Nothing Special   »   [go: up one dir, main page]

WO2007083465A1 - 細胞培養方法及びその方法を用いた自動培養装置 - Google Patents

細胞培養方法及びその方法を用いた自動培養装置 Download PDF

Info

Publication number
WO2007083465A1
WO2007083465A1 PCT/JP2006/324903 JP2006324903W WO2007083465A1 WO 2007083465 A1 WO2007083465 A1 WO 2007083465A1 JP 2006324903 W JP2006324903 W JP 2006324903W WO 2007083465 A1 WO2007083465 A1 WO 2007083465A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cells
container
discharge
cell
Prior art date
Application number
PCT/JP2006/324903
Other languages
English (en)
French (fr)
Inventor
Tsutomu Suzuki
Daisuke Iejima
Hideaki Kagami
Ryuji Kato
Minoru Ueda
Kunihiko Okada
Original Assignee
Hitachi Medical Corporation
National University Corporation Nagoya University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/160,613 priority Critical patent/US20100317102A1/en
Application filed by Hitachi Medical Corporation, National University Corporation Nagoya University filed Critical Hitachi Medical Corporation
Priority to JP2007554830A priority patent/JP5294296B2/ja
Priority to KR1020087017352A priority patent/KR101419952B1/ko
Priority to EP06834657A priority patent/EP1978089A4/en
Priority to CN2006800511180A priority patent/CN101370928B/zh
Publication of WO2007083465A1 publication Critical patent/WO2007083465A1/ja
Priority to US14/015,574 priority patent/US20130344597A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M3/00Tissue, human, animal or plant cell, or virus culture apparatus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/14Bags
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/04Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by injection or suction, e.g. using pipettes, syringes, needles
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/12Means for regulation, monitoring, measurement or control, e.g. flow regulation of temperature
    • C12M41/14Incubators; Climatic chambers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control

