Nothing Special   »   [go: up one dir, main page]

WO2007069301A1 - 粉体を用いて形質転換効率を向上させる方法 - Google Patents

粉体を用いて形質転換効率を向上させる方法 Download PDF

Info

Publication number
WO2007069301A1
WO2007069301A1 PCT/JP2005/022863 JP2005022863W WO2007069301A1 WO 2007069301 A1 WO2007069301 A1 WO 2007069301A1 JP 2005022863 W JP2005022863 W JP 2005022863W WO 2007069301 A1 WO2007069301 A1 WO 2007069301A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
plant
plant material
agrobataterium
inoculating
Prior art date
Application number
PCT/JP2005/022863
Other languages
English (en)
French (fr)
Inventor
Yuji Ishida
Yukoh Hiei
Jun Ueki
Takeshi Yamamoto
Original Assignee
Japan Tobacco Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Tobacco Inc. filed Critical Japan Tobacco Inc.
Priority to PCT/JP2005/022863 priority Critical patent/WO2007069301A1/ja
Priority to PCT/JP2006/324839 priority patent/WO2007069643A1/ja
Priority to CN2006800469361A priority patent/CN101331227B/zh
Priority to AU2006324560A priority patent/AU2006324560B2/en
Priority to DK06834594.1T priority patent/DK1964919T3/da
Priority to EP06834594A priority patent/EP1964919B1/en
Priority to US12/086,426 priority patent/US8324456B2/en
Priority to AT06834594T priority patent/ATE545700T1/de
Priority to JP2007550198A priority patent/JP5260963B2/ja
Publication of WO2007069301A1 publication Critical patent/WO2007069301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation

Definitions

  • the present invention relates to a method for efficiently introducing a gene into a plant material via a bacterium belonging to the genus Agrobataterium.
  • Gene transfer by the agrobacterium is a method for transforming plants using the function of agrobacterium.
  • T-DNA which is part of the Ti (tumor-inducin g) plasmid involved in the pathogenicity of agrobacterium
  • the plant transformation method by agrobacterium is prepared by preparing a transformation plasmid in which the T-DNA region of the Ti plasmid is replaced with a gene desired to be introduced into the plant genome, and the transformation plasmid is used as the Ti plasmid.
  • a gene desired to be introduced into the plant genome is introduced into the plant genome by using the function of the above-mentioned agrobacterium using an agrobacterium prepared so as to have instead of the plant.
  • the gene transfer method using the bacteria belonging to the genus Agrobataterium is universally used as a method for transforming dicotyledonous plants.
  • the host of bacteria of the genus Agrobataterium was limited to dicotyledonous plants and not to infest monocotyledons (De Cleene, M. and De Ley, J., (1 976) Bot. Rev.
  • transgenic plants other than A188, H99 and W117 can be produced, and the transformation efficiency of A188 can be improved by this method.
  • Singh and Chawla found that a GUS gene was obtained by inoculating wheat immature embryos in a suspension of silicon carbide fiber (SCF) with a vortex mixer for 2-3 minutes and then inoculating agrobatatarum. It has been reported that the number of immature embryos that express E. coli increases (Singh, N. and Chawla, S., (1999) Current Science, 76: 1483-1485). This is due to the injuries of immature embryos caused by SCF. Attempts to injure tissues before inoculation with agrobatterum include other injuries caused by particle guns (Bidney et al., 1992) and ultrasound. Injuries caused by treatment (Trick, HN and Finer, J. J “(1997) Transgenic Res., 6: 329-336).
  • Patent Document 1 Japanese Patent No. 2,649,287
  • Patent Document 2 Japanese Patent No. 2,329,819
  • Patent Document 3 Japanese Patent Laid-Open No. 2000-342256
  • Patent Document 4 International Publication No. 95/06722 Pamphlet
  • Non-patent literature l Bidney, D "et al., (1992) Plant Mol. Biol., 18: 301-313.
  • Non-Patent Document 2 Chan, M_T., Et al., (1993) Plant Mol. Biol., 22: 491-506
  • Non-Patent Document 3 Cheng, M., et al., (1997) Plant Physiol., 115: 971-980.
  • Non-Patent Document 4 De Cleene, M. and De Ley, J “(1976) Bot. Rev., 42: 389-466.
  • Non-patent literature 5 Deji, A., et al., (2000) Biochim. Et Biophys. Acta, 1492: 216-220
  • Non-patent literature 6 Frame, BR, et al., (2002) Plant Physiol., 129: 13-22
  • Non-Patent Document 7 Gould, J., et al., (1991) Plant Physiol., 95: 426-434
  • Non-Patent Document 8 Grimsley, N., et al "(1987) Nature, 325: 177-179.
  • Non-Patent Document 9 Hiei, Y "et al., (1994) The Plant Journal, 6: 271-282.
  • Non-Patent Document 10 Ishida, Y “et al., (1996) Nature Biotechnology, 14: 745-750.
  • Non-Patent Document ll Ishida, Y “et al., (2003) Plant Biotechnology, 20: 57-66.
  • Non-Patent Document 12 Mooney, P.A., et al, (1991) Plant Cell, Tissues and Organ Culture, 25: 209-218.
  • Non-Patent Document 13 Negrotto, D., et al "(2000) Plant Cell Reports, 19: 798-803.
  • Non-Patent Document 14 Nomura, M., et al "(2000) Plant J” 22: 211-221.
  • Non-Patent Document 15 Nomura, M., et al "(2000) Plant Mol. Biol., 44: 99-106.
  • Non-Patent Document 16 Potrycus, I "(1990) Bio / technology, 8: 535-542
  • Non-Patent Document 17 Raineri, D. M., et al., (1990) Bio / technology, 8: 33-38
  • Non-patent literature 18 Singh, N. and Chawla, S “(1999) Current Science, 76: 1483-1485Non-patent literature 19: Taniguchi, M” et al, (2000) Plant Cell Physiol., 41: 42- 48.
  • Non-Patent Document 20 Trick, HN and Finer, J. J “(1997) Transgenic Res., 6: 329-336.
  • Non-Patent Document 21 Tingay, S” et al., (1997) Plant J., 11: 1369-1376.
  • Non-Patent Document 22 Zhao, Z.-Y., et al "(2000) Plant Mol. Biol., 44: 789-798.
  • Non-Patent Document 23 Zhao, Z.-Y., et al "(2001) Mol. Breed., 8: 323-333.
  • Non-Patent Document 24 Hoekema, A., et al, (1983) Nature, 303: 179-180
  • Non-Patent Document 25 Komari, T. and Kubo, T., (1999) Methods of Genetic Transformation
  • gene transfer is carried out at a higher efficiency than the gene transfer efficiency to the plant in the conventional method for gene transfer to a plant via the bacterium belonging to the genus Agrobacterium. Therefore, conventional transformation is performed.
  • the purpose is to develop and provide a method for transformation with higher efficiency than efficiency.
  • Another object of the present invention is to develop and provide a method for producing a transformed plant using the above method.
  • the present inventors have found that powder exists by introducing a gene into a plant material via a bacterium belonging to the genus Agrobacterium in the presence of the powder. It was found that gene transfer is performed with higher efficiency than when not. In addition, when the plant material into which the gene was introduced was further selected for transformants, the plant material into which the gene was introduced in the presence of powder was compared with the case where no powder was present. We found that the transformation efficiency was improved. Therefore, the present invention provides a method for improving gene transfer efficiency and Z or transformation efficiency by inoculating plant material with an Agrobacterium bacterium in the presence of powder. [0014] A method for transferring a message using powder
  • the present invention is a method for introducing a gene into a plant material via a bacterium belonging to the genus Agrobataterium, characterized in that the plant material is inoculated with the genus Agrobataterium in the presence of powder. It relates to the method.
  • the presence of powder means a state in which powder is present when inoculating plant material with Agrobataterium bacteria. Therefore, after the Agrobataterium bacterial suspension is premixed with the powder, the mixture may be inoculated into the plant material; after the plant material is premixed with the powder, the mixture Terium bacteria may be inoculated; or plant material may be inoculated with agrobacterium at the same time by mixing agar butterium suspension, powder, and plant material at the same time You may do it. In the present invention, it is sufficient to mix so as to be reasonably homogeneous, and it is not necessary to stir strongly.
  • one aspect of the method of the present invention is a method for introducing a gene into a plant material via a bacterium belonging to the genus Agrobacterium, which is in the presence of a powder. Characterized in that it comprises the step of inoculating the plant material with bacteria, the step comprising:
  • the method of the present invention is a method for introducing a gene into plant material via a bacterium belonging to the genus Agrobataterium, comprising the genus Agrobataterium in the presence of powder. Characterized in that it comprises the step of inoculating the plant material with bacteria, the step comprising:
  • the method of the present invention is a method for introducing a gene into plant material via a bacterium belonging to the genus Agrobataterium, wherein the method is carried out in the presence of powder.
  • Said method comprising inoculating a plant material with a genus Batteratum.
  • the surface of the powder added when inoculating plant material with Agrobataterium bacteria is a reaction field for infection of plant material with Agrobataterium bacteria.
  • the powder does not adversely affect at least living tissue and has the following characteristics: insoluble in water; has affinity for living tissue; has adsorption properties; and surface polarity
  • the powder used in the method of the present invention has two or more of the above four characteristics.
  • the powder used in the method of the present invention is a powder that does not adversely affect the living tissue and is insoluble in water. If desired, the powder further has the following properties: affinity for living tissue. A powder having one or more properties selected from the group consisting of: having adsorption properties; and having surface polarity.
  • the powder can be used as long as it does not have toxicity or the like that has a substantial adverse effect on transformation, regeneration after transformation, growth after regeneration, etc. It is.
  • insoluble in water means insoluble or hardly soluble in an aqueous solvent. More specifically, it means insoluble or hardly soluble in the buffer, medium, etc. used in the method of the present invention. More specifically, it means insolubility or poor solubility in the conditions in the preparation of Agrobataterium bacterial suspension and plant material, and inoculation conditions. Since the powder used in the method of the present invention is insoluble in water, it can exist as a powder that does not dissolve in any step of the method of the present invention.
  • Having affinity for a living tissue means having an adsorptivity to the living tissue.
  • Particles with affinity for biological tissues can adsorb Agrobataterium bacteria and Z or plant material, so such particle surfaces could provide an efficient infection reaction field. .
  • Having an adsorption characteristic means a characteristic capable of adsorbing a substance.
  • the surface of the powder may provide a reaction field for infection by adsorbing to the powder added with Agrobacterium bacterium and / or plant material.
  • the powder having adsorption characteristics include porous powder.
  • Having surface polarity means that the powder surface has polarity, that is, the powder surface is relatively hydrophilic.
  • the powder having surface polarity can form a water film on the surface of the powder, and the water film can contain Agrobataterium bacteria and Z or plant material.
  • the powder that can be used in the method of the present invention is, for example, a powder selected from the group consisting of porous ceramics, glass wool, activated carbon, and mixtures thereof, but is not limited thereto.
  • Porous ceramics include, for example, hydroxyapatite, silica gel and zeolite, which are not limited to these.
  • the particle size of the powder that can be used in the method of the present invention is not limited, but is:! To 150 ⁇ m, preferably 5 to 75 ⁇ m.
  • the amount of the powder used in the method of the present invention is not limited, but the concentration at the time of inoculating plant material with Agrobataterium bacteria is 30 mg / ml or more, preferably 60 mg / ml or more. This is the amount.
  • the upper limit of the amount of the powder used in the method of the present invention is not limited, but is such an amount that the concentration at the time of inoculating plant material of Agrobataterium is 240 mg / ml or less.
  • inoculating a plant material with a bacterium belonging to the genus Agrobataterium can be performed by simply contacting the plant material with a bacterium belonging to the genus Agrobataterium. Inoculation can be done by normal inoculation or by dripping. Usually, inoculation is performed by mixing the plant material with the suspension of the genus Agrobacterium genus (inoculation source), immersing the plant material in the suspension, taking out the soaked plant material and allowing it to settle on the medium. Inoculation is performed by co-culturing.
  • the suspension of the genus Agrobataterium is dripped on the plant material that has been implanted on the medium, and after the dripped suspension has dried, the plant material is placed in another place on the medium or in another place.
  • This is a method of inoculating by culturing co-cultured on a medium.
  • the co-cultivation time is not limited, but it is 1 hour or more, preferably 1 day or more, 3 days or more, or 7 days or more.
  • the upper limit of the coculture time is not limited, but is preferably 7 days or less, 10 days or less, or 14 days or less.
  • the time for mixing the powder with Agrobataterium bacterium suspension, plant material, or Agrobataterium bacterium suspension and plant material is: As long as they are sufficiently mixed, there is no particular limitation. Preferred examples include 3 minutes, 5 minutes, 10 minutes, or 30 minutes of mixing time.
  • Plants used in the method of the present invention include both monocotyledonous plants and dicotyledonous plants.
  • Monocotyledonous plants include, but are not limited to, rice, corn, barley, wheat, asparagus, sorghum and sugar cane.
  • Dicotyledonous plants include, but are not limited to, tobacco, soybean, Miyakodasa, potato, ivy, castor and the like.
  • the plant subjected to the method of the present invention is a monocotyledonous plant, most preferably rice or corn.
  • the plant material means cells, leaves, roots, stems, buds, and flowers of the plant to be used for transformation of the plant by the agrobacterium method.
  • Plant tissue, growth point, explant, immature embryo, callus or somatic embryo-like tissue hereinafter referred to as callus etc. All aspects of the plant, such as callus), or a complete plant.
  • Preferred plant material for use in the method of the present invention is an immature embryo or a callus, and most preferred is an immature embryo.
  • the present invention also provides a method for producing a transformed plant using the gene introduction method.
  • the present invention relates to a method for producing a transformed plant by transformation of plant material via a bacterium belonging to the genus Agrobataterium, which comprises the following steps:
  • the step (1) includes
  • the step (1) comprises
  • the step (1) is performed by simultaneously mixing the suspension of Agrobataterium bacteria, the powder, and the plant material. This is achieved by inoculating plant material with the genus bacteria.
  • the characteristics, materials, particle size, and amount of the powder that can be used in the method for producing a transformed plant of the present invention are the same as those described above for the gene introduction method of the plant of the present invention. .
  • inoculation of plant cells with a suspension of bacteria belonging to the genus Agrobataterium may be performed by the above-described method, mixing time, and co-cultivation time.
  • the transformed plant produced is
  • Gene transfer using Agrobataterium bacteria generally includes the following steps:
  • the auxin for example, 2, 4-D
  • the auxin for example, 2, 4-D
  • a culture medium containing cytokinin or the like to bring the plant material into a state of dedifferentiation or in the process of dedifferentiation
  • the bacteria of the genus Agrobataterium A method comprising the steps of: (a) using an immature embryo of the plant as plant material, as described in the literature (Patent No. 3,329,819) Then, a method characterized in that immature embryos are not dedifferentiated and cultured in a medium containing auxin (for example, 2, 4-D) or cytokinin in the step (c) above.
  • the “plant” used for gene transfer includes both monocotyledonous plants and dicotyledonous plants.
  • Monocotyledonous plants that are subjected to the method of the present invention include, but are not limited to, rice, corn, barley, wheat, asparagus, sorghum and the like.
  • the dicotyledonous plants that are subjected to the method of the present invention include, but are not limited to, tobacco, soybean, Miyakodasa, potato, ivy, sunflower, and the like.
  • a preferred plant subjected to the method of the present invention is a monocotyledonous plant, most preferably rice or corn.
  • the "plant material” is not limited to cells, leaves, roots, stems, buds, flowers (stamens, pistils) of the plant to be used for transformation of the plant by the agrobacterium. Etc.), fruit, seed, germinated seed, or any other plant tissue, growth point, explant, immature embryo, callus, or complete plant body.
  • the form of the plant used in the method of the present invention is preferably an immature embryo or canores, and most preferably an immature embryo.
  • expressions of plant cells, tissues, and complete plants are used in the meaning generally used in the technical field.
  • an immature embryo is an immature seed embryo in the ripening process after pollination.
  • the stage (ripening stage) of immature embryos used in the method of the present invention is not particularly limited. It may be collected at any time after flour. However, those after 2 days after pollination are preferred.
  • an immature embryo scutellum that can induce callus having the ability to dedifferentiate and regenerate normal individuals by the method described below.
  • the immature embryo is preferably an inbread, Fl between inbread, Fl between inbread and naturally pollinated varieties, or immature embryos of commercial F1 varieties.
  • callus refers to an undifferentiated cell mass that grows randomly.
  • differentiated cells of plant tissue can be obtained by culturing in a medium containing a plant growth regulator such as auxin (eg, 2, 4-D) or cytokinin (referred to as dedifferentiation medium). .
  • the process for obtaining this callus is the dedifferentiation process, and this process is also called the dedifferentiation process.
  • step (a) if necessary, plant tissues, immature embryos and the like are taken out from the plant body, seeds, etc., and materials suitable for transformation are prepared. If desired, the plant material may be cultured before infecting agrobacterium.
  • T-DNA was incorporated into the plant genome by infection with agrobacterium, it was expected that when a desired gene was inserted into T_DNA, this gene was also incorporated into the plant genome.
  • the Ti plasmid is as large as 190 kb, it is difficult to insert a gene on T-DNA on a plasmid using standard genetic engineering techniques. there were. Therefore, a method for inserting foreign genes on T DNA was developed.
  • LBA4404 (Hoekema, A., et al., (1983), Nature, a disarmed strain of disarmed strains in which the hormone synthesis gene has been removed from the T DNA of the neoplastic Ti plasmid. Vol.303, p.179-180), C58C1 (pGV3850), GV3TillSE, etc. were produced.
  • two kinds of genes can be introduced into T-DNA of Ti plasmid of agrobacterium and T-DNA having desired gene can be introduced into agrobacterium.
  • a method was developed. One of them is an intermediate vector that can be easily manipulated and inserted into a desired gene, and that can be replicated in E. coli, in the T-DNA region of Agrobacterium teraplasmid arm plasmid. This is a method of introduction by homologous recombination via a trivalent method, called the intermediate vector method.
  • the other is called the binary vector method, which requires the vir region for integration of T-DNA into the plant S, and exists on the same plasmid to function. It is based on the result that it is not necessary.
  • this vir region there are virA, virB, virC, vir D, virE and virG (plant biotechnology encyclopedia (published by Entaprise Co., Ltd. (1989))), and the vir region is the virA, virB, virC, virD , Including all of virE and virG.
  • the binary vector is obtained by incorporating T-DNA into a small plasmid that can be replicated in both agrobacterium and E. coli, and is used by introducing it into an agrobacterium that has a disarmed Ti plasmid.
  • Binary vectors have strengths such as pBIN 19, pBI121, and pGA482. Based on these, many new binary vectors have been constructed and used for transformation. In the Ri plasmid system, a similar vector is constructed and used for transformation.
  • Agrobataterum A281 is a super-virulent fungal strain, and its host range has a wide transformation efficiency and higher transformation efficiency than other fungal strains. This characteristic is attributed to pTiBo542, the Ti plasmid of A281. Two new systems have been developed so far using pTiBo542. One is using strains EHA101 and EHA105 with the pTiBo542 disarm arm-type Ti plasmid. By applying to the plant system, it is used for transformation of various plants as a system with high transformation ability.
  • This system is a disarmed Ti plasmid with a vir region (virA, virB, virC, virD, virE and virG (hereinafter these may be referred to as “vir fragment regions”, respectively)). It is a kind of binary vector system because it consists of a plasmid with T-DNA. However, the plasmid on the side having T-DNA, that is, a binary vector, a fragment of the vir region from which at least one vir fragment region is substantially removed, preferably at least virB or virG. And more preferably, a super binary vector incorporating a fragment containing vi rB and virG) is used. It should be noted that homologous recombination via a three-line hybridization method can be used to introduce a T DNA region into which a desired gene has been incorporated into an agrobatatum having a super binary vector.
  • Agrobacterium tumefaciens as a host bacterium belonging to the genus Agrobacterium, a particularly limited repulsive force, Agrobacterium tumefaciens (line; the above-mentioned Agrobacterium tumefaciens L BA4404 (Hoekema, A "et al. , (1983), Nature, Vol. 303, p.179-180) and EH A101) can be preferably used.
  • any gene transfer system based on the expression of a gene group in the pathogenicity (vir) region in a bacterium belonging to the genus Agrobataterum can be used without any particular limitation and can have a significant effect. Can be obtained. Therefore, the present invention can be used for any of the vector systems such as the intermediate vectors, binary vectors, strong pathogenic binary vectors, and super binary vectors described above, and the effects of the present invention can be obtained.
  • the efficiency of introducing a wild-type T-DNA region into a plant can be increased even in a wild-type bacterium belonging to the genus Agrobacterium, and the infection efficiency can be effectively improved.
  • a desired gene to be introduced into a plant can be incorporated into a restriction enzyme site in the T-DNA region of the plasmid by a conventional method, and PPT (phosphinoslysin incorporated into the plasmid at the same time or separately). ), Selection based on appropriate selection markers such as genes with resistance to drugs such as hygromycin, kanamycin, and paromomycin. Larger ones with many restriction sites may not always be easy to introduce the desired DNA into the T-DNA region using conventional subcloning techniques. In such a case, the target DNA can be introduced by utilizing the homologous recombination in the cells of the genus Agrobataterium by the three-line hybridization method. Without being limited thereto, the size of the introduced gene is preferably about lOObp to 200 kbp.
  • the operation of introducing a plasmid into a bacterium belonging to the genus Agrobacterium tumefaciens such as Agrobacterium tumefaciens can be performed by a conventional method.
