
  • the quantizer 105 requantizes into 2-step 5-step quantization values (output of the quantizer 105).
  • the quantization reference value of the quantizer 105 is set so that the input / output characteristics become linear as shown in FIG. 3A in the initial state. That is, in the quantizer 105, "M" is set as the initial value of the quantization reference value for the quantization value "1”, and "2M” is set as the initial value of the quantization reference value for the quantization value "2". I see.
  • the DZA variation 100 becomes usable. The correction of the quantization reference value will be described below.
  • FIG. 2 is a diagram showing input / output characteristics of the local DZA conversion circuit 107 and an analog circuit (not shown) in the subsequent stage. That is, from FIG. 2, it is possible to understand the characteristics of distortion that may occur in the local DZA conversion circuit 107 and its subsequent analog circuit.
  • the symbol "A” indicates an ideal analog output
  • the symbol "B” indicates an actual analog output including distortion.
  • the ideal characteristic indicates linearity.
  • the ideal analog output value corresponding to the output value “1” of the quantizer 105 is “P”.
  • the actual analog output is a smaller value than the ideal analog output value P “ PX ⁇ is a positive number less than 1).
  • the ideal analog output value corresponding to the output value “2” of the quantum device 105 is “2 ⁇ ”
  • the actual analog output is “2 ⁇ ⁇ ( ⁇ is a positive value less than 1
  • the output value of the quantizer corresponding to the analog output value “ ⁇ X ⁇ ” is “ ⁇ ”.
  • the quantization reference value for the output (quantization value) “1” of the quantizer 105 is “ ⁇ ” as shown in FIG. 3 ⁇
  • the quantization reference value corresponding to the quantization value “ ⁇ ” is It becomes " ⁇ ⁇ ⁇ ”. From this, it can be considered that the actual analog output value " ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ " is an ideal analog output value when the quantization reference value is multiplied by oc.
  • the quantization reference value “M” corresponding to the quantization value “1” is multiplied by oc and corrected.
  • the quantization value is virtually multiplied by ⁇ ⁇ , but then it is multiplied by ⁇ by distortion of the analog circuit, which indicates that distortion can be finally canceled.
  • the quantization reference value corresponding to the quantization value "2” is The distortion can be canceled by setting “2 ⁇ ”. In this way, the quantization reference value for each quantization value is corrected based on the actual analog output characteristics corresponding to all the quantization values.
  • FIG. 3B shows the input / output characteristics of the quantum integrator 105 whose quantization reference value has been corrected by the control circuit 109 as described above.
  • “ ⁇ ” indicates a quantization reference value.
  • the quantization reference value for the quantization value “1” is corrected to “ ⁇ ”
  • the quantization reference value for the quantization value “2” is corrected to “2 ⁇ ”.
  • the other quantization reference values are similarly corrected in consideration of the distortion characteristics of the analog circuit.
  • FIG. 3A when the input value of the quantizer 105 is “ ⁇ ⁇ ⁇ ⁇ ”, the output of the quantizer 105 is “1”. At this time, since the input value of the quantizer 105 is equal to the quantization reference value “ ⁇ ⁇ ⁇ ”, no quantization error occurs.
  • the output of the quantizer 105 is “2”. At this time, since the input value of the quantizer 105 is equal to the quantization reference value “2M X”, no quantization error occurs. Further, referring to FIG.
  • the analog output shows a linear shape, and the distortion is reduced.
  • the control circuit 109 may further correct the multiplied quantization reference value after correction by multiplying it by a constant A.
  • it may be determined by another appropriate calculation method beyond this limit.
  • the threshold value of each adjacent quantization value be a midpoint between the adjacent quantization reference value so that the quantization error can be suppressed to a fixed amount.
  • an appropriate threshold may be set according to the characteristics of the feedback circuit in the delta sigma modulation circuit.
  • the distortion characteristics of the analog output may be calculated by separately adding a circuit for measuring the characteristics, but measuring the characteristics by using a measuring instrument in advance will measure the characteristics. , But also.
  • the control circuit 109 causes the quantizer 105 to correct the distortion generated by the local DZA conversion circuit 107 and the circuit connected to the subsequent stage in advance. By setting the conversion reference value, parts such as level change ⁇ can be eliminated, and distortion can be reduced at low cost.
  • the second-order or higher-order delta sigma modulation circuit may not be limited to this. .
  • the distortion characteristic that may occur in local DZA conversion circuit 107 and the ana- ger circuit at the subsequent stage is taken into consideration.
  • distortion that may occur in local DZA conversion circuit 107 Let's correct the quantization reference value by considering only the characteristics of the image.
  • FIG. 4 shows another configuration of the local DZA conversion circuit connected to the rear stage of the DZA converter 100 of the present embodiment.
  • the local DZA conversion circuit 107 b shown in FIG. 4 includes a decoder 702, a pulse generator 703, and an adder 704.
  • the decoder 702 receives the digital value 701 quantized from the DZA transformation 100, decodes the digital value 701, and generates two types of decoded signals S1 and S2.
  • the decoded signals S1 and S2 are generated by decoding the upper bits and the lower bits of the digital value 701, for example.
  • the pulse generator 703 generates pulse signals P1 and P2 which are PWM-modulated corresponding to the decode signals S1 and S2, respectively.
  • the peak values of the pulse signals P 1 and P 2 are made different.
  • the adder 704 adds the pulse signals P1 and P2 and outputs the result as an analog output 705.
  • the distortion of the input / output characteristics of the local DZA conversion circuit 107b shown in FIG. 4 is measured, and the quantization reference value of the quantizer 105 is corrected to cancel the distortion, thereby causing the local DZA conversion circuit 107b. You can cancel the distortion.
  • the DZA transformation of the present invention enables distortion reduction with an easy circuit configuration, and is useful for DZA transformation used in audio equipment and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

A D/A converter (100) comprises a delta-sigma modulating circuit (102) including a quantizer (105) that receives a digital signal to quantize it based on a quantizing reference value; a local D/A converting circuit (107) for converting an output from the delta-sigma modulating circuit to an analog signal to be outputted; and a control circuit (109) for correcting the quantizing reference value of the quantizer. The quantizing reference value is established for each of a plurality of discrete output values that the quantizer may output. The control circuit (109) corrects the quantizing reference value to cancel any distortion that would otherwise occur in a circuit that follows the delta-sigma modulating circuit (102) and that includes at least the local D/A converting circuit (107).

