WO2007091642A1 - Air electrode material for solid oxide fuel cell - Google Patents
Air electrode material for solid oxide fuel cell Download PDFInfo
- Publication number
- WO2007091642A1 WO2007091642A1 PCT/JP2007/052247 JP2007052247W WO2007091642A1 WO 2007091642 A1 WO2007091642 A1 WO 2007091642A1 JP 2007052247 W JP2007052247 W JP 2007052247W WO 2007091642 A1 WO2007091642 A1 WO 2007091642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air electrode
- particles
- fuel cell
- average particle
- particle size
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an air electrode material for a solid oxide fuel cell.
- the present invention also relates to an air electrode formed from the air electrode material and a fuel cell having the air electrode.
- Fuel cells have attracted attention as clean energy sources. Fuel cells are rapidly being studied for improvement and practical use mainly for household power generation, commercial power generation, and automobile power generation.
- a cathode material for a solid oxide fuel cell a generalized bumskite oxide (ABO: A and B represent metal elements) is generally used. Among them, A site
- Lanthanum with lanthanum and B-site manganese manganese are widely used. However, the electrode activity of this lanthanum-manganate material is low. Therefore, in order to increase the power generation efficiency, the operating temperature of the fuel cell power generation system must be raised to 900 ° C or higher.
- Japanese Patent Application Laid-Open No. 7-226208 adds manganese having high activity to manganese.
- Perovskite type oxides are disclosed.
- Solid State Ionics, Vol. 118 (1999) p.241 shows that the crystal structure and thermal expansion of an air electrode material with praseodymium, strontium at the A site, and cobalt / manganese velobskite-type oxides. The rate has been reported.
- the electrode activity at 750 ° C is inferior to that of an oxide containing cobalt.
- a velovskite-type oxide containing iron is also used. It leaves and speaks. The ⁇ row shows Proceedings of the 3rd.International Symposium on bolid Oxide Fuel Cells p.241, 1993, Honolulu Hawaii.Perovskite-type oxides with lanthanum 'strontium at A site and cobalt' iron at B site Is described.
- Japanese Patent Publication No. 11 242960 and Japanese Patent Application Laid-Open No. 2002-1510918 disclose perovskite-type oxides containing iron and Nikkenore.
- US Pat. No. 6,946,213 describes an air electrode material using a perovskite oxide containing a transition element and magnesium, or a transition element and zinc.
- the present invention has been made paying attention to the above situation. Its purpose is to maintain long-term electrode activity sustainability as a cathode material compared to conventional materials, and to withstand the heat history of repeated high temperatures exceeding 700 ° C at room temperature during operation and operation.
- the object is to provide an air electrode material for a fuel cell having high durability.
- Another object of the present invention is to provide a high-performance air electrode and fuel cell using the air electrode material.
- perovskite oxides containing lanthanum and iron'cobalt have excellent electrode activity at 750 ° C or higher, and thus air. Used as an extreme material.
- the present inventors based on iron-containing mouthbushite oxides, and their drawbacks.
- the performance as an air electrode material was investigated by variously changing the constituent metal of the A site and B site in the iron-containing perovskite oxide, which should improve the performance further.
- An air electrode material for a solid oxide fuel cell according to the present invention that has solved the above-mentioned problems is characterized by containing a velovskite oxide represented by the following general formula (I):
- A represents at least one element selected from alkaline earth metal elements and rare earth elements; B represents at least one element selected from group 7a elements and group 8 element forces] ⁇ or 0.5 ⁇ x ⁇ l; y «0. Indicates 5 ⁇ y ⁇ l]
- the air electrode for a solid oxide fuel cell of the present invention is an air electrode formed on one side of a solid electrolyte in a solid oxide fuel cell, and is formed of the air electrode material according to the present invention. It is characterized by that.
- the solid oxide fuel cell of the present invention is a solid oxide fuel cell in which an air electrode is formed on one side of a solid electrolyte and a fuel electrode is formed on the other side.
- the electrode is formed of the air electrode material according to the present invention.
- FIG. 1 is a conceptual diagram showing a single cell power generation evaluation apparatus used in an experiment.
- 1 indicates a heater
- 2 indicates an alumina outer tube
- 3 indicates an alumina inner tube
- 4 indicates a platinum lead wire
- 5 indicates a solid electrolyte sheet
- 6 indicates a force sword
- 7 indicates an anode 8 indicates a sealing material.
- An air electrode material for a solid oxide fuel cell according to the present invention is characterized in that it includes a peculiar bskite oxide represented by the following general formula (I).
- A represents at least one element selected from alkaline earth metal elements and rare earth elements; B represents at least one element selected from group 7a elements and group 8 element forces] ⁇ or 0.5 ⁇ x ⁇ l; y «0. Indicates 5 ⁇ y ⁇ l]
- preferred alkaline earth metals used as the element A are Ca, Sr, Ba and the like.
- Preferred rare earth elements include La, Ce, Sm, Gd and the like. These can be used alone, or two or more of them may be used in any combination as required. Of these, Sr and Ce are particularly preferable.
- the 7a group element and the 8 group element used as the B element are described in “Science and Chemistry Dictionary” (issued by Iwanami Shoten, December 20, 2004, 5th edition, 20th edition, page 1525).
- Group 7a and group 8 elements classified as “periodic rules of elements” are short-period type).
- Preferred group 7a elements include Mn
- preferred group 8 elements include Co, Ni, Cu and the like. These can be used alone, or two or more of them can be used in any combination as required. Of these, Ni and Cu are particularly preferred.
- the values of X and y in the above formula are also important, and it is necessary to set the value of X in the range of 0.5 ⁇ x ⁇ l in order to exert the combined effect of the above elements effectively It is. More preferably, 0.5 5 ⁇ x ⁇ 0.95, even more preferably 0.660 ⁇ x ⁇ 0.90.
- the force is less than 5, the difference in thermal expansion from the electrolyte is too large, so when the fuel cell is operated, it undergoes repeated thermal cycles between room temperature and operating temperature, so that the interface between the electrolyte membrane and the air electrode When stress is generated, the electrolyte membrane and the air electrode are easily separated or cracks are easily generated in the electrolyte membrane.
- the value of y needs to be set in the range of 0.5 ⁇ y ⁇ 1. More preferably 0.
- the y force is less than 0.05, it is difficult to exhibit the excellent electrode activity inherent in the iron-containing mouthbskite-type air electrode, and in particular, the stability of the electrode activity with time decreases.
- the atomic ratio of oxygen in the perovskite-type acid complex is expressed as 3. ing.
- the oxygen atomic ratio often takes a value smaller than 3. .
- the atomic ratio of oxygen is represented as 3 for convenience.
- a mixture of at least one of stable zirconium oxides stabilized by at least one of the selected elemental oxides is also an excellent air electrode material.
- a preferable mixing ratio in this case is 5 to 30% by mass in total power of at least one of the doped silica and the stable zirconium oxide to 70 to 95% by mass of the above-mentioned brazeodymium iron-containing perovskite oxide. This is the range.
- the doped ceria has electronic conductivity and ionic conductivity, and also has a characteristic of absorbing oxygen when the oxygen concentration is high and releasing the absorbed oxygen when the oxygen concentration is low.
- the characteristics of the perovskite type oxide as an air electrode are further improved.
- the above stable zirconium oxide has an effect of further increasing the consistency of the thermal expansion coefficient with the electrolyte, and contributes to the improvement of the binding property with the electrolyte.
- the effect of the doped ceria and Z or stable zirconium oxide is effectively exerted by blending 5% by mass or more with respect to praseodymium / iron-containing perovskite oxide: 70 to 95% by mass.
- the total amount exceeds 30% by mass, the absolute amount of the electrode active ingredient, the velobskite-type acid oxide, becomes dull and the activity decreases, and the volume mixing ratio becomes 60% or less. Therefore, the conductivity is also lowered, and the original object of the present invention cannot be achieved.
- the more preferable blending ratio of doped ceria and Z or stable zirconia is 10% by mass or more and 25% by mass or less, and more preferably 20% by mass or less.
- An embodiment in which coarse particles and fine particles of doped ceria are collected is also suitable.
- Doped ceria The blending amount of the coarse particles and fine particles is preferably 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 25% by mass or less, and further preferably 20% by mass or less.
- the average particle size of each component is "doped ceria coarse particles> praseodymium iron-based perovskite"
- the particle size should be adjusted to satisfy the relationship of “type oxide particles> stable Zircoyu particles”.
- the average particle size of the doped ceria coarse particles is 1 to 30 111, the perovskite type
- the average particle diameter of the oxide particles is preferably in the range of 0.3 to 3 ⁇ m, and the average particle diameter of the stabilized zirconia particles is preferably in the range of 0.1 to m.
- the average particle diameter of the doped ceria coarse particles is 1 to 30 ⁇ m and the perovskite oxide particles are satisfied after satisfying the above-mentioned relationship of the average particle sizes of the respective particles. It is preferable that the average particle size is 0.3 to 3 ⁇ m, and the average particle size of the doped ceria fine particles is 0.1 to 1 ⁇ m.
- the average particle diameter refers to the particle diameter at 50 volume% in the cumulative graph after measuring the particle size distribution of the particles.
- the average particle size of the bottom buxite oxide particles is 0.3-3.
- m means an aggregate of the same particles whose 50 volume% diameter is in the range of 0.3-3 / ⁇ ⁇ .
- the functions of the doped ceria particles having an average particle size of 1 to 30 m are the formation and maintenance of pores in the air layer and the prevention of aggregation of the mouth bumskite type oxide particles as the electrode catalyst.
- the stabilized zirconia particles or doped ceria fine particles having an average particle diameter of 0.1 to 1 / ⁇ ⁇ increase the adhesion between the doped ceria particles and the velovskite-type oxide particles and reliably form a conductive path. It exhibits the function of enhancing the bondability with the electrolyte.
- the doped ceria coarse particles are mixed, if the average particle size is less than 1 ⁇ m, there is a possibility that an appropriate gap is not formed between the particles and the air permeability is insufficient. In addition, sintering is likely to proceed when exposed to high temperatures, and the porosity may tend to decrease over time. On the other hand, if the average particle size of the doped ceria particles becomes too large exceeding 30 m, the gaps between the particles are sufficiently secured and the decrease in porosity due to the progress of sintering is suppressed, but the strength as the air electrode layer May feel down.
- the more preferable average particle diameter of the doped ceria coarse particles is 1.5 ⁇ m or more and 25 ⁇ m or less, more preferably 2 ⁇ m or more and 20 ⁇ m or less.
- the 90% by volume diameter is 3 ⁇ m or more and 60 ⁇ m. In the following, it is more preferably 5 ⁇ m or more and 50 / zm or less, and further preferably 7 m or more and 40 m or less. This is because the amount of mixing of extremely coarse particles is suppressed as much as possible to achieve a homogeneous air electrode layer.
- the doped ceria coarse particles particles of cerium oxide alone, cerium oxide / aluminum oxide mixed particles, and acid / cerium / acid / zirconium mixed particles can be used.
- Particularly preferably used in the present invention is a ceria particle doped with at least one element selected from yttrium, samarium, and gadolinium forces to give mixed conductivity.
- Doping amount is not particularly limited, 5 to 40 atoms relative to preferred cerium 0/0, more preferably from 10 to 30 atomic%.
- Doped ceria fine particles have the same composition. Can be used.
- a product heat-treated at 1300 ° C or higher for 5 hours or longer is pulverized with a bead mill or ball mill within the above average particle size range and 90 volumes.
- Doped silica coarse particles and fine particles adjusted within the% diameter range are preferably used.
- a more preferable heat treatment temperature condition is 1350 ° C. or more, more preferably 1400 ° C. or more, and a more preferred heat treatment time condition is 10 hours or more, more preferably 20 hours or more.
- the perovskite type oxide used in the present invention is preferably adjusted so that the average particle diameter is within a range of 0.3 to 3 ⁇ m in order to form a conductive path. .
- the average particle size of the perovskite-type oxide is less than 0.3 ⁇ m, sintering is likely to proceed when exposed to a high temperature for a long time, and the conductive path is blocked. There is a risk of impeding conductivity.
- the average particle size of the perovskite type oxide exceeds 3 ⁇ m, the sintering does not easily proceed even when exposed to high temperatures, but the electrode activity tends to decrease.
- the average particle size of the perovskite type oxide is more preferably not less than 0.4 m and not more than 2. More preferably not less than 0.5 m and not more than 2 m.
- the volume% diameter may be 1 ⁇ m or more and 15 m or less, more preferably 2 ⁇ m or more and 10 ⁇ m or less, and even more preferably 2 / zm or more and 8 / zm or less.
- a product heat-treated at 1300 ° C or higher for 5 hours or longer is pulverized with a bead mill or ball mill within the above average particle size range.
- Perovskite-type oxides adjusted within the volume% diameter range are preferably used.
- a more preferable heat treatment temperature condition is 1350 ° C. or more, more preferably 1400 ° C. or more, and a more preferred heat treatment time condition is 10 hours or more, more preferably 20 hours or more.
- Stable Zirconia particles and doped ceria fine particles increase the consistency of thermal expansion with the electrolyte and increase the strength of the air electrode due to its easy sinterability to prevent segregation from the electrolyte. Demonstrate the effect.
- These average particle diameters should be adjusted to be in the range of 0.1 to 1 m.
- the average particle size of the stabilized zircoure particles and the doped ceria fine particles is less than 0.1 m, the cohesive force of the zircoure particles and the like becomes large, and the above effect is not sufficiently exhibited.
- the average particle size exceeds 1 m, the sinterability decreases, and it becomes difficult to sufficiently exert the action of increasing the strength of the air electrode and the ability to suppress the powder separation from the electrolyte.
- the average particle size of the stabilized zirconia particles and doped ceria fine particles is preferably 0.2 ⁇ m or more and 0.8 m or less, more preferably 0.2 ⁇ m or more, and 0.2 ⁇ m or more. It is less than 6 m.
- the 90 volume% diameter is 0.5 m or more and 5 m or less, more preferably 0.8 m or more and 3 m or less, and still more preferably 0.8 m or more and 2 m or less.
- the average particle diameter (50 volume% diameter) of each particle is measured as follows. That is, using a laser diffraction particle size distribution analyzer “LA-920” manufactured by HORIBA, Ltd., an aqueous solution in which 0.2% by mass of sodium metaphosphate as a dispersant is added to distilled water is used as a dispersion medium. Each particle is added in an amount of 0.01 to 0.5% by mass in about 100 cm 3 of the dispersion medium, and dispersed by sonication for 3 minutes, and then the particle size distribution is measured. The average particle size is the particle size at 50% by volume in the cumulative graph in the measurement result of particle size distribution.
- the 90 volume% diameter means the particle diameter at a position of 90 volume% in the particle size distribution of each sample particle measured by the same method.
- the stable zirconium oxide particles are stabilized with at least one kind of oxide selected from yttrium, scandium, and ittenorium force, and the total amount of these oxides is 3 to 15 mol%. It is a certain Zircoyu. In order to effectively exhibit the composite action with the doped ceria particles, tetragonal zircoure having better toughness and strength than cubic zirconia is preferred.
- each raw material powder is weighed so as to have the above-mentioned preferred blending ratio and uniformly mixed by a mill or the like.
- the type of the mixing apparatus used in this case is not particularly limited, but a preferable mixing apparatus used by the present inventors is, for example, a multipurpose mixer manufactured by Mitsui Mining Co., Ltd.
- a preferable mixing apparatus used by the present inventors is, for example, a multipurpose mixer manufactured by Mitsui Mining Co., Ltd.
- the stable zirconium oxide particles are added thereto, Rotate the rotating blades at low speed to mix. If a powerful method is adopted, it is confirmed that the three kinds of particles can be mixed evenly and uniformly.
- the mixed powder material thus obtained is mixed with a paste component.
- Components for pastes include binders such as ethyl cellulose, polyethylene glycol, polybutyral resin; solvents such as ethanol, toluene, a terpineol, carbitol; plasticizers such as glycerin, glycol, dibutyl phthalate; Can include dispersants, antifoaming agents, surfactants, and the like, which are blended as necessary.
- the mixing means include a three roll mill and a planetary mill. If the viscosity is appropriately adjusted using such a mixing means, a paste for an air electrode can be obtained.
- a noinder there is no particular limitation on the type as long as it is easily decomposed by heat and dissolves in a solvent and exhibits fluidity suitable for printing and coating. It can be appropriately selected and used.
- the organic binder include an ethylene copolymer, a styrene copolymer, an acrylate copolymer and a metatarylate copolymer, a vinyl acetate copolymer, a maleic acid copolymer, and a bull petital resin.