  • the method include the three-line hybridization method, the electoral position method, and the electoral injection method. And methods using chemical treatments such as PEG.
  • the gene to be introduced into the plant is basically arranged between the left and right border sequences of T DNA as in the conventional technique.
  • the plasmid since the plasmid is circular, there may be more than two border sequences when trying to place multiple genes with different border sequences at different sites. It may also be placed on Ti or Ri plasmids or on other plasmids in Agrobataterium bacteria. Furthermore, they may be arranged on a plurality of types of plasmids.
  • the method for introducing a gene via a bacterium belonging to the genus Agrobataterium can be carried out by simply contacting the plant material with the bacterium belonging to the genus Agrobataterium.
  • 10 6 ⁇ : lO ⁇ cfu / Prepare a suspension of Agrobataterium spp. at a cell density of 3 m, and immerse the plant material in this suspension for 3 to 10 minutes, then co-cultivate on a solid medium for several days.
  • the plant material is co-cultured with agrobacterium at the same time as the plant material is infected with agrobacterium or before the removal of agrobacterium after infection.
  • a known medium can be used for co-culture.
  • LS_AS medium, nN6_AS medium used in the examples, or other, N6S3-AS medium, 2N6-AS medium Hiei, Y., et a 1., (1994), The Plant Journal, Vol. 6 , p.271-282
  • the feature of the method of the present invention for gene transfer / transformation by a general agrobacterium method is that the above-mentioned step (c) of infecting plant material with agrobacterium is in the form of a powder. To do in the presence.
  • step (c) is followed by
  • the step of selecting transformed cells means selecting cells having a desired trait based on phenotypic data and / or physical data.
  • phenotypic data are obtained by introducing a marker gene and / or a selection marker gene together with a gene desired to be introduced into a plant and evaluating its expression.
  • Marker gene and / or selection marker One gene includes, for example, GUS (/ 3-Darcmouthidase) gene and / or antibiotic resistance gene (for example, PPT (phosphinoslysin) resistance gene, hygromycin resistance gene) , Kanamycin resistance gene, paromomycin resistance gene) and the like can be used.
  • the transformation efficiency was evaluated as X—Gluc (5-Bromo 4-Chloguchi 1-Indolinole ⁇ -D-Gnoreclon It can be evaluated from the color developed by the cleavage of acid by GUS.
  • an antibiotic resistance gene is used as a selection marker gene, it can be evaluated from the degree of growth on a selection medium containing antibiotics after transformation.
  • Transformants selected as desired are redifferentiated to grow redifferentiated individuals and to obtain complete plants.
  • known methods eg, Hiei, et, et al., (1994), The Plant Journal, Vol. 6, p. 27 to 282; and Ishida, Y., et al, (1996), Nature Biotechnology, Vol.4, p.745-750).
  • the method of the present invention is compared to the case where gene transfer of plant material using agrobacterium is carried out in the presence of powder, compared to the case where it is carried out in the absence of powder.
  • gene transfer efficiency and / or transformation efficiency is improved.
  • Gene transfer efficiency can be evaluated, for example, by evaluating the range of transient expression of the introduced gene. In the examples described below, transient expression of the GUS gene in immature embryos was evaluated.
  • the transformation efficiency is, for example, the number of regenerated plants obtained from inoculated immature embryos that showed the expression of the GUS gene as transformants, and the total number is the number of immature embryos inoculated. It can be calculated by dividing. Alternatively, among the redifferentiated plants, those showing resistance to the selection pressure can be counted as transformants, and the total number can be calculated by dividing by the number of immature embryos inoculated.
  • the method of the present invention is characterized in that the step (c) of infecting plant material with agrobacterium is performed in the presence of powder. Therefore, it will be understood that the gene transfer and / or transformation method of the present invention may be described as follows.
  • the method of the present invention is a method for gene transfer and / or transformation of a plant using a bacterium belonging to the genus Agrobataterium, which comprises the following steps:
  • step (c) infecting the plant material prepared in step (a) with the genus Agrobataterium prepared in (b) in the presence of powder;
  • step (c) to obtain a transformant.
  • the method of the present invention is a method for introducing and / or transforming a plant gene using a bacterium belonging to the genus Agrobataterium, comprising the following steps:
  • step (c 2) To obtain a transformant.
  • the method of the present invention is a method for introducing and / or transforming a plant gene using a bacterium belonging to the genus Agrobataterium, comprising the following steps:
  • step (c-2) Infecting plant material with Agrobataterium bacteria by inoculating the mixture of (c_l) with the suspension of Agrobataterium bacteria prepared in (b) ; And optionally following step (c 2) to obtain a transformant.
  • the method of the present invention is a method for gene transfer and Z or transformation of a plant using a bacterium belonging to the genus Agrobataterium, which comprises the following steps:
  • step (c) to obtain a transformant
  • the characteristics, material, particle size, and amount of the powder that can be used in the gene transfer and / or transformation method of the plant of the present invention are the same as those described above for the gene transfer method of the plant of the present invention. It is the same as that.
  • plant cells may be inoculated with a suspension of the genus Agrobataterium in the method described above, mixing time, and co-cultivation time. Good.
  • the transformed plant produced is the same as the above-described plant used in the gene introduction method of the present invention.
  • the present invention provides a method for gene transfer and transformation of plants by the agrobacterium method, which has high gene transfer efficiency and transformation efficiency.
  • FIG. 1 is a graph showing the effect of powder addition on the transformation efficiency in rice. Inoculated 5 immature embryos in each group. The vertical axis represents the number of hygromycin-resistant plants obtained per inoculated immature embryo, and the horizontal axis SG represents silica gel and HA represents hydroxypatite.
  • FIG. 2 is a graph showing the effect of powder particle size on the transformation efficiency in rice.
  • Each group 9 to 12 Inoculated into immature embryos.
  • the vertical axis represents the number of greening canores obtained per inoculated immature embryo, and the horizontal axis represents the particle size of the added powder. Represents control with no powder added to ConU.
  • FIG. 3 is a graph showing the effect of the amount of powder on the transient expression of the transgene in rice. Inoculated 10 immature embryos in each section.
  • the vertical axis represents the expression of the GUS gene in immature embryos. The value indicates that after immature embryos after co-cultivation were stained with X-Gluc, immature embryos that showed GUS gene expression in more than 75% of the scutellum showed expression in 3, 25-74% of the sites. 2 and 5 to 24% of the expression was expressed as 1, the expression was expressed in less than 5% of the site as 0.5, and the expression was not evaluated as 0 is there.
  • the horizontal axis represents the amount of powder added.
  • FIG. 4 is a graph showing the effect of the amount of powder on the transformation efficiency in rice.
  • the vertical axis represents the number of greening calli obtained per inoculated immature embryo, and the horizontal axis represents the amount of powder added.
  • FIG. 5 is a graph showing the effect of zeolite on the transgene transient expression in rice.
  • the vertical axis represents GUS gene expression in immature embryos. The values were as follows: After immature embryos after coculture were stained with X-Glue, immature embryos that showed GUS gene expression in 25% or more of the scutellum showed expression in 3 to 10-24% 2 of those, 1 of those that showed expression in less than 10%, 1 expression was not seen This is the value evaluated with 0 as the strength.
  • the horizontal axis represents the particle size of the added zeolite. No addition represents a control with no powder added.
  • FIG. 6 is a graph showing the effect of powdered caroten mixed with the inoculum on the transient expression of the transgene.
  • the vertical axis represents GUS gene expression in immature embryos.
  • the values indicate that after immature embryos after co-cultivation were stained with X-Glue, immature embryos that showed GUS gene expression in more than 75% of the scutellum showed expression in 3, 25-74% The value was evaluated by assuming that the expression was 2 at 5 to 24%, 1 was expressed at 5-24%, 0.5 was expressed at less than 5%, and 0 was not expressed. It is.
  • SG on the horizontal axis represents silica gel
  • HA represents hydroxyapatite
  • GW represents glassur. No addition represents a control with no powder added.
  • FIG. 7 is a graph showing the effect of powder-added powder to the inoculum on the transient expression of the transgene in rice callus. Inoculated 6 calli in each section. The vertical axis represents GUS gene expression in immature embryos. The values indicate that after immature embryos after co-cultivation were stained with X-Glue, immature embryos that showed GUS gene expression in 75% or more of the scutellum showed expression in 3, 25 to 74% of the sites. The value was expressed as 2, with 24 to 5% showing expression, 1 showing expression at less than 5%, 0.5 showing no expression, and 0 showing no expression. It is. HA on the horizontal axis represents hydroxyapatite, and no additive represents the control with no powder added.
  • LBA4404 (pSB134) was used for agrobacterium and its vector.
  • LB A4404 (pSB134) was created as follows. The GUS expression unit derived from pIG221 (Ohta, S., et al., (1990) Plant Cell Physiol., 31: 805-813) was transferred to pKY205 (Kurava, Y., et al. (2004) Mol. Breed., 14: 309-320), inserted into the Hindlll restriction site upstream of the HPT gene controlled by the maize ubiquitin promoter. This plasmid was introduced into LBA4404 (pSBl) ( Komari, T., et al., (1996) Plant J., 10: 165-174) to obtain LBA4404 (p SB 134).
  • the Japanese rice variety Yukihikari was used as the test variety. 8 ⁇ after flowering: Remove pods from immature seeds on the 14th day and sterilize with 70% ethanol for several seconds and with 1% sodium hypochlorite aqueous solution containing Tween 20 (Wako Pure Chemical Industries, Ltd.) for 15 minutes. went. After washing several times with sterilized water, immature embryos having a length of 1.5 to 2 mm were extracted and used as test tissues.
  • Aseptically extracted immature embryos were placed in 2N6-AS medium. After stirring for several seconds with a vortex mixer so that the powder is evenly dispersed in the bacterial suspension, 1) immature embryos and 5 ⁇ 1 ( ⁇ suspension was dripped onto the immature embryos. The immature embryos were moved to a different location on the same medium, sealed, and then co-cultured for 7 days in the dark at 25 ° C.GUS by treating some immature embryos with X_Gluc Expression was investigated (Hiei et al., 1994): Immediately after co-cultivation treatment, the tissue was immersed in 0.1 M phosphate buffer (pH 6.8) containing 0.1% Triton X-100. Allowed to stand for 1 hour at ° C.
  • nN6CC medium N6 inorganic salt, N6 vitamin, 0.5 g / l casamino acid, 0.5 g / l L-proline, lmg / 1 2, 4— D 0.5 mg / l N AA, 0.1 mg / 1 6BA, 20 g / l sucrose, 55 g / l Sonorhi, Tonore, 250 mg / 1 Cef Taxix, 250 mg / l force Norebenicillin, 5 g / l Genoralei pH 5.8)
  • NBK4CC NBK4 main inorganic salt, B5 trace inorganic salt, B5 vitamin, AA amino acid, 0.5g / ⁇ casamino acid, 0.5g / l L-proline, lmg / 1 2, 4—D 0.5 mg / l NAA, 0.1 mg / 1 6BA, 20 g / l Manoleto
  • callus was divided into 5 parts, placed in nN6CC medium or NBK4CC medium containing 50 mg / l hygromycin, and cultured under the same conditions for 10 days.
  • Regeneration medium containing hygromycin 50 mg / l (N6 mineral salt, N6 vitamin, AA amino acid, lg / 1 casamino acid, 0.5 mg / l force rice, 20 g / l sucrose, 30 g / l sonorebitonore, 4g / l gellite, ⁇ 5 ⁇ 8) or (NBK4 main inorganic salt, B5 trace mineral salt, ⁇ ⁇ ⁇ ⁇ 5 vitamin, ⁇ amino acid, lg / 1 casamino acid, 2mg / l force rice, 20g / l manoletos, 30g / l It was placed on Sonorebitonore, 5 g / l gellite, pH 5.8), and cultured under the same conditions for about 2 weeks.
  • N6 mineral salt N6 vitamin, AA amino acid, lg / 1 casamino acid, 0.5 mg / l force rice, 20 g / l sucrose, 30 g /
  • spots showing GUS gene transient expression are observed over a wide area of the scutellum. Spots observed at distant sites in one scutellum are thought to originate from independent transformed cells that have been individually transfected.
  • immature embryos grown after co-cultivation and resting culture are divided into 4 to 6 masses, the origin originates from 20-30 cell masses obtained by dividing even in the case of one immature embryo in the presence of hygromycin Callus and its re-differentiated plants that grew on the plant are considered to be independent transformants.
  • One callus of hygromycin-resistant callus proliferated from the cell mass obtained by division was selected from one cell mass and placed on a regeneration medium containing no and idaromomycin.
  • the hyaluromycin-resistant redifferentiated plants obtained therefrom were counted as transformants, and the total number was divided by the number of immature embryos inoculated to calculate the transformation efficiency.
  • the immature embryos after coculture were cultured in a medium containing hygromycin, and the obtained callus was placed on a regeneration medium containing hyaluromycin and cultured.
  • Hygromycin-resistant redifferentiation Plants were also obtained from immature embryos that were misaligned, but in the case of immature embryos that had been inoculated with powder added to the inoculum, hygromycin was compared to immature embryos that had not been supplemented with powder. The number of resistant regenerated plants was large, and the addition of powder improved the transformation efficiency (Fig. 1).
  • LBA4404 (pSB131) (Ishida, ⁇ , et al., (1996) Nature Biotechnology, 14: 745-750) was used as agrobacterium.
  • Corn in bread A188 was used as a test variety. From 1.0 to 14 days after mating, a 1.0 mm-sized immature embryo was aseptically removed and used as a test tissue.
  • Inoculation was performed by two methods: normal inoculation and drop inoculation.
  • the normal inoculation was performed as follows. Aseptically extracted immature embryos were treated at 46 ° C for 3 minutes and then centrifuged at 15,000 rpm and 4 ° C for 10 minutes. Heated and centrifuged immature embryos were mixed with the seed source and agitated with a vortex mixer for 30 seconds. Immature embryos with 5 ⁇ M AgNO
  • GUS expression was examined for some immature embryos by treating X-Glue (Hiei, Y., et al., (1994) The Plant Journal, 6: 271-282). That is, immediately after the co-cultivation treatment, the tissue was immersed in a 0.1 M phosphate buffer ( ⁇ 8 ⁇ 8) containing 0.1% Triton X-100 and allowed to stand at 37 ° C. for 1 hour. After removal of agrobacterium with phosphate buffer, 1. Add OmM 5-Promo 4-Chrome 1-Indolyl ⁇ -D-Glucuronic acid (X-Glue) and 20% methanol. The containing phosphate buffer was added. After treatment at 37 ° C for 24 hours, the structure showing a blue color was observed under a microscope.
  • X-Glue 5-Promo 4-Chrome 1-Indolyl ⁇ -D-Glucuronic acid
  • Immature embryos were placed in modified LSD1.5 medium (Ishida, Y “et al., (2003) Plant Biotechnology, 20: 57-66) containing 5mgZl phosphinoslysin (PPT). After culturing for 10 to 14 days, the cells were cultured in modified LSD1.5 medium containing 10 mg / l PPT. The cell mass is treated with LSZ regeneration medium containing 5 mg / l PPT and ⁇ ⁇ ⁇ CuSO (Ishida, ⁇ .,
  • Immature embryos after co-culture were treated with X-Gluc.
  • blue spots indicating transient expression of the GUS gene were observed, but in the case of immature embryos that were inoculated with powder added to the inoculation source in addition to normal inoculation and drop inoculation, no powder was added.
  • the immature embryos after co-culture were cultured in a medium containing PPT, and the obtained callus was placed on a regeneration medium containing PPT and cultured.
  • GUS analysis was performed on PPT-resistant plants that had undergone redifferentiation.
  • the strength of GUS-positive plants obtained from any immature embryo The number of GUS-positive plants in the immature embryos inoculated with powder added to the inoculation source in both normal and drop inoculations compared to the control immature embryos with no powder added It was found that transformation efficiency was improved by adding a large amount of powder (Table 1).
  • GW polished glass wool
  • SG silica gel
  • HA hydroxyapatite
  • LBA4404 (pSB134) was used for agrobacterium and its vector.
  • the Japanese rice variety Yukihikari was used as the test variety. 8 ⁇ after flowering: The buds of immature seeds on the 14th day were removed and sterilized with 70% ethanol for several seconds and with 1% sodium hypochlorite aqueous solution containing Tween 20 for 15 minutes. After washing several times with sterilized water, immature embryos with a length of 1.5-2 mm were extracted and used as test tissues.
  • Immature embryos after coculture were treated with X_Gluc.
  • a blue spot showing transient expression of the GUS gene was observed in all treatments, including the control with no powder added.
  • the site showing blue color is more widespread, and the particle size of the powder promotes gene transfer Showed different degrees
  • the immature embryos after coculture were cultured in a medium containing hygromycin, and the obtained callus was placed on a regeneration medium containing hyaluromycin and cultured.
  • Hygromycin-resistant redifferentiation Plants obtained from any immature embryo Hygromycin compared to control immature embryos with no powder added to immature embryos inoculated with silica gel with a particle size of 150 ⁇ m or less added to the inoculum The number of resistant redifferentiated plants was large, and the transformation efficiency was improved (Fig. 2).
  • LBA4404 (pSB 134) was used for agrobacterium and its vector.
  • the Japanese rice variety Yukihikari was used as the test variety. 8 ⁇ after flowering: The buds of immature seeds on the 14th day were removed and sterilized with 70% ethanol for several seconds and with 1% sodium hypochlorite aqueous solution containing Tween 20 for 15 minutes. After washing several times with sterilized water, the length is 1.5-2mm A mature embryo was extracted and used as a test tissue.
  • Activated carbon and silica gel were used as powders. 0-240 mg of powder was placed in a tube and sterilized by autoclaving. Agrobataterium colonies cultured on AB medium (Chil ton, MD., Et al., (1974) Pro Natl. Acad. Sci. USA, 71: 3672-3676) for 3-5 days AA medium (AA main inorganic salts, AA amino acids and AA vitamins (Toriyama, ⁇ ⁇ , et al., (1985) Plant Sci ⁇ 41: 179-183), MS trace salts ( Murashige, T. and Skoog, F., (1962) Physiol Plant, 15:. 473-497), 1.
  • OgZl casamino acid 100 ⁇ ⁇ Asetoshiringon, 0. 2 ⁇ sucrose, 0. 2 ⁇ glucose) in lxlO 8 ⁇ : Suspended at a concentration of lxl0 9 cfu / ml. To the tube containing the powder, lml of agrobacterium suspension was added to form an inoculum.
  • LBA4404 (pSB131) was used for agrobacterium and its vector.
  • Corn in bread A188 was used as a test variety. After mating 8 ⁇ : 14 days old ear force size 1. 0 ⁇ : 1. 2mm immature embryos were aseptically removed and used as test tissues. Zeolite (5 ⁇ m, 75 ⁇ m; Wako Pure Chemical Industries, Ltd.) having two particle sizes was used as a powder. Powder sterilization and inoculum preparation were performed according to the methods described in Example 2. Inoculation was performed by the drop inoculation method described in Example 2. Investigation of GUS immature embryos in co-cultured immature embryos was carried out by the method described in Example 2.
  • LBA4404 (pSB134) was used for agrobacterium and its vector.
  • the Japanese rice cultivar Yukihiki was used as the test variety.
  • the test tissue was prepared according to the method described in Example 4.
  • Silica gel, silica, idroxyapatite and ground glass wool were used as powders.
  • a total amount of 120 mg of powder was placed in a tube and sterilized by an autoclave. When the two types of powder were mixed, each powder was sterilized by about 60 mg, and when the three types of powder were mixed, each powder was about 40 mg sterilized.
  • the agrobatterium suspension was prepared according to the method described in Example 4. Into a tube containing the powder, lml of agrobacterium suspension was added as an inoculum. The inoculation, co-cultivation method and GUS expression were adjusted according to the method described in Example 1.
  • LBA4404 (pSB134) was used for agrobacterium and its vector.
  • the Japanese rice variety Yukihikari was used as the test variety. 8 ⁇ after flowering: The buds of immature seeds on the 14th day were removed and sterilized with 70% ethanol for several seconds and with 1% sodium hypochlorite aqueous solution containing Tween 20 for 15 minutes. After washing several times with sterilized water, immature embryos with a length of 1.5 to 2 mm were removed and placed in 2N6_AS medium. The immature embryos with callus growth were cultured for 1 week at 25 ° C under dark black, and used as test materials.
  • Immature embryos after coculture were treated with X-Glue.
  • hydroxyapatite was added to the inoculation source, and the inoculated callus showed a wide blue area, and even when callus was used as a material, the inoculation source It was shown that gene transfer was promoted by the addition of powder (Fig. 7).
  • the present invention provides a simple method for gene transfer and transformation with higher efficiency than the conventional agrobacterium method. Since the present invention has improved the gene transfer efficiency and transformation efficiency of plants by the agrobatterium method, the present invention efficiently obtains a large number of transformed plants and cultivates varieties into which a practical gene has been introduced. Contribute to efficient training.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