Description

明 細 書  Specification
DZA変換器  DZA converter
技術分野  Technical field
[0001] 本発明は、デジタル信号をアナログ信号に変換する DZA変換器に関し、特にデ ルタシグマ変調回路を有する DZA変換器に関する。  The present invention relates to a DZA converter for converting a digital signal into an analog signal, and more particularly to a DZA converter having a delta sigma modulation circuit.
背景技術  Background art
[0002] 従来、デジタル信号をアナログ信号に変換する手段として、デルタシグマ変調回路 を用いた DZA変換器が知られている。従来の DZA変換器の一例を図 5に示す。図 5において、デジタル入力 401は語長の長い、例えば 16ビットの PCMデータである。 デジタル入力 401は、デルタシグマ変調回路 402によりノイズシェービングされ、数ビ ットのデジタルデータに変換される。デルタシグマ変調回路 402の出力は、局部 DZ A変換回路 407によりアナログ出力 408となる。  [0002] Conventionally, a DZA converter using a delta sigma modulation circuit is known as a means for converting a digital signal into an analog signal. An example of a conventional DZA converter is shown in FIG. In FIG. 5, a digital input 401 is PCM data of a long word length, for example, 16 bits. The digital input 401 is noise shaved by the delta sigma modulation circuit 402 and converted into several bits of digital data. The output of the delta sigma modulation circuit 402 becomes an analog output 408 by the local DZ A conversion circuit 407.
[0003] デルタシグマ変調回路 402の内部動作としては、デジタル入力 401はカロ算器 403 において遅延器 406からの負帰還信号と加算され、さらに積分器 404にて積分され る。積分器 404の出力は量子化器 405によって数ビット程度に再量子化され、局部 D ZA変換回路 407に入力される。また、量子化器 405の出力は帰還信号として遅延 器 406に入力される。  As an internal operation of the delta sigma modulation circuit 402, a digital input 401 is added to a negative feedback signal from a delay unit 406 in a calo calculator 403, and is further integrated in an integrator 404. The output of the integrator 404 is requantized to about several bits by the quantizer 405 and input to the local DZA conversion circuit 407. Also, the output of the quantizer 405 is input to the delay unit 406 as a feedback signal.
[0004] 量子化器 405は、入力したデジタル値を量子化基準値にしたがい再量子化する。  The quantizer 405 requantizes the input digital value in accordance with the quantization reference value.
量子化基準値は、量子化器 405が出力し得る離散的な値である量子化値に対応し て設定されている。図 6に従来の DZA変翻 100bの量子化器 405の入出力特性 を示す。同図において「參」は量子化基準値を示す。同図では、量子化器 405は入 力に対して + 2〜― 2の 5段階に再量子化している。また、これら 5値に対する量子化 基準値は線形特性を有する (破線 X参照)。例えば、量子化器 405への入力が Mの 時、量子化器 405の出力は 1であり、このときの量子化誤差は 0となる。同様に量子化 器 405への入力が 2Mの時、量子化器 405の出力は 2であり、このときの量子化誤差 は 0となる。また、隣接する量子化値間の閾値レベルは量子化基準値に対して中間 値としており、例えば、量子化値 0と量子化値 1の閾値は MZ2となっている。 [0005] 一般的に DZA変^^においては、信号伝播経路において歪みが生じないことが 望ましいが、実際には、局部 DZA変換回路あるいは局部 DZA変換回路の後段に 接続されるアナログ回路において歪みが発生する。以下、局部 DZA変換回路 407 として、パルス幅変調回路を用いた場合に生じる歪みについて説明する。 The quantization reference value is set corresponding to the quantization value which is a discrete value that the quantizer 405 can output. Figure 6 shows the input / output characteristics of the conventional DZA variation 100b quantizer 405. In the figure, “図” indicates a quantization reference value. In the figure, the quantizer 405 requantizes the input into five steps of + 2−−2. Also, the quantization reference values for these five values have linear characteristics (see dashed line X). For example, when the input to the quantizer 405 is M, the output of the quantizer 405 is 1, and the quantization error at this time is 0. Similarly, when the input to the quantizer 405 is 2M, the output of the quantizer 405 is 2, and the quantization error at this time is 0. Further, the threshold level between adjacent quantization values is an intermediate value with respect to the quantization reference value. For example, the threshold value of quantization value 0 and quantization value 1 is MZ2. In general, it is desirable that distortion does not occur in the signal propagation path in DZA modulation ^^, but in fact, distortion occurs in the local DZA conversion circuit or in an analog circuit connected after the local DZA conversion circuit. Occur. Hereinafter, distortion generated when a pulse width modulation circuit is used as the local DZA conversion circuit 407 will be described.
[0006] パルス幅変調回路 407は数ビットのデジタル信号を Hレベルと Lレベルの 2値(1ビ ット)に変換する。 2値化された信号は図 7 (a)に示すような信号であることが理想的で あるが、実際はアナログ的な要因、例えば、配線のインピーダンス等の影響により、図 7 (b)に示すような波形歪みが生じる。こういった波形歪みが発生することで、量子化 器 405の出力の各値に対するアナログ出力の特性は悪ィ匕する。すなわち、理想的な アナログ出力は、量子化器出力(パルス幅変調回路 407への入力)に対して線形性 を示す特性になるが、実際のアナログ出力は非線形な特性を示す。  The pulse width modulation circuit 407 converts a digital signal of several bits into two values (1 bit) of H level and L level. It is ideal that the binarized signal is a signal as shown in FIG. 7 (a), but actually it is shown in FIG. 7 (b) due to the influence of analog factors such as wiring impedance. Such waveform distortion occurs. The occurrence of such waveform distortion degrades the characteristic of the analog output for each value of the output of the quantizer 405. That is, an ideal analog output has a characteristic showing linearity with respect to a quantizer output (input to the pulse width modulation circuit 407), but an actual analog output shows a non-linear characteristic.
[0007] この問題を解消するために、例えば、特許文献 1に示すような信号増幅装置が提案 されている。特許文献 1によれば、パルス幅変調した信号と、パルス幅変調した信号 を所定の大きさに増幅させた信号との間の立ち上がり差分および立ち下がり差分か ら、歪み量を算出し、その歪み量を量子化器出力から減算することで歪みの低減を 図っている。  [0007] In order to solve this problem, for example, a signal amplification apparatus as shown in Patent Document 1 has been proposed. According to Patent Document 1, the distortion amount is calculated from the rising difference and the falling difference between the pulse width modulated signal and the signal obtained by amplifying the pulse width modulated signal to a predetermined size, and the distortion is calculated. Distortion is reduced by subtracting the amount from the quantizer output.