- examples thereof include celluloses such as buracetal resin, burformal resin, butyl alcohol resin, waxes, and cellulose.
- methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, and cyclohexyl acrylate are preferable from the viewpoints of film formation of the air electrode layer and thermal decomposability during baking.
- Alkyl acrylates having an alkyl group having 10 or less carbon atoms such as 2-ethylhexyl acrylate, and the like; Tylmetatalylate, butylmetatalylate, isobutylmethacrylate, octylmethacrylate, 2-ethylhexylmethacrylate, decylmethacrylate, dodecylmethacrylate, laurylmethacrylate, cyclohexylmeta
- the solvent those having low volatility at room temperature are preferred in order to reduce the viscosity change during printing.
- polyhydric alcohol ester type such as glycerin and sorbitan
- polyether (polyol) type namine type polyacrylic acid, polyacrylic acid ammonium
- polyacrylic acid, polyacrylic acid ammonium Polyelectrolytes such as: organic acids such as citrate and tartaric acid; copolymers of isobutylene or styrene and maleic anhydride and their ammonium salts; amine salts; copolymers of butadiene and maleic anhydride and The power with which the ammonium salt is used Particularly preferred is sorbitan triol.
- the air electrode paste is prepared by adding a solvent or a binder to the raw material powder and kneading with a ball mill or the like by a known method. At this time, a bonding aid, an antifoaming agent, a leveling improver, a rheology modifier, etc. may be added as necessary.
- the leveling improver mainly has an action of suppressing the generation of pinholes in the air electrode layer, and exhibits the same effect as a so-called lubricant.
- examples include hydrocarbon-based polyethylene wax, urethane-modified polyether, alcohol-based polyglycerol, polyhydric alcohol, fatty acid-based higher fatty acid, and oxyacid.
- Particularly preferred are fatty acid systems such as stearic acid and hydroxystearic acid.
- a binder or a solvent is added to the raw material powder described above, and then kneaded with a machine, a ball mill, a three-roll mill or the like and mixed uniformly to obtain a paste.
- the viscosity should be adjusted to 1 to 50 mPa's, more preferably 2 to 20 mPa ⁇ s with a B-type viscometer.
- the preferable slurry viscosity when forming the air electrode by screen printing is 50, 000 to 2,000, OOOmPa-s, more preferably 80,000 to 1,000, OOOmPa-s, more preferably, with a Brookfields viscometer. The range is from 1 00, 000 to 500, OOOmPa, s.
- the viscosity is adjusted, for example, it is coated on the solid electrolyte by a bar coater, spin coater, dating apparatus or the like, or formed into a thin film by a screen printing method, and then a temperature of 40 to 150 ° C, for example,
- the air electrode layer is formed by heating at a constant temperature such as 50 ° C, 80 ° C, 120 ° C, or successively by heating.
- the thickness of the air electrode layer is suitably about 10 to 300 ⁇ m, preferably 15 to: LOO ⁇ m, particularly preferably 20 to 50 ⁇ m.
- oxides used for forming the solid electrolyte membrane include zirconia, alkaline earth metal oxides such as MgO, CaO, SrO, and BaO, YO, LaO, CeO, PrO, NdO, SmO,
- Rare earth metal oxides such as EuO, GdO, TbO, DyO, HoO, ErO, YbO
- Zircoure ceramics containing one or more of ScO, BiO, InO, etc.
- CeO or BiO alkaline earth metal oxides such as MgO, CaO, ScO, BaO,
- Rare earth metal oxides such as O, ErO, YbO, ScO, InO, PbO, WO, MoO, V
- AZrO with a perovskite structure (A: alkaline earth elements such as Sr) and In
- metal oxides such as AlO, SiO, InO, SbO, and BiO
- Dust-reinforced gallate ceramics Indium such as Ba In O with brown millelite structure
- Ceramics examples include ceramics. These ceramics may further contain other oxides such as Si 2 O 3, Al 2 O 3, GeO 2, SnO 2, Sb 2, PbO, Ta 2, Nb 2, and the like.
- a solid electrolyte having a zirconate-acid power stabilized by one or more acids selected from yttrium, scandium, and itumbumka as described above.
- these solid electrolytes contain 0.1 to 2% by mass of at least one selected from the group consisting of alumina, titer and silica.
- the shape of the electrolyte may be any of a flat plate shape, a corrugated plate shape, a corrugated shape, a Hercam shape, a cylindrical shape, a cylindrical flat plate shape, and the like.
- the thickness of the electrolyte is 5 to 500 / ⁇ ⁇ , preferably 30 to 300 ⁇ m, more preferably 50 to 200 ⁇ m.
- the fuel electrode paste is applied to one side of the electrolyte membrane by screen printing or the like.
- the fuel electrode paste include NiO, ceria doped with at least one element selected from yttrium, samarium, and gadolinium power, and at least one oxide selected from Z or yttrium, scandium, and ytterbium power.
- zirconia stabilized with seeds there may be mentioned those with the addition of zirconia stabilized with seeds.
- more specific fuel electrode materials ? ⁇ 0: 50-70% by mass, 10 mol% scandia, 1 mol% ceria, stable zirconia: 30-50% by mass, etc.
- the fuel electrode paste is dried, for example, it is baked at 1100 to 1400 ° C. to form a fuel electrode to form a half cell.
- the powder for the air electrode material is mixed with binder, solvent, plastic It is applied by screen printing or coating using a paste or slurry obtained by kneading uniformly with an agent, dispersant and the like.
- baking is performed at a temperature of 900 to 1300 ° C, preferably 950 to 1250 ° C, more preferably 1000 to 1200 ° C to form an air electrode, and a solid electrolyte fuel cell having a three-layer membrane structure
- the solid electrolyte material and the air electrode material are exposed to a high temperature for a long time to cause a solid-phase reaction and an insulating material may be generated at the interface between them, the solid electrolyte layer and the air electrode layer An intermediate layer may be provided between them.
- the yttria-doped ceria, samariado pud ceria, and gadria-doped ceria are materials having oxygen ion conductivity and electron conductivity and functioning as a barrier layer of the air electrode material. It can be used preferably.
- an intermediate layer paste using these materials may be prepared in the same manner and formed as an intermediate layer film on the opposite electrolyte surface where the fuel electrode film is formed.
- the material constituting the solid electrolyte membrane, the intermediate layer, the fuel electrode, and the film forming method there is no limitation on the material constituting the solid electrolyte membrane, the intermediate layer, the fuel electrode, and the film forming method.
- the above is only an example.
- the air electrode material of the present invention may be an electrode-supported fuel cell or a cylindrical solid electrolyte fuel cell. The same applies to the manufacture of fuel cells. Further, the air electrode material of the present invention is applied to a solid electrolyte fuel cell having a structure in which a fuel electrode, a solid electrolyte, and an air electrode are formed on the surface of a porous support tube or a support plate. Of course, it is possible to fabricate a cell.
- the air electrode material of the present invention has excellent long-term sustainability of electrode activity and good sintering resistance, and also has a severe heat history due to repetition of room temperature and high operating temperature when the fuel cell is stopped. High performance that can withstand Further, by using the air electrode material of the present invention, it is possible to provide a high-performance and durable air electrode, and further a fuel cell.
- Perovskite type oxide powder which is a raw material, is commercially available with a purity of 99.9% Pr 2 O 3 La
- Ethanol was added to the mixture and pulverized and mixed with a bead mill for 1 hour. Next, it was dried and calcined at 800 ° C for 1 hour. Further, ethanol was added and pulverized and mixed in a bead mill for 1 hour, followed by drying. Thereafter, a solid phase reaction was carried out at 1100-1300 ° C. for 5 hours.
- Ethanol was added to the obtained powder, which was further pulverized and mixed with a ball mill for 16 hours and then dried to obtain powders having an average particle diameter shown in Tables 1 to 3.
- the obtained powder was confirmed to be a single phase composed of perovskite by X-ray diffraction.
- the perovskite powder was further heat-treated at 1400 ° C for 10 hours and then pulverized with a planetary ball mill while adjusting the rotation speed and rotation time. The average particle size and 90% by volume were set.
- the doped ceria particles that are raw materials include commercially available CeO, GdO having a purity of 99.9% or more.
- the stable zircoure powder a commercial product manufactured by Daiichi Rare Element Co., Ltd. was used except for ytterbia stable zircoure.
- a powder prepared as follows was used.
- Zircoyu powder (trade name “OZC-OY”) manufactured by Sumitomo Osaka Cement Co., Ltd. was impregnated with an aqueous solution of ytterbium nitrate. The impregnated product was dried and then calcined at 1000 ° C. Then obtained The powder was ground in a bead mill in ethanol. After drying, when a mortar and pestle were further attached, or by pulverizing with a machine, 11 mol% ytterbia stable zircoure powder having an average particle size shown in Table 2 was obtained.
- the obtained powders were prepared so as to have the composition ratios shown in Tables 1 to 3.
- 2 g of ethylcellulose as a binder, 38 g of tervineol as a solvent, and sorbitan acid ester as a dispersant (trade name “IONET S-80” manufactured by Sanyo Chemical Co., Ltd.) 0 Added 5 g.
- the mixture was stirred and mixed with a mortar and pestle, and then milled using a three-roll mill to prepare an air electrode paste.
- Test example 1 Power generation test
- a power generation test was conducted on the cell produced above, and the cell output density was measured.
- the fuel gas used was 3% steam-humidified hydrogen at 800 ° C, and air was used as the oxidant.
- the product name “R8240” manufactured by Advantest was used as the current measuring device, and the product name “R6240” manufactured by Advantest was used as the current-voltage generator. The results are shown in Tables 1-3.
- the cell terminal voltage was measured by supplying a current of 300 mAZcm 2 , and the deterioration rate after 200 hours, 500 hours, and 1000 hours from the initial stage was measured.
- the results are shown in Tables 1-3.
- the cell terminal voltage drop rate was obtained as follows. In Comparative Examples 1 to 4, 6 and 7, the initial output density measured in Test Example 1 was low, so the measurement was strong. Also, Examples 5, 6, and 20 according to the present invention In order to shorten the experimental time, measurements after 500 hours or 1000 hours were omitted in and.
- the initial power density is 0.2 WZcm 2 or less and the electrode activity is poor.
- the air electrode material of the present invention is used, an initial output density of approximately 0.3 WZcm 2 or more is obtained. Therefore, it can be seen that the fuel battery cell according to the present invention has excellent electrode activity.
- the perovskite type oxide is used.
- the initial output density and the cell terminal voltage drop rate after 500 hours are the same as in the case of a single object, and the superiority of the present invention can be confirmed.
- the blending ratio of the perovskite type oxide and the doped silica or stable zirconium oxide is outside the specified range of the present invention, the initial output density is greatly reduced, and the electrode activity is remarkably deteriorated.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
- Compounds Of Iron (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
- Compositions Of Oxide Ceramics (AREA)
Abstract
This invention provides an air electrode material for a fuel cell, which is superior in electrode activity persistence to conventional materials and has durability high enough to withstand even repeating heat history between room temperature during stop of the operation and a high temperature above 700ºC during operation. The air electrode material for a solid oxide fuel cell is characterized by comprising a perovskite oxide represented by general formula (I): (PrxA1-x)(FeyB1-y)O3 ······ (I) wherein A represents an alkaline earth metal element or the like; B represents a group 7a element or the like; x is 0.5 ≤ x ≤ 1; and y is 0.5 ≤ y ≤ 1.
Description
明 細 書 Specification
固体酸化物形燃料電池用空気極材料 Air electrode materials for solid oxide fuel cells
技術分野 Technical field
[0001] 本発明は、固体酸ィ匕物形燃料電池用の空気極材料に関するものである。また、本 発明は、当該空気極材料から形成される空気極、および当該空気極を有する燃料 電池セルに関する。 [0001] The present invention relates to an air electrode material for a solid oxide fuel cell. The present invention also relates to an air electrode formed from the air electrode material and a fuel cell having the air electrode.
背景技術 Background art
[0002] 近年、クリーンエネルギー源として、燃料電池が注目されて 、る。燃料電池は、家 庭用発電から業務用発電、さらには自動車用発電などを主な用途として、急速に改 良研究や実用ィ匕研究が進められている。 In recent years, fuel cells have attracted attention as clean energy sources. Fuel cells are rapidly being studied for improvement and practical use mainly for household power generation, commercial power generation, and automobile power generation.
[0003] ところで、固体酸化物形燃料電池用の空気極材料としては、一般にべ口ブスカイト 型酸化物 (ABO: A, Bは金属元素を表す)が使用されている。その中でも、 Aサイト [0003] By the way, as a cathode material for a solid oxide fuel cell, a generalized bumskite oxide (ABO: A and B represent metal elements) is generally used. Among them, A site
3 Three
がランタン、 Bサイトがマンガンカゝらなるランタン 'マンガネート系材料は、広く使用され ている。し力し、このランタン.マンガネート系材料の電極活性は低い。よって、発電効 率を高めるには、燃料電池発電システムの作動温度を 900°C以上に高めねばならな い。 Lanthanum with lanthanum and B-site manganese manganese are widely used. However, the electrode activity of this lanthanum-manganate material is low. Therefore, in order to increase the power generation efficiency, the operating temperature of the fuel cell power generation system must be raised to 900 ° C or higher.
[0004] 反面、燃料電池材料がその様な高温に長時間曝されると、材料の焼結が起こり易く なると共に、セパレータ中に含まれるクロムによる被毒の影響が大きくなり、発電効率 が低下してしまう。よって、燃料電池の稼動温度は 850°C以下、好ましくは 800°C以 下に抑えることが望まれる。 [0004] On the other hand, if the fuel cell material is exposed to such a high temperature for a long time, the material is more likely to be sintered, and the influence of poisoning by chromium contained in the separator increases, resulting in a decrease in power generation efficiency. Resulting in. Therefore, it is desirable to keep the operating temperature of the fuel cell below 850 ° C, preferably below 800 ° C.
[0005] そのため、高温での使用に耐えるよう優れた導電性を有し、且つ電解質材料と熱膨 張係数が近接している空気極材料が求められている。こうした要望に沿うものとして、 導電率が高ぐ 750°Cでも優れた電極活性を発揮することから、ランタンとコバルトを 含むぺロブスカイト型酸ィ匕物が検討されている。しかし、当該酸化物は、ジルコユア 電解質との反応性が高いために絶縁性ィ匕合物を生成し易い。また、ジルコユア電解 質に比べて熱膨張率が約 2倍と大きぐ安定性に問題がある。 [0005] Therefore, there is a demand for an air electrode material that has excellent conductivity so that it can withstand use at high temperatures and that has a thermal expansion coefficient close to that of the electrolyte material. In line with these demands, perovskite-type oxides containing lanthanum and cobalt are being studied because they exhibit excellent electrode activity even at high conductivity of 750 ° C. However, since the oxide is highly reactive with the zirconium oxide electrolyte, it is easy to produce an insulating compound. In addition, there is a problem in stability that the thermal expansion coefficient is about twice as large as that of zirconium oxide electrolyte.
[0006] また、特開平 7— 226208号公報には、マンガンに活性の高いコバルトを添カ卩した
ぺロブスカイト型酸化物が開示されている。さらに、 Solid State Ionics, Vol. 118 (1999 ) p.241には、 Aサイトがプラセオジム.ストロンチウム、 Bサイトがコバルト 'マンガンの ベロブスカイト型酸ィ匕である空気極材料の、結晶構造と熱膨張率が報告されている。 [0006] Japanese Patent Application Laid-Open No. 7-226208 adds manganese having high activity to manganese. Perovskite type oxides are disclosed. Furthermore, Solid State Ionics, Vol. 118 (1999) p.241 shows that the crystal structure and thermal expansion of an air electrode material with praseodymium, strontium at the A site, and cobalt / manganese velobskite-type oxides. The rate has been reported.