 本発明は、アグロバクテリウム属細菌を介して植物材料への遺伝子導入を行う方法であって、粉体の存在下でアグロバクテリウム属細菌を植物材料に接種することを特徴とする、前記方法を提供する。本発明の方法において、粉体は、少なくとも生体組織に対し悪影響を及ぼさず、かつ、水に不溶性である;生体組織に対する親和性を有する;吸着特性を有するおよび、表面極性を有する;からなる群より選択される1またはそれより多くの特性を有する粉体である。また、本発明は、本発明の遺伝子導入方法を用いることを特徴とする形質転換植物の製造方法を提供する。                                                                               

Description

明 細 書
粉体を用いて形質転換効率を向上させる方法
技術分野
[0001] 本発明は、ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を効率よく 行う方法に関する。
背景技術
[0002] 主要穀類であるトウモロコシ、イネなどの単子葉植物の形質転換方法としては、エレ タトロポレーシヨン法、パーティクルガン法などが知られている。し力し、これらの物理 的遺伝子導入方法は多コピーの遺伝子が導入されてしまう、遺伝子の挿入がインタ 外な形でなされない、形質転換植物に奇形や不稔が多くみられるなどの問題を有 する。
[0003] ァグロバタテリゥム法による遺伝子導入は、ァグロバタテリゥムの機能を利用した植 物の开質転換方法である。土壌細菌ァグロバタテリゥム (Aerobacterium tumefaciens) は、植物に感染すると、ァグロバタテリゥムの病原性に関与している Ti (tumor-inducin g)プラスミドの一部である T—DNAが植物ゲノムに組み込まれる機能を有している。 ァグロバタテリゥム法による植物の形質転換方法は、 Tiプラスミドの T—DNA領域を 植物ゲノムに導入を所望する遺伝子に置き換えた形質転換用プラスミドを調製し、当 該形質転換用プラスミドを Tiプラスミドの代わりに有するように調製したァグロバタテリ ゥムを用いて、上記のァグロバタテリゥムの機能を利用することにより当該植物ゲノム に導入を所望する遺伝子を植物ゲノム中に導入する方法である。
[0004] ァグロバタテリゥム属細菌を用いた遺伝子導入法は、双子葉植物の形質転換法とし て普遍的に用いられている。ァグロバタテリゥム属細菌の宿主は双子葉植物のみに 限られ、単子葉植物には寄生しないとされていた(De Cleene, M. and De Ley, J., (1 976) Bot. Rev., 42: 389-466)が、ァグロバタテリゥムにより単子葉植物を形質転換す る試みがなされてきた(Grimsley, N., et al" (1987) Nature, 325: 177-179; Gould, J" et al., (1991) Plant Physiol., 95: 426-434; Mooney, P. A. , et al., (1991) Plant Cell, T issues and Organ Culture, 25: 209-218; Raineri, D. M., et al., (1990) Bio/technolog y, 8 : 33-38)。これらの研究報告はイネ、トウモロコシ、コムギ等のイネ科の作物でもァ グロバタテリゥムによる遺伝子導入が可能であることを示唆していた力 S、何れも再現性 に問題があるほか、導入した遺伝子の確認についても不完全で、説得できる結果が 示されていなかった(Potrycus, I" (1990) Bio/technology, 8 : 535-542)。
[0005] Chanらは、 2, 4 _ D (2, 4—ジクロロフヱノキシ酢酸)共存下で 2日間培養したイネ 未熟胚に付傷後、ジャガイモ懸濁培養細胞を含む培地中で nptll遺伝子と GUS遺 伝子を持ったァグロバタテリゥムを接種した。処理した未熟胚を G418添加培地上で 培養したところ、誘導されたカルスから再分化植物体が得られた。再分化植物体およ びその後代の植物体での GUS遺伝子の所在をサザン分析で確認したところ、再分 化当代、後代いずれの植物体でも導入遺伝子の存在が認められたことを報告してい る(Chan, M-T. , et al., (1993) Plant Mol. Biol , 22 : 49ト 506)。この結果は、ァグロバ クテリゥムによるイネの形質転換を支持するものであるが、形質転換効率は 1 . 6 %と 非常に低ぐ供試した未熟胚数 250に対し、正常な生長を示した再生植物体は 1個 体にすぎなかった。イネの未熟胚を摘出するには多大な労力を要するため、このよう に低い形質転換効率では実用的なレベルにあるとは言い難い。
[0006] 近年、強病原性ァグロバタテリゥムの病原性遺伝子の一部を有するスーパーバイナ リーベクターの利用により、イネ、トウモロコシなどの単子葉植物においても、安定して
、高効率で形質転換のなされることが報告された(Hiei, Y., et al. , (1994) The Plant J ournal, 6 : 271-282 ; Ishida, Υ·, et al" (1996) Nature Biotechnology, 14: 745-750)。 これらの報告では、ァグロバタテリゥムによる形質転換は、安定して、高効率で形質転 換がなされる他に、得られた形質転^!直物に変異が少なぐ導入された遺伝子はコ ピー数が少なぐかつインタタトな形のものが多いという利点をもっとしている。イネ、ト ゥモロコシでの成功に続いて、主要な穀類であるコムギ(Cheng, Μ·, et al. , (1997) PI ant Physiol , 115 : 971-980)、ォォムギ(Tingay, S" et al.ズ 1997) Plant J. , 11 : 1369- 1 376)およびソルガム(Zhao, Ζ·- Υ·, et al. , (2000) Plant Mol. Biol , 44: 789-798)での ァグロバタテリゥムによる形質転換の報告がなされた。
[0007] Ishidaらは、トウモロコシインブレッド A188および A188に関連したインブレッドを材 料にァグロバタテリゥムによる形質転換を行った(Ishida, Y., et al. , (1996) Nature Bio technology, 14: 745-750)。その後、ァグロバタテリゥムによるトウモロコシの形質転換 の報告がなされたが、いずれも A188および A188に関連したハイブリッドを用いたも のであった(Deji, A" et al.,(2000) Biochim. et Biophys. Acta, 1492: 216-220; Negr otto, D., et al., (2000) Plant Cell Reports, 19: 798-803; Nomura, M. , et al., (2000) Plant J. , 22: 211-221 ; Nomura, M., et al. , (2000) Plant Mol. Biol , 44: 99-106; Tani guchi, Μ· , et al , (2000) Plant Cell Physiol. , 41 : 42-48; Zhao, Z.-Y. , et al. , (2001) Mol. Breed. , 8: 323-333; Frame, B. R., et al. , (2002) Plant Physiol , 129: 13-22)。 ァグロバタテリゥムによるトウモロコシ形質転換の効率を改善する試みとしては、 N6基 本培地での形質転換細胞の選抜(Zhao, Z.-Y. , et al. , (2001) Mol. Breed. , 8: 323-3 33)、培地への AgN〇およびカルべニシリンの添加(Zhao, Z._Y.
3 , et al. , (2001) Mol.
Breed. , 8: 323-333; Ishida, Y., et al" (2003) Plant Biotechnology, 20: 57-66) ,共 存培地へのシスティンの添加(Frame, B. R" et al. , (2002) Plant Physiol. , 129: 13-2 2)などがなされてきた。 Ishidaらは、共存培養後のトウモロコシ未熟胚を AgNOおよ
3 びカルべニシリンを含む培地で選抜することにより A188以外の公的インブレッドであ る H99および W1 17の形質転換植物の作出をするとともに、同方法により A188の形 質転換効率が向上することを報告した(Ishida, Y., et al. , (2003) Plant Biotechnolog y, 20: 57-66)。
[0008] Singhおよび Chawlaは、シリコンカーバイドファイバー(SCF)の懸濁液中でコムギの 未熟胚をボルテックスミキサーで 2〜3分間攪拌した後、ァグロバタテリゥムを接種す ることにより、 GUS遺伝子を発現する未熟胚の数が増すことを報告した(Singh, N. an d Chawla, S., (1999) Current Science, 76: 1483-1485)。これは SCFにより未熟胚が 付傷されたことによるもので、ァグロバタテリゥム接種前に組織を付傷する試みは、他 にパーティクルガンによる付傷(Bidney et al. , 1992)や超音波処理による付傷(Trick, H. N. and Finer, J. J" (1997) Transgenic Res. , 6 : 329-336)などがある。
[0009] ァグロバタテリゥムによるトウモロコシの形質転換において形質転換効率を向上させ るために種々の試みがなされてきた(Negrotto, D" et al. , (2000) Plant Cell Reports, 19: 798-803; Zhao, Z.-Y. , et al. , (2001) Mol. Breed. , 8: 323-333; Frame, B. R., et al. , (2002) Plant Physiol , 129: 13-22; Ishida, Υ· , et al. , (2003) Plant Biotechnology , 20: 57-66)。しかし、その効果は同じ単子葉植物であるイネに比べまだ低ぐ実用 的な形質転換トウモロコシを作出する場合のみならず新規な遺伝子の効果をトウモロ コシで確認する場合にもさらなる形質転換効率の向上が望まれている。さらに近年の ゲノミタス研究の進展にともない遺伝子の機能解明のための形質転換の必要性は高 まることから、効率のよい形質転換系が求められるであろう。
[0010] また、他の単子葉植物および双子葉植物においても現行の手法による形質転換効 率を上回る方法の開発は形質転換体を利用する種々の場面で有用である。
[0011] 本明細書に引用される文献は、いずれも本明細書に引用により完全に援用される。
特許文献 1:特許第 2, 649, 287号公報
特許文献 2:特許第 2, 329, 819号公報
特許文献 3:特開 2000— 342256号公報
特許文献 4:国際公開第 95/06722号パンフレット
非特許文献 l:Bidney, D" et al., (1992) Plant Mol. Biol., 18: 301-313.
非特許文献 2: Chan, M_T., et al., (1993) Plant Mol. Biol., 22: 491-506·
非特許文献 3 : Cheng, M., et al., (1997) Plant Physiol., 115: 971-980.
非特許文献 4: De Cleene, M. and De Ley, J" (1976) Bot. Rev., 42: 389-466.
非特許文献 5:Deji, A., et al., (2000) Biochim. et Biophys. Acta, 1492: 216-220· 非特許文献 6 : Frame, B. R., et al., (2002) Plant Physiol., 129: 13-22·
非特許文献 7 : Gould, J., et al., (1991) Plant Physiol., 95: 426-434·
非特許文献 8 : Grimsley, N., et al" (1987) Nature, 325: 177-179.
非特許文献 9:Hiei, Y" et al., (1994) The Plant Journal, 6: 271-282.
非特許文献 10:Ishida, Y" et al., (1996) Nature Biotechnology, 14: 745-750.
非特許文献 ll:Ishida, Y" et al., (2003) Plant Biotechnology, 20: 57-66.
非特許文献 12:Mooney, P. A., et al, (1991) Plant Cell, Tissues and Organ Culture, 25: 209-218.
非特許文献 13:Negrotto, D., et al" (2000) Plant Cell Reports, 19: 798-803.
非特許文献 14: Nomura, M., et al" (2000) Plant J" 22: 211-221.
非特許文献 15: Nomura, M., et al" (2000) Plant Mol. Biol., 44: 99-106. 非特許文献 16 : Potrycus, I" (1990) Bio/technology, 8: 535-542·
非特許文献 17 : Raineri, D. M. , et al., (1990) Bio/technology, 8: 33-38·
非特許文献 18 : Singh, N. and Chawla, S" (1999) Current Science, 76: 1483-1485· 非特許文献 19 : Taniguchi, M" et al, (2000) Plant Cell Physiol., 41 : 42-48.
非特許文献 20 : Trick, H. N. and Finer, J. J" (1997) Transgenic Res. , 6 : 329-336. 非特許文献 21 : Tingay, S" et al.,(1997) Plant J., 11 : 1369-1376.
非特許文献 22 : Zhao, Z.-Y., et al" (2000) Plant Mol. Biol., 44: 789-798.
非特許文献 23 : Zhao, Z.-Y., et al" (2001) Mol. Breed., 8: 323-333.
非特許文献 24 : Hoekema, A. , et al, (1983) Nature, 303: 179-180
非特許文献 25 : Komari, T. and Kubo, T., (1999) Methods of Genetic Transformation
: Agrobacterium tumefaciens. In Vasil, I. K. ed.), Molecular improvement of cereal crops, Kluwer Academic Publishers, Dordrecht, p.43-82.
発明の開示
発明が解決しょうとする課題
[0012] 本発明は、従来のァグロバタテリゥム属細菌を介した植物への遺伝子導入方法に おける植物への遺伝子導入効率よりも高い効率で遺伝子導入がなされ、従って、従 来の形質転換効率よりも高い効率で形質転換のなされる方法を開発し、提供すること を目的とする。また、本発明は、前記方法を使用した形質転換植物の製造方法を開 発し、提供することを目的とする。
課題を解決するための手段
[0013] 本発明者らは上記課題解決のため鋭意研究に努めた結果、粉体の存在下でァグ ロバクテリゥム属細菌を介した植物材料への遺伝子導入を行うことにより、粉体が存 在しない場合と比較して、高い効率で遺伝子導入のなされることを見いだした。また、 遺伝子導入された植物材料について、さらに形質転換体の選抜を行ったところ、粉 体の存在下で遺伝子導入を行った植物材料は、粉体が存在しなレ、場合と比較して、 形質転換効率が向上することを見いだした。よって、本発明は、粉体の存在下でァグ ロバクテリゥム属細菌を植物材料に接種することにより、遺伝子導入効率および Zま たは形質転換効率を向上させる方法を提供する。 [0014] 粉体を用いる遣伝子導人方法
本発明は、ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を行う方法 であって、粉体の存在下でァグロバタテリゥム属細菌を植物材料に接種することを特 徴とする方法に関する。
[0015] 本発明の方法において、粉体の存在下、とはァグロバタテリゥム属細菌を植物材料 に接種する際に粉体が存在している状態を意味する。したがって、ァグロバタテリゥム 属細菌懸濁液をあらかじめ粉体と混合した後、その混合物を植物材料に接種しても よく;植物材料をあらかじめ粉体と混合した後、その混合物にァグロバタテリゥム属細 菌を接種してもよく;または、ァグロバタテリゥム属細菌懸濁液、粉体、および植物材 料を同時に混合することによりァグロバタテリゥム属細菌を植物材料に接種してもよい 。なお、本発明において、混合は、適度に均質になるように混ぜれば十分であり、強 く攪拌する必要はない。
[0016] したがって、本発明の方法の一態様は、ァグロバタテリゥム属細菌を介して植物材 料への遺伝子導入を行う方法であって、粉体の存在下でァグロバタテリゥム属細菌を 植物材料に接種する工程を含むことを特徴とし、当該工程は:
(1)ァグロバタテリゥム属細菌懸濁液と粉体を混合する工程;および、
(2) (1)の混合物を植物材料に接種する工程;
を含む、前記方法である。
[0017] また、別の態様において本発明の方法は、ァグロバタテリゥム属細菌を介して植物 材料への遺伝子導入を行う方法であって、粉体の存在下でァグロバタテリゥム属細 菌を植物材料に接種する工程を含むことを特徴とし、当該工程は:
(1)植物材料と粉体を混合する工程;および、
(2) (1)の混合物にァグロバタテリゥム属細菌懸濁液を接種する工程;
を含む、前記方法である。
[0018] また、さらに別の態様において本発明の方法は、ァグロバタテリゥム属細菌を介して 植物材料への遺伝子導入を行う方法であって、粉体の存在下でァグロバタテリゥム 属細菌を植物材料に接種する工程を含むことを特徴とし、ここで当該工程は、ァグロ バタテリゥム属細菌懸濁液、粉体および植物材料を同時に混合することによりァグロ バタテリゥム属細菌を植物材料に接種することを含む、前記方法である。