特許文献 1:特開 2003 - 110376号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2003-110376
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0008] し力しながら、特許文献 1の信号増幅装置は、レベル変 等を要し、回路全体と しての部品点数が多くなり、製造コストが増大したり、実装面積が増大したりするという 課題を有していた。 However, while the signal amplification device of Patent Document 1 requires level change, the number of parts in the entire circuit increases, the manufacturing cost increases, and the mounting area increases. It had the problem of.
[0009] さらに、歪み量が大きい場合はフィードバックループに加算される補正量が大きくな り発振する恐れがある。この発振を防ぐために歪み量が大き 、場合を想定してデルタ シグマ変調手段のゲインを下げた構成にすれば、ひずみ量が小さい場合に信号増 幅率が小さくなると 、う課題を有して 、た。  Furthermore, if the amount of distortion is large, the amount of correction added to the feedback loop may be large and oscillation may occur. In order to prevent this oscillation, if the gain of the delta sigma modulation means is reduced on the assumption that the distortion amount is large and the case is taken into consideration, there is a problem that the signal amplification rate becomes small when the distortion amount is small. The
[0010] 本発明は、カゝかる課題を解決し、歪みが少なく且つ回路規模の増大を招かないで 高 ヽ信号増幅率を実現する DZA変 を提供することを目的とする。 課題を解決するための手段 An object of the present invention is to provide a DZA variation that achieves a high signal amplification factor without causing any distortion and causing less distortion and an increase in circuit scale. Means to solve the problem
[0011] 本発明に係る DZA変翻は、デジタル信号を入力し、量子化基準値に基づき量 子化する量子化器を含むデルタシグマ変調回路と、デルタシグマ変調回路の出力を アナログ信号に変換し出力する局部 DZA変換回路と、量子化器の量子化基準値を 補正する制御回路とを備える。量子化基準値は、前記量子化器が出力し得る複数の 離散的な出力値毎に設定される。制御回路は、デルタシグマ変調回路の後段に接 続され、少なくとも局部 DZA変換回路を含む後段の回路において発生する歪みを キャンセルするように量子化基準値を補正する。  In the DZA transformation according to the present invention, a digital signal is input, and a delta sigma modulation circuit including a quantizer that quantizes based on a quantization reference value and an output of the delta sigma modulation circuit are converted to an analog signal. And a control circuit that corrects the quantization reference value of the quantizer. A quantization reference value is set for each of a plurality of discrete output values that the quantizer can output. The control circuit is connected to the subsequent stage of the delta sigma modulation circuit, and corrects the quantization reference value so as to cancel distortion generated in the subsequent stage circuit including at least the local DZA conversion circuit.
[0012] すなわち、量子化器の出力値 Nに対応する量子化器の量子化基準値を Mとし、量 子化器の出力値 Nに対する理想的なアナログ出力信号値を Pとしたときに、アナログ 出力信号値 Pに対して実際のアナログ出力信号力 SP X αとなる場合に、この歪みの 影響をキャンセルし、結果的に得られる実際のアナログ出力信号が Ρとなるように、量 子化基準値が M X aに補正される。  That is, assuming that the quantization reference value of the quantizer corresponding to the output value N of the quantizer is M and the ideal analog output signal value for the output value N of the quantizer is P, then When the actual analog output signal power SP X α is obtained with respect to the analog output signal value P, the effects of this distortion are canceled, and quantization is performed so that the resulting actual analog output signal becomes Ρ. The reference value is corrected to MX a.
発明の効果  Effect of the invention
[0013] 本発明の DZA変換器によれば、レベル変換器などの追加の回路を要さず、量子 ィ匕器の量子化基準値を制御回路により設定するだけで歪みの低減が図れることから 、回路規模の増大化を抑制できるとともに、高い信号増幅率も確保できる。  According to the DZA converter of the present invention, distortion can be reduced simply by setting the quantization reference value of the quantum inductor by the control circuit without requiring an additional circuit such as a level converter. As well as suppressing an increase in circuit scale, a high signal amplification factor can be secured.
図面の簡単な説明  Brief description of the drawings
[0014] [図 1]本発明による DZA変換器の構成を示す図 FIG. 1 is a diagram showing the configuration of a DZA converter according to the present invention.
[図 2]局部 DZA変換回路及びその後段のアナログ回路の入力と出力の特性を示す 図  [Figure 2] Figure showing the characteristics of the input and output of the local DZA conversion circuit and the analog circuit after it
[図 3A]本発明による量子化基準値補正前の量子化器の入出力特性を示す図  [FIG. 3A] A diagram showing input / output characteristics of the quantizer before the quantization reference value correction according to the present invention
[図 3B]本発明による量子化基準値補正後の量子化器の入出力特性を示す図 圆 4]多段パルス信号を出力可能な局部 DZA変換回路の構成を示す図  [FIG. 3B] A diagram showing input / output characteristics of a quantizer after quantization reference value correction according to the present invention. [4] A diagram showing the configuration of a local DZA conversion circuit capable of outputting multistage pulse signals
[図 5]従来の DZA変換器の構成を示す図  [Figure 5] Diagram showing the configuration of a conventional DZA converter
[図 6]従来の量子化器の入出力特性を示す図  [Figure 6] A diagram showing the input and output characteristics of a conventional quantizer
[図 7]局部 DZA変換回路の出力波形図 符号の説明 [Figure 7] Output waveform diagram of the local DZA conversion circuit Explanation of sign
[0015] 101 デジタノレ入力  [0015] 101 digitizer input
102 デルタシグマ変調回路  102 Delta sigma modulation circuit
103 加算器  103 Adder
104 積分器  104 integrator
105 量子化器  105 Quantizer
106 遅延器  106 delay device
107、 107b 局部 DZA変換 1  107, 107b Local DZA conversion 1
108 アナログ出力  108 Analog output
109 制御回路  109 Control circuit
401 デジタノレ入力  401 digitizer input
402 デルタシグマ変調回路  402 Delta sigma modulation circuit
403 加算器  403 Adder
404 積分器  404 integrator
405 量子化器  405 Quantizer
406 遅延器  406 Delay
407 局部 DZA変換回路  407 Local DZA Converter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明に係る DZA変翻の実施形態について添付の図面を参照しながら 説明する。  Hereinafter, embodiments of the DZA variation according to the present invention will be described with reference to the attached drawings.