[0007] また、 750°Cでの電極活性はコバルトを含む酸ィ匕物よりも劣る力 マンガンを含む 酸化物よりも優れた電極活性を示すものとして、鉄を含むベロブスカイト型酸化物も ¾発 れて ヽる。 ί列 は、 Proceedings of the 3rd. International Symposium on bolid Oxide Fuel Cells p.241, 1993, Honolulu Hawaiiには、 Aサイトがランタン 'ストロンチウ ム、 Bサイトがコバルト '鉄であるぺロブスカイト型酸ィ匕物が記載されている。また、特 開平 11 242960号公報と特開 2002— 1510918号公報には、鉄とニッケノレを含 むぺロブスカイト型酸ィ匕物が開示されている。米国特許第 6946213号明細書には、 遷移元素とマグネシウム、或 ヽは遷移元素と亜鉛を含有するぺロブスカイト型酸化物 を用いた空気極材料が記載されて 、る。 [0007] In addition, the electrode activity at 750 ° C is inferior to that of an oxide containing cobalt. As an example of an electrode activity superior to that of an oxide containing manganese, a velovskite-type oxide containing iron is also used. It leaves and speaks. The ί row shows Proceedings of the 3rd.International Symposium on bolid Oxide Fuel Cells p.241, 1993, Honolulu Hawaii.Perovskite-type oxides with lanthanum 'strontium at A site and cobalt' iron at B site Is described. Japanese Patent Publication No. 11 242960 and Japanese Patent Application Laid-Open No. 2002-1510918 disclose perovskite-type oxides containing iron and Nikkenore. US Pat. No. 6,946,213 describes an air electrode material using a perovskite oxide containing a transition element and magnesium, or a transition element and zinc.
[0008] しかし、燃料電池システムとして実用化するには、 4万時間レベルの耐久性が求め られている。こうした要望に対しては、上記空気極材料も長期的な電極活性の安定 性の点で満足し得るものではない。また、システム運転条件、特に運転時に曝される 750〜900°C程度の高温と、運転停止時の室温までの降温が繰り返される熱履歴に 対応した安定性も十分とは言えな ヽ。 However, for practical use as a fuel cell system, durability of 40,000 hours is required. In response to these demands, the air electrode material is not satisfactory in terms of long-term stability of electrode activity. In addition, it cannot be said that the system operating conditions, especially the high temperature of about 750-900 ° C exposed during operation and the thermal history of repeated cooling down to room temperature when operation is stopped, are not sufficient.
発明の開示 Disclosure of the invention
[0009] 本発明は、上記の様な事情に着目してなされたものである。その目的は、空気極材 料として従来材よりも長期的な電極活性持続性に優れ、且つ、運転停止時の室温と 稼動時の 700°Cを超える高温が繰り返される熱履歴にも耐え得る優れた耐久性を有 する燃料電池用の空気極材料を提供することにある。また、本発明は、かかる空気極 材料を用いた高性能の空気極と燃料電池セルを提供することも目的とする。 [0009] The present invention has been made paying attention to the above situation. Its purpose is to maintain long-term electrode activity sustainability as a cathode material compared to conventional materials, and to withstand the heat history of repeated high temperatures exceeding 700 ° C at room temperature during operation and operation. The object is to provide an air electrode material for a fuel cell having high durability. Another object of the present invention is to provide a high-performance air electrode and fuel cell using the air electrode material.
[0010] 前述したように、ぺロブスカイト型酸化物の中でも、ランタンと鉄'コバルトを含むぺロ ブスカイト型酸ィ匕物は、 750°C以上では優れた電極活性を有して ヽるため空気極材 料として用いられている。しかし、ジルコユア電解質との反応性が高いため絶縁性ィ匕 合物を生成し易ぐ長期耐熱性に問題がある。 [0010] As described above, among the perovskite oxides, perovskite oxides containing lanthanum and iron'cobalt have excellent electrode activity at 750 ° C or higher, and thus air. Used as an extreme material. However, there is a problem in long-term heat resistance that it is easy to produce an insulating compound because of its high reactivity with the zirconium oxide electrolyte.
[0011] そこで本発明者らは、鉄含有べ口ブスカイト型酸化物をベースとし、それらの欠点を
補うと共に、性能をさらに改善すベぐ特に鉄含有ぺロブスカイト型酸化物における A サイトと Bサイトの構成金属を種々変更して空気極材料としての性能を調べた。 [0011] Accordingly, the present inventors based on iron-containing mouthbushite oxides, and their drawbacks. In addition, the performance as an air electrode material was investigated by variously changing the constituent metal of the A site and B site in the iron-containing perovskite oxide, which should improve the performance further.
[0012] その結果、以下の知見を見出して、本発明を完成した。 As a result, the following knowledge was found and the present invention was completed.
(1) 鉄含有ぺロブスカイト型酸化物の Bサイトを構成する鉄に加えて 7a族元素や 8 族元素を適量混合すれば、導電性や電極活性が更に向上し、空気極材料として好 ましい組成になる。 (1) In addition to the iron that constitutes the B site of iron-containing perovskite-type oxides, if an appropriate amount of a 7a group element or a 8 group element is mixed, the conductivity and electrode activity are further improved, which is preferable as an air electrode material. Become a composition.
(2) ぺロブスカイト型酸ィ匕物の Aサイトを構成する主たる元素をプラセオジムとすれ ば、ランタンの場合と比較して、電解質との反応性が抑えられて高温安定性が向上 する。 (2) If praseodymium is used as the main element constituting the A site of the perovskite type oxide, the reactivity with the electrolyte is suppressed and the high-temperature stability is improved as compared with lanthanum.
(3) プラセオジムと共に適量のアルカリ土類金属または希土類元素を混合すれば、 電解質との熱膨張差も少なくなり、空気極材料として非常に優れたものが得られる。 (3) When a suitable amount of alkaline earth metal or rare earth element is mixed with praseodymium, the difference in thermal expansion from the electrolyte is reduced, and a very excellent air electrode material can be obtained.
[0013] 上記課題を解決することのできた本発明に係る固体酸化物形燃料電池用の空気 極材料は、下記一般式 (I)で表されるベロブスカイト型酸化物を含むことを特徴とする [0013] An air electrode material for a solid oxide fuel cell according to the present invention that has solved the above-mentioned problems is characterized by containing a velovskite oxide represented by the following general formula (I):
(Pr A ) (Fe B ) O (Pr A) (Fe B) O
x l-χ y 1-y 3……(I) x l-χ y 1-y 3 …… (I)
[式中、 Aは、アルカリ土類金属元素および希土類元素カゝら選択される少なくとも 1種 の元素を示し; Bは、 7a族元素および 8族元素力 選択される少なくとも 1種の元素を 示し; χίま 0. 5≤x≤l ;y«0. 5≤y≤lを示す] [Wherein A represents at least one element selected from alkaline earth metal elements and rare earth elements; B represents at least one element selected from group 7a elements and group 8 element forces] Χί or 0.5 ≤ x ≤ l; y «0. Indicates 5 ≤ y ≤ l]
また、本発明の固体酸化物形燃料電池用空気極は、固体酸化物形燃料電池にお ける固体電解質の片面側に形成される空気極であって、本発明に係る空気極材料 で形成されたものであることを特徴とする。 The air electrode for a solid oxide fuel cell of the present invention is an air electrode formed on one side of a solid electrolyte in a solid oxide fuel cell, and is formed of the air electrode material according to the present invention. It is characterized by that.
[0014] 本発明の固体酸化物形燃料電池セルは、固体電解質の片面側に空気極が形成さ れ、他方面側に燃料極が形成された固体酸化物形燃料電池セルであって、空気極 が本発明に係る空気極材料で形成されたものであることを特徴とする。 [0014] The solid oxide fuel cell of the present invention is a solid oxide fuel cell in which an air electrode is formed on one side of a solid electrolyte and a fuel electrode is formed on the other side. The electrode is formed of the air electrode material according to the present invention.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]実験で使用した単セル発電評価装置を示す概念図である。図中、 1はヒータを 示し、 2はアルミナ製外筒管示し、 3はアルミナ製内筒管示し、 4は白金リード線示し、 5は固体電解質シート示し、 6は力ソード示し、 7はアノード示し、 8はシール材示す。
発明を実施するための最良の形態 FIG. 1 is a conceptual diagram showing a single cell power generation evaluation apparatus used in an experiment. In the figure, 1 indicates a heater, 2 indicates an alumina outer tube, 3 indicates an alumina inner tube, 4 indicates a platinum lead wire, 5 indicates a solid electrolyte sheet, 6 indicates a force sword, 7 indicates an anode 8 indicates a sealing material. BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明に係る固体酸化物形燃料電池用の空気極材料は、下記一般式 (I)で表さ れるぺ口ブスカイト型酸化物を含むことを特徴とする。 [0016] An air electrode material for a solid oxide fuel cell according to the present invention is characterized in that it includes a peculiar bskite oxide represented by the following general formula (I).
(Pr A ) (Fe B ) O……(I) (Pr A) (Fe B) O …… (I)
x l-χ y 1-y 3 x l-χ y 1-y 3
[式中、 Aは、アルカリ土類金属元素および希土類元素カゝら選択される少なくとも 1種 の元素を示し; Bは、 7a族元素および 8族元素力 選択される少なくとも 1種の元素を 示し; χίま 0. 5≤x≤l ; y«0. 5≤y≤lを示す] [Wherein A represents at least one element selected from alkaline earth metal elements and rare earth elements; B represents at least one element selected from group 7a elements and group 8 element forces] Χί or 0.5 ≤ x ≤ l; y «0. Indicates 5 ≤ y ≤ l]
上記式において、 A元素として用いられる好ましいアルカリ土類金属は、 Ca, Sr, B aなどである。また、好ましい希土類元素としては、 La, Ce, Sm, Gdなどが挙げられ る。これらは各々単独で使用し得る他、必要に応じて 2種以上を任意の組合せで併 用してもよい。これらの中でも特に好ましいのは、 Srと Ceである。 In the above formula, preferred alkaline earth metals used as the element A are Ca, Sr, Ba and the like. Preferred rare earth elements include La, Ce, Sm, Gd and the like. These can be used alone, or two or more of them may be used in any combination as required. Of these, Sr and Ce are particularly preferable.
[0017] また、 B元素として用いられる 7a族元素および 8族元素とは、「理化学辞典」(岩波 書店より発行、 2004年 12月 20日、第 5版 20刷、第 1525頁)に記載の「元素の周期 律」(短周期型)に分類されている 7a族および 8族の元素をいう。好ましい 7a族元素と しては Mnなどが挙げられ、好ましい 8族元素としては Co, Ni, Cuなどが挙げられる。 これらも各々単独で使用し得る他、必要に応じて 2種以上を任意の組合せで併用で きる。これらの中でも特に好まし 、のは Niおよび Cuである。 [0017] In addition, the 7a group element and the 8 group element used as the B element are described in “Science and Chemistry Dictionary” (issued by Iwanami Shoten, December 20, 2004, 5th edition, 20th edition, page 1525). Group 7a and group 8 elements classified as “periodic rules of elements” (short-period type). Preferred group 7a elements include Mn, and preferred group 8 elements include Co, Ni, Cu and the like. These can be used alone, or two or more of them can be used in any combination as required. Of these, Ni and Cu are particularly preferred.
[0018] 上記式における Xと yの値も重要であり、上記各元素の複合効果を有効に発揮させ るには、 Xの値を 0. 5≤x≤lの範囲に設定することが必要である。より好ましくは 0. 5 5≤x≤0. 95、さらに好ましくは 0. 60≤x≤0. 90とするの力 ^よい。因みに、 x力^). 5 未満では、電解質との熱膨張差が大き過ぎるため、燃料電池の稼動時に室温と作動 温度間の繰返し熱サイクルを受けることで、電解質膜と空気極との界面に応力が生じ 、電解質膜と空気極が剥離したり電解質膜にクラックが生じたりし易くなる。 [0018] The values of X and y in the above formula are also important, and it is necessary to set the value of X in the range of 0.5≤x≤l in order to exert the combined effect of the above elements effectively It is. More preferably, 0.5 5≤x≤0.95, even more preferably 0.660≤x≤0.90. Incidentally, if the force is less than 5, the difference in thermal expansion from the electrolyte is too large, so when the fuel cell is operated, it undergoes repeated thermal cycles between room temperature and operating temperature, so that the interface between the electrolyte membrane and the air electrode When stress is generated, the electrolyte membrane and the air electrode are easily separated or cracks are easily generated in the electrolyte membrane.
[0019] 一方、 yの値は、 0. 5≤y≤ 1の範囲に設定することが必要である。より好ましくは 0. [0019] On the other hand, the value of y needs to be set in the range of 0.5≤y≤1. More preferably 0.
55≤y≤0. 95、更に好ましくは 0. 60≤y≤0. 90とする。因みに、 y力 ^0. 5未満では 、鉄含有べ口ブスカイト型空気極の有する本来の優れた電極活性が発揮され難くなり 、特に電極活性の経時安定性が低下する。 55≤y≤0.95, more preferably 0.660≤y≤0.90. Incidentally, if the y force is less than 0.05, it is difficult to exhibit the excellent electrode activity inherent in the iron-containing mouthbskite-type air electrode, and in particular, the stability of the electrode activity with time decreases.
[0020] なお上記では、ぺロブスカイト型酸ィ匕物の糸且成式における酸素の原子比を 3と表し
ている。これは、当業者間では明らかなように、例えば原子比 Xまたは yが 1でない場 合には酸素空孔を生じるので、実際には酸素の原子比は 3よりも小さい値を取ること が多い。しかし、酸素空孔の数は添加される元素の種類や製造条件によっても変化 するので、式 (I)では、便宜上、酸素の原子比を 3と表している。 [0020] In the above description, the atomic ratio of oxygen in the perovskite-type acid complex is expressed as 3. ing. As is apparent to those skilled in the art, for example, when the atomic ratio X or y is not 1, oxygen vacancies are generated, so in practice, the oxygen atomic ratio often takes a value smaller than 3. . However, since the number of oxygen vacancies varies depending on the type of element added and the manufacturing conditions, in formula (I), the atomic ratio of oxygen is represented as 3 for convenience.
[0021] また本発明では、上記プラセオジム '鉄含有ぺロブスカイト型酸ィ匕物と共に、イツトリ ゥム、サマリウム、ガドリニウム力も選ばれる少なくとも 1種でドープされたドープドセリ ァ;または、イットリウム、スカンジウム、イッテルビウムよりなる群力も選択される元素の 酸ィ匕物の少なくとも 1種で安定ィ匕された安定ィ匕ジルコユアのうち少なくとも一方を混 合したものも、優れた空気極材料となる。この場合の好ましい混合比率は、上記ブラ セオジム'鉄含有ぺロブスカイト型酸化物: 70〜95質量%に対し、上記ドープドセリ ァまたは安定ィ匕ジルコユアのうち少なくとも一方の合計力 合計で 5〜30質量%の範 囲である。 [0021] Further, in the present invention, doped preria doped with at least one kind selected from yttrium, samarium, and gadolinium force together with the above praseodymium 'iron-containing perovskite-type acid oxide; or from yttrium, scandium, ytterbium A mixture of at least one of stable zirconium oxides stabilized by at least one of the selected elemental oxides is also an excellent air electrode material. A preferable mixing ratio in this case is 5 to 30% by mass in total power of at least one of the doped silica and the stable zirconium oxide to 70 to 95% by mass of the above-mentioned brazeodymium iron-containing perovskite oxide. This is the range.
[0022] 上記ドープドセリアは、電子導電性とイオン導電性を有する他、酸素濃度が高 ヽと きは酸素を吸収し、酸素濃度が低くなると吸収した酸素を放出する特性を有している 。その結果、ドープドセリアを混合すると、ぺロブスカイト型酸ィ匕物の空気極としての 特性が一段と向上する。また上記安定ィ匕ジルコユアは、電解質との熱膨係数の整合 性を更に高める作用があり、電解質との結合性の向上に寄与する。 [0022] The doped ceria has electronic conductivity and ionic conductivity, and also has a characteristic of absorbing oxygen when the oxygen concentration is high and releasing the absorbed oxygen when the oxygen concentration is low. As a result, when doped ceria is mixed, the characteristics of the perovskite type oxide as an air electrode are further improved. In addition, the above stable zirconium oxide has an effect of further increasing the consistency of the thermal expansion coefficient with the electrolyte, and contributes to the improvement of the binding property with the electrolyte.
[0023] 上記ドープドセリアおよび Zまたは安定ィ匕ジルコユアの作用は、プラセオジム ·鉄含 有ぺロブスカイト型酸化物: 70〜95質量%に対して 5質量%以上配合することで有 効に発揮される。一方、配合量の総和が 30質量%を超えると、電極活性成分である ベロブスカイト型酸ィ匕物の絶対量が不足気味になり活性が低下すると共に、体積混 合比が 60%以下となるために導電性も低下し、本発明本来の目的が果たせなくなる 。ドープドセリアおよび Zまたは安定ィ匕ジルコユアのより好ましい配合率は、 10質量 %以上で 25質量%以下、さらに好ましくは 20質量%以下である。尚、ドープドセリア と安定ィ匕ジルコユアが含まれて ヽるときの両者の好ま ヽ配合比率は、質量比でドー プドセリア Z安定ィ匕ジルコユア = 1Z4〜2Z1、より好ましくは 1Z3〜: LZl、更に好 ましくは 1Z2〜7Z8である。 [0023] The effect of the doped ceria and Z or stable zirconium oxide is effectively exerted by blending 5% by mass or more with respect to praseodymium / iron-containing perovskite oxide: 70 to 95% by mass. On the other hand, if the total amount exceeds 30% by mass, the absolute amount of the electrode active ingredient, the velobskite-type acid oxide, becomes dull and the activity decreases, and the volume mixing ratio becomes 60% or less. Therefore, the conductivity is also lowered, and the original object of the present invention cannot be achieved. The more preferable blending ratio of doped ceria and Z or stable zirconia is 10% by mass or more and 25% by mass or less, and more preferably 20% by mass or less. The preferred mixing ratio of doped ceria and stable zirconia is the ratio by weight ratio of doped ceria Z stable zirconia = 1Z4 ~ 2Z1, more preferably 1Z3 ~: LZl, more preferred Or 1Z2 ~ 7Z8.
[0024] また、ドープドセリアの粗粒子と微粒子をカ卩える態様も好適である。ドープドセリアの
粗粒子と微粒子の配合量も、 5質量%以上、 30質量%以下とすることが好ましぐ 10 質量%以上、 25質量%以下がより好ましぐさらに 20質量%以下が好ましい。ドープ ドセリアの粗粒子と微粒子の好ましい配合比率は、質量比で粗粒子 Z微粒子 = 1Z 4〜2Zl、より好ましくは 1Z3〜: LZl、更に好ましくは 1Z2〜7Z8である。 [0024] An embodiment in which coarse particles and fine particles of doped ceria are collected is also suitable. Doped ceria The blending amount of the coarse particles and fine particles is preferably 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 25% by mass or less, and further preferably 20% by mass or less. The preferable blending ratio of the doped doseria coarse particles and fine particles is, as a mass ratio, coarse particles Z fine particles = 1Z 4 to 2Zl, more preferably 1Z3 to: LZl, still more preferably 1Z2 to 7Z8.
[0025] また、上記の様にプラセオジム '鉄含有ぺロブスカイト型酸ィ匕物とドープドセリア粗 粒子および安定化ジルコユアを混合する場合、各成分の平均粒径が「ドープドセリア 粗粒子 >プラセオジム鉄系ぺロブスカイト型酸ィ匕物粒子 >安定ィ匕ジルコユア粒子」 の関係を満たす様に粒度調整するのがよい。また、ドープドセリアの粗粒子と微粒子 を混合する場合は、各成分の平均粒径が「ドープドセリア粗粒子〉ベロブスカイト型 酸化物粒子 >ドープドセリア微粒子」の関係を満たす様に粒度調整することが好まし い。こうした平均粒径の関係を満足させることで、空気極として長時間高温に曝され た場合でも、空気極内の細孔径ゃ細孔容積の経時変化が抑えられる。また、空気極 として重要な細孔が安定に維持されて優れたガス透過性を持続するばかりでなく、空 気極層自体の強度も高まってハンドリング時における空気極層の欠損が抑えられる。 さら〖こは、ベロブスカイト型酸ィ匕物粒子の焼結も抑制されて、電極活性の長期持続性 もさらに高められる。 [0025] In addition, when praseodymium 'iron-containing perovskite type oxides, doped ceria coarse particles and stabilized zircoure are mixed as described above, the average particle size of each component is "doped ceria coarse particles> praseodymium iron-based perovskite" The particle size should be adjusted to satisfy the relationship of “type oxide particles> stable Zircoyu particles”. In addition, when mixing doped ceria coarse particles and fine particles, it is preferable to adjust the particle size so that the average particle size of each component satisfies the relationship of “doped ceria coarse particles> velobskite oxide particles> doped ceria fine particles”. . By satisfying such a relationship of the average particle diameter, even when the air electrode is exposed to a high temperature for a long time, changes in the pore diameter and the pore volume in the air electrode over time can be suppressed. Further, not only the pores important as the air electrode are stably maintained and excellent gas permeability is maintained, but also the strength of the air electrode layer itself is increased, so that the air electrode layer can be prevented from being damaged during handling. In addition, the sintering of the velovskite-type oxide particles is suppressed, and the long-term sustainability of the electrode activity is further enhanced.
[0026] 特に、上記平均粒径の関係を満たすとき、運転時の 750〜950°Cという高温から、 運転停止時には室温まで降温すると!/、う苛酷な熱サイクルに対する耐久性が、著しく 優れたものとなる。 [0026] In particular, when satisfying the above average particle size relationship, when the temperature is lowered from a high temperature of 750 to 950 ° C during operation to room temperature when the operation is stopped! /, The durability against severe heat cycle is remarkably excellent. It will be a thing.
[0027] こうした特性を一段と有効に発揮させるには、上述した各粒子の平均粒径の関係を 満たした上で、前記ドープドセリァ粗粒子の平均粒径を1〜30 111、前記ぺロブス力 イト型酸化物粒子の平均粒径を 0. 3〜3 μ m、安定化ジルコユア粒子の平均粒径を 0. 1〜: mの範囲とするのがよい。また、ドープドセリアの粗粒子と微粒子を混合す る場合、上述した各粒子の平均粒径の関係を満たした上で、ドープドセリア粗粒子の 平均粒径を 1〜30 μ m、ぺロブスカイト型酸化物粒子の平均粒径を 0. 3〜3 μ m、ド 一プドセリア微粒子の平均粒径を 0. 1〜1 μ mとすることが好ましい。 [0027] In order to more effectively exhibit these characteristics, after satisfying the relationship of the average particle size of each particle described above, the average particle size of the doped ceria coarse particles is 1 to 30 111, the perovskite type The average particle diameter of the oxide particles is preferably in the range of 0.3 to 3 μm, and the average particle diameter of the stabilized zirconia particles is preferably in the range of 0.1 to m. In addition, when the doped ceria coarse particles and the fine particles are mixed, the average particle diameter of the doped ceria coarse particles is 1 to 30 μm and the perovskite oxide particles are satisfied after satisfying the above-mentioned relationship of the average particle sizes of the respective particles. It is preferable that the average particle size is 0.3 to 3 μm, and the average particle size of the doped ceria fine particles is 0.1 to 1 μm.
[0028] ここで、平均粒径とは、粒子の粒度分布を測定した上で、累積グラフにおける 50体 積%での粒径をいう。例えばべ口ブスカイト型酸化物粒子の平均粒径が 0. 3〜3
mとは、その 50体積%径が 0. 3〜3 /ζ πιの範囲内にある同粒子の集合体であること を意味する。 Here, the average particle diameter refers to the particle diameter at 50 volume% in the cumulative graph after measuring the particle size distribution of the particles. For example, the average particle size of the bottom buxite oxide particles is 0.3-3. m means an aggregate of the same particles whose 50 volume% diameter is in the range of 0.3-3 / ζ πι.
[0029] 平均粒径が 1〜30 mのドープドセリア粒子の機能は、空気層内の気孔形成とそ の維持、電極触媒であるべ口ブスカイト型酸ィ匕物粒子の凝集防止である。また、平均 粒径が 0. 1〜1 /ζ πιの安定化ジルコユア粒子またはドープドセリア微粒子は、ドープ ドセリア粒子とベロブスカイト型酸ィ匕物粒子の密着性を高めて導電パスを確実に形成 すると共に、電解質との接合性を高める機能を発揮する。 [0029] The functions of the doped ceria particles having an average particle size of 1 to 30 m are the formation and maintenance of pores in the air layer and the prevention of aggregation of the mouth bumskite type oxide particles as the electrode catalyst. In addition, the stabilized zirconia particles or doped ceria fine particles having an average particle diameter of 0.1 to 1 / ζ πι increase the adhesion between the doped ceria particles and the velovskite-type oxide particles and reliably form a conductive path. It exhibits the function of enhancing the bondability with the electrolyte.
[0030] ちなみに、上記ドープドセリア粗粒子を混合する場合、平均粒径が 1 μ m未満では 、粒子相互間に適正な隙間が形成され難くなつて通気性が不足気味になる可能性 がある。その上、高温に曝されたときに焼結が進み易くなり、気孔率が経時的に低下 し易くなるおそれがある。一方、ドープドセリア粒子の平均粒径が 30 mを超えて大 きくなり過ぎると、粒子相互間の隙間は十分に確保され焼結の進行による気孔率の 低下も抑えられる反面、空気極層としての強度は下降気味となる場合がある。そこで 、強度アップのため易焼結性のジルコユアやドープドセリア微粒子を多量配合しなけ ればならなくなり、空気極内で導電パスを形成するためのぺロブスカイト型酸ィ匕物粒 子の配合量が相対的に不足気味となる。その結果、導電性に支障をきたす恐れが出 てくる。こうしたことも考慮して、より好ましいドープドセリア粗粒子の平均粒径は、 1. 5 μ m以上、 25 μ m以下、さらに好ましくは 2 μ m以上、 20 μ m以下である。 [0030] Incidentally, when the doped ceria coarse particles are mixed, if the average particle size is less than 1 μm, there is a possibility that an appropriate gap is not formed between the particles and the air permeability is insufficient. In addition, sintering is likely to proceed when exposed to high temperatures, and the porosity may tend to decrease over time. On the other hand, if the average particle size of the doped ceria particles becomes too large exceeding 30 m, the gaps between the particles are sufficiently secured and the decrease in porosity due to the progress of sintering is suppressed, but the strength as the air electrode layer May feel down. Therefore, in order to increase the strength, it is necessary to mix a large amount of easily sinterable zirconia and doped ceria fine particles, and the amount of perovskite-type oxide particles for forming a conductive path in the air electrode is relatively high. It seems to be deficient. As a result, there is a risk of impeding conductivity. Considering this, the more preferable average particle diameter of the doped ceria coarse particles is 1.5 μm or more and 25 μm or less, more preferably 2 μm or more and 20 μm or less.
[0031] なお本発明にお ヽては、上述したドープドセリア粗粒子の平均粒径(50体積%径) に加えて、 90体積%径につ!/ヽては 3 μ m以上、 60 μ m以下、より好ましくは 5 μ m以 上、 50 /z m以下、さらに好ましくは 7 m以上、 40 m以下とするのがよい。極端に 粗大な粒子の混入量を極力少なく抑えて空気極層の均質ィ匕を図るためである。 [0031] In the present invention, in addition to the above-mentioned average particle size (50% by volume) of the doped ceria coarse particles, the 90% by volume diameter is 3 μm or more and 60 μm. In the following, it is more preferably 5 μm or more and 50 / zm or less, and further preferably 7 m or more and 40 m or less. This is because the amount of mixing of extremely coarse particles is suppressed as much as possible to achieve a homogeneous air electrode layer.
[0032] このドープドセリア粗粒子としては、酸ィ匕セリウム単独の粒子、酸化セリウム '酸化ァ ルミニゥム混合粒子、酸ィ匕セリウム'酸ィ匕ジルコニウム混合粒子を使用できる。本発明 において特に好ましく使用されるのは、イットリウム、サマリウム、ガドリニウム力も選ば れる少なくとも 1種の元素でドープされて混合導電性が与えられたセリア粒子である。 ドープ量は特に制限されないが、好ましいのはセリウムに対して 5〜40原子0 /0、より 好ましくは 10〜30原子%の範囲である。また、ドープドセリア微粒子も、同様の組成
のものを用いることができる。特に、高温に長時間曝されたときに進行する焼結を抑 えるために、 1300°C以上で 5時間以上熱処理したものをビーズミルやボールミル等 で粉砕して上記平均粒径範囲内および 90体積%径範囲内に調整したドープドセリ ァ粗粒子と微粒子が好適に使用される。より好ましい熱処理温度条件は 1350°C以 上、さらに好ましくは 1400°C以上、より好ましい熱処理時間条件は 10時間以上、さら に好ましくは 20時間以上である。力かる条件で熱処理することによって高温に曝され た履歴をもつ材料となり、一層の耐熱性が得られ、焼結しにくい材料となる。 [0032] As the doped ceria coarse particles, particles of cerium oxide alone, cerium oxide / aluminum oxide mixed particles, and acid / cerium / acid / zirconium mixed particles can be used. Particularly preferably used in the present invention is a ceria particle doped with at least one element selected from yttrium, samarium, and gadolinium forces to give mixed conductivity. Doping amount is not particularly limited, 5 to 40 atoms relative to preferred cerium 0/0, more preferably from 10 to 30 atomic%. Doped ceria fine particles have the same composition. Can be used. In particular, in order to suppress the sintering that proceeds when exposed to high temperatures for a long period of time, a product heat-treated at 1300 ° C or higher for 5 hours or longer is pulverized with a bead mill or ball mill within the above average particle size range and 90 volumes. Doped silica coarse particles and fine particles adjusted within the% diameter range are preferably used. A more preferable heat treatment temperature condition is 1350 ° C. or more, more preferably 1400 ° C. or more, and a more preferred heat treatment time condition is 10 hours or more, more preferably 20 hours or more. By heat-treating under strong conditions, it becomes a material that has a history of exposure to high temperatures, and it has higher heat resistance and is difficult to sinter.
[0033] 本発明で用いるぺロブスカイト型酸ィ匕物は、導電性パスを形成するために、その平 均粒径が 0. 3〜3 μ mの範囲内となる様に調整するのがよい。 [0033] The perovskite type oxide used in the present invention is preferably adjusted so that the average particle diameter is within a range of 0.3 to 3 μm in order to form a conductive path. .
[0034] ちなみに、ぺロブスカイト型酸ィ匕物の平均粒径が 0. 3 μ mを下回る場合は、高温に 長時間曝されたときに焼結が進行し易くなり、導電パスが遮断されて導電性に支障を きたす恐れがでてくる。他方、ぺロブスカイト型酸ィ匕物の平均粒径が 3 μ mを上回ると 、高温に曝された場合でも焼結の進行は起こり難くなるが、電極活性が低下傾向とな る。こうしたことを考慮してより好ましいぺロブスカイト型酸ィ匕物の平均粒径は、 0. 4 m以上、 2. 以下、さらに好ましくは 0. 5 m以上、 2 m以下である。 [0034] Incidentally, when the average particle size of the perovskite-type oxide is less than 0.3 μm, sintering is likely to proceed when exposed to a high temperature for a long time, and the conductive path is blocked. There is a risk of impeding conductivity. On the other hand, if the average particle size of the perovskite type oxide exceeds 3 μm, the sintering does not easily proceed even when exposed to high temperatures, but the electrode activity tends to decrease. In view of the above, the average particle size of the perovskite type oxide is more preferably not less than 0.4 m and not more than 2. More preferably not less than 0.5 m and not more than 2 m.
[0035] またぺロブスカイト型酸ィ匕物についても、上述したドープドセリア粒子の場合と同様 に、極端に粗大な粒子の混入は極力少なく抑えて空気極の均質ィ匕を図るため、より 好ましくは 90体積%径を 1 μ m以上、 15 m以下、より好ましくは 2 μ m以上、 10 μ m以下、さらに好ましくは 2 /z m以上、 8 /z m以下とするのがよい。特に、高温に長時 間曝されたときに進行する焼結を抑えるために、 1300°C以上で 5時間以上熱処理し たものをビーズミルやボールミル等で粉砕して上記平均粒径範囲内および 90体積% 径範囲内に調整したぺロブスカイト型酸ィ匕物が好適に使用される。より好ましい熱処 理温度条件は 1350°C以上、さらに好ましくは 1400°C以上、より好ましい熱処理時間 条件は 10時間以上、さらに好ましくは 20時間以上である。かかる条件で熱処理する ことによって高温に曝された履歴をもつ材料となり、一層の耐熱性が得られ、焼結し にくい材料となる。 [0035] Also, in the case of perovskite-type oxides, as in the case of the doped ceria particles described above, it is more preferable that the mixture of extremely coarse particles be suppressed as much as possible to achieve a homogeneous air electrode. The volume% diameter may be 1 μm or more and 15 m or less, more preferably 2 μm or more and 10 μm or less, and even more preferably 2 / zm or more and 8 / zm or less. In particular, in order to suppress the sintering that proceeds when exposed to a high temperature for a long time, a product heat-treated at 1300 ° C or higher for 5 hours or longer is pulverized with a bead mill or ball mill within the above average particle size range. Perovskite-type oxides adjusted within the volume% diameter range are preferably used. A more preferable heat treatment temperature condition is 1350 ° C. or more, more preferably 1400 ° C. or more, and a more preferred heat treatment time condition is 10 hours or more, more preferably 20 hours or more. By heat-treating under such conditions, a material having a history of exposure to high temperatures is obtained, and further heat resistance is obtained, making the material difficult to sinter.
[0036] 安定ィ匕ジルコユア粒子とドープドセリア微粒子は、電解質との熱膨張の整合性を高 めつつ、その易焼結性によって空気極の強度を高め、電解質からの隔離粉化を防ぐ
作用を発揮する。これらの平均粒径は、 0. 1〜1 mの範囲内となる様に調整するの がよい。 [0036] Stable Zirconia particles and doped ceria fine particles increase the consistency of thermal expansion with the electrolyte and increase the strength of the air electrode due to its easy sinterability to prevent segregation from the electrolyte. Demonstrate the effect. These average particle diameters should be adjusted to be in the range of 0.1 to 1 m.
[0037] ちなみに、安定化ジルコユア粒子とドープドセリア微粒子の平均粒径が 0. 1 mを 下回る場合は、ジルコユア粒子等の凝集力が大きくなつて上記効果が十分に発揮さ れ難くなる。他方、平均粒径が 1 mを上回ると易焼結性が低下し、空気極の強度を 高める作用や電解質からの隔離粉化抑制作用が十分に発揮され難くなる。こうしたこ とを考慮して、より好まし ヽ安定化ジルコニァ粒子およびドープドセリア微粒子の平均 粒径は、 0. 2 μ m以上、 0. 8 m以下、さらに好ましくは 0. 2 μ m以上、 0. 6 m以 下である。 [0037] Incidentally, when the average particle size of the stabilized zircoure particles and the doped ceria fine particles is less than 0.1 m, the cohesive force of the zircoure particles and the like becomes large, and the above effect is not sufficiently exhibited. On the other hand, if the average particle size exceeds 1 m, the sinterability decreases, and it becomes difficult to sufficiently exert the action of increasing the strength of the air electrode and the ability to suppress the powder separation from the electrolyte. Considering this, the average particle size of the stabilized zirconia particles and doped ceria fine particles is preferably 0.2 μm or more and 0.8 m or less, more preferably 0.2 μm or more, and 0.2 μm or more. It is less than 6 m.
[0038] また、安定ィ匕ジルコユア粒子とドープドセリア微粒子についても、上述したドープド セリア粗粒子の場合と同様に、相対的に粗大な粒子の混入量を極力少なく抑えて空 気極層均質ィ匕を図ることが好ましい。よって、 90体積%径で 0. 5 m以上、 5 m以 下、より好ましくは 0. 8 m以上、 3 m以下、さらに好ましくは 0. 8 m以上、 2 m 以下とするのがよい。 [0038] In addition, with respect to the stable zirconium oxide particles and the doped ceria fine particles, as in the case of the doped ceria coarse particles described above, the mixing amount of relatively coarse particles is suppressed as much as possible, and the air polar layer homogeneity is reduced. It is preferable to plan. Therefore, the 90 volume% diameter is 0.5 m or more and 5 m or less, more preferably 0.8 m or more and 3 m or less, and still more preferably 0.8 m or more and 2 m or less.
[0039] 本発明にお 、て上記各粒子の平均粒径(50体積%径)は、以下の様に測定するも のとする。即ち、堀場製作所製のレーザー回折式粒度分布測定装置「LA— 920」を 用い、蒸留水中に分散剤として 0. 2質量%のメタリン酸ナトリウムを添加した水溶液 を分散媒とする。当該分散媒の約 100cm3中に各粒子を 0. 01〜0. 5質量%添加し 、 3分間超音波処理して分散させた後に、粒度分布を測定する。平均粒径とは、粒度 分布の測定結果において、累積グラフにおける 50体積%での粒径をいう。また、 90 体積%径とは、同様の方法で測定した各試料粒子の粒度分布における 90体積%の 位置の粒径を意味する。 In the present invention, the average particle diameter (50 volume% diameter) of each particle is measured as follows. That is, using a laser diffraction particle size distribution analyzer “LA-920” manufactured by HORIBA, Ltd., an aqueous solution in which 0.2% by mass of sodium metaphosphate as a dispersant is added to distilled water is used as a dispersion medium. Each particle is added in an amount of 0.01 to 0.5% by mass in about 100 cm 3 of the dispersion medium, and dispersed by sonication for 3 minutes, and then the particle size distribution is measured. The average particle size is the particle size at 50% by volume in the cumulative graph in the measurement result of particle size distribution. The 90 volume% diameter means the particle diameter at a position of 90 volume% in the particle size distribution of each sample particle measured by the same method.
[0040] 上記安定ィ匕ジルコユア粒子は、前述したように、イットリウム、スカンジウム、イツテノレ ビゥム力 選ばれる少なくとも 1種の酸ィ匕物で安定化され、それら酸化物の合計が 3 〜 15モル%であるジルコユアである。ドープドセリア粒子との複合作用を効果的に発 揮させるには、立方晶系ジルコユアよりも靭性ゃ強度に優れた正方晶ジルコユアの 方が好ましい。そして、イットリア安定化ジルコユアの場合は、 3〜6モル0 /0のイットリア で安定化され、またスカンジァ安定化ジルコユアの場合は、 3〜7モル%のスカンジァ
で安定化され、またイツテルビア安定化ジルコユアの場合は 4〜8モル%のイツテルビ ァで安定化された、正方晶主体の部分安定ィ匕ジルコユア粉末が特に好まし 、。 [0040] As described above, the stable zirconium oxide particles are stabilized with at least one kind of oxide selected from yttrium, scandium, and ittenorium force, and the total amount of these oxides is 3 to 15 mol%. It is a certain Zircoyu. In order to effectively exhibit the composite action with the doped ceria particles, tetragonal zircoure having better toughness and strength than cubic zirconia is preferred. Then, in the case of yttria-stabilized Jirukoyua, stabilized with 3-6 mole 0/0 yttria, also in the case of Sukanjia stabilization Jirukoyua, 3-7 mol% of Sukanjia In the case of ytterbia-stabilized zircoure, tetragonal-based partially stable zircoure powders stabilized with 4-8 mol% of ytterbia are particularly preferred.
[0041] 空気極材料として上記 3種の粒子を用いて空気極を製造する際には、各原料粉末 を前述した好適配合比率となる様にそれぞれ秤量し、ミル等で均一に混合すればよ い。この際に用いる混合装置の種類は特に制限されないが、本発明者らが用いた好 ましい混合装置は、たとえば三井鉱山社製のマルチパーパスミキサーである。例えば 、当該ミキサーの複合処理タンク内で回転羽根を高速回転させ、ドープドセリア粒子 の表面にぺロブスカイト型酸ィ匕物粒子を付着させた後、これに安定ィ匕ジルコユア粒 子を添加し、同装置の回転羽根を低速回転させて混合する。力かる方法を採用すれ ば、 3種の粒子を満遍なく均一に混合できることを確認して 、る。 [0041] When the air electrode is manufactured using the above three kinds of particles as the air electrode material, each raw material powder is weighed so as to have the above-mentioned preferred blending ratio and uniformly mixed by a mill or the like. Yes. The type of the mixing apparatus used in this case is not particularly limited, but a preferable mixing apparatus used by the present inventors is, for example, a multipurpose mixer manufactured by Mitsui Mining Co., Ltd. For example, after rotating a rotating blade at a high speed in the combined treatment tank of the mixer to attach perovskite-type oxide particles to the surface of the doped ceria particles, the stable zirconium oxide particles are added thereto, Rotate the rotating blades at low speed to mix. If a powerful method is adopted, it is confirmed that the three kinds of particles can be mixed evenly and uniformly.
[0042] この様にして得られる混合粉末材料を、ペースト用成分と混合する。ペースト用成 分としては、ェチルセルロース、ポリエチレングリコール、ポリビュルプチラール榭脂 などのバインダー;エタノール、トルエン、 a テルピネオール、カルビトールなどの 溶剤;グリセリン、グリコール、フタル酸ジブチルなどの可塑剤;さらには、必要に応じ て配合される分散剤、消泡剤、界面活性剤などを挙げることができる。混合手段とし ては、例えば 3本ロールミルや遊星ミルなどを例示できる。かかる混合手段を用いて 粘度を適度に調製すれば、空気極用のペーストが得られる。 [0042] The mixed powder material thus obtained is mixed with a paste component. Components for pastes include binders such as ethyl cellulose, polyethylene glycol, polybutyral resin; solvents such as ethanol, toluene, a terpineol, carbitol; plasticizers such as glycerin, glycol, dibutyl phthalate; Can include dispersants, antifoaming agents, surfactants, and the like, which are blended as necessary. Examples of the mixing means include a three roll mill and a planetary mill. If the viscosity is appropriately adjusted using such a mixing means, a paste for an air electrode can be obtained.
[0043] ノインダ一としては、熱分解し易ぐし力も溶剤に溶けて印刷やコーティングに適し た流動性を示すものであれば種類に格別の制限はなぐ従来カゝら知られた有機質バ イダーを適宜選択して使用できる。有機質バインダーとしては、例えばエチレン系共 重合体、スチレン系共重合体、アタリレート系及びメタタリレート系共重合体、酢酸ビ -ル系共重合体、マレイン酸系共重合体、ビュルプチラール系榭脂、ビュルァセタ 一ル系榭脂、ビュルホルマール系榭脂、ビュルアルコール系榭脂、ワックス類、ェチ ルセルロース等のセルロース類等が例示される。 [0043] As a noinder, there is no particular limitation on the type as long as it is easily decomposed by heat and dissolves in a solvent and exhibits fluidity suitable for printing and coating. It can be appropriately selected and used. Examples of the organic binder include an ethylene copolymer, a styrene copolymer, an acrylate copolymer and a metatarylate copolymer, a vinyl acetate copolymer, a maleic acid copolymer, and a bull petital resin. Examples thereof include celluloses such as buracetal resin, burformal resin, butyl alcohol resin, waxes, and cellulose.
[0044] これらの中でも、空気極層の成膜性や焼付け時の熱分解性等の点から、メチルァク リレート、ェチルアタリレート、プロピルアタリレート、ブチルアタリレート、イソブチルァ タリレート、シクロへキシルアタリレート、 2—ェチルへキシルアタリレート等の炭素数 1 0以下のアルキル基を有するアルキルアタリレート類;およびメチルメタタリレート、ェ
チルメタタリレート、ブチルメタタリレート、イソブチルメタタリレート、ォクチルメタクリレ ート、 2—ェチルへキシルメタタリレート、デシルメタタリレート、ドデシルメタタリレート、 ラウリルメタタリレート、シクロへキシルメタタリレート等の炭素数 20以下のアルキル基 を有するアルキルメタタリレート類;ヒドロキシェチルアタリレート、ヒドロキシプロピルァ タリレート、ヒドロキシェチルメタタリレート、ヒドロキシプロピルメタタリレート等のヒドロキ シアルキル基を有するヒドロキシアルキルアタリレートまたはヒドロキシアルキルメタタリ レート類;ジメチルアミノエチルアタリレート、ジメチルアミノエチルメタタリレート等のァ ミノアルキルアタリレートまたはアミノアルキルメタタリレート類;アクリル酸ゃメタクリル 酸、マレイン酸、モノイソプロピルマレートの如きマレイン酸半エステル等のカルボキ シル基含有モノマー、から選択される少なくとも 1種を重合または共重合させることに よって得られる、数平均分子量力 20, 000〜200, 000、より好まし <は 50, 000〜1 00, 000の (メタ)アタリレート系共重合体が好まし 、ものとして推奨される。 Of these, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, isobutyl acrylate, and cyclohexyl acrylate are preferable from the viewpoints of film formation of the air electrode layer and thermal decomposability during baking. Alkyl acrylates having an alkyl group having 10 or less carbon atoms, such as 2-ethylhexyl acrylate, and the like; Tylmetatalylate, butylmetatalylate, isobutylmethacrylate, octylmethacrylate, 2-ethylhexylmethacrylate, decylmethacrylate, dodecylmethacrylate, laurylmethacrylate, cyclohexylmeta Alkyl metatalylates having an alkyl group of 20 or less carbon atoms such as tallylate; hydroxy having hydroxyalkyl groups such as hydroxyethyl talylate, hydroxypropyl phthalate, hydroxyethyl methallylate, hydroxypropyl metatalylate Alkyl acrylates or hydroxyalkyl methacrylates; aminoalkyl acrylates or aminoalkyl methacrylates such as dimethylaminoethyl acrylate and dimethylaminoethyl methacrylate; acrylic acid Number average molecular weight force obtained by polymerizing or copolymerizing at least one monomer selected from carboxylic group-containing monomers such as methacrylic acid, maleic acid, maleic acid half ester such as monoisopropyl malate, etc. ~ 200,000, more preferred <(50,000) -100,000 (meth) acrylate copolymers are preferred and recommended.
[0045] 溶媒としては、印刷中の粘度変化を少なくするため常温で揮発性の低いものが好 ましぐ例えば、テルビネオール、ジブチルカルビトール、ブチルカルビトールァセテ ート、 2, 2, 4 トリメチルー 1, 3 ペンタンジオールモノイソブチレート、 2, 2, 4ート リメチルー 1, 3 ペンタンジオールジイソプチレート、ォレイルアルコールなどの高沸 点溶剤が単独であるいは 2種以上を混合し、或いはこれらの高沸点溶剤に更にァセ トン、メチルェチルケトン、メタノール、エタノール、イソプロパノール、ブタノール類、 変性アルコール、酢酸ェチル、トルエン、キシレン等の低沸点有機溶剤を混合して用 いられる。 [0045] As the solvent, those having low volatility at room temperature are preferred in order to reduce the viscosity change during printing. For example, terbinol, dibutyl carbitol, butyl carbitol acetate, 2, 2, 4 trimethyl 1 , 3 Pentanediol monoisobutyrate, 2, 2, 4-trimethyl-1,3-pentanediol diisobutylate, oleyl alcohol and other high boiling point solvents alone or in admixture of two or more Low boiling organic solvents such as acetone, methyl ethyl ketone, methanol, ethanol, isopropanol, butanols, denatured alcohol, ethyl acetate, toluene, xylene and the like are mixed with the high boiling solvent.
[0046] 分散剤としては、各原料粉末の分散をよくするため、グリセリン、ソルビタン等の多 価アルコールエステル系;ポリエーテル(ポリオール)系ゃァミン系;ポリアクリル酸、ポ リアクリル酸アンモ-ゥムなどの高分子電解質;クェン酸、酒石酸などの有機酸;イソ ブチレンまたはスチレンと無水マレイン酸との共重合体およびそのアンモ-ゥム塩ゃ アミン塩;ブタジエンと無水マレイン酸との共重合体およびそのアンモ-ゥム塩などが 用いられる力 特に好ましいのはソルビタントリオールである。また可塑剤としては、ポ リエチレングリコールの誘導体ゃフタル酸エステル系が好ましぐ特にジブチルフタレ ート、ジォクチルフタレートが好適である。
[0047] 空気極用ペーストは、公知の方法で前記原料粉末に溶媒やバインダーを加えてボ ールミル等で混練りすることにより調製される。この時、必要に応じて接合補助剤や消 泡剤、レべリング性向上剤、レオロジー調整剤などを加えてもよい。 [0046] As the dispersant, in order to improve dispersion of each raw material powder, polyhydric alcohol ester type such as glycerin and sorbitan; polyether (polyol) type namine type; polyacrylic acid, polyacrylic acid ammonium Polyelectrolytes such as: organic acids such as citrate and tartaric acid; copolymers of isobutylene or styrene and maleic anhydride and their ammonium salts; amine salts; copolymers of butadiene and maleic anhydride and The power with which the ammonium salt is used Particularly preferred is sorbitan triol. As the plasticizer, polyethylene glycol derivatives and phthalic acid esters are preferred, with dibutyl phthalate and dioctyl phthalate being particularly preferred. [0047] The air electrode paste is prepared by adding a solvent or a binder to the raw material powder and kneading with a ball mill or the like by a known method. At this time, a bonding aid, an antifoaming agent, a leveling improver, a rheology modifier, etc. may be added as necessary.
[0048] レべリング性向上剤は、主として空気極層中にピンホールが発生するのを抑える作 用を有しており、いわゆる滑剤と同様の効果を発揮するものである。例えば、炭化水 素系のポリエチレンワックス、ウレタン変性ポリエーテル、アルコール系のポリグリセ口 ール、多価アルコール、脂肪酸系の高級脂肪酸、ォキシ酸などが例示される。特に 好ましいのはステアリン酸、ヒドロキシステアリン酸などの脂肪酸系である。 [0048] The leveling improver mainly has an action of suppressing the generation of pinholes in the air electrode layer, and exhibits the same effect as a so-called lubricant. Examples include hydrocarbon-based polyethylene wax, urethane-modified polyether, alcohol-based polyglycerol, polyhydric alcohol, fatty acid-based higher fatty acid, and oxyacid. Particularly preferred are fatty acid systems such as stearic acid and hydroxystearic acid.
[0049] そして、前述した原料粉末にバインダーや溶剤を加え、 b ヽか 、機、ボールミル、 3 本ロールミルなどにより混練して均一に混合してペーストを得る。コーティングやディ ッビングによって空気極を形成する場合は、粘度を B型粘度計で l〜50mPa' s、より 好ましくは 2〜20mPa · sの範囲に調整するのがよ 、。スクリーン印刷により空気極を 形成する場合の好ましいスラリー粘度は、ブルックフィールズ粘度計で 50, 000〜2, 000, OOOmPa- s,より好ましくは 80, 000〜1, 000, OOOmPa- s,更に好ましくは 1 00, 000〜500, OOOmPa,sの範囲である。 [0049] Then, a binder or a solvent is added to the raw material powder described above, and then kneaded with a machine, a ball mill, a three-roll mill or the like and mixed uniformly to obtain a paste. When the air electrode is formed by coating or dipping, the viscosity should be adjusted to 1 to 50 mPa's, more preferably 2 to 20 mPa · s with a B-type viscometer. The preferable slurry viscosity when forming the air electrode by screen printing is 50, 000 to 2,000, OOOmPa-s, more preferably 80,000 to 1,000, OOOmPa-s, more preferably, with a Brookfields viscometer. The range is from 1 00, 000 to 500, OOOmPa, s.
[0050] 粘度調整後、例えばバーコ一ター、スピンコーター、デイツビング装置などにより固 体電解質上にコーティングし、或いはスクリーン印刷法などで薄膜状に製膜した後、 40〜150°Cの温度、例えば 50°C、 80°C、 120°Cの様な一定の温度、あるいは順次 連続的に昇温して加熱乾燥することによって空気極層を形成する。 [0050] After the viscosity is adjusted, for example, it is coated on the solid electrolyte by a bar coater, spin coater, dating apparatus or the like, or formed into a thin film by a screen printing method, and then a temperature of 40 to 150 ° C, for example, The air electrode layer is formed by heating at a constant temperature such as 50 ° C, 80 ° C, 120 ° C, or successively by heating.
[0051] 空気極層の厚みは、 10〜300 μ m程度が適当であり、好ましくは 15〜: LOO μ m、 特に好ましくは 20〜50 μ mの範囲である。 [0051] The thickness of the air electrode layer is suitably about 10 to 300 µm, preferably 15 to: LOO µm, particularly preferably 20 to 50 µm.
[0052] 固体電解質膜の形成に用いる酸化物としては、ジルコユアに MgO, CaO, SrO, B aOなどのアルカリ土類金属酸化物、 Y O , La O , CeO , Pr O , Nd O , Sm O , [0052] Examples of oxides used for forming the solid electrolyte membrane include zirconia, alkaline earth metal oxides such as MgO, CaO, SrO, and BaO, YO, LaO, CeO, PrO, NdO, SmO,
2 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3
Eu O , Gd O , Tb O , Dy O , Ho O , Er O , Yb O等の希土類金属酸化物、さRare earth metal oxides such as EuO, GdO, TbO, DyO, HoO, ErO, YbO
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
らには Sc O , Bi O , In Oなどを 1種もしくは 2種以上含有するジルコユア系セラミツ In addition, Zircoure ceramics containing one or more of ScO, BiO, InO, etc.
2 3 2 3 2 3 2 3 2 3 2 3
ク; CeOまたは Bi Oに、 MgO, CaO, ScO, BaOなどのアルカリ土類金属酸化物、 C: CeO or BiO, alkaline earth metal oxides such as MgO, CaO, ScO, BaO,
2 2 3 2 2 3
Y O , La O , CeO , Pr O , Nd O , Sm O , Eu O , Gd O , Tb O , Dy O , Ho Y O, La O, CeO, Pr O, Nd O, Sm O, Eu O, Gd O, Tb O, Dy O, Ho
2 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 22 3 2 3 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2
O , Er O , Yb O等の希土類金属酸化物、 Sc O , In O , PbO, WO , MoO , VRare earth metal oxides such as O, ErO, YbO, ScO, InO, PbO, WO, MoO, V
3 2 3 2 3 2 3 2 3 3 3 2
O , Nb Oなどの 1種もしくは 2種以上を添カ卩したセリア系またはビスマス系セラミック3 2 3 2 3 2 3 2 3 3 3 2 Ceria-based or bismuth-based ceramics containing one or more of O, Nb O, etc.
5 2 5 5 2 5
;さらには、ぺロブスカイト構造を有する AZrO (A: Srなどのアルカリ土類元素)に In ; In addition, AZrO with a perovskite structure (A: alkaline earth elements such as Sr) and In
3 Three
, Gaなどをドープしたもの; LaGaOに MgO, CaO, SrO, BaOなどのアルカリ土類 , Ga doped, etc .; LaGaO, MgO, CaO, SrO, BaO and other alkaline earths
3 Three
金属酸化物、 Y O, CeO, Pr O, Nd O Metal oxide, Y 2 O, CeO, Pr 2 O, Nd 2 O
3, Sm O 3, Sm O
2 3 2 2 3 2 2 3, Eu O 2 3 2 2 3 2 2 3, Eu O
2 3, Gd O 2 3, Gd O
2 3, Tb O 2 3, Tb O
2 3, Dy O 2 3 2 3, Dy O 2 3
, Ho O, Er O, Yb Oなどの希土類金属酸化物、さらには Sc O, TiO, V O, C, Ho O, Er O, Yb O and other rare earth metal oxides, as well as Sc O, TiO, V O, C
2 3 2 3 2 3 2 3 2 2 5 r O , Mn O , Fe O , Co O , NiO, CuO, ZnO, Nb O, WO等の遷移金属酸化2 3 2 3 2 3 2 3 2 2 5 Transition metal oxidation of rO, MnO, FeO, CoO, NiO, CuO, ZnO, NbO, WO, etc.
2 3 2 3 2 3 3 4 2 5 3 2 3 2 3 2 3 3 4 2 5 3
物、 Al O, SiO, In O, Sb O, Bi O等の典型金属酸化物等をドープもしくは分 Doping or separation of metal oxides, typical metal oxides such as AlO, SiO, InO, SbO, and BiO
2 3 2 2 3 2 3 2 3 2 3 2 2 3 2 3 2 3
散強化したガレート系セラミック;ブラウンミレライト構造を有する Ba In O等のインジ Dust-reinforced gallate ceramics; Indium such as Ba In O with brown millelite structure
2 2 5 2 2 5
ゥム系セラミックなどが例示される。これらのセラミックには、更に他の酸ィ匕物として Si O , Al O , GeO , SnO , Sb Ο , PbO, Ta Ο , Nb Ο等が含まれていてもよい。 Examples of such are ceramics. These ceramics may further contain other oxides such as Si 2 O 3, Al 2 O 3, GeO 2, SnO 2, Sb 2, PbO, Ta 2, Nb 2, and the like.
2 2 3 2 2 2 3 2 5 2 5 2 2 3 2 2 2 3 2 5 2 5
[0053] これらの中でも特に好ましいのは、前述した様に、イットリウム、スカンジウム、イツテ ルビゥムカも選ばれる 1以上の酸ィ匕物で安定ィ匕されたジルコニウム酸ィ匕物力もなる固 体電解質である。また、これらの固体電解質に、アルミナ、チタ-ァ、シリカよりなる群 力も選択される少なくとも 1種が 0. 1〜2質量%配合されものも好ましいものとして推 奨される。 [0053] Among these, particularly preferable is a solid electrolyte having a zirconate-acid power stabilized by one or more acids selected from yttrium, scandium, and itumbumka as described above. . In addition, it is recommended that these solid electrolytes contain 0.1 to 2% by mass of at least one selected from the group consisting of alumina, titer and silica.
[0054] なお、電解質の形状は、平板状、波板状、コルゲート状、ハ-カム状、円筒状、円 筒平板状など何れでもよい。また電解質の厚さは 5〜500 /ζ πι、好ましくは 30〜300 μ m、より好ましくは 50〜200 μ mである。 [0054] The shape of the electrolyte may be any of a flat plate shape, a corrugated plate shape, a corrugated shape, a Hercam shape, a cylindrical shape, a cylindrical flat plate shape, and the like. The thickness of the electrolyte is 5 to 500 / ζ πι, preferably 30 to 300 μm, more preferably 50 to 200 μm.
[0055] 例えば、上記空気極用ペーストを用いて電解質支持型の固体電解質形燃料電池 セルを作製する際には、電解質膜の片面側へ、燃料極ペーストをスクリーン印刷など によって塗布する。燃料極ペーストとしては、例えば、 NiOに、イットリウム、サマリウム 、ガドリニウム力も選ばれる元素の少なくとも 1種でドープされたセリア、および Zまた は、イットリウム、スカンジウム、イッテルビウム力 選ばれる元素の酸化物の少なくとも 1種で安定ィ匕されたジルコユアを添加したものを挙げることができる。より具体的な燃 料極材料は、例えば、?^0 : 50〜70質量%と、 10モル%スカンジァ 1モル%セリア 安定ィ匕ジルコユア: 30〜50質量%の混合粉末などである。燃料極ペーストを乾燥し た後、例えば 1100〜1400°Cで焼付けて燃料極を形成してハーフセルとする。当該 ハーフセルの反対面側に、上記の空気極材料用の粉末を、バインダー、溶剤、可塑
剤、分散剤などと共に均一に混練して得たペーストやスラリーを用いてスクリーン印刷 やコーティングなどにより塗布する。次いで、例えば 900〜1300°C、好ましくは 950 〜 1250°C、更に好ましくは 1000〜 1200°Cの温度で焼付けを行なって空気極を形 成し、 3層膜構造の固体電解質形燃料電池セルとする。 [0055] For example, when an electrolyte-supported solid electrolyte fuel cell is produced using the air electrode paste, the fuel electrode paste is applied to one side of the electrolyte membrane by screen printing or the like. Examples of the fuel electrode paste include NiO, ceria doped with at least one element selected from yttrium, samarium, and gadolinium power, and at least one oxide selected from Z or yttrium, scandium, and ytterbium power. There may be mentioned those with the addition of zirconia stabilized with seeds. For example, more specific fuel electrode materials? ^ 0: 50-70% by mass, 10 mol% scandia, 1 mol% ceria, stable zirconia: 30-50% by mass, etc. After the fuel electrode paste is dried, for example, it is baked at 1100 to 1400 ° C. to form a fuel electrode to form a half cell. On the other side of the half cell, the powder for the air electrode material is mixed with binder, solvent, plastic It is applied by screen printing or coating using a paste or slurry obtained by kneading uniformly with an agent, dispersant and the like. Next, for example, baking is performed at a temperature of 900 to 1300 ° C, preferably 950 to 1250 ° C, more preferably 1000 to 1200 ° C to form an air electrode, and a solid electrolyte fuel cell having a three-layer membrane structure And
[0056] なお、固体電解質材料と空気極材料とが高温で長時間曝されることで固相反応を 起こし、その界面に絶縁性物質を生成することがあるので、固体電解質層と空気極 層の間には中間層を設けてもよい。このための中間層材料としては、酸素イオン導電 性と電子導電性を有し、且つ空気極材料のバリア層として機能する材料として、前記 イットリアドープドセリア、サマリアド一プドセリア、ガドリアドープドセリアが好ましく使 用できる。そして、これらの材料を用いた中間層のペーストも同様に作製し、燃料極 膜が形成された反対側の電解質面に中間層膜として形成すればよい。 [0056] Since the solid electrolyte material and the air electrode material are exposed to a high temperature for a long time to cause a solid-phase reaction and an insulating material may be generated at the interface between them, the solid electrolyte layer and the air electrode layer An intermediate layer may be provided between them. As an intermediate layer material for this purpose, the yttria-doped ceria, samariado pud ceria, and gadria-doped ceria are materials having oxygen ion conductivity and electron conductivity and functioning as a barrier layer of the air electrode material. It can be used preferably. Then, an intermediate layer paste using these materials may be prepared in the same manner and formed as an intermediate layer film on the opposite electrolyte surface where the fuel electrode film is formed.
[0057] この場合、空気極は中間層膜の上に膜形成されることになるので、 4層膜セルとな る。 In this case, since the air electrode is formed on the intermediate layer film, a four-layer film cell is obtained.
[0058] 本発明において、固体電解質膜、中間層、燃料極を構成する素材や成膜法などに は一切制限がなぐ上記はその一例を示しただけに過ぎない。 [0058] In the present invention, there is no limitation on the material constituting the solid electrolyte membrane, the intermediate layer, the fuel electrode, and the film forming method. The above is only an example.
[0059] また上記では、平板型の固体電解質形燃料電池セルを製造する場合について簡 単に説明したが、本発明の空気極材料は、電極支持型の燃料電池セルや、円筒型 の固体電解質形燃料電池セルの製造にも同様に適用できる。また、多孔質の支持 管や支持板の表面に燃料極、固体電解質および空気極が形成された構成の固体電 解質形燃料電池セルに、上記本発明の空気極材料を適用して燃料電池セルを作製 することも勿論可能である。 [0059] In the above description, the case of producing a flat solid electrolyte fuel cell has been briefly described. However, the air electrode material of the present invention may be an electrode-supported fuel cell or a cylindrical solid electrolyte fuel cell. The same applies to the manufacture of fuel cells. Further, the air electrode material of the present invention is applied to a solid electrolyte fuel cell having a structure in which a fuel electrode, a solid electrolyte, and an air electrode are formed on the surface of a porous support tube or a support plate. Of course, it is possible to fabricate a cell.
[0060] 本発明の空気極材料は、電極活性の長期持続性に優れると共に、耐焼結性も良 好であり、燃料電池の停止時の室温と高い稼動温度の繰返しによる苛酷な熱履歴に も十分に耐える高性能なものである。また、本発明の空気極材料を使用することによ り、高性能で耐久性に優れた空気極、さらには燃料電池セルを提供できる。 [0060] The air electrode material of the present invention has excellent long-term sustainability of electrode activity and good sintering resistance, and also has a severe heat history due to repetition of room temperature and high operating temperature when the fuel cell is stopped. High performance that can withstand Further, by using the air electrode material of the present invention, it is possible to provide a high-performance and durable air electrode, and further a fuel cell.
実施例 Example
[0061] 以下、実施例を挙げて本発明の構成と作用効果をより具体的に説明するが、本発 明はもとより下記実施例によって制限を受けるものではなぐ前 ·後記の趣旨に適合し
得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本 発明の技術的範囲に含まれる。 [0061] Hereinafter, the configuration and operational effects of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as well as the present invention. Of course, it is possible to carry out the present invention with appropriate modifications within the range to be obtained, and they are all included in the technical scope of the present invention.
[0062] 実施例 [0062] Examples
(1) 空気極用ペーストの調製 (1) Preparation of air electrode paste
原料であるぺロブスカイト型酸化物粉末としては、市販の純度 99. 9%の Pr O , La Perovskite type oxide powder, which is a raw material, is commercially available with a purity of 99.9% Pr 2 O 3 La
2 3 twenty three
O, CeO, Gd O, Sm O, CaCO, SrCO, BaCO, Fe O, NiO, Mn O , CoO, CeO, GdO, SmO, CaCO, SrCO, BaCO, FeO, NiO, MnO, Co
2 3 2 2 3 2 3 3 3 3 2 3 2 3 32 3 2 2 3 2 3 3 3 3 2 3 2 3 3
O ,および CuOの粉末を使用した。これらを表 1, 2に示す組成となる様に混合した。 O and CuO powders were used. These were mixed so as to have the compositions shown in Tables 1 and 2.
4 Four
当該混合物にエタノールを加え、ビーズミルで 1時間粉砕混合した。次いで、乾燥し て力も 800°Cで 1時間仮焼した。さらに、エタノールをカ卩えてビーズミルで 1時間粉砕 混合してから乾燥した。その後、 1100〜1300°Cで 5時間固相反応させた。 Ethanol was added to the mixture and pulverized and mixed with a bead mill for 1 hour. Next, it was dried and calcined at 800 ° C for 1 hour. Further, ethanol was added and pulverized and mixed in a bead mill for 1 hour, followed by drying. Thereafter, a solid phase reaction was carried out at 1100-1300 ° C. for 5 hours.
[0063] 得られた粉末にエタノールをカ卩え、さらにボールミルで 16時間粉砕混合してから乾 燥し、表 1〜3に示す平均粒径の粉末を得た。得られた粉末は、 X線回折によって、 ぺロブスカイトからなる単一相であることが確認された。また、実施例 4〜6、 8および 9 では、ぺロブスカイト粉末をさらに 1400°Cで 10時間熱処理した後、遊星ボールミル で回転数と回転時間を調整しながら粉砕することによって、熱処理前とほとんど同じ 平均粒径と 90体積%径となるようにした。 [0063] Ethanol was added to the obtained powder, which was further pulverized and mixed with a ball mill for 16 hours and then dried to obtain powders having an average particle diameter shown in Tables 1 to 3. The obtained powder was confirmed to be a single phase composed of perovskite by X-ray diffraction. In Examples 4 to 6, 8 and 9, the perovskite powder was further heat-treated at 1400 ° C for 10 hours and then pulverized with a planetary ball mill while adjusting the rotation speed and rotation time. The average particle size and 90% by volume were set.
[0064] 原料であるドープドセリア粒子としては、市販の純度 99. 9%以上の CeO , Gd O [0064] The doped ceria particles that are raw materials include commercially available CeO, GdO having a purity of 99.9% or more.
2 2 3 2 2 3
, Sm O ,および Υ Οの粉末を用いた。これらを表 2に示す組成となる様に調合した, Sm 2 O 3, and S 粉末 powder were used. These were prepared to have the composition shown in Table 2.
2 3 2 3 2 3 2 3
。以下、上記と同様にしてエタノール中でのビーズミルによる粉砕混合を行った。次 いで、乾燥してから 800°Cで 1時間仮焼し、さらにエタノールをカ卩え、ビーズミルで 1 時間粉砕混合して力も乾燥した。最後に、遊星ボールミルで回転数と回転時間を調 整しながら粉砕することによって、表 2と 3に示す平均粒径のドープドセリア粗粒子と 微粒子を得た。 . Thereafter, pulverization and mixing in a bead mill in ethanol was performed in the same manner as described above. Next, after drying, it was calcined at 800 ° C. for 1 hour, and ethanol was further added, and the mixture was pulverized and mixed in a bead mill for 1 hour to dry the force. Finally, the doped ceria coarse particles and fine particles having the average particle sizes shown in Tables 2 and 3 were obtained by grinding with a planetary ball mill while adjusting the rotation speed and rotation time.
[0065] 安定ィ匕ジルコユア粉末としては、イツテルビア安定ィ匕ジルコユアを除 、て、第一稀 元素社製の市販品を使用した。 [0065] As the stable zircoure powder, a commercial product manufactured by Daiichi Rare Element Co., Ltd. was used except for ytterbia stable zircoure.
[0066] 1 lYb安定ィ匕ジルコユア粉末としては、以下により調製した粉末を用いた。住友大 阪セメント社製のジルコユア粉末 (商品名「OZC— OY」)に硝酸イッテルビウム水溶 液を含浸させた。当該含浸物を乾燥してから、 1000°Cで焼成した。次いで、得られ
た粉末をエタノール中でビーズミルによって粉砕した。乾燥後、さらに乳鉢と乳棒を 取り付けたら 、か 、機で粉砕することにより、表 2に示す平均粒径の 11モル%ィッテ ルビア安定ィ匕ジルコユア粉末を得た。 [0066] As 1 lYb stable zirconia powder, a powder prepared as follows was used. Zircoyu powder (trade name “OZC-OY”) manufactured by Sumitomo Osaka Cement Co., Ltd. was impregnated with an aqueous solution of ytterbium nitrate. The impregnated product was dried and then calcined at 1000 ° C. Then obtained The powder was ground in a bead mill in ethanol. After drying, when a mortar and pestle were further attached, or by pulverizing with a machine, 11 mol% ytterbia stable zircoure powder having an average particle size shown in Table 2 was obtained.
[0067] 得られた各粉末を、表 1〜3の組成比となる様に調合した。得られた空気極材料 50 gに対して、バインダーとしてェチルセルロースを 2g、溶剤としてテルビネオールを 38 g、分散剤としてソルビタン酸エステル (三洋化成社製の商品名「ィォネット S— 80」) を 0. 5g添加した。当該混合物を、乳鉢と乳棒で撹拌混合した後、 3本ロールミルを 用いてミリングすることにより、空気極用ペーストを調製した。 [0067] The obtained powders were prepared so as to have the composition ratios shown in Tables 1 to 3. To 50 g of the obtained air electrode material, 2 g of ethylcellulose as a binder, 38 g of tervineol as a solvent, and sorbitan acid ester as a dispersant (trade name “IONET S-80” manufactured by Sanyo Chemical Co., Ltd.) 0 Added 5 g. The mixture was stirred and mixed with a mortar and pestle, and then milled using a three-roll mill to prepare an air electrode paste.
[0068] (2) 燃料電池セルの作製 [0068] (2) Fabrication of fuel cell
4モル0 /0のスカンジァで安定化されたジルコユアからなる 4ScSZ電解質膜 (厚さ 15 0 mX直径 30mm)の片面に、 NiOZlOモル%スカンジァ 1モル%セリア安定化ジ ルコユア力もなる燃料極が形成した。当該ハーフセルの他方側の面に、上記で得た 空気極用ペーストを、 100メッシュのステンレス製金網の刷版を用いてスクリーン印刷 した。乾燥後 950〜1200°Cで焼成することによって、膜厚が約 45 /z mの空気極膜を 形成し、燃料電池セルを作製した。同様の燃料電池セルは、各例ごとに 4個ずつ作 製した。 On one side of 4 mol 0/0 consists stabilized Jirukoyua in Sukanjia 4ScSZ electrolyte membrane (thickness 15 0 mX diameter 30mm), NiOZlO mol% Sukanjia 1 mol% ceria stabilized di Rukoyua force also the fuel electrode was formed . The air electrode paste obtained above was screen-printed on the other surface of the half-cell using a 100-mesh stainless steel mesh printing plate. After drying, it was baked at 950-1200 ° C to form an air electrode film with a film thickness of about 45 / zm, and a fuel cell was produced. Four similar fuel cells were produced for each example.
[0069] 試験例 1 発電試験 [0069] Test example 1 Power generation test
図 1に略示する小型単セル発電装置を用いて、上記で作製したセルにっ 、て発電 試験を行い、そのセル出力密度を測定した。燃料ガスとしては 800°Cの 3%水蒸気 加湿水素を、また、酸化剤としては空気を使用した。電流測定装置としては、アドバン テスト社製の商品名「R8240」を用い、電流電圧発生器としては、同アドバンテスト社 製の商品名「R6240」を使用した。結果を表 1〜3に示す。 Using the small single-cell power generator schematically shown in Fig. 1, a power generation test was conducted on the cell produced above, and the cell output density was measured. The fuel gas used was 3% steam-humidified hydrogen at 800 ° C, and air was used as the oxidant. The product name “R8240” manufactured by Advantest was used as the current measuring device, and the product name “R6240” manufactured by Advantest was used as the current-voltage generator. The results are shown in Tables 1-3.
[0070] 試験例 2 セル端子電圧低下率 [0070] Test Example 2 Cell terminal voltage drop rate
連続発電による出力密度の劣化傾向を確認するため、 300mAZcm2の電流を流 してセル端子電圧を測定し、初期から 200時間、 500時間、 1000時間経過後の劣 化率を測定した。結果を表 1〜3に示す。なお、セル端子電圧低下率は下記の様に して求めた。なお、対照例 1〜4、 6と 7では、上記試験例 1で測定した初期出力密度 が低力つたので、当該測定は行わな力つた。また、本発明に係る実施例 5、 6、 20お
よび 23では、実験時間を短縮するために、 500時間または 1000時間経過後の測定 を省略した。 In order to confirm the deterioration tendency of the output density due to continuous power generation, the cell terminal voltage was measured by supplying a current of 300 mAZcm 2 , and the deterioration rate after 200 hours, 500 hours, and 1000 hours from the initial stage was measured. The results are shown in Tables 1-3. The cell terminal voltage drop rate was obtained as follows. In Comparative Examples 1 to 4, 6 and 7, the initial output density measured in Test Example 1 was low, so the measurement was strong. Also, Examples 5, 6, and 20 according to the present invention In order to shorten the experimental time, measurements after 500 hours or 1000 hours were omitted in and.
[セル端子電圧低下率] = [ (初期の出力電圧一所定時間経過後の出力電圧) Z 初期の出力電圧] X 100 (%) [Cell terminal voltage drop rate] = [(initial output voltage minus output voltage after elapse of a predetermined time) Z initial output voltage] X 100 (%)
[0071] 試験例 3 サーマルサイクル劣化率 [0071] Test Example 3 Thermal cycle deterioration rate
新品のセルを使用し、 100時間連続運転後にヒータを停止して室温まで降温し、室 温で 20時間保持して力も 800°Cに昇温する熱サイクルを 3〜5回繰返し、そのときの セル端子電圧の低下率も測定した。その結果を、サーマルサイクル劣化率として表 1 〜3に示す。なお、対照例 3と 4では、上記試験例 1で測定した初期出力密度が非常 に低力つたので、当該測定を行わな力つた。 Using a new cell, after 100 hours of continuous operation, stop the heater, lower the temperature to room temperature, hold it at room temperature for 20 hours and repeat the heat cycle to raise the power to 800 ° C 3 to 5 times. The reduction rate of the cell terminal voltage was also measured. The results are shown in Tables 1 to 3 as thermal cycle deterioration rates. In Control Examples 3 and 4, the initial power density measured in Test Example 1 was very low, so the measurement was strong.
[0072] 試験例 4 劣化促進テスト [0072] Test Example 4 Deterioration Acceleration Test
上記で作製した各実施例の燃料電池セルのうち 2個を電気炉内に挿入し、 950°C で 500時間加熱した。その後、出力密度を測定し、その低下率を算出することにより 、劣化促進テストを行った。結果を表 1〜3に示す。 Two of the fuel cells of each Example produced above were inserted into an electric furnace and heated at 950 ° C. for 500 hours. Thereafter, the power density was measured, and the deterioration rate was calculated to perform a deterioration promotion test. The results are shown in Tables 1-3.
[0073] [表 1]
[0073] [Table 1]
〔〕〔^〕00742
〔〕0ミ613〜 [] [^] 00742 [] 0 Mi 613-
気極材料を用いた場合、初期出力密度が 0. 2WZcm2以下で電極活性に劣る。そ れに対して、本発明の空気極材料を用いた場合、ほぼ 0. 3WZcm2以上の初期出 力密度が得られている。よって、本発明に係る燃料電池セルは、優れた電極活性を 有していることが分かる。 When using a gas electrode material, the initial power density is 0.2 WZcm 2 or less and the electrode activity is poor. In contrast, when the air electrode material of the present invention is used, an initial output density of approximately 0.3 WZcm 2 or more is obtained. Therefore, it can be seen that the fuel battery cell according to the present invention has excellent electrode activity.
[0077] また、対照例 2のプラセオジム'コバルタイト系酸ィ匕物を用いた場合、初期出力密度 は本発明の空気極材料よりも優れている。しかし、電気炉内で加熱した後の出力密 度の低下率が非常に大きくなつている。一方、本発明の実施例では低下率が少なく 、電極活性の安定性にも優れていることが分かる。 [0077] When the praseodymium / cobaltite oxide in Control Example 2 is used, the initial output density is superior to the air electrode material of the present invention. However, the rate of decrease in power density after heating in an electric furnace has become very large. On the other hand, in the examples of the present invention, it can be seen that the rate of decrease is small and the stability of the electrode activity is also excellent.
[0078] また、ぺロブスカイト型酸ィ匕物にドープドセリアを添カ卩した場合、および、ぺロブス力 イト型酸ィ匕物に安定ィ匕ジルコユアを添加した場合のいずれも、ぺロブスカイト型酸ィ匕 物単独の場合と同様の初期出力密度と 500時間以降のセル端子電圧低下率を示し ており、本発明の優位性を確認できる。さらに、ぺロブスカイト型酸ィ匕物とドープドセリ ァまたは安定ィ匕ジルコユアの配合比率が本発明の規定範囲を外れる場合、初期出 力密度が大きく低下しており、電極活性の劣化が著しい。 [0078] Further, both when the doped ceria is added to the perovskite type oxide and when the stable zirconia is added to the perovskite type oxide, the perovskite type oxide is used. The initial output density and the cell terminal voltage drop rate after 500 hours are the same as in the case of a single object, and the superiority of the present invention can be confirmed. Furthermore, when the blending ratio of the perovskite type oxide and the doped silica or stable zirconium oxide is outside the specified range of the present invention, the initial output density is greatly reduced, and the electrode activity is remarkably deteriorated.
[0079] また、ぺロブスカイト型酸ィ匕物にドープドセリアと安定ィ匕ジルコユアを配合した場合 も、ぺロブスカイト型酸ィ匕物単独の場合と同レベルの初期出力密度と 500時間以降 のセル端子電圧の低下率を示す。その上、熱サイクル試験後のセル電圧低下率が 小さい。かかる結果は、本発明に係る燃料電池が優れたサイマル耐久性を有してい ることを示す。特に、本発明で規定する組成と配合比率を満たすものの中でも、ベロ ブスカイト型酸ィ匕物粒子の平均粒径と、ドープドセリア粒子および安定ィ匕ジルコユア 粒子の平均粒径が前述した好適関係を満足するものは、優れた熱サイクル耐久性を 示している。
[0079] Also, when doped ceria and stable zirconium oxide are mixed with perovskite type oxides, the same initial output density and cell terminal voltage after 500 hours as with perovskite type oxides alone. The rate of decline is shown. In addition, the cell voltage drop rate after the thermal cycle test is small. This result shows that the fuel cell according to the present invention has excellent simultaneous durability. In particular, among those satisfying the composition and blending ratio specified in the present invention, the average particle size of the velovskite-type oxide particles and the average particle size of the doped ceria particles and the stable zirconia particles satisfy the above-mentioned preferred relationship. The thing shows the outstanding thermal cycle endurance.
Claims
[1] 下記一般式 (I)で表されるベロブスカイト型酸化物を含むことを特徴とする固体酸化 物形燃料電池用空気極材料。 [1] An air electrode material for a solid oxide fuel cell, characterized by containing a berbskite oxide represented by the following general formula (I).
(Pr A ) (Fe B ) O (Pr A) (Fe B) O
x l-χ y 1-y 3……(I) x l-χ y 1-y 3 …… (I)
[式中、 Aは、アルカリ土類金属元素および希土類元素カゝら選択される少なくとも 1種 の元素を示し; Bは、 7a族元素および 8族元素力 選択される少なくとも 1種の元素を 示し; χίま 0. 5≤x≤l ;y«0. 5≤y≤lを示す] [Wherein A represents at least one element selected from alkaline earth metal elements and rare earth elements; B represents at least one element selected from group 7a elements and group 8 element forces] Χί or 0.5 ≤ x ≤ l; y «0. Indicates 5 ≤ y ≤ l]
[2] さらに、イットリウム、サマリウムおよびガドリニウムよりなる群力も選択される少なくとも 1種の元素でドープされたドープドセリア;または、イットリウム、スカンジウムおよびイツ テルビウムよりなる群力 選択される少なくとも 1種の元素の酸ィ匕物で安定化された安 定ィ匕ジルコユアのうち少なくとも一方を含む請求項 1に記載の固体酸ィ匕物形燃料電 池用空気極材料。 [2] In addition, doped ceria doped with at least one element selected from the group force consisting of yttrium, samarium and gadolinium; or the group force consisting of yttrium, scandium and ytterbium selected from acids of at least one element selected 2. The cathode material for a solid oxide fuel cell according to claim 1, comprising at least one of stable zirconium oxides stabilized with an electrolyte.
[3] ぺロブスカイト型酸化物を 70〜95質量%含み; [3] containing 70 to 95% by weight of perovskite oxide;
ドープドセリアまたは安定ィ匕ジルコユアのうち少なくとも一方の合計を 5〜30質量% 含む請求項 2に記載の固体酸化物形燃料電池用空気極材料。 The air electrode material for a solid oxide fuel cell according to claim 2, comprising 5 to 30% by mass of a total of at least one of doped ceria and stable zirconium oxide.
[4] ぺロブスカイト型酸化物の粒子、ドープドセリアの粗粒子、安定化ジルコユアの粒子 との混合物からなり、各粒子の平均粒径が、「ドープドセリア粗粒子〉ぺロブスカイト 型酸ィ匕物粒子 >安定ィ匕ジルコユア粒子」の関係を満たすものである請求項 2または 3 に記載の固体酸化物形燃料電池用空気極材料。 [4] Perovskite type oxide particles, doped ceria coarse particles, and stabilized zirconia particles. The average particle size of each particle is "Dope ceria coarse particles> perovskite type oxide particles> stable. The air electrode material for a solid oxide fuel cell according to claim 2 or 3, wherein the air electrode material satisfies the relationship of "Zirconia particles".
[5] ドープドセリア粗粒子の平均粒径が 1〜30 μ m、ぺロブスカイト型酸化物粒子の平 均粒径が 0. 3〜3 μ m、安定化ジルコユア粒子の平均粒径が 0. 1〜1 μ mである請 求項 4に記載の固体酸化物形燃料電池用空気極材料。 [5] The average particle size of the doped ceria coarse particles is 1 to 30 μm, the average particle size of the perovskite oxide particles is 0.3 to 3 μm, and the average particle size of the stabilized zirconia particles is 0.1 to 5. The cathode material for a solid oxide fuel cell according to claim 4, which is 1 μm.
[6] ぺロブスカイト型酸化物の粒子、ドープドセリアの粗粒子、およびドープドセリアの 微粒子との混合物カゝらなり、各粒子の平均粒径が、「ドープドセリア粗粒子〉ぺロブ スカイト型酸ィ匕物粒子 >ドープドセリア微粒子」の関係を満たすものである請求項 2ま たは 3に記載の固体酸化物形燃料電池用空気極材料。 [6] Perovskite type oxide particles, doped ceria coarse particles, and a mixture of doped ceria fine particles, each particle having an average particle size of “Dope Ceria Coarse Particles” perovskite type oxide particles 4. The air electrode material for a solid oxide fuel cell according to claim 2, which satisfies the relationship of “> doped ceria fine particles”.
[7] ドープドセリア粗粒子の平均粒径が 1〜30 μ m、ぺロブスカイト型酸化物粒子の平 均粒径が 0. 3〜3 μ m、ドープドセリア微粒子の平均粒径が 0. 1〜1 μ mである請求
項 6に記載の固体酸化物形燃料電池用空気極材料。 [7] The average particle size of the doped ceria coarse particles is 1 to 30 μm, the average particle size of the perovskite oxide particles is 0.3 to 3 μm, and the average particle size of the doped ceria fine particles is 0.1 to 1 μm. claim which is m Item 7. The cathode material for a solid oxide fuel cell according to Item 6.
[8] 固体酸化物形燃料電池における固体電解質の片面側に形成される空気極であつ て、請求項 1〜7の 、ずれか〖こ記載の空気極材料で形成されたものであることを特徴 とする固体酸化物形燃料電池用空気極。 [8] The air electrode formed on one side of the solid electrolyte in the solid oxide fuel cell, wherein the air electrode is formed of the air electrode material according to any one of claims 1 to 7. Characteristic air electrode for solid oxide fuel cell.
[9] 固体電解質の片面側に空気極が形成され、他方面側に燃料極が形成された固体 酸ィ匕物形燃料電池セルであって、空気極が請求項 1〜7の 、ずれかに記載の空気 極材料で形成されたものである固体酸化物形燃料電池セル。 [9] A solid oxide fuel cell having an air electrode formed on one side of a solid electrolyte and a fuel electrode formed on the other side, wherein the air electrode is any one of claims 1 to 7. A solid oxide fuel cell formed of the air electrode material described in 1.
[10] 固体電解質が、スカンジウム、イットリウムおよびイッテルビウムよりなる群力 選択さ れる少なくとも 1種の元素の酸ィ匕物で安定ィ匕されたジルコユア力 なる請求項 9に記 載の燃料電池セル。
[10] The fuel cell according to claim 9, wherein the solid electrolyte has a zirco-ure force stabilized by an oxide of at least one element selected from the group force consisting of scandium, yttrium and ytterbium.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007513500A JP5044392B2 (en) | 2006-02-10 | 2007-02-08 | Air electrode materials for solid oxide fuel cells |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006034308 | 2006-02-10 | ||
JP2006-034308 | 2006-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007091642A1 true WO2007091642A1 (en) | 2007-08-16 |
Family
ID=38345236
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/052247 WO2007091642A1 (en) | 2006-02-10 | 2007-02-08 | Air electrode material for solid oxide fuel cell |
Country Status (2)
Country | Link |
---|---|
JP (2) | JP5044392B2 (en) |
WO (1) | WO2007091642A1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140693A (en) * | 2007-12-05 | 2009-06-25 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2009259568A (en) * | 2008-04-16 | 2009-11-05 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2010277877A (en) * | 2009-05-29 | 2010-12-09 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2011514644A (en) * | 2008-03-18 | 2011-05-06 | テクニカル ユニヴァーシティー オブ デンマーク | All-ceramic solid oxide battery |
JP2011228009A (en) * | 2010-04-15 | 2011-11-10 | Dowa Electronics Materials Co Ltd | Solid electrolyte fuel cell composite oxide, solid electrolyte fuel cell binder, solid electrolyte fuel cell electrode, solid electrolyte fuel cell collector member, solid electrolyte fuel cell, solid electrolyte fuel cell stack, and manufacturing method of solid electrolyte fuel cell composite oxide mixture |
JP2012043774A (en) * | 2010-07-21 | 2012-03-01 | Ngk Insulators Ltd | Electrode material and solid oxide fuel cell including the same |
JP2013101965A (en) * | 2013-01-24 | 2013-05-23 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2014120471A (en) * | 2012-12-17 | 2014-06-30 | Samsung Electro-Mechanics Co Ltd | Electrode paste for solid oxide fuel cell, solid oxide fuel cell using the same, and fabricating method thereof |
JP2016501435A (en) * | 2012-12-18 | 2016-01-18 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Powder mixture for layers in solid oxide fuel cells |
CN112204780A (en) * | 2018-03-29 | 2021-01-08 | 堺化学工业株式会社 | Air electrode material powder for solid oxide fuel cell |
JP2022028167A (en) * | 2020-08-03 | 2022-02-16 | 森村Sofcテクノロジー株式会社 | Electrochemical reaction single cell |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101876266B1 (en) * | 2012-12-28 | 2018-07-11 | 재단법인 포항산업과학연구원 | Method for manufacturing a cathode for a metal supported solid oxide fuel cell |
JP6462487B2 (en) * | 2015-05-27 | 2019-01-30 | 京セラ株式会社 | Cell, cell stack device, module, and module housing device |
JP2018166078A (en) * | 2017-03-28 | 2018-10-25 | 株式会社デンソー | Cathode for solid oxide fuel battery, solid oxide fuel battery unit cell, and, solid oxide fuel battery |
JP7359834B2 (en) * | 2018-03-12 | 2023-10-11 | オメガ エナジー システムズ エルエルシー | Solid state energy harvester for transition metal suboxides |
KR102137988B1 (en) * | 2018-12-14 | 2020-07-27 | 울산과학기술원 | symmetrical solid oxide fuel cell having perovskite structure, method of manufacturing the same and symmetrical solid oxide electrolyzer cell having the perovskite structure |
KR102233833B1 (en) * | 2019-04-23 | 2021-03-30 | 주식회사케이세라셀 | Zirconia electrolyte and unit cell for solid oxide fuel cell containing it |
KR102270128B1 (en) * | 2019-11-07 | 2021-06-28 | 주식회사케이세라셀 | Zirconia electrolyte and manufacturing method thereof |
GB202009687D0 (en) * | 2020-06-25 | 2020-08-12 | Ceres Ip Co Ltd | Layer |
CN112072148B (en) * | 2020-08-13 | 2021-07-13 | 浙江南都电源动力股份有限公司 | Sintering preparation method of self-supporting porous electrode |
WO2022050356A1 (en) * | 2020-09-02 | 2022-03-10 | 三菱ケミカル株式会社 | Metal oxide, oxygen storage material, oxygen absorption and desorption apparatus, oxygen absorption and desorption method, oxygen concentrator and oxygen concentration method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08203535A (en) * | 1995-01-31 | 1996-08-09 | Kyocera Corp | Solid electrolytic type fuel battery cell |
JP2001250563A (en) * | 2000-03-03 | 2001-09-14 | Matsushita Electric Ind Co Ltd | Oxidation electrode for oxide solid electrolyte |
JP2004273143A (en) * | 2003-03-05 | 2004-09-30 | Japan Fine Ceramics Center | Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell |
JP2005190833A (en) * | 2003-12-25 | 2005-07-14 | Electric Power Dev Co Ltd | Electrode for secondary battery |
JP2007008778A (en) * | 2005-07-01 | 2007-01-18 | Chubu Electric Power Co Inc | Ceramic material, oxygen electrode material, oxygen electrode, and fuel cell and manufacturing method thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6117582A (en) * | 1995-11-16 | 2000-09-12 | The Dow Chemical Company | Cathode composition for solid oxide fuel cell |
JP3414657B2 (en) * | 1997-12-09 | 2003-06-09 | 日本電信電話株式会社 | Air electrode materials for nickel-iron based perovskite solid fuel cells |
JP3403055B2 (en) * | 1998-03-11 | 2003-05-06 | 三菱重工業株式会社 | Oxygen side electrode |
JP2000260436A (en) * | 1999-03-10 | 2000-09-22 | Tokyo Gas Co Ltd | Film support solid electrolyte fuel cell having low temperature active electrode and manufacture of air electrode used for fuel cell |
JP3617814B2 (en) * | 2000-11-13 | 2005-02-09 | 日本電信電話株式会社 | Air electrode material for alkaline-earth-added nickel-iron perovskite-type low-temperature solid fuel cell |
JP3976181B2 (en) * | 2002-07-19 | 2007-09-12 | 東邦瓦斯株式会社 | Solid oxide fuel cell single cell and solid oxide fuel cell using the same |
JP4476689B2 (en) * | 2004-05-11 | 2010-06-09 | 東邦瓦斯株式会社 | Low temperature operation type solid oxide fuel cell single cell |
JP2006024436A (en) * | 2004-07-07 | 2006-01-26 | Ngk Spark Plug Co Ltd | Solid electrolyte fuel cell |
JP2006032132A (en) * | 2004-07-16 | 2006-02-02 | Hosokawa Funtai Gijutsu Kenkyusho:Kk | Air electrode material powder of solid oxide fuel cell, air electrode and solid oxide fuel cell |
JP2006040822A (en) * | 2004-07-29 | 2006-02-09 | Central Res Inst Of Electric Power Ind | Porous mixed conductor, its manufacturing method, and air pole material of solid oxide fuel cell |
-
2007
- 2007-02-08 WO PCT/JP2007/052247 patent/WO2007091642A1/en active Application Filing
- 2007-02-08 JP JP2007513500A patent/JP5044392B2/en not_active Expired - Fee Related
-
2012
- 2012-04-11 JP JP2012090537A patent/JP5525564B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08203535A (en) * | 1995-01-31 | 1996-08-09 | Kyocera Corp | Solid electrolytic type fuel battery cell |
JP2001250563A (en) * | 2000-03-03 | 2001-09-14 | Matsushita Electric Ind Co Ltd | Oxidation electrode for oxide solid electrolyte |
JP2004273143A (en) * | 2003-03-05 | 2004-09-30 | Japan Fine Ceramics Center | Solid oxide fuel cell, and material for air electrode of solid oxide fuel cell |
JP2005190833A (en) * | 2003-12-25 | 2005-07-14 | Electric Power Dev Co Ltd | Electrode for secondary battery |
JP2007008778A (en) * | 2005-07-01 | 2007-01-18 | Chubu Electric Power Co Inc | Ceramic material, oxygen electrode material, oxygen electrode, and fuel cell and manufacturing method thereof |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009140693A (en) * | 2007-12-05 | 2009-06-25 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2011514644A (en) * | 2008-03-18 | 2011-05-06 | テクニカル ユニヴァーシティー オブ デンマーク | All-ceramic solid oxide battery |
JP2009259568A (en) * | 2008-04-16 | 2009-11-05 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2010277877A (en) * | 2009-05-29 | 2010-12-09 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
JP2011228009A (en) * | 2010-04-15 | 2011-11-10 | Dowa Electronics Materials Co Ltd | Solid electrolyte fuel cell composite oxide, solid electrolyte fuel cell binder, solid electrolyte fuel cell electrode, solid electrolyte fuel cell collector member, solid electrolyte fuel cell, solid electrolyte fuel cell stack, and manufacturing method of solid electrolyte fuel cell composite oxide mixture |
JP2012043774A (en) * | 2010-07-21 | 2012-03-01 | Ngk Insulators Ltd | Electrode material and solid oxide fuel cell including the same |
JP2014120471A (en) * | 2012-12-17 | 2014-06-30 | Samsung Electro-Mechanics Co Ltd | Electrode paste for solid oxide fuel cell, solid oxide fuel cell using the same, and fabricating method thereof |
JP2016501435A (en) * | 2012-12-18 | 2016-01-18 | サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド | Powder mixture for layers in solid oxide fuel cells |
JP2013101965A (en) * | 2013-01-24 | 2013-05-23 | Nippon Telegr & Teleph Corp <Ntt> | Solid oxide fuel cell |
CN112204780A (en) * | 2018-03-29 | 2021-01-08 | 堺化学工业株式会社 | Air electrode material powder for solid oxide fuel cell |
JP2022028167A (en) * | 2020-08-03 | 2022-02-16 | 森村Sofcテクノロジー株式会社 | Electrochemical reaction single cell |
JP7278241B2 (en) | 2020-08-03 | 2023-05-19 | 森村Sofcテクノロジー株式会社 | electrochemical reaction single cell |
Also Published As
Publication number | Publication date |
---|---|
JP5525564B2 (en) | 2014-06-18 |
JP2012164672A (en) | 2012-08-30 |
JP5044392B2 (en) | 2012-10-10 |
JPWO2007091642A1 (en) | 2009-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5044392B2 (en) | Air electrode materials for solid oxide fuel cells | |
JP4795949B2 (en) | Fuel electrode material for solid oxide fuel cell, fuel electrode using the same, and fuel cell | |
AU2006280812B2 (en) | Nickel oxide powder material for solid oxide fuel cell, production process thereof, raw material composition for use in the same, and anode material using the nickel oxide powder material | |
US20130224628A1 (en) | Functional layer material for solid oxide fuel cell, functional layer manufactured using functional layer material, and solid oxide fuel cell including functional layer | |
JP2009104990A (en) | Method of manufacturing electrolyte sheet for solid oxide fuel cell and electrolyte sheet | |
JP2000340240A (en) | High ionic conductive solid electrolyte material and solid electrolyte fuel cell using the same | |
JP6573243B2 (en) | Air electrode composition, air electrode and fuel cell including the same | |
JP2017022111A (en) | Laminate | |
JP5611249B2 (en) | Solid oxide fuel cell and cathode forming material of the fuel cell | |
JP2007200664A (en) | Method of manufacturing solid oxide fuel cell | |
JP6042320B2 (en) | Electrode materials and their use | |
JP2007335142A (en) | Nickel-ceria fuel electrode material for solid oxide fuel battery | |
JP6795359B2 (en) | Electrolyte layer for electrochemical cell, and electrochemical cell containing it | |
JP2016012550A (en) | Solid oxide fuel cell air electrode, solid oxide fuel cell, and method for manufacturing solid oxide fuel cell air electrode | |
JP2006040822A (en) | Porous mixed conductor, its manufacturing method, and air pole material of solid oxide fuel cell | |
CN107646151A (en) | Oxide particle, the negative electrode comprising it and include its fuel cell | |
JP2008257943A (en) | Electrode for solid oxide fuel cell and solid oxide fuel cell having same | |
JP2006059611A (en) | Ceria based solid electrolyte fuel cell and its manufacturing method | |
JP6101194B2 (en) | Electrode materials for solid oxide fuel cells and their applications | |
JP2018041661A (en) | Electrolyte layer for electrochemical cell and electrochemical cell including the same | |
JP2018063871A (en) | Fuel electrode for electrochemical cell, and electrochemical cell including the same | |
JP6524434B2 (en) | Solid oxide fuel cell air electrode, solid oxide fuel cell, and method of manufacturing solid oxide fuel cell air electrode | |
JP2017147053A (en) | Air electrode for solid oxide fuel battery | |
JP6199680B2 (en) | Solid oxide fuel cell half cell and solid oxide fuel cell | |
JP2019153390A (en) | Solid oxide fuel cell and electrode material for use therein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2007513500 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07713955 Country of ref document: EP Kind code of ref document: A1 |