[0019] 本発明の方法は、ァグロバタテリゥム属細菌を植物材料に接種する際に添加した粉 体の表面が、ァグロバタテリゥム属細菌の植物材料への感染のための反応場を提供 することにより、感染の効率が向上し、その結果遺伝子導入効率および形質転換効 率が向上するという技術思想に基づく。したがって、本発明の方法において、粉体は 、少なくとも生体組織に対し悪影響を及ぼさず、かつ以下の特性:水に不溶性である ;生体組織に対する親和性を有する;吸着特性を有する;および、表面極性を有する ;から成る群より選択される 1またはそれより多くの特性を有する粉体である。好ましく は、本発明の方法に用いる粉体は、上記の 4つの特性の 2以上を有している。より好 ましくは、本発明の方法に用いる粉体は、生体組織に対し悪影響を及ぼさず、かつ、 水に不溶性である粉体であり、所望によりさらに以下の特性:生体組織に対する親和 性を有する;吸着特性を有する;および表面極性を有する;からなる群より選択される 1またはそれより多くの特性を有する粉体である。
[0020] 生体組織に対し悪影響を及ぼさないとは、植物ゃァグロバタテリゥムの生命活動を 阻害しないことをいう。本発明の方法においては、粉体が、形質転換や形質転換後 の再分化、再分化後の成長等に実質的に悪影響を及ぼすような毒性等を有してい なければ、使用することが可能である。
[0021] 水に不溶性であるとは、水系の溶媒に不溶性または難溶性であることをいう。より具 体的には、本発明の方法に用いるバッファー、培地等に不溶性または難溶性である ことをいう。さらに具体的には、ァグロバタテリゥム属細菌懸濁液および植物材料調製 の際の条件、ならびに接種の条件において、不溶性または難溶性であることをいう。 本発明の方法に用いる粉体が水に不溶性であることにより、本発明の方法のいずれ の工程においても溶解することなぐ粉体として存在することができる。
[0022] 生体組織に対する親和性を有するとは、生体組織への吸着性を有することをいう。
生体組織に対する親和性を有する粒子は、ァグロバタテリゥム属細菌および Zまたは 植物材料を吸着することができるので、そのような粒子表面は効率のよい感染の反応 場を提供し得るであろう。
[0023] 吸着特性を有するとは、物質を吸着することができる特性をいう。本発明の方法に おいてはァグロバタテリゥム属細菌および/または植物材料力 添加した粉体に吸 着することにより、粉体表面が感染の反応場を提供してもよい。吸着特性を有する粉 体の例には多孔質の粉体が挙げられる。
[0024] 表面極性を有するとは、粉体表面が極性を有する、すなわち、粉体表面が比較的 親水性であることをいう。表面極性を有する粉体は、粉体表面に水膜を作ることがで き、その水膜中にァグロバタテリゥム属細菌および Zまたは植物材料を含むことがで きる。
本発明の方法に使用可能な粉体は、例えば、多孔性セラミックス、グラスウール、およ び活性炭、ならびにそれらの混合物からなる群より選択される粉体であるが、これらに 限定されない。多孔性セラミックスには、例えば、ハイドロキシアパタイト、シリカゲル およびゼォライトがある力 これらに限定されなレ、。
[0025] 本発明の方法に使用可能な粉体の粒径は、限定するわけではないが、:!〜 150 μ mであり、好ましくは 5〜75 μ mである。
[0026] 本発明の方法に用いる粉体の量は、限定するわけではないが、ァグロバタテリゥム 属細菌を植物材料に接種する際の濃度が 30mg/ml以上、好ましくは 60mg/ml 以上となる量である。本発明の方法に用いる粉体の量の上限は、限定するわけでは ないが、ァグロバタテリゥム属細菌を植物材料に接種する際の濃度が 240mg/ml以 下となる量である。
[0027] 本発明の方法において、ァグロバタテリゥム属細菌を植物材料に接種することは、 植物材料をァグロバタテリゥム属細菌と単に接触させることにより行うことができる。接 種は、通常接種により行ってもよぐまた、滴下接種により行ってもよレ、。通常接種は、 植物材料とァグロバタテリゥム属細菌懸濁液 (接種源)を混合して植物材料を当該懸 濁液に浸漬し、浸漬した植物材料を取り出して、培地上に着床させて共存培養を行 うことにより接種を行う方法である。滴下接種は、培地上に着床させた植物材料上に ァグロバタテリゥム属細菌懸濁液を滴下し、滴下した懸濁液が乾いた後、植物材料を 培地の別の場所あるいは別の培地上に着床させて共存培養を行うことにより接種を 行う方法である。
[0028] 共存培養の時間は、限定されるわけではないが、 1時間以上、好ましくは 1日以上、 3日以上、または 7日以上である。共存培養時間の上限は、限定されるわけではない 、 7日以下、 10日以下、または 14日以下であることが好ましい。
[0029] また、本発明の方法において、粉体と、ァグロバタテリゥム属細菌懸濁液、植物材料 、または、ァグロバタテリゥム属細菌懸濁液および植物材料とを混合する時間は、こ れらが十分に混合する限りにおいて特に限定はない。好ましい例として、 3分、 5分、 10分、または 30分の混合時間を挙げることができる。
[0030] 本発明の方法に供される植物は、単子葉植物および双子葉植物のいずれをも含 む。単子葉植物には、限定されるわけではないが、イネ、トウモロコシ、ォォムギ、コム ギ、アスパラガス、ソルガム、サトウキビなどが含まれる。双子葉植物には、限定される わけではないが、タバコ、ダイズ、ミヤコダサ、ジャガイモ、ヮタ、ヒマヮリなどが含まれ る。好ましくは、本発明の方法に供される植物は単子葉植物であり、最も好ましいの はイネまたはトウモロコシである。
[0031] また、本発明の方法において、植物材料とは、ァグロバタテリゥム法による植物の形 質転換に供試するための当該植物の細胞、葉、根、茎、芽、花 (雄蕊、雌蕊等含む) 、実、種子、発芽種子もしくはその他いずれかの部位の植物組織、成長点、外植片、 未熟胚、カルスもしくは不定胚様組織 (以下、本明細書においてカルス等、または単 にカルスという)、または完全な植物体、などの植物のあらゆる態様を包含する。本発 明の方法に用レ、る植物材料として好ましいのは未熟胚またはカルスであり、最も好ま しいのは未熟胚である。
[0032] 粉体を用いる遣伝子導人方法を利用した、形晳転櫞植物の製造方法
また、本発明は、前記遺伝子導入方法を使用した形質転換植物の製造方法をも提 供する。
[0033] 本発明は、ァグロバタテリゥム属細菌を介した植物材料の形質転換による形質転換 植物の製造方法であって、以下の工程:
(1)粉体の存在下でァグロバタテリゥム属細菌懸濁液を植物材料に接種し;
(2)形質転換された植物材料を選抜し;そして、
(3)選抜された形質転換体を再分化する;
を含むことを特徴とする方法に関する。 [0034] 本発明の一態様において、上記工程(1)は、
(i)ァグロバタテリゥム属細菌懸濁液と粉体を混合し;そして、
(ii) (i)の混合物を植物材料に接種する;
ことにより達成される。
[0035] 本発明の別の態様において、上記工程(1)は、
(i)植物材料と粉体を混合し;そして、
(ii) (i)の混合物にァグロバタテリゥム属細菌懸濁液を接種する;
ことにより達成される。
[0036] また、本発明のさらに別の態様において、上記工程(1)は、ァグロバタテリゥム属細 菌懸濁液、粉体、および植物材料を同時に混合することによりァグロバタテリゥム属 細菌を植物材料に接種することにより達成される。
[0037] 本発明の形質転換植物の製造方法において用いることができる粉体の、特質、材 料、粒径、および量は、本発明の植物の遺伝子導入方法について上述したものと同 様である。
[0038] また、本発明の形質転換植物の製造方法において、ァグロバタテリゥム属細菌懸濁 液による植物細胞への接種は、上述した方法、混合時間、および共存培養時間で行 つてもよい。
[0039] さらに、本発明の形質転換植物の製造方法において、製造される形質転換植物は
、本発明の遺伝子導入方法に供される植物と同様である。
[0040] ァグロバタテリゥム属細菌を用いた遺伝子導入および形質転換方法
ァグロバタテリゥム属細菌を用いた遺伝子導入は、一般的には以下の工程を含む:
(a)植物材料を調製する工程;
(b)所望の導入遺伝子を含むベクターを含むァグロバタテリゥム属細菌を調製する 工程;
(c)工程 ωで調製した植物材料を (b)で調製したァグロバタテリゥム属細菌に感染 させる工程。
[0041] さらに、形質転換体を得るために、上記工程(c)に次いで
(d)形質転換細胞を選抜する工程;および (e)所望により選抜された形質転換体を再分化する工程
を施してもよい。
[0042] 具体的には、単子葉植物においては、文献 (特許第 2, 649, 287号公報)に記載 されているように、上記(a)の工程でオーキシン(例えば、 2, 4- D (2, 4—ジクロロフ エノキシ酢酸))またはサイトカイニン等を含む培地で培養して植物材料を脱分化の 状態または脱分化過程にある状態にし、上記(c)の工程でァグロバタテリゥム属細菌 に感染させることを特徴とする方法;または、文献 (特許第 3, 329, 819号公報)に記 載されているように、植物材料として当該植物の未熟胚を用い、上記(a)の工程では 未熟胚を脱分化処理せず、上記(c)の工程においてオーキシン (例えば、 2, 4- D) またはサイトカイニン等を含む培地で培養することを特徴とする方法を用いることがで きる。
[0043] 工程(a)について
本明細書において、遺伝子導入に供される「植物」は、単子葉植物および双子葉 植物のいずれも含む。本発明の方法に供される単子葉植物には、イネ、トウモロコシ 、ォォムギ、コムギ、アスパラガス、ソルガムその他が含まれるがこれらに限定されるも のではない。本発明の方法に供される双子葉植物にはタバコ、ダイズ、ミヤコダサ、ジ ャガイモ、ヮタ、ヒマヮリ、その他が含まれる力 これらに限定されるものではなレ、。本 発明の方法に供される好ましい植物は、単子葉植物であり、最も好ましくはイネまた はトウモロコシである。
[0044] また、「植物材料」とは、非限定的に、ァグロバタテリゥム法による植物の形質転換に 供するための当該植物の細胞、葉、根、茎、芽、花 (雄蕊、雌蕊等含む)、実、種子、 発芽種子、もしくはその他いずれかの部位の植物組織、成長点、外植片、未熟胚、 カルス、または完全な植物体、など植物のあらゆる態様を包含する。
[0045] 本発明の方法に用レ、る植物の形態として好ましいのは未熟胚またはカノレスであり、 最も好ましいのは未熟胚である。本明細書において、植物の細胞、組織、完全な植 物体という表現は、技術分野において一般的に用いられる意味で用いられる。本明 細書において、未熟胚とは、受粉後の登熟過程にある未熟種子の胚をいう。また、本 発明の方法に供される未熟胚のステージ (熟期)は特に限定されるものではなぐ受 粉後いかなる時期に採取されたものであってもよい。もっとも、受粉後 2日以降のもの が好ましい。後述の形質転換後、後述の方法により、脱分化し、正常な個体を再生 する能力を有するカルスを誘導できる未熟胚胚盤を用いることが好ましい。また、未 熟胚はインブレッド、インブレッド間の Fl、インブレッドと自然受粉品種間の Fl、巿販 F1品種の未熟胚であることが好ましい。本明細書において、カルスとは、無秩序に増 殖する未分化状態の細胞塊をいう。カルスを得るためには、植物組織の分化した細 胞をオーキシン (例えば、 2, 4— D)またはサイトカイニン等の植物成長調節物質を 含む培地 (脱分化培地という)において培養して得ることができる。このカルスを得る ための処理を脱分化処理とレ、レ、、またこの過程を脱分化過程とレ、う。
[0046] 工程 (a)において、必要に応じ、植物組織、未熟胚などを植物体、種子などから取 り出し、形質転換に好適な材料を調製する。また、所望により植物材料をァグロバタ テリゥムに感染させる前に培養してもよい。
[0047] 工程(b)について
十壤細菌ァグロバタテリゥム(Agrobacterium tumefaciens)が多くの双子葉植物に根 頭癌腫病(crown gall disease)を引き起こすことは古く力ら知られており、 1970年代 には、 Tiプラスミドが病原性に関与すること、さらに Tiプラスミドの一部である T— DN Aが植物ゲノムに組み込まれることが発見された。その後この T—DNAには癌腫の 誘発に必要なホルモン (サイトカイニンとオーキシン)の合成に関与する遺伝子が存 在し、細菌遺伝子でありながら植物中で発現することが明らかにされた。 T—DNAの 切り出しと植物への伝達には Tiプラスミド上のヴィルレンス領域 (vir領域)に存在する 遺伝子群が必要であり、また T—DNAが切り出されるためには T—DNAの両端に存 在するボーダー配列が必要である。他のァグロパクテリゥム属細菌である Agrobacteri um rhizogenesも Riプラスミドによる同様なシステムを有している (例えば、特開 2000 — 342256の図 3および図 4)。
[0048] ァグロバタテリゥムの感染によって T— DNAが植物ゲノムに組み込まれるので、 T _DNA上に所望の遺伝子を揷入するとこの遺伝子も植物ゲノムに組み込まれること が期待された。し力 ながら、 Tiプラスミドは 190kb以上と巨大であるため、標準的な 遺伝子工学的手法ではプラスミド上の T—DNA上に遺伝子を揷入することは困難で あった。そのため、 T DNA上に外来遺伝子を挿入するための方法が開発された。
[0049] まず、腫瘍性の Tiプラスミドの T DNAからホルモン合成遺伝子が除去されたディ スアーム型の菌系(disarmed strains)である LBA4404 (Hoekema, A., et al., (1983), Nature, Vol.303, p.179- 180参照)、 C58C1 (pGV3850)、 GV3Til lSEなどが作製 された。これらを用レ、ることにより、所望の遺伝子をァグロバタテリゥムの Tiプラスミドの T—DNA中に、あるいは所望の遺伝子を有する T— DNAをァグロバタテリゥムに導 入する 2種類の方法が開発された。このうちの一つは、遺伝子操作が容易で所望の 遺伝子の揷入が可能であり、大腸菌で複製ができる中間ベクターを、ァグロバタテリ ゥムのデイスアーム型 Tiプラスミドの T— DNA領域中に、三系交雑法(triparental ma ting)を介して相同組換えにより導入する方法であり、中間ベクター法と呼ばれる。
[0050] もう一つは、バイナリーベクター(binary vector)法とよばれるもので、 T—DNAの植 物への組み込みに vir領域が必要である力 S、機能するために同じプラスミド上に存在 する必要はないという結果に基づいている。この vir領域には virA、 virB、 virC、 vir D、 virEおよび virGが存在し、(植物バイオテクノロジー事典(ェンタプライズ株式会 社発行(1989) ) )、 vir領域とはこの virA、 virB、 virC、 virD、 virEおよび virGの全 てを含むものをいう。バイナリーベクターは、 T—DNAをァグロバタテリゥムと大腸菌 の両方で複製可能な小さなプラスミドに組み込んだものであり、これをデイスアーム型 Tiプラスミドを有するァグロバタテリゥムに導入して用いる。
[0051] ァグロバタテリゥムへのバイナリーベクターの導入は、エレクト口ポレーシヨン法や三 系交雑法などの、公知の方法により行うことができる。バイナリーベクターには、 pBIN 19、 pBI121、 pGA482など力 Sあり、これらをもとに数多くの新たなバイナリーベクタ 一が構築され、形質転換に用いられている。また、 Riプラスミドのシステムにおいても 、同様なベクターが構築され形質転換に用いられてレ、る。
[0052] ァグロバタテリゥム A281は、強病原性(super- virulent)の菌系であり、その宿主範 囲は広ぐ形質転換効率も他の菌系より高レ、。この特性は、 A281が有する Tiプラスミ ドの pTiBo542によるものである。 pTiBo542を用いて、これまでに 2つの新しいシス テムが開発されている。一つは pTiBo542のデイスアーム型の Tiプラスミドを有する 菌系 EHA101および EHA105を用いたものであり、これらを上述のバイナリーべク ターシステムに適用することにより、形質転換能力の高いシステムとして種々の植物 の形質転換に利用されている。
[0053] もう一つは、スーノ 一/イナリーベクター ('super—binary' vector) (Hiei, Υ·, et al. , ( 1994), The Plant Journal, Vol.6, p.271-282; Ishida, Y., et al., (1996), Nature Biotec hnology, Vol.4, p.745 - 750; Komari, T. and Kubo T., (1999), Methods of Genetic Tr ansformation: Agrobacterium tumefaciens. In Vasil, I. K. (ed.) Molecular improveme nt of cereal crops., Kluwer Academic Publishers, Dordrecht, p.43 - 82;および国際公 開第 95/06722号パンフレットを参照)システムである(例:特開 2000— 342256の 図 4)。このシステムは、 vir領域(virA、 virB、 virC、 virD、 virEおよび virG (以下、こ れらをそれぞれ「vir断片領域」とレ、うこともある。))を持つディスアーム型の Tiプラスミ ドおよび T— DNAを有するプラスミドからなることから、バイナリーベクターシステムの 一種である。し力 ながら、 T—DNAを有する側のプラスミド、即ちバイナリーベクタ 一に vir断片領域のうち、少なくとも一つの vir断片領域を実質的に取除いた vir領域 の断片(このうち好ましくは少なくとも virBまたは virGを含む断片、さらに好ましくは vi rBおよび virGを含む断片)を組み込んだスーパーバイナリーベクターを用いる点で 異なる。なお、スーパーバイナリーベクターを有するァグロバタテリゥムに、所望の遺 伝子を組み込んだ T DNA領域を導入するには、三系交雑法を介した相同組換え が容易な手法として利用できる。
[0054] 本発明の方法においては、宿主となるァグロバタテリゥム属細菌としては、特に限定 れなレヽ力、、 Agrobacterium tumefaciens (列; 上述の Agrobacterium tumefaciens L BA4404 (Hoekema, A" et al. , (1983), Nature, Vol.303, p.179-180を参照)および EH A101)を好ましく用いることができる。
[0055] 本発明の方法によれば、ァグロバタテリゥム属細菌における病原性 (vir)領域の遺 伝子群の発現に基づく遺伝子導入系であれば、特に限定されることなく有意な効果 を得ることができる。したがって、上述の中間ベクター、バイナリーベクター、強病原 性のバイナリーベクター、スーパーバイナリーベクターなどいずれのベクターシステム に対しても用いることができ、本発明による効果を得ることができる。これらのベクター 類を改変した、異なるベクターシステムを用いた場合においても同様である(例えば、 ァグロバタテリゥム属細菌の vir領域の一部または全部を切り出し付カ卩的にプラスミド 中に組み込む、 vir領域の一部または全部を切り出し新たなプラスミドの一部としてァ グロバタテリゥムに導入するなど)。また、本発明の方法によれば、野生型のァグロバ クテリゥム属細菌においても、植物へ野生型の T—DNA領域の導入効率を高め、事 実上感染効率を向上することができる。