[0017] 図 1は、本発明の DZA変 の一実施形態を示すブロック図である。 DZA変換 器 100は、入力信号をデルタシグマ変調するデルタシグマ変調回路 102と、デジタ ルシグマ変調回路 102の量子化動作を制御する制御回路 109と、デルタシグマ変調 回路 102の出力を PWM (Pulse Width Modulation)変調し、アナログ出力として出力 する局部 DZA変換回路 107とを備える。デジタルシグマ変調回路 102は、加算器 1 03と、積分器 104と、量子化器 105と、遅延器 106とを備える。  FIG. 1 is a block diagram showing an embodiment of the DZA variant of the present invention. The DZA converter 100 includes a delta sigma modulation circuit 102 that delta sigma modulates an input signal, a control circuit 109 that controls the quantization operation of the digital sigma modulation circuit 102, and PWM (Pulse Width Modulation) of the output of the delta sigma modulation circuit 102. B.) A local DZA conversion circuit 107 that modulates and outputs as an analog output. The digital sigma modulation circuit 102 includes an adder 103, an integrator 104, a quantizer 105, and a delay unit 106.
[0018] デルタシグマ変調回路 102は、入力信号として、語長の長い、例えば 16ビットの PC Mデータであるデジタル入力 101を入力する。デルタシグマ変調回路 102において 、デジタル入力 101は、加算器 103によって遅延器 106からの負帰還信号と加算さ れ、その後、積分器 104によって積分される。積分器 104の出力は量子化器 105に 入力され、量子化器 105によって再量子化される。量子化器 105の出力は、局部 D ZA変換回路 107に入力される。局部 DZA変換回路 107は量子化器 105の出力を PWM変調し、アナログ出力 108として出力する。 The delta sigma modulation circuit 102 receives, as an input signal, a digital input 101 which is long word length, for example, 16-bit PCM data. In the delta sigma modulation circuit 102 , Digital input 101 is summed with the negative feedback signal from delay 106 by summer 103 and then integrated by integrator 104. The output of the integrator 104 is input to the quantizer 105 and requantized by the quantizer 105. The output of the quantizer 105 is input to the local DZA conversion circuit 107. The local DZA conversion circuit 107 PWM modulates the output of the quantizer 105 and outputs it as an analog output 108.
[0019] 量子化器 105について説明する。量子化器 105は、入力したデジタル値 (積分器 1 04の出力)を、量子化基準値にしたがい、離散的な値をとる量子化値に変換して出 力する。本例では、量子化器 105は、 16ビットのデータを 3ビットのデータに変換する 再量子化を行う。量子化基準値は、各量子化値に対応して設定されている。量子化 基準値は、量子化誤差がゼロで量子化されるときの量子化器 105の入力値に等しい 。なお、量子化器 105の入力値と量子化基準値との誤差はフィードバックされ、次の 周期のデジタル入力値 101に加算され、量子化器 105において、その誤差が加算さ れたデジタル入力値について再量子化が実行される。よって、この量子化基準値を 変動させることで、量子化器 105の入出力特性が変動する。  The quantizer 105 will be described. The quantizer 105 converts the input digital value (the output of the integrator 104) into discrete value quantization values in accordance with the quantization reference value and outputs the result. In this example, the quantizer 105 performs requantization to convert 16-bit data into 3-bit data. The quantization reference value is set corresponding to each quantization value. The quantization reference value is equal to the input value of the quantizer 105 when the quantization error is quantized at zero. The error between the input value of the quantizer 105 and the quantization reference value is fed back, added to the digital input value 101 of the next period, and the quantizer 105 adds the error to the digital input value. Requantization is performed. Therefore, by varying the quantization reference value, the input / output characteristics of the quantizer 105 are varied.
[0020] 次に、本実施形態の量子化器 105の量子化基準値の設定について説明する。量 子化器 105の量子化基準値は制御回路 109により補正 (調整)される。特に、本実施 形態では、量子化器 105の量子化基準値は、局部 DZA変換回路 107およびその 後段のアナログ回路で生じ得る歪みの特性を考慮して決定される。  Next, setting of a quantization reference value of the quantizer 105 of the present embodiment will be described. The quantization reference value of the quantizer 105 is corrected (adjusted) by the control circuit 109. In particular, in the present embodiment, the quantization reference value of the quantizer 105 is determined in consideration of the distortion characteristic that may occur in the local DZA conversion circuit 107 and the analog circuit in the subsequent stage.
[0021] 本実施形態では、量子化器 105は 2〜+ 2の 5段階の量子化値 (量子化器 105 の出力)に再量子化する。量子化器 105の量子化基準値は初期状態において図 3A に示すように入出力特性が線形となるように設定されている。すなわち、量子化器 10 5において、量子化値「1」に対する量子化基準値の初期値として「M」が、量子化値「 2」に対する量子化基準値の初期値として「2M」が設定されて!、る。量子化器 105の 量子化基準値が制御回路 109によって補正された後、 DZA変翻100は使用可 能状態となる。以下、量子化基準値の補正について説明する。  In the present embodiment, the quantizer 105 requantizes into 2-step 5-step quantization values (output of the quantizer 105). The quantization reference value of the quantizer 105 is set so that the input / output characteristics become linear as shown in FIG. 3A in the initial state. That is, in the quantizer 105, "M" is set as the initial value of the quantization reference value for the quantization value "1", and "2M" is set as the initial value of the quantization reference value for the quantization value "2". I see. After the quantization reference value of the quantizer 105 is corrected by the control circuit 109, the DZA variation 100 becomes usable. The correction of the quantization reference value will be described below.