Definitions

  • the present invention relates to a cell culture method and a cell culture apparatus that executes the method, and in particular, can obtain a large amount of cultured cells without mixing germs or the like into human cultured cells (contamination).
  • the present invention relates to a cell culture method and an automatic cell culture apparatus.
  • Regenerative medicine requires a large amount of cells constituting human tissues and organs, but artificially cultured cells are used as cells required for regenerative medicine.
  • Patent Document 1 As a conventional apparatus related to cell culture, as disclosed in Patent Document 1, a culture apparatus capable of controlling the atmosphere such as temperature and gas concentration in the culture chamber and disclosed in Patent Document 2. such as those, in addition to the control of the atmosphere in the culture chamber, on of the cultured tissue into the culture vessel, the culture drug supply and discharge, further, the automatic culture device power s was also possible to control the atmosphere in the culture room.
  • Patent Document 1 Japanese Patent No. 3021789
  • Patent Document 2 International Publication WO2005 / 059091
  • Patent Document 3 discloses a subculture technique for proliferating large amounts of experimental cells such as Paramecium.
  • a new culture medium is supplied to a cultured cell cultured in a culture container filled with a medium to wash away an old culture medium and a part of the cultured cell.
  • the cultured cells in the culture vessel are diluted.
  • cells washed away with the medium are used for measurement as they are, so it seems unsuitable for obtaining a large amount of pure cells for human regenerative medicine.
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004-208663
  • An object of the present invention is to provide a cell culturing method and an automatic culturing apparatus that can obtain a large amount of cultured cells used for regenerative medicine of the human body while addressing the above problems.
  • the culture method of the present invention comprises:
  • a step of injecting cells and medium removed from the human body into a culture container (2) culturing the cells while ventilating and replacing the medium in the culture container containing the medium and the cells. And (3) after washing the cultured cells cultured in the incubator, recovering the washed cells from the culture vessel to the cell collection vessel leaving a part of the cells, (4) A culture medium is poured into the cultured cells left in the culture vessel in the step (3). And (5) the step (2) and the step (4) are repeatedly executed.
  • an automatic culture apparatus of the present invention includes a chemical supply unit that individually stores a plurality of chemicals necessary for culture, an incubator unit that stores a cell culture container, A recovery unit for recovering the cultured cells cultured in the culture container; supply of the cells to the culture container; supply of a drug from the chemical supply unit to the culture container; and force of the culture container to the recovery unit
  • a control unit that controls the supply / discharge unit for discharging the cultured cells, the chemical supply operation to the culture vessel, the cell culture operation in the culture vessel, and the discharge operation of the cultured cells from the culture vessel.
  • FIG. 1 is a block diagram showing a unit configuration of an automatic culture apparatus of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the automatic culture apparatus according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view of a culture vessel according to the first embodiment of the present invention.
  • FIG. 4 is a detailed side view of the culture vessel shown in FIG.
  • FIG. 5 is a cross-sectional view showing a Nozure piping portion of a culture vessel.
  • FIG. 6 is a flowchart of the culture method of the present invention.
  • FIG. 7 is a block diagram showing a schematic configuration of an automatic culture apparatus according to a second embodiment of the present invention.
  • FIG. 1 is a block diagram showing an outline of the configuration of the automatic culture apparatus according to the first embodiment of the present invention. It is.
  • reference numeral 200 denotes a chemical supply unit for individually storing a plurality of chemicals necessary for cell culture of human cells, and the inside thereof is a predetermined temperature lower than normal temperature so that the stored chemicals are not deteriorated. It is configured so that it can be kept in range.
  • Reference numeral 300 denotes an incubator unit in which a culture vessel is stored.
  • Reference numeral 400 denotes a recovery unit that recovers cells cultured in the incubator unit and used chemicals.
  • 500 is a supply / discharge unit that supplies and discharges chemicals and cells between the chemical supply unit 200, the incubator unit 300, and the recovery unit 400.
  • An environmental protection unit 600 controls the temperature of the chemical supplied from the chemical supply unit 200 to the incubator, the temperature in the incubator unit 300, and the concentration of carbon dioxide (CO 2). 700 ink
  • An observation unit for observing the state of cell culture in the incubator housed in the incubator unit 30 includes a microscope, a moving mechanism of the microscope, and a lighting device that illuminates the inside of the culture vessel.
  • a central processing unit (CPU) 800 controls the collection unit 400, the supply / discharge unit 500, the environmental protection unit 600, and the observation unit 700.
  • Reference numeral 900 denotes an operation unit including an operation device for inputting an operation command to the automatic culture apparatus, a monitor for displaying an image obtained by the observation unit 700, and the like.
  • the medicine supply unit 200 includes a storage box (not shown) having an openable / closable lid, and a plurality of (three in the illustrated example) medicine storage parts arranged in a predetermined position by a support member inside the storage box. It has chemical bags 5, 7, and 9. In order to prevent the chemicals contained in the chemical bags 5, 7, and 9 from deteriorating, the storage box blocks the chemical bag storage space from the outside and maintains the chemical bag storage space at a predetermined temperature. It is equipped with a heat insulating material. Drug bags 5, 7, and 9 are foldable, flexible and not toxic to cells, and it is preferable to use infusion bags made of materials. Specifically, for example, it is preferable to use a bag made of vinyl chloride or silicon rubber.
  • the chemical noses 5, 7, and 9 contain the chemicals necessary for the culture, in this example, the cleaning solution, the stripping agent, and the culture medium, respectively.
  • the release agent contained in the drug bag 7 is a drug that is required when cells with adhesive properties are to be cultured, and when the cells to be cultured are free cells. There is no need.
  • the incubator unit 300 includes an incubator 3 that is a thermostatic bath and a culture container 1 that is housed in the incubator 3. Like the chemical supply unit 200, the incubator 3 has a lid that can be opened and closed, and the inside can be sealed by closing the lid.
  • the incubator 3 has an observation window whose bottom surface facing the culture vessel 1 is formed of a transparent material, so that the culture vessel 1 can be observed from the outside of the incubator 3.
  • the incubator 3 is controlled at a constant temperature so that the interior becomes a predetermined temperature by a heater described later. For this reason, in order to increase the heating efficiency of the heater, it is preferable that the periphery except the observation window is covered with a heat insulating material.
  • the culture vessel 1 is for culturing cells removed from the human body, and is a material that is not toxic to the cells and is formed using a light-transmitting material such as polystyrene or polyethylene phthalate. is there.
  • the inside of the container 1 is maintained in a sealed state with respect to the external space so that contamination between the cells inserted therein and the cultured cells and germs does not occur.
  • the container attachment part of the tubes attached to the culture container 1 is sealed.
  • the recovery unit 400 includes a plurality (three in this example) of cell recovery bags 11, 13, and 15 for recovering the cultured cells cultured in the culture container 1, and a waste liquid container 65 for recovering used chemicals. And a known heat sealing mechanism 66 for heat sealing the tubular injection portions of the cell recovery bags 11, 13, and 15.
  • Cell recovery bags 11, 13, and 15 use an infusion bag formed of a material that is foldable and has no toxicity to cells, like drug bags 5, 7, and 9. Is preferred. Specifically, for example, it is preferable to use a bag made of vinyl chloride or silicon rubber.
  • the size of each of the cell collection bags 11, 13, and 15 is preferably such that it has a storage capacity that can store cells cultured in the culture vessel 1 in one culture.
  • the number of cell recovery bags provided in the recovery unit 400 is three in this example. This number is sufficient to cultivate at least the same tissue cell continuously and repeatedly in the culture vessel 1. It is desirable to have a number.
  • the supply / discharge unit 500 includes a supply pump 35 for supplying chemicals, cells, and air into the culture container 1, a discharge pump 61 for discharging the cells and used chemicals cultured in the culture container 1, Liquid feeding tubes 23, 25, 27, which form a flow path between the chemical bags 5 , 7 , 9 and the culture vessel 1 29, a gas tube 38 for connecting the liquid supply tube 29 and a filter 37 (described later) provided in the incubator 3, and a cell injection tube 39 for connecting the liquid supply tube 29 and the liquid storage container 43.
  • the liquid storage container 43 stores cells extracted from a living body and suspended in a culture medium and the like, and has an opening covered with a flexible film 45.
  • a film 45 forming a lid of the liquid storage container 43 is provided for puncturing the syringe 41 containing the suspended cells. Therefore, it is desirable that the film 45 has a predetermined thickness with flexibility so as to seal the puncture mark of the syringe 41 in order to prevent contamination of bacteria etc. into the liquid storage container 43. Les.
  • the supply / discharge unit 500 includes a discharge pump 61 for discharging the cultured cells and used chemicals in the culture container 1, and the culture container 1, the cell collection bags 11, 13, 15 and the waste liquid container 65.
  • Discharge tubes 53, 55, 57, 59 that form a flow path between them, and pinch valves 47, 49, 51, 63 provided in the discharge flow path are provided.
  • an electromagnetically driven on / off valve that can crush a flexible tube and close the flow path is used as the pinch valve.
  • a so-called ironing pump is used in which a flexible tube is attached to a plurality of rollers arranged in a cylindrical shape, and a plurality of rollers are rotated to push out fluid in the tube.
  • the environmental protection unit 600 is not shown in the figure with a heater 31 provided in a part of a liquid feeding tube 29 for flowing a chemical from a chemical bag 19, 21 containing a release agent and a culture medium to the culture vessel 1. Consists of a heater, a temperature sensor, a carbon dioxide (CO) sensor, and the like provided in the incubator 3. Incubator 3 is also connected to a CO supply pipe, which is connected to a CO cylinder. The heater 31 warms up in the process of supplying the release agent and culture medium to the culture vessel 1. A heater and a temperature sensor provided in the incubator 3 maintain the temperature in the culture vessel 1 at a predetermined temperature. The CO sensor detects the CO concentration inside the incubator 3.
  • a heater 31 provided in a part of a liquid feeding tube 29 for flowing a chemical from a chemical bag 19, 21 containing a release agent and a culture medium to the culture vessel 1.
  • the observation unit 700 is installed outside the observation window of the incubator 3, and faces the microscope 1 with the microscope 89 for observing the cell culture state in the culture container 1 and the culture container 1 interposed therebetween. And an illumination light source (not shown) and a microscope moving mechanism (not shown) for moving the microscope 89 two-dimensionally in a plane parallel to the bottom surface of the culture vessel 1.
  • the microscope 89 includes a camera that can output captured image information as an electrical signal, for example, a CCD camera.
  • the microscope movement mechanism is a mechanism that can move the microscope to any position by cross-locating the movement mechanism that combines the power of the motor and linear motion guide mechanism and linking each motor individually or in conjunction. Good.
  • the central processing unit 800 controls the recovery unit 400, the supply / discharge unit 500, the environmental conservation unit 600, and the observation unit 700 according to the culture conditions input from the operation unit 900 described later.
  • the CPU 800 includes a ROM, and software that controls the operation of the device described later is stored in the ROM.
  • the operation unit 900 includes an operation device for inputting the operation (cultivation) conditions of the automatic culture apparatus, and a monitor that displays the operation conditions input by the operation device force and the image captured by the microscope 89. Yes. Note that pumps, valves, motors, heaters and other actuators incorporated in the automatic culture apparatus described above are not driven by the drive circuit.
  • the cross-sectional shape of the culture vessel 1 is not particularly limited, in the present embodiment, it is a circular petri dish, and a flange is formed in the upper opening thereof. Using the plane of the flange, the lid 67 is fixed by welding or the like, and the culture vessel 1 is sealed. Then, nozzles 69, 71, 73 are inserted into the side surface of the culture vessel 1, a liquid feeding tube 29 is provided in the nozzle 69, a discharge tube 59 is provided in the nozzle 71, and a gas exchange tube 75 is provided in the nozzle 73. Is connected.
  • FIG. 5 is a diagram showing the connection state between the nozzle 69 and the liquid feeding tube 29 in more detail.
  • the tip of the nozzle 69 connected to the liquid feeding tube 29 is positioned in the liquid layer in the culture vessel 1 (the liquid level position during culture) or in the air layer.
  • the tip of the nozzle 71 connected to the discharge tube 59 is required to leave a part (small amount) of cultured cells in the culture vessel 1 for the next culture.
  • the tip of the nozzle 73 connected to the gas exchange tube 75 serves as a supply / exhaust port for exchanging the gas in the culture vessel 1 and the gas in the incubator 3, so Is set to a higher position.
  • the operator attaches the cell collection bag 11, 13, 15 to the collection unit 400 of the automatic culture apparatus, and sterilizes the inside of the automatic culture apparatus by emitting X-rays or ⁇ -rays.
  • the aseptic condition of the cell collection bags 11, 13, 15 may be ensured by irradiating with radiation between the completion of the manufacturing of the snag and the packaging.
  • the operator attaches the chemical bags 5, 7, and 9 storing the cleaning solution, the release agent, and the medium to the chemical supply unit 200.
  • the operator also injects the cell solution in which the cells and the medium are suspended into the liquid reservoir 43 using the syringe 41.
  • the operator turns on the automatic culture apparatus and inputs a culture start command from the operation unit 900.
  • the cell culture is executed by the CPU 800 controlling each unit.
  • the CPU 800 When a culture start command is input, the CPU 800 first executes control for injecting the medium. That is, the CPU 800 outputs a signal for opening the pinch valve 21 and the pinch valve 33 of the supply / discharge unit 500, and then outputs a signal for operating the supply pump 35. As a result, the flow paths of the liquid feeding tubes 27 and 29 are opened, and the supply pump 35 is driven. When the supply pump 35 is driven, the medium stored in the medicine bag 9 is sent toward the culture container 1 through the liquid feeding tubes 27 and 29. At this time, current is supplied to the heater 31 in accordance with a command from the CPU 800, whereby the medium is warmed in the tube.
  • the CPU 800 closes the pinch valve 21 while keeping the supply pump 35 driven. Then, the air in the incubator 3 is sucked into the gas tube 38 and the liquid feeding tube 29 through the filter 37. There was no medium left in the feeding tube 29 At this timing, the supply pump 35 is temporarily stopped by the command of the CPU 800, and the pinch valve 33 is closed. By feeding air into the liquid feeding tube 29 after closing the pinch valve 21, the chemical (medium) remaining in the liquid feeding tube 29 is quickly fed into the culture vessel 1. As a result, the liquid feeding tube 29 is prevented from being clogged with chemicals.