[0056] 植物に導入しょうとする所望の遺伝子は、上記プラスミドの T—DNA領域中の制限 酵素部位に常法により組み込むことができ、当該プラスミドに同時に若しくは別途組 込んだ PPT (フォスフィノスライシン)、ハイグロマイシン、カナマイシン、パロモマイシ ン等の薬剤に対する耐性を有する遺伝子等の適当な選抜マーカーに基づレ、て選抜 すること力 Sできる。大型で多数の制限部位を持つものは、通常のサブクローユングの 手法では所望の DNAを T—DNA領域内に導入することが必ずしも容易でないこと 力ある。このような場合には、三系交雑法により、ァグロバタテリゥム属細菌の細胞内 での相同組換えを利用することで目的の DNAを導入することができる。限定されるわ けではないが、導入される遺伝子の大きさは好ましくは約 lOObpないし 200kbpであ る。
[0057] また、プラスミドを Agrobacterium tumefaciens等のァグロバタテリゥム属細菌に導入 する操作は従来法により行うことができ、例としては、上記した三系交雑法やエレクト 口ポレーシヨン法、エレクト口インジェクション法、 PEGなどの化学的な処理による方法 などが含まれる。
[0058] 植物に導入しょうとする遺伝子は、従来の技術と同様に基本的には T DNAの左 右境界配列の間に配置されるものである。しかし、プラスミドが環状であるため、境界 配列の数は 1つでもよぐ複数の遺伝子を異なる部位に配置しょうとする場合には、 境界配列が 3個以上あってもよレ、。また、ァグロバタテリゥム属細菌中で、 Tiまたは Ri プラスミド上に配置されてもよぐまたは他のプラスミド上に配置されてもよい。さらには 、複数の種類のプラスミド上に配置されてもよい。
[0059] 工程(c)について
ァグロバタテリゥム属細菌を介して遺伝子導入を行う方法は、植物材料をァグロバタ テリゥム属細菌と単に接触させることにより行うことができる。例えば、 106〜: lO^cfu/ m 呈度の細胞濃度のァグロバタテリゥム属細菌懸濁液を調製し、この懸濁液中に植 物材料を 3〜: 10分間程度浸漬後、固体培地上で数日間共存培養することにより行う こと力 Sできる。
[0060] 好ましくは、植物材料をァグロバタテリゥムに感染させると同時に、あるいは感染後、 ァグロバタテリゥムを除去する前に、植物材料をァグロバタテリゥムと共存培養させる。 共存培養には公知の培地を使用できる。例えば、実施例で使用した LS _ AS培地、 nN6 _AS培地、あるいはその他、 N6S3—AS培地、 2N6—AS培地(Hiei, Y., et a 1., (1994), The Plant Journal, Vol.6, p.271-282を参照)等の培地が知られている。
[0061] 本発明の方法が、一般的なァグロバタテリゥム法による遺伝子導入/形質転換に 対して有する特色は、植物材料をァグロバタテリゥムに感染させる上記工程 (c)を粉 体の存在下で行うことである。
[0062] 工程 (d)および(e)につレ、て
さらに所望により、形質転換体を得るためには、上記工程(c)に次いで
(d)形質転換細胞を選抜する工程;および
(e)所望により選抜された形質転換体を再分化する工程
が必要である。即ち、一般に植物の形質転換を行うためには、植物細胞に外来遺伝 子を導入した後に、外来遺伝子が安定して染色体に組み込まれた植物細胞を選抜 することが必要である。
[0063] 形質転換された細胞を選抜する工程は、表現型のデータおよび/または物理的デ ータにより、 目的の形質を有する細胞を選抜することを意味する。
[0064] 表現型のデータは、例えば、形質転換効率は植物への導入を所望する遺伝子と共 に、マーカー遺伝子および/または選抜マーカー遺伝子を導入してその発現を評 価することで行うことで得ることができる。マーカー遺伝子および/または選抜マーカ 一遺伝子としては、例えば、 GUS ( /3—ダルク口ニダーゼ)遺伝子、および/または、 抗生物質耐性遺伝子 (例えば、 PPT (フォスフィノスライシン)耐性遺伝子、ハイグロマ イシン耐性遺伝子、カナマイシン耐性遺伝子、パロモマイシン耐性遺伝子)など、を 用いることができる。マーカー遺伝子として GUS遺伝子を用いた場合、形質転換効 率の評価は X— Gluc (5—ブロモ一 4—クロ口一 3—インドリノレ一 β—D—グノレクロン 酸)の GUSによる切断に伴う発色から評価することができる。選抜マーカー遺伝子と して抗生物質耐性遺伝子を用いた場合には、形質転換した後、抗生物質を加えた 選抜培地上での成長の度合いから評価することができる。
[0065] さらに、外来遺伝子が安定して染色体に組み込まれたことを確認するために、サザ ンブロット等の物理的データを得てもよい。また、有性生殖による子孫への伝達、並 びに子孫集団への遺伝的および分子的分析に基づく選抜、の工程を行ってもよい。
[0066] 所望により選抜された形質転換体の再分化を行い、再分化個体を生育させ、そし て完全な植物体を得てもょレ、。選抜した形質転換細胞から完全な植物体を再生する には、公知の方法(例えば、 Hiei, Υ·, et al., (1994), The Plant Journal, Vol.6, p.27ト 282;および、 Ishida, Y., et al, (1996), Nature Biotechnology, Vol.4, p.745-750)に より行うこと力できる。
[0067] 本発明の方法は、粉体の存在下でァグロバタテリゥム属細菌を用レ、る植物材料の 遺伝子導入を行った場合に、粉体の非存在下で行った場合と比較して、遺伝子導入 効率および/または形質転換効率を向上させる。遺伝子導入効率は、例えば、導入 した遺伝子の一過性の発現の範囲を評価することにより行うことによって評価できる。 後述の実施例では、未熟胚での GUS遺伝子の一過性の発現を評価した。
[0068] 形質転換効率は、例えば、接種した未熟胚から得られた再分化植物のうち GUS遺 伝子の発現を示したものを形質転換体として数え、その総数を接種した未熟胚の数 で除すことによって算出できる。あるいは、再分化植物のうち、選抜圧に対して抵抗 性を示したものを形質転換体として数え、その総数を接種した未熟胚の数で除するこ とにより算出することもできる。
[0069] 上述のように、本発明の方法は、植物材料をァグロバタテリゥムに感染させる上記 工程 (c)を粉体の存在下で行うことを特色とする。従って、本発明の遺伝子導入およ び/または形質転換方法は、以下のように記載してもよいことは理解されるであろう。
[0070] 本発明の方法は、ァグロバタテリゥム属細菌を用いた植物の遺伝子導入および/ または形質転換方法であって、以下の工程:
(a)植物材料を調製する工程;
(b)所望の導入遺伝子を含むベクターを含むァグロバタテリゥム属細菌を調製する 工程;および
(c)粉体の存在下で、工程 (a)で調製した植物材料を (b)で調製したァグロバタテリ ゥム属細菌に感染させる工程;
を含み、所望により、形質転換体を得るために、上記工程 (c)に次いで
(d)形質転換細胞を選抜する工程;および
(e)所望により選抜された形質転換体を再分化する工程;
を含む、前記方法である。
[0071] 一態様において、本発明の方法は、ァグロバタテリゥム属細菌を用いた植物の遺伝 子導入および/または形質転換方法であって、以下の工程:
(a)植物材料を調製する工程;
(b)所望の導入遺伝子を含むベクターを含むァグロバタテリゥム属細菌を調製する 工程;
(C— 1) (b)で調製したァグロバタテリゥム属細菌の懸濁液と粉体を混合する工程; および
(c- 2) (c 1)の混合物を (a)で調製した植物材料に接種することにより、植物材 料をァグロバタテリゥム属細菌に感染させる工程;
を含み、所望により、形質転換体を得るために、上記工程(c 2)に次いで
(d)形質転換細胞を選抜する工程;および
(e)所望により選抜された形質転換体を再分化する工程;
を含む、前記方法である。
[0072] 別の態様において、本発明の方法は、ァグロバタテリゥム属細菌を用いた植物の遺 伝子導入および/または形質転換方法であって、以下の工程:
(a)植物材料を調製する工程;
(b)所望の導入遺伝子を含むベクターを含むァグロバタテリゥム属細菌を調製する 工程;
(c- 1) (a)で調製した植物材料と粉体を混合する工程;および
(c- 2) (c_ l)の混合物に (b)で調製したァグロバタテリゥム属細菌の懸濁液を接 種することにより、植物材料をァグロバタテリゥム属細菌に感染させる工程; を含み、所望により、形質転換体を得るために、上記工程(c 2)に次いで
(d)形質転換細胞を選抜する工程;および
(e)所望により選抜された形質転換体を再分化する工程;
を含む、前記方法である。
[0073] さらに別の態様において、本発明の方法は、ァグロバタテリゥム属細菌を用いた植 物の遺伝子導入および Zまたは形質転換方法であって、以下の工程:
(a)植物材料を調製する工程;
(b)所望の導入遺伝子を含むベクターを含むァグロバタテリゥム属細菌を調製する 工程;および
(c) (a)で調製した植物材料、(b)で調製したァグロバタテリゥム属細菌の懸濁液、 および粉体を同時に混合することにより、植物材料をァグロバタテリゥム属細菌に感 染させる工程;
を含み、所望により、形質転換体を得るために、上記工程(c)に次いで
(d)形質転換細胞を選抜する工程;および
(e)所望により選抜された形質転換体を再分化する工程;
を含む、前記方法である。
[0074] 本発明の植物の遺伝子導入および/または形質転換方法において用いることがで きる粉体の、特質、材料、粒径、および量は、本発明の植物の遺伝子導入方法につ いて上述したものと同様である。
[0075] また、本発明の植物の遺伝子導入および/または形質転換方法において、ァグロ バタテリゥム属細菌懸濁液による植物細胞への接種は、上述した方法、混合時間、 および共存培養時間で行つてもよい。
[0076] さらに、本発明の植物の遺伝子導入および Zまたは形質転換方法において、製造 される形質転換植物は、本発明の遺伝子導入方法に供される上述した植物と同様で ある。
発明の効果
[0077] 粉体の存在下でァグロバタテリゥム属細菌(接種源)を植物材料に接種することによ り、粉体が存在しない従来の方法よりも高い効率で遺伝子導入のなされることを見出 した。また、同方法により形質転換カルスの形成率および形質転換植物の作出され る効率が向上することを確認した。よって、本発明は、遺伝子導入効率および形質転 換効率の高い、ァグロバタテリゥム法による植物の遺伝子導入および形質転換方法 を提供する。
図面の簡単な説明
[図 1]図 1は、イネにおける形質転換効率に及ぼす粉体添加の効果を示すグラフであ る。各区 5未熟胚に接種を行った。縦軸は、接種未熟胚当たり得られたハイグロマイ シンマシン抵抗性植物の数を表し、横軸の SGはシリカゲルを HAはハイドロキシァパ タイトをそれぞれ表す。
[図 2]図 2は、イネにおける形質転換効率に及ぼす粉体の粒径の効果を示すグラフで ある。各区 9〜: 12未熟胚に接種を行った。縦軸は、接種未熟胚当たり得られた緑化 カノレスの数を表し、横軸は、添カ卩した粉体の粒径を表す。 ConUま粉体無添加の対 照を表す。
[図 3]図 3は、イネにおける導入遺伝子のトランジェント発現に及ぼす粉体の量の効果 を示すグラフである。各区 10未熟胚に接種を行った。縦軸は未熟胚における GUS遺 伝子の発現を表す。その値は、共存培養後の未熟胚を X—Glucで染色後、胚盤の 7 5%以上の部位で GUS遺伝子の発現を示した未熟胚を 3、 25〜74%の部位で発現 を示したものを 2、 5〜24%の部位で発現を示したものを 1、 5%未満の部位で発現を 示したものを 0. 5、発現のみられなかったものを 0、として評価した値である。横軸は 添加した粉体の量を表す。
[図 4]図 4はイネにおける形質転換効率に及ぼす粉体の量の効果を示すグラフである 。各区 9〜: 10未熟胚に接種を行った。縦軸は、接種未熟胚当たり得られた緑化カル スの数を表し、横軸は、添加した粉体の量を表す。
[図 5]図 5はイネにおける導入遺伝子のトランジェント発現に及ぼすゼォライトの効果 を示すグラフである。各区 14〜: 15未熟胚に接種を行った。縦軸は未熟胚における G US遺伝子の発現を表す。その値は、共存培養後の未熟胚を X— Glueで染色後、胚 盤の 25%以上の部位で GUS遺伝子の発現を示した未熟胚を 3、 10〜24%の部位 で発現を示したものを 2、 10%未満の部位で発現を示したものを 1、発現のみられな 力 たものを 0、として評価した値である。横軸は添加したゼォライトの粒径を表す。 無添加は粉体無添加の対照を表す。
[図 6]図 6は導入遺伝子のトランジェント発現に及ぼす接種源への混合した粉体添カロ の効果を示すグラフである。各区 12〜: 13未熟胚に接種を行った。縦軸は未熟胚に おける GUS遺伝子の発現を表す。その値は、共存培養後の未熟胚を X— Glueで染 色後、胚盤の 75%以上の部位で GUS遺伝子の発現を示した未熟胚を 3、 25-74 %の部位で発現を示したものを 2、 5〜24%の部位で発現を示したものを 1、 5%未 満の部位で発現を示したものを 0. 5、発現のみられなかったものを 0、として評価した 値である。横軸の SGはシリカゲルを、 HAはハイドロキシアパタイトを、 GWはグラスゥ ールをそれぞれ表す。無添加は粉体無添加の対照を表す。
[図 7]図 7はイネカルスでの導入遺伝子のトランジェントな発現に及ぼす接種源への 粉体添カ卩の効果を示すグラフである。各区 6カルスに接種を行った。縦軸は未熟胚 における GUS遺伝子の発現を表す。その値は、共存培養後の未熟胚を X— Glueで 染色後、胚盤の 75%以上の部位で GUS遺伝子の発現を示した未熟胚を 3、 25〜7 4%の部位で発現を示したものを 2、 5〜24%の部位で発現を示したものを 1、 5%未 満の部位で発現を示したものを 0. 5、発現のみられなかったものを 0、として評価した 値である。横軸の HAはハイドロキシアパタイトを、無添加は粉体無添加の対照をそ れぞれ表す。
実施例
以下、実施例によって本発明を具体的に説明するが、これらは本発明の技術的範 囲を限定するためのものではない。当業者は本明細書の記載に基づいて容易に本 発明に修飾 ·変更を加えることができ、それらは本発明の技術的範囲に含まれる。
ni 本 でのイネの开 拿云
: ¾よび ¾
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB134)を用いた。 LB A4404 (pSB134)は以下のように作成した。 pIG221 (Ohta, S., et al., (1990) Plant Cell Physiol., 31: 805-813)由来の GUS発現ユニットを pKY205 (Kurava, Y., et al. , (2004) Mol. Breed., 14: 309-320)のトウモロコシュビキチンプロモーターで制御さ れた HPT遺伝子の上流の Hindlll制限部位に挿入した。このプラスミドを LBA4404 (pSBl) (Komari, T., et al., (1996) Plant J., 10: 165—174)に導入し、 LBA4404 (p SB 134)を得た。
[0080] (2)供試品種および組織
供試品種として、 日本稲品種ゆきひかりを用いた。開花後 8〜: 14日目の未熟種子 の穎を除去し、 70%エタノールで数秒、ツイーン 20 (和光純薬工業株式会社)を含 む 1%次亜塩素酸ナトリウム水溶液で 15分間滅菌処理を行った。滅菌水で数回洗浄 後、長さ 1. 5〜2mmの未熟胚を摘出し供試組織とした。
[0081] (3)接種源の調製
粉体としてハイドロキシアパタイト(Bio-Rad)およびシリカゲル(ICN Pharmaceuticals )を供試した。 80〜: !OOmgの粉体をチューブに入れ、オートクレーブにより滅菌処理 を行った。 AB培地 (Chilton, M_D, et al., (1974) Proc. Natl. Acad. Sci. USA, 71: 36 72-3676) 上で 3〜5日間培養したァグロバタテリゥムのコロニーを白金耳でかき取り、 修正 AA培地(AA主要無機塩類、 AAアミノ酸および AAビタミン類(Toriyama K., e t al., (1985) Plant Sci., 41: 179—183) 、 MS微量塩類 (Murashige, T. and Skoog, F., (1962) Physiol. Plant, 15: 473-497)、 1. Og/1カザミノ酸、 100 μ Mァセトシリンゴン 、 0. 2Mショ糖、 0. 2Mグルコース)に lxlO8〜: lxl09cfu/mlの濃度で懸濁した。粉 体を入れたチューブに lmlのァグロバタテリゥム懸濁液を加え、接種源とした。
[0082] (4)接種および共存培着
無菌的に摘出した未熟胚を 2N6— AS培地に置床した。粉体が細菌懸濁液に均等 に分散するようにボルテックスミキサーで数秒間撹拌した後、 1未熟胚にっき、 5μ1(Ό 懸濁液を未熟胚上に滴下した。滴下した接種源が乾いた後、未熟胚を同培地上の 別の場所に移動した。培養容器をシールした後、 25°C、暗黒下で 7日間共存培養を 行った。一部の未熟胚について X_Glucを処理することによる GUS発現を調査した (Hiei et al., 1994)。すなわち、共存培養処理直後、組織を 0. 1% Triton X-100を含 む 0. 1Mリン酸緩衝液(pH6. 8) に浸漬し、 37°Cで 1時間静置した。リン酸緩衝液 でァグロバタテリゥムを除去した後、 1. OmM 5_ブロモ _4_クロ口一 3_インドリノレ - β—D—グルクロン酸 (X— Glue)および 20%メタノールを含むリン酸緩衝液を添 カロした。 37°Cで 24時間処理した後、青色の呈色を示す組織を顕微鏡下で観察した
[0083] (5)撰抜および再分化
共存培養後の未熟胚をメスで 4〜6分割し、 nN6CC培地(N6無機塩、 N6ビタミン 、 0. 5g/l カザミノ酸、 0. 5g/l L—プロリン、 lmg/1 2, 4— D、 0. 5mg/l N AA、 0. lmg/1 6BA、 20g/l シユークロース、 55g/l ソノレヒ、、トーノレ、 250mg/ 1 セフ才タキシム、 250mg/l 力ノレべニシリン、 5g/l ゲノレライ卜、 pH5. 8)あるレヽ は NBK4CC (NBK4主要無機塩、 B5微量無機塩、 B5ビタミン、 AAアミノ酸、 0. 5g /\ カザミノ酸、 0. 5g/l L—プロリン、 lmg/1 2, 4— D、 0. 5mg/l NAA、 0. lmg/1 6BA、 20g/l マノレトース、 55g/l ソノレヒ、、トーノレ、 250mg/l セフ才タキ シム、 250mg/l カルべニシリン、 5g/l ゲノレライト、 ρίί5. 8) (こ置床した。 '照明下 28°Cで 1週間培養後、カルスを 5分割し、ハイグロマイシン 50mg/lを含む nN6CC 培地あるいは NBK4CC培地に置床し、同条件で 10日間培養した。増殖した細胞塊 をハイグロマイシン 50mg/lを含む再分化培地(N6無機塩、 N6ビタミン、 AAァミノ 酸、 lg/1 カザミノ酸、 0. 5mg/l 力イネチン、 20g/l シユークロース、 30g/l ソ ノレビトーノレ、 4g/l ゲルライト、 ρΗ 5· 8)あるいは(NBK4主要無機塩、 B5微量無 機塩、 Β5ビタミン、 ΑΑアミノ酸、 lg/1 カザミノ酸、 2mg/l 力イネチン、 20g/l マ ノレトース、 30g/l ソノレビトーノレ、 5g/l ゲルライト、 pH 5. 8)に置床し、同条件で 約 2週間培養した。