[0022] 図 2は、局部 DZA変換回路 107およびその後段のアナログ回路(図示せず)の入 出力特性を示した図である。すなわち、図 2から、局部 DZA変換回路 107およびそ の後段のアナログ回路で生じ得る歪みの特性が理解できる。なお、同図においてシ ンボル「A」は理想的なアナログ出力を示し、シンボル「B」は歪みを含んだ実際のァ ナログ出力を示す。同図に示すように、理想的な特性 (破線 Y)は線形性を示す。例 えば、量子化器 105の出力値「1」に対応する理想的なアナログ出力値は「P」となる 力 実際のアナログ出力は、理想的なアナログ出力値 Pに対して小さな値である「P X α」となっている は 1以下の正の数)。同様に、量子ィ匕器 105の出力値「2」に対応 する理想的なアナログ出力値は「2Ρ」となる力 実際のアナログ出力は「2Ρ Χ とな つて 、る( βは 1以下の正の数)。 FIG. 2 is a diagram showing input / output characteristics of the local DZA conversion circuit 107 and an analog circuit (not shown) in the subsequent stage. That is, from FIG. 2, it is possible to understand the characteristics of distortion that may occur in the local DZA conversion circuit 107 and its subsequent analog circuit. In the same figure, The symbol "A" indicates an ideal analog output, and the symbol "B" indicates an actual analog output including distortion. As shown in the figure, the ideal characteristic (broken line Y) indicates linearity. For example, the ideal analog output value corresponding to the output value “1” of the quantizer 105 is “P”. The actual analog output is a smaller value than the ideal analog output value P “ PX α is a positive number less than 1). Similarly, the ideal analog output value corresponding to the output value “2” of the quantum device 105 is “2Ρ” The actual analog output is “2Ρ 、 (β is a positive value less than 1 The number of
[0023] ここで、理想的な特性 (破線 Υ)にしたがった場合、アナログ出力値「Ρ X α」に対応 する量子化器の出力値は「α」となる。一方、図 3Αに示すように量子化器 105の出 力(量子化値)「1」に対する量子化基準値が「Μ」である場合、量子化値「ひ」に対応 する量子化基準値は「Μ Χ α」となる。このことから、実際のアナログ出力値「Ρ Χ α」 は、量子化基準値を oc倍した場合の理想的なアナログ出力値であると見なすことが できる。すなわち、歪みにより実際のアナログ出力が理想的なアナログ出力に対して a倍される場合、量子化値「1」に対応する量子化基準値「M」を oc倍して補正するこ とで、量子化値は仮想的に ΐΖ α倍にされるが、その後、アナログ回路の歪みにより α倍されるため、最終的に歪がキャンセルされ得ることを示している。量子化値「2」に ついても同様に、理想的なアナログ出力「2Μ」に対して、実際のアナログ出力が j8 倍されるとき、量子化値「2」に対応する量子化基準値を「2Μ Χ 」に設定することで 歪みをキャンセルすることができる。このようにして、すべての量子化値に対応する実 際のアナログ出力特性に基づき、各量子化値に対する量子化基準値を補正する。 Here, in accordance with the ideal characteristic (broken line Υ), the output value of the quantizer corresponding to the analog output value “Ρ X α” is “α”. On the other hand, when the quantization reference value for the output (quantization value) “1” of the quantizer 105 is “Μ” as shown in FIG. 3Α, the quantization reference value corresponding to the quantization value “ひ” is It becomes "Μ α α". From this, it can be considered that the actual analog output value "で き る 見 な す α" is an ideal analog output value when the quantization reference value is multiplied by oc. That is, when the actual analog output is multiplied by a with respect to the ideal analog output due to distortion, the quantization reference value “M” corresponding to the quantization value “1” is multiplied by oc and corrected. The quantization value is virtually multiplied by α α, but then it is multiplied by α by distortion of the analog circuit, which indicates that distortion can be finally canceled. Similarly for the quantization value "2", when the actual analog output is multiplied by j8 with respect to the ideal analog output "2Μ", the quantization reference value corresponding to the quantization value "2" is The distortion can be canceled by setting “2 Χ」 ”. In this way, the quantization reference value for each quantization value is corrected based on the actual analog output characteristics corresponding to all the quantization values.
[0024] 図 3Bに、制御回路 109により、上記のようにして量子化基準値が補正された量子 ィ匕器 105の入出力特性を示す。同図において「參」は量子化基準値を示す。図 3Bに 示すように、量子化値「1」に対する量子化基準値は「Μ Χ α」に、量子化値「2」に対 する量子化基準値は「2Μ Χ 」にそれぞれ補正される。その他の量子化基準値もァ ナログ回路の歪み特性を考慮して同様に補正される。図 3Βにおいて、量子化器 105 の入力値が「Μ Χ ひ」の時、量子化器 105の出力は「1」となる。このとき、量子化器 1 05の入力値は量子化基準値「Μ Χ ひ」と等しいので量子化誤差は発生しない。また 、図 2を参照すると、量子化器出力値「1」は、実際のアナログ出力値「Ρ Χ ひ」となる ので、増幅率は PZM ( = (P X α ) / (Μ Χ α ) )となる。同様に、図 3Βにおいて、量 子化器 105の入力値が「2M X j8」の時、量子化器 105の出力は「2」となる。このとき 、量子化器 105の入力値は量子化基準値「2M X 」と等しいので量子化誤差は発 生しない。また、図 2を参照すると、量子化器出力値「2」は実際のアナログ出力値「2 P X j8」となるので増幅率は PZM ( = (2P X j8 ) Z (2M X j8 ) )となる。以上のように、 常に増幅率は一定を示すことからアナログ出力は線形を示すこととなり、歪みが低減 される。 FIG. 3B shows the input / output characteristics of the quantum integrator 105 whose quantization reference value has been corrected by the control circuit 109 as described above. In the figure, “図” indicates a quantization reference value. As shown in FIG. 3B, the quantization reference value for the quantization value “1” is corrected to “Μα”, and the quantization reference value for the quantization value “2” is corrected to “2Μ”. The other quantization reference values are similarly corrected in consideration of the distortion characteristics of the analog circuit. In FIG. 3A, when the input value of the quantizer 105 is “Μ ひ ひ”, the output of the quantizer 105 is “1”. At this time, since the input value of the quantizer 105 is equal to the quantization reference value “Μ ひ ひ”, no quantization error occurs. Also, referring to FIG. 2, the quantizer output value “1” becomes the actual analog output value “Χ ひ ひ”. Therefore, the amplification factor is PZM (= (PX α) / (Μ α α)). Similarly, in FIG. 3A, when the input value of the quantizer 105 is “2M X j 8”, the output of the quantizer 105 is “2”. At this time, since the input value of the quantizer 105 is equal to the quantization reference value “2M X”, no quantization error occurs. Further, referring to FIG. 2, since the quantizer output value "2" is the actual analog output value "2 PX j8", the amplification factor is PZM (= (2P X j8) Z (2M X j8)) . As described above, since the amplification factor always shows a constant, the analog output shows a linear shape, and the distortion is reduced.