  • Step 2 Cell fluid injection
  • the CPU 800 controls the injection of the cell fluid.
  • the cell fluid is stored in the reservoir 43 by the operator.
  • the CPU 800 outputs a command to open the pinch valve 40 and a command to drive the supply pump 35, the pinch valve 40 is opened.
  • the supply pump 35 is driven.
  • the cell liquid is injected from the liquid reservoir 43 through the liquid supply tube 39 into the culture vessel 1.
  • the pinch valve 40 is closed and the supply pump 35 is stopped by a command from the CPU 800.
  • the CPU 800 controls the concentration of CO inside the incubator 3 and the temperature inside the incubator 3 while culturing the cells for a preset period.
  • This preset period can be changed depending on, for example, the type of force cell, which is about 3 days, the cell growth speed, and the like.
  • the culture vessel 1 is ventilated.
  • the inside of the culture vessel 1 of the present embodiment is almost sealed during cell culture, and it is necessary to ventilate the culture vessel 1 for an appropriate period.
  • the CPU 800 outputs a command to open the pinch valve 33 and a command to drive the supply pump 35.
  • the pinch valve 33 is opened and the supply pump 35 is driven, the air in the incubator 3 sucked through the filter 37 enters the culture vessel 1 through the gas tube 3 8 and the liquid feeding tube 29 (arrow A
  • the air in the culture vessel 1 is discharged into the incubator 3 (in the direction of arrow B) through the gas exchange tube 75 and the filter 77.
  • the air feeding is performed once.
  • the air feeding may be continuously performed any number of times except when the medium is changed and the cells are recovered as described later.
  • the air in the culture vessel 1 is exchanged by supplying the air in the incubator 3 from the filter 77 into the culture vessel 1 (in the direction of arrow C), and the air in the culture vessel 1 from the filter 37 to the incubator. It may be discharged into 3 (in the direction of arrow D).
  • the medium is changed after a predetermined period.
  • Medium replacement is performed periodically to replenish nutrients by draining the medium in culture vessel 1 to eliminate cell metabolites that elute into the medium and injecting new medium into culture vessel 1.
  • the operations from Step 3 (S3) to Step 5 (S5) in Fig. 6 are performed every 3 to 7 days, but this period is preset or depends on the growth state of the cells. Can be changed arbitrarily.
  • the CPU 800 outputs a command to open the pinch valve 63 and outputs a command to drive the discharge pump 61.
  • the pinch valve 63 is opened, the discharge pump 61 is driven, and the medium containing the metabolite of the cell is discharged from the culture container 1 to the waste liquid container 65 through the discharge tubes 59 and 58.
  • the pinch valve 63 is closed and the discharge pump 61 is stopped.
  • the CPU 800 In order to supply the medium, the CPU 800 outputs a command to open the pinch valves 21 and 33 and outputs a command to drive the supply pump 35. As a result, the medium in the drug bag 9 is fed through the liquid feeding tubes 27 and 29, heated by the heater 31, and injected into the culture container 1 by a predetermined amount.
  • the CPU 800 determines whether or not a predetermined number of medium exchanges has been reached. If the number of medium exchanges has not reached the set number of times, the process returns to step 4 (S4), the air feed in step 5 (S5), and the medium exchange in step 6 (S6) are repeated.
  • step 7 When the medium exchange has reached the set number of times, the last air feed in step 7 (S4) is performed in the same manner as in step 4 (S4). During the cell culture period between step 3 (S3) and step 7 (S7), the control of CO concentration and temperature in incubator 3 is
  • the observation unit 700 is appropriately operated by the operator, whereby the culture state in the culture vessel 1 is imaged, and the captured image is displayed on the monitor. The operator observes the image displayed on the monitor to advance the culture. Check the row status.
  • Step 8 Determination of the number of cell recovery
  • the step of collecting cultured cells is performed.
  • the culture cell collection step first, a determination is made with respect to the set number of cell collections to be performed. In this embodiment, the apparatus is set so that the cells are collected three times.
  • Step 8 (S8) if it is determined that the cultured cell is recovered for the third time, the next process proceeds to the final cell recovery process in Step 13 (S13). If the cultured cells are collected for the first or second time, the next process proceeds to step 9 (S9).
  • step 8 a determination is made as to whether or not the cell recovery power has been reached. If the determination result is not the second time, that is, if it is determined to be the first time, the next step proceeds to the cell recovery step of step 10 (S10), and if it is determined that the determination result is the first time, The next step proceeds to the cell recovery process of step ll (Sll).
  • the culture cell is washed by performing the discharge process of the medium in the culture vessel 1, the injection process of the washing liquid stored in the chemical bag 5, and the subsequent discharge process. Thereafter, the step of injecting the release agent stored in the chemical bag 7 into the culture container 1 is performed.
  • a stripping agent is injected into the culture vessel 1 and a predetermined time elapses, the culture cells are detached from the culture vessel 1.
  • the recovery process of the cultured cells detached from the bottom surface of the culture vessel 1 to the cell recovery bag 11 is executed.
  • the CPU 800 first issues a command to open the pinch valve 63 and a command to drive the discharge pump 61 in the same manner as the medium discharge described in Step 5 (S5) for discharging the medium. Output. As a result, the medium in the culture vessel 1 is discharged. When the discharge of the medium is completed, the pinch valve 63 is closed and the discharge pump 61 is stopped according to the command from the CPU 800. Subsequently, the CPU 800 outputs a command for opening the pinch valves 17 and 33 and a command for driving the supply pump 35 in order to inject the washing solution into the culture vessel 1.
  • the pinch valves 17 and 33 are opened, the supply pump 35 is driven, and the washing solution stored in the medicine bag 5 is injected into the culture vessel 1.
  • the supply pump 35 is stopped and the pinch valves 17 and 33 are closed.
  • the washing solution is sent to the waste container 65 in the same manner as the medium discharge described in Step 5.
  • the CPU 800 outputs a command to open the pinch valves 19, 33 and a command to drive the supply pump 35 in order to inject the release agent into the culture vessel 1. To do.
  • the pinch valves 19 and 33 are opened, the supply pump 35 is driven, and the release agent stored in the chemical bag 7 is injected into the culture vessel 1.
  • the supply pump 35 is stopped and the pinch valves 19 and 33 are closed.
  • the release agent floats on the cultured cells attached to the bottom surface of the culture vessel 1.
  • the CPU 800 injects the medium into the culture container 1.
  • the medium is injected here to weaken the effect of the release agent that adversely affects the cells.
  • the CPU 800 outputs a command to open the pinch valves 21 and 33 and a command to drive the supply pump 35.
  • the pinch valves 21 and 33 are opened, the supply pump 35 is driven, and the culture medium is injected into the culture container 1 from the drug bag 9.
  • the supply pump 35 is stopped and the pinch valves 21 and 33 are closed.
  • the CPU 800 drives the discharge pump 61 in response to a command to open the pinch valve immediately (here, since it is the first collection, the pinch valve 47 is opened). Outputs a command. As a result, the cultured cells in the culture vessel 1 are collected in the cell collection bag 11 through the discharge tubes 59 and 53. When the cultured cells are not sucked into the discharge tubes 59 and 53, the CPU 800 closes the pinch valve 47 and stops the discharge pump 61.
  • the CPU 800 outputs a command for thermocompression bonding of the tube portion of the cell collection bag 11 to the heat sealing mechanism 66.
  • the tube portion of the cell collection bag 11 is heat-sealed.
  • the cell collection bag 11 is detached from the apparatus by the operator. Bag with cultured cells separated from the device Are stored in a refrigerator.
  • the culture vessel is not recovered without collecting a part of the cultured cells. It remains in 1.
  • the gist of the present invention is to obtain a large number of cultured cells by repeatedly culturing the cultured cells remaining in or remaining in the culture vessel 1.
  • step 10 the CPU 800 repeats steps 3 (S3) to 9 (S9) for the cells remaining in the culture vessel 1. Execute. As a result, the cells left in the culture vessel 1 are cultured. In step 8 (S8) and step 9 (S9), the CPU 800 determines how many times this cell recovery is performed. This is the second decision.
  • step 11 If it is determined in step 9 (S9) that the cell recovery power is the second time, in step 11 (Sll), the second cell recovery is performed in the same order as the cell recovery in step 10 (S10). However, in the second cell recovery in step ll (Sll), the cells discharged from the culture vessel 1 are directed to the cell recovery bag 13 according to the instruction of the CPU 800 in accordance with the determination result in step 9 (S9).
  • the recovered heat sealing mechanism 66 is different from step 10 (S10) in that the tube portion of the cell recovery bag 13 is thermocompression bonded.
  • step ll When the second cell recovery in step ll (Sll) is completed, CPU 800 repeats again steps 3 (S3) to 9 (S9) for the cells remaining in culture vessel 1. As a result, the cells left in the culture vessel 1 are cultured. In step 8 (S8) and step 9 (S9), the CPU 800 determines how many times this cell recovery is performed. This is the third decision.
  • step 12 (S12) When it is determined in step 9 (S9) that the cell recovery power is the third time, in step 12 (S12), the third cell recovery is performed in the same order as the cell recovery in step 10 (S10). However, in the third cell recovery in step 12 (S12), step 9 (S9) Corresponding to the judgment result, the cells discharged from the culture vessel 1 are collected into the cell collection bag 15 according to the instruction of the CPU 800, and the heat sealing mechanism 62 is a step where the tube portion of the cell collection bag 15 is thermocompression bonded. Different from 10 (S10).
  • the cell collection bags 11, 13, and 15 containing the collected cultured cells are transported to a clinical site where the cultured cells are used for tissue regeneration of the human body. Be done
  • the present embodiment when recovering cells cultured in the culture container, a part of the cells is left in the culture container, and the cells remaining in the culture container are cultured again. Thus, cells can be grown in large quantities. In this embodiment, since the cells remaining in the culture container are cultured again, a small-sized culture container can be used. Compared with the case where the cultured cells once cultured in a culture vessel are transferred to a plurality of different culture vessels and the culture is continued as in conventional subculture, the apparatus can be downsized. Furthermore, according to the present embodiment, the tissue cells can be extracted from the living body only once, so that the damage to the living body can be reduced.
  • the cultured cells are automatically collected into the cell collection bag, and the cell collection bag is removed by heat sealing to shut off the inside of the cell collection bag and the external environment. In addition, contamination of cells and bacteria during cell recovery can be prevented.
  • the air in the culture container when a medicine is supplied into the culture container, the air in the culture container according to the amount of the medicine supplied from the nozzle where the air in the culture container communicates with the incubator. Can be poured into the culture vessel smoothly.
  • the liquid in the culture vessel when discharging liquid such as chemicals in the culture vessel, air is supplied into the culture vessel according to the discharge amount of the liquid containing chemicals and cells discharged from the nozzle that communicates with the incubator. Therefore, the liquid in the culture vessel can be extracted smoothly.
  • air is supplied to and discharged from the culture vessel through the filter, so that a clean culture environment is provided and maintained.
  • the number of repetitions of cell culture and recovery may be arbitrarily set as long as it is at least twice depending on the amount of cells required. In that case, change the number of cell collection bags and pinch valves provided in the collection unit according to the number of times the cultured cells are collected. If it is possible to provide a device that prevents contamination of cells and bacteria during cell recovery, it is not necessary to load multiple cell recovery bags into the automatic culture device in advance. You can use the loading method.
  • the culture apparatus of the present embodiment can culture cells almost continuously, and can collect cells at predetermined time intervals. Therefore, when performing regenerative treatment by dividing a patient's organ or tissue into multiple times, for example, when performing leukemia treatment that uses mesenchymal stem cells as an auxiliary, the mesenchymal stem cells are spread several times at predetermined intervals. Can be supplied.
  • the cell collection bags 11, 13, 15 and the waste liquid container 65 are connected to the discharge pipe of one discharge pump 61 via pinch valves 47, 49, 51, 63, respectively. Then, waste liquid and collected cells may remain in the pipeline. If these waste liquids, dead cells, and cellular metabolites remain in the collection system, contamination will occur during the next repeated collection of cultured cells. It is necessary to prevent the occurrence of such contamination.
  • FIG. 7 shows the configuration of the automatic culture apparatus of the second embodiment that can prevent the occurrence of such contamination.
  • the automatic culture apparatus of the present embodiment is replaced with a discharge system nozzle 71 provided in the culture container 1 of the first embodiment in comparison with the first embodiment.
  • nozzles 101, 103, 105, 107 corresponding to the number of cell collection bags 11, 13, 15 and waste liquid containers 65 (four in total) are provided.
  • the discharge tubes 119, 121, 123, 125 are connected to the nozzles 101, 103, 105, 107, respectively.
  • Cell discharge bags 11, 13, and 15 are connected to these discharge tubes 119, 121, and 123, respectively, and a waste liquid container 65 is connected to the discharge tube 125.
  • pinch valves 47, 49, 51, 63 and discharge pumps 111, 113, 115, 117 are connected as shown in the figure. Yes.
  • the pinch valves 47, 49, 51, and 63 are attached to the suction side of the discharge pump. They can also be attached to the discharge side of the discharge pump.
  • the discharge pumps 111, 113, 115, 117 and the pinch valves 47, 49, 51, 63 are operated by a command from the CPU 800.
  • the automatic culturing apparatus of the present embodiment configured as described above differs from the automatic culturing apparatus of the first embodiment in the operation when the liquid in the culture vessel 1 is discharged. That is, when the waste liquid in the culture vessel 1 is discharged, the pinch valve 63 is opened and the discharge pump 117 is driven.
  • the pinch valve 47 is opened and the discharge pump 111 is driven at the first cell collection time.
  • the pinch valve 49 is opened and the discharge pump 113 is driven
  • the pinch valve 51 is opened and the discharge pump 115 is driven.
  • the discharge tubes 119, 121, 123, and 125 are provided independently, the cells collected after the second time are used. Waste liquid and cellular metabolites will not be mixed. Accordingly, clean cultured cells can be obtained.
  • the second embodiment described above is an embodiment in which both the waste liquid left in the pipeline at the previous recovery and the metabolite of the cell are prevented from being mixed into the recovered cells after the second time. It can be modified so that only the waste liquid does not enter the collected cells after the first round.
  • the embodiment is possible by referring to the second embodiment and providing the waste liquid recovery system independently of the first embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Clinical Laboratory Science (AREA)
  • Cell Biology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Virology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明の培養方法は、人体より摘出した細胞と培地とを培養容器へ注入するステップと、(2)培地と前記細胞が入った前記培養容器内の換気と培地の交換を行いつつ、細胞を培養するステップと、(3)前記培養容器内で培養された培養細胞の洗浄を行った後、前記洗浄された細胞をその一部を残して前記培養容器内から細胞回収容器へ回収するステップと、(4)前記ステップ(3)において前記培養容器内に残された培養細胞に対し、培地を注入するステップと、(5)前記ステップ(2)とステップ(3)を繰返し実行するステップにより構成される。

Description

明 細 書
細胞培養方法及びその方法を用レ、た自動培養装置
技術分野
[0001] 本発明は、細胞培養方法及びその方法を実行する細胞培養装置に係り、特に人 体の培養細胞に雑菌等を混入 (コンタミネーシヨン)させることなぐ大量の培養細胞を 得ることができる細胞培養方法及び自動細胞培養装置に関するものである。
背景技術
[0002] 近年、人体の損傷した組織や機能が低下した臓器等を再生させる再生医療の研究 が数多く報告されている。再生医療においては、人体の組織や臓器を構成する細胞 を大量に必要とするが、再生医療に必要とされる細胞は、人工的に培養された培養 細胞が用いられる。
[0003] 従来の細胞培養に関連する装置としては、特許文献 1に開示されているように、培 養室内の温度、ガス濃度等の雰囲気の制御が可能な培養装置と、特許文献 2に開示 されているような、培養室内の雰囲気の制御に加え、培養容器への培養組織の投入 、培養薬剤の給排、更には培養室内の雰囲気の制御をも可能とした自動培養装置 力 sある。
特許文献 1:特許第 3021789号公報
特許文献 2:国際公開 WO2005/059091号公報
[0004] 上記従来の培養装置の前者においては、培養器内の培地の交換、多量の培養細 胞を得るために細胞密度を調整する継代培養等の作業は、研究者等の手作業によ り行われている。この装置の場合、例えば、培地交換や継代などの作業は、作業者 が装置の扉を開放した後、菌を培養器内へ混入させないように注意を払いながら、シ ヤーレなどの培養器の蓋を持ち上げ、滅菌されたピペットを用いて注意深く行ってい る。また、継代培養を重ねる場合には、増えた培養細胞を複数の培養器へ移植する 作業を複数回行う必要があることから、熟練者であってもコンタミネーシヨンを引き起 こす可能性があった。
[0005] 一方、上記従来の培養装置の後者の自動培養装置においては、前述のように、細 胞の投入、培養薬剤の給排、更には培養室内の雰囲気の制御をも可能となっている 。しかし、培養装置内で培養された細胞を取出し容器内へ注入したままの状態で装 置外へ自動搬送する方式を採用しており、培養細胞の取り出し時のコンタミネーショ ンにはまだ解決すべき課題が残されていると考えられる。
[0006] また、人体の組織や臓器を再生しょうとする場合には、大量の培養細胞を必要とす るが、大量の培養細胞を得るためには、培養器を大型化することが必要になり、人体 力 摘出される細胞の量を増やす必要がある。しかし、培養器を大型化すると、培養 装置も当然大型化し設置スペースが大きくなるという問題が生ずる。また、人体から 摘出する細胞の量を増やすと、人体に大きなダメージを与えるという問題が生ずる。 なお、ゾゥリムシのような実験用細胞を大量に増殖させる継代培養技術に関するも のとして、特許文献 3がある。この特許文献 3に記載された技術では、培地が充填され た培養容器内で培養された培養細胞に対して、新しい培地を供給して古くなつた培 地と培養細胞の一部とを洗い流して、培養容器内の培養細胞を希釈するというもの である。しかし、本技術では培地で洗い流した細胞はそのまま計測に供されるというも ので、人体の再生医療に供される純粋な細胞を大量に取得するものには適さないよ うに思われる。
特許文献 3:特開 2004-208663号公報
発明の開示
発明が解決しょうとする課題
[0007] 本発明の目的は、上記問題に対応しつつ、人体の再生医療に用いる培養細胞を 大量に得ることができる細胞培養方法および自動培養装置を提供することにある。 課題を解決するための手段
[0008] 上記課題を解決するために、本発明の培養方法は、
(1)人体より摘出した細胞と培地とを培養容器へ注入するステップと、(2)培地と前記 細胞が入った前記培養容器内の換気と培地の交換を行レ、つつ、細胞を培養するス テツプと、(3)前記培養器内で培養された培養細胞の洗浄を行った後、前記洗浄され た細胞をその一部を残して前記培養容器内から細胞回収容器へ回収するステップと 、(4)前記ステップ (3)において前記培養容器内に残された培養細胞に対し、培地を注 入するステップと、(5)前記ステップ (2)とステップ (4)を繰返し実行するステップにより構 成される。
[0009] また、上記課題を解決するために、本発明の自動培養装置は、培養に必要な複数 の薬品を個別に収納する薬品供給ユニットと、細胞培養容器を収納するインキュべ ータユニットと、前記培養容器内で培養された培養細胞を回収する回収ユニットと、 前記培養容器への細胞の供給と、前記薬品供給ユニットから前記培養容器への薬 品の供給と、前記培養容器力 前記回収ユニットへの培養細胞の排出を行う給排ュ ニットと、前記培養容器への薬品供給動作と、前記培養容器における細胞培養動作 と、前記培養容器からの培養細胞の排出動作とを制御する制御ユニットであって、培 養細胞の回収時に前記培養容器内に残された培養細胞に対し、前記給排ユニット による薬品供給工程を含む細胞培養工程と、培養細胞の排出工程を少なくとも 1回 行わせる手段を有した制御ユニット、
を備えている。
[0010] 本発明によれば、人体の再生医療に用いる培養細胞を大量に得ることが可能であ る。
図面の簡単な説明
[0011] [図 1]本発明の自動培養装置のユニット構成を示すブロック図である。
[図 2]本発明の第 1の実施形態の自動培養装置の概略構成を示すブロック図である。
[図 3]本発明の第 1の実施形態における培養容器の斜視図である。
[図 4]図 3に示す培養容器の詳細な側面図である。
[図 5]培養容器のノズノレ配管部を示す断面図である。
[図 6]本発明の培養方法のフローチャートである。
[図 7]本発明の第 2の実施形態の自動培養装置の概略構成を示すブロック図である。 発明を実施するための最良の形態
[0012] (第 1の実施形態)
以下、本発明を、図面を参照しながら説明するが、先ず初めに、本発明の細胞培 養方法を実行するための自動培養装置の第 1の実施形態を説明する。
図 1は、本発明の第 1の実施形態の自動培養装置の構成の概要を示すブロック図 である。図 1において、 200は、人体細胞の細胞培養に必要とされる複数の薬品を個 別に収納する薬品供給ユニットで、その内部は収納された薬品が劣化しないように常 温よりも低い所定の温度範囲に保つことができるように構成されている。 300は、イン キュベータユニットで、内部には培養容器が収納されている。 400は、回収ユニットで 、インキュベータユニット内で培養された細胞や、使用済み薬品を回収するユニットで ある。 500は、薬品供給ユニット 200とインキュベータユニット 300と回収ユニット 400との 間で、薬品や細胞を供給、排出させる給排ユニットである。 600は、環境保全ユニット で、薬品供給ユニット 200から培養器へ供給される薬品の温度や、インキュベータュ ニット 300内の温度、炭酸ガス (CO )濃度をコントロールするものである。 700は、インキ
2
ュベータユニット 30に収納された培養器内の細胞培養状態を観察するための観察ュ ニットで、顕微鏡や、顕微鏡の移動機構や、培養容器内を照らす照明器具を備えて いる。 800は、上記回収ユニット 400、給排ユニット 500、環境保全ユニット 600、観察ュ ニット 700をコントロールする中央演算処理ユニット (CPU)である。 900は、自動培養装 置への操作指令を入力する操作器や、前記観察ユニット 700で得られた画像を表示 するモニタ等を備えた操作ユニットである。
次に、図 2を参照して、上記各ユニットの詳細な説明を行う。
薬品供給ユニット 200は、開閉可能な蓋を備えた収納ボックス (図示省略)と、この収 納ボックスの内部に支持部材によって所定位置に配置された複数 (図示例では 3個) の薬品収容用の薬品バッグ 5, 7, 9とを備えている。収納ボックスは、薬品バッグ 5, 7, 9内に入れられた薬品の劣化を防止するために、薬品バッグの収容空間を外部と遮 断し、薬品バッグが収容される空間を所定の温度に維持するための断熱材を備えて いる。薬品バッグ 5, 7, 9は、折り畳み可能な柔軟性を有し、かつ細胞に対して毒性を 持たなレ、材料で形成された輸液バッグを用いるのが好ましレ、。具体的には、例えば、 塩化ビニール製、またはシリコンゴム製のバッグを用いることが好ましい。なお、薬品 ノ ッグ 5, 7, 9には、培養に必要な薬品、この例では、洗浄液、剥離剤、培地が各々 個別に収容されている。なお、薬品バッグ 7に収容された剥離剤は、接着性を有した 細胞を培養対象とする場合に必要とされる薬品であって、培養対象が遊離性を有し た細胞である場合には必要がない。 [0014] インキュベータユニット 300は、恒温槽であるインキュベータ 3と、インキュベータ 3に 収納された培養容器 1とを備えている。インキュベータ 3は、薬品供給ユニット 200と同 様に、開閉可能な蓋を備え、蓋を閉じることによって内部を密閉することが可能となつ ている。そして、インキュベータ 3は、培養容器 1に対面する底面が透明な材料で形成 された観察窓を有し、インキュベータ 3の外部から培養容器 1が観察できるようになつ ている。また、インキュベータ 3は、後述のヒータによって内部が所定温度となるように 恒温制御がなされる。このために、ヒータの加熱効率を高めるために、前記観察窓を 除く周囲は、断熱材で覆われていることが好ましい。培養容器 1は、人体から摘出さ れた細胞を培養するもので、細胞に対する毒性を持たない材料であって、かつ透光 性を有する材料、例えばポリスチレンやポリエチレンフタレートを用いて成形されたも のである。また、培養容器 1は、内部に挿入された細胞や培養された細胞と雑菌との コンタミネーシヨンが生ずることがないように、容器の内部を外部空間に対し密閉状態 に維持される。このために、培養容器 1へ取り付けられるチューブ類の容器取り付け 部にはシールが施される。
[0015] 回収ユニット 400は、培養容器 1において培養された培養細胞を回収する複数 (この 例では 3個)の細胞回収バッグ 11 , 13, 15と、使用済みの薬品を回収する廃液容器 65 と、細胞回収バッグ 11, 13, 15のチューブ状の注入部を熱シーリングする公知の熱シ 一リング機構 66とを備えている。細胞回収バッグ 11 , 13, 15は、薬品バッグ 5, 7, 9と同 様に、折り畳み可能な柔軟性を有し、かつ細胞に対して毒性を持たない材料で形成 された輸液バッグを用いるのが好ましい。具体的には、例えば、塩化ビニール製、ま たはシリコンゴム製のバッグを用いることが好ましい。そして、各細胞回収バッグ 11, 1 3, 15の大きさは、 1回の培養で培養容器 1において培養された細胞を収納できる収 納量を有したものであることが望ましい。また、回収ユニット 400が備える細胞回収バッ グの数は、この例では 3個を示している力 この数は、少なくとも同一組織細胞を培養 容器 1で連続的に複数回繰り返して培養を行うだけの数を備えることが望ましい。
[0016] 給排ユニット 500は、培養容器 1内へ薬品、細胞、空気を供給するための供給ボン プ 35と、培養容器 1内力 培養された細胞や使用済み薬品を排出する排出ポンプ 61 と、薬品バッグ 57, 9と培養容器 1の間との流路を形成する送液チューブ 23, 25, 27, 29と、前記送液チューブ 29とインキュベータ 3の内部に設けられた後述のフィルタ 37と を接続するガスチューブ 38と、前記送液チューブ 29と液溜め容器 43とを接続する細 胞注入チューブ 39と、インキュベータ 3の内部に設けられたフィルタ 77と培養容器 1の 内部空間とを接続するガス交換チューブ 75と、上記配管系に設けられたピンチ弁 17 , 19, 21 , 33, 40とを備えている。液溜め容器 43は、生体から摘出され、培地等と懸濁 状態にされた細胞を貯留するもので、開口部が柔軟性を有したフィルム 45で覆われ たものである。液溜め容器 43の蓋を成すフィルム 45は、前記懸濁状態の細胞が入つ たシリンジ 41を穿刺するために設けられている。したがって、フィルム 45は、液溜め容 器 43内へ雑菌等を混入させないために、シリンジ 41の穿刺痕を密閉するような柔軟 性を有した所定の厚みを有してレ、るものが望ましレ、。
[0017] さらに、給排ユニット 500は、培養容器 1内の培養細胞や使用済み薬品を排出する ための排出ポンプ 61と、培養容器 1と細胞回収バッグ 11, 13, 15並びに廃液容器 65と の間の流路を形成する排出チューブ 53, 55, 57, 59と、上記排出流路に設けられた ピンチ弁 47, 49, 51, 63とを備えている。本実施形態においては、ピンチ弁は、柔軟 性を有したチューブを押し潰して流路を閉鎖することができる電磁駆動式開閉弁が 用いられる。また、供給ポンプと排出ポンプは、柔軟性を有するチューブを、円筒状 に配列された複数のローラに卷きつけ、複数のローラを回転してチューブ内の流体を 押し出す、いわゆるしごきポンプが用いられる。
[0018] 環境保全ユニット 600は、剥離剤および培地を収納する薬品バッグ 19, 21から培養 容器 1へ薬品を流す送液チューブ 29の一部に設けられたヒータ 31と、図示を省略され ているが、インキュベータ 3の内部に設けられたヒータ、温度センサー、炭酸ガス (CO ) センサー等から成る。またインキュベータ 3には、 CO供給管が接続され、この CO接 続管は COボンベへ接続されている。ヒータ 31は、剥離剤、培地を培養容器 1へ供給 する過程で暖めるものである。そして、インキュベータ 3内に設けられたヒータと温度セ ンサ一は培養容器 1内の温度を所定の温度に維持するものである。また、 COセンサ 一はインキュベータ 3の内部の CO濃度を検出するものである。
[0019] 観察ユニット 700は、インキュベータ 3の観察窓の外部に設置され、培養容器 1内の 細胞培養状態を観察するための顕微鏡 89と、培養容器 1を挟んで顕微鏡 1に対向し て設けられた照明用の光源 (図示省略)と、培養容器 1の底面に平行な平面内で前記 顕微鏡 89を 2次元的に移動する顕微鏡移動機構 (図示省略)とを備えている。顕微鏡 89は、撮像した画像情報を電気信号として出力可能なカメラ、例えば CCDカメラを含 んで構成される。顕微鏡移動機構は、モータとリニアモーションガイド機構との組合せ 力 なる移動機構をクロス配置し、各モータを個別にまたは連動することで、顕微鏡 を任意の位置へ移動することができるようにしたものでよい。
[0020] 中央演算処理ユニット 800は、後述の操作ユニット 900から入力された培養条件に従 つて、上記回収ユニット 400、給排ユニット 500、環境保全ユニット 600、観察ユニット 70 0をコントロールするもので、 CPU力ら成る。 CPU800は、 ROMを備えており、その ROM に後述の装置の動作を制御するソフトウェアが格納されている。
[0021] 操作ユニット 900は、 自動培養装置の動作 (培養)条件の入力用操作器と、この操作 器力 入力された動作条件や前記顕微鏡 89で撮像された画像を表示するモニタとを 備えている。なお、以上の自動培養装置に組み込まれたポンプ、弁、モータ、ヒータ 他のァクチユエータ類は、駆動回路によって駆動される力 それらは省略されている
[0022] 次に、図 3、図 4を用いて培養器 1の詳細な説明を行う。
培養容器 1の横断面形状は、特に限定されるものではないが、本実施形態では円 形をしたシャーレで、その上部開口には、フランジが形成されている。このフランジの 平面を利用して、蓋 67が溶着等により固着され、培養容器 1は密閉されている。そし て、培養容器 1の側面には、ノズル 69, 71, 73が揷入され、ノズノレ 69には送液チュー ブ 29が,ノズル 71には排出チューブ 59が,ノズル 73にはガス交換チューブ 75が接続 されている。なお、図 5は、ノズル 69と送液チューブ 29の接続状態を更に詳細に示す 図である。
[0023] 次に、上記ノズル 69, 71, 73の先端と培養容器 1の底面との位置関係を説明する。
送液チューブ 29へ接続されたノズル 69の先端は、培養容器 1内の液層 (培養時の液 面位置)内又は空気層内に位置させられる。そして、排出チューブ 59へ接続されるノ ズル 71の先端は、培養が完了した細胞の一部 (少量)を次回の培養のために培養容 器 1内へ残しておく必要があることから、培養容器 1の内部底面から所定の隙間を有 した位置へ設定される。また、ガス交換チューブ 75へ接続されるノズル 73の先端は、 培養容器 1内のガスとインキュベータ 3内のガスとの交換のための給排口と成ることか ら、培養器 1内の液層よりも高い位置へ設定される。
[0024] 次に、本発明の細胞培養方法を、前述の自動培養装置の動作と関連付けて説明 する。なお、以下の説明では、培養対象が接着性を有した細胞の場合を例にとって 説明する。
(培養開始の準備)
培養開始前に、操作者は、 自動培養装置の回収ユニット 400へ細胞回収バッグ 11, 13, 15を装着し、 X線や γ線等を放射することによって自動培養装置内を滅菌処理 する。なお、細胞回収バッグ 11 , 13, 15の無菌状態は、ノくッグの製造が完了してから 梱包時までに放射線を照射することで確保しても良い。そして、前記滅菌処理が完 了後、操作者は、洗浄液、剥離剤、培地が貯留された薬品バッグ 5, 7, 9を薬品供給 ユニット 200へ装着する。また操作者は、細胞と培地等が懸濁状態にされた細胞液を 、シリンジ 41を用いて液溜め 43に注入する。これらの作業を終えると、操作者は自動 培養装置の電源を投入し、操作ユニット 900から培養開始指令を入力する。すると、 図 6のフローチャートに従って、 CPU800が各ユニットを制御することによって細胞培養 が実行される。
[0025] (ステップ 1:培地注入)
培養開始の指令が入力されると、 CPU800は、先ず、培地の注入のための制御を実 行する。すなわち、 CPU800は、給排ユニット 500のピンチ弁 21とピンチ弁 33を開放さ せる信号を出力し、次いで供給ポンプ 35を動作させる信号を出力する。これにより送 液チューブ 27, 29の流路が開放されるとともに、供給ポンプ 35が駆動される。供給ポ ンプ 35が駆動されると、薬品バッグ 9に貯留された培地が培養容器 1へ向けて送液チ ユーブ 27, 29内を通って送られる。このとき、ヒータ 31には CPU800の指令によって電 流が供給されており、それによつて培地がチューブ内で暖められる。培地が培養容 器 1へ所定量送り込まれると、 CPU800は供給ポンプ 35を駆動したままで、ピンチ弁 21 を閉じさせる。すると、インキュベータ 3内の空気がフィルタ 37を介してガスチューブ 38 、送液チューブ 29に吸い込まれる。送液チューブ 29内に残留していた培地が無くな つたタイミングで、 CPU800の指令によって供給ポンプ 35は一旦停止させられ、またピ ンチ弁 33が閉じられる。ピンチ弁 21を閉じた後に送液チューブ 29へ空気を送り込むこ とによって、送液チューブ 29内に残留していた薬品 (培地)は、培養容器 1へ速やかに 送り込まれる。その結果、送液チューブ 29の薬品による目詰まりが防止される。
[0026] (ステップ 2 :細胞液注入)
培地の注入が終了すると、細胞液の注入制御が CPU800によって行われる。細胞液 は事前準備として、操作者によって液溜め 43に貯留されており、 CPU800からピンチ 弁 40を開放させる指令と、供給ポンプ 35を駆動させる指令が出力されると、ピンチ弁 4 0が開放され、供給ポンプ 35が駆動される。これによつて液溜め 43から細胞液が送液 チューブ 39を通って培養容器 1内へ注入される。そして、細胞液の注入が終了すると 、 CPU800からの指令によりピンチ弁 40は閉じられ、供給ポンプ 35は停止させられる。
[0027] (ステップ 3 :培養開始)
細胞液の注入が終了すると、 CPU800は、インキュベータ 3の内部の COの濃度制 御及びインキュベータ 3の内部の温度制御を行いつつ、予め設定された期間につい て細胞の培養を行う。この予め設定された期間は、例えば 3日程度とされる力 細胞 の種類、細胞の増殖スピード等によって変更し得る。
[0028] (ステップ 4 :空気送り)
前記設定期間が経過後、培養容器 1内の換気が行われる。本実施形態の培養容 器 1の内部は、細胞培養中はほぼ密閉状態にあり、適宜な期間について、培養容器 1内の換気を行う必要がある。このため、 CPU800は、ピンチ弁 33を開放させる指令と、 供給ポンプ 35を駆動させる指令を出力する。ピンチ弁 33が開き、供給ポンプ 35が駆 動されると、フィルタ 37を介して吸入されたインキュベータ 3内の空気がガスチューブ 3 8、送液チューブ 29を介して培養容器 1内へ (矢印 A方向へ)供給され、それと同時に 培養容器 1内の空気がガス交換チューブ 75、フィルタ 77を介してインキュベータ 3内へ (矢印 B方向へ)排出される。図 6のフローチャートでは、空気送りは 1回とされているが 、後述する培地交換時、細胞回収時を除けば何回でも、連続して行っても良い。また 、培養容器 1内の空気の交換は、フィルタ 77からインキュベータ 3内の空気を培養容 器 1内へ (矢印 C方向へ)供給し、培養容器 1内の空気をフィルタ 37からインキュベータ 3内へ (矢印 D方向へ)排出しても良い。
[0029] (ステップ 5:培地交換)
培養容器 1内の換気が終了後、所定期間を置いて、培地交換が行われる。培地交 換は、培地中に溶出する細胞の代謝物質の排除のために培養容器 1内の培地を排 出し、新しい培地を培養容器 1内へ注入することによって栄養分を補給するために、 定期的に行われる。通常、図 6のステップ 3(S3)からステップ 5(S5)までの動作は 3日〜 7 日置きに実施されるが、この期間は、予め設定されるか、または細胞の増殖状態に応 じて任意に変更できる。培地の排出のためには、 CPU800からピンチ弁 63を開放させ る指令が出力されるとともに、排出ポンプ 61を駆動させる指令が出力される。これによ り、ピンチ弁 63が開放され、排出ポンプ 61が駆動され、排出チューブ 59、 58を介して 培養容器 1内から細胞の代謝物質を含んだ培地が廃液容器 65へ排出される。そして 、培地が培養容器 1から排出されると、ピンチ弁 63が閉じられ、排出ポンプ 61が停止 させられる。
[0030] 培地の排出が完了すると、薬品バッグ 9から新しい培地が培養容器 1へ供給される。
培地の供給のために、 CPU800は、ピンチ弁 21、 33を開放させる指令を出力するとと もに、供給ポンプ 35を駆動させる指令を出力する。これにより、薬品バッグ 9内の培地 が送液チューブ 27, 29、を介して送られ、ヒータ 31で暖められて、培養容器 1の内部 へ所定量だけ注入される。この培地交換が行われると、 CPU800は予め設定された培 交換の回数になったか否かの判定を行う。そして、培地交換が設定回数に達してい ない場合には、ステップ 4(S4)へ戻り、ステップ 5(S5)の空気送り、ステップ 6(S6)の培地 交換が繰返し行われる。
[0031] (ステップ 7 :空気送り)
そして、培地交換が設定回数に達した場合には、前記ステップ 7(S4)の最後の空気 送りがステップ 4(S4)と同様に行われる。なお、ステップ 3(S3)からステップ 7(S7)の間に おける細胞の培養期間内には、インキュベータ 3内の CO濃度管理、温度管理が CP
U800によって継続的に行われる。また培養期間内に、観察ユニット 700が操作者によ り適宜操作され、それにより培養容器 1内の培養状態が撮像され、撮像された画像が モニタへ表示される。操作者はモニタへ表示された画像を観察することで培養の進 行状態を確認する。
[0032] (ステップ 8 :細胞の回収回数の判定)
ステップ 7の空気送りが所定時間、例えば数日間行われると、培養細胞の回収ステ ップが行われる。培養細胞の回収ステップでは、先ず、これから行われる細胞回収の 設定回数に対する判定が行われる。本実施形態では、細胞は 3回回収されるように 装置へ設定されている。そして、このステップ 8(S8)では、培養細胞の回収が 3回目で あると判定されれば、次の工程はステップ 13(S13)の最終の細胞回収工程へ進む。ま た、培養細胞の回収が 1回目又は 2回目であれば、次の工程はステップ 9(S9)へ進む
[0033] (ステップ 9:細胞の回収回数の判定)
ステップ 8(S8)において、細胞回収力 回目か否かの判定が行われる。そしてその判 定結果が 2回目ではない、すなわち 1回目と判定されると、次の工程はステップ 10(S10 )の細胞回収工程へ進み、またその判定結果力 回目であると判定されると、次のェ 程はステップ l l(Sl l)の細胞回収工程へ進む。
[0034] (ステップ 10: 1回目の細胞回収)
細胞回収が 1回目と判定されると、培養容器 1内の培地の排出工程と、薬品バッグ 5 に貯留された洗浄液の注入工程とそれに続く排出工程が行われ、培養細胞の洗浄 が行われる。その後、薬品バッグ 7に貯留された剥離剤を培養容器 1内へ注入するェ 程が実行される。培養容器 1内へ剥離剤が注入され所定時間が経過すると、培養細 胞が培養容器 1から剥離される。次いで、細胞回収力 回目と判定された結果に対応 して、培養容器 1の底面から剥離した培養細胞の細胞回収バッグ 11への回収工程が 実行される。
[0035] このために、 CPU800は、先ず培地の排出のために、ステップ 5(S5)で述べた培地排 出と同様に、ピンチ弁 63を開放させる指令と、排出ポンプ 61を駆動させる指令を出力 する。これによつて、培養容器 1内の培地が排出される。培地の排出が終了すると、 C PU800の指令によって、ピンチ弁 63は閉じられ、排出ポンプ 61は停止させられる。こ れに引き続いて、 CPU800は、洗浄液を培養容器 1内へ注入するために、ピンチ弁 17 , 33を開放させる指令を出力するとともに、供給ポンプ 35を駆動させる指令を出力す る。これによつて、ピンチ弁 17, 33が開放され、また供給ポンプ 35が駆動され、薬品バ ッグ 5に貯留された洗浄液が培養容器 1内へ注入される。必要とされる量の洗浄液が 培養容器 1内へ注入されると、供給ポンプ 35が停止され、ピンチ弁 17, 33が閉じられ る。洗浄液によって培養細胞の洗浄が終了した後、洗浄液はステップ 5で述べた培地 排出と同様に廃液容器 65へ送られる。そして、洗浄液が培養容器 1から排出されると 、 CPU800は、剥離剤を培養容器 1内へ注入するために、ピンチ弁 19, 33を開放させ る指令と、供給ポンプ 35を駆動させる指令を出力する。これによつて、ピンチ弁 19, 33 が開放され、供給ポンプ 35が駆動され、薬品バッグ 7に貯留された剥離剤が培養容 器 1内へ注入される。剥離剤の注入が終了すると、供給ポンプ 35が停止され、ピンチ 弁 19, 33が閉じられる。そして、しばらく時間が経過すると、剥離剤が培養容器 1の底 面に付着した培養細胞を浮き上がらせる。培養細胞が培養容器 1の底面から剥離さ れたタイミングで、 CPU800は、培養容器 1内へ培地を注入する。ここでの培地の注入 は、細胞に悪影響を与える剥離剤の効き目を弱めるために行われる。このために、 C PU800は、ピンチ弁 21 , 33を開放させる指令と、供給ポンプ 35を駆動させる指令を出 力する。これによつて、ピンチ弁 21, 33が開放され、供給ポンプ 35が駆動されて、薬 品バッグ 9から培地が培養容器 1内へ注入される。培地の注入が終了すると、供給ポ ンプ 35が停止され、ピンチ弁 21 , 33が閉じられる。
剥離剤の効き目を弱めるために培地を注入すると、剥離剤による培養細胞への悪 影響の減少と引き換えに、培養細胞が再び培養容器 1に付着し易くなるので、速や かに培養細胞の回収が行われる必要がある。このために、 CPU800は、培地の注入 後、速やかにピンチ弁を開放させる指令 (ここでは、第 1回目の回収であるので、ピン チ弁 47が開放される)と、排出ポンプ 61を駆動させる指令を出力する。これによつて、 培養容器 1内の培養細胞は排出チューブ 59, 53を通って細胞回収バッグ 11に回収さ れる。排出チューブ 59, 53へ培養細胞が吸入されなくなると、 CPU800は、ピンチ弁 47 を閉じさせ、また排出ポンプ 61を停止させる。その後、 CPU800から熱シーリング機構 66へ細胞回収バッグ 11のチューブ部分を熱圧着する指令を出力する。これによつて 、細胞回収バッグ 11のチューブ部分が熱シールされる。その後、細胞回収バッグ 11 は、操作者によって装置から切り離される。装置から切り離された培養細胞入りバッグ は、保冷庫に保管される。
[0037] ここで、培養容器 1に取り付けられたノズノレ 71の先端と培養容器 1の底面との間には 所定の隙間が設けられているので、培養細胞の一部が回収されずに培養容器 1内に 残されたままとなる。本発明の要旨は、この培養容器 1内に残存する、または残存さ せられた培養細胞を繰返し培養することで、大量の培養細胞を得ることにある。
[0038] (2回目の細胞培養)
このために、ステップ 10(S10)の 1回目の細胞回収が終了すると、 CPU800は、培養容 器 1内に残された細胞に対して、ステップ 3(S3)からステップ 9(S9)までを再実行する。こ れによって、培養容器 1内に残された細胞が培養される。 CPU800はステップ 8(S8)、ス テツプ 9(S9)にて今回の細胞回収は何回目力を判定する。ここでの判定結果は 2回目 となる。
[0039] (ステップ 11 : 2回目の細胞回収)
ステップ 9(S9)において細胞回収力 回目と判定されると、ステップ l l(Sl l)において 、ステップ 10(S10)における細胞回収と同様な順序で 2回目の細胞回収が行われる。 ただし、このステップ ll(Sll)における 2回目の細胞回収においては、ステップ 9(S9)の 判定結果に対応して、 CPU800の指令によって、培養容器 1から排出された細胞は細 胞回収バッグ 13へ回収され、熱シーリング機構 66は、細胞回収バッグ 13のチューブ 部分を熱圧着する点がステップ 10(S10)とは異なる。
[0040] (3回目の細胞培養)
ステップ ll(Sl l)の 2回目の細胞回収が終了すると、 CPU800は、培養容器 1内に残 された細胞に対して、ステップ 3(S3)からステップ 9(S9)までを再度繰り返し実行する。こ れによって、培養容器 1内に残された細胞が培養される。 CPU800はステップ 8(S8)、ス テツプ 9(S9)にて今回の細胞回収は何回目力を判定する。ここでの判定結果は 3回目 となる。
[0041] (ステップ 12: 3回目の細胞回収)
ステップ 9(S9)において細胞回収力 ¾回目と判定されると、ステップ 12(S12)において 、ステップ 10(S10)における細胞回収と同様な順序で 3回目の細胞回収が行われる。 ただし、このステップ 12(S12)における 3回目の細胞回収においては、ステップ 9(S9)の 判定結果に対応して、 CPU800の指令によって、培養容器 1から排出された細胞は細 胞回収バッグ 15へ回収され、熱シーリング機構 62は、細胞回収バッグ 15のチューブ 部分を熱圧着する点がステップ 10(S10)とは異なる。
[0042] 3回目の培養細胞の回収が終わると、回収された培養細胞が収容された細胞回収 バッグ 11 , 13, 15は、臨床の場に運ばれて、培養細胞が人体の組織再生に供される
[0043] 以上説明したように、本実施形態によれば、培養容器で培養された細胞を回収す る際に、その一部を培養容器に残し、培養容器に残された細胞を再度培養すること で、細胞を大量に増殖することができる。そして、本実施形態では、培養容器に残さ れた細胞を再度培養することから、小さなサイズの培養容器を使用することができる。 これを従来の継代培養のように、一度培養容器で培養された培養細胞を別の複数の 培養容器へ移して培養を継続するものと比較して、装置の小型化が計れる。さらに、 本実施形態によれば、生体から組織細胞を摘出することは 1回でよいことから、生体 の損傷を小さくすることができる。
[0044] また、本実施形態によれば、生体から摘出した細胞はシリンジによってフィルタつき の液溜めへ注入されるので、培養容器へ細胞を収容する際の細胞と雑菌のコンタミ ネーシヨンが防止できる。さらに、本実施形態によれば、培養細胞は細胞回収バッグ へ自動的に回収されるとともに、細胞回収バッグは、熱シーリングして細胞回収バッ グ内と外部環境とを遮断して取出されるので、細胞回収に際しての細胞と雑菌のコン タミネーシヨンが防止できる。
[0045] さらに、本実施形態によれば、培養容器内へ薬品を供給する時、培養容器内の空 気がインキュベータ内に通じるノズノレから、供給される薬品の量に応じた培養容器内 の空気が追い出されることから、スムーズに培養容器内へ薬品を注入できる。また、 同様に、培養容器内の薬品などの液体を排出する際に、インキュベータ内に通じるノ ズルから、排出される薬品や細胞を含む液体の排出量に応じて、培養容器内へ空気 が供給されるから、スムーズに培養容器内の液体の抜出しができる。
[0046] また、本実施形態によれば、培養容器への空気の給排は、フィルタを介して行われ るので、クリーンな培養環境が提供され、維持される。 [0047] 本実施形態では、細胞培養と回収を繰り返して合計 3回行う例を挙げて説明したが 、本発明はこれに限定されることはない。細胞培養と回収の繰返し回数は、必要とさ れる細胞の量によって少なくとも 2回以上であれば、任意に設定しても良い。その場 合、培養細胞を回収する回数に応じて、回収ユニットに設ける細胞回収バッグの数 及びピンチ弁の数を変更すれば良レ、。なお、細胞回収時の細胞と雑菌のコンタミネ ーシヨンを防止する装置を設けることができれば、予め複数の細胞回収バッグを自動 培養装置へ装填する必要はなぐ必要なときに、細胞回収バッグを自動培養装置へ 装填する方法を採用しても良レ、。
[0048] また、本実施形態では、図 5に示すように、培養容器の側面にノズル 69, 71, 73が設 けられているので、複数の培養容器を重ねてインキュベータ内に配置するような変形 例にも対応が可能である。
[0049] さらに、本実施形態の培養装置は、ほぼ継続的に細胞を培養することができ、また 所定時間間隔で細胞を回収できる。したがって、患者の臓器や組織等を複数回に分 けて再生治療する場合、例えば間葉系幹細胞を補助的に利用する白血病治療等を 行う場合に、間葉系幹細胞を所定間隔で数度にわたって供給することができる。
[0050] 上記実施形態のように、細胞回収バッグ 11, 13, 15と廃液容器 65を 1台の排出ボン プ 61の吐出管路に、それぞれピンチ弁 47, 49, 51 , 63を介して接続すると、廃液や回 収細胞が管路に残っている場合があり得る。これらの廃液や死滅細胞、更には細胞 の代謝物質が回収系管路に残っていると、繰り返して行われる次回の培養細胞回収 時にコンタミネーシヨンが発生してしまう。このようなコンタミネーシヨンの発生を防止す る必要がある。
[0051] (第 2の実施形態)
図 7は、このようなコンタミネーシヨンの発生を防止することができる第 2の実施形態 の自動培養装置の構成を示している。図 7に示すように、本実施形態の自動培養装 置は、前記第 1の実施形態との比較において、第 1の実施形態の培養容器 1に設けら れた排出系のノズル 71に替えて、細胞回収バッグ 11, 13, 15と廃液容器 65との数 (計 4 個)に対応するノズル 101, 103, 105, 107が設けられている点が異なる。すなわち、ノ ズル 101, 103, 105, 107には、それぞれに排出チューブ 119, 121, 123, 125が接続さ れている。これらの排出チューブ 119, 121, 123には、それぞれに細胞回収バッグ 11, 13, 15が接続され、排出チューブ 125には廃液容器 65が接続されている。そして、こ れらの排出チューブ 119, 121, 123, 125の中間には、それぞれピンチ弁 47, 49, 51, 6 3並びに排出ポンプ 111, 113, 115, 117が図に示すように接続されている。なお、図 面ではピンチ弁 47, 49, 51, 63は、排出ポンプの吸引側に取り付けられている力 そ れらは排出ポンプの吐出側に取り付けても良レ、。なお、本実施形態においても排出 ポンプ 111, 113, 115, 117及びピンチ弁 47, 49, 51, 63は CPU800の指令によって動 作がなされる。
[0052] 上記の如く構成された本実施形態の自動培養装置は、第 1の実施形態の自動培養 装置とは、培養容器 1内の液体を排出する時の動作が異なる。すなわち、培養容器 1 内の廃液を排出する際には、ピンチ弁 63が開放され、排出ポンプ 117が駆動される。 また、培養容器 1内の細胞を回収する際には、 1回目の細胞回収時はピンチ弁 47が 開放され、排出ポンプ 111が駆動される。また、 2回目の細胞回収時はピンチ弁 49が 開放され、排出ポンプ 113が駆動され、 3回目の細胞回収時はピンチ弁 51が開放さ れ、排出ポンプ 115が駆動される。
[0053] 本実施形態によれば、第 1の実施形態の効果に加えて、排出チューブ 119, 121, 12 3, 125が独立して設けられているので、 2回目以降に回収される細胞に、廃液や細胞 の代謝物質が混入することはなくなる。したがって、クリーンな培養細胞が得られる。
[0054] 上記第 2の実施形態は、 2回目以降の回収細胞へ前回の回収時に管路に残された 廃液と細胞の代謝物質との双方が混入することを避ける実施形態であるが、 2回目以 降の回収細胞へ廃液のみが混入しないように変形することができる。その実施形態 は、上記第 2の実施形態を参照して、第 1の実施形態に対し廃液の回収系のみを独 立して設けることで可能である。