[0084] (6)形晳転櫞効率の算出
ァグロバタテリゥムを接種したイネ未熟胚では、胚盤の広レ、範囲で GUS遺伝子のト ランジェント発現を示すスポットが観察される。 1つの胚盤でも離れた部位で観察され るスポットは個々に遺伝子導入のなされた独立の形質転換細胞に由来するものであ ると考えられる。共存培養後およびレスティング培養後に増殖した未熟胚を 4から 6の 塊に分割した場合、由来は 1つの未熟胚であっても分割して得られた 20〜30の細胞 塊からハイグロマイシン存在下で増殖してきたカルスおよびその再分化植物はそれ ぞれ独立の形質転換体であると考えられる。 [0085] 分割して得られた細胞塊から増殖したハイグロマイシン抵抗性カルスを 1細胞塊か ら 1カルス選び、ノ、イダロマイシンを含む再分化培地に置床した。そこから得られたハ イダロマイシン抵抗性再分化植物を形質転換体として数え、その総数を接種した未 熟胚の数で除し、形質転換効率を算出した。
[0086] 腿
(7) 入謝云 のトランジェント 現,
共存培養後の未熟胚を X—Glucにより処理した。いずれの未熟胚でも GUS遺伝 子のトランジェントな発現を示す青色のスポットがみられたが、接種源に粉体を添加し 、接種した未熟胚では粉体無添カ卩の対照の未熟胚に比べ青色を呈する部位が広範 にみられ、粉体の添カ卩により遺伝子導入が促進されていることが示された。
[0087] (8)形晳転換効率
共存培養後の未熟胚をハイグロマイシンを含む培地で培養し、得られたカルスをハ イダロマイシンを含む再分化培地に置床し培養した。ハイグロマイシン抵抗性再分化 植物はレ、ずれの未熟胚からも得られたが、接種源に粉体を添加し接種した未熟胚で は粉体無添カ卩の対照の未熟胚に比べハイグロマイシン抵抗性再分化植物の数は多 く、粉体の添加により形質転換効率の向上がみられた(図 1 )。
実施例 2 :粉体存在下でのトウモロコシの形晳転 ¾
木才米斗および ¾
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB131) (Ishida, Υ·, et al., (1996) Nature Biotechnology, 14: 745-750)を用いた。
[0088] (2)供試品種および組織
供試品種として、トウモロコシインブレッド A188を用いた。交配後 8〜14日目の雌 穂から大きさ 1. 0〜: 1. 2mmの未熟胚を無菌的に取り出し、供試組織とした。
[0089] (3)接種源の調製
粉体としてハイドロキシアパタイト(Bio-Rad)シリカゲル(ICN Pharmaceuticals)およ び乳鉢で磨砕したグラスウールを供試した。 80〜100mgの粉体をチューブに入れ、 オートクレーブにより滅菌処理を行った。 YP培地(5g/l 酵母エキス、 l Og/1 ぺプ トン、 5g/l NaCl、 pH6. 8)上で 3〜5日間培養したァグロバタテリゥムのコロニーを 白金耳でかき取り、 LS— inf培地(Ishida, Y., et al., (1996) Nature Biotechnology, 14 : 745-750)に Ixl08〜lxl09cfu/mlの濃度で懸濁した。粉体を入れたチューブに lmlのァグロバタテリゥム懸濁液をカ卩え、接種源とした。
[0090] (4)接種および共存培着
接種は通常接種と滴下接種の 2種類の方法で行った。
[0091] 通常接種は以下の通り行った。無菌的に摘出した未熟胚を 46°Cで 3分間処理した 後、 15, 000rpm、 4°Cで 10分間遠心処理した。熱および遠心処理した未熟胚を接 種源と混合し、ボルテックスミキサーで 30秒間攪拌した。未熟胚を 5 μ M AgNOお
3 よび 5 μ Μ CuSOを含む LS— AS培地に置床し、培養容器をシールした後、 25°C
4
、暗黒下で 7日間共存培養を行った。
[0092] 滴下接種は以下の通り行った。熱および遠心処理した未熟胚を 5 μ M AgNOお
3 よび 5 μ M CuSOを含む LS— AS培地に置床した。粉体が細菌懸濁液に均等に
4
分散するようにボルテックスミキサーで軽く撹拌した後、 1未熟胚にっき、 5 μ 1の懸濁 液を未熟胚上に滴下した。滴下した接種源が乾いた後、未熟胚を同培地上の別の 場所に移動した。培養容器をシールした後、 25°C、暗黒下で 7日間共存培養を行つ た。
[0093] 一部の未熟胚について X— Glueを処理することによる GUS発現を調査した(Hiei, Y., et al., (1994) The Plant Journal, 6: 271-282)。すなわち、共存培養処理直後、組 織を 0· 1 % Triton X-100を含む 0· 1M リン酸緩衝液(ρΗ6· 8)に浸漬し、 37°Cで 1時間静置した。リン酸緩衝液でァグロバタテリゥムを除去した後、 1. OmM 5—プロ モ一 4—クロ口一 3—インドリル一 β—D—グルクロン酸(X— Glue)および 20%メタノ ールを含むリン酸緩衝液を添加した。 37°Cで 24時間処理した後、青色の呈色を示 す組織を顕微鏡下で観察した。
[0094] (5)撰抜および再分化
未熟胚を 5mgZl フォスフィノスライシン(PPT)を含む改良 LSD1. 5培地 (Ishida , Y" et al., (2003) Plant Biotechnology, 20: 57-66)に置床した。喑黒下 25°Cで 10 〜14日間培養後、 10mg/l PPTを含む改良 LSD1. 5培地で培養した。増殖した 細胞塊を 5mg/l PPTおよび ΙΟ μ Μ CuSOを含む LSZ再分化培地(Ishida, Υ.,
4
et al., (1996) Nature Biotechnology, 14: 745-750)に置床し、照明下 25°Cで約 2週 間培養した。再分化した植物の葉の一部を切り取り、 X— Glueを処理することによる GUS発現を調査した。
[0095]
(6) 入謝云 のトランジェント 現,
共存培養後の未熟胚を X—Glucにより処理した。いずれの未熟胚でも GUS遺伝 子のトランジェントな発現を示す青色のスポットがみられたが、通常接種、滴下接種と もに、接種源に粉体を添加し接種した未熟胚では粉体無添加の対照の未熟胚に比 ベ青色を呈する部位が広範にみられ、粉体の添カ卩により遺伝子導入が促進されてい ることが示された。
[0096] (7)形晳転換効率
共存培養後の未熟胚を PPTを含む培地で培養し、得られたカルスを PPTを含む再 分化培地に置床し培養した。再分化のみられた PPT抵抗性植物について GUS分析 を行った。 GUS陽性植物はいずれの未熟胚からも得られた力 通常接種、滴下接種 ともに、接種源に粉体を添加し接種した未熟胚では粉体無添加の対照の未熟胚に 比べ GUS陽性植物の数は多ぐ粉体の添カ卩により形質転換効率の向上することが 明らかとなった (表 1)。粉体の添加による形質転換効率の向上は、未熟胚をァグロバ クテリゥムおよび粉体と共存下で攪拌した後、共存培地に置床した場合 (通常接種) だけでなぐ粉体とァグロバタテリゥムの混合液を未熟胚上に滴下した場合 (滴下接 種)にも見られた。このことは、形質転換効率の向上は粉体による植物組織の付傷に よるものではないことを示す。
[0097] [表 1] トウモロコシ形質転換効率に及ぼす粉体添加の効果
未熟胚数
接種方法 粉体 接種 再分化 再分化 ( ) GUS暘性 GUS|¾tt (¾) iS¾r接種 なし 31 11 35.5 4 12.9
GW 32 13 40.6 7 21.9
SG 28 12 42.9 5 17.9
HA 27 13 48.1 5 18.5 滴下接種 なし 13 6 46.2 1 7.7
GW 13 7 53.8 4 30.8
SG 12 9 75.0 2 16.7
HA 12 5 41.7 2 16.7
GW, 磨碎グラスウール; SG, シリカゲル; HA, ハイドロキシアパタイト
[0098] 実施例 3:粉体 (シリカゲル)の粒径の効果
木才米斗および ¾
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404(pSB134)を用いた。
[0099] (2)供試品種および組織
供試品種として、 日本稲品種ゆきひかりを用いた。開花後 8〜: 14日目の未熟種子 の穎を除去し、 70%エタノールで数秒、ツイーン 20を含む 1%次亜塩素酸ナトリウム 水溶液で 15分間滅菌処理を行った。滅菌水で数回洗浄後、長さ 1.5〜2mmの未 熟胚を摘出し供試組織とした。
[0100] (3)接種源の調製
¾Η本として異なる粒径のシリカゲノレ 5種(粒径: 5〜20 μ m、 20〜40 μ m、 45〜75 zm、 75〜: ίδθμΐη 150〜425 μ mのもの;禾ロ光純薬工業株式会社)を供試した。 120mgの粉体をチューブに入れ、オートクレーブにより滅菌処理を行った。 AB培地 (Chilton, M-D., et al., (1974) Proc. Natl. Acad. Sci. USA, 71: 3672-3676)上で 3〜 5日間培養したァグロバタテリゥムのコロニーを白金耳で力 ^取り、修正 AA培地 (AA 主要無機塩類、 AAアミノ酸および AAビタミン類(Toriyama, Κ·, et al., (1985) Plant Sci., 41: 179-183)、 MS微量塩類(Murashige, T. and Skoog, F" (1962) Physiol. Pla nt, 15: 473-497)、 1. Og/1カザミノ酸、 100 /i M ァセトシリンゴン、 0. 2M ショ糖 、0. 2M グルコース)に Ixl 08〜lxl 09cfu/mlの濃度で懸濁した。粉体を入れた チューブに lmlのァグロバタテリゥム懸濁液をカ卩え、接種源とした。
[0101] (4) 形誓転換植物の作出
接種、共存培養、選抜、再分化および形質転換効率の算出は実施例 1の方法に従 つて行った。
[0102]
(5) 入謝云 のトランジェント 現,
共存培養後の未熟胚を X_ Glucにより処理した。粉体無添加の対照を含め、いず れの処理区でも GUS遺伝子のトランジェントな発現を示す青色のスポットがみられた 力 粒径 150 x m以下のシリカゲルを接種源に添カ卩し接種した未熟胚では、粉体無 添加の対照および 150 a m以上の粉体を接種源に添加し接種した未熟胚に比べ、 青色を呈する部位が広範にみられ、粉体の粒径により遺伝子導入を促進する程度の 異なることが示された
(6)开湖適赫
共存培養後の未熟胚をハイグロマイシンを含む培地で培養し、得られたカルスをハ イダロマイシンを含む再分化培地に置床し培養した。ハイグロマイシン抵抗性再分化 植物はいずれの未熟胚からも得られた力 粒径 150 μ m以下のシリカゲルを接種源 に添加し接種した未熟胚では粉体無添加の対照の未熟胚に比べハイグロマイシン 抵抗性再分化植物の数は多ぐ形質転換効率の向上がみられた(図 2)。
実施例 4:粉体 (活性炭およびシリカゲル)の量の効果
: よび ¾
( 1 )ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB 134)を用レヽた。
[0103] (2)供試品種および組織
供試品種として、 日本稲品種ゆきひかりを用いた。開花後 8〜: 14日目の未熟種子 の穎を除去し、 70%エタノールで数秒、ツイーン 20を含む 1 %次亜塩素酸ナトリウム 水溶液で 15分間滅菌処理を行った。滅菌水で数回洗浄後、長さ 1. 5〜2mmの未 熟胚を摘出し供試組織とした。
[0104] (3)接稀源の調製
粉体として活性炭およびシリカゲル (和光純薬工業株式会社)を供試した。 0-240 mgの粉体をチューブに入れ、オートクレーブにより滅菌処理を行った。 AB培地(Chil ton, M-D., et al., (1974) Pro Natl. Acad. Sci. USA, 71: 3672-3676)上で 3〜5日 間培養したァグロバタテリゥムのコロニーを白金耳で力、き取り、修正 AA培地 (AA主 要無機塩類、 AAアミノ酸および AAビタミン類(Toriyama, Κ·, et al., (1985) Plant Sci ·, 41: 179-183)、 MS微量塩類(Murashige, T. and Skoog, F., (1962) Physiol. Plant, 15: 473-497) , 1. OgZlカザミノ酸、 100 μ Μ ァセトシリンゴン、 0. 2Μ ショ糖、 0. 2Μ グルコース)に lxlO8〜: lxl09cfu/mlの濃度で懸濁した。粉体を入れたチュ ーブに lmlのァグロバタテリゥム懸濁液を加え、接種源とした。
[0105] m. および 櫞槭 のィ乍
接種、共存培養、選抜、再分化および形質転換効率の算出は実施例 1の方法に従 つて行った。
[0106] S
(5)導入遺伝子のトランジェント発現
共存培養後の未熟胚を X— Glueにより処理した。粉体無添加の対照を含め、いず れの処理区でも GUS遺伝子のトランジェントな発現を示す青色のスポットがみられた 力 接種源 lml当たり 60mg以上の活性炭を接種源に添加し接種した未熟胚では、 粉体無添加の対照および 30mg以下の粉体を接種源に添加し接種した未熟胚に比 ベ、青色を呈する部位が広範にみられ、接種源に添加する粉体の量により遺伝子導 入を促進する程度の異なることが示された(図 3)。
[0107] (6)形晳転換効率
共存培養後の未熟胚をハイグロマイシンを含む培地で培養し、得られたカルスをハ イダロマイシンを含む再分化培地に置床し培養した。ハイグロマイシン抵抗性再分化 植物はレ、ずれの未熟胚からも得られたが、 30mg以上のシリカゲルを接種源に添カロ し接種した未熟胚では、粉体無添カ卩の対照の未熟胚に比べ、ハイグロマイシン抵抗 性再分化植物の数は多く、形質転換効率の向上がみられた(図 4)。 実施例 5 :ゼオライトの効果
木才米斗および ¾
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB131)を用レヽた。
(2)供試。 禾重: よび
供試品種として、トウモロコシインブレッド A188を用いた。交配後 8〜: 14日目の雌穂 力 大きさ 1. 0〜: 1. 2mmの未熟胚を無菌的に取り出し、供試組織とした。 粉体として 2種の粒径のゼォライト (5 μ m、 75 μ m ;和光純薬工業株式会社)を供試 した。粉体の滅菌および接種源の調製は実施例 2に記載の方法に従って行った。 接種は実施例 2に記載の滴下接種方法で行った。共存培養後の未熟胚での GUS 未熟胚での調査は実施例 2に記載の方法により行った。
S
(5)導入遺伝子のトランジェント発現
共存培養後の未熟胚を X— Glueにより処理した。 V、ずれの未熟胚でも GUS遺伝子 のトランジェントな発現を示す青色のスポットがみられた力 ゼォライトを接種源に添 加し、接種した未熟胚では対照の未熟胚に比べ GUS遺伝子の発現部位が広範囲 でみられた。粒径 5 /i mのゼオライトに比べ 75 μ ΐηのゼオライトではより広い範囲での GUS遺伝子の発現が観察された(図 5)。
¾»'16:混合した τΗ本による効
: よび ¾
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB134)を用レヽた。
(2)供試。 禾重: よび
供試品種として、 日本稲品種ゆきひ力 を用いた。供試組織の調製は実施例 4に記 載の方法に従って行った。 粉体としてシリカゲル、ノ、イドロキシアパタイトおよび磨砕グラスウールを供試した。総 量 120mgの粉体をチューブに入れ、オートクレーブにより滅菌処理を行った。 2種の 粉体を混合した時は各粉体を約 60mgずつ、 3種の粉体を混合した時は各粉体を約 40mgずつチューブに入れ滅菌した。ァグロバタテリゥム懸濁液の調製は実施例 4に 記載の方法に従って行った。粉体を入れたチューブに lmlのァグロバタテリゥム懸濁 液をカ卩え、接種源とした。 接種、共存培養方法および GUS発現の調查は実施例 1に記載の方法に従って行つ た。
[0109]
(5) 入謝云 のトランジェント
共存培養後の未熟胚を X_Glucにより処理した。粉体無添加の対照を含め、いず れの処理区でも GUS遺伝子のトランジェントな発現を示す青色のスポットがみられた 、粉体を接種源に添加し接種した未熟胚では、粉体未添加の対照に比べ青色を 呈する部位が広範に見られた。 1種類の粉体と 2種類または 3種類の混合粉体の間 では遺伝子導入を促進する程度に大きな差は見られなかった(図 6)。
実施例 7:粉体存在下でのイネカルスの形晳転櫞
(1)ァグロバクテリウムの菌系およびプラスミド
ァグロバタテリゥムおよびそのベクターには、 LBA4404 (pSB134)を用いた。
[0110] (2)供試品種および組織
供試品種として、 日本稲品種ゆきひかりを用いた。開花後 8〜: 14日目の未熟種子 の穎を除去し、 70%エタノールで数秒、ツイーン 20を含む 1 %次亜塩素酸ナトリウム 水溶液で 15分間滅菌処理を行った。滅菌水で数回洗浄後、長さ 1. 5〜2mmの未 熟胚を摘出し 2N6 _ AS培地に置床した。喑黒下、 25°Cで 1週間培養し、カルスの 増殖した未熟胚を供試材料とした。
[0111] (3) 禾重 の言周製
粉体としてハイドロキシアパタイト (Bio-Rad)を供試した。接種源の調製は実施例 1 の方法に従って行った。 (4)接稀および共存培着
カルスを 2N6— AS培地に置床した。粉体が細菌懸濁液に均等に分散するように ボルテックスミキサーで撹拌した後、 1カルスにつき、 5 /i lの懸濁液を未熟胚上に滴 下した。滴下した接種源が乾いた後、カルスを同培地上の別の場所に移動した。共 存培養方法および GUS発現の調查は実施例 4に記載の方法に従って行った。
[0112]
) 入謝云 のトランジェント
共存培養後の未熟胚を X— Glueにより処理した。粉体無添加の接種源を接種した カノレスに比べ、接種源にハイドロキシアパタイトを添カ卩し、接種したカルスでは青色を 呈する部位が広範にみられ、カルスを材料とした時にも接種源への粉体の添加によ り遺伝子導入が促進されることが示された(図 7)。
産業上の利用可能性
[0113] 本発明は、従来のァグロバタテリゥム法よりも高い効率で遺伝子導入および形質転 換のなされる簡便な方法を提供する。本発明により、植物のァグロバタテリゥム法によ る遺伝子導入効率および形質転換効率が向上したことから、本発明は、多数の形質 転換植物を効率よく入手し、実用遺伝子を導入した品種を効率よく育成するのに貢 献する。