[0025] なお、補正された量子化基準値に対してその補正量が大きくなつた場合、すなわち 、発生する量子化誤差が増大するよう補正された場合は、発振する可能性がある。そ こで、発振を防止するため、制御回路 109は、すべての補正後の量子化基準値に対 して、さらに定数 A倍して補正してもよい。これにより、発振を抑制しつつ、高い増幅 率を持つ量子化器 105を実現できる。ここで定数 Aは、量子化基準値を補正する前 の量子化誤差の最大値 Xと、量子化基準値を補正した後の量子化誤差の最大値 yを もとにして、 A=yZxで算出される。但し、デルタシグマ変調回路の構成によってはこ の限りではなぐ別の適切な算出方法により決定してもよい。  When the correction amount becomes large with respect to the corrected quantization reference value, that is, when the generated quantization error is corrected to increase, oscillation may occur. Therefore, in order to prevent the oscillation, the control circuit 109 may further correct the multiplied quantization reference value after correction by multiplying it by a constant A. As a result, it is possible to realize the quantizer 105 having a high amplification factor while suppressing the oscillation. Here, the constant A is based on the maximum value X of the quantization error before correcting the quantization reference value and the maximum value y of the quantization error after correcting the quantization reference value, and A = yZx It is calculated. However, depending on the configuration of the delta sigma modulation circuit, it may be determined by another appropriate calculation method beyond this limit.
[0026] また、それぞれ隣接する量子化値の閾値は、量子化誤差が一定量に抑えられるよ うに、隣接する量子化基準値との中点が望ましい。しかしながら、デルタシグマ変調 回路における帰還回路の特性に応じて適切な閾値を設定してもよい。  Further, it is desirable that the threshold value of each adjacent quantization value be a midpoint between the adjacent quantization reference value so that the quantization error can be suppressed to a fixed amount. However, an appropriate threshold may be set according to the characteristics of the feedback circuit in the delta sigma modulation circuit.
[0027] なお、このアナログ出力の歪み特性については、特性を測定する回路を別途追カロ することで算出してもよ 、が、あら力じめ測定器にぉ 、て特性を測定してぉ 、てもよ い。力かる構成によれば、制御回路 109により、局部 DZA変換回路 107およびその 後段に接続された回路によって発生する歪みを、量子化器 105においてあら力じめ 補正するように量子化器 105の量子化基準値を設定することにより、レベル変 ^^等 の部品が不要となり、安価で歪みの低減することができる。  The distortion characteristics of the analog output may be calculated by separately adding a circuit for measuring the characteristics, but measuring the characteristics by using a measuring instrument in advance will measure the characteristics. , But also. According to the configuration, the control circuit 109 causes the quantizer 105 to correct the distortion generated by the local DZA conversion circuit 107 and the circuit connected to the subsequent stage in advance. By setting the conversion reference value, parts such as level change ^ can be eliminated, and distortion can be reduced at low cost.
[0028] また、本実施の形態にお!、て、 1次のデルタシグマ変調回路を用いたが、これに限 定するわけではなぐ 2次以上のデルタシグマ変調回路を用いたとしてもよ 、。  In addition, although the first-order delta sigma modulation circuit is used in the present embodiment, the second-order or higher-order delta sigma modulation circuit may not be limited to this. .
[0029] また、本実施の形態において、局部 DZA変換回路 107およびその後段のアナ口 グ回路で生じ得る歪みの特性を考慮したが、局部 DZA変換回路 107で生じ得る歪 みの特性のみを考慮して量子化基準値を補正するようにしてもょ 、。 Further, in the present embodiment, the distortion characteristic that may occur in local DZA conversion circuit 107 and the ana- ger circuit at the subsequent stage is taken into consideration. However, distortion that may occur in local DZA conversion circuit 107 Let's correct the quantization reference value by considering only the characteristics of the image.
[0030] また、局部 DZA変換回路 107は上述した PWM変調回路に限られない。図 4に、 本実施形態の DZA変換器 100の後段に接続される局部 DZA変換回路の別の構 成を示す。図 4に示す局部 DZA変換回路 107bは、デコーダ 702と、パルス発生器 703と、加算器 704とを備える。デコーダ 702は、 DZ A変翻 100から量子化され たデジタル値 701を入力し、デジタル値 701をデコードし、 2種類のデコード信号 S1 、 S2を生成する。デコード信号 Sl、 S2は例えば、デジタル値 701の上位ビット、下位 ビットをそれぞれデコードして生成する。パルス発生器 703はデコード信号 Sl、 S2の それぞれに対応して PWM変調されたパルス信号 Pl、 P2を生成する。パルス信号 P 1、 P2の波高値は異ならせる。加算器 704でパルス信号 Pl、 P2を加算してアナログ 出力 705として出力する。図 4に示す局部 DZA変換回路 107bに対して入出力特性 の歪みを測定し、その歪みをキャンセルするように量子化器 105の量子化基準値を 補正することで、局部 DZA変換回路 107bにより生じる歪みをキャンセルできる。 産業上の利用可能性  Further, the local DZA conversion circuit 107 is not limited to the above-described PWM modulation circuit. FIG. 4 shows another configuration of the local DZA conversion circuit connected to the rear stage of the DZA converter 100 of the present embodiment. The local DZA conversion circuit 107 b shown in FIG. 4 includes a decoder 702, a pulse generator 703, and an adder 704. The decoder 702 receives the digital value 701 quantized from the DZA transformation 100, decodes the digital value 701, and generates two types of decoded signals S1 and S2. The decoded signals S1 and S2 are generated by decoding the upper bits and the lower bits of the digital value 701, for example. The pulse generator 703 generates pulse signals P1 and P2 which are PWM-modulated corresponding to the decode signals S1 and S2, respectively. The peak values of the pulse signals P 1 and P 2 are made different. The adder 704 adds the pulse signals P1 and P2 and outputs the result as an analog output 705. The distortion of the input / output characteristics of the local DZA conversion circuit 107b shown in FIG. 4 is measured, and the quantization reference value of the quantizer 105 is corrected to cancel the distortion, thereby causing the local DZA conversion circuit 107b. You can cancel the distortion. Industrial applicability
[0031] 本発明の DZA変翻は、容易な回路構成で歪みの低減を可能とし、オーディオ 機器等で使用される DZA変換に有用である。  The DZA transformation of the present invention enables distortion reduction with an easy circuit configuration, and is useful for DZA transformation used in audio equipment and the like.
[0032] 本発明は、特定の実施形態について説明されてきたが、当業者にとっては他の多 くの変形例、修正、他の利用が明らかである。それゆえ、本発明は、ここでの特定の 開示に限定されず、添付の請求の範囲によってのみ限定され得る。なお、本出願は 日本国特許出願、特願 2006— 036284号(2006年 2月 14日提出)に関連し、それ らの内容は引用することにより本文中に組み入れられる。  Although the present invention has been described with respect to particular embodiments, many other variations, modifications, and other uses will be apparent to those skilled in the art. Therefore, the present invention is not limited to the specific disclosure herein, but may be limited only by the appended claims. The present application is related to Japanese Patent Application No. 2006-036284 (filed on February 14, 2006), the contents of which are incorporated herein by reference.

Claims

請求の範囲 The scope of the claims
[1] デジタル信号を入力し、量子化基準値に基づき量子化する量子化器を含むデルタ シグマ変調回路と、  [1] A delta sigma modulation circuit including a quantizer that inputs a digital signal and quantizes based on a quantization reference value,
前記デルタシグマ変調回路の出力をアナログ信号に変換し出力する局部 DZA変 換回路と、  A local DZA conversion circuit which converts the output of the delta sigma modulation circuit into an analog signal and outputs it;
前記量子化器の量子化基準値を補正する制御回路とを備え、  A control circuit for correcting a quantization reference value of the quantizer;
前記量子化基準値は、前記量子化器が出力し得る複数の離散的な出力値毎に設 定され、  The quantization reference value is set for each of a plurality of discrete output values that can be output by the quantizer.
前記制御回路は、前記デルタシグマ変調回路の後段に接続される回路において 発生する歪みをキャンセルするように前記量子化器の量子化基準値を補正する、 こと特徴とする DZA変翻。  The control circuit corrects a quantization reference value of the quantizer so as to cancel distortion generated in a circuit connected to a subsequent stage of the delta sigma modulation circuit. DZA variation.
[2] 前記制御回路は、前記後段に接続される回路による歪みにより、当該後段に接続 される回路の出力が理想的な出力値に対して α倍されるときに、前記量子化器の量 子化基準値を α倍することにより前記量子化基準値を補正する、請求項 1に記載の DZA変概 [2] The amount of the quantizer when the output of the circuit connected in the latter stage is multiplied by α with respect to the ideal output value due to distortion caused by the circuit connected in the latter stage. 2. The DZA variation according to claim 1, wherein the quantization reference value is corrected by multiplying the aging standard value by α.
[3] 前記制御回路は、量子化器の離散的な出力値のそれぞれに対応して設定される 量子化器の入力値の範囲の閾値を、前記隣接する量子化基準値間の中間の値に 設定する、請求項 1に記載の DZA変換器。  [3] The control circuit sets the threshold of the range of the input value of the quantizer, which is set corresponding to each of the discrete output values of the quantizer, to an intermediate value between the adjacent quantization reference values. The DZA converter according to claim 1, wherein the DZA converter is set to.
[4] 前記制御回路は、補正後の量子化基準値に対してさらに定数 Α倍する、請求項 1 に記載の DZA変換器。 [4] The DZA converter according to claim 1, wherein the control circuit further multiplies the corrected quantization reference value by a constant Α.
[5] 前記定数 Aは、量子化基準値を補正する前の量子化誤差の最大値 Xと、量子化基 準値を補正した後の量子化誤差の最大値 yとに基づき、 A=yZxで算出される、請 求項 4に記載の DZA変換器。 [5] The constant A is based on the maximum value X of the quantization error before correcting the quantization reference value and the maximum value y of the quantization error after correcting the quantization reference value, A = yZx The DZA converter according to claim 4, calculated by
[6] 前記デルタシグマ変調回路の後段に接続される回路は前記局部 DZA変換回路 を含む、請求項 1に記載の DZA変換器。 [6] The DZA converter according to claim 1, wherein a circuit connected to a subsequent stage of the delta sigma modulation circuit includes the local DZA conversion circuit.
[7] 前記局部 DZA変換回路は、前記デルタシグマ変調回路からのデジタル出力に応 じてパルス幅変調したパルス信号を生成するパルス幅変調回路である、請求項 1に 記載の DZA変換器。 前記局部 DZA変換回路は、前記デルタシグマ変調回路からのデジタル出力に応 じてパルス幅変調された複数のパルス信号力 なる多段パルス信号を生成するパル ス幅変調回路である、請求項 1に記載の DZA変換器。 7. The DZA converter according to claim 1, wherein the local DZA conversion circuit is a pulse width modulation circuit that generates a pulse signal whose pulse width is modulated according to a digital output from the delta sigma modulation circuit. 2. The pulse width modulation circuit according to claim 1, wherein the local DZA conversion circuit is a pulse width modulation circuit that generates a multistage pulse signal having a plurality of pulse signal powers pulse width modulated according to a digital output from the delta sigma modulation circuit. DZA converter.
PCT/JP2007/052351 2006-02-14 2007-02-09 D/a converter WO2007094255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008500475A JP4699510B2 (en) 2006-02-14 2007-02-09 D / A converter
US12/279,391 US7817074B2 (en) 2006-02-14 2007-02-09 D/A converter
EP07708287A EP1988635A1 (en) 2006-02-14 2007-02-09 D/a converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-036284 2006-02-14
JP2006036284 2006-02-14

Publications (1)

Publication Number Publication Date
WO2007094255A1 true WO2007094255A1 (en) 2007-08-23

Family

ID=38371441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/052351 WO2007094255A1 (en) 2006-02-14 2007-02-09 D/a converter

Country Status (4)

Country Link
US (1) US7817074B2 (en)
EP (1) EP1988635A1 (en)
JP (1) JP4699510B2 (en)
WO (1) WO2007094255A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077741A (en) * 2009-09-30 2011-04-14 Kddi Corp TRANSMITTER FOR CONTROLLING POWER AMPLIFIER BASED ON CONTROL VALUE OF DeltaSigma CONVERTER, PROGRAM, AND METHOD
JP2011091597A (en) * 2009-10-22 2011-05-06 Kddi Corp TRANSMITTER, PROGRAM AND METHOD OF CONTROLLING CONTROL VALUE OF DeltaSigma CONVERTER IN CORRESPONDENCE TO POWER AMPLIFIER
JP2012039355A (en) * 2010-08-06 2012-02-23 Kddi Corp Amplifier having δς modulator and switching amplifier, program, and method
JP2015185900A (en) * 2014-03-20 2015-10-22 カシオ計算機株式会社 D/a conversion device, d/a conversion method and electronic musical instrument

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7961125B2 (en) * 2008-10-23 2011-06-14 Microchip Technology Incorporated Method and apparatus for dithering in multi-bit sigma-delta digital-to-analog converters
US20100267346A1 (en) * 2009-04-21 2010-10-21 Qualcomm Incorporated Methods and apparatus for control signaling in a communication system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214259A (en) * 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd Class d power amplifier
JP2002353750A (en) * 2001-05-24 2002-12-06 Sharp Corp Switching amplifier
WO2003030373A1 (en) * 2001-09-28 2003-04-10 Sony Corporation Delta-sigma modulation apparatus and signal amplification apparatus
JP2003110376A (en) 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2005020264A (en) * 2003-06-25 2005-01-20 Victor Co Of Japan Ltd Pwm-type d-class amplifier
JP2006036284A (en) 2004-07-28 2006-02-09 Denki Kagaku Kogyo Kk Lunch box

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3168620B2 (en) * 1991-07-03 2001-05-21 ソニー株式会社 Digital / analog converter
US5550544C1 (en) * 1994-02-23 2002-02-12 Matsushita Electric Ind Co Ltd Signal converter noise shaper ad converter and da converter
GB9509831D0 (en) * 1995-05-15 1995-07-05 Gerzon Michael A Lossless coding method for waveform data
JP2002076898A (en) * 2000-08-25 2002-03-15 Nippon Precision Circuits Inc Noise shaper
JP4530119B2 (en) * 2001-06-08 2010-08-25 ルネサスエレクトロニクス株式会社 Digital ΔΣ modulator and D / A converter using the same
JP3772970B2 (en) * 2001-10-29 2006-05-10 ソニー株式会社 D / A converter and output amplifier circuit
CN1981445B (en) * 2004-04-09 2012-05-30 音频专用集成电路公司 Sigma- delta modulator
US7315264B2 (en) * 2006-01-17 2008-01-01 D2Audio Corporation Systems and methods for controlling transient response in the output of a noise shaper
JP4788353B2 (en) * 2006-01-20 2011-10-05 パナソニック株式会社 Multistage noise shaping quantizer
JP4788422B2 (en) * 2006-03-20 2011-10-05 パナソニック株式会社 Noise shaping type quantizer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09214259A (en) * 1996-02-06 1997-08-15 Matsushita Electric Ind Co Ltd Class d power amplifier
JP2002353750A (en) * 2001-05-24 2002-12-06 Sharp Corp Switching amplifier
WO2003030373A1 (en) * 2001-09-28 2003-04-10 Sony Corporation Delta-sigma modulation apparatus and signal amplification apparatus
JP2003110376A (en) 2001-09-28 2003-04-11 Sony Corp Signal amplifier
JP2005020264A (en) * 2003-06-25 2005-01-20 Victor Co Of Japan Ltd Pwm-type d-class amplifier
JP2006036284A (en) 2004-07-28 2006-02-09 Denki Kagaku Kogyo Kk Lunch box

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011077741A (en) * 2009-09-30 2011-04-14 Kddi Corp TRANSMITTER FOR CONTROLLING POWER AMPLIFIER BASED ON CONTROL VALUE OF DeltaSigma CONVERTER, PROGRAM, AND METHOD
JP2011091597A (en) * 2009-10-22 2011-05-06 Kddi Corp TRANSMITTER, PROGRAM AND METHOD OF CONTROLLING CONTROL VALUE OF DeltaSigma CONVERTER IN CORRESPONDENCE TO POWER AMPLIFIER
JP2012039355A (en) * 2010-08-06 2012-02-23 Kddi Corp Amplifier having δς modulator and switching amplifier, program, and method
JP2015185900A (en) * 2014-03-20 2015-10-22 カシオ計算機株式会社 D/a conversion device, d/a conversion method and electronic musical instrument

Also Published As

Publication number Publication date
EP1988635A1 (en) 2008-11-05
US7817074B2 (en) 2010-10-19
US20090027248A1 (en) 2009-01-29
JPWO2007094255A1 (en) 2009-07-02
JP4699510B2 (en) 2011-06-15

Similar Documents

Publication Publication Date Title
EP1227579B1 (en) Method and apparatus for providing digital error correction for a class D power stage
US6414613B1 (en) Apparatus for noise shaping a pulse width modulation (PWM) signal and method therefor
US6954161B2 (en) Cascade delta-sigma modulator
WO2007094255A1 (en) D/a converter
US20030184463A1 (en) System and method for adaptive sigma-delta modulation
EP1139571B1 (en) Pulse width modulation D/A-converter
CN100514858C (en) Word length reduction circuit
KR20110029776A (en) Half-bridge 3-level pwm amplifier, method of driving the same and audio processing apparatus
US9258081B2 (en) High dynamic range AMAM predistortion
KR100497702B1 (en) Digital data converter
JP2003110376A (en) Signal amplifier
Vanderkooy et al. Why 1-bit sigma-delta conversion is unsuitable for high-quality applications
TW201415810A (en) Apparatus for differential interpolation pulse width modulation digital-to-analog conversion and output signal
JP4214850B2 (en) Digital signal processing apparatus and digital signal processing method
JP4579133B2 (en) Delta-sigma modulation circuit
CN111480299B (en) Delta sigma modulator system and method
US20050093727A1 (en) Multibit delta-sigma modulator with variable-level quantizer
US20130120075A1 (en) Pulse width modulation device
JPWO2020175581A1 (en) Delta-sigma modulator and communication equipment
JP4061764B2 (en) D / A converter
JP2006238293A (en) Class-d amplifier
JP3558911B2 (en) D / A converter
CN117278030A (en) Noise shaping variable quantizer
Floros et al. A distortion-free PWM coder for all-digital audio amplifiers
JP2004120239A (en) DeltaSigma MODULATOR

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2008500475

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12279391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007708287

Country of ref document: EP