Claims

請求の範囲
培養に必要な複数の薬品を個別に収納する薬品供給ユニットと、
細胞培養容器を収納するインキュベータユニットと、
前記培養容器内で培養された培養細胞を回収する回収ユニットと、
前記培養容器への細胞の供給と、前記薬品供給ユニットから前記培養容器への薬 品の供給と、前記培養容器から前記回収ユニットへの培養細胞の排出を行う給排ュ ニッ卜と、
前記培養容器への薬品供給動作と、前記培養容器における細胞培養動作と、前 記培養容器からの培養細胞の排出動作とを制御する制御ユニットであって、培養細 胞の回収時に前記培養容器内に残された培養細胞に対し、前記給排ユニットによる 薬品供給工程を含む細胞培養工程と、培養細胞の排出工程とを少なくとも 1回行わ せる手段を有した制御ユニット、
を備えたことを特徴とする自動培養装置。
前記給排ユニットは、前記薬品供給ユニットに設けられた複数の薬品バッグから選 択的に 1つの薬品を前記培養容器へ供給するための供給用チューブ配管と、このチ ユーブ配管へ設けられた弁と、供給ポンプとを有することを特徴とする請求項 1に記 載の自動培養装置。
前記複数の薬品バッグに収納された薬品には、培地と、洗浄液とが含まれることを 特徴とする請求項 1に記載の自動培養装置。
前記複数の薬品バッグに収納された薬品には、更に剥離剤が含まれることを特徴と する請求項 3に記載の自動培養装置。
前記給排ユニットは、培養細胞を回収する複数の回収バッグと、使用済み薬品を収 容する廃液容器と、前記培養容器力 使用済み薬品と培養細胞とを前記回収バッグ または廃液容器へ選択的に排出するための排出用チューブ配管と、このチューブ配 管へ設けられた弁と、排出ポンプとを有することを特徴とする請求項 1に記載の自動 培養装置。
前記培養容器には、前記給排ユニットへ接続されるノズノレが複数個設けられてレ、る ことを特徴とする請求項 1に記載の自動培養装置。 [7] 前記給排ユニットの排出用チューブ配管へ接続される前記ノズルの培養容器内に 位置する先端と前記培養容器の底面との間に所定の隙間が設けられ、この隙間によ つて培養細胞の回収時に、培養細胞の一部が培養容器内へ残されることを特徴とず る請求項 6に記載の自動培養装置。
[8] 前記回収バッグは、熱圧着性を有した材料から成り、前記排出用チューブ配管へ 接続するためのチューブ部分を有すことを特徴とする請求項 5に記載の自動培養装 置。
[9] 前記給排ユニットは、前記制御ユニットからの指令によって特定された回収バッグ のチューブ部分を熱圧着する熱シーリング機構を備えていることを特徴とする請求項 8に記載の自動培養装置。
[10] 前記排出ユニットの排出用チューブ配管は、前記培養容器へ接続された単一のチ ユーブと、複数の回収バッグと廃液容器とへ接続された複数のチューブとが接続され て構成され、排出ポンプは前記単一のチューブへ配置され、弁は複数の回収バッグ と廃液容器とへ接続されたチューブの各々へ配置されてレ、ることを特徴とする請求項 5に記載の自動培養装置。
[11] 前記排出ユニットの排出用チューブ配管は、前記培養容器と廃液容器及び複数の 回収バッグとを個別に接続する数のチューブを有し、各々のチューブには排出ボン プと弁が配置されていることを特徴とする請求項 5に記載の自動培養装置。
[12] 前記排出ユニットの排出用チューブ配管は、前記培養容器と廃液容器とを接続す る廃液用チューブと、前記培養容器へ接続された単一のチューブとこの単一のチュ ーブと複数の回収バッグとを接続する複数のチューブとから成り、前記廃液用チュー ブと前記培養容器へ接続された単一のチューブとの各々へ排出ポンプと弁が配置さ れていることを特徴とする請求項 5に記載の自動培養装置。
[13] (1)人体より摘出した細胞と培地とを培養容器へ注入するステップと、
(2)培地と前記細胞が入った前記培養容器内の換気と培地の交換を行いつつ、細 胞を培養するステップと、
(3)前記培養容器内で培養された培養細胞の洗浄を行った後、前記洗浄された細 胞をその一部を残して前記培養容器内から細胞回収容器へ回収するステップと、 (4)前記ステップ (3)におレ、て前記培養容器内に残された培養細胞に対し、培地を注 入するステップと、
(5)前記ステップ (2)とステップ (3)を繰返し実行するステップ
を含む細胞培養方法。
[14] 前記ステップ (4)とステップ (5)を少なくとも 1回行うことを特徴とする請求項 13に記載さ れた細胞培養方法。
[15] 前記ステップ (3)における細胞の回収ステップには、前記培養容器内の培養細胞を 洗浄するステップに続レ、て、剥離剤を注入することによって前記培養容器から培養 細胞を剥離するステップを含むことを特徴とする請求項 13に記載の細胞培養方法。
[16] 前記ステップ (3)における剥離剤注入に続レ、て、剥離剤の培養細胞への影響を弱 めるために新しレ、培地を前記培養容器へ注入するステップを含むことを特徴とする 請求項 15に記載の細胞培養方法。
[17] 前記ステップ (5)において回収される培養細胞は、ステップ (3)において細胞が回収 される容器とは異なる容器へ回収されることを特徴とする請求項 13に記載の細胞培 養方法。
[18] 前記ステップ (5)において回収される培養細胞は、ステップ (3)において細胞が回収 される容器とは異なる容器へ回収されることを特徴とする請求項 15に記載の細胞培 養方法。
[19] 前記ステップ (5)において回収される培養細胞は、ステップ (3)において細胞が回収 される容器とは異なる容器へ回収されることを特徴とする請求項 16に記載の細胞培 養方法。
PCT/JP2006/324903 2006-01-17 2006-12-14 細胞培養方法及びその方法を用いた自動培養装置 WO2007083465A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/160,613 US20100317102A1 (en) 2006-01-17 2006-11-14 Cell Culture Method and Automatic Culture System Using the Method
JP2007554830A JP5294296B2 (ja) 2006-01-17 2006-12-14 細胞培養方法及びその方法を用いた自動培養装置
KR1020087017352A KR101419952B1 (ko) 2006-01-17 2006-12-14 세포 배양 방법 및 그 방법을 이용한 자동 배양 장치
EP06834657A EP1978089A4 (en) 2006-01-17 2006-12-14 CELL CULTURE METHOD AND AUTOMATIC CULTURE SYSTEM USING THE SAME
CN2006800511180A CN101370928B (zh) 2006-01-17 2006-12-14 细胞培养方法以及使用该方法的自动培养装置
US14/015,574 US20130344597A1 (en) 2006-01-17 2013-08-30 Cell culture method and automatic culture system using the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006008521 2006-01-17
JP2006-008521 2006-01-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/015,574 Division US20130344597A1 (en) 2006-01-17 2013-08-30 Cell culture method and automatic culture system using the method

Publications (1)

Publication Number Publication Date
WO2007083465A1 true WO2007083465A1 (ja) 2007-07-26

Family

ID=38287421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324903 WO2007083465A1 (ja) 2006-01-17 2006-12-14 細胞培養方法及びその方法を用いた自動培養装置

Country Status (6)

Country Link
US (2) US20100317102A1 (ja)
EP (1) EP1978089A4 (ja)
JP (1) JP5294296B2 (ja)
KR (1) KR101419952B1 (ja)
CN (1) CN101370928B (ja)
WO (1) WO2007083465A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065892A (ja) * 2007-09-13 2009-04-02 Nikon Corp 細胞培養器具及びこれを備えた顕微鏡装置
EP2163612A1 (de) * 2008-09-13 2010-03-17 Astrium GmbH Kultiviereinheit
JP2011092212A (ja) * 2011-02-14 2011-05-12 Hitachi Ltd 細胞培養装置の制御方法
JP2013516974A (ja) * 2010-01-13 2013-05-16 イー・エム・デイー・ミリポア・コーポレイシヨン 生体液用回路
WO2015025425A1 (ja) * 2013-08-23 2015-02-26 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
JP2015513347A (ja) * 2012-03-15 2015-05-11 セルプロテラ 細胞培養の自動装置及び方法
JP2015516175A (ja) * 2012-05-18 2015-06-11 ウィルソン ウォルフ マニュファクチャリング コーポレイションWilson Wolf Manufacturing Corporation 養子細胞療法のための改良された細胞培養法
JP2015109877A (ja) * 2015-03-25 2015-06-18 株式会社日立製作所 自動培養装置
JP2015136330A (ja) * 2014-01-22 2015-07-30 株式会社Ihi 細胞培養装置および細胞培養方法
JP2017192403A (ja) * 2015-03-09 2017-10-26 イー・エム・デイー・ミリポア・コーポレイシヨン 微小流体システムにおける空気装置用コネクタ
CN107739713A (zh) * 2017-10-13 2018-02-27 中国科学院上海技术物理研究所 一种适用于空间细胞自动培养的换液系统
JP2019000059A (ja) * 2017-06-16 2019-01-10 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
WO2022202734A1 (ja) * 2021-03-26 2022-09-29 テルモ株式会社 細胞培養システム

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8956860B2 (en) 2009-12-08 2015-02-17 Juan F. Vera Methods of cell culture for adoptive cell therapy
EP2604680A4 (en) * 2010-08-12 2015-06-24 Hitachi Ltd AUTOMATIC CULTURE DEVICE
CN105154329A (zh) * 2010-08-12 2015-12-16 株式会社日立制作所 自动培养装置
CN102061259B (zh) * 2010-11-30 2013-01-09 上海交通大学 植物转基因处理装置
CN102093954B (zh) * 2010-12-16 2013-01-09 汪华 一种细胞培养装置及方法
CN102174395B (zh) * 2011-01-30 2013-08-21 中国科学院广州生物医药与健康研究院 诱导多能干细胞自动化扩增与培养系统
WO2013114845A1 (ja) * 2012-02-01 2013-08-08 東洋製罐グループホールディングス株式会社 細胞培養用キット、及び細胞培養用キットの使用方法
ES2435092B1 (es) * 2012-06-14 2014-09-09 Aglaris Cell S.L. Método y sistema de cultivo celular
US9399244B2 (en) * 2013-05-16 2016-07-26 Infors Ag Laboratory fermenter with cleaning device
WO2014210036A1 (en) * 2013-06-24 2014-12-31 Wilson Wolf Manufacturing Corporation Closed system device and methods for gas permeable cell culture process
EP3059299B1 (en) * 2013-10-15 2020-05-13 Hitachi, Ltd. Cell culturing device
JP6444619B2 (ja) * 2014-05-30 2018-12-26 オリンパス株式会社 培地交換システム
CN106488979A (zh) * 2014-07-10 2017-03-08 奥林巴斯株式会社 细胞培养系统
FR3028863B1 (fr) * 2014-11-20 2018-06-15 Maco Pharma Procede pour mettre en oeuvre un systeme securise pour la culture de cellules
KR20160070256A (ko) 2014-12-09 2016-06-20 한국항공우주연구원 세포 배양 장치
US11052165B2 (en) 2015-04-20 2021-07-06 Global Life Sciences Solutions Usa Llc Method for virus clearance
JP6723563B2 (ja) * 2015-04-20 2020-07-15 グローバル・ライフ・サイエンシズ・ソリューションズ・ユーエスエー・エルエルシー ウイルスの不活性化
JP6890389B2 (ja) * 2016-08-29 2021-06-18 株式会社日立製作所 送液装置、及びそれを用いた細胞培養装置
CN106867895A (zh) * 2017-03-09 2017-06-20 宗春辉 微生物实验防污染式细菌培养装置
CN111542592A (zh) * 2017-11-08 2020-08-14 株式会社Ihi 细胞培养装置用连接单元、培养箱装置以及细胞培养装置
JP7001516B2 (ja) * 2018-03-23 2022-01-19 住友ベークライト株式会社 培養容器及び細胞培養装置
WO2019245070A1 (ko) * 2018-06-20 2019-12-26 주식회사 디오스템스 줄기세포 증식기 및 증식 방법, 줄기세포 연속 증식, 추출 및 분리 시스템 및 방법
CN110643508A (zh) * 2018-06-26 2020-01-03 深圳市北科生物科技有限公司 一种模块化的细胞自动培养系统及方法
JP7451877B2 (ja) * 2019-04-27 2024-03-19 東洋製罐グループホールディングス株式会社 細胞培養システム
JP7481608B2 (ja) * 2019-06-20 2024-05-13 シンフォニアテクノロジー株式会社 細胞培養装置
JP7231038B2 (ja) * 2019-07-26 2023-03-01 株式会社島津製作所 細胞回収装置および細胞回収方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155087A (ja) * 1982-03-12 1983-09-14 Olympus Optical Co Ltd 細胞の自動培養装置
JP2001275659A (ja) * 2000-03-31 2001-10-09 Masahito Taya 細胞培養方法、細胞培養装置及び記録媒体
WO2005059091A1 (ja) * 2003-12-18 2005-06-30 Hitachi Medical Corporation 細胞培養装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5424209A (en) * 1993-03-19 1995-06-13 Kearney; George P. Automated cell culture and testing system
US5688687A (en) * 1995-06-07 1997-11-18 Aastrom Biosciences, Inc. Bioreactor for mammalian cell growth and maintenance
US20050032211A1 (en) * 1996-09-26 2005-02-10 Metabogal Ltd. Cell/tissue culturing device, system and method
US7198940B2 (en) * 2000-10-25 2007-04-03 Shot Hardware Optimization Technology, Inc. Bioreactor apparatus and cell culturing system
CN2486557Y (zh) * 2001-01-19 2002-04-17 中国科学院化学研究所 一种细胞培养装置
CN1260343C (zh) * 2002-01-31 2006-06-21 赛宇细胞科技股份有限公司 细胞培养装置
US7141386B2 (en) * 2002-10-31 2006-11-28 Hewlett-Packard Development Company, L.P. Cell culture device
JP2004208663A (ja) * 2003-01-09 2004-07-29 Ochiyanomizu Jiyoshi Univ 細胞培養システム
US20060246244A1 (en) * 2005-04-29 2006-11-02 Jenkins Lauri L Disposable vessel for the containment of biological materials and corrosive reagents

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155087A (ja) * 1982-03-12 1983-09-14 Olympus Optical Co Ltd 細胞の自動培養装置
JP2001275659A (ja) * 2000-03-31 2001-10-09 Masahito Taya 細胞培養方法、細胞培養装置及び記録媒体
WO2005059091A1 (ja) * 2003-12-18 2005-06-30 Hitachi Medical Corporation 細胞培養装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1978089A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065892A (ja) * 2007-09-13 2009-04-02 Nikon Corp 細胞培養器具及びこれを備えた顕微鏡装置
EP2163612A1 (de) * 2008-09-13 2010-03-17 Astrium GmbH Kultiviereinheit
JP2013516974A (ja) * 2010-01-13 2013-05-16 イー・エム・デイー・ミリポア・コーポレイシヨン 生体液用回路
JP2011092212A (ja) * 2011-02-14 2011-05-12 Hitachi Ltd 細胞培養装置の制御方法
JP2015513347A (ja) * 2012-03-15 2015-05-11 セルプロテラ 細胞培養の自動装置及び方法
JP7346526B2 (ja) 2012-05-18 2023-09-19 ウィルソン ウォルフ マニュファクチャリング コーポレイション 養子細胞療法のための改良された細胞培養法
JP2015516175A (ja) * 2012-05-18 2015-06-11 ウィルソン ウォルフ マニュファクチャリング コーポレイションWilson Wolf Manufacturing Corporation 養子細胞療法のための改良された細胞培養法
JP2022020851A (ja) * 2012-05-18 2022-02-01 ウィルソン ウォルフ マニュファクチャリング コーポレイション 養子細胞療法のための改良された細胞培養法
JP2020124198A (ja) * 2012-05-18 2020-08-20 ウィルソン ウォルフ マニュファクチャリング コーポレイションWilson Wolf Manufacturing Corporation 養子細胞療法のための改良された細胞培養法
JPWO2015025425A1 (ja) * 2013-08-23 2017-03-02 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
JP6062054B2 (ja) * 2013-08-23 2017-01-18 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
US10184100B2 (en) 2013-08-23 2019-01-22 Hitachi, Ltd. Liquid delivery device and cell culture device using same
WO2015025425A1 (ja) * 2013-08-23 2015-02-26 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
JP2015136330A (ja) * 2014-01-22 2015-07-30 株式会社Ihi 細胞培養装置および細胞培養方法
JP2017192403A (ja) * 2015-03-09 2017-10-26 イー・エム・デイー・ミリポア・コーポレイシヨン 微小流体システムにおける空気装置用コネクタ
US10737266B2 (en) 2015-03-09 2020-08-11 Emd Millipore Corporation Connectors for pneumatic devices in microfluidic systems
JP2015109877A (ja) * 2015-03-25 2015-06-18 株式会社日立製作所 自動培養装置
JP2019000059A (ja) * 2017-06-16 2019-01-10 株式会社日立製作所 送液装置およびそれを用いた細胞培養装置
US10947490B2 (en) 2017-06-16 2021-03-16 Hitachi, Ltd. Liquid delivery device and cell culture device using the same
CN107739713A (zh) * 2017-10-13 2018-02-27 中国科学院上海技术物理研究所 一种适用于空间细胞自动培养的换液系统
WO2022202734A1 (ja) * 2021-03-26 2022-09-29 テルモ株式会社 細胞培養システム

Also Published As

Publication number Publication date
US20100317102A1 (en) 2010-12-16
US20130344597A1 (en) 2013-12-26
KR20080087003A (ko) 2008-09-29
KR101419952B1 (ko) 2014-07-16
JP5294296B2 (ja) 2013-09-18
EP1978089A1 (en) 2008-10-08
CN101370928A (zh) 2009-02-18
EP1978089A4 (en) 2012-07-11
JPWO2007083465A1 (ja) 2009-06-11
CN101370928B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
JP5294296B2 (ja) 細胞培養方法及びその方法を用いた自動培養装置
JP4732187B2 (ja) 自動培養装置
JP5722329B2 (ja) 自動培養装置
KR102169062B1 (ko) 세포 배양용 자동화 장치 및 자동화 공정
JP5894260B2 (ja) 培養容器及び自動培養装置
EP3194150B1 (en) Container for accommodating at least of a least one biologically active fluid and at least one preparatory fluid, and a method therefor
US20060257998A1 (en) Supply system for cell culture module
TW201546268A (zh) 自動化細胞培養及收獲裝置
WO2016157322A1 (ja) 閉鎖系培養容器、輸送方法、及び自動培養装置
CN107904170A (zh) 细胞培养模块及细胞培养系统
JP6514952B2 (ja) 自動培養装置
CN207760352U (zh) 细胞培养模块、培养液模块、细胞培养芯片及细胞培养机箱
JP5886455B2 (ja) 自動培養装置
JP5101819B2 (ja) 細胞培養装置
JP2004073084A (ja) 培養容器および培養装置
WO2017145775A1 (ja) 細胞培養装置の攪拌機構、細胞培養モジュール、及び細胞培養装置
US20220340847A1 (en) Cell culture system
JP6745357B2 (ja) 細胞培養方法、培養容器及び細胞培養装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007554830

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006834657

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680051118.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087017352

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12160613

Country of ref document: US