Claims

請求の範囲 [I] ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を行う方法であって、 粉体の存在下でァグロバタテリゥム属細菌を植物材料に接種することを特徴とする、 前記方法。 [2] 粉体の存在下でァグロバクテリゥム属細菌を植物材料に接種する工程が、
(1)ァグロバタテリゥム属細菌懸濁液と粉体を混合し;そして、
(2) (1)の混合物を植物材料に接種する;
ことを含む、請求項 1に記載の方法。
[3] 粉体の存在下でァグロバタテリゥム属細菌を植物材料に接種する工程が、
( 1 )植物材料と粉体を混合し;そして、
(2) (1)の混合物にァグロバタテリゥム属細菌懸濁液を接種する;
ことを含む、請求項 1に記載の方法。
[4] 粉体の存在下でァグロバタテリゥム属細菌を植物材料に接種する工程力 ァグロバ クテリゥム属細菌懸濁液、粉体、および植物材料を同時に混合することによりァグロ バタテリゥム属細菌を植物材料に接種することを含む、請求項 1に記載の方法。
[5] 粉体が、生体組織に対し悪影響を及ぼさず、かつ、水に不溶性である粉体である、 請求項 1ないし 4のいずれ力、 1項に記載の方法。
[6] 粉体が、さらに以下の特性:生体組織に対する親和性を有する;吸着特性を有する
;および表面極性を有する;からなる群より選択される 1またそれより多くの特性を有す る粉体である、請求項 5に記載の方法。
[7] 粉体が、多孔質の粉体である、請求項 1ないし 4のいずれ力、 1項に記載の方法。
[8] 多孔質の粉体が、多孔性セラミックスの粉体である、請求項 7に記載の方法。
[9] 粉体が、ハイドロキシアパタイト、シリカゲル、ゼォライト、その他の多孔性セラミック ス、グラスウールおよび活性炭、ならびにそれらの混合物、からなる群より選択される 粉体である、請求項 1ないし 4のいずれ力 1項に記載の方法。
[10] 粉体が:!〜 150 μ ΐηの粒径を有する、請求項 1ないし 9のいずれ力 1項に記載の方 法。
[II] 粉体が 5〜75 μ ΐηの粒径を有する、請求項 1ないし 9のいずれか 1項に記載の方法
[12] 植物材料が、植物細胞、葉、根、茎、芽、花 (雄蕊、雌蕊等含む)、実、種子、発芽 種子もしくはその他いずれかの部位の植物組織、外植片、成長点、未熟胚、カルスも しくは不定胚様組織、または完全な植物体からなる群より選択される、請求項 1ないし 11のレ、ずれか 1項に記載の方法。
[13] 植物が単子葉植物である、請求項 1ないし 12のいずれ力 4項に記載の方法。
[14] 単子葉植物が、イネ、トウモロコシ、ォォムギ、コムギ、アスパラガス、サトウキビおよ びソルガムからなる群より選択される植物である、請求項 13に記載の方法。
[15] 植物が双子葉植物である、請求項 1ないし 12のいずれ力 4項に記載の方法。
[16] 双子葉植物が、タバコ、ダイズ、ミヤコダサ、ジャガイモ、ヮタ、およびヒマヮリからな る群より選択される植物である、請求項 15に記載の方法。
[17] 以下の工程:
(1)ァグロバタテリゥム属細菌懸濁液と粉体を混合する工程;および、
(2) (1)の混合物を植物材料に接種する工程;
を含む、ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を行う方法であ つて、
ここで、該粉体は、ハイドロキシアパタイト、シリカゲル、ゼォライト、その他の多孔性 セラミックス、グラスウールおよび活性炭、ならびにそれらの混合物、力 なる群より選 択される粉体であって、粒径が 1〜: 150 μ mの粉体である、
冃 ij記方法。
[18] 以下の工程:
(1)植物材料と粉体を混合する工程;および、
(2) (1)の混合物にァグロバタテリゥム属細菌懸濁液を接種する工程; を含む、ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を行う方法であ つて、
ここで、該粉体は、ハイドロキシアパタイト、シリカゲル、ゼォライト、その他の多孔性 セラミックス、グラスウールおよび活性炭、ならびにそれらの混合物、力 なる群より選 択される粉体であって、粒径が 1〜: 150 μ mの粉体である、 前記方法。
[19] ァグロバタテリゥム属細菌を介して植物材料への遺伝子導入を行う方法であって、 該方法は、ァグロバタテリゥム属細菌懸濁液、粉体、および植物材料を同時に混合 することによりァグロバタテリゥム属細菌を植物材料に接種する工程を含み、ここで、 該粉体は、ハイドロキシアパタイト、シリカゲル、ゼォライト、その他の多孔性セラミック ス、グラスウールおよび活性炭、ならびにそれらの混合物、からなる群より選択される 粉体であって、粒径が 1〜: 150 μ mの粉体である、前記方法。
[20] ァグロバタテリゥム属細菌を介した植物材料の形質転換による形質転換植物の製 造方法であって、以下の工程:
(1)粉体の存在下でァグロバタテリゥム属細菌懸濁液を植物材料に接種し;
(2)形質転換された植物材料を選抜し;そして、
(3)選抜された形質転換体を再分化する;
を含むことを特徴とする、前記方法。
[21] 工程(1)が、
(i)ァグロバタテリゥム属細菌懸濁液と粉体を混合し;そして、
(ii) (i)の混合物を植物材料に接種する;
ことにより達成される、請求項 20に記載の方法。
[22] 工程(1)が、
(i)植物材料と粉体を混合し;そして、
(ii) (i)の混合物にァグロバタテリゥム属細菌懸濁液を接種する;
ことにより達成される、請求項 20に記載の方法。
[23] 工程(1)が、ァグロバタテリゥム属細菌懸濁液、粉体、および植物材料を同時に混 合することによりァグロバタテリゥム属細菌を植物材料に接種することにより達成され る、請求項 20に記載の方法。
PCT/JP2005/022863 2005-12-13 2005-12-13 粉体を用いて形質転換効率を向上させる方法 WO2007069301A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/JP2005/022863 WO2007069301A1 (ja) 2005-12-13 2005-12-13 粉体を用いて形質転換効率を向上させる方法
PCT/JP2006/324839 WO2007069643A1 (ja) 2005-12-13 2006-12-13 粉体を用いて形質転換効率を向上させる方法
CN2006800469361A CN101331227B (zh) 2005-12-13 2006-12-13 使用粉体来提高转化效率的方法
AU2006324560A AU2006324560B2 (en) 2005-12-13 2006-12-13 Method for Improving Transformation Efficiency Using Powder
DK06834594.1T DK1964919T3 (da) 2005-12-13 2006-12-13 Fremgangsmåde til forbedring af transformationseffektivitet ved anvendelse af pulver
EP06834594A EP1964919B1 (en) 2005-12-13 2006-12-13 Method for improving transformation efficiency using powder
US12/086,426 US8324456B2 (en) 2005-12-13 2006-12-13 Method for improving transformation efficiency using powder
AT06834594T ATE545700T1 (de) 2005-12-13 2006-12-13 Verfahren zur verbesserung der transformationseffizienz unter verwendung eines pulvers
JP2007550198A JP5260963B2 (ja) 2005-12-13 2006-12-13 粉体を用いて形質転換効率を向上させる方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/022863 WO2007069301A1 (ja) 2005-12-13 2005-12-13 粉体を用いて形質転換効率を向上させる方法

Publications (1)

Publication Number Publication Date
WO2007069301A1 true WO2007069301A1 (ja) 2007-06-21

Family

ID=38162624

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/022863 WO2007069301A1 (ja) 2005-12-13 2005-12-13 粉体を用いて形質転換効率を向上させる方法
PCT/JP2006/324839 WO2007069643A1 (ja) 2005-12-13 2006-12-13 粉体を用いて形質転換効率を向上させる方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324839 WO2007069643A1 (ja) 2005-12-13 2006-12-13 粉体を用いて形質転換効率を向上させる方法

Country Status (7)

Country Link
US (1) US8324456B2 (ja)
EP (1) EP1964919B1 (ja)
CN (1) CN101331227B (ja)
AT (1) ATE545700T1 (ja)
AU (1) AU2006324560B2 (ja)
DK (1) DK1964919T3 (ja)
WO (2) WO2007069301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015039A1 (ja) * 2010-07-29 2012-02-02 日本たばこ産業株式会社 アグロバクテリウム菌を用いた、オオムギ属植物へ遺伝子導入を行う方法およびオオムギ属植物の形質転換植物の作成方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011120478A (ja) 2008-03-31 2011-06-23 Japan Tobacco Inc アグロバクテリウム菌による形質転換植物の作成方法
CA2768955C (en) 2009-07-29 2018-07-17 Japan Tobacco Inc. A method of gene introduction into triticum plant using agrobacterium, and a method of producing transformed triticum plant
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
CA2848689A1 (en) 2011-09-13 2013-03-21 Monsanto Technology Llc Methods and compositions for weed control targeting pds
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
UY34822A (es) 2012-05-24 2013-12-31 Seeds Ltd Ab Composiciones y métodos para silenciar la expresión genética
EP2891716B1 (en) * 2012-08-28 2018-03-28 Biocube System Inc. Porous solid phase for rapidly isolating biological molecules for nucleic acid amplification reaction from biological sample, and use thereof
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
EP2967082A4 (en) 2013-03-13 2016-11-02 Monsanto Technology Llc METHOD AND COMPOSITIONS FOR WEED CONTROL
UY35379A (es) 2013-03-13 2014-09-30 Monsanto Technology Llc ?métodos y composiciones para el control de malezas?.
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
EP3030663B1 (en) 2013-07-19 2019-09-04 Monsanto Technology LLC Compositions and methods for controlling leptinotarsa
UY35817A (es) 2013-11-04 2015-05-29 Us Agriculture ?composiciones y métodos para controlar infestaciones de plagas y parásitos de los artrópodos?.
UA119253C2 (uk) 2013-12-10 2019-05-27 Біолоджикс, Інк. Спосіб боротьби із вірусом у кліща varroa та у бджіл
DE102013020605A1 (de) 2013-12-15 2015-06-18 Kws Saat Ag Selektionsmarker-freies rhizobiaceae-vermitteltes verfahren zur herstellung einer transgenen pflanze der gattung triticum
CA2953347A1 (en) 2014-06-23 2015-12-30 Monsanto Technology Llc Compositions and methods for regulating gene expression via rna interference
EP3161138A4 (en) 2014-06-25 2017-12-06 Monsanto Technology LLC Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
UA125244C2 (uk) 2014-07-29 2022-02-09 Монсанто Текнолоджі Елелсі Спосіб умертвіння або припинення росту комахи
UA124255C2 (uk) 2015-01-22 2021-08-18 Монсанто Текнолоджі Елелсі Інсектицидна композиція та спосіб боротьби з leptinotarsa
CN104823844A (zh) * 2015-01-27 2015-08-12 江苏省中国科学院植物研究所 一种莲属植物的组织培养方法
UY36703A (es) * 2015-06-02 2016-12-30 Monsanto Technology Llc Composiciones y métodos para la administración de un polinucleótido en una planta
AU2016270913A1 (en) 2015-06-03 2018-01-04 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants
CN110607323A (zh) * 2019-09-24 2019-12-24 四川育良生物科技有限公司 一种农杆菌介导水稻遗传转化方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290072A (ja) * 1998-04-08 1999-10-26 Mitsui Chem Inc 植物細胞への遺伝子導入方法
JP2002528047A (ja) * 1998-01-29 2002-09-03 ダウ・アグロサイエンス・エル・エル・シー 植物細胞凝集体及び植物組織のホイスカー−媒介形質転換ならびにその植物の再生

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2649287B2 (ja) 1992-07-07 1997-09-03 日本たばこ産業株式会社 単子葉植物の形質転換方法
EP1983056A1 (en) * 1992-07-07 2008-10-22 Japan Tobacco Inc. Method for transforming monocotyledons
WO1995006722A1 (fr) 1993-09-03 1995-03-09 Japan Tobacco Inc. Procede permettant de transformer une monocotyledone avec un scutellum d'embryon immature
JP4424784B2 (ja) 1999-06-04 2010-03-03 日本たばこ産業株式会社 植物細胞への遺伝子導入の効率を向上させる方法
EP1306440B1 (en) 2000-08-03 2006-11-29 Japan Tobacco Inc. Method of improving gene transfer efficiency into plant cells
JP3887658B2 (ja) * 2002-03-27 2007-02-28 新潟県 遺伝子導入用の植物細胞処理装置
CN1429904A (zh) * 2002-12-26 2003-07-16 中国农业大学 一种对玉米进行基因转化的方法
US20070283455A1 (en) * 2006-05-31 2007-12-06 Gray Dennis J Genetic Transformation of Grapevines

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002528047A (ja) * 1998-01-29 2002-09-03 ダウ・アグロサイエンス・エル・エル・シー 植物細胞凝集体及び植物組織のホイスカー−媒介形質転換ならびにその植物の再生
JPH11290072A (ja) * 1998-04-08 1999-10-26 Mitsui Chem Inc 植物細胞への遺伝子導入方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012015039A1 (ja) * 2010-07-29 2012-02-02 日本たばこ産業株式会社 アグロバクテリウム菌を用いた、オオムギ属植物へ遺伝子導入を行う方法およびオオムギ属植物の形質転換植物の作成方法
US9284567B2 (en) 2010-07-29 2016-03-15 Japan Tobacco Inc. Method for gene introduction into hordeum plant using agrobacterium, and method for production of transformed plant of hordeum plant

Also Published As

Publication number Publication date
CN101331227B (zh) 2012-03-28
EP1964919B1 (en) 2012-02-15
WO2007069643A1 (ja) 2007-06-21
US20110131685A1 (en) 2011-06-02
EP1964919A1 (en) 2008-09-03
DK1964919T3 (da) 2012-05-14
AU2006324560A1 (en) 2007-06-21
US8324456B2 (en) 2012-12-04
EP1964919A4 (en) 2009-05-27
AU2006324560B2 (en) 2013-08-29
CN101331227A (zh) 2008-12-24
ATE545700T1 (de) 2012-03-15

Similar Documents

Publication Publication Date Title
US8324456B2 (en) Method for improving transformation efficiency using powder
US7960611B2 (en) Method for promoting efficiency of gene introduction into plant cells
WO2009122962A1 (ja) アグロバクテリウム菌による形質転換植物の作成方法
AU2008221585A1 (en) Method of elevating transformation efficiency in plant by adding copper ion
AU785336B2 (en) Method of improving gene transfer efficiency into plant cells
JP5260963B2 (ja) 粉体を用いて形質転換効率を向上させる方法
JP4424784B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法
JP2000342255A (ja) 植物細胞への遺伝子導入の効率を向上させる方法
JP4428757B2 (ja) 植物細胞への遺伝子導入の効率を向上させる方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05816449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP