WO2007064802A1 - Chimeric viruses presenting non-native surface proteins and uses thereof - Google Patents
Chimeric viruses presenting non-native surface proteins and uses thereof Download PDFInfo
- Publication number
- WO2007064802A1 WO2007064802A1 PCT/US2006/045859 US2006045859W WO2007064802A1 WO 2007064802 A1 WO2007064802 A1 WO 2007064802A1 US 2006045859 W US2006045859 W US 2006045859W WO 2007064802 A1 WO2007064802 A1 WO 2007064802A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- virus
- chimeric
- protein
- influenza virus
- fusion protein
- Prior art date
Links
- 241000700605 Viruses Species 0.000 title claims abstract description 406
- 108010052285 Membrane Proteins Proteins 0.000 title description 9
- 102000018697 Membrane Proteins Human genes 0.000 title description 8
- 241000712461 unidentified influenza virus Species 0.000 claims abstract description 483
- 108020001507 fusion proteins Proteins 0.000 claims abstract description 294
- 102000037865 fusion proteins Human genes 0.000 claims abstract description 292
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 184
- 239000012678 infectious agent Substances 0.000 claims abstract description 161
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 126
- 230000001086 cytosolic effect Effects 0.000 claims abstract description 104
- 241000271566 Aves Species 0.000 claims abstract description 45
- 230000028993 immune response Effects 0.000 claims abstract description 41
- 239000000427 antigen Substances 0.000 claims description 205
- 108091007433 antigens Proteins 0.000 claims description 205
- 102000036639 antigens Human genes 0.000 claims description 205
- 102000005348 Neuraminidase Human genes 0.000 claims description 194
- 108010006232 Neuraminidase Proteins 0.000 claims description 194
- 101710154606 Hemagglutinin Proteins 0.000 claims description 164
- 208000015181 infectious disease Diseases 0.000 claims description 164
- 101710093908 Outer capsid protein VP4 Proteins 0.000 claims description 163
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 claims description 163
- 101710176177 Protein A56 Proteins 0.000 claims description 163
- 238000000034 method Methods 0.000 claims description 149
- 239000000203 mixture Substances 0.000 claims description 134
- 238000009472 formulation Methods 0.000 claims description 125
- 230000002238 attenuated effect Effects 0.000 claims description 124
- 125000003729 nucleotide group Chemical group 0.000 claims description 116
- 239000002773 nucleotide Substances 0.000 claims description 115
- 239000000185 hemagglutinin Substances 0.000 claims description 113
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 105
- 230000002163 immunogen Effects 0.000 claims description 105
- 201000010099 disease Diseases 0.000 claims description 102
- 206010022000 influenza Diseases 0.000 claims description 85
- 108700026244 Open Reading Frames Proteins 0.000 claims description 52
- 101710133291 Hemagglutinin-neuraminidase Proteins 0.000 claims description 50
- 241000282414 Homo sapiens Species 0.000 claims description 43
- 230000000694 effects Effects 0.000 claims description 43
- 230000009385 viral infection Effects 0.000 claims description 40
- 108010050904 Interferons Proteins 0.000 claims description 35
- 102000014150 Interferons Human genes 0.000 claims description 35
- 229940079322 interferon Drugs 0.000 claims description 34
- 108010068327 4-hydroxyphenylpyruvate dioxygenase Proteins 0.000 claims description 32
- 230000027455 binding Effects 0.000 claims description 29
- 208000002979 Influenza in Birds Diseases 0.000 claims description 28
- 206010064097 avian influenza Diseases 0.000 claims description 28
- 230000001413 cellular effect Effects 0.000 claims description 26
- 101710194807 Protective antigen Proteins 0.000 claims description 24
- 238000003776 cleavage reaction Methods 0.000 claims description 21
- 230000007017 scission Effects 0.000 claims description 21
- 102000005962 receptors Human genes 0.000 claims description 19
- 108020003175 receptors Proteins 0.000 claims description 19
- 238000004519 manufacturing process Methods 0.000 claims description 14
- 239000005557 antagonist Substances 0.000 claims description 13
- 230000001902 propagating effect Effects 0.000 claims description 13
- 108020004511 Recombinant DNA Proteins 0.000 claims description 12
- 230000001939 inductive effect Effects 0.000 claims description 12
- 238000011109 contamination Methods 0.000 claims description 10
- 230000000799 fusogenic effect Effects 0.000 claims description 7
- 230000012743 protein tagging Effects 0.000 claims description 7
- 102000053602 DNA Human genes 0.000 claims description 5
- 101100237844 Mus musculus Mmp19 gene Proteins 0.000 claims 1
- 241000711404 Avian avulavirus 1 Species 0.000 abstract description 231
- 210000002845 virion Anatomy 0.000 abstract description 48
- 241001493065 dsRNA viruses Species 0.000 abstract description 10
- 108700010900 influenza virus proteins Proteins 0.000 abstract description 3
- 210000004027 cell Anatomy 0.000 description 102
- 230000003612 virological effect Effects 0.000 description 77
- 239000012634 fragment Substances 0.000 description 65
- 102000003886 Glycoproteins Human genes 0.000 description 62
- 108090000288 Glycoproteins Proteins 0.000 description 62
- 125000000539 amino acid group Chemical group 0.000 description 59
- 238000002560 therapeutic procedure Methods 0.000 description 54
- 208000024891 symptom Diseases 0.000 description 42
- 235000013601 eggs Nutrition 0.000 description 40
- 108090000765 processed proteins & peptides Proteins 0.000 description 40
- 230000035772 mutation Effects 0.000 description 37
- 150000007523 nucleic acids Chemical class 0.000 description 37
- 238000003556 assay Methods 0.000 description 34
- 102000039446 nucleic acids Human genes 0.000 description 33
- 108020004707 nucleic acids Proteins 0.000 description 33
- 102000004196 processed proteins & peptides Human genes 0.000 description 30
- 229960005486 vaccine Drugs 0.000 description 30
- 230000006870 function Effects 0.000 description 28
- 230000009467 reduction Effects 0.000 description 28
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 27
- 229920001184 polypeptide Polymers 0.000 description 27
- 239000003814 drug Substances 0.000 description 26
- 210000002966 serum Anatomy 0.000 description 26
- 230000000069 prophylactic effect Effects 0.000 description 24
- 238000010171 animal model Methods 0.000 description 23
- 230000010076 replication Effects 0.000 description 23
- 229940124597 therapeutic agent Drugs 0.000 description 23
- 241000287828 Gallus gallus Species 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 22
- 235000013330 chicken meat Nutrition 0.000 description 22
- 108700039887 Essential Genes Proteins 0.000 description 20
- 241001465754 Metazoa Species 0.000 description 20
- 238000011282 treatment Methods 0.000 description 20
- 230000002458 infectious effect Effects 0.000 description 19
- 230000002265 prevention Effects 0.000 description 19
- 230000004044 response Effects 0.000 description 18
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 16
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 16
- 108091034135 Vault RNA Proteins 0.000 description 16
- 230000000644 propagated effect Effects 0.000 description 16
- 238000003018 immunoassay Methods 0.000 description 14
- 238000013518 transcription Methods 0.000 description 14
- 230000035897 transcription Effects 0.000 description 14
- 108010067390 Viral Proteins Proteins 0.000 description 13
- 230000001717 pathogenic effect Effects 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- 238000002965 ELISA Methods 0.000 description 12
- 230000000840 anti-viral effect Effects 0.000 description 12
- 238000012217 deletion Methods 0.000 description 12
- 230000037430 deletion Effects 0.000 description 12
- 238000007726 management method Methods 0.000 description 12
- 210000001519 tissue Anatomy 0.000 description 12
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 11
- 230000003053 immunization Effects 0.000 description 11
- 238000001262 western blot Methods 0.000 description 11
- 108091026890 Coding region Proteins 0.000 description 10
- 241000283073 Equus caballus Species 0.000 description 10
- 108091092724 Noncoding DNA Proteins 0.000 description 10
- 108091028043 Nucleic acid sequence Proteins 0.000 description 10
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 10
- 125000003275 alpha amino acid group Chemical group 0.000 description 10
- -1 i.e. Substances 0.000 description 10
- 210000004379 membrane Anatomy 0.000 description 10
- 239000012528 membrane Substances 0.000 description 10
- 244000045947 parasite Species 0.000 description 10
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 10
- 101150039660 HA gene Proteins 0.000 description 9
- 208000036142 Viral infection Diseases 0.000 description 9
- 238000004113 cell culture Methods 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 9
- 208000037797 influenza A Diseases 0.000 description 9
- 238000003780 insertion Methods 0.000 description 9
- 230000037431 insertion Effects 0.000 description 9
- 239000002609 medium Substances 0.000 description 9
- 241000894006 Bacteria Species 0.000 description 8
- 241000282472 Canis lupus familiaris Species 0.000 description 8
- 206010028980 Neoplasm Diseases 0.000 description 8
- 241000700159 Rattus Species 0.000 description 8
- 108020000999 Viral RNA Proteins 0.000 description 8
- 210000000170 cell membrane Anatomy 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 8
- 239000012894 fetal calf serum Substances 0.000 description 8
- 230000002519 immonomodulatory effect Effects 0.000 description 8
- 238000002649 immunization Methods 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 239000002953 phosphate buffered saline Substances 0.000 description 8
- 244000144977 poultry Species 0.000 description 8
- 235000013594 poultry meat Nutrition 0.000 description 8
- 230000002829 reductive effect Effects 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 108020004414 DNA Proteins 0.000 description 7
- 241000700584 Simplexvirus Species 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 230000002596 correlated effect Effects 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 210000005081 epithelial layer Anatomy 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 108020004705 Codon Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241000711504 Paramyxoviridae Species 0.000 description 6
- 102000035195 Peptidases Human genes 0.000 description 6
- 108091005804 Peptidases Proteins 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 206010057190 Respiratory tract infections Diseases 0.000 description 6
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 6
- 230000004927 fusion Effects 0.000 description 6
- 230000002068 genetic effect Effects 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 230000035931 haemagglutination Effects 0.000 description 6
- 230000001771 impaired effect Effects 0.000 description 6
- 238000001727 in vivo Methods 0.000 description 6
- 230000001965 increasing effect Effects 0.000 description 6
- 238000011081 inoculation Methods 0.000 description 6
- 210000004072 lung Anatomy 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 244000052769 pathogen Species 0.000 description 6
- 238000003127 radioimmunoassay Methods 0.000 description 6
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 5
- 208000003322 Coinfection Diseases 0.000 description 5
- 241000282326 Felis catus Species 0.000 description 5
- 241000233866 Fungi Species 0.000 description 5
- 241000282412 Homo Species 0.000 description 5
- 241000699666 Mus <mouse, genus> Species 0.000 description 5
- 101710199667 Nuclear export protein Proteins 0.000 description 5
- 102000011931 Nucleoproteins Human genes 0.000 description 5
- 108010061100 Nucleoproteins Proteins 0.000 description 5
- 229930182555 Penicillin Natural products 0.000 description 5
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 5
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 5
- 230000000890 antigenic effect Effects 0.000 description 5
- 239000011324 bead Substances 0.000 description 5
- 210000003123 bronchiole Anatomy 0.000 description 5
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 5
- 230000010479 cellular ifn response Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 238000010494 dissociation reaction Methods 0.000 description 5
- 230000005593 dissociations Effects 0.000 description 5
- 210000002950 fibroblast Anatomy 0.000 description 5
- 210000003128 head Anatomy 0.000 description 5
- 230000036039 immunity Effects 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 210000003292 kidney cell Anatomy 0.000 description 5
- 210000001161 mammalian embryo Anatomy 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 229940049954 penicillin Drugs 0.000 description 5
- 239000013600 plasmid vector Substances 0.000 description 5
- 229960005322 streptomycin Drugs 0.000 description 5
- 230000001225 therapeutic effect Effects 0.000 description 5
- 241001430294 unidentified retrovirus Species 0.000 description 5
- 241000712892 Arenaviridae Species 0.000 description 4
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 4
- 208000035473 Communicable disease Diseases 0.000 description 4
- 241000711573 Coronaviridae Species 0.000 description 4
- 241000709661 Enterovirus Species 0.000 description 4
- 101001065501 Escherichia phage MS2 Lysis protein Proteins 0.000 description 4
- 241000725303 Human immunodeficiency virus Species 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 241000711408 Murine respirovirus Species 0.000 description 4
- MQUQNUAYKLCRME-INIZCTEOSA-N N-tosyl-L-phenylalanyl chloromethyl ketone Chemical compound C1=CC(C)=CC=C1S(=O)(=O)N[C@H](C(=O)CCl)CC1=CC=CC=C1 MQUQNUAYKLCRME-INIZCTEOSA-N 0.000 description 4
- 101150076514 NS gene Proteins 0.000 description 4
- 241000712464 Orthomyxoviridae Species 0.000 description 4
- 208000002606 Paramyxoviridae Infections Diseases 0.000 description 4
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 4
- 241000711931 Rhabdoviridae Species 0.000 description 4
- 102000004389 Ribonucleoproteins Human genes 0.000 description 4
- 108010081734 Ribonucleoproteins Proteins 0.000 description 4
- 241000282898 Sus scrofa Species 0.000 description 4
- 102000004142 Trypsin Human genes 0.000 description 4
- 108090000631 Trypsin Proteins 0.000 description 4
- 230000004075 alteration Effects 0.000 description 4
- 239000003443 antiviral agent Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 239000002299 complementary DNA Substances 0.000 description 4
- 238000012258 culturing Methods 0.000 description 4
- 230000008029 eradication Effects 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 238000009169 immunotherapy Methods 0.000 description 4
- 238000000099 in vitro assay Methods 0.000 description 4
- 238000007918 intramuscular administration Methods 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 230000009545 invasion Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- NLKNQRATVPKPDG-UHFFFAOYSA-M potassium iodide Chemical compound [K+].[I-] NLKNQRATVPKPDG-UHFFFAOYSA-M 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000002195 synergetic effect Effects 0.000 description 4
- 239000012588 trypsin Substances 0.000 description 4
- 238000002255 vaccination Methods 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- 230000001018 virulence Effects 0.000 description 4
- 238000005406 washing Methods 0.000 description 4
- XMAYWYJOQHXEEK-ZEQKJWHPSA-N (2S,4R)-ketoconazole Chemical compound C1CN(C(=O)C)CCN1C(C=C1)=CC=C1OC[C@H]1O[C@](CN2C=NC=C2)(C=2C(=CC(Cl)=CC=2)Cl)OC1 XMAYWYJOQHXEEK-ZEQKJWHPSA-N 0.000 description 3
- 101150084750 1 gene Proteins 0.000 description 3
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 208000035143 Bacterial infection Diseases 0.000 description 3
- 241000282465 Canis Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102100023600 Fibroblast growth factor receptor 2 Human genes 0.000 description 3
- 108060003393 Granulin Proteins 0.000 description 3
- 241000711549 Hepacivirus C Species 0.000 description 3
- 241000700739 Hepadnaviridae Species 0.000 description 3
- 108091080980 Hepatitis delta virus ribozyme Proteins 0.000 description 3
- 241000700586 Herpesviridae Species 0.000 description 3
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 3
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 241000712431 Influenza A virus Species 0.000 description 3
- 241000491226 Influenza A virus (A/WSN/1933(H1N1)) Species 0.000 description 3
- 102100026720 Interferon beta Human genes 0.000 description 3
- 102100037850 Interferon gamma Human genes 0.000 description 3
- 108010047761 Interferon-alpha Proteins 0.000 description 3
- 102000006992 Interferon-alpha Human genes 0.000 description 3
- 108090000467 Interferon-beta Proteins 0.000 description 3
- 108010074328 Interferon-gamma Proteins 0.000 description 3
- 241000712079 Measles morbillivirus Species 0.000 description 3
- 206010054949 Metaplasia Diseases 0.000 description 3
- 108060004795 Methyltransferase Proteins 0.000 description 3
- 241000711386 Mumps virus Species 0.000 description 3
- 101710141454 Nucleoprotein Proteins 0.000 description 3
- 101710181008 P protein Proteins 0.000 description 3
- 241001631646 Papillomaviridae Species 0.000 description 3
- 101710177166 Phosphoprotein Proteins 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 241000700625 Poxviridae Species 0.000 description 3
- 241000702247 Reoviridae Species 0.000 description 3
- 241000831652 Salinivibrio sharmensis Species 0.000 description 3
- 241000194017 Streptococcus Species 0.000 description 3
- 108091023045 Untranslated Region Proteins 0.000 description 3
- 206010046865 Vaccinia virus infection Diseases 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 229940121375 antifungal agent Drugs 0.000 description 3
- 239000003429 antifungal agent Substances 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 208000022362 bacterial infectious disease Diseases 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 229940098773 bovine serum albumin Drugs 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 210000004899 c-terminal region Anatomy 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- 239000013592 cell lysate Substances 0.000 description 3
- 210000004081 cilia Anatomy 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000012875 competitive assay Methods 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 229940079593 drug Drugs 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000002919 epithelial cell Anatomy 0.000 description 3
- 230000002538 fungal effect Effects 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 238000000338 in vitro Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 208000037799 influenza C Diseases 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 108010029560 keratinocyte growth factor receptor Proteins 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000015689 metaplastic ossification Effects 0.000 description 3
- 230000001617 migratory effect Effects 0.000 description 3
- OHDXDNUPVVYWOV-UHFFFAOYSA-N n-methyl-1-(2-naphthalen-1-ylsulfanylphenyl)methanamine Chemical compound CNCC1=CC=CC=C1SC1=CC=CC2=CC=CC=C12 OHDXDNUPVVYWOV-UHFFFAOYSA-N 0.000 description 3
- 230000003472 neutralizing effect Effects 0.000 description 3
- 230000003071 parasitic effect Effects 0.000 description 3
- 239000013612 plasmid Substances 0.000 description 3
- 230000008488 polyadenylation Effects 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 230000002685 pulmonary effect Effects 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 150000003384 small molecules Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 208000007089 vaccinia Diseases 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- VBICKXHEKHSIBG-UHFFFAOYSA-N 1-monostearoylglycerol Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCC(O)CO VBICKXHEKHSIBG-UHFFFAOYSA-N 0.000 description 2
- 241001664176 Alpharetrovirus Species 0.000 description 2
- 241000710929 Alphavirus Species 0.000 description 2
- 108010039627 Aprotinin Proteins 0.000 description 2
- 241000712891 Arenavirus Species 0.000 description 2
- 241000701802 Aviadenovirus Species 0.000 description 2
- 241001519465 Avian metapneumovirus Species 0.000 description 2
- 241000700663 Avipoxvirus Species 0.000 description 2
- 241001231757 Betaretrovirus Species 0.000 description 2
- 241000222122 Candida albicans Species 0.000 description 2
- 241000700664 Capripoxvirus Species 0.000 description 2
- 241000710190 Cardiovirus Species 0.000 description 2
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 2
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 2
- 241000700628 Chordopoxvirinae Species 0.000 description 2
- 102000013701 Cyclin-Dependent Kinase 4 Human genes 0.000 description 2
- 108010025464 Cyclin-Dependent Kinase 4 Proteins 0.000 description 2
- 241000702662 Cypovirus Species 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 241000712467 Cytorhabdovirus Species 0.000 description 2
- 241000725619 Dengue virus Species 0.000 description 2
- 241000710188 Encephalomyocarditis virus Species 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 241000305071 Enterobacterales Species 0.000 description 2
- 241000700572 Entomopoxvirinae Species 0.000 description 2
- 101710121417 Envelope glycoprotein Proteins 0.000 description 2
- 241001455610 Ephemerovirus Species 0.000 description 2
- 241000283086 Equidae Species 0.000 description 2
- 241000283074 Equus asinus Species 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- 241000588724 Escherichia coli Species 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 206010017533 Fungal infection Diseases 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- 241000589989 Helicobacter Species 0.000 description 2
- 241000700721 Hepatitis B virus Species 0.000 description 2
- 241000709715 Hepatovirus Species 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 108010084873 Human Immunodeficiency Virus nef Gene Products Proteins 0.000 description 2
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 2
- 241000700588 Human alphaherpesvirus 1 Species 0.000 description 2
- 241000701074 Human alphaherpesvirus 2 Species 0.000 description 2
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- 241000342334 Human metapneumovirus Species 0.000 description 2
- 241000726041 Human respirovirus 1 Species 0.000 description 2
- 102100026120 IgG receptor FcRn large subunit p51 Human genes 0.000 description 2
- 101710177940 IgG receptor FcRn large subunit p51 Proteins 0.000 description 2
- 108010002335 Interleukin-9 Proteins 0.000 description 2
- 241000555269 Ippy mammarenavirus Species 0.000 description 2
- 241000712902 Lassa mammarenavirus Species 0.000 description 2
- 101710180643 Leishmanolysin Proteins 0.000 description 2
- 241000713666 Lentivirus Species 0.000 description 2
- 241000714210 Leviviridae Species 0.000 description 2
- 241000714216 Levivirus Species 0.000 description 2
- 206010024971 Lower respiratory tract infections Diseases 0.000 description 2
- 241000712899 Lymphocytic choriomeningitis mammarenavirus Species 0.000 description 2
- 241000711828 Lyssavirus Species 0.000 description 2
- 241000701244 Mastadenovirus Species 0.000 description 2
- 241000351643 Metapneumovirus Species 0.000 description 2
- 241000700559 Molluscipoxvirus Species 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- 208000031888 Mycoses Diseases 0.000 description 2
- 241000702259 Orbivirus Species 0.000 description 2
- 241000702244 Orthoreovirus Species 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241000702633 Oryzavirus Species 0.000 description 2
- 241000700639 Parapoxvirus Species 0.000 description 2
- 241000150350 Peribunyaviridae Species 0.000 description 2
- 241000702656 Phytoreovirus Species 0.000 description 2
- 241000709664 Picornaviridae Species 0.000 description 2
- 206010035664 Pneumonia Diseases 0.000 description 2
- 241000711902 Pneumovirus Species 0.000 description 2
- 241001505332 Polyomavirus sp. Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 108010015329 Respiratory syncytial virus G glycoprotein Proteins 0.000 description 2
- 241000712907 Retroviridae Species 0.000 description 2
- 240000005384 Rhizopus oryzae Species 0.000 description 2
- 235000013752 Rhizopus oryzae Nutrition 0.000 description 2
- 241000702670 Rotavirus Species 0.000 description 2
- 241000710799 Rubella virus Species 0.000 description 2
- 241000710801 Rubivirus Species 0.000 description 2
- 241001533467 Rubulavirus Species 0.000 description 2
- 241000282849 Ruminantia Species 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- 241000710960 Sindbis virus Species 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 241000713675 Spumavirus Species 0.000 description 2
- 241000191940 Staphylococcus Species 0.000 description 2
- 101710172711 Structural protein Proteins 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 241000700568 Suipoxvirus Species 0.000 description 2
- 241000710924 Togaviridae Species 0.000 description 2
- 241000711517 Torovirus Species 0.000 description 2
- 241000223109 Trypanosoma cruzi Species 0.000 description 2
- 240000003864 Ulex europaeus Species 0.000 description 2
- 235000010730 Ulex europaeus Nutrition 0.000 description 2
- 206010046306 Upper respiratory tract infection Diseases 0.000 description 2
- 241000711975 Vesicular stomatitis virus Species 0.000 description 2
- 241000711970 Vesiculovirus Species 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 241000710886 West Nile virus Species 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000007818 agglutination assay Methods 0.000 description 2
- 229960003942 amphotericin b Drugs 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000844 anti-bacterial effect Effects 0.000 description 2
- 230000005875 antibody response Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000034303 cell budding Effects 0.000 description 2
- 230000005890 cell-mediated cytotoxicity Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 230000002860 competitive effect Effects 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- RFHAOTPXVQNOHP-UHFFFAOYSA-N fluconazole Chemical compound C1=NC=NN1CC(C=1C(=CC(F)=CC=1)F)(O)CN1C=NC=N1 RFHAOTPXVQNOHP-UHFFFAOYSA-N 0.000 description 2
- XRECTZIEBJDKEO-UHFFFAOYSA-N flucytosine Chemical compound NC1=NC(=O)NC=C1F XRECTZIEBJDKEO-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000012817 gel-diffusion technique Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 208000002672 hepatitis B Diseases 0.000 description 2
- 230000000951 immunodiffusion Effects 0.000 description 2
- 238000010166 immunofluorescence Methods 0.000 description 2
- 230000001976 improved effect Effects 0.000 description 2
- 238000005462 in vivo assay Methods 0.000 description 2
- 208000037798 influenza B Diseases 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229940047124 interferons Drugs 0.000 description 2
- 238000012933 kinetic analysis Methods 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 230000003211 malignant effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 210000004779 membrane envelope Anatomy 0.000 description 2
- 206010061289 metastatic neoplasm Diseases 0.000 description 2
- 230000036963 noncompetitive effect Effects 0.000 description 2
- 229960000988 nystatin Drugs 0.000 description 2
- VQOXZBDYSJBXMA-NQTDYLQESA-N nystatin A1 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/CC/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 VQOXZBDYSJBXMA-NQTDYLQESA-N 0.000 description 2
- 230000001575 pathological effect Effects 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 239000000546 pharmaceutical excipient Substances 0.000 description 2
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- ZJAOAACCNHFJAH-UHFFFAOYSA-N phosphonoformic acid Chemical compound OC(=O)P(O)(O)=O ZJAOAACCNHFJAH-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 229920002401 polyacrylamide Polymers 0.000 description 2
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 238000013207 serial dilution Methods 0.000 description 2
- 238000011125 single therapy Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 210000003437 trachea Anatomy 0.000 description 2
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000007444 viral RNA synthesis Effects 0.000 description 2
- BCEHBSKCWLPMDN-MGPLVRAMSA-N voriconazole Chemical compound C1([C@H](C)[C@](O)(CN2N=CN=C2)C=2C(=CC(F)=CC=2)F)=NC=NC=C1F BCEHBSKCWLPMDN-MGPLVRAMSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HBOMLICNUCNMMY-XLPZGREQSA-N zidovudine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](N=[N+]=[N-])C1 HBOMLICNUCNMMY-XLPZGREQSA-N 0.000 description 2
- 229960002555 zidovudine Drugs 0.000 description 2
- PCTMTFRHKVHKIS-BMFZQQSSSA-N (1s,3r,4e,6e,8e,10e,12e,14e,16e,18s,19r,20r,21s,25r,27r,30r,31r,33s,35r,37s,38r)-3-[(2r,3s,4s,5s,6r)-4-amino-3,5-dihydroxy-6-methyloxan-2-yl]oxy-19,25,27,30,31,33,35,37-octahydroxy-18,20,21-trimethyl-23-oxo-22,39-dioxabicyclo[33.3.1]nonatriaconta-4,6,8,10 Chemical compound C1C=C2C[C@@H](OS(O)(=O)=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2.O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 PCTMTFRHKVHKIS-BMFZQQSSSA-N 0.000 description 1
- UBCHPRBFMUDMNC-UHFFFAOYSA-N 1-(1-adamantyl)ethanamine Chemical compound C1C(C2)CC3CC2CC1(C(N)C)C3 UBCHPRBFMUDMNC-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-DFMJLFEVSA-N 2-[(2r)-butan-2-yl]-4-[4-[4-[4-[[(2r,4s)-2-(2,4-dichlorophenyl)-2-(1,2,4-triazol-1-ylmethyl)-1,3-dioxolan-4-yl]methoxy]phenyl]piperazin-1-yl]phenyl]-1,2,4-triazol-3-one Chemical compound O=C1N([C@H](C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-DFMJLFEVSA-N 0.000 description 1
- 101150111160 ALA1 gene Proteins 0.000 description 1
- 241000235389 Absidia Species 0.000 description 1
- 241000701242 Adenoviridae Species 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 102100037982 Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase A Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 241000224489 Amoeba Species 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- 241000272525 Anas platyrhynchos Species 0.000 description 1
- 241000589944 Aquaspirillum Species 0.000 description 1
- 241001480043 Arthrodermataceae Species 0.000 description 1
- 241000235349 Ascomycota Species 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000228197 Aspergillus flavus Species 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001465318 Aspergillus terreus Species 0.000 description 1
- 208000031504 Asymptomatic Infections Diseases 0.000 description 1
- 241000589941 Azospirillum Species 0.000 description 1
- 241000589154 Azotobacter group Species 0.000 description 1
- 102100035526 B melanoma antigen 1 Human genes 0.000 description 1
- 102100022005 B-lymphocyte antigen CD20 Human genes 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 108010001478 Bacitracin Proteins 0.000 description 1
- 241000606126 Bacteroidaceae Species 0.000 description 1
- 241000606660 Bartonella Species 0.000 description 1
- 241001480523 Basidiobolus ranarum Species 0.000 description 1
- 241000221198 Basidiomycota Species 0.000 description 1
- 241000604933 Bdellovibrio Species 0.000 description 1
- 102000015735 Beta-catenin Human genes 0.000 description 1
- 108060000903 Beta-catenin Proteins 0.000 description 1
- 101150084084 BiP gene Proteins 0.000 description 1
- 241000228405 Blastomyces dermatitidis Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 206010006448 Bronchiolitis Diseases 0.000 description 1
- 241000282836 Camelus dromedarius Species 0.000 description 1
- 241000589876 Campylobacter Species 0.000 description 1
- 241000222178 Candida tropicalis Species 0.000 description 1
- 101710132601 Capsid protein Proteins 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 102100026548 Caspase-8 Human genes 0.000 description 1
- 108090000538 Caspase-8 Proteins 0.000 description 1
- 108010020326 Caspofungin Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000606161 Chlamydia Species 0.000 description 1
- 241001647372 Chlamydia pneumoniae Species 0.000 description 1
- 241000588923 Citrobacter Species 0.000 description 1
- 241001112696 Clostridia Species 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 101710094648 Coat protein Proteins 0.000 description 1
- 241000223205 Coccidioides immitis Species 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 241001480517 Conidiobolus Species 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 108010061994 Coronavirus Spike Glycoprotein Proteins 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000938605 Crocodylia Species 0.000 description 1
- 241001337994 Cryptococcus <scale insect> Species 0.000 description 1
- 241000235555 Cunninghamella Species 0.000 description 1
- 206010011703 Cyanosis Diseases 0.000 description 1
- 241000031711 Cytophagaceae Species 0.000 description 1
- DYDCUQKUCUHJBH-UWTATZPHSA-N D-Cycloserine Chemical compound N[C@@H]1CONC1=O DYDCUQKUCUHJBH-UWTATZPHSA-N 0.000 description 1
- DYDCUQKUCUHJBH-UHFFFAOYSA-N D-Cycloserine Natural products NC1CONC1=O DYDCUQKUCUHJBH-UHFFFAOYSA-N 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 108090000626 DNA-directed RNA polymerases Proteins 0.000 description 1
- 102000004163 DNA-directed RNA polymerases Human genes 0.000 description 1
- 241000187845 Dermatophilus congolensis Species 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 241000712471 Dhori virus Species 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000222175 Diutina rugosa Species 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 102000001301 EGF receptor Human genes 0.000 description 1
- 108060006698 EGF receptor Proteins 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 241000607473 Edwardsiella <enterobacteria> Species 0.000 description 1
- 102100031780 Endonuclease Human genes 0.000 description 1
- 108010042407 Endonucleases Proteins 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 241001495410 Enterococcus sp. Species 0.000 description 1
- 241000991587 Enterovirus C Species 0.000 description 1
- 101710204837 Envelope small membrane protein Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283070 Equus zebra Species 0.000 description 1
- 241000588698 Erwinia Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000702658 Fijivirus Species 0.000 description 1
- 241000711950 Filoviridae Species 0.000 description 1
- 102000004961 Furin Human genes 0.000 description 1
- 108090001126 Furin Proteins 0.000 description 1
- 241001663880 Gammaretrovirus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229930182566 Gentamicin Natural products 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 1
- 241000190708 Guanarito mammarenavirus Species 0.000 description 1
- 108700004031 HN Proteins 0.000 description 1
- 241000606768 Haemophilus influenzae Species 0.000 description 1
- 241000588731 Hafnia Species 0.000 description 1
- 241000205035 Halobacteriaceae Species 0.000 description 1
- 241000228404 Histoplasma capsulatum Species 0.000 description 1
- 101000874316 Homo sapiens B melanoma antigen 1 Proteins 0.000 description 1
- 101000897405 Homo sapiens B-lymphocyte antigen CD20 Proteins 0.000 description 1
- 101000914324 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 5 Proteins 0.000 description 1
- 101000914321 Homo sapiens Carcinoembryonic antigen-related cell adhesion molecule 7 Proteins 0.000 description 1
- 101000578784 Homo sapiens Melanoma antigen recognized by T-cells 1 Proteins 0.000 description 1
- 101000617725 Homo sapiens Pregnancy-specific beta-1-glycoprotein 2 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000934341 Homo sapiens T-cell surface glycoprotein CD5 Proteins 0.000 description 1
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 1
- 241000711920 Human orthopneumovirus Species 0.000 description 1
- 241000701806 Human papillomavirus Species 0.000 description 1
- 241000712003 Human respirovirus 3 Species 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 241000546112 Infectious salmon anemia virus Species 0.000 description 1
- 241000713196 Influenza B virus Species 0.000 description 1
- 241000713297 Influenza C virus Species 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 108010014726 Interferon Type I Proteins 0.000 description 1
- 102000002227 Interferon Type I Human genes 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241000588915 Klebsiella aerogenes Species 0.000 description 1
- 241000588747 Klebsiella pneumoniae Species 0.000 description 1
- 101150062031 L gene Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010023927 Lassa fever Diseases 0.000 description 1
- 108091026898 Leader sequence (mRNA) Proteins 0.000 description 1
- 241000144128 Lichtheimia corymbifera Species 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- 108090001030 Lipoproteins Proteins 0.000 description 1
- 102000004895 Lipoproteins Human genes 0.000 description 1
- 241000186781 Listeria Species 0.000 description 1
- 206010025323 Lymphomas Diseases 0.000 description 1
- 101710145006 Lysis protein Proteins 0.000 description 1
- 108010010995 MART-1 Antigen Proteins 0.000 description 1
- 102000016200 MART-1 Antigen Human genes 0.000 description 1
- 101710125418 Major capsid protein Proteins 0.000 description 1
- 101710141452 Major surface glycoprotein G Proteins 0.000 description 1
- 241001559185 Mammalian rubulavirus 5 Species 0.000 description 1
- 241001115401 Marburgvirus Species 0.000 description 1
- 201000005505 Measles Diseases 0.000 description 1
- 102100028389 Melanoma antigen recognized by T-cells 1 Human genes 0.000 description 1
- 102000005741 Metalloproteases Human genes 0.000 description 1
- 108010006035 Metalloproteases Proteins 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 241000589330 Methylococcaceae Species 0.000 description 1
- BYBLEWFAAKGYCD-UHFFFAOYSA-N Miconazole Chemical compound ClC1=CC(Cl)=CC=C1COC(C=1C(=CC(Cl)=CC=1)Cl)CN1C=NC=C1 BYBLEWFAAKGYCD-UHFFFAOYSA-N 0.000 description 1
- 241000588771 Morganella <proteobacterium> Species 0.000 description 1
- 108010008707 Mucin-1 Proteins 0.000 description 1
- 102000007298 Mucin-1 Human genes 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 241000187479 Mycobacterium tuberculosis Species 0.000 description 1
- 241000202934 Mycoplasma pneumoniae Species 0.000 description 1
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 1
- SQVRNKJHWKZAKO-PFQGKNLYSA-N N-acetyl-beta-neuraminic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)O[C@H]1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-PFQGKNLYSA-N 0.000 description 1
- 241000893976 Nannizzia gypsea Species 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 241000588656 Neisseriaceae Species 0.000 description 1
- 229930193140 Neomycin Natural products 0.000 description 1
- 208000010359 Newcastle Disease Diseases 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 241000605012 Oceanospirillum Species 0.000 description 1
- 241000233654 Oomycetes Species 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 102100034574 P protein Human genes 0.000 description 1
- 239000002033 PVDF binder Substances 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241000845082 Panama Species 0.000 description 1
- 241000526686 Paracoccidioides brasiliensis Species 0.000 description 1
- 241000334993 Parma Species 0.000 description 1
- 241000606752 Pasteurellaceae Species 0.000 description 1
- 241000577979 Peromyscus spicilegus Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010053210 Phycocyanin Proteins 0.000 description 1
- 108010004729 Phycoerythrin Proteins 0.000 description 1
- 241000235645 Pichia kudriavzevii Species 0.000 description 1
- 241000224016 Plasmodium Species 0.000 description 1
- 241000233872 Pneumocystis carinii Species 0.000 description 1
- 206010035737 Pneumonia viral Diseases 0.000 description 1
- 108010040201 Polymyxins Proteins 0.000 description 1
- 102100022019 Pregnancy-specific beta-1-glycoprotein 2 Human genes 0.000 description 1
- 101710083689 Probable capsid protein Proteins 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- 102000002067 Protein Subunits Human genes 0.000 description 1
- 241000588767 Proteus vulgaris Species 0.000 description 1
- 241000588768 Providencia Species 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000589517 Pseudomonas aeruginosa Species 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 108091034057 RNA (poly(A)) Proteins 0.000 description 1
- 108020005161 RNA Caps Proteins 0.000 description 1
- 102000017143 RNA Polymerase I Human genes 0.000 description 1
- 108010013845 RNA Polymerase I Proteins 0.000 description 1
- 102000028391 RNA cap binding Human genes 0.000 description 1
- 230000006819 RNA synthesis Effects 0.000 description 1
- 206010037742 Rabies Diseases 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 206010038687 Respiratory distress Diseases 0.000 description 1
- 241000725643 Respiratory syncytial virus Species 0.000 description 1
- 241000293824 Rhinosporidium seeberi Species 0.000 description 1
- 241001633102 Rhizobiaceae Species 0.000 description 1
- 241000235525 Rhizomucor pusillus Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 241000593344 Rhizopus microsporus Species 0.000 description 1
- IWUCXVSUMQZMFG-AFCXAGJDSA-N Ribavirin Chemical compound N1=C(C(=O)N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 IWUCXVSUMQZMFG-AFCXAGJDSA-N 0.000 description 1
- NCDNCNXCDXHOMX-UHFFFAOYSA-N Ritonavir Natural products C=1C=CC=CC=1CC(NC(=O)OCC=1SC=NC=1)C(O)CC(CC=1C=CC=CC=1)NC(=O)C(C(C)C)NC(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000607149 Salmonella sp. Species 0.000 description 1
- 241000223598 Scedosporium boydii Species 0.000 description 1
- 241000607715 Serratia marcescens Species 0.000 description 1
- 241000607762 Shigella flexneri Species 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000605008 Spirillum Species 0.000 description 1
- 241001149963 Sporothrix schenckii Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 241001147693 Staphylococcus sp. Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000194048 Streptococcus equi Species 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- 102100025244 T-cell surface glycoprotein CD5 Human genes 0.000 description 1
- 108010008125 Tenascin Proteins 0.000 description 1
- 102000007000 Tenascin Human genes 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- WKDDRNSBRWANNC-UHFFFAOYSA-N Thienamycin Natural products C1C(SCCN)=C(C(O)=O)N2C(=O)C(C(O)C)C21 WKDDRNSBRWANNC-UHFFFAOYSA-N 0.000 description 1
- 240000001068 Thogoto virus Species 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 102100039094 Tyrosinase Human genes 0.000 description 1
- 108060008724 Tyrosinase Proteins 0.000 description 1
- 101150018417 VIM gene Proteins 0.000 description 1
- 241000700618 Vaccinia virus Species 0.000 description 1
- 241001568331 Vampirovibrio Species 0.000 description 1
- 108010059993 Vancomycin Proteins 0.000 description 1
- 241000700647 Variola virus Species 0.000 description 1
- 241000607284 Vibrio sp. Species 0.000 description 1
- OIRDTQYFTABQOQ-UHTZMRCNSA-N Vidarabine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@@H]1O OIRDTQYFTABQOQ-UHTZMRCNSA-N 0.000 description 1
- 206010047924 Wheezing Diseases 0.000 description 1
- 241000607734 Yersinia <bacteria> Species 0.000 description 1
- 241000222126 [Candida] glabrata Species 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- MKUXAQIIEYXACX-UHFFFAOYSA-N aciclovir Chemical compound N1C(N)=NC(=O)C2=C1N(COCCO)C=N2 MKUXAQIIEYXACX-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine group Chemical group [C@@H]1([C@H](O)[C@H](O)[C@@H](CO)O1)N1C=NC=2C(N)=NC=NC12 OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 1
- 108700010877 adenoviridae proteins Proteins 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 108010004469 allophycocyanin Proteins 0.000 description 1
- 108010034034 alpha-1,6-mannosylglycoprotein beta 1,6-N-acetylglucosaminyltransferase Proteins 0.000 description 1
- 229960003805 amantadine Drugs 0.000 description 1
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 description 1
- 229960004821 amikacin Drugs 0.000 description 1
- LKCWBDHBTVXHDL-RMDFUYIESA-N amikacin Chemical compound O([C@@H]1[C@@H](N)C[C@H]([C@@H]([C@H]1O)O[C@@H]1[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O1)O)NC(=O)[C@@H](O)CCN)[C@H]1O[C@H](CN)[C@@H](O)[C@H](O)[C@H]1O LKCWBDHBTVXHDL-RMDFUYIESA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229940021050 amphotericin b colloidal dispersion Drugs 0.000 description 1
- 229940028765 ancobon Drugs 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000009830 antibody antigen interaction Effects 0.000 description 1
- 208000008784 apnea Diseases 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960003071 bacitracin Drugs 0.000 description 1
- 229930184125 bacitracin Natural products 0.000 description 1
- CLKOFPXJLQSYAH-ABRJDSQDSA-N bacitracin A Chemical compound C1SC([C@@H](N)[C@@H](C)CC)=N[C@@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]1C(=O)N[C@H](CCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2N=CNC=2)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)NCCCC1 CLKOFPXJLQSYAH-ABRJDSQDSA-N 0.000 description 1
- LFYJSSARVMHQJB-QIXNEVBVSA-N bakuchiol Chemical compound CC(C)=CCC[C@@](C)(C=C)\C=C\C1=CC=C(O)C=C1 LFYJSSARVMHQJB-QIXNEVBVSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 210000000941 bile Anatomy 0.000 description 1
- 238000004166 bioassay Methods 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 208000032343 candida glabrata infection Diseases 0.000 description 1
- 210000000234 capsid Anatomy 0.000 description 1
- 150000001720 carbohydrates Chemical group 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 229960000730 caspofungin acetate Drugs 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- JQXXHWHPUNPDRT-BQVAUQFYSA-N chembl1523493 Chemical compound O([C@](C1=O)(C)O\C=C/[C@@H]([C@H]([C@@H](OC(C)=O)[C@H](C)[C@H](O)[C@H](C)[C@@H](O)[C@@H](C)/C=C\C=C(C)/C(=O)NC=2C(O)=C3C(O)=C4C)C)OC)C4=C1C3=C(O)C=2C=NN1CCN(C)CC1 JQXXHWHPUNPDRT-BQVAUQFYSA-N 0.000 description 1
- 239000002962 chemical mutagen Substances 0.000 description 1
- 239000012707 chemical precursor Substances 0.000 description 1
- 210000003837 chick embryo Anatomy 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 229960002227 clindamycin Drugs 0.000 description 1
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 description 1
- ZPUCINDJVBIVPJ-LJISPDSOSA-N cocaine Chemical compound O([C@H]1C[C@@H]2CC[C@@H](N2C)[C@H]1C(=O)OC)C(=O)C1=CC=CC=C1 ZPUCINDJVBIVPJ-LJISPDSOSA-N 0.000 description 1
- 238000004440 column chromatography Methods 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005574 cross-species transmission Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 229960003077 cycloserine Drugs 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- KXGVEGMKQFWNSR-LLQZFEROSA-N deoxycholic acid Chemical compound C([C@H]1CC2)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(O)=O)C)[C@@]2(C)[C@@H](O)C1 KXGVEGMKQFWNSR-LLQZFEROSA-N 0.000 description 1
- 230000037304 dermatophytes Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 1
- 229940063123 diflucan Drugs 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011833 dog model Methods 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000012202 endocytosis Effects 0.000 description 1
- 210000001163 endosome Anatomy 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 229940092559 enterobacter aerogenes Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 235000013861 fat-free Nutrition 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 235000013312 flour Nutrition 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 229960004884 fluconazole Drugs 0.000 description 1
- 229960004413 flucytosine Drugs 0.000 description 1
- ZFKJVJIDPQDDFY-UHFFFAOYSA-N fluorescamine Chemical compound C12=CC=CC=C2C(=O)OC1(C1=O)OC=C1C1=CC=CC=C1 ZFKJVJIDPQDDFY-UHFFFAOYSA-N 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 229960005102 foscarnet Drugs 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- YQEMORVAKMFKLG-UHFFFAOYSA-N glycerine monostearate Natural products CCCCCCCCCCCCCCCCCC(=O)OC(CO)CO YQEMORVAKMFKLG-UHFFFAOYSA-N 0.000 description 1
- SVUQHVRAGMNPLW-UHFFFAOYSA-N glycerol monostearate Natural products CCCCCCCCCCCCCCCCC(=O)OCC(O)CO SVUQHVRAGMNPLW-UHFFFAOYSA-N 0.000 description 1
- 229940047650 haemophilus influenzae Drugs 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 208000006454 hepatitis Diseases 0.000 description 1
- 231100000283 hepatitis Toxicity 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 230000003118 histopathologic effect Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000007954 hypoxia Effects 0.000 description 1
- 229960004716 idoxuridine Drugs 0.000 description 1
- 229960002182 imipenem Drugs 0.000 description 1
- ZSKVGTPCRGIANV-ZXFLCMHBSA-N imipenem Chemical compound C1C(SCC\N=C\N)=C(C(O)=O)N2C(=O)[C@H]([C@H](O)C)[C@H]21 ZSKVGTPCRGIANV-ZXFLCMHBSA-N 0.000 description 1
- 238000000760 immunoelectrophoresis Methods 0.000 description 1
- 238000003364 immunohistochemistry Methods 0.000 description 1
- 239000012133 immunoprecipitate Substances 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 238000010874 in vitro model Methods 0.000 description 1
- 229940031551 inactivated vaccine Drugs 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 229960001936 indinavir Drugs 0.000 description 1
- CBVCZFGXHXORBI-PXQQMZJSSA-N indinavir Chemical compound C([C@H](N(CC1)C[C@@H](O)C[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H]2C3=CC=CC=C3C[C@H]2O)C(=O)NC(C)(C)C)N1CC1=CC=CN=C1 CBVCZFGXHXORBI-PXQQMZJSSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000010468 interferon response Effects 0.000 description 1
- 108040006849 interleukin-2 receptor activity proteins Proteins 0.000 description 1
- NJKDOADNQSYQEV-UHFFFAOYSA-N iomeprol Chemical compound OCC(=O)N(C)C1=C(I)C(C(=O)NCC(O)CO)=C(I)C(C(=O)NCC(O)CO)=C1I NJKDOADNQSYQEV-UHFFFAOYSA-N 0.000 description 1
- 229960000780 iomeprol Drugs 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960003350 isoniazid Drugs 0.000 description 1
- QRXWMOHMRWLFEY-UHFFFAOYSA-N isoniazide Chemical compound NNC(=O)C1=CC=NC=C1 QRXWMOHMRWLFEY-UHFFFAOYSA-N 0.000 description 1
- VHVPQPYKVGDNFY-ZPGVKDDISA-N itraconazole Chemical compound O=C1N(C(C)CC)N=CN1C1=CC=C(N2CCN(CC2)C=2C=CC(OC[C@@H]3O[C@](CN4N=CN=C4)(OC3)C=3C(=CC(Cl)=CC=3)Cl)=CC=2)C=C1 VHVPQPYKVGDNFY-ZPGVKDDISA-N 0.000 description 1
- 229960004130 itraconazole Drugs 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 229960004125 ketoconazole Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000034217 membrane fusion Effects 0.000 description 1
- 230000001394 metastastic effect Effects 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011645 metastatic carcinoma Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 229960000282 metronidazole Drugs 0.000 description 1
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 description 1
- 229960002509 miconazole Drugs 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000003032 molecular docking Methods 0.000 description 1
- 208000015001 muscle soreness Diseases 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- 239000006199 nebulizer Substances 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229940064438 nizoral Drugs 0.000 description 1
- 230000000683 nonmetastatic effect Effects 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- OGJPXUAPXNRGGI-UHFFFAOYSA-N norfloxacin Chemical compound C1=C2N(CC)C=C(C(O)=O)C(=O)C2=CC(F)=C1N1CCNCC1 OGJPXUAPXNRGGI-UHFFFAOYSA-N 0.000 description 1
- 229960001180 norfloxacin Drugs 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- XDRYMKDFEDOLFX-UHFFFAOYSA-N pentamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCOC1=CC=C(C(N)=N)C=C1 XDRYMKDFEDOLFX-UHFFFAOYSA-N 0.000 description 1
- 229960004448 pentamidine Drugs 0.000 description 1
- 229960001412 pentobarbital Drugs 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000001050 pharmacotherapy Methods 0.000 description 1
- 229960000969 phenyl salicylate Drugs 0.000 description 1
- 239000003934 phosphoprotein phosphatase inhibitor Substances 0.000 description 1
- ZWLUXSQADUDCSB-UHFFFAOYSA-N phthalaldehyde Chemical compound O=CC1=CC=CC=C1C=O ZWLUXSQADUDCSB-UHFFFAOYSA-N 0.000 description 1
- 230000007505 plaque formation Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 150000004291 polyenes Chemical class 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 210000004777 protein coat Anatomy 0.000 description 1
- 229940007042 proteus vulgaris Drugs 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 239000012492 regenerant Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 210000002345 respiratory system Anatomy 0.000 description 1
- 238000003757 reverse transcription PCR Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 229960000329 ribavirin Drugs 0.000 description 1
- HZCAHMRRMINHDJ-DBRKOABJSA-N ribavirin Natural products O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1N=CN=C1 HZCAHMRRMINHDJ-DBRKOABJSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229960001225 rifampicin Drugs 0.000 description 1
- 229960000888 rimantadine Drugs 0.000 description 1
- 229960000311 ritonavir Drugs 0.000 description 1
- NCDNCNXCDXHOMX-XGKFQTDJSA-N ritonavir Chemical compound N([C@@H](C(C)C)C(=O)N[C@H](C[C@H](O)[C@H](CC=1C=CC=CC=1)NC(=O)OCC=1SC=NC=1)CC=1C=CC=CC=1)C(=O)N(C)CC1=CSC(C(C)C)=N1 NCDNCNXCDXHOMX-XGKFQTDJSA-N 0.000 description 1
- 239000012723 sample buffer Substances 0.000 description 1
- 229960001852 saquinavir Drugs 0.000 description 1
- QWAXKHKRTORLEM-UGJKXSETSA-N saquinavir Chemical compound C([C@@H]([C@H](O)CN1C[C@H]2CCCC[C@H]2C[C@H]1C(=O)NC(C)(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)C=1N=C2C=CC=CC2=CC=1)C1=CC=CC=C1 QWAXKHKRTORLEM-UGJKXSETSA-N 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 239000004017 serum-free culture medium Substances 0.000 description 1
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 239000000741 silica gel Substances 0.000 description 1
- 229910002027 silica gel Inorganic materials 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 238000003307 slaughter Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 1
- RYYKJJJTJZKILX-UHFFFAOYSA-M sodium octadecanoate Chemical compound [Na+].CCCCCCCCCCCCCCCCCC([O-])=O RYYKJJJTJZKILX-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- UNFWWIHTNXNPBV-WXKVUWSESA-N spectinomycin Chemical compound O([C@@H]1[C@@H](NC)[C@@H](O)[C@H]([C@@H]([C@H]1O1)O)NC)[C@]2(O)[C@H]1O[C@H](C)CC2=O UNFWWIHTNXNPBV-WXKVUWSESA-N 0.000 description 1
- 229960000268 spectinomycin Drugs 0.000 description 1
- 229940063138 sporanox Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 229940031000 streptococcus pneumoniae Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000009120 supportive therapy Methods 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 229960000707 tobramycin Drugs 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 231100000041 toxicology testing Toxicity 0.000 description 1
- 238000002627 tracheal intubation Methods 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 229940108519 trasylol Drugs 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 229960003962 trifluridine Drugs 0.000 description 1
- VSQQQLOSPVPRAZ-RRKCRQDMSA-N trifluridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(C(F)(F)F)=C1 VSQQQLOSPVPRAZ-RRKCRQDMSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 description 1
- 229960001082 trimethoprim Drugs 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 210000001944 turbinate Anatomy 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000007181 unidentified human coronavirus Species 0.000 description 1
- 210000002229 urogenital system Anatomy 0.000 description 1
- 229960003165 vancomycin Drugs 0.000 description 1
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 description 1
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
- 229940010175 vfend Drugs 0.000 description 1
- 229960003636 vidarabine Drugs 0.000 description 1
- 244000052613 viral pathogen Species 0.000 description 1
- 208000009421 viral pneumonia Diseases 0.000 description 1
- 210000000605 viral structure Anatomy 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 229960004740 voriconazole Drugs 0.000 description 1
- OGUJBRYAAJYXQP-IJFZAWIJSA-N vuw370o5qe Chemical compound CC(O)=O.CC(O)=O.C1([C@H](O)[C@@H](O)[C@H]2C(=O)N[C@H](C(=O)N3CC[C@H](O)[C@H]3C(=O)N[C@H](NCCN)[C@H](O)C[C@@H](C(N[C@H](C(=O)N3C[C@H](O)C[C@H]3C(=O)N2)[C@@H](C)O)=O)NC(=O)CCCCCCCC[C@@H](C)C[C@@H](C)CC)[C@H](O)CCN)=CC=C(O)C=C1 OGUJBRYAAJYXQP-IJFZAWIJSA-N 0.000 description 1
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/155—Paramyxoviridae, e.g. parainfluenza virus
- A61K39/17—Newcastle disease virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/14—Antivirals for RNA viruses
- A61P31/16—Antivirals for RNA viruses for influenza or rhinoviruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/08—RNA viruses
- C07K14/11—Orthomyxoviridae, e.g. influenza virus
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
- C07K14/08—RNA viruses
- C07K14/115—Paramyxoviridae, e.g. parainfluenza virus
- C07K14/125—Newcastle disease virus
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/52—Genes encoding for enzymes or proenzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/62—DNA sequences coding for fusion proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5256—Virus expressing foreign proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/54—Medicinal preparations containing antigens or antibodies characterised by the route of administration
- A61K2039/541—Mucosal route
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/55—Medicinal preparations containing antigens or antibodies characterised by the host/recipient, e.g. newborn with maternal antibodies
- A61K2039/552—Veterinary vaccine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/03—Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16141—Use of virus, viral particle or viral elements as a vector
- C12N2760/16143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16151—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16171—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18121—Viruses as such, e.g. new isolates, mutants or their genomic sequences
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18141—Use of virus, viral particle or viral elements as a vector
- C12N2760/18143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18151—Methods of production or purification of viral material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/18011—Paramyxoviridae
- C12N2760/18111—Avulavirus, e.g. Newcastle disease virus
- C12N2760/18171—Demonstrated in vivo effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention provides chimeric negative-stand RNA viruses that allow a subject, e.g., an avian, to be immunized against two infectious agents by using a single chimeric virus of the invention.
- the present invention provides chimeric influenza viruses engineered to express and incorporate into their virions a fusion protein comprising an ectodomain of a protein of an infectious agent and the transmembrane and cytoplasmic domain of an influenza virus protein.
- chimeric viruses induce an immune response against influenza virus and the infectious agent.
- the present invention also provides chimeric Newcastle Disease viruses (NDV) engineered to express and incorporate into their virions a fusion protein comprising the ectodomain of a protein of an infectious agent and the transmembrane and cytoplasmic domain of an NDV protein.
- NDV Newcastle Disease viruses
- Such chimeric viruses induce an immune response against NDV and the infectious agent.
- a number of DNA viruses have been genetically engineered to direct the expression of heterologous proteins in host cell systems (e.g., vaccinia virus, baculovirus, etc.). Recently, similar advances have been made with positive-strand RNA viruses (e.g., poliovirus).
- the expression products of these constructs i.e., the heterologous gene product or the chimeric virus which expresses the heterologous gene product, are thought to be potentially useful in vaccine formulations (either subunit or whole virus vaccines).
- viruses such as vaccinia for constructing recombinant or chimeric viruses for use in vaccines is the lack of variation in its major epitopes.
- Negative-strand RNA viruses are attractive candidates for constructing chimeric viruses for use in vaccines.
- Negative-strand RNA viruses for example, influenza, are desirable because their wide genetic variability allows for the construction of a vast repertoire of vaccine formulations which stimulate immunity without risk of developing a tolerance.
- the virus families containing enveloped single-stranded RNA of the negative-sense genome are classified into groups having non-segmented genomes (Paramyxoviridae, Rhabdoviridae) or those having segmented genomes (Orthomyxoviridae, Bunyaviridae and Arenaviridae).
- the Paramyxoviridae and Orthomyxoviridae families are described in detail below and used in the examples herein.
- the Paramyxoviridae family contains the viruses of Newcastle disease Virus (NDV), parainfluenza virus, Sendai virus, simian virus 5, and mumps virus.
- the Orthomyxoviridae family contains the viruses of influenza, types A, B and C viruses, as well as Thogoto and Dhori viruses and infectious salmon anemia virus.
- the influenza virions comprise an internal ribonucleoprotein core (a helical nucleocapsid) containing the single-stranded RNA genome, and an outer lipoprotein envelope lined inside by a matrix protein (Ml).
- the segmented genome of influenza A virus consists of eight molecules (seven for influenza C) of linear, negative polarity, single- stranded RNAs which encode ten polypeptides, including: the RNA-dependent RNA polymerase proteins (PB2, PBl and PA) and nucleoprotein (NP) which form the nucleocapsid; the matrix membrane proteins (Ml, M2); two surface glycoproteins which project from the lipid containing envelope: hemagglutinin (HA) and neuraminidase (NA); the nonstructural protein (NSl) and nuclear export protein (NEP).
- PB2, PBl and PA RNA-dependent RNA polymerase proteins
- NP nucleoprotein
- Ml, M2 matrix membrane proteins
- Influenza virus adsorbs to cells via HA binding activity to sialyloligosaccharides in cell membrane glycoproteins and glycolipids. Following endocytosis of the virion, a conformational change in the HA molecule occurs within the cellular endosome which facilitates membrane fusion, thus triggering uncoating.
- the nucleocapsid migrates to the nucleus where viral mRNA is transcribed.
- Viral mRNA is transcribed by a unique mechanism in which viral endonuclease cleaves the capped 5'- terminus from cellular heterologous mRNAs which then serve as primers for transcription of viral RNA templates by the viral transcriptase. Transcripts terminate at sites 15 to 22 bases from the ends of their templates, where oligo(U) sequences act as signals for the addition of poly(A) tracts. The viral RNA transcripts then migrate to the cell membrane and associate with the newly transcribed, transmembrane viral proteins. NA then cleaves sialy residues from the carbohydrate moieties of membrane bound glycoproteins resulting in encapsulation and cellular release of the progeny virus.
- RNA transcriptase component Hemagglutinin; trimer;
- RNA 5 1565 NP 498 1000 RNA; structural component of RNA transcriptase Neuraminidase; tetramer;
- the pathogenicity of influenza viruses is modulated by multiple virus and host factors.
- the type I interferon (IFN ⁇ / ⁇ ) system represents a powerful antiviral innate defense mechanism which was established relatively early in the evolution of eukaryotic organisms (Garcia-Sastre, 2002, Microbes Infect 4:647-55).
- the antiviral IFN ⁇ / ⁇ system involves three major steps: (i) detection of viral infection and IFN ⁇ / ⁇ secretion, (ii) binding of IFN ⁇ / ⁇ to its receptors and transcriptional induction of IFN ⁇ / ⁇ -stimulated genes, and (iii) synthesis of antiviral enzymes and proteins.
- Influenza A viruses express a non-structural protein in infected cells, the NSl protein (described in detail, infra), which counteracts the cellular IFN ⁇ / ⁇ response (Garcia-Sastre et al., 1998, Virology 252:324-30).
- H5N1 viruses have been circulating among poultry within China in recent years (Chen et al, 2005, Nature 436:191-192), and while migratory birds are considered to be the primary reservoir of these viruses, transmission from infected poultry back to migratory birds is believed to have contributed to their increased geographical distribution.
- the H5N1 virus has emerged from Asia, spreading across Europe and Africa (Enserink, 2006, Science, 311 :932).
- Wholesale culling of poultry has been shown to be a successful strategy in eradicating H5N1 outbreaks in Hong Kong in 1997 and the Netherlands in 2003 (Lipatov et al, 2004, J. Virol. 78:8951-8959).
- the Newcastle Disease Virus is an enveloped virus containing a linear, single-strand, nonsegmented, negative sense RNA genome.
- the genomic RNA contains genes in the order of 3'-N-P-M-F-HN-L, described in further detail below.
- the genomic RNA also contains a leader sequence at the 3' end.
- the structural elements of the virion include the virus envelope which is a lipid bilayer derived from the cell plasma membrane.
- the glycoprotein, hemagglutinin- neuraminidase (HN) protrudes from the envelope providing both hemagglutinin (e.g., receptor binding / fusogenic) and neuraminidase activities.
- the fusion glycoprotein (F) which also interacts with the viral membrane, is first produced as an inactive precursor, then cleaved post-translationally to produce two disulfide linked polypeptides.
- the active F protein is involved in penetration of NDV into host cells by facilitating fusion of the viral envelope with the host cell plasma membrane.
- the matrix protein (M) is involved with viral assembly, and interacts with both the viral membrane as well as the nucleocapsid proteins.
- the main protein subunit of the nucleocapsid is the nucleocapsid protein (N) which confers helical symmetry on the capsid.
- N nucleocapsid protein
- P phosphoprotein
- L L protein
- the phosphoprotein (P) which is subject to phosphorylation, is thought to play a regulatory role in transcription, and may also be involved in methylation, phosphorylation and polyadenylation.
- the L gene which encodes an RNA-dependent RNA polymerase, is required for viral RNA synthesis together with the P protein.
- the L protein which takes up nearly half of the coding capacity of the viral genome is the largest of the viral proteins, and plays an important role in both transcription and replication.
- virus genome replication is the second essential event in infection by negative-strand RNA viruses.
- virus genome replication in Newcastle disease virus is mediated by virus- specified proteins.
- the first products of replicative RNA synthesis are complementary copies (i.e., plus-polarity) of NDV genome RNA (cRNA).
- cRNA NDV genome RNA
- anti-genomic cRNAs are not capped and methylated at the 5' termini, and are not truncated and polyadenylated at the 3' termini.
- the cRNAs are coterminal with their negative strand templates and contain all the genetic information in each genomic RNA segment in the complementary form.
- the cRNAs serve as templates for the synthesis of NDV negative-strand viral genomes (vRNAs).
- vRNAs NDV negative strand genomes
- cRNAs antigenomes
- Recombinant DNA technology and "reverse genetics" engineering techniques afford a unique approach to the production of recombinant viruses for the use in immunogenic formulations.
- the present invention provides for a method to iBii ⁇ iSfeef ' iffiglliie ⁇ sWdii ⁇ BS ⁇ SSrus such that it expresses, or displays, not only native viral antigens, but also any antigen that may be designed to incorporate into the viral protein coat.
- antigens derived from infectious organisms other than influenza In this manner a single virus may be engineered as an immunogenic compound useful to illicit, activate or induce an immune response which would afford protection against at least two pathogens.
- Such a chimeric virus may be further engineered when necessary to modify their virulence, i.e., so that they may be attenuated or further attenuated.
- Attenuated influenza viruses are beneficial because they are immunogenic and capable of replication, but not pathogenic.
- Live vaccines are thought to induce improved cross-reactive cell-mediated cytotoxicity as well as a humoral antibody response, providing better protection than inactivated vaccines (Gorse and Belshe, 1990, J. Clin. Microbiol. 28:2539-2550; and Gorse et al, 1995, J. Infect. Dis. 172:1-10).
- protective immunity to viral diseases is likely to involve mucosal IgA response which is not seen with traditional intramuscularly administered vaccines (Nelson et al, 1998, Vaccine 16:1306-1313).
- live vaccines also have the advantage of intranasal administration which avoids the swelling and muscle soreness occasionally associated with the intramuscular administration of inactivated adjuvanted vaccines.
- the invention offers the potential for the development of new and more effective immune formulations, e.g., vaccine formulations, for the diagnosis, prevention, management or treatment of both viral and non- viral pathogens.
- the present invention provides chimeric negative strand RNA viruses engineered to express fusion proteins that incorporate into the virion, methods for producing such chimeric viruses and the use of such viruses, for example as immunogens, in immunogenic formulations, or in in vitro assays.
- the chimeric viruses of the invention are characterized by displaying, on the surface of the virion, not only antigens associated with the virus but also the fusion protein.
- the present invention provides chimeric influenza viruses and chimeric
- NDVs that allow a subject, e.g., an avian or human, to be immunized against two infectious agents by administering a chimeric influenza virus or a chimeric NDV.
- the use of a single virus for inducing an immune response reduces the frequency of administration of an immunizing formulation.
- the invention also relates to the use of the chimeric virus of the invention in compositions (e.g., immunogenic formulations) for humans or animals.
- the chimeric viruses of the invention can be used as vaccines against a broad range of viruses and/or antigens.
- compositions e.g., vaccine formulations
- a chimeric virus of the invention can be designed for immunization against multiple strain variants, different viruses or against completely different infectious agents or disease antigens (e.g., bacteria, parasites, fungi or tumor specific antigens).
- Many methods may be used to introduce the live attenuated virus formulations to a human or animal subject to induce an immune or appropriate cytokine response. These include, but are not limited to, intranasal, intratrachial, oral, intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous routes.
- the chimeric viruses of the invention enable a subject (e.g. avians) to be immunized for two infectious diseases by administering the chimeric viruses.
- the chimeric viruses of the invention enable avians to be immunized for avian influenza virus and Newcastle Disease virus by administering a chimeric virus of the invention.
- the avians can be readily immunized by spraying them with the chimeric virus or administering the chimeric virus in an aqueous solution, such as the water that they drink.
- the present invention is based, in part, on Applicants' discovery that an effective immune response to two infectious agents can be achieved by engineering an influenza virus to express and incorporate into its virion a fusion protein comprising the cytoplasmic and transmembrane domains of at least one essential glycoprotein of the virus and the ectodomain of a protein of a second infectious agent, wherein the fusion protein functionally replaces the essential glycoprotein.
- incorporation of the fusion protein into the virion results in an enhanced immune response to the ectodomain of the second infectious agent.
- Engineering the cytoplasmic and transmembrane domains of an essential glycoprotein of the virus into the fusion protein allows the fusion protein to incorporate into the virion.
- the essential glycoprotein is one or both of the influenza virus HA and/or NA protein. In another embodiment, the essential glycoprotein is one or both of the HN or F protein of NDV.
- the functional replacement of at least one essential glycoprotein of the virus eliminates the concern about the size l ⁇ ffitlti ⁇ JEMif ⁇ cu.'s'ydiibH ⁇ i&l'. the influenza virus genome). In certain embodiments, the functional replacement of at least one essential glycoprotein of the virus with the fusion protein attenuates viral replication in subjects.
- the present invention provides a chimeric avian influenza virus, comprising a fusion protein, having (i) an ectodomain of a protective antigen of an infectious agent, other than influenza virus fused to (ii) a transmembrane and cytoplasmic domain of a glycoprotein encoded by an essential gene of an influenza virus, wherein the fusion protein is incorporated into an avian influenza virus, in which the function of the essential gene is supplied by the fusion protein or by the glycoprotein native to the avian influenza virus.
- the essential gene of an influenza virus is a hemagglutinin (HA) gene.
- the essential gene of an influenza virus is a neuraminidase (NA) gene.
- the chimeric avian influenza virus is attenuated.
- the chimeric avian influenza virus may be attenuated by mutations in the NSl gene.
- the present invention provides a chimeric avian influenza virus, comprising a fusion protein, having (i) an ectodomain of an NDV HN protein fused to (ii) a transmembrane domain and cytoplasmic domain of an influenza virus NA protein, wherein the fusion protein is incorporated into an avian influenza virus, in which the function of the • NA protein is supplied by the fusion protein or by the glycoprotein native to the avian influenza virus.
- the chimeric avian influenza virus is attenuated.
- the chimeric avian influenza virus may be attenuated by mutations in the NSl gene.
- any avian influenza virus type, subtype or strain may be used.
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of a neuraminidase antigen of an infectious agent other than influenza that is anchored by the N-terminus, so that the neuraminidase fusion protein is expressed and incorporated into the chimeric avian influenza virus.
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus HA segment encoding a hemagglutinin fusion protein, in which the HA open reading frame is modified so that the nucleotides encoding the HA ectodomain are replaced by nucleotides encoding an ectodomain of a receptor binding/fusogenic antigen of an infectious agent other than influenza virus that is anchored by the C-terminus, so that r ⁇ e ' nBm ⁇ llI ⁇ tOiSfmMM'iip ⁇ ilK ⁇ s expressed and incorporated into the chimeric avian influenza virus.
- the present invention provides a chimeric avian influenza virus, comprising a packaged bicistronic influenza virus HA segment, comprising: (a) a first open reading frame that encodes an avian influenza virus hemagglutinin protein, and (b) a second open reading frame that encodes a hemagglutinin fusion protein, in which the nucleotides encoding the hemagglutinin ectodomain are replaced by nucleotides encoding an ectodomain of a protective antigen of an infectious agent, other than influenza virus, or encoding a disease antigen that is anchored by the C-terminus, so that both the influenza virus hemagglutinin and the fusion protein are expressed and incorporated into the chimeric avian influenza virus.
- the first open reading frame of the HA segment of the chimeric avian virus is modified to remove the hemagglutinin polybasic cleavage site.
- the present invention provides a chimeric avian influenza virus, comprising a packaged bicistronic influenza virus NA segment, comprising: (a) a first open reading frame that encodes an avian influenza virus neuraminidase protein, and (b) a second open reading frame that encodes a neuraminidase fusion protein, in which the nucleotides encoding the neuraminidase ectodomain are replaced by nucleotides encoding an ectodomain of a protective antigen of an infectious agent, other than influenza virus, or encoding a disease antigen that is anchored by the N-terminus, so that both the influenza virus neuraminidase and the fusion protein are expressed and incorporated into the chimeric avian influenza virus.
- the chimeric avian influenza virus comprises an HA segment having an open reading frame modified to remove the hemagglutinin polybasic cleavage site.
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of an HN antigen of NDV, so that the neuraminidase fusion protein is expressed and incorporated into the chimeric avian influenza virus.
- the neuraminidase fusion protein supplies the neuraminidase activity for the chimeric avian influenza virus.
- a chimeric avian influenza virus of the invention comprises a packaged NS 1 gene segment encoding a modified NS 1 protein that reduces the cellular interferon antagonist activity of the virus.
- Non-limiting examples of mutations in the NSl gene that result in a modified NSl protein are provided in Section 5.1.2, infra.
- P provides recombinant nucleic acid molecules (e.g., recombinant DNA molecules) encoding the NA segment of the chimeric avian influenza viruses of the invention.
- the present invention also provides recombinant nucleic acid molecules (e.g., recombinant DNA molecules) encoding the HA segment of the chimeric avian influenza viruses of the invention.
- the present invention further provides recombinant nucleic acid molecules (e.g., recombinant RNA molecules) coding for the NA segment or the HA segment of the chimeric avian influenza viruses of the invention.
- the present invention provides methods for propagating a chimeric avian influenza virus of the invention, comprising culturing the chimeric avian influenza virus in an embryonated egg or a cell line that is susceptible to avian influenza virus infection.
- the present invention also provides methods for producing an immunogenic formulation, the method comprising: (a) propagating a chimeric avian influenza virus of the invention in an embryonated egg or a cell line that is susceptible to avian influenza virus infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for use in immunogenic formulations, e.g., vaccine formulations.
- the present invention provides an attenuated chimeric influenza virus, comprising a fusion protein, having (i) an ectodomain of a protective antigen of an infectious agent, other than influenza virus fused to (ii) a transmembrane and cytoplasmic domain of a glycoprotein encoded by an essential gene of an influenza virus, wherein the fusion protein is incorporated into an attenuated influenza virus, in which the function of the essential gene is supplied by the fusion protein or by the glycoprotein native to the attenuated influenza virus.
- the essential gene of an influenza virus is a hemagglutinin (HA) gene.
- the essential gene of an influenza virus is a neuraminidase (NA) gene.
- the attenuated chimeric influenza virus may be any type, subtype or strain of influenza vims.
- the attenuated chimeric influenza virus may be an influenza A virus, an influenza B virus or an influenza C virus.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of a neuraminidase antigen of an infectious agent other than influenza that is anchored by the N-terminus, so that the neuraminidase fusion protein is expressed and incorporated into the attenuated chimeric avian influenza virus.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged influenza virus HA segment encoding a hemagglutinin fusion protein, in which the HA open reading frame is modified so that the nucleotides encoding the HA ectodomain are replaced by nucleotides encoding an ectodomain of a hemagglutinin antigen of an infectious agent other than influenza that is anchored by the C-terminus, so that the hemagglutinin fusion protein is expressed and incorporated into the attenuated chimeric influenza virus.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged bicistronic influenza virus HA segment, comprising: (a) a first open reading frame that encodes an influenza hemagglutinin protein, and (b) a second open reading frame that encodes a hemagglutinin fusion protein, in which the nucleotides encoding the hemagglutinin ectodomain are replaced by nucleotides encoding an ectodomain of a protective antigen of an infectious agent, other than influenza, or encoding a disease antigen that is anchored by the C-terminus, so that both the influenza hemagglutinin and the fusion protein are expressed and incorporated into the attenuated chimeric influenza virus.
- the first open reading frame of the HA segment of the attenuated chimeric influenza virus is modified to remove the hemagglutinin polybasic cleavage site.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged bicistronic influenza virus NA segment, comprising: (a) a first open reading frame that encodes an influenza neuraminidase protein, and (b) a second open reading frame that encodes a neuraminidase fusion protein, in which the nucleotides encoding the neuraminidase ectodomain are replaced by nucleotides encoding an ectodomain of a protective antigen of an infectious agent, other than influenza, or encoding a disease antigen that is anchored by the N-terminus, so that both the influenza neuraminidase and the fusion protein are expressed and incorporated into the attenuated chimeric influenza virus.
- the attenuated chimeric influenza virus of the invention comprises an HA segment having an open reading frame modified to remove the hemagglutinin polybasic cleavage site.
- the attenuated chimeric influenza virus of the invention comprise a packaged NSl gene segment encoding a modified NSl protein that reduces the cellular interferon antagonist activity of the virus.
- iP'[ ⁇ r ⁇ r '" U '•!:::? CM ⁇ e/p ' MsiEiifMieffion provides recombinant nucleic acid molecules (e.g., recombinant DNA molecules) encoding the NA segment of the attenuated chimeric influenza viruses of the invention.
- the present invention also provides recombinant nucleic acid molecules (e.g., recombinant DNA molecules) encoding the HA segment the attenuated chimeric influenza viruses of the invention.
- the present invention further provides recombinant nucleic acid molecules (e.g., recombinant RNA molecules) coding the NA segment or HA segment of the attenuated chimeric influenza viruses of the invention.
- recombinant nucleic acid molecules e.g., recombinant RNA molecules
- the present invention provides methods for propagating an attenuated chimeric influenza virus of the invention, comprising culturing the attenuated chimeric influenza virus in an embryonated egg or a cell line that is susceptible to influenza virus infection.
- the present invention also provides methods for producing an immunogenic formulation, the method comprising: (a) propagating an attenuated chimeric influenza virus of the invention in an embryonated egg or a cell line that is susceptible to attenuated influenza virus infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for use in immunogenic formulations, e.g., vaccine formulations.
- the present invention also provides chimeric NDV viruses.
- a chimeric NDV comprising a fusion protein, having (i) an ectodomain of a protective antigen of an infectious agent, other than NDV fused to (ii) a transmembrane and cytoplasmic domain of a glycoprotein encoded by an essential gene of an NDV, wherein the fusion protein is incorporated into an NDV, in which the function of the essential gene is supplied by the fusion protein or by the glycoprotein native to the NDV.
- the essential NDV gene of NDV is the gene encoding an F protein.
- the essential NDV gene of NDV is the gene encoding an HN protein.
- any NDV type, subtype or strain can be used.
- the present invention provides a chimeric NDV, comprising a packaged genome comprising a nucleotide sequence encoding an F protein-fusion protein having the transmembrane and cytoplasmic domains of an F protein and the ectodomain of an antigen of an infectious agent, other than NDV, or a disease antigen that is anchored by the C- terminus, so that the F protein-fusion protein is expressed and incorporated into the chimeric NDV.
- the genome of the chimeric NDV comprises a nucleotide sequence encoding an F protein, so that the F protein is expressed and incorporated into the chimeric NDV in addition to the NDV F protein-fusion protein.
- the present invention provides a chimeric NDV, comprising a packaged genome comprising a nucleotide sequence encoding an FfN fusion protein having the transmembrane and cytoplasmic domains of an HN protein and the ectodomain of an antigen of an infectious agent, other than NDV, or a disease antigen that is anchored by the N-terminus, so that the HN fusion protein is expressed and incorporated into the chimeric NDV.
- the genome of the chimeric NDV comprises a nucleotide sequence encoding an HN protein, so that the HN protein is expressed and incorporated into the chimeric NDV in addition to the NDV HN fusion protein.
- the nucleotide sequence encoding the HN fusion protein replaces the nucleotide sequence encoding the NDV HN protein and the HN fusion protein supplies the function of the HN protein for the chimeric NDV.
- the present invention provides recombinant nucleic acid molecules encoding and/or coding the NDV HN protein or F protein. [0046]
- the present invention provides methods for propagating a chimeric NDV of the invention, comprising culturing the chimeric NDV in an embryonated egg or a cell line that is susceptible to NDV infection.
- the present invention also provides a method for producing an immunogenic formulation, the method comprising: (a) propagating a chimeric NDV of the invention in an embryonated egg or a cell line that is susceptible to NDV infection; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for use in immunogenic formulations, e.g., vaccine formulations.
- the present invention provides embryonated eggs comprising the chimeric viruses of the invention.
- the present invention also provides cell lines comprising the chimeric viruses of the invention.
- the present invention further provides immunogenic formulations comprising the chimeric viruses of the invention.
- the present invention provides methods of inducing an immune response to one, two or more infectious agents in a subject, the method comprising administering an effective amount of a chimeric influenza virus of the invention.
- the subject is a human subject.
- the subject is a non-human mammal (e.g., a pig, horse, dog, or cat).
- the subject is an avian subject.
- the present invention provides a method of inducing an immune -l ⁇ Pdspc ⁇ ngeM&IS
- the present invention provides methods for inducing an immune response to on, two or more infectious agents in a subject, the method comprising administering to the subject an effective amount of a chimeric NDV of the invention.
- the subject is a human subject.
- the subject is a non-human mammal (e.g., a pig, horse, dog, or cat).
- the subject is an avian subject.
- the present invention provides methods of inducing an immune response to one, two or more infectious agents in an avian, the method comprising administering to the avian an effective amount of a chimeric NDV of the invention.
- the present invention provides methods for inducing an immune response to one, two or more infectious agents in a subject, the method comprising administering to the subject an effective amount of an attenuated chimeric influenza virus of the invention.
- the subject is a human subject.
- the subject is a non-human mammal (e.g., a pig, horse, dog, or cat).
- the subject is an avian subject.
- the present invention provides methods for inducing an immune response to one, two or more infectious agents in a human, the method comprising administering to a human in need thereof an effective amount of a chimeric virus of the invention.
- the present invention provides methods for inducing an immune response to a disease antigen, the methods comprising administering to the subject an effective amount of a chimeric virus of the invention.
- the subject is a human.
- the subject is an avian.
- animal includes, but is not limited to, companion animals (e.g., dogs and cats), zoo animals, farm animals (e.g., ruminants, non-ruminants, livestock and fowl), wild animals, and laboratory animals (e.g., rodents, such as rats, mice, and guinea pigs, and rabbits), and animals that are cloned or modified either genetically or otherwise (e.g., transgenic animals).
- companion animals e.g., dogs and cats
- farm animals e.g., ruminants, non-ruminants, livestock and fowl
- wild animals e.g., ruminants, non-ruminants, livestock and fowl
- laboratory animals e.g., rodents, such as rats, mice, and guinea pigs, and rabbits
- animals that are cloned or modified either genetically or otherwise e.g., transgenic animals.
- amino-terminus of NS 1 refers to the amino acids from the amino terminal amino acid residue (amino acid residue 1) through amino !P'KiTr ⁇ ydyi4IJI:i?aiMM::iaSMi ⁇ d!aMues 1 through 100, amino acid residues 1 through 75, amino acid residues 1 through 50, amino acid residues 1 through 25, or amino acid residues 1 through 10 of the influenza viral NSl protein.
- Deletions from the amino terminus can include deletions consisting of 5, preferably 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 73, 75, 80, 85, 90, 95, 99, 100, 105, 110, 115, 120, 125, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170 or 175 amino acid residues from the amino terminus of NSl [0055]
- the phrase "carboxy-terminus" of NSl refer to amino acid residues 116 through the carboxy terminal amino acid residue, amino acid residues 101 through the carboxy terminal amino acid residue, amino acid residues 76 through the carboxy terminal amino acid residue, amino acid residues 51 through the carboxy terminal amino acid residue, or amino acid residues 26 through the carboxy terminal amino acid residue of the equine influenza viral NSl protein, when the amino-terminus of NSl is amino acid residues 1 through amino acid residue 115, amino acid residues 1 through 100, amino acid residues 1
- Deletions from the carboxy terminus can include deletions consisting of 5, preferably 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 73, 75, 80, 85, 90, 95, 99, 100, 105, 110, 115, 120, 125, 126, 130, 135, 140, 145, 150, 155, 160, 165, 170 or 175 amino acid residues from the carboxy terminus of NSl.
- the terms "disease” and “disorder” are used interchangeably to refer to a condition in a subject and encompass but are not limited to proliferative disorders (e.g.
- epitopes refers to sites, fragments or a region of a molecule (e.g., a polypeptide or protein) having antigenic or immunogenic activity in a subject.
- An epitope having immunogenic activity is a site, fragment or region of a molecule (e.g., polypeptide or protein) that elicits an antibody response in a subject.
- An epitope having antigenic activity is a site, fragment or region of a molecule to which an antibody immunospecifically binds as determined by any method well-known to one of skill in the art, for example by immunoassays.
- fragment in the context of a proteinaceous agent refers to a peptide or polypeptide comprising an amino acid sequence of at least 2 contiguous amino acid residues, at least 5 contiguous amino acid residues, at least 10 contiguous amino acid residues, at least 15 contiguous amino acid residues, at least 20 contiguous amino acid residues, at least 25 contiguous amino acid residues, at least 40 1 SI least 50 contiguous amino acid residues, at least 60 contiguous amino residues, at least 70 contiguous amino acid residues, at least 80 contiguous amino acid residues, at least 90 contiguous amino acid residues, at least 100 contiguous amino acid residues, at least 125 contiguous amino acid residues, at least 150 contiguous amino acid residues, at least 175 contiguous amino acid residues, at least 200 contiguous amino acid residues, or at least 250 contiguous amino acid residues of the amino acid sequence of a peptide, polypeptide or protein.
- a fragment of a full- length protein retains activity of the full-length protein. In another embodiment, the fragment of the full-length protein does not retain the activity of the full-length protein.
- the term "fragment" in the context of a nucleic acid encoding a polypeptide or protein refers to a nucleic acid comprising an nucleic acid sequence of at least 2 contiguous nucleotides, at least 5 contiguous nucleotides, at least 10 contiguous nucleotides, at least 15 contiguous nucleotides, at least 20 contiguous nucleotides, at least 25 contiguous nucleotides, at least 30 contiguous nucleotides, at least 35 contiguous nucleotides, at least 40 contiguous nucleotides, at least 50 contiguous nucleotides, at least 60 contiguous nucleotides, at least 70 contiguous nucleotides, at least contiguous 80 nucleot
- a fragment of a nucleic acid encodes a peptide or polypeptide that retains activity of the full-length protein. In another embodiment, the fragment of the full- length protein does not retain the activity of the full-length protein.
- heterologous sequence as used herein in the context of a proteinaceous agent refers to a molecule that is not found in nature to be associated with the chimeric virus backbone or, in particular, the chimeric virus glycoprotein.
- heterologous sequence in the context of a nucleic acid sequence or nucleic acid molecule refers to a molecule that is not found in nature to be associated with the genome of the chimeric virus backbone.
- immunospecifically binds an antigen refers to molecules that specifically bind to an antigen and do not specifically bind to another molecule (e.g., antigen specific antibodies including both modified antibodies (i.e., antibodies that comprise a modified IgG (e.g., IgGl) constant domain, or FcRn-binding fragment thereof (e.g., the Fc-domain or hinge-Fc domain)) and unmodified comprise a modified IgG (e.g., IgGl) constant domain, or FcRn-binding fragment thereof (e.g., the Fc-domain or hinge-Fc domain)).
- modified antibodies i.e., antibodies that comprise a modified IgG (e.g., IgGl) constant domain, or FcRn-binding fragment thereof (e.g., the Fc-domain or hinge-Fc domain)
- unmodified comprise a modified IgG (e.g., IgGl) constant domain, or FcRn-binding fragment thereof
- Molecules that specifically bind one antigen may be cross-reactive with related antigens.
- a molecule that specifically binds one antigen does not cross-react with other antigens.
- a molecule that specifically binds an antigen can be identified, for example, by immunoassays, BIAcore, or other techniques known to those of skill in the art.
- a molecule specifically binds an antigen when it binds to said antigen with higher affinity than to any cross-reactive antigen as determined using experimental techniques, such as radioimmunoassays (RIA) and enzyme-linked immunosorbent assays (ELISAs).
- RIA radioimmunoassays
- ELISAs enzyme-linked immunosorbent assays
- the term "in combination" in the context of the administration of (a) therapy(ies) to a subject refers to the use of more than one therapy (e.g., more than one prophylactic agent and/or therapeutic agent).
- therapies e.g., prophylactic and/or therapeutic agents
- a subject e.g., a subject with an influenza virus infection, and NDV infection, or a condition or symptom associated therewith, or a subject with another infection (e.g., another viral infection)).
- a first therapy (e.g., a first prophylactic or therapeutic agent) can be administered prior to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks before), concomitantly with, or subsequent to (e.g., 5 minutes, 15 minutes, 30 minutes, 45 minutes, 1 hour, 2 hours, 4 hours, 6 hours, 12 hours, 24 hours, 48 hours, 72 hours, 96 hours, 1 week, 2 weeks, 3 weeks, 4 weeks, 5 weeks, 6 weeks, 8 weeks, or 12 weeks after) the administration of a second therapy (e.g., a second prophylactic or therapeutic agent) to a subject (e.g., a subject with an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or another infection (e.g., another viral infection)).
- interferon antagonist activity of a proteinaceous agent refers to a protein or polypeptide, or fragment, derivative, or analog thereof that reduces or inhibits the cellular interferon immune response.
- a protein or polypeptide, or fragment, derivative, or analog thereof e.g., influenza virus NSl
- interferon antagonist activity refers to virus protein or polypeptide, or fragment, derivative, or analog thereof (e.g.
- a viral protein or polypeptide with interferon antagonist activity may preferentially affect the expression and/or activity of one or two types of interferon (IFN).
- IFN interferon
- the expression and/or activity of IFN- ⁇ is affected.
- the expression and/or activity of IFN- ⁇ is affected.
- the expression and/or activity of IFN- ⁇ is affected.
- the expression and/or activity of IFN- ⁇ , IFN- ⁇ and/ or IFN- ⁇ in an embryonated egg or cell is reduced approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 40 to approximately 80 fold, or 1, 2, 3, 4, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 or 100 fold by a proteinaceous agent with interferon antagonist activity relative to the expression and/or activity of IFN- ⁇ , IFN- ⁇ , and/or IFN- ⁇ in a control embryonated egg or a cell not expressing or not contacted with such a proteinaceous agent as measured by the techniques described herein or known to one skilled in the art.
- IFN deficient systems or “IFN-deficient substrates” refer to systems, e.g., cells, cell lines and animals, such as mice, chickens, turkeys, rabbits, rats, horses etc., which do not produce one, two or more types of IFN, or do not produce any type of IFN, or produce low levels of one, two or more types of IFN ,or produce low levels of any IFN (i.e., a reduction in any IFN expression of 5-10%, 10-20%, 20-30%, 30-40%, 40-50%, 50-60%, 60-70%, 70-80%, 80-90% or more when compared to IFN-competent systems under the same conditions), do not respond or respond less efficiently to one, two or more types of IFN, or do not respond to any type of IFN, and/or are deficient in the activity of antiviral genes induced by one, two or more types of IFN, or induced by any type of IFN.
- infection refers to all stages of an influenza virus', an avian influenza virus', a NDVs, or another infectious agent's (e.g., another viral or a bacterial infection) life cycle in a subject (including, but not limited to the invasion by and replication of influenza virus , avian influenza virus, NDV or other infectious agent in a cell or body tissue), as well as the pathological state resulting from the invasion by and replication of influenza virus, avian influenza virus or NDV.
- infectious agent's e.g., another viral or a bacterial infection
- the invasion by and multiplication of an influenza virus, avian influenza virus, NDV or other infectious agent includes, but is not limited to, the following steps: the docking of the viruses (e.g., influenza virus, avian influenza virus or NDV particle) to a cell, fusion of a virus with a cell membrane, the l ⁇ odiMM!M;iviM!y! ⁇ b!BiI6i ⁇ ormation into a cell, the expression of viral proteins (e.g., influenza virus, avian influenza virus or NDV proteins), the production of new viral particles (i.e., influenza virus, avian influenza virus or NDV particles) and the release of the virus (e.g., influenza virus, avian influenza virus or NDV particles) from a cell.
- the viruses e.g., influenza virus, avian influenza virus or NDV particle
- a respiratory infection may be an upper respiratory tract infection (URI) 5 a lower respiratory tract infection (LRI), or a combination thereof.
- the infection is a secondary infection (e.g. secondary pneumonia) which manifests after the onset of primary infection (e.g. viral pneumonia). Secondary infections arise due to the primary infection or a symptom or condition associated therewith predisposing the infected subject to such a secondary infection.
- the pathological state resulting from the invasion by and replication of an influenza virus, avian influenza virus or NDV is an acute influenza virus, avian influenza virus or NDV disease.
- Acute stages of the respiratory infections can manifest as pneumonia and/or bronchiolitis, where such symptoms may include hypoxia, apnea, respiratory distress, rapid breathing, wheezing, cyanosis, etc.
- the acute stage of the respiratory infections e.g., influenza virus and NDV infections
- isolated in the context of viruses, refers to a virus that is derived from a single parental virus.
- a virus can be isolated using routine methods known to one of skill in the art including, but not limited to, those based on plaque purification and limiting dilution.
- nucleic acid molecules refers to a nucleic acid molecule which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule.
- an "isolated" nucleic acid molecule such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.
- a nucleic acid molecule encoding a viral protein is isolated.
- the terms “manage,” “managing,” and “management” refer to the beneficial effects that a subject derives from a therapy (e.g., a prophylactic or therapeutic agent), which does not result in a cure of the disease (e.g. infection).
- a therapy e.g., a prophylactic or therapeutic agent
- a cure of the disease e.g. infection
- a subject is administered one or more therapies (e.g., prophylactic or therapeutic agents, such as an antibody of the invention) to "manage" an influenza virus infection, avian influenza virus or NDV infection or an infection with another infectious 'Jr ⁇ agiht ⁇ i)A €M ' ⁇ v € ⁇ ftEp ⁇ MB%GTQ ⁇ f, or a condition associated with, potentiated by, or potentiating an influenza virus infection or NDV infection or infection with another infectious agent, so as to prevent the progression or worsening of the infection.
- therapies e.g., prophylactic or therapeutic agents, such as an antibody of the invention
- the MOI is determined by dividing the number of virus added (ml added x Pfu) by the number of cells added (ml added x cells/ml).
- NSl gene refers to the gene which encodes the nonstructural protein (NSl) in influenza.
- NSl is one of the eight molecules encoded by the segmented genome of influenza A and other viruses.
- An "NSl gene product” refers to a gene product (e.g. , a RNA or protein) encoded by an NS 1 gene. In the case of a protein, the NSl gene product is full-length and has wild-type NSl activity (e.g., from strain A/WSN/33).
- nucleic acids As used herein, the terms "nucleic acids, " “nucleotide sequences” and
- nucleic acid molecules include DNA molecules (e.g., cDNA or genomic DNA), RNA molecules (e.g., mRNA), combinations of DNA and RNA molecules or hybrid DNA/RNA molecules, and analogs of DNA or RNA molecules. Such analogs can be generated using, for example, nucleotide analogs, which include, but are not limited to, inosine or tritylated bases. Such analogs can also comprise DNA or RNA molecules comprising modified backbones that lend beneficial attributes to the molecules such as, for example, nuclease resistance or an increased ability to cross cellular membranes.
- nucleic acids or nucleotide sequences can be single-stranded, double-stranded, may contain both single- stranded and double-stranded portions, and may contain triple-stranded portions, but preferably is double-stranded DNA.
- the terms “prevent”, “preventing” and “prevention” refer to the prevention of the recurrence or onset of, or a reduction in one or more symptoms of a disease (e.g., viral infection or other infectious disease) in a subject as result of the administration of a therapy (e.g., a prophylactic or therapeutic agent).
- a disease e.g., viral infection or other infectious disease
- a therapy e.g., a prophylactic or therapeutic agent
- prevent refers to the inhibition or a reduction in the development or onset of an infection (e.g, an influenza virus infection, an NDV infection or a condition associated therewith or an infection other than an influenza virus or NDV infection or a condition associated therewith), or the prevention of the recurrence, onset, or development of one or more symptoms of an infection (e.g., an influenza virus infection, an NDV infection or a condition associated therewith or an infection other than an influenza virus infection, an NDV infection or a condition associated therewith), in a subject resulting from -" ' ⁇ : !P l ffie ' laci ⁇ liliSaiiti''6f4 ifhS ⁇ y ⁇ kg. , a prophylactic or therapeutic agent), or the administration of a combination of therapies ⁇ e.g., a combination of prophylactic or therapeutic agents).
- an infection e.g., an influenza virus infection, an NDV infection or a condition associated therewith or an infection other than an influenza virus or NDV
- the term "protective antigen" in the context of an infectious agent includes any molecule which is capable of eliciting a protective immune response when administered to a subject, which immune response is directed against the infectious agent.
- prophylactic agent and “ prophylactic agents” refer to any agent(s) which can be used in the prevention of a disease (e.g., an infection) or a symptom thereof (e.g. , an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or an infection other than an influenza virus of an NDV infection or a condition or symptom associated therewith).
- a prophylactic agent is an agent which is known to be useful to, has been or is currently being used to the prevent or impede the onset, development, progression and/or severity of a disease or a symptom thereof (e.g. an infection or a condition or a symptom associated therewith).
- virus that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of cellular protein (also referred to herein as a "contaminating protein").
- the virus is also substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the virus preparation.
- a virus can be purified using routine methods known to one of skill in the art including, but not limited to, chromatography and centrifugation.
- the terms “subject” and “subjects” refers to an animal (e.g., avians, reptiles, and mammals).
- the subject is a mammal including a non-primate (e.g., a camel, donkey, zebra, cow, horse, horse, cat, dog, rat, and mouse) and a primate (e.g., a monkey, chimpanzee, and a human).
- the subject is a non- human mammal. In other embodiments the subject is a human.
- the mammal e.g., human
- the mammal is 0 to 6 months old, 6 to 12 months old, 1 to 5 years old, 5 to 10 years old, 10 to 15 years old, 15 to 20 years old, 20 to 25 years old, 25 to 30 years old, 30 to 35 years old, 35 to 40 years old, 40 to 45 years old, 45 to 50 years old, 50 to 55 years old, 65 to 70 years old, 70 to 75 years old, 75 to 80 years old, 80 to 85 years old, 85 to 90 years old, 90 to 95 years old or 95 to 100 years old.
- the subject or patient is an avian.
- the avian is 0 to 3 months old, 3 to 6 months old, 6 to 9 months old, 9 to 12 months old, 12 to 15 months old, 15 to 18 months old, or 18 to 24 months old.
- the term "synergistic" in the context of the administration or the result or therapies refers to a combination of therapies (e.g., prophylactic or therapeutic agents) which is more effective than the additive effects of any two or more single therapies (e.g., one or more prophylactic or therapeutic agents).
- a synergistic effect of a combination of therapies permits the use of lower dosages of one or more of therapies (e.g., one or more prophylactic or therapeutic agents) and/or less frequent administration of said therapies to a subject with a disease (e.g., an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith).
- a disease e.g., an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith.
- therapies e.g., prophylactic or therapeutic agents
- therapies less frequently reduces the toxicity associated with the administration of said therapies to a subject without reducing the efficacy of said therapies in the prevention or treatment of a disease (e.g., an influenza virus infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith).
- a disease e.g., an influenza virus infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith.
- a synergistic effect can result in improved efficacy of therapies (e.g., prophylactic or therapeutic agents) in the prevention, management or treatment of a disease (e.g., an influenza virus infection, an NDV infection or a condition or symptoms associated therewith, or an infection other than an influenza virus infection, an NDV infection or a condition or symptom associated therewith).
- therapies e.g., prophylactic or therapeutic agents
- a disease e.g., an influenza virus infection, an NDV infection or a condition or symptoms associated therewith, or an infection other than an influenza virus infection, an NDV infection or a condition or symptom associated therewith.
- a combination of therapies e.g., prophylactic or therapeutic agents
- the terms “therapies” and “therapy” can refer to any protocol(s), method(s), and/or agent(s) that can be used in the prevention, treatment, management, or amelioration of a disease (e.g., cancer, an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, or NDV infection or a condition or symptom associated therewith).
- a disease e.g., cancer, an influenza virus infection, an NDV infection or a condition or symptom associated therewith, or an infection other than an influenza virus infection, or NDV infection or a condition or symptom associated therewith.
- the terms “therapies” and “therapy” refer to biological therapy, supportive therapy, and/or other therapies useful in treatment, management, I' ⁇ liewint.byi&SMili ⁇ M&li ⁇ SSfeease, an infection or a condition or symptom associated therewith, known to one of skill in the art.
- therapeutic agent refers to any agent(s) which can be used in the prevention, treatment, management, or amelioration of a disease (e.g. an infection or a symptom thereof (e.g., an influenza infection, an NDV infection or a condition or symptoms associated therewith, an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith)).
- a disease e.g. an infection or a symptom thereof (e.g., an influenza infection, an NDV infection or a condition or symptoms associated therewith, an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith)).
- a therapeutic agent is an agent which is known to be useful for, or has been or is currently being used for the prevention, treatment, management, or amelioration of a disease or symptom associated therewith (e.g., an influenza infection, NDV infection or a condition or symptom associated therewith, an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith).
- a disease or symptom associated therewith e.g., an influenza infection, NDV infection or a condition or symptom associated therewith, an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith.
- treatment refers to the eradication or control of the replication of an infectious agent (e.g., a virus), the reduction in the numbers of an infectious agent (e.g., the reduction in the titer of virus), the reduction or amelioration of the progression, severity, and/or duration of an infection (e.g., an influenza infection, NDV infection or a condition or symptoms associated therewith, an infection other than an influenza virus infection, NDV infection or a condition or symptom associated therewith), or the amelioration of one or more symptoms resulting from the administration of one or more therapies (including, but not limited to, the administration of one or more prophylactic or therapeutic agents).
- an infectious agent e.g., a virus
- the reduction in the numbers of an infectious agent e.g., the reduction in the titer of virus
- the reduction or amelioration of the progression, severity, and/or duration of an infection e.g., an influenza infection, NDV infection or a condition or symptoms associated therewith, an infection other than an influenza virus infection, NDV infection or
- treatment refers to the eradication, removal, modification, or control of primary, regional, or metastatic cancer tissue that results from the administration of one or more therapeutic agents of the invention.
- such terms refer to the minimizing or delaying the spread of cancer resulting from the administration of one or more therapeutic agents of the invention to a subject with such a disease.
- such terms refer to elimination of disease causing cells.
- FIG. 1 Schematic representation of a hybrid NAf-HN construct
- the construct encodes nucleotides of the 3' noncoding region of the WSN
- NA vRNA the NA coding region corresponding to the cytoplasmic tail and transmembrane domains of the NA protein plus the fist amino acid of the NA ectodomain, the coding region i ;;; 6i ⁇ hl ' ⁇ WMSiN''pMi!iM::
- FIG. 2 Schematic representation of alteration in polybasic amino acid sequence of HA
- nucleotide sequence identified as H5N1 HA represents nucleotides
- nucleotides 1026-1038 were replaced by the single nucleotide cytosine using excise PCR and site directed mutagenesis resulting in the nucleotide sequence of avirulent HA (SEQ ID NO: 15; amino acid sequence SEQ ID NO: 16).
- the sequence change corresponds to the replacement of the polybasic sequence of 5 amino acids with the single amino acid threonine.
- FIG. 3 Schematic representation of alteration in nucleic acid sequence of HA
- sequence identified as Avirulent HA represents nucleotides 1013-1033 of the open reading frame of an HA surface glycoprotein based on consensus sequences of the HA proteins of avirulent Influenza A/Vietnam/ 1203 /04 (H5N1) (SEQ ID NO: 15; amino acid sequence SEQ ID NO: 16). Underlined adenosine residues were replaced such that mutations were synonymous resulting in the nucleotide sequence SEQ ID NO: 17 and amino acid sequence SEQ ID NO: 16.
- FIG. 4A-D Schematic of pPollVN1203 NS truncation mutants [0084]
- the pPol IVN 1203 NS 1-126 construct has a deletion in the NS gene from nucleotides 379- 456 of the coding region, the insertion of 3 stop codons and a BgHl restriction site.
- the pPol IVN 1203 NS 1-99 construct has a deletion in the NS gene from nucleotides 298-456 of the coding region, the insertion of 4 stop codons, a BgHl restriction site and a Pad restriction site.
- the pPol IVN 1203 NS 1-73 construct has a deletion in the NS gene from nucleotides 219-456 of the coding region, the insertion of 4 stop codons, a BgRl restriction site and a Pad restriction site.
- FIG. 5 Schematic of pNDV/Bl iPldMi ⁇ y " U S are flanked at the 3 ' end by a T7 promoter and at the 5' end by a HDV ribozyme and T7 terminator.
- the insertion site between the P an M genes comprises a unique Xbal restriction site.
- FIG. 6 Western Blot Analysis of KGFR Expression in Chimeric rNDV
- KGFR/F-CT (lane 3) were grown in 10-day old embryonated chicken eggs. Purified viruses subjected to Western blot analysis using a murine anti-KGFR and an anti-mouse HRPO as the primary and secondary antibodies, respectively.
- FIG. 7 Western Blot Analysis of H7 HA Expression in Chimeric rNDV
- KGFR/F-CT (lane 3) were grown in 10-day old embryonated chicken eggs. Purified viruses subjected to Western blot analysis using a murine anti-KGFR and an anti-mouse HRPO as the primary and secondary antibodies, respectively.
- FIG. 8 Modification of the Cleavage Site of the F Protein of rNDV
- FIG. 9 Construction and Characterization of the Fusogenic rNDV vector
- Lane 1 mock infected; lane 2, rNDV/F3aa; lane 3, rNDV/ Bl- H7; lane 4, rNDV/F3aa-chimericH7. Row 1 ⁇ -avian H7; row 2, ⁇ -NDV.
- Lane 1 rNDV/Bl -H7; rNDV/F3aa-chimericH7. Row 1 ⁇ -avian H7; row 2, ⁇ -NDV.
- the present invention provides chimeric negative strand RNA viruses engineered to express fusion proteins that incorporate into the virion, methods for producing such chimeric viruses and the use of such viruses, for example as immunogens, in immunogenic formulations, or in in vitro assays.
- the chimeric viruses of the invention are characterized by displaying, on the surface of the virion, not only antigens associated with the virus but also the fusion protein.
- viruses that may be engineered in accordance with the methods of the invention can be any enveloped virus.
- the viruses that may be engineered in accordance with the methods of the invention have segmented or non- segmented genomes, single stranded or double stranded genomes, and express at least one essential glycoprotein (e.g., NA, HA, HN or F) that is incorprated into the virial envelope.
- essential glycoprotein e.g., NA, HA, HN or F
- the viruses for use in accordance with the methods of the invention can be selected from naturally occurring strains, variants or mutants; mutagenized viruses (e ⁇ g., by exposure to UV irradiation, mutagens, and/or passaging); reassortants (for viruses with segmented genomes); and/or genetically engineered viruses.
- the mutant viruses can be generated by natural variation, exposure to UV irradiation, exposure to chemical mutagens, by passaging in non-permissive hosts, by reassortment (i.e., by coinfection of an attenuated segmented virus with another strain having the desired antigens), and/or by genetic engineering (e.g., using "reverse genetics").
- Non-limiting examples of viruses with segmented genomes for use in accordance with the methods of the invention include viruses from the family orthomyxoviridae (e.g., influenza viruses), bunyaviridae (e.g., Bunyamwera), reoviridae and arenaviridae (e.g., Lassa fever).
- the viruses selected for use in the invention are attenuated and/or have defective IFN antagonist activity; i.e., they are infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic.
- the viruses may be attenuated by any method known in the art and/or exemplified herein, e.g., engineering the virus to comprise a mutation in the NSl gene or to comprise a modification in the polybasic amino acid sequence before the cleavage site in the HA protein.
- Such attenuated viruses engineered in accordance with the invention are thus ideal candidates for immunogenic formulations, e.g., live virus vaccines.
- the attenuated, chimeric viruses of the invention When administered to a subject, are capable of generating an immune response and eliciting immunity to both the virus and to the non- native or fusion protein.
- the non-native protein is derived from a pathogen.
- administration of such a chimeric virus to a subject generates an immune response and/or immunity to said pathogen in addition to the virus.
- the invention also relates to the use of the chimeric virus of the invention in compositions (e.g. immunogenic formulations) for humans or animals (e.g. , avians).
- the chimeric viruses that are attenuated can be used as vaccines against a broad range of virus and/or diseases.
- compositions comprising a chimeric virus of the invention can be designed for immunization against multiple strain variants, different viruses or against completely different infectious agents or disease antigens (e.g., bacteria, parasites, fungi or tumor specific antigens) from which the heterologous gene sequences are derived.
- infectious agents or disease antigens e.g., bacteria, parasites, fungi or tumor specific antigens
- Many methods may be used to introduce the live attenuated virus formulations to a human or animal subject to induce an immune or appropriate cytokine response. These include, but are not limited to, intranasal, intratrachial, oral, intradermal, intramuscular, intraperitoneal, intravenous and subcutaneous routes.
- Chimeric Avian Influenza Virus Comprising a Fusion Protein Incorporated in its Virion Pt ⁇ sBj' * encompasses the engineering of an avian influenza virus such that a fusion protein is encoded by the genome and, when expressed, is incorporated into the virion.
- Any avian influenza virus type, subtype or strain that can be engineered to express and incorporate the fusion protein into the avian influenza virion can be selected and used in accordance with the invention including, but not limited to, naturally occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- the avian influenza viruses of the invention are not naturally occurring viruses.
- the avian influenza viruses of the invention are genetically engineered viruses.
- Non-limiting examples of avian influenza viruses include Influenza A subtype H5N1, H6N2, H7N3, H9N2 and H10N7.
- Genetic manipulation of the influenza virus requires engineering at least one of the eight viral RNA segments which comprise the viral genome. Mutagenesis of the genome may be achieved through "reverse engineering" techniques ⁇ see section 5.4).
- the plasticity of the influenza genome is, however, limited both in the number of segments and in the length of segments that may be stably integrated into the virus.
- the overall stability of long inserts is unknown and the segments comprising such inserts, or portions thereof, may be lost due to viral assortment after a few generations.
- the avian influenza virus is engineered such that one of its two major surface proteins is replaced by a fusion protein.
- the present invention provides a chimeric avian influenza virus, comprising at least one fusion protein comprising an ectodomain (ED) of a protein of infectious agent other than an influenza virus and the cytoplasmic (CT) and transmembrane (TM) domains or the transmembrane (TM) domain of at least one essential influenza virus glycoprotein, wherein the at least one fusion protein functionally replaces at least one essential avian influenza virus glycoprotein.
- the avian influenza virus serves as the "backbone” that is engineered to express and incorporate into its virion the fusion protein in place of an essential avian influenza virus glycoprotein.
- TM and CT domains or TM domain of an influenza virus glycoprotein corresponding to the essential avian influenza virus glycoprotein functionally replaced by the fusion protein permits the fusion protein to incorporate into the virion of the avian influenza virus.
- the TM and CT domains or TM domain of the fusion protein may correspond to or be derived from any influenza virus that permits the fusion protein to incorporate into the virion of the avian influenza virus backbone.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of a different type, virus than the backbone avian influenza virus.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of an influenza virus other than an avian influenza virus.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of the avian influenza virus backbone.
- the avian influenza virion comprises two major surface glycoproteins, hemagglutinin (HA) and neuraminidase (N), both of which comprise a cytoplasmic domain, a transmembrane domain and an ectodomain.
- HA hemagglutinin
- N neuraminidase
- the TM and CT domains of the fusion protein correspond to the TM and CT domains of either an HA protein or an NA protein of an influenza virus. Since the CT domain of HA or NA may not be necessary for incorporation of the fusion protein into the avian influenza virus virion, the fusion protein, in some embodiments, is engineered to contain only the TM domain of HA or NA.
- the CT domain of NA has been shown to be unnecessary for the proper packaging of this protein into influenza A viral envelopes (Garcia-Sastre et al, 1995, Virus Res. 37:37-47, which is hereby incorporated by reference in its entirety). Therefore, where structural domains corresponding to those of an NA protein are used in the creation of the fusion protein, the invention encompasses engineering the fusion protein to contain only a TM domain corresponding to an influenza virus NA protein. Accordingly, in one embodiment of the invention, the fusion protein is engineered to contain only a TM domain, which TM domain corresponds to the TM domain of an influenza virus NA protein.
- the TM and CT domains of influenza virus HA and NA proteins are structurally distinct in that the domains are located at the C-terminus of the HA protein and the N-terminus of the NA protein.
- the HA and CT structural domains may comprise yet unknown differences in functionality dependent on their relative placement within a polypeptide chain. Therefore, when designing the fusion protein to be engineered into the avian influenza virus, the orientation of the ectodomain of the infectious agent to be fused to the TM and CT domains or the TM domain of an influenza virus glycoprotein will guide the selection of the TM and CT domains or the TM domain.
- the TM and CT domains of an influenza virus NA protein may be used.
- HA and NA exhibit competing activities with respect to cellular fusion and release, respectively, that are necessary for the infectivity and propagation of the virus.
- HA binds to N-AcetylNeuraminic Acid (NeuNAc; sialic acid) on a cell surface leading to uptake * ffl ⁇ k viMs'by yW'&k ⁇ ni ⁇ '-NA cleaves sialic acid moieties from the cell surface leading to release of progeny virus from an infected cell. Disruption of either of these activities results in a non-functional virus. Accordingly, to maintain viral competence, where a surface glycoprotein is replaced, its function in the chimeric virus must be supplied by the fusion protein.
- the chimeric avian influenza virus comprises a fusion protein that exhibits neuraminidase activity. In another embodiment of the invention, the chimeric avian influenza virus comprises a fusion protein that exhibits receptor binding activity. In yet another embodiment of the invention, the chimeric avian influenza virus comprises two fusion proteins one of which exhibits neuraminidase activity, the other of which exhibits receptor binding activity. In still other embodiments, the chimeric avian influenza virus comprises a fusion protein comprising an epitope of a heterologous infectious agent, which fusion protein exhibits exhibits neuraminidase activity or receptor binding activity.
- the chimeric avian influenza virus comprises a fusion protein that exhibits receptor binding activity.
- the chimeric avian influenza virus comprises a surface protein containing the ectodomain of the HN protein of Newcastle Disease Virus (NDV) and the TM and CT domains of the NA protein of Influenza A/WSN/33, which HN ectodomain exhibits neuraminidase activity.
- the chimeric avian influenza virus comprises a surface protein containing the ectodomain of the HA protein of a heterologous influenza virus (e g , the H7 HA protein or H9 HA protein).
- HA and NA are encoded by separate segments of the viral genome and replacement of the entire coding region of the native protein eliminates most length constraints on the sequence encoding the introduced protein.
- the fusion protein comprises the transmembrane domain plus 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of an essential influenza virus glycoprotein.
- the fusion protein comprises the transmembrane domain of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the influenza virus NA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the function of NA protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, and the ectodomain, or fragment thereof, of an infectious agent other than l x CInlufeiya"iSi:Wcttfe#iie ; fMion protein can functionally replace the NA protein.
- the fusion protein comprises the transmembrane domain or cytoplasmic and transmembrane domains of an NA protein, the complete stalk domain, or a fragment thereof, of an NA protein that precedes its globular head, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the function of NA protein.
- the fusion protein comprises the transmembrane domain of an influenza virus HA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the influenza virus HA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the function of HA protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an influenza virus HA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus HA protein that are immediately adjacent to the transmembrane domain of the influenza virus HA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the HA protein.
- the at least one fusion protein of the chimeric avian influenza virus of the invention does not comprise the complete ectodomain of a heterologous protein (e.g., comprises an antigenic fragment of the ectodomain of a protein of a heterologous infectious agent), and may or may not further comprise one or more fragments of the ectodomain of a native essential glycoprotein.
- the ectodomain of the fusion protein may comprise a fragment of the ectodomain of a protein of a heterologous infectious agent.
- the ectodomain of the fusion protein may comprise fragments of both a native essential glycoprotein and a protein of a heterologous infectious agent.
- the fusion protein replaces an essential surface glcoprotein, the function of the surface glycoprotein must be supplied by the fusion protein, i.e., the fusion protein must exhibit the functionality of the surface glycoprotein that it is replacing.
- the present invention encompasses nucleotide sequences (L e. , recombinant segments) encoding the fusion proteins described in this Section 5.1.1.
- the recombinant segments comprising nucleic acids encoding the fusion proteins described in Section 5.1.1 comprise 3' and 5' incorporation signals which are required for proper replication, transcription and packaging of the vRNAs (Fujii et al, 2003, Proc. Natl. Acad. Sci. USA 100:2002-2007; Zheng, et al, 1996, Virology 217:242-251, both of which are incorporated by reference herein in their entireties).
- the recombinant segments comprise nucleic acids encoding the fusion proteins described in this Section, 5.1.1, which comprise the 3 ' noncoding region of an influenza virus NA vRNA, the NA coding region corresponding to the CT and TM domains of the NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, the untranslated regions of the NA protein reading frame and the 5 'non-coding region of the NA vRNA.
- a chimeric influenza virus comprising an ectodomain, or a fragment thereof, of a protein of an infectious agent other than influenza virus and the TM and/or CT domains of an influenza virus. See, e.g., U.S. Patent No. 6,887,699, U.S. Patent No. 6,001,634, U.S. Patent No. 5,854,037 and U.S. Patent No. 5,820,871, each of which is hereby incorporated by reference in its entirety.
- the bicistronic approaches involve inserting the coding region of the fusion protein into the open reading frame of a necessary protein of the virus and its stop codon.
- the insertion is flanked by an IRES and any untranslated signal sequences of the necessary protein in which it is inserted and must not disrupt the open reading frame, packaging signal, polyadenylation or transcriptional promoters of the necessary viral protein.
- IRES well known in the art or described herein may be used in accordance with the invention (e.g., the IRES of BiP gene, nucleotides 372 to 592 of GenBank database entry HUMGRP78; or the IRES of encephalomyocarditis virus (EMCV), nucleotides 1430-2115 of GenBank database entry CQ867238.).
- the ectodomain portion of the fusion protein is not limited to a protein that provides the function of the replaced HA or NA protein.
- the ectodomain of such a fusion protein may correspond to any heterologous molecule, or comprise a fragment of any heterologous molecule, including but not limited to antigens, disease antigens and antigens derived from any protein of an infectious agent (e.g. any protective antigen associated with viral, bacterial or parasitic infectious agents).
- infectious agent e.g. any protective antigen associated with viral, bacterial or parasitic infectious agents.
- Replacement of a necessary surface protein of the backbone virus or introduction of a recombinant segment into the viral genome may attenuate the resulting will exhibit impaired replication relative to wild type.
- attenuation of the chimeric virus is desired such that the chimeric virus remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic.
- Such attenuated chimeric viruses are especially suited for embodiments of the invention wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine.
- the viruses may be attenuated by any method known in the art and/or exemplified herein, e.g., engineering the virus to comprise a mutation in the NSl gene or to comprise a modification in the polybasic amino acid sequence before the cleavage site in the HA protein (see U.S. Patent No. 6,468,544; U.S. Patent No. 6,669,943; Li et al, 1999, J. Infect. Dis. 179:1132-1138, each of which is hereby incorporated by reference in its entirety).
- an attenuated chimeric avian influenza virus of the invention comprises a genome comprising a mutation in the NSl gene of the avian influenza backbone virus, which is known in other influenza viruses to diminish the ability of the NSl gene product to antagonize a cellular interferon response.
- an attenuated chimeric avian influenza virus of the invention comprises a genome comprising a mutation in the HA gene of the avian influenza backbone virus, which is known in other influenza viruses to diminish or eliminate the ability of cellular proteases to cleave the protein into its active form and thereby reduce or eliminate HA induced fusion and infectivity.
- an attenuated chimeric avian influenza virus of the invention comprises a genome comprising a mutation in both the HA gene and NS 1 gene of the avian influenza backbone virus, which are known in other influenza viruses to either separately or when combined to reduce or diminish viral activity.
- the titers of attenuated-chimeric and wild-type avian influenza viruses can be determined utilizing any technique well-known in the art or described herein, (e.g., hemagglutination assays, plaque assays, egg infectious doses (EID50), tissue culture infectious doses (TCID50), etc.) and the viruses can be propagated under conditions described herein or well-known in the art (e.g., in CEF cells, MDCK cells (e.g., in MEM, 10% v/v fetal calf serum (FCS), 1% penicillin/ streptomycin at 37°C in a 5% CO 2 humidified incubator) or embryonated chicken eggs (e.g., in a stationary incubator at 37 0 C with 55% relative humidity).
- the viruses can be propagated in cells (e.g., CEF cells, MDCK cells, etc.) that are grown in serum-free or serum reduced (e.g., TPCK trypsin) medium.
- any attenuated influenza virus type or strain including, but not limited to, naturally occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically modified viruses may be used as the backbone of that is engineered to express and incorporate into its virion the fusion protein.
- the parental influenza viruses for use in accordance with the invention are not naturally occurring viruses.
- the parental influenza viruses for use in accordance with the invention are genetically engineered viruses.
- Influenza viruses for use as the backbone virus in accordance with the invention may naturally have an attenuated phenotype or may be engineered to comprise a mutation associated with an attenuated phenotype, where such mutation is known in the art or described herein (e.g. a mutation in the viral NSl protein or viral HA protein).
- the attenuated virus is influenza A.
- the attenuated virus is influenza B.
- the attenuated virus is influenza C.
- influenza viruses which may be engineered in accordance with the invention include Influenza A subtype H10N4, subtype H10N5, subtype H10N7, subtype H10N8, subtype H10N9, subtype Hl INl, subtype Hl 1N13, subtype Hl 1N2, subtype Hl 1N4, subtype Hl 1N6, subtype Hl 1N8, subtype Hl 1N9, subtype H12N1, subtype H12N4, subtype H12N5, subtype H12N8, subtype H13N2, subtype H13N3, subtype H13N6, subtype H13N7, subtype H14N5, subtype H14N6, subtype H15N8, subtype H15N9, subtype H16N3, subtype HlNl, subtype H1N2, subtype H1N3, subtype H1N6, subtype H1N9, subtype H2N1, subtype H2N2, subtype H2N3, subtype H2N5, subtype H2N7, subtype H2N8, subtype H1N
- the attenuated influenza virus (the parental virus) used in accordance with the invention has an impaired ability to antagonize the cellular interferon (IFN).
- the attenuated influenza virus (the parental virus) used in accordance with the invention is an influenza virus type or strain comprising a mutation in the NSl gene that results in an impaired ability of the virus to antagonize the cellular interferon response. Examples of the types of mutations that can be introduced into the influenza virus NSl gene include deletions, substitutions, insertions and combinations thereof.
- an attenuated influenza virus (the parental virus) used in accordance with the invention comprises a genome having an influenza virus NSl gene with a mutation at the N-terminus.
- an attenuated influenza virus (the parental virus) comprises a genome having an influenza virus NSl gene with a mutation at the C-terminus.
- an attenuated influenza virus of the invention comprises a genome comprising a mutation in the NSl gene of the influenza virus backbone, which - ⁇ fmvKis ⁇ .M& " M ⁇ iity CfSladfNlr ⁇ lene product to antagonize a cellular interferon response, and permits the attenuated virus, at a multiplicity of infection (MOI) of between 0.0005 and 0.001, 0.001 and 0.01, 0.01 and 0.1, or 0.1 and 1, or a MOI of 0.0005, 0.0007, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 6.0, to grow to titers between approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, or approximately 40 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 1 to approximately 4 fold, approximately 1 to
- the titers of attenuated and wild-type influenza viruses can be determined utilizing any technique well-known in the art or described herein, (e.g., hemagglutination assays, plaque assays, egg infectious doses (EID50), tissue culture infectious doses (TCID50), etc.) and the viruses can be propagated under conditions described herein or well-known in the art (e.g., in CEF cells, MDCK cells (e.g., in MEM, 10% v/v fetal calf serum (FCS), 1% penicillin/ streptomycin at 37 0 C in a 5% CO 2 humidified incubator) or embryonated chicken eggs (e.g., in a stationary incubator at 37°C with 55% relative humidity).
- the viruses can be propagated in cells (e.g., CEF cells, MDCK cells, etc.) that are grown in serum-free or serum reduced (e.g., TPCK trypsin) medium.
- the attenuated influenza virus (the parental virus) used in accordance with the invention comprises a genome comprising a mutation in the HA gene of the influenza backbone virus that diminishes or eliminates the ability of cellular proteases to cleave the protein into its active form.
- the types of mutations that may be introduced into the influenza HA gene include deletions, substitutions, insertions or combinations thereof.
- the one or more mutations are preferably introduced at the HA cleavage site (e.g., nucleotides 1013-1039 of GenBank entry AY818135).
- an attenuated influenza virus used in accordance with the invention comprises a genome having a mutation in the influenza virus JP'ltX ' I ' ef ⁇ lJiy ⁇ lI ⁇ i' ⁇ 'M ⁇ SIit ⁇ fHIion of nucleotides 1026-1038 with the single nucleotide thymine.
- an attenuated influenza virus of the invention comprises a genome comprising a mutation in the HA gene of the influenza backbone virus that diminishes or eliminates the ability of cellular proteases to cleave the protein into its active form, and permits the attenuated virus, at a multiplicity of infection (MOI) of between 0.0005 and 0.001, 0.001 and 0.01, 0.01 and 0.1, or 0.1 and 1, or a MOI of 0.0005, 0.0007, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 6.0, to grow to titers between approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, or approximately 40 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 1 to approximately 4 fold, approximately 1 to approximately 3 fold, approximately 1 to approximately 2 fold, or approximately 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20,
- the HA protein comprising such a mutation is not antigenically distinct from the wild-type parental HA protein, /. e. , all antibodies raised against the wild- type HA protein will cross react with the mutated HA protein and all antibodies raised against the mutated HA protein will cross react with the wild-type HA protein.
- the titers of attenuated and wild-type influenza viruses can be determined utilizing any technique well- known in the art or described herein, ⁇ e.g., hemagglutination assays, plaque assays, egg infectious doses (EID50), tissue culture infectious doses (TCID50), etc.) and the viruses can be propagated under conditions described herein or well-known in the art ⁇ e.g., in CEF cells, MDCK cells ⁇ e.g., in MEM, 10% v/v fetal calf serum (FCS), 1% penicillin/ streptomycin at 37 0 C in a 5% CO 2 humidified incubator) or embryonated chicken eggs ⁇ e.g., in a stationary incubator at 37°C with 55% relative humidity).
- the viruses can be propagated in cells ⁇ e.g., CEF cells, MDCK cells, etc.) that are grown in serum-free or serum reduced ⁇ e.g., TPCK trypsin) medium.
- the attenuated influenza virus (the parental virus) used in accordance with the invention comprises a genome comprising: (i) a mutation in the HA gene of the influenza backbone virus that diminishes or eliminates the ability of cellular proteases to cleave the protein into its active form, and (ii) a mutation in the NSl gene that results in an impaired ability of the virus to antagonize the cellular interferon response.
- influenza virus of the invention comprises a genome comprising a mutation in both the HA gene and NSl gene of the influenza backbone virus that permits the attenuated virus, at a multiplicity of infection (MOI) of between 0.0005 and 0.001, 0.001 and 0.01, 0.01 and 0.1, or 0.1 and 1, or a MOI of 0.0005, 0.0007, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 6.0, to grow to titers between approximately 1 to approximately 100 fold, approximately 5 to approximately 80 fold, approximately 20 to approximately 80 fold, or approximately 40 to approximately 80 fold, approximately 1 to approximately 10 fold, approximately 1 to approximately 5 fold, approximately 1 to approximately 4 fold, approximately 1 to approximately 3 fold, approximately 1 to approximately 2 fold, or approximately 1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20,
- the present invention provides a chimeric attenuated influenza virus, comprising at least one fusion protein having an ectodomain (ED), or fragment therof, of an infectious agent other than an influenza virus and the cytoplasmic (CT) and transmembrane (TM) domains or the transmembrane domain of an essential influenza virus glycoprotein, wherein the at least one fusion protein functionally replaces at least one essential influenza virus glycoprotein.
- the attenuated influenza virus serves as the "backbone” that is engineered to express and incorporate into its virion the at least one fusion protein in place of an essential influenza virus glycoprotein.
- TM and CT domains or TM domain of an influenza virus glycoprotein corresponding to the essential influenza virus glycoprotein functionally replaced by the fusion protein permits the fusion protein to incorporate into the virion of the attenuated influenza virus.
- the TM and CT domains or TM domain of the fusion protein may correspond to or be derived from any influenza virus that permits the fusion protein to incorporate into the virion of the attenuated influenza virus backbone.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of a different type, subtype or strain of influenza vims than the backbone attenuated influenza virus.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of an influenza virus of a species other than the backbone attenuated influenza virus.
- the TM and CT l ; Mo3ai#ll ⁇ llif MyHS ⁇ ftil fusion protein correspond to the TM and CT domains or the TM domain of the attenuated influenza virus backbone.
- the TM and CT domains of the fusion protein correspond to the TM and CT domains of either an HA protein or an NA protein of an influenza virus. Since the CT domain of HA or NA may not be necessary for incorporation of the fusion protein into the influenza virus virion, in some embodiments, the fusion protein is engineered to contain only the TM domain of HA or NA. [00116]
- the TM and CT domains of influenza virus HA and NA proteins are structurally distinct in that the domains are located at the C-terminus of the HA protein and the N-terminus of the NA protein.
- the HA and CT structural domains may comprise yet unknown differences in functionality dependent on their relative placement within a polypeptide chain. Therefore, when designing the fusion protein to be engineered into the attenuated influenza virus, the orientation of the ectodomain, or fragment therof, of the infectious agent to be fused to the TM and CT domains or the TM domain of an influenza virus glycoprotein will guide the selection of the TM and CT domains or the TM domain. [00117] To maintain viral competence, where a surface glycoprotein is replaced, its function in the chimeric virus must be supplied by the fusion protein.
- the chimeric attenuated influenza virus comprises a fusion protein that exhibits neuraminidase activity. In another embodiment of the invention, the chimeric attenuated influenza virus comprises a fusion protein that exhibits receptor binding activity. In another embodiment of the invention, the chimeric attenuated virus comprises two fusion proteins, one of which exhibits neuraminidase activity and the other of which exhibits receptor binding activity. In still other embodiment of the invention, the chimeric attenuated influenza virus comprises a fusion protein comprising a fragment of a protein of a heterologous infectious agent, which fusion protein exhibits exhibits neuraminidase activity or receptor binding activity.
- the chimeric attenuated influenza virus comprises a surface protein containing the ectodomain of the HN protein of Newcastle Disease Virus (NDV) and the TM and CT domains of the NA protein of Influenza A/WSN/33, which HN ectodomain exhibits neuraminidase activity.
- the chimeric attenuated influenza virus comprises a fusion protein containing the ectodomain of the HA protein of a heterologous influenza subtype or strain (e.g., the ectodomain of H7 HA or ectodomain of H9 HA).
- the at least one fusion protein of the chimeric attenuated influenza virus of the invention does not comprise the complete ectodomain of a
- the ectodomain of the fusion protein may comprise fragments of both a native essential glycoprotein and a protein of a heterologous infectious agent.
- the fusion protein replaces an essential surface glcoprotein
- the function of the surface glycoprotein must be supplied by the fusion protein, i.e., the fusion protein must exhibit the functionality of the surface glycoprotein that it is replacing.
- the ectodomain of the fusion proteins described in this Section 5.1.2 may correspond to or be derived from any glcyoprotein, or fragment thereof, of an infectious agent (including, viral, bacterial and parasitic infectious agents).
- infectious agent glycoproteins are provided in Section 5.3, infra.
- the fusion protein comprises the transmembrane domain plus 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of an essential influenza virus glycoprotein.
- the fusion protein comprises the transmembrane domain of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the influenza virus NA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the function of NA protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the NA protein.
- the fusion protein comprises the transmembrane domain or cytoplasmic and transmembrane domains of an NA protein, the complete stalk domain, or a fragment thereof, of an NA protein that precedes its globular head, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the function of NA protein.
- the fusion protein comprises the transmembrane domain of an influenza virus HA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the influenza virus HA protein, and the ectodomain, or fragment thereof, of an infectious agent other than I ⁇ IMpQri-lailfMSikc ⁇ l ⁇ iiEtiKlililon protein can functionally replace the function of HA protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an influenza virus HA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus HA protein that are immediately adjacent to the transmembrane domain of the influenza virus HA protein, and the ectodomain, or fragment thereof, of an infectious agent other than influenza virus such that the fusion protein can functionally replace the HA protein.
- the present invention encompasses nucleotide sequences (i. e. , recombinant segments) encoding the fusion proteins described in this Section 5.1.2.
- the recombinant segments comprising nucleic acids encoding the fusion proteins described in Section 5.1.2 comprise 3' and 5' incorporation signals which are required for proper replication, transcription and packaging of the vRNAs (Fujii et al, 2003, Proc. Natl. Acad. Sci. USA 100:2002-2007; Zheng, et al, 1996, Virology 217:242-251, both of which are incorporated by reference herein in their entireties).
- the recombinant segments of the invention therefore use the 3' and 5' noncoding and/or nontranslated sequences of segments of viruses within the same viral type or strain as the backbone attenuated influenza virus.
- the recombinant segments comprise nucleic acids encoding the fusion proteins described in Section 5.1.2 that comprise the 3' noncoding region of an influenza virus NA vRNA, the NA coding region corresponding to the CT and TM domains of the NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, the untranslated regions of the NA protein reading frame and the 5 'non-coding region of the NA vRNA.
- the recombinant segments comprise nucleic acids encoding the fusion proteins described in Section 5.1.2 that comprise the complete stalk domain, or fragment thereof, of an NA protein that precedes its globular head.
- "reverse genetic" and bicistronic techniques may be used to produce a chimeric influenza virus comprising an ectodomain of an infectious agent other than influenza virus or a disease antigen and the TM and/or CT domains of an influenza virus. See, e.g., U.S. Patent No. 6,887,699, U.S. Patent No. 6,001,634, U.S. Patent No. 5,854,037 and U.S. Patent No.
- heterologous molecules such as disease antigens and antigens derived from an infectious agent that may be used in accordance with the methods ip'ff tWbMWMi& ⁇ $e; ⁇ ⁇ 4iM ⁇ M% ⁇ &ociated with a disease or viral proteins) are provided in section 5.3, infra.
- the present invention encompasses the engineering of an avian influenza virus such that a fusion protein comprising the ectodomain of the HN protein of Newcastle Disease virus is encoded by the genome and, when expressed, is incorporated into the virion.
- Any avian influenza virus type or strain that can be engineered to express and incorporate the fusion protein into the avian influenza virion can be selected and used in accordance with the invention including, but not limited to, naturally occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- Non-limiting examples of avian influenza viruses include Influenza A subtype H5N1, H6N2, H7N3, H9N2 or H10N7.
- the present invention provides a chimeric avian influenza virus, comprising a fusion protein having an ectodomain (ED) of a Newcastle Disease virus (NDV) HN protein and the cytoplasmic (CT) and transmembrane (TM) domains or the transmembrane domain of an influenza virus NA protein, wherein the fusion protein functionally replaces the avian influenza virus NA protein.
- the avian influenza virus serves as the "backbone” that is engineered to express and incorporate into its virion the fusion protein in place of the avian influenza virus NA protein.
- the inclusion of the TM and CT domains or TM domain of an influenza virus NA protein in the fusion protein permits the fusion protein to incorporate into the virion of the avian influenza virus.
- the TM and CT domains or TM domain of the fusion protein may correspond to or be derived from any influenza virus that permits the fusion protein to incorporate into the virion of the avian influenza virus backbone.
- the coding sequences of the TM and CT domains for use in accordance with the invention may be obtained or derived from the published sequence of any NA protein from any influenza strain or subtype ⁇ e.g., GenBank entry AY651447, from strain A/Viet Nam/1203/2004(H5Nl); GenBank entry AY96877, from strain A/turkey/Canada/63 (H6N2); GenBank entry AY706954, from strain A/duck/Hainan/4/2004 (H6N2); GenBank entry AY646080, from strain A/chicken/British Columbia/GSC_human_B/04 (H7N3); or GenBank entry DQ064434, from strain A/chicken/Beijing/8/98 (H9N2)).
- GenBank entry AY651447 from strain A/Viet Nam/1203/2004(H5Nl)
- GenBank entry AY96877 from strain A/turkey/Canada/63 (H6N2)
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of a different type or strain of avian influenza virus than the backbone avian influenza virus.
- the TM and CT P> tpMaj ⁇ lM::® C ⁇ Wdt ⁇ Ka ⁇ Bile fusion protein correspond to the TM and CT domains or the TM domain of an influenza virus other than an avian influenza virus.
- the TM and CT domains or the TM domain of the fusion protein correspond to the TM and CT domains or the TM domain of the avian influenza virus backbone.
- TM and CT domains of the fusion protein correspond to the TM and CT domains of the NA protein of Influenza A/WSN/33.
- the fusion protein comprises the transmembrane domain of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the influenza virus NA protein, and the ectodomain of a NDV HN protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an influenza virus NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, and the ectodomain of a NDV HN protein.
- the fusion protein comprises the complete stalk domain, or a fragment thereof, of an NA protein that precedes its globular head and the ectodomain of a NDV HN protein.
- the fusion protein comprises the transmembrane domain or cytoplasmic and transmembrane domains of an NA protein, and further comprises the complete stalk domain, or a fragment thereof, of an NA protein that precedes its globular head and the ectodomain of a NDV HN protein.
- chimeric avian influenza virus comprising an ectodomain of a NDV HN protein and the TM and/or CT domains of an influenza virus. See, e.g., U.S. Patent No. 6,887,699, U.S. Patent No. 6,001,634, U.S. Patent No. 5,854,037 and U.S. Patent No. 5,820,871 , each of which is hereby incorporated by reference in its entirety.
- the present invention encompasses nucleotide sequences (/. e. , recombinant segments) encoding the fusion proteins described in this Section 5.1.3.
- the recombinant segments comprising nucleic acids encoding the fusion proteins described in Section 5.1.3 comprise 3' and 5' incorporation signals which are required for proper replication, transcription and packaging of the vRNAs (Fujii et al, 2003, Proc. Natl. Acad. Sci. USA 100:2002-2007; Zheng, et al, 1996, Virology 217:242-251, both of which are incorporated by reference herein in their entireties).
- the recombinant segments of the invention therefore use the 3' and 5' noncoding and/or nontranslated sequences of segments of viruses within the same viral type p ⁇ SpaM,il:ffliIaoK ⁇ 4rii£fSn. l! 'Muenza virus.
- the recombinant segment comprises nucleic acids encoding the fusion proteins described in Section 5.1.3 comprise the 3' noncoding region of an influenza virus NA vRNA, the NA coding region corresponding to the CT and TM domains of the NA protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the influenza virus NA protein that are immediately adjacent to the transmembrane domain of the influenza virus NA protein, the untranslated regions of the NA protein reading frame and the 5 'non-coding region of the NA vRNA.
- a recombinant segment comprises, 3' to 5' order, the 3' noncoding region of the WSN NA vRNA (19 nucleotides), nucleotides encoding amino acid residues 1-36 (108 nucleotides) of the NA coding region, nucleotides encoding amino acid residues 51-568 of the NDV Bl HN protein, two sequential stop codons, 157 nucleotides of the WSN NA untranslated reading frame, and the 5' noncoding region of the WSN vRNA (28 nucleotides). See Figure 1.
- Replacement of the NA protein of the backbone influenza virus or introduction of a recombinant segment into the viral genome may attenuate the resulting chimeric virus, i.e., the chimeric virus will exhibit impaired replication relative to wild type.
- attenuation of the chimeric virus is desired such that the chimeric virus remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic.
- Such attenuated chimeric viruses are especially suited for embodiments of the invention wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine.
- the viruses may be attenuated by any method known in the art and/or exemplified herein, e.g., engineering the virus to comprise a mutation in the NSl gene or to comprise a modification in the polybasic amino acid sequence before the cleavage site in the HA protein (see U.S. Patent No. 6,468,544; U.S. Patent No. 6,669,943; Li et al, J. Infect. Dis. 179:1132-1138, each of which is hereby incorporated by reference in its entirety).
- an attenuated chimeric avian influenza virus of the invention comprises a genome comprising a mutation in the NSl gene of the avian influenza backbone virus, which is known in other influenza viruses to diminishes the ability of the NSl gene product to antagonize a cellular interferon response.
- an attenuated chimeric avian influenza virus of the invention comprises a genome comprising a mutation in the HA gene of the avian influenza backbone virus, which is known in other influenza viruses to diminishes or eliminates the ability of cellular proteases to cleave the protein into its active form and thereby reduce or eliminate HA induced fusion and infectivity.
- the titers of attenuated-chimeric and wild-type avian influenza viruses can be determined utilizing any technique well-known in the art or described herein, (e.g., hemagglutination assays, plaque assays, egg infectious doses (EID50), tissue culture infectious doses (TCID50), etc.) and the viruses can be propagated under conditions described herein or well-known in the art (e.g., in CEF cells, MDCK cells (e.g., in MEM, 10% v/v fetal calf serum (FCS), 1% penicillin/ streptomycin at 37°C in a 5% CO 2 humidified incubator) or embryonated chicken eggs (e.g., in a stationary incubator at 37 0 C with 55% relative humidity).
- the viruses can be propagated in cells (e.g., CEF cells, MDCK cells, etc.) that are grown in serum-free or serum reduced (e.g., TPCK trypsin) medium.
- the present invention encompasses the engineering of an Newcastle Disease
- NDV Newcastle disease virus
- Any NDV type or strain that can be engineered to express and incorporate the at least one fusion protein into the NDV virion can be selected and used in accordance with the invention including, but not limited to, naturally occurring strains, variants or mutants, mutagenized viruses, reassortants and/or genetically engineered viruses.
- the NDV is a naturally occurring virus.
- the NDV is a genetically engineered virus.
- mutant strains of the recombinant NDV, rNDV/F2aa and rNDV/F3aa in which the cleavage site of the F protein was replaced with one containing one or two extra arginine residues, allowing the mutant cleavage site to be activated by ubiquitously expressed proteases of the furin family can be used in accordance with the methods of the invention.
- NDVs which may be used in accordance with the methods of the invention include B 1 , LaSota, YG97, MET95, and F48E9.
- the chimeric NDV or rNDV of the invention comprises a fusion protein containing the ectodomain of an influenza HA protein; in a specific example in accordance with this embodiment the influenza HA protein is the HA protein from influenza H7.
- the present invention provides a chimeric NDV, comprising at least one fusion protein having an ectodomain (ED), or fragment therof, of a protein of an infectious agent other than a NDV protein and the cytoplasmic (CT) and/or transmembrane (TM) domains of an essential NDV glycoprotein.
- ED ectodomain
- CT cytoplasmic
- TM transmembrane
- the present invention also provides a chimeric or fragment therof, and TM domain of a protein of an infectious agent other than a NDV glycoprotein and the CT of an essential NDV glycoprotein.
- the present invention further provides a chimeric NDV 5 comprising a fusion protein having an ED, or fragment thereof, and CT domain of a protein of an infectious agent other than a NDV glycoprotein and a TM domain of an essential NDV glycoprotein.
- the NDV virus serves as the "backbone” that is engineered to express and incorporate into its virion the fusion protein.
- the inclusion of the TM and/or CT domains of an essential NDV glycoprotein in the fusion protein permits the fusion protein to incorporate into the virion of the NDV.
- the TM and/or CT domains of the fusion protein may correspond to or be derived from any NDV that permits the fusion protein to incorporate into the virion of the NDV backbone.
- the TM and/or CT domains of the fusion protein correspond to the TM and/or CT domains of a different type or strain of NDV than the backbone NDV.
- the TM and/or CT domains of the fusion protein correspond to the TM and/or CT domains of the NDV backbone.
- the NDV virion comprises two major surface glycoproteins: fusion protein
- the TM and/or CT domains of the fusion protein correspond to the TM and/or CT domains of either an F protein or an HN protein of an NDV.
- the TM and CT domains of NDV F and HN proteins are structurally distinct in that the domains are located at the C-terminus of the F protein and the N-terminus of the HN protein. Therefore, when designing the fusion protein to be engineered into the NDV, the orientation of the ectodomain of the infectious agent to be fused to the TM and/or CT domains of NDV glycoprotein will guide the selection of the TM and/or CT domains.
- the at least one fusion protein of the chimeric NDV comprises the TM domain and 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residues of the ectodomain of an essential NDV glycoprotein.
- the fusion protein comprises the transmembrane domain of an NDV F protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the NDV F protein, and the ectodomain, or fragment thereof, of an infectious agent other than NDV such that the fusion protein can functionally replace the function of F protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of a NDV F protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the NDV F protein that are immediately adjacent to the jp ⁇ f OTm'yr ⁇ Myiiot ⁇ Mi ⁇ i ' ⁇ ailiSDV F protein, and the ectodomain, or fragment thereof, of an infectious agent other than NDV such that the fusion protein can functionally replace the F protein.
- the fusion protein comprises the transmembrane domain of an NDV HN protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 immediately adjacent residue(s) of the ectodomain of the NDV HN protein, and the ectodomain, or fragment thereof, of an infectious agent other than NDV such that the fusion protein can functionally replace the function of HN protein.
- the fusion protein comprises the cytoplasmic and transmembrane domains of an NDV HN protein, 1 to 15, 1 to 10, 1 to 5, 1 to 3, 2 or 1 residue(s) of the ectodomain of the NDV HN protein that are immediately adjacent to the transmembrane domain of the NDV HN protein, and the ectodomain, or fragment thereof, of an infectious agent other than NDV such that the fusion protein can functionally replace the HN protein.
- an NDV surface glycoprotein i. e. , HN or F protein
- a fusion protein that supplies the required function(s) of the NDV glycoprotein.
- the ectodomain of the fusion protein must be selected so that it will supply the required function(s) of the replaced NDV glycoprotein.
- the fusion protein is expressed and incorporated into the virion of the NDV in addition to the native NDV surface glycoproteins.
- the at least one fusion protein of the chimeric NDV of the invention does not comprise the complete ectodomain of a heterologous protein (e.g., comprises an antigenic fragment of the ectodomain of a protein of a heterologous infectious agent), and may or may not further comprise one or more fragments of the ectodomain of a native essential glycoprotein.
- the ectodomain of the fusion protein may comprise a fragment of the ectodomain of a protein of a heterologous infectious agent.
- the ectodomain of the fusion protein may comprise fragments of both a native essential glycoprotein and a protein of a heterologous infectious agent.
- the function of the surface glycoprotein must be supplied by the fusion protein, i.e., the fusion protein must exhibit the functionality of the surface glycoprotein that it is replacing.
- the ectodomain of the fusion protein may correspond to or be derived from any heterologous molecule including, but not limited to, any infectious agent antigen (including, viral, bacterial and parasitic infectious agent antigens), and any disease antigen.
- infectious agent antigens and/or disease antigens are provided in Section 5.3, infi'a.
- a nucleotide sequence comprises nucleic acids encoding a Kozak sequence, followed by the gene end, intercistronic nucleotide (T) , and gene start sequence of the F protein of NDV, followed by the 5' untranslated region and ORF of the HA protein of H7N2.
- the strains of NDV used in accordance with the invention are the lentogenic stains of the virus, i.e., those strains which typically exhibit low virulence or asymptomatic infection in avians, e.g., strain Bl, strain LaSota or strain Met95.
- the invention also encompasses the use of highly virulent stains of NDV, e.g., YG97 or F48E9 or NDV strains that have been modified by genetic recombination using methods known in the art or exemplified herein.
- the invention encompasses the use of an NDV wherein the NDV F protein has been genetically modified at the cleavage site so as to increase fusogenic activity.
- the modified F protein comprises two to three amino acid mutations at the F cleavage site.
- Replacement of a necessary surface protein of the backbone virus or introduction of a nucleotide sequence encoding a fusion protein into the viral genome may attenuate, or further attenuate, the resulting chimeric virus, i.e., the chimeric virus will exhibit impaired replication relative to wild type.
- attenuation, or further attenuation, of the chimeric virus is desired such that the chimeric virus remains, at least partially, infectious and can replicate in vivo, but only generate low titers resulting in subclinical levels of infection that are non-pathogenic.
- Such attenuated chimeric viruses are especially suited for embodiments of the invention wherein the virus is administered to a subject in order to act as an immunogen, e.g., a live vaccine.
- the viruses may be attenuated by any method known in the art.
- Antigens that may be engineered in to the chimeric viruses of the invention
- any heterologous molecule can be engineered into the virus backbone to elicit an immune response to said molecule.
- any antigen of any infectious pathogen or associated with any disease that is capable of eliciting an immune response may be engineered into a NDV and/or influenza virus backbone.
- the antigen is a glycoprotein.
- the antigen is capable of functionally replacing an essential glycoprotein of an influenza virus and/or NDV.
- the antigen exhibits neuraminidase or hemagglutinin (e.g., receptor binding / fusogenic) activities.
- the TM and CT domains or the TM domain for use in engineering the fusion protein will correspond to the TM and CT domains or the TM domain of a necessary viral protein of the backbone virus, or related virus, which is also naturally anchored via its amino terminus, e.g., the N protein of influenza or the HN protein of NDV.
- a viral antigen is engineered into a NDV or influenza virus backbone.
- Nonlimiting examples of viral antigens include antigens from adenoviridae (e.g., mastadenovirus and aviadenovirus), herpesviridae (e.g., herpes simplex virus 1, herpes simplex virus 2, herpes simplex virus 5, herpes simplex virus 6, Epstein-Barr virus, HHV6-HHV8 and cytomegalovirus), leviviridae (e.g., levivirus, enterobacteria phase MS2, allolevirus), poxviridae (e.g., chordopoxvirinae, parapoxvirus, avipoxvirus, capripoxvirus, leporiipoxvirus, suipoxvirus, molluscipoxvirus, and entomopoxvirinae), papovaviridae (e.g., polyomavirus and papillomavirus), paramyxoviridae (e.g., paramyxovirus,
- human immunodeficiency virus 1 and human immunodeficiency virus 2 e.g., HIV gpl ⁇ O), spumavirus
- flaviviridae e.g., hepatitis C virus, dengue virus, West Nile virus
- hepadnaviridae e.g., hepatitis B virus
- togaviridae e.g., alphavirus (e.g., Sindbis virus) and rubivirus (e.g., rubella virus)
- rhabdoviridae e.g., vesiculovirus, lyssavirus, ephemero virus, cytorhabdo virus, and necleorhabdovirus
- arenaviridae e.g., arenavirus, lymphocytic choriomeningitis virus, Ippy virus, and lassa virus
- coronaviridae e.g., coronavirus and torovirus
- the viral antigen is HIV gpl20, HIV nef, RSV F glycoprotein, RSV G glycoprotein, influenza virus neuraminidase, influenza virus hemagglutinin, HTLV tax, herpes simplex virus glycoprotein (e.g., gB, gC, gD, and gE) or hepatitis B surface antigen, hepatitis C virus E protein or coronavirus spike protein.
- the viral antigen is not gp 41.
- the viral antigen is derived from a paramyxovirus. In other, alternative embodiments, the viral antigen is not derived from a paramyxovirus.
- the viral antigen is derived from human parainfluenza virus type 1, human parainfluenza virus types 3, a RSV or from Sendai virus iJisrother*,- the viral antigen is not derived from human parainfluenza virus type 1, parainfluenza virus type 3, a RSV or from Sendai virus.
- the virus backbone is an influenza virus and the antigen engineered into the influenza virus backbone is not an influenza antigen.
- the virus backbone is an NDV and the antigen engineered into the NDV backbone is not an NDV antigen.
- a bacterial antigen (e.g. , bacterial coat protein or protective antigen associated with said bacteria) is engineered into a NDV or influenza virus backbone.
- bacterial antigens include antigens from bacteria of the Aquaspirillum family, Azospirillum family, Azotobacteraceae family, Bacteroidaceae family, Bartonella species, Bdellovibrio family, Campylobacter species, Chlamydia species (e.g., Chlamydia pneumoniae), Clostridium, Enterobacteriaceae family (e.g., Citrobacter species, Edwardsiella, Enterobacter aerogenes, Erwinia species, Escherichia coli, Hafnia species, Klebsiella species, Morganella species, Proteus vulgaris, Providencia, Salmonella species, Serratia marcescens, and Shigella flexneri), Gardinella family, Haemophilus influenzae
- a protective antigen associated with a parasite is engineered into a NDV or influenza virus backbone.
- Any antigen associated with a parasite or protective antigen of a parasite e.g., a protozoan
- parasite antigens include antigens from a parasite such as an amoeba, a malarial parasite, Plasmodium, Trypanosoma cruzi.
- a fungal antigen is engineered into a NDV or influenza virus backbone.
- fungal antigens include antigens from fungus of Absidia species (e.g., Absidia corymbifera andAbsidia ramosa), Aspergillus species, (e.g., Aspergillus flavus, Aspergillus fumigatus, Aspergillus nidulans, Aspergillus niger, and Aspergillus terreus), Basidiobolus ranarum, Blastomyces dermatitidis, Candida species (e.g., Candida albicans, Candida glabrata, Candida kerr, Candida krusei, Candida ⁇ Mpp ⁇ p ⁇ M ⁇ !'f ⁇ did& ⁇ 4ff ⁇ picalis, Candida quillermondii, Candida rugosa, Candida stellatoidea, and Candida tropicalis), Coccidioides immitis, Conidiobolus species, Cryptococcus
- Absidia species e.g
- a tumor associated antigen is engineered into a NDV or influenza virus backbone. Any tumor associated antigen known in the art may be used in accordance with the methods of the invention.
- tumor associated antigens include MAGE-I, MAGE-3, BAGE, GAGE-I, GAGE-2, N- acetylglucosaminyltransferase-V, p-15, MART-1/MelanA, TRP-I (gp75), Tyrosinase, cyclin-dependent kinase 4, ⁇ -catenin, MUM-I, CDK4, HER-2/neu, human papillomavirus- E6, human papillomavirus E7 , MUC-I, caspase-8, CD5, CD20, CEA, mucin- 1, Lewis x , CA- 125, epidermal growth factor receptor, pl85 HER2 , IL-2R, Fap- ⁇ , tenascin, antigens associated
- the chimeric viruses of the invention can be generated using the reverse genetics technique.
- the reverse genetics technique involves the preparation of synthetic recombinant viral RNAs that contain the non-coding regions of the negative-strand, viral RNA which are essential for the recognition by viral polymerases and for packaging signals necessary to generate a mature virion.
- the recombinant RNAs are synthesized from a recombinant DNA template and reconstituted in vitro with purified viral polymerase complex to form recombinant ribonucleoproteins (RNPs) which can be used to transfect cells.
- RNPs ribonucleoproteins
- helper-free plasmid technology can also be utilized to engineer a chimeric virus of the invention.
- cDNAs of viral segments are amplified using PCR with primers that include unique restriction sites, which allow the insertion of the PCR product into the a plasmid vector (Flandorfer et al , 2003, J. Virol. 77:9116-9123; Nakaya et al, 2001, J. Virol. 75:11868-11873; both of which are incorporated herein by reference in their entireties).
- the plasmid vector is designed to position the PCR product between a truncated human RNA polymerase I promoter and a hepatitis delta virus ribozyme sequence such that an exact negative (vRNA sense) transcript is produced from the polymerase I promoter.
- plasmid vectors comprising each viral segment as well as expression vectors comprising necessary viral proteins are transfected into cells leading to production of recombinant viral particles.
- helper-free plasmid technology see, e.g., International Publication No. WO 01/04333; U.S. Patent No. 6,649,372; Fodor et al., 1999, J. Virol. 73:9679-9682; Hoffmann et al, 2000, Proc. Natl. Acad. Sci. USA 97:6108-6113; and Neumann et al, 1999, Proc. Natl. Acad. Sci. USA 96:9345-9350, which are incorporated herein by reference in their entireties.
- a complete cDNA of the Hitchner Bl strain was constructed, inserted into a plasmid vector and engineered to containing a unique restriction site between the P and M genes.
- the fusion protein engineered in accordance with the invention may then be inserted into the viral genome at the unique restriction site.
- the single segment was positioned between a T7 promoter and the hepatitis delta virus ribozyme to produce an exact negative transcript from the T7 polymerase.
- the plasmid vector and expression vectors comprising the necessary viral proteins are transfected into cells leading to production of recombinant viral particles (see Swayne et al, 2003, Avian Dis. 47:1047-1050 and Swayne et al, 2001, J. Virol. 11868- 11873, each of which is incorporated by reference in its entirety).
- the chimeric influenza viruses of the invention can be engineered to contain
- RNA segments which are bicistronic. Bicistronic techniques allow the engineering of coding sequences of multiple proteins into a single mRNA through the use of IRES sequences. IRES sequences direct the internal recruitment of ribozomes to the RNA molecule and allow downstream translation in a cap independent manner. Briefly, an coding region of one protein is inserted into the ORF of a second protein. The insertion is flanked by an IRES and any untranslated signal sequences necessary for proper expression not disrupt the open reading frame, polyadenylation or transcriptional promoters of the second protein (see e.g., Garcfa-Sastre et al, 1994, J. Virol. 68:6254-6261 and Garcia-Sastre et al, 1994 Dev. Biol. Stand. 82:237-246), eachof which is hereby incorporated by reference in its entirety.
- the attenuated chimeric influenza viruses of the invention are propagated in IFN-deficient substrates.
- the chimeric viruses of the invention may be grown in cells (e.g. avian cells, chicken cells, etc.) that are susceptible to infection by the viruses, embryonated eggs or animals (e.g., birds). Such methods are well-known to those skilled in the art.
- the cells used to propagate attenuated influenza viruses with a reduced interferon antagonist activity are IFN-deficient.
- the chimeric avian viruses of the invention are propagated in chicken cells or embryonated eggs. Representative chicken cells include, but are not limited to, chicken embryo fibroblasts or chicken embryo kidney cells.
- Chimeric viruses of the invention may be propagated in embryonated eggs, e.g., from 6 to 14 days old. Young or immature embryonated eggs can be used to propagate attenuated chimeric influenza viruses of the invention.
- Immature embryonated eggs encompass eggs which are less than ten day old eggs, e.g., eggs 6 to 9 days that are INF- def ⁇ cient.
- Immature embryonated eggs also encompass eggs which artificially mimic immature eggs up to, but less than ten day old, as a result of alterations to the growth conditions, e.g., changes in incubation temperatures; treating with drugs; or any other alteration which results in an egg with a retarded development, such that the IFN system is not fully developed as compared with ten to twelve day old eggs.
- the chimeric viruses of the invention can be propagated in different locations of the embryonated egg, e.g., the allantoic cavity.
- attenuated influenza viruses with at reduced interferon antagonist activity see, e.g., U.S. Patent No. 6,852,522 and U.S. Patent No. 6,852,522, both of which are hereby incorporated by reference in their entireties.
- the chimeric virus is removed from cell culture and separated from cellular components, typically by well known clarification procedures, e.g., such as gradient centrifugation and column chromatography, and may be further purified as desired using procedures well known to those skilled in the art, e.g., plaque assays.
- clarification procedures e.g., such as gradient centrifugation and column chromatography
- pl'cli::yliiises of the invention can be used in active immunization in a subject.
- the chimeric viruses of the invention can be used to prevent, manage and or treat one or more diseases.
- the chimeric viruses of the invention can be used to prevent, manage and/or treat infections by two infectious agents. See Section 5.5.1 for a description of immunogenic formulation and uses of those formulations for inducing an immune response in a subject.
- the chimeric viruses of the invention can also be used to produce antibodies which can be used in diagnostic immunoassays, passive immunotherapy, and generation of antiidiotypic antibodies.
- a chimeric influenza virus comprising a fusion protein having an ectodomain of an infectious agent other than an influenza virus can be administered to a subject (e.g., a mouse, rat, pig, horse, donkey, bird or human) to generate antibodies to both the influenza backbone and the infectious agent which can then be isolated and used in diagnostic assays, passive immunotherapy and generation of antiidiotypic antibodies.
- the generated antibodies may be isolated by standard techniques known in the art (e.g., immunoaff ⁇ nity chromatography, centrifugation, precipitation, etc.) and used in diagnostic immunoassays, passive immunotherapy and generation of antiidiotypic antibodies.
- the isolated antibodies before being used in passive immunotherapy may be modified, e.g., the antibodies may be chimerized or humanized. See, e.g., U.S. Patent Nos. 4,444,887 and 4,716,111; and International Publication Nos.
- the dosage administered to a subject is typically 0.0001 mg/kg to 100 mg/kg of the patient's body weight.
- the dosage administered to a patient is between 0.0001 mg/kg and 20 mg/kg, 0.0001 mg/kg and 10 mg/kg, 0.0001 mg/kg and 5 mg/kg, 0.0001 and 2 mg/kg, 0.0001 and 1 mg/kg, 0.0001 mg/kg and 0.75 mg/kg, 0.0001 mg/kg and 0.5 mg/kg, 0.0001 mg/kg to 0.25 mg/kg, 0.0001 to 0.15 mg/kg, 0.0001 to 0.10 mg/kg, 0.001 to 0.5 mg/kg, 0.01 to 0.25 mg/kg or 0.01 to 0.10 mg/kg of the subject's body weight.
- the antibodies encompassed by the invention may be administered with other prophylactic or therapeutic compositions for the immunization again or treatment, management or prevention of an infectious disease or condition, or symptom thereof.
- Administration of doses antibodies of the invention may be by bolus injection or provided more slowly by IV (e.g., over about 5 minutes, about 15 minutes, about 30 minutes, about 45 minutes, about 1 hour, about 2 hours, about 4 hours, or about 6 hours).
- the antibodies produced by the chimeric viruses of the invention may be administered parenterally, for example, intravenously, intramuscularly or subcutaneously, or, alternatively, are administered orally or intranasaly.
- the antibodies encompassed by the invention may also be administered as a sustained release formulation.
- the antibodies isolated from subjects administered a chimeric virus of the invention may also be used to monitor treatment and/or disease progression.
- any immunoassay system known in the art may be used for this purpose including but not limited to competitive and noncompetitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assays), "sandwich” immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name but a few.
- radioimmunoassays ELISA (enzyme linked immunosorbent assays), "sandwich” immunoassays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays and immunoelectrophoresis assays, to name
- the antibodies generated by the chimeric viruses of the invention can also be used in the production of antiidiotypic antibody.
- the antiidiotypic antibody can then in turn be used for immunization, in order to produce a subpopulation of antibodies that bind an initial antigen of chimeric influenza (Jerne, 1974, Ann. Immunol. (Paris) 125c:373; Jerne et al, 1982, EMBO J. 1:234).
- the amount of immunogen to be used and the immunization schedule will be determined by a physician skilled in the art and will be administered by reference to the immune response and antibody titers of the subject.
- the invention also encompasses the use of the chimeric viruses of the invention in immunogenic formulations, e.g., vaccine formulations.
- the immunogenic formulations comprise a chimeric influenza virus
- the formulations may be used in methods of preventing, managing, neutralizing, treating and/or ameliorating influenza virus infection, and/or infections by another infectious agent and/or a disease.
- the immunogenic formulations comprise a chimeric NDV
- the formulations p ⁇ f VtliMif Ip
- the immunogenic formulations may comprise either a live or inactivated chimeric virus of the invention.
- the chimeric virus can be inactivated by methods well known to those of skill in the art. Common methods use formalin and heat for inactivation. See, e.g., U.S. Patent No. 6,635,246, which is herein incorporated by reference in its entirety. Other methods include those described in U.S. Patent Nos. 5,891,705; 5,106,619 and 4,693,981, herein incorporated by reference in their entireties.
- a live immunogenic formulation may be preferred because multiplication in the subject leads to a prolonged stimulus of similar kind and magnitude to that occurring in natural infections, and therefore, confers substantial, long lasting immunity.
- Production of such live recombinant immunogenic formulations may be accomplished using conventional methods involving propagation of the chimeric virus in cell culture or in embryonated eggs (e.g., chick embryonated eggs) followed by purification.
- the chimeric viruses can induce a robust IFN response which has other biological consequences in vivo, affording protection against subsequent infections.
- the immunogenic formulations of the present invention comprise an effective amount of a chimeric virus of the invention, and a pharmaceutically acceptable carrier.
- pharmaceutically acceptable means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeiae for use in animals, and more particularly in humans.
- carrier refers to a diluent, adjuvant, excipient, or vehicle with which the pharmaceutical composition (e.g., immunogenic or vaccine formulation) is administered.
- Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions.
- Suitable excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like.
- suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences” by E. W. Martin. The formulation should suit the mode of administration. The particular formulation may also depend on whether the chimeric virus is live or inactivated.
- the immunogenic formulations of the invention may be administered to a naive subject, i.e., a subject that does not have a disease or has not been and is not currently infected with one or both infectious agents.
- the immunogenic formulations are administered to a naive subject, i.e., a subject that does not have a disease ,ipqrjhl
- the immunogenic formulations of the invention are administered to a subject that does not have a disease, or has not and is not infected with one of the infectious agents to which the chimeric virus induces an immune response.
- the immunogenic formulations of the invention are administered to a subject that has not and is not infected with both of the infectious agents to which the chimeric virus induces an immune response.
- the immunogenic formulations of the invention may also be administered to a subject that is and/or has been infected with one or both of the infectious agents or another type, subtype or strain of the agents to which the chimeric virus induces an immune response.
- the immunogenic formulations e.g., vaccine formulations described above, these include but are not limited to intranasal, intratracheal, oral, intradermal, intramuscular, intraperitoneal, intravenous, conjunctival and subcutaneous routes. In birds, the methods may further include choanal inoculation.
- the invention also encompasses, routes of mass administration for agricultural purposes such as via drinking water or in a spray. It may be preferable to introduce the chimeric influenza virus immunogenic formulation via the natural route of infection of the wild-type virus.
- the chimeric virus of the invention may be preferable to introduce the chimeric virus of the invention via the natural route of infection of the agent from which the fusion protein is derived.
- the ability of chimeric virus to induce a vigorous secretory and cellular immune response can be used advantageously.
- infection of the respiratory tract by the chimeric viruses may induce a strong secretory immune response, for example in the urogenital system, with concomitant protection against a particular disease causing agent.
- an immunogenic formulation of the invention does not result in complete protection from an infection (e.g., a viral infection or infection by a non- viral infectious agent), but results in a lower titer or reduced number of the pathogen (e.g., a virus) compared to an untreated subject.
- administration of the immunogenic fomulations of the invention results in a 0.5 fold, 1 fold, 2 fold, 4 fold, 6 fold, 8 fold, 10 fold, 15 fold, 20 fold, 25 fold, 50 fold, 75 fold, 100 fold, 125 fold, 150 fold, 175 fold, 200 fold, 300 fold, 400 fold, 500 fold, 750 fold, or 1,000 fold or greater reduction in titer of the pathogen relative to an untreated subject.
- Benefits of a reduction in the titer - but are not limited to, less severity of symptoms of the infection and a reduction in the length of the disease or condition associated with the infection.
- an immunogenic formulation of the invention is used to protect against a disease (e.g., an infection) in naive subjects.
- a disease e.g., an infection
- an immugenic formulation of the invention is used to protect against an infection by influenza virus and/or at least one other infectious agent which is not an influenza virus and/or protect against a disease or symptom associated with the infection in a naive subject.
- an immunogenic formulation of the invention is used to protect against infection by NDV and/or at least one other infectious agent and/or protect agains a disease or symptom associated therewith in na ⁇ ve subjects.
- Non-limiting examples of such other infectious agents are papilloma virus, herpes virus, retrovirus (e.g.
- HIV hepatitis virus
- rhinovirus hepatitis virus
- respiratory synctial virus NDV
- cytomegalovirus adenovirus
- Clostridia sp. Salmonella sp., Staphylococcus sp., Enter ococcus sp., Vibrio sp., E.coli, Streptococcus equi, Mycoplasma pneumoniae, Klebsiella pneumoniae and Pseudomonas aeruginosa, and Dermatophilus congolensis, or a protozoan such as amobea, malarial parasite or Trypanosoma cruzi.
- the prophylactic and/or therapeutic effect of the immunogenic formulations of the invention are based, in part, upon achieving or inducing an immune response (e.g., a hummoral immune response).
- the immunogenic formulations induce a detectable serum titer of an antibody against antigens of the chimeric virus in either the subject or an animal model thereof (e.g. mouse, rat or canine model).
- the serum titer of an antibody can be determined using techniques known to one of skill in the art, e.g., immunoassays such as ELISAs.
- the antibodies specifically bind to an antigen of the backbone of the chimeric virus.
- the antibodies specifically bind to an antigen of the at least one fusion protein, i.e., an antigen of the ectodomain of the introduced protein associated with an infectious agent or disease.
- the antibodies generated by administering an immunogenic formulation of the invention are neutralizing antibodies.
- administration of a chimeric virus of the invention to a subject or animal model thereof results in a serum titer of about 1 ⁇ g/ml, about 2 ⁇ g/ml, about 5 ⁇ g/ml, about 6 ⁇ g/ml, about 10 ⁇ g/ml, about 15 ⁇ g/ml, about 20 ⁇ g/ml, about 25 ⁇ g/ml, about 50 mg/ml, about 75 mg/ml, about 100 mg/ml, about 125 mg/ml, about 150 mg/ml, about 175 mg/ml, about 200 mg/ml, about 225 mg/ml, about 250 mg/ml, about 275 mg/ml, or about 300 mg/ml or more of an antibody that specifically binds to an antigen of ⁇ y ⁇ & ⁇ ] ⁇ p ⁇ p ⁇ p ⁇ '' ⁇ Sl ⁇ B ⁇ & ⁇ isSia ⁇ .
- administration of a chimeric virus of the invention to a subject or animal model thereof results in a serum titer of about 1 ⁇ g/ml, about 2 ⁇ g/ml, about 5 ⁇ g/ml, about 6 ⁇ g/ml, about 10 ⁇ g/ml, about 15 ⁇ g/ml, about 20 ⁇ g/ml, about 25 ⁇ g/ml, about 50 mg/ml, about 75 mg/ml, about 100 mg/ml, about 125 mg/ml, about 150 mg/ml, about 175 mg/ml, about 200 mg/ml, about 225 mg/ml, about 250 mg/ml, about 275 mg/ml, or about 300 mg/ml or more of an antibody that specifically binds to an antigen of fusion protein, i.e., an antigen of the ectodomain of the introduced protein associated with an infectious agent or disease.
- an antigen of fusion protein i.e., an antigen of the ectodomain
- a serum titer of about 1 ⁇ g/ml, about 2 ⁇ g/ml, about 5 ⁇ g/ml, about 6 ⁇ g/ml, about 10 ⁇ g/ml, about 15 ⁇ g/ml, about 20 ⁇ g/ml, about 25 ⁇ g/ml, about 50 mg/ml, about 100 mg/ml, about 150 mg/ml or about 300 mg/ml or more of such antibodies is achieved approximately 20 days (preferably 25, 30, 35 or 40 days) after administration of a first dose of an immunogenic formulation of the invention and without administration of any other doses the formulation.
- the present invention provides methods for preventing at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen or epitope of the backbone of the chimeric virus 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- the present invention provides methods for preventing at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein (i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, plijS; ⁇ yg,]Q&$&y ⁇ $xf$pM ⁇ &MO days after the first administration and prior to any subsequent administration.
- an antigen of the fusion protein i.e., an antigen of the ectodomain of the introduced protein associated with a disease
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a. human.
- the present invention provides methods for preventing an avian influenza infection and/or infections by another infectious agent which is not avian influenza in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric avian influenza virus of the invention, which chimeric avian influenza virus comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric avian virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 s , 5 x 10 s , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x 10 11 , 5 x 1O 11 Or IO 12 pfu.
- the present invention provides methods for treating at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen or epitope of the backbone of the chimeric virus 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- the present invention provides methods for treating at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 p ⁇ g/ml/5O$® ⁇ /mM Q' WBWM' WnA, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein (i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- an antigen of the fusion protein i.e., an antigen of the ectodomain of the introduced protein associated with a disease
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a human.
- the present invention provides methods for treating an avian influenza infection and/or infections by another infectious agent which is not avian influenza in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric avian influenza virus of the invention, which chimeric avian influenza virus comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric avian virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x IO 11 ⁇ x IO 11 Or IO 12 PfU..
- the present invention provides methods for managing and/or ameliorating at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen or epitope of the backbone of the chimeric virus 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- the present invention provides methods for managing and/or ameliorating at least one disease (e.g., an influenza infection and/or infections by another infectious agent which is not influenza) in a subject, the methods comprising administering to said subject a first dose of formulation comprising a chimeric influenza virus of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein (i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- an antigen of the fusion protein i.e., an antigen of the ectodomain of the introduced protein associated with a disease
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a human.
- the present invention provides methods for managing and/or ameliorating an avian influenza infection and/or infections by another infectious agent which is not avian influenza in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric avian influenza virus of the invention, which chimeric avian influenza virus comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric avian virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x IO 11 , 5 x l0 ⁇ or l0 12 pfu.
- the present invention provides methods for preventing at least one disease (e.g., an NDV infection and/or infections by another infectious agent which is not NDV) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen or epitope of the backbone of the chimeric virus 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- one disease ⁇ e.g., an NDV infection and/or infections by another infectious agent which is not NDV
- the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein (i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- an antigen of the fusion protein i.e., an antigen of the ectodomain of the introduced protein associated with a disease
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a human.
- the present invention provides methods for preventing an NDV infection and/or infections by another infectious agent which is not NDV in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric NDV comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 , 10 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x IO 11 , 5 x l0 ⁇ or l0 12 pfu.
- the present invention provides methods for treating at least one disease (e.g., an NDV infection and/or infections by another infectious agent which is not NDV) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen or
- the present invention provides methods for treating at least one disease (e.g., an NDV infection and/or infections by another infectious agent which is not NDV) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein (i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- an antigen of the fusion protein i.e., an antigen of the ectodomain of the introduced protein associated with a disease
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a human.
- the present invention provides methods for treating an NDV infection and/or infections by another infectious agent which is not NDV in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric NDV comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the chi
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 s , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x l0 n , 5 x l0 ⁇ or l0 12 pfu.
- the present invention provides methods for managing and/or ameliorating at least one disease (e.g., an NDV infection and/or infections by another infectious agent which is not NDV) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence (e.g. a disease antigen), wherein the effective amount is the amount
- a disease antigen e.g. a disease antigen
- the present invention provides methods for managing and/or ameliorating at least one disease ⁇ e.g., an NDV infection and/or infections by another infectious agent which is not NDV) in a subject, the methods comprising administering to said subject a first dose of an effective amount of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric virus comprises a fusion protein of a heterologous sequence ⁇ e.g.
- a disease antigen wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an antigen of the fusion protein ⁇ i.e., an antigen of the ectodomain of the introduced protein associated with a disease) at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after the first administration and prior to any subsequent administration.
- the immune response may be determined in the subject or in a animal model, which response is then correlated or extrapolated to a predicted response in the subject, e.g., a human.
- the present invention provides methods for managing and/or ameliorating an NDV infection and/or infections by another infectious agent which is not NDV in an avian, the method comprising administering a first dose of an immunogenic formulation comprising a chimeric NDV of the invention, which chimeric NDV comprises a fusion protein containing a heterologous protein sequence, to said subject of an effective amount of the chimeric virus of the invention, wherein the effective amount is the amount that results in a serum titer of about 10 ⁇ g/ml, 20 ⁇ g/ml, 30 ⁇ g/ml, 40 ⁇ g/ml, 50 ⁇ g/ml, 60 ⁇ g/ml, 70 ⁇ g/ml, 80 ⁇ g/ml, 100 ⁇ g/ml or greater of antibodies that immunospecifically bind to an anti
- the dose of the chimeric influenza virus administered to the subject or animal model is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x l0 n , 5 x l0 n or l0 12 pfu.
- the present invention also provides methods for preventing, treating and/or managing at least one disease, the methods comprising administering to said subject an effective amount of an immunogenic formulation comprising a chimeric influenza virus of iPfMve amount is the amount that results in a reduction in mortality, reduction in hospitalization, reduction in the severity of the disease and/or reduction in the clinical symptoms of the disease relative to a subject not administered the immunogenic formulation of the invention.
- the subject is a human.
- the dose of the chimeric influenza virus administered to the subject is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , 1 x 10 11 , 5 x 10 11 or 10 12 pfu.
- the present invention provides methods for preventing, treating and/or managing at least one disease (e.g., an avian influenza infection and/or infection by another infectious agent which is not avian influenza) in a subject (preferably avian), the methods comprising administering to said subject an effective amount of a immunogenic formulation comprising a chimeric avian influenza virus of the invention, wherein the effective amount is the amount that results in a reduction in the titer or number of infectious agents, reduction in mortality, reduction in hospitalization, reduction in the severity of infection and/or reduction in the clinical symptoms of the infection relative to a subject not administered the immunogenic formulation of the invention.
- a disease e.g., an avian influenza infection and/or infection by another infectious agent which is not avian influenza
- a subject preferably avian
- the methods comprising administering to said subject an effective amount of a immunogenic formulation comprising a chimeric avian influenza virus of the invention, wherein the effective amount is the amount that results in a reduction in the tit
- the dose of the chimeric avian influenza virus administered to the subject is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , 1 x 10 11 , 5 x 10 11 or 10 12 pfu.
- administration of the immunogenic formulation of the invention results in a 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% or more reduction in the replication of the infectious agent relative to a subject not administered the immunogenic formulation of the invention as determined at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after said administration by any method known in the art or exemplified herein (e.g., determination of viral titer).
- administration of an immunogenic formulation of the invention results in a 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, or 100 fold reduction in the replication of the infectious agent or the burden of infectious agent relative to a subject not administered an immunogenic formulation of the invention as determined at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after said administration by any method known in the art or exemplified herein (e.g., determination of viral titer or bacterial load and/or concentration).
- the present invention provides methods for preventing, treating and/or ameliorating at least one disease (e.g., an NDV infection and/or infection by another infectious agent which is not NDV) in a subject (e.g., an avian), the methods comprising administering to said subject an effective amount of an immunogenic f ⁇ JlCT ⁇ fliiSSJlPpsiWgliliMi 1 ⁇ 0 NDV virus of the invention, wherein the effective amount is the amount that results in a reduction in the titer or number of infectious agents, reduction in mortality, reduction in hospitalization, reduction in the severity of infection and/or reduction in the clinical symptoms of the infection relative to a subject not administered the immunogenic formulation of the invention.
- a disease e.g., an NDV infection and/or infection by another infectious agent which is not NDV
- a subject e.g., an avian
- the dose of the chimeric NDV virus administered to the subject is 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 8 , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , I x l0 ⁇ , 5 x l0 ⁇ or l0 12 pfu.
- administration of the immunogenic formulation of the invention results in a 10%, 20%, 30%, 40%, 50%, 60%, 70%, or 80% or more reduction in the replication of the infectious agent relative to a subject not administered the immunogenic formulation of the invention as determined at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after said administration by any method known in the art or exemplified herein (e.g., determination of viral titer).
- administration of the immunogenic formulation of the invention results in a 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 75, or 100 fold reduction in the replication of the infectious agent or the burden of infectious agent relative to a subject not administered the immunogenic formulation of the invention as determined at 2 days, 5 days, 10 days, 15 days, 20 days or, preferably, 30 days after said administration by any method known in the art or exemplified herein (e.g., determination of viral titer).
- the amount of the immunogenic formulation of the invention which will be effective in the treatment, prevention an/or amelioration of a particular disease ⁇ e.g. viral infection) will depend on the nature of the disease, and can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the infection or disorder, and should be decided according to the judgment of the practitioner and each subject's circumstances.
- suitable dosage ranges for administration are generally about 10 2 , 5 x 10 2 , 10 3 , 5 x 10 3 , 10 4 , 5 x 10 4 , 10 5 , 5 x 10 5 , 10 6 , 5 x 10 6 , 10 7 , 5 x 10 7 , 10 8 , 5 x 10 s , 1 x 10 9 , 5 x 10 9 , 1 x 10 10 , 5 x 10 10 , 1 x 10 11 . 5 x 10 11 or 10 12 pfu, and most preferably about 10 4 to about 10 12 , and can be administered to a subject once, twice, three or more times with intervals as often as needed. Effective doses may be extrapolated from dose response curves derived from in vitro or animal model test systems.
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject therapies (e.g. antiviral or immunomodulatory therapies) for the prevention of at least one disease (e.g. an influenza infection and/or infection by another infectious agent which is not influenza virus).
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the treatment of at least one disease (e.g. an influenza infection and/or infection by another infectious agent which is not influenza virus).
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the management and/or amelioration of at least one disease (e.g. an influenza infection and/or infection by another infectious agent which is not influenza virus).
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the prevention of an avian influenza infection and/or infection by another infectious agent which is not avian influenza virus.
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the treatment of an avian influenza infection and/or infection by another infectious agent which is not avian influenza virus.
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the prevention of an NDV infection and/or infection by another infectious agent which is not NDV.
- the immunogenic formulations of the invention or antibodies generated by the chimeric viruses of the invention are administered to a subject in combination with one or more other therapies (e.g. antiviral or immunomodulatory therapies) for the treatment of an NDV infection and/or infection by another infectious agent which is not NDV.
- therapies e.g. antiviral or immunomodulatory therapies
- the therapies are administered less than 5 minutes apart, less than 30 minutes apart, 1 hour apart, at about 1 hour apart, at about 1 to about 2 hours apart, at about 2 hours to about 3 hours apart, at about 3 hours to about 4 hours apart, at about 4 hours to about 5 hours apart, at about 5 hours to about 6 hours apart, at about 6 hours to about 7 hours apart, at about 7 hours to about 8 hours apart, at about 8 hours to Lt ⁇ t ⁇ oiat 9 ala1?dut !1 9 ⁇ l®urs to about 10 hours apart, at about 10 hours to about 11 hours apart, at about 11 hours to about 12 hours apart, at about 12 hours to 18 hours apart, 18 hours to 24 hours apart, 24 hours to 36 hours apart, 36 hours to 48 hours apart, 48 hours to 52 hours apart, 52 hours to 60 hours apart, 60 hours to 72 hours apart, 72 hours to 84 hours apart, 84 hours to 96 hours apart, or 96 hours to 120 hours part.
- anti-viral agent well-known to one of skill in the art can be used in the formulations (e.g., vaccine formulations) and the methods of the invention.
- anti-viral agents include proteins, polypeptides, peptides, fusion proteins antibodies, nucleic acid molecules, organic molecules, inorganic molecules, and small molecules that inhibit and/or reduce the attachment of a virus to its receptor, the internalization of a virus into a cell, the replication of a virus, or release of virus from a cell.
- anti-viral agents include, but are not limited to, nucleoside analogs (e.g , zidovudine, acyclovir, gangcyclovir, vidarabine, idoxuridine, trifluridine, and ribavirin), foscarnet, amantadine, rimantadine, saquinavir, indinavir, ritonavir, alpha-interferons and other interferons, and AZT.
- nucleoside analogs e.g , zidovudine, acyclovir, gangcyclovir, vidarabine, idoxuridine, trifluridine, and ribavirin
- foscarnet e.g , amantadine, rimantadine, saquinavir, indinavir, ritonavir, alpha-interferons and other interferons
- AZT AZT.
- the anti-viral agent is an immunomodulatory agent that is immunospecific for a viral antigen.
- viral antigen includes, but is not limited to, any viral peptide, polypeptide and protein (e.g , HIV gpl20, HIV nef, RSV F glycoprotein, RSV G glycoprotein, influenza virus neuraminidase, influenza virus hemagglutinin, HTLV tax, herpes simplex virus glycoprotein (e.g., gB, gC, gD, and gE) and hepatitis B surface antigen) that is capable of eliciting an immune response.
- viral antigen includes, but is not limited to, any viral peptide, polypeptide and protein (e.g , HIV gpl20, HIV nef, RSV F glycoprotein, RSV G glycoprotein, influenza virus neuraminidase, influenza virus hemagglutinin, HTLV tax, herpes simplex virus glycoprotein (e.g., gB
- Antibodies useful in this invention for treatment of a viral infectious disease include, but are not limited to, antibodies against antigens of pathogenic viruses, including as examples and not by limitation: adenovirdiae (e.g , mastadenovirus and aviadeno virus), herpesviridae (e.g., herpes simplex virus 1, herpes simplex virus 2, herpes simplex virus 5, and herpes simplex virus 6), leviviridae (e.g., levivirus, enterobacteria phase MS2, allolevirus), poxviridae (e.g., chordopoxvirinae, parapoxvirus, avipoxvirus, capripoxvirus, leporiipoxvirus, suipoxvirus, molluscipoxvirus, and entomopoxvirinae), papovaviridae (e.g., polyomavirus and papillomavirus), paramyxoviridae (e.
- human immunodeficiency virus 1 and human immunodeficiency virus 2), spumavirus flaviviridae (e.g., hepatitis C virus, dengue virus, West nile virus), hepadnaviridae (e.g., hepatitis B virus), togaviridae (e.g., alphavirus (e.g., Sindbis virus) and rubivirus (e.g., rubella virus)), rhabdoviridae (e.g., vesiculovirus, lyssavirus, ephemerovirus, cytorhabdovirus, and necleorhabdovirus), arenaviridae (e.g., arenavirus, lymphocytic choriomeningitis virus, Ippy virus, and lassa virus), and coronaviridae (e.g., coronavirus and toro virus).
- flaviviridae e.g., hepatitis C virus, dengue virus
- Anti-bacterial agents and therapies well known to one of skill in the art for the prevention, treatment, management, or amelioration of bacterial infections can be used in the compositions (e.g., immunogenic formulations) and methods of the invention.
- Non- limiting examples of anti-bacterial agents include proteins, polypeptides, peptides, fusion proteins, antibodies, nucleic acid molecules, organic molecules, inorganic molecules, and small molecules that inhibit or reduce a bacterial infection, inhibit or reduce the replication of bacteria, or inhibit or reduce the spread of bacteria to other subjects.
- anti-bacterial agents include, but are not limited to, penicillin, cephalosporin, imipenem, axtreonam, vancomycin, cycloserine, bacitracin, chloramphenicol, erythromycin, clindamycin, tetracycline, streptomycin, tobramycin, gentamicin, amikacin, kanamycin, neomycin, spectinomycin, trimethoprim, norfloxacin, rifampin, polymyxin, amphotericin B, nystatin, ketocanazole, isoniazid, metronidazole, and pentamidine.
- Anti-bacterial therapies and their dosages, routes of administration and recommended usage are known in the art and have been described in such literature as the Physician 's Desk Reference (56 th ed., 2002). Additional information on respiratory infections and anti-bacterial therapies is available in Cecil Textbook of Medicine (18th ed., 1988).
- Anti-fungal agents and therapies well known to one of skill in the art for prevention, management, treatment, and/or amelioration of a fungal infection or one or more symptoms thereof (e.g., a fungal respiratory infection) can be used in the compositions (e.g., immunogenic formulations) and methods of the invention.
- Non-limiting examples of anti-fungal agents include proteins, polypeptides, peptides, fusion proteins, antibodies, nucleic acid molecules, organic molecules, inorganic molecules, and small molecules that inhibit and/or reduce fungal infection, inhibit and/or reduce the replication of fungi, or inhibit and/or reduce the spread of fungi to other subjects.
- anti-fungal agents include, but are not limited to, azole drugs (e.g., miconazole, ketoconazole (NIZORAL®), caspofungin acetate (CANCID AS®), imidazole, triazoles (e.g., fluconazole (DIFLUCAN®)), and itraconazole (SPORANOX®)), polyene (e.g., nystatin, amphotericin B lipid complex ("ABLC)(ABELCET ( I ) ), amphotericin B colloidal dispersion (“ABCD”)(AMPHOTEC®), liposomal amphotericin B (AMBISONE®)), potassium iodide (KI), pyrimidine (e.g., flucytosine (ANCOBON®)), and voriconazole (VFEND®).
- azole drugs e.g., miconazole, ketoconazole (NIZORAL®), caspofungin acetate (CANCID AS®
- an immunogenic formulation of the invention is administered to a subject as a single dose followed by a second dose 3 to 6 weeks later.
- booster inoculations may be administered to the subject at 6 to 12 month intervals following the second inoculation.
- the subject is a mammal. In another embodiment, the subject is a bird.
- the subject is a human.
- the subject is a chicken at risk for contracting either NDV or avian influenza virus infection.
- the administration of the same immunogenic formulations of the invention may be repeated and the administrations may be separated by at least 1 day, 2 days, 3 days, 5 days, 10 days, 15 days, 30 days, 45 days, 2 months, 75 days, 3 months, or at least 6 months.
- Growth of the chimeric viruses of the present invention can be assessed by any method known in the art or described herein (e.g. in cell culture (e.g., cultures of chicken embryonic kidney cells or cultures of chicken embryonic fibroblasts(CEF)). Growth of the attenuated chimeric viruses of the invention can be assessed in IFN- competent and IFN-deficient cells.
- CEF cells are infected at a MOI of 0.0005 and 0.001, 0.001 and 0.01, 0.01 and 0.1, 0.1 and 1, or 1 and 10, or a MOI of 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5 or 10 and incubated with serum free media supplemented with 5% allantoic fluid.
- Viral titers are determined in the supernatant by HA plaqued in CEF cells as described below.
- Other cells in which viral titers can be assessed include, but are not limited to, EFK-2 cells, Vero cells, primary human umbilical vein endothelial cells (HUVEC), H292 human epithelial cell line and HeLa cells.
- incorporación of the fusion protein into the virion of the chimeric viruses of the present invention can be assessed by any method known in the art or described herein (e.g. in cell culture, animal model or viral culture in embryonated eggs).
- 5;aMQl64,, ⁇ lri;iid ⁇ ll. ' ⁇ 1 ⁇ lWE ⁇ S£. ⁇ iHPallan.toic fluid of embryonated eggs can be purified by centrifugation through a sucrose cushion and subsequently analyzed for fusion protein expression by Western blotting using methods well known in the art.
- Viral assays include those that measure altered viral replication (as determined, e.g., by plaque formation) or the production of viral proteins (as determined, e.g., by western blot analysis) or viral RNAs (as determined, e.g., by RT-PCR or northern blot analysis) in cultured cells in vitro using methods which are well known in the art.
- Antibodies generated by the chimeric viruses of the present invention or fragments thereof may be characterized in a variety of ways well-known to one of skill in the art (e.g. ELISA, Surface Plasmon resonance display (BIAcore), Western blot, immunofluorescence, immunostaining and/or microneutralization assays).
- antibodies generated by the chimeric viruses of the present invention or fragments thereof may be assayed for the ability to immunospecifically bind to an antigen of the chimeric backbone virus or an antigen or epitope of the fusion protein.
- an assay may be performed in solution (e.g., Houghten, 1992, Bio/Techniques 13:412-421), on beads (Lam, 1991, Nature 354:82-84), on chips (Fodor, 1993, Nature 364:555-556), on bacteria (U.S. Patent No. 5,223,409), on spores (U.S. Patent Nos. 5,571,698; 5,403,484; and 5,223,409), on plasmids (Cull et al, 1992, Proc.
- Antibodies generated by the chimeric viruses of the present invention or fragments thereof that have been identified to immunospecifically bind to an antigen of the chimeric backbone virus or an antigen or epitope of the fusion protein can then be assayed for their specificity to said antigen.
- the antibodies generated by the chimeric viruses of the present invention or fragments thereof may be assayed for immunospecific binding to an antigen of the chimeric virus of the invention (e.g., an antigen or epitope of the chimeric virus backbone or an antigen or epitope of the fusion protein(e.g., an antigen associated with a disease)) and cross-reactivity with other antigens by any method known in the art.
- an antigen of the chimeric virus of the invention e.g., an antigen or epitope of the chimeric virus backbone or an antigen or epitope of the fusion protein(e.g., an antigen associated with a disease)
- cross-reactivity with other antigens by any method known in the art.
- Immunoassays which can be used to analyze immunospecific binding and cross-reactivity include, but are not limited to, competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich” immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, protein A immunoassays, to name • pqc &'1f ⁇ W ⁇ 8Wh tfs ⁇ j ⁇ M ⁇ ti ⁇ ine and well known in the art (see, e.g., Ausubel et al, eds., 1994, Current Protocols in Molecular Biology, Vol.
- Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors ⁇ e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time ⁇ e.g., 1 to 4 hours) at 40° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 40° C, washing
- a lysis buffer such as RIPA buffer (1% NP-40 or Triton X-100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium
- the ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis.
- One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background ⁇ e.g., pre-clearing the cell lysate with sepharose beads).
- immunoprecipitation protocols see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York at 10.16.1.
- Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel ⁇ e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, incubating the membrane in blocking solution ⁇ e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer ⁇ e.g., PBS-Tween 20), incubating the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, incubating the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate ⁇ e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule ⁇ e.g., 32 P or 125 I) diluted in blocking buffer, washing the membrane in
- @ilp ⁇ fce preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen.
- a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase)
- a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase)
- an ELISA may be performed by coating a high binding 96-well microtiter plate (Costar) with 2 ⁇ g/ml of rhu-IL-9 in PBS overnight. Following three washes with PBS, the plate is incubated with three-fold serial dilutions of Fab at 25 0 C for 1 hour.
- the binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays.
- a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3 H or 125 I) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen.
- the affinity of the antibody of the present invention or a fragment thereof for an IL-9 polypeptide and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays.
- an IL-9 polypeptide is incubated with an antibody of the present invention conjugated to a labeled compound (e.g., 3 H or 125 I) in the presence of increasing amounts of an unlabeled second antibody.
- BIAcore kinetic analysis is used to determine the binding on and off rates of antibodies of the invention to an antigen of the chimeric virus of the invention (e.g., an antigen or epitope of the chimeric virus backbone or an antigen or p'ftttp ' pe bf tlCMipn'WI €liiSilfl, an antigen associated with a disease)).
- BIAcore kinetic analysis comprises analyzing the binding and dissociation of polypeptide comprising the antigen of ref from chips with immobilized antibodies generated by the chimeric viruses of the invention on their surface.
- a typical BIAcore kinetic study involves the injection of 250 ⁇ L of an antibody reagent (mAb, Fab) at varying concentration in HBS buffer containing 0.005% Tween-20 over a sensor chip surface, onto which has been immobilized the antigen. The flow rate is maintained constant at 75 ⁇ L/min. Dissociation data is collected for 15 min. or longer as necessary. Following each injection/dissociation cycle, the bound mAb is removed from the antigen surface using brief, 1 min. pulses of dilute acid, typically 10-100 mM HCl, though other regenerants are employed as the circumstances warrant.
- dilute acid typically 10-100 mM HCl
- EDC N-diethylaminopropyl
- a 5-100 nM solution of the polypeptide comprising the antigen in 1OmM NaOAc, pH4 or pH5 is prepared and passed over the EDC/NHS -activated surface until approximately 30-50 RU's worth of antigen are immobilized. Following this, the unreacted active esters are "capped" off with an injection of IM Et-NH2.
- a blank surface, containing no antigen, is prepared under identical immobilization conditions for reference purposes.
- a suitable dilution series of each one of the antibody reagents is prepared in HBS/Tween-20, and passed over both the antigen and reference cell surfaces, which are connected in series.
- the range of antibody concentrations that are prepared varies, depending on what the equilibrium binding constant, KD, is estimated to be.
- the bound antibody is removed after each injection/dissociation cycle using an appropriate regenerant.
- the antibodies generated by the chimeric viruses of the invention or fragments thereof can also be assayed for their ability to inhibit the binding of an antigen of the chimeric virus of the invention (e.g., an antigen or epitope of the chimeric virus backbone or an antigen or epitope of the fusion protein(e.g., an antigen associated with a disease)) to a host cell receptor using techniques known to those of skill in the art.
- an antigen of the chimeric virus of the invention e.g., an antigen or epitope of the chimeric virus backbone or an antigen or epitope of the fusion protein(e.g., an antigen associated with a disease)
- cells expressing receptors known to bind said antigens can be contacted with antigen in the presence or absence of an antibody generated by the chimeric viruses of the invention or fragment thereof and the ability of the antibody or fragment thereof to inhibit the antigen's binding can measured by, for example, flow cytometry or a scintillation assay.
- the antigen or the antibody or antibody fragment can be labeled with a detectable ipMlplMMaabel (e.g., 32P, 35S, and 1251) or a fluorescent label (e.g., fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o- phthaldehyde and fluorescamine) to enable detection of an interaction between the antigen and a cell receptor.
- a detectable ipMlplMMaabel e.g., 32P, 35S, and 1251
- a fluorescent label e.g., fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, o- phthaldehyde and fluorescamine
- the ability of antibodies generated by the chimeric viruses of the invention or fragments thereof to inhibit an antigen of the chimeric virus of the invention can be determined in cell-free assays.
- an antigen of the chimeric virus of the invention e.g., an antigen or epitope of the chimeric virus backbone or an antigen or epitope of the fusion protein(e.g., an antigen associated with a disease)
- a polypeptide comprising the antigen can be contacted with an antibody or fragment thereof and the ability of the antibody or antibody fragment to inhibit the polypeptide from binding to a cell receptor can be determined.
- the antibody or the antibody fragment is immobilized on a solid support and the polypeptide is labeled with a detectable compound.
- a polypeptide comprising the antigen is immobilized on a solid support and the antibody or fragment thereof is labeled with a detectable compound.
- the virulence of the chimeric viruses of the present invention can be assessed in a subject, in particular avians, or in an animal model thereof.
- the ability to induce lung lesions and cause infection in an animal model of virus infection is compared to wild-type virus and mock virus.
- Lung lesions can be assessed as a percentage of lung lobes that are healthy by visual inspection. Animals are euthanized 5 days p.i. by intravenous administration of pentobarbital, and their lungs are removed in toto. The percentage of the surface of each pulmonary lobe that is affected by macroscopic lesions is estimated visually. The percentages are averaged to obtain a mean value for the 7 pulmonary lobes of each animal.
- nasal swabs can be tested to determine virus burden or titer. Nasal swabs can be taken during necropsy to determine viral burden post-infection.
- tissue samples are homogenized in phosphate-buffered saline (PBS), and dilutions of clarified homogenates adsorbed for 1 h at 37°C onto monolayers of cells (e.g., CEF or MDCK cells). Infected monolayers are then overlaid with a solution of minimal essential medium containing 0.1% bovine serum albumin (BSA), 0.01% DEAE-dextran, 0.1% NaHCO 3 , and 1% agar. Plates are incubated 2 to 3 days until plaques could be visualized. Tissue culture infectious dose (TCID) assays to titrate virus from PR8-infected samples are carried out as follows.
- PBS phosphate-buffered saline
- TCID Tissue culture infectious dose
- Confluent monolayers of cells e.g., CEF or MDCK cells
- HA assay hemagglutination assay
- Nasal turbinates and trachea may be examined for epithelial changes and subepithelial inflammation.
- the lungs may be examined for bronchiolar epithelial changes and peribronchiolar inflammation in large, medium, and small or terminal bronchioles.
- the alveoli are also evaluated for inflammatory changes.
- the medium bronchioles are graded on a scale of 0 to 3+ as follows: 0 (normal: lined by medium to tall columnar epithelial cells with ciliated apical borders and basal pseudostratified nuclei; minimal inflammation); 1+ (epithelial layer columnar and even in outline with only slightly increased proliferation; cilia still visible on many cells); 2+ (prominent changes in the epithelial layer ranging from attenuation to marked proliferation; cells disorganized and layer outline irregular at the luminal border); 3+ (epithelial layer markedly disrupted and disorganized with necrotic cells visible in the lumen; some bronchioles attenuated and others in marked reactive proliferation).
- the trachea is graded on a scale of 0 to 2.5+ as follows: 0 (normal: Lined by medium to tall columnar epithelial cells with ciliated apical border, nuclei basal and pseudostratified. Cytoplasm evident between apical border and nucleus. Occasional small focus with squamous cells); 1+ (focal squamous metaplasia of the epithelial layer); 2+ (diffuse squamous metaplasia of much of the epithelial layer, cilia may be evident focally); 2.5+ (diffuse squamous metaplasia with very few cilia evident).
- Virus immunohistochemistry is performed using a viral-specific monoclonal antibody (e.g. NP-, N- or HN-sepcific monoclonal antibodies). Staining is graded 0 to 3+ as follows: 0 (no infected cells); 0.5+ (few infected cells); 1+ (few infected cells, as widely separated individual cells); 1.5+ (few infected cells, as widely separated singles and in small clusters); 2+ (moderate numbers of infected cells, usually affecting clusters of adjacent cells in portions of the epithelial layer lining bronchioles, or in small sublobular foci in alveoli); 3+ (numerous infected cells, affecting most of the epithelial layer in bronchioles, or widespread in large sublobular foci in alveoli).
- a viral-specific monoclonal antibody e.g. NP-, N- or HN-sepcific monoclonal antibodies.
- Viral titer is determined by inoculating serial dilutions of chimeric virus into cell cultures (e.g., CEF or MDCK), chick embryos, or live animals (e.g., avians). After incubation of the virus for a specified time, the virus is isolated using standard methods.
- Positive wells contain an adherent, homogeneous layer of erythrocytes; negative wells contain a nonadherent pellet.
- Physical quantitation of the virus titer can be performed using PCR applied to viral supernatants (Quinn & Trevor, 1997; Morgan et al, 1990), hemagglutination assays, tissue culture infectious doses (TCID50) or egg infectious doses (EID50).
- compositions e.g. , immunogenic formulations
- LD50 the dose lethal to 50% of the population
- ED50 the dose therapeutically effective in 50% of the population.
- the dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50.
- Therapies that exhibit large therapeutic indices are preferred. While therapies that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such agents to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.
- the data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage of the therapies for use in subjects.
- the dosage of such agents lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity.
- the dosage may vary within this range depending upon the dosage form employed and the route of administration utilized.
- the therapeutically effective dose can be estimated initially from cell culture assays.
- a dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms) as determined in cell culture.
- IC50 i.e., the concentration of the test compound that achieves a half-maximal inhibition of symptoms
- levels in plasma may be measured, for example, by high performance liquid chromatography.
- any assays known to those skilled in the art can be used to evaluate the prophylactic and/or therapeutic utility of a composition (e.g., vaccine formulation), a combination therapy disclosed herein for viral infection or a condition or symptoms associated therewith, an infection other than an a viral infection or a condition or symptom W in which an attenuated chimeric virus of the invention is used as a vector to induce an immune response to an antigen associated with the condition.
- a composition e.g., vaccine formulation
- a combination therapy disclosed herein for viral infection or a condition or symptoms associated therewith an infection other than an a viral infection or a condition or symptom W in which an attenuated chimeric virus of the invention is used as a vector to induce an immune response to an antigen associated with the condition.
- the present invention provides a chimeric avian influenza virus, comprising a fusion protein, having
- an ectodomain comprising a heterologous peptide sequence, which heterologous sequence comprises at least one epitope of a protective antigen of an infectious agent, other than influenza, or of an antigen associated with a disease fused to
- the chimeric avian influenza virus is attenuated. In accordance with these embodiments, the chimeric avian influenza virus may be attenuated by mutations in the NSl gene.
- the present invention provides a chimeric avian influenza virus, comprising a fusion protein, having
- the chimeric avian influenza virus is attenuated.
- the chimeric avian influenza virus may be attenuated by mutations in the NSl gene.
- the present invention provides an attenuated chimeric influenza virus, comprising a fusion protein, having
- an ectodomain comprising a heterologous peptide sequence, which heterologous sequence comprises at least one epitope of a protective antigen of an infectious agent, other than influenza, or of an antigen associated with a disease of a protective antigen of an infectious agent, other than influenza fused to and cytoplasmic domain of a glycoprotein encoded by an essential gene of an influenza virus, wherein the fusion protein is incorporated into an attenuated influenza virus, in which the function of the essential gene is supplied by the fusion protein or by the glycoprotein native to the attenuated influenza virus.
- the essential gene of an influenza virus is a hemagglutinin (HA) gene.
- the essential gene of an influenza virus is a neuraminidase (NA) gene.
- the present invention provides a chimeric NDV, comprising a fusion protein, having
- an ectodomain comprising a heterologous peptide sequence, which heterologous sequence comprises at least one epitope of a protective antigen of an infectious agent, other than NDV, or of an antigen associated with a disease fused to
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of a neuraminidase antigen of an infectious agent other than influenza that is anchored by the N-terminus, so that the neuraminidase fusion protein is expressed and incorporated into the chimeric avian influenza virus.
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus HA segment encoding a hemagglutinin fusion protein, in which the HA open reading frame is modified so that the nucleotides encoding the HA ectodomain are replaced by nucleotides encoding an ectodomain of a hemagglutinin antigen of an infectious agent other than influenza that is anchored by the C-terminus, so that the hemagglutinin fusion protein is expressed and incorporated into the chimeric avian influenza virus.
- the present invention provides a chimeric avian influenza virus, comprising a packaged bicistronic influenza virus HA segment, comprising:
- the present invention provides a chimeric avian influenza virus, comprising a packaged bicistronic influenza virus NA segment, comprising:
- a second open reading frame that encodes a neuraminidase fusion protein, in which the nucleotides encoding the neuraminidase ectodomain are replaced by nucleotides encoding a heterologous peptide sequence, which heterologous sequence comprises at least one epitope of a protective antigen of an infectious agent, other than influenza, or of an antigen associated with a disease that is anchored by the N- terminus, so that both the influenza neuraminidase and the fusion protein are expressed and incorporated into the chimeric avian influenza virus.
- the present invention provides a chimeric avian influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of an HN antigen of NDV, so that the neuraminidase fusion protein is expressed and incorporated into the chimeric avian influenza virus.
- the chimeric avian influenza virus of paragraphs 209-211 and 213-217 which comprises a packaged NSl gene segment encoding a modified NSl protein that reduces the cellular interferon antagonist activity of the virus.
- the chimeric avian influenza virus of paragraphs 209-211 and 213-217 which comprises an HA segment having an open reading frame modified to remove the hemagglutinin polybasic cleavage site.
- the present invention provides methods for propagating the chimeric avian influenza viruses of paragraphs 209-211 and 213-218, comprising culturing the chimeric avian influenza viruses in an embryonated egg or a cell line that is susceptible to avian influenza virus infection.
- the present invention also provides methods for producing an immunogenic formulation, the method comprising:
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged influenza virus NA segment encoding a neuraminidase fusion protein, in which the NA open reading frame is modified so that the nucleotides encoding the NA ectodomain are replaced by nucleotides encoding an ectodomain of a neuraminidase antigen of an infectious agent other than influenza that is anchored by the N-terminus, so that the neuraminidase fusion protein is expressed and incorporated into the attenuated chimeric avian influenza virus.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged influenza virus HA segment encoding a hemagglutinin fusion protein, in which the HA open reading frame is modified so that the nucleotides encoding the HA ectodomain are replaced by nucleotides encoding an ectodomain of a hemagglutinin antigen of an infectious agent other than influenza that is anchored by the C-terminus, so that the hemagglutinin fusion protein is expressed and incorporated into the attenuated chimeric influenza virus.
- the present invention provides an attenuated chimeric avian influenza virus, comprising a packaged bicistronic influenza virus HA segment, comprising: (a) a first open reading frame that encodes an avian influenza hemagglutinin protein, and that encodes a hemagglutinin fusion protein, in which the nucleotides encoding the hemagglutinin ectodomain are replaced by nucleotides encoding a heterologous protein, said protein containing an epitope of an ectodomain of a protective antigen of an infectious agent other than influenza or of an antigen that is associated with a disease, said fusion protein anchored by the C- terminus, so that both the influenza hemagglutinin and the fusion protein are expressed and incorporated into the attenuated chimeric influenza virus.
- the present invention provides an attenuated chimeric influenza virus, comprising a packaged bicistronic influenza virus NA segment, comprising:
- a second open reading frame that encodes a neuraminidase fusion protein, in which the nucleotides encoding the neuraminidase ectodomain are replaced by nucleotides encoding heterologous protein, said protein containing an epitope of an ectodomain of a protective antigen of an infectious agent other than influenza or of an antigen that is associated with a disease, said fusion protein anchored by the N- terminus, so that both the influenza neuraminidase and the fusion protein are expressed and incorporated into the attenuated chimeric influenza virus.
- the attenuated chimeric influenza virus of paragraphs 221-224 which comprises a packaged NSl gene segment encoding a modified NS 1 protein that reduces the cellular interferon antagonist activity of the virus.
- the attenuated chimeric influenza virus of paragraphs 221-224 which comprises an HA segment having an open reading frame modified to remove the hemagglutinin polybasic cleavage site.
- the present invention provides recombinant DNA molecules encoding the
- the present invention provides recombinant DNA molecules encoding the HA segment of paragraphs 222-223.
- the present invention provides methods for propagating the attenuated chimeric influenza viruses of paragraphs 221-225, comprising culturing the attenuated chimeric influenza viruses in an embryonated egg or a cell line that is susceptible to avian invention also provides methods for producing an immunogenic formulation, the method comprising:
- the present invention provides a chimeric NDV, comprising a packaged genome comprising a nucleotide sequence encoding an F protein-fusion protein having the transmembrane and cytoplasmic domains of an F protein and the ectodomain of an antigen of an infectious agent other than NDV that is anchored by the C terminus, so that the F protein-fusion protein is expressed and incorporated into the chimeric NDV.
- the present invention provides a chimeric NDV, comprising a packaged genome comprising a nucleotide sequence encoding an HN fusion protein having the transmembrane and cytoplasmic domains of an HN protein and the ectodomain of an antigen of an infectious agent other than NDV that is anchored by the N -terminus, so that the HN fusion protein is expressed and incorporated into the chimeric NDV.
- the genome of the chimeric NDV of paragraphs 213 and 228-229 comprises a nucleotide sequence encoding an F protein, so that the F protein is expressed and incorporated into the chimeric NDV in addition to the F protein-fusion protein.
- the nucleotide sequence encoding the NDV F protein-fusion protein replaces the nucleotide sequence encoding the NDV F protein and the F protein- fusion protein supplies the function of the F protein for the chimeric NDV of paragraph 228.
- the genome of the chimeric NDV of paragraph 212 and 223-224 comprises a nucleotide sequence encoding an HN protein, so that the HN protein is expressed and incorporated into the chimeric NDV.
- nucleotide sequence encoding the HN fusion protein replaces the nucleotide sequence encoding the NDV HN protein and the HN fusion protein supplies the function of the HN protein for the chimeric NDV of paragraph 229.
- the present invention provides methods for propagating the chimeric NDVs of paragraphs 212 and 228-229, comprising culturing the chimeric NDVs in an embryonated egg or a cell line that is susceptible to NDV infection.
- the present invention also provides a method for producing an immunogenic formulation, the method comprising: I"® "]r:.. ⁇ l «:Sgltfe'tl ⁇ 4'® ⁇ ® €;NDV of paragraphs 212 and 228-229 in an embryonated egg or a cell; and (b) collecting the progeny virus, wherein the virus is grown to sufficient quantities and under sufficient conditions that the virus is free from contamination, such that the progeny virus is suitable for for use in an immunogenic formulation, e.g., vaccine formulation.
- the present invention provides embryonated eggs comprising the chimeric viruses of paragraphs 209-210, 212-218 and 228-229.
- the present invention also provides cell lines comprising the chimeric viruses of paragraphs 209-210, 212-218 and 228-229.
- the present invention further provides immunogenic formulations comprising the chimeric viruses of paragraphs 209-210, 212-218 and 228-229.
- the present invention provides embryonated egg comprising the attenuated chimeric viruses of paragraphs 211 and 221-225.
- the present invention also provides cell lines comprising the attenuated chimeric viruses of paragraphs 211 and 221-225.
- the present invention further provides immunogenic formulations comprising the attenuated chimeric viruses of paragraphs 211 and 221-225.
- the present invention provides methods of inducing an immune response two infectious agents in an avian, the method comprising administering an effective amount of a chimeric avian influenza virus of paragraphs 209-210 and 213-218.
- the present invention also provides methods of inducing an immune response two infectious agents in an avian, the method comprising administering an effective amount of a chimeric NDV of paragraphs 212 and 228-229.
- the present invention further provides methods for inducing an immune response two infectious agents in a subject, the method comprising administering an effective amount of an attenuated chimeric influenza virus of paragraphs 211 and 221-225.
- the subject is a human subject.
- the subject is a non-human mammal (e.g., a pig, horse, dog, cat, or bovine).
- the subject is an avian subject.
- the following example describes the production of a exemplary chimeric avian influenza virus.
- the example describes the engineering of an avian influenza virus, Influenza A/Vietnam/I 203/04 (H5N1), to express and incorporate in its virion a fusion protein comprising the transmembrane and cytoplasmic domains of the avian ii$fi ⁇ enz
- the fusion protein functionally replaces the avian influenza virus NA protein.
- CT and transmembrane (TM) domains of the neuraminidase (NA) of influenza A/WSN/33 (A/Vietnam/I 203/04 -A/WSN/33 NA (CT + T M)-NDV Bl HN( ect0 )) was constructed using recombinant techniques well known in the art.
- the construct encodes 19 nucleotides of the 3' noncoding region of the WSN NA vRNA, nucleotides encoding amino acids 1-36 (108 nucleotides) of the NA coding region, corresponding to the cytoplasmic tail and transmembrane domains of the NA protein plus the first amino acid of the NA ectodomain, amino acids 51-568 of the NDV Bl HN protein (HN ectodomain), two sequential stop codons, 157 untranslated nucleotides of the WSN NA reading frame and the 5' noncoding region of the WSN vRNA (FIG.l).
- Plasmid constructs were created in order to produce, by plasmid only rescue, a chimeric virus based on H5N1 (the host virus) engineered to present an NDV surface glycoprotein.
- the segment of H5N1 encoding the surface glycoprotein NA was selected to be replaced with a recombinant segment comprising a nucleotide sequence encoding the CT and TM domains of the NA protein plus the first amino acid of the NA ectodomain of A/WSN/33 and the ectodomain of the HN protein of NDV-Bl .
- the fusion protein A/Vietnam/I 203/04 -A/WSN/33 NA (CT + T M ) -NDV Bl HN (Wt0) , supplies the neuraminidase activity for the chimeric avian influenza virus. See FIG.l for a schematic of the chimeric segment.
- PA, PBl and PB2 were cloned into pPoll to produce pPollVN1203-NS, pPoll VN1203-M, pPollVN1203-NP, pPollVN12Q3-HA, pPollVN1203-PA, pPol IVN 1203 -PBl and pPollVN1203-PB2, respectively.
- the segment encoding H5N1 HA was altered to convert the native polybasic amino acid sequence immediately before the HA cleavage site (nucleotides 1013-1039 of the H5N1 HA coding sequence) to a consensus sequence based on avirulent avian strains of influenza A H5.
- the amino acid sequence in this region was altered from QRERRRKKRG (SEQ ID NO: 11 ; amino acids 2-11 of SEQ ID NO: 14) to QRETRG (SEQ ID NO: 12; amino acids 2-7 of SEQ ID NO: 16), replacing the underlined amino acids with threonine (FIG.2).
- the codon usage in this region was further altered to reduce the number of adenosine residues in order minimize the chance of reintroduction of adenosine residues in this sequence by polymerase slippage and the resultant introduction of basic amino acid residues into the HA cleavage site. Only synonymous mutations were introduced into the avirulent HA sequence (FIG. 3).
- the resultant segment encoding the altered HA glycoprotein, corresponding low- virulence avian influenza A strains, was cloned in to a pPoll plasmid as previously described, pPollVN1203-HALO.
- pPol IVN 1203 NS 1-126, pPollVN1203 NS1-99 and pPollVN1203 NS1-73 thus encode only the first 126, only the first 99 and only the first 73 amino acids as counted from the amino terminus of the wild type NSl protein, respectively.
- the mutagenesis to generate truncated constructs did not affect the open reading frame of NEP (FIG. 4).
- Recombinant, chimeric viruses of the invention are rescued by any means described herein or known in the art.
- 293T, HEp-2 or A549 cells may be transfected with eight of the described pPoll plasmids, selected to achieve a desired level of viral attenuation and so that all eight segments are represented, i.e., the cells are transfected with pPoll VN WSN-NA (C T+TM)-NDV Bl HN (ecto ); pPollVN1203-HA or pPoll VN1203- HALO; pPollVN1203-NS, pPollVN1203 NS1-126, pPollVN1203 NS1-99 or pPollVN1203 NS1-73; pPollVN1203-M; pPollVN1203-NP; pPollVN1203-PA; pPoll VN1203-PB1 and
- the cells are further transfected with eukaryotic expression plasmids encoding NA, PA, PBl and PB2, which are required for replication and transcription of the vRNAs. After overnight incubation, the transfected cells may be co-cultured with chicken embryo fibroblasts to amplify the produced virus. After a further 2 to 3 day incubation, the supernatant of the co-culture may be injected into the allantoic cavities of 9- or 10- day old embryonated chicken eggs for propagation. For attenuated viruses, 7-day old eggs, which do not have a competent interferon system may be used. Virus growth may be confirmed by assaying the harvested allantoic fluid for hemagglutination according to standard protocols known in the art.
- ⁇ lfg «#X;p ⁇ m ⁇ le describes the production of exemplary chimeric NDVs.
- the example describes the engineering of a chimeric NDV to express and incorporate into its virion a fusion protein comprising the transmembrane and cytoplasmic domains of a necessary protein of NDV and the ectodomain of an avian influenza virus.
- the example demonstrates that such a chimeric virus induces protection against subsequent infection by both influenza virus and NDV.
- the example also describes the engineering of an exemplary NDV to express and incorporate into its virion a fusion protein comprising the cytoplasmic domain of the NDV F protein and the ectodomain and transmembrane domain of human keratinocyte growth factor receptor (KGFR).
- KGFR human keratinocyte growth factor receptor
- MDCK, HEp-2 and A549 cells were grown in Dulbecco's Modified Eagle
- DMEM fetal calf serum
- penicillin/streptomycin The full length cDNA of the Hitchner Bl strain of NDV has been published under genbank accession number AF375823 (Nakaya et al.,2001, J. Virol. 75:11868-11873, which is incorporated herein by reference in its entirety).
- All inserted genes are engineered to contain, sequentially, a gene end; 5' -TTAGAA AAAA-3' (SEQ ID NO: 18); intercistronic nucleotide T; and the gene start sequence; 5'-ACGGGTAGAA-3' (SEQ ID NO: 19) (the GE/GS sequence).
- rNDV/B 1 -KGFR, rNDV/B 1 -KGFR/F-CT, and rNDV/B 1 -H7HA/F-TMCT viruses were generated by reverse genetics from the full-length cDNA copies derived from the NDV Hitchner Bl strain.
- the KGFR or H7 HA HA protein from influenza A subtype H7N2
- ORF was cloned as an extra transcriptional unit between the P and M genes of NDV/B1 cDNA, as described for other ORFs (Nakaya et al, 2001, J. Virol. 75:11868-11873 and Nakaya et al, 2004, J. Virol.
- KGFR and H7 HA are both tff ⁇ sift ⁇ ii ⁇ lMip ⁇ fcfPiiMpKiiteomprising a TM and CT domain.
- the CT domain of the KGFR protein was replaced by that of the F protein of NDV.
- the TM and CT domains of the H7 HA protein were replaced by those of the F protein of NDV.
- the recombinant NDV viruses were rescued from cDNA and propagated using standard techniques well known in the art (see, e.g., Swayne et al, 2003, Avian Dis. 47: 1047-1053 and Nakaya et al, 2001, both of which are hereby incorporated by reference in their entireties).
- the insertion of the new transcriptional units in the recombinant viruses was confirmed by reverse transcription PCD followed by sequencing analysis.
- ECTO ectodomain
- PCR using the following primers (which include the GE/GS sequence): iWze/-H5HA P, 5'- CG GCT AGC TTAGAAAAAA T ACGGTAGAA GTGAA ACTAGT CC GCC ACC ATG GAA AGA ATA GTG ATT GCC TTT GCA-3' (SEQ ID NO:20) and HpaI-U5UA P, 5'-CG GTT AAC CTG ATA AGC CCC CAT TGA TTC TAA T-3' (SEQ ID NO:21).
- the H5 HAect o PCR fragment was digested with Nhel and Hpal and cloned into pSLl 180 (Amersham Pharmacia Biotech) (pSLH5HA ec to)-
- the TM and CT of the NDV F gene were also amplified by PCR using the following primers, H> ⁇ /-NDVF(TM+CYTO) P, 5'-CG GTT AAC CTC ATT ACC TAT ATC GTT TTG ACT-3' (SEQ ID NO:22), Sacl-Nhel- NDVF(TM+CYTO) M, 5'-CG GAG CTC AA GCT AGC TTA TCA CAT TTT TGT AGT GGC TCT CAT CTG-3' (SEQ ID NO:23).
- the TM and CT of the NDV F gene were digested with Hpal and Sad and then cloned into pSLH5HA ec to to obtain the hybrid fusion gene. Finally, the plasmid containing the hybrid H5 HA gene was digested with Nhel and cloned between the P and M genes of the rNDV cDNA.
- Viruses from cell or allantoic extracts were purified by ultracentrifugation through a 30% sucrose cushion. Levels of incorporated protein were monitored by western blot analysis using specific antibody and routine techniques.
- the ability of the chimeric NDV to present the non- viral protein KGFR in vivo was determined by immunizing BALB/c mice with 3 XlO 7 pfu of the chimeric virus intraperitoneally, followed by a booster immunization using the same dose three weeks later. Two weeks after the second immunization, sera from inoculated animals was tested for the presence of antibodies to KGFR by immunostaining MDCK cells transfected with a plasmid encoding KGFR. ;[QjO251J.
- Chimeric viruses rND V/B 1 -KGFR and rND V/B 1 -KGFR/F-CT were grown in the allantoic cavity of 10-day old chicken embryonated eggs. Purified viruses were tested for the presence of KGFD or KGFR/F-CT by Western blot analysis using a murine anti- KGFR antibody. A positive response was detected in the samples isolated from eggs inoculated with rND V/B 1 -KGFR/F-CT but not with rNDV/Bl-KGFR (FIG. 6). [00253] Each of these chimeric viruses were also used to immunize three BALB/c mice. Sera from the immunized animals was assayed for the presence of KGFR antibodies.
- NDVs NDVs.
- a recombinant NDV was produced to improve virulence of the NDV backbone used in Example 6.2.
- the example demonstrates that the improved virulence of the rNDV also improved the immunogenicity of immunogenic formulations comprising chimeric viruses based on the rNDV.
- Recombinant NDV viruses rNDV/F2aa and rNDV/F3aa viruses, which have two or three amino acid mutations at the F cleavage site of NDV Hitchner Bl strain were generated by reverse genetics.
- the PCR fragment was generated by using primers, forward: F2aa-1(+) 5'-GGA TCC CGG TTG GCG CCC TCC AGG (SEQ ID NO:24), and reverse F2aa-1(-) 5'-AAG GCG CCt CTG TCT CCg CCC TCC AGA TGT AGT CAC AG-3' (SEQ ID NO:25) and the full-length NDV Bl clone, plasmid pT7NDV/Bl, as template.
- the next PCR fragment was generated by using primers, forward F2aa-2(+) 5'-GGc GGA GAC AGa GGC GCC TTA TAG GCG CCA TTA TTG G-3' (SEQ ID NO:26), and reverse F2aa-2(-) 5'-CCA TAT TCC CAC CAG CTA GAT TGT-3' (SEQ ID NO:27) and the pT7NDV/Bl as template.
- the nucleotides shown in lower case are mutated to modify the amino acid sequence of the cleavage site of the F protein from that of the NDV/B1 strain (GGRQGRJX) to Gi?RQi?RlL.
- PCR mutagenesis was performed by the same strategy as described above using primers, forward, F3aa-1(+) 5'-GGA TCC CGG TTG GCG CCC TCC AGG-3' (SEQ ID NO:28); reverse, F3aa-1(-) 5'-AAa GCG CCt CTG TCT CCg CCC TCC AGA TGT AGT CAC AG-3' (SEQ ID NO:29); forward, F3aa-2(+) 5'-GGc GGA GAC AGa GGC
- the Stul-Notl fragment (nt 4646 to 4952) of pSLF3aa was excised to replace the corresponding fragment in the pT7NDV/Bl plasmid, resulting in the formation of the pT7NDV/F3aa plasmid, which was used to generate rNDV/F3aa virus.
- the fragment containing the transmembrane (TM) and the cytoplasmic tail (CYTO) of the NDV F gene was initially produced by PCR using primers, Hp ⁇ NOY F(TMH-CYTO)P, 5'-cgGT TAA CCT CAT TAC CTA TAT CGT TTT GAC T-3' (SEQ ID NO:32) and SaCNAeNDVF(TMH-CYTO)M, 5 '-eg GAG CTC AAG CTA GCT TAT CAC ATT TTT GTA GTG GCT CTC ATC TG-3' (SEQ ID NO:33) and the plasmid containing the NDV F gene as a template.
- This PCR product was digested with Sac I and Hpa I and then cloned into the plasmid, pN ⁇ e-NDV-GE/GS possessing the gene end and the gene start signal of NDV, resulting in the formation of plasmid, pMze-NDV-GE/GS- NDVF(TM+CYTO).
- the H7HA ectodomain was produced by PCR using the primers, S/>eH7(ECTO)P, 5'-CgACT AGT CCG CCA CCA TGA ACA CTC AAA TTC TGG CAT TCA T-5' (SEQ ID NO:34), / ⁇ H7(ECT0)M, 5'-cgG TTA ACG TCT TTG TAT CCA CTA CTC AAT TTC AC-3' (SEQ ID NO:35) and plasmid containing H7 HA gene from A/chicken/NY/13142- 5/94(H7N2) as template.
- This PCR product was digested with Spe I and Hpa I and then inserted into the cassette plasmid, pN/ze-NDV-GE/GS-NDVF(TM+CYTO).
- the cassette plasmid, pN/ze-NDV-GE/GS- NDV F(TM+CYTO) was digested with Nhe /to cut out the chimeric H7 HA gene.
- This fragment DNA was cloned between the P and M genes of pT7NDV/F3aa, forming pT7NDV/F3aa-chimericH7.
- the rNDV/F3aa virus expressing the chimeric H7 HA protein was then rescued from pT7NDV/F3aa-chimericH7 using methods describe, supra.
- rNDV/B 1 , rNDV/F2aa, rNDV/F3aa, rNDV/B 1 -H7, or rNDV/F3aa- chimericH7 viruses (100 PFU/egg) were inoculated into 10-day-old embryonated chicken to determine viral titers at different time points (24hrs, 48hrs, and 72 hrs).
- the 50% tissue culture infective dose (TCID 50 ) of each virus present in the allantoic fluid was determined by immunofluorescence assay (IFA).
- IFA immunofluorescence assay
- MDCK cells infected with transfectant influenza virus were fixed and permeabilized with ice cold methanol. Viral antigens were detected with anti-NDV HN monoclonal antibody (7Bl), anti-influenza Hl HA monoclonal antibody (2G9) and anti- influenza H5 HA polyclonal serum.
- 7Bl anti-NDV HN monoclonal antibody
- 2G9 anti-influenza Hl HA monoclonal antibody
- anti- influenza H5 HA polyclonal serum for the analysis of NDV growth and viral protein expression, confluent Vero cells were infected with the recombinant viruses, and harvested at different time points (24, 48, and 72 hrs). Infected cells were fixed with 2.5% formaldehyde containing 0.1% Triton X-100.
- mean death time was determined. Briefly, five 10-day-old embryonated chicken eggs were infected with serial 10-fold dilutions of viruses. The eggs were incubated at 37°C and monitored two times daily for 7 days. The time to kill embryos was recorded. The highest dilution that killed all embryos was determined to be the minimum lethal dose. The MDT was calculated as the mean time for the minimum lethal dose to kill the embryos.
- White Leghorn chickens were vaccinated once or twice by eyedrop in the conjunctival sac with i ⁇ 5 7"6 1 mean chicken embryo infectious doses (EID 5 o) of rNDV/F3aa- chimericH7, or twice with lO 5 7"63 EID 50 of parental NDV/B1 (pNDV), or twice with sterile tissue culture media (sham) at 2 and 4 weeks-of-age.
- EID 5 o chicken embryo infectious doses
- pNDV parental NDV/B1
- sham sterile tissue culture media
- the chickens were challenged intranasally with the Fontana strain of velogenic NDV (wNDV)(10 5 1 EID 50 per HPAI (10 5J EID 50 per bird). The survivors were bled and euthanized on 14 days post challenge.
- Hemagglutination inhibition (HI) serological titers were determined using standard procedures.
- rNDV/F3aa induced syncytia more rapidly in CEF cells than rNDV/F2aa. It was thus postulated that improved spreading of the virus in immunized animals may enhance immunogenicity against inserted foreign protein.
- the fusogenic rNDV/F3aa was selected as a backbone vector to develop a bivalent vaccine designed to protect poultry against AIV and NDV.
- NDV can be classified as highly virulent (velogenic), intermediate
- Lentogenic strains (causing asymptomatic infections in birds) are characterized by MDTs of more than 90 hrs, mesogenic strains (causing respiratory disease in birds) have MDTs between 60 to 90 hrs, and velogenic strains (causing severe disease in birds) have MDTs under 60 hrs.
- rNDV/F3aa vector would not represent a threat to birds and is thus suitable as a backbone to develop a bivalent vaccine for the protection of poultry against AIV and NDV.
- rNDV/Bl-H7 and rNDV/F3aa- chimericH7 virions were purified as described in ⁇ 6.3.
- the amounts of H7 HA protein or NDV viral protein from rNDV/Bl-H7 or rNDV/F3aa-chimericH7 were measured by western blotting using anti-chicken AIV H7 polyclonal antibody or anti-rabbit NDV polyclonal serum.
- Sham sterile tissue culture fluid
- HPAIV A/human/Steele/59 (H7N7) virus
- HI serology is shown as number of chickens with HI-positive serum/number of chickens vaccinated; parenthetical values are geometric mean titer (GMT)
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Virology (AREA)
- Genetics & Genomics (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Zoology (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- Biophysics (AREA)
- Communicable Diseases (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Gastroenterology & Hepatology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06838693A EP1962893A4 (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
AP2008004504A AP2911A (en) | 2005-12-02 | 2006-12-01 | Chimeric Viruses presenting non-native surface proteins and uses thereof |
BRPI0619133-9A BRPI0619133B1 (en) | 2005-12-02 | 2006-12-01 | CHIMERIC NEWCASTLE DISEASE VIRUS, IMMUNOGENIC COMPOSITION, METHOD FOR PRODUCING AN IMMUNOGENIC FORMULATION, AND, USE OF A CHIMERIC VIRUS |
MX2008007056A MX2008007056A (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof. |
EA200801501A EA016217B1 (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
KR1020087016080A KR101492643B1 (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
CA2631812A CA2631812C (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
JP2008543465A JP5603012B2 (en) | 2005-12-02 | 2006-12-01 | Chimeric virus displaying non-natural surface protein and use thereof |
AU2006320490A AU2006320490A1 (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
CN2006800522857A CN101365479B (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
GB0811526.3A GB2447187C (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
TNP2008000234A TNSN08234A1 (en) | 2005-12-02 | 2008-05-28 | Chimeric viruses presenting non-native surface proteins and uses thereof |
IL191835A IL191835A (en) | 2005-12-02 | 2008-05-29 | Chimeric newcastle disease virus comprising an epitope of an ectodomain of a protective viral antigen and immunogenic composition comprising same |
NO20082743A NO20082743L (en) | 2005-12-02 | 2008-06-17 | Chimeric viruses displaying non-native surface proteins and their use |
HK09106837.5A HK1127731A1 (en) | 2005-12-02 | 2009-07-24 | Chimeric viruses presenting non-native surface proteins and uses thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US74183305P | 2005-12-02 | 2005-12-02 | |
US60/741,833 | 2005-12-02 | ||
US80286406P | 2006-05-22 | 2006-05-22 | |
US60/802,864 | 2006-05-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007064802A1 true WO2007064802A1 (en) | 2007-06-07 |
Family
ID=38092581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2006/045859 WO2007064802A1 (en) | 2005-12-02 | 2006-12-01 | Chimeric viruses presenting non-native surface proteins and uses thereof |
Country Status (27)
Country | Link |
---|---|
US (2) | US9387242B2 (en) |
EP (3) | EP2529747B1 (en) |
JP (1) | JP5603012B2 (en) |
KR (1) | KR101492643B1 (en) |
CN (1) | CN101365479B (en) |
AP (1) | AP2911A (en) |
AU (1) | AU2006320490A1 (en) |
CA (1) | CA2631812C (en) |
CL (1) | CL2006003348A1 (en) |
CR (1) | CR10064A (en) |
EA (1) | EA016217B1 (en) |
EC (1) | ECSP088599A (en) |
ES (2) | ES2668464T3 (en) |
GB (1) | GB2447187C (en) |
GE (1) | GEP20135924B (en) |
HK (1) | HK1127731A1 (en) |
HU (2) | HUE037460T2 (en) |
IL (1) | IL191835A (en) |
MX (1) | MX2008007056A (en) |
MY (1) | MY147379A (en) |
NO (1) | NO20082743L (en) |
NZ (1) | NZ595736A (en) |
PL (2) | PL2251034T3 (en) |
PT (2) | PT2529747T (en) |
SG (1) | SG176468A1 (en) |
TW (1) | TWI531652B (en) |
WO (1) | WO2007064802A1 (en) |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008115785A2 (en) * | 2007-03-16 | 2008-09-25 | Wyeth | Multivalent avian influenza vaccines and methods |
WO2009035971A2 (en) * | 2007-09-10 | 2009-03-19 | Intervet International B.V. | Compositions and methods for preventing influenza infection in canines, felines and equines |
WO2010117786A1 (en) | 2009-03-30 | 2010-10-14 | Mount Sinai School Of Medicine Of New York University | Influenza virus vaccines and uses thereof |
US8057803B2 (en) | 1998-06-12 | 2011-11-15 | Mount Sinai School Of Medicine | Attenuated negative strand viruses with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
US8124101B2 (en) | 2004-06-01 | 2012-02-28 | Mount Sinai School Of Medicine | Genetically engineered swine influenza virus and uses thereof |
US8377450B2 (en) | 2009-11-30 | 2013-02-19 | United Cancer Research Institute | Clone of Newcastle disease virus, its manufacture and its application in the medical treatment of cancer |
US8591881B2 (en) | 2009-02-05 | 2013-11-26 | Mount Sinai School Of Medicine | Chimeric Newcastle disease viruses and uses thereof |
WO2014158811A1 (en) | 2013-03-14 | 2014-10-02 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
EP2758075A4 (en) * | 2011-09-20 | 2015-05-20 | Sinai School Medicine | Influenza virus vaccines and uses thereof |
US9175069B2 (en) | 2009-05-26 | 2015-11-03 | Icahn School Of Medicine At Mount Sinai | Monoclonal antibodies against influenza virus generated by cyclical administration and uses thereof |
US9371366B2 (en) | 2012-12-18 | 2016-06-21 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US9387242B2 (en) | 2005-12-02 | 2016-07-12 | Icahn School Of Medicine At Mount Sinai | Chimeric viruses presenting non-native surface proteins and uses thereof |
WO2017088017A1 (en) * | 2015-11-24 | 2017-06-01 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in avian eggs |
US9701723B2 (en) | 2010-02-18 | 2017-07-11 | Icahn School Of Medicine At Mount Sinai | Vaccines for use in the prophylaxis and treatment of influenza virus disease |
US9708373B2 (en) | 2010-03-30 | 2017-07-18 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccine and uses thereof |
US9908930B2 (en) | 2013-03-14 | 2018-03-06 | Icahn School Of Medicine At Mount Sinai | Antibodies against influenza virus hemagglutinin and uses thereof |
US10029005B2 (en) | 2015-02-26 | 2018-07-24 | Boehringer Ingelheim Vetmedica Gmbh | Bivalent swine influenza virus vaccine |
WO2018209194A2 (en) | 2017-05-12 | 2018-11-15 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
WO2018218299A1 (en) * | 2017-05-31 | 2018-12-06 | Commonwealth Scientific And Industrial Research Organisation | Trait selection in avians |
US10626379B2 (en) | 2015-11-24 | 2020-04-21 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in cell culture |
EP3542818A4 (en) * | 2016-11-17 | 2020-07-29 | Japan as Represented by The Director-General of National Institute of Infectious Diseases | Infectious disease vaccine using non-infectious paramyxovirus particle |
US10736956B2 (en) | 2015-01-23 | 2020-08-11 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccination regimens |
EP3715459A4 (en) * | 2017-11-21 | 2021-12-01 | Jiasheng Song | H9 avian influenza vaccine strain which differentiates infected from vaccinated animals, and preparation method therefor |
EP3715458A4 (en) * | 2017-11-21 | 2021-12-01 | Ltd. Zhejiang Difference Biological Technology Co. | H7 avian influenza vaccine strain which differentiates infected from vaccinated animals, preparation method therefor, and application |
US11254733B2 (en) | 2017-04-07 | 2022-02-22 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
US11266734B2 (en) | 2016-06-15 | 2022-03-08 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
US11389495B2 (en) | 2014-02-27 | 2022-07-19 | Merck Sharp & Dohme Llc | Combination method for treatment of cancer |
Families Citing this family (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2528750C2 (en) * | 2008-11-19 | 2014-09-20 | Лабораторио Ави-Мекс, С.А. Де С.В. | Recombinant vaccine of inactivated viral vector |
WO2011014645A1 (en) * | 2009-07-30 | 2011-02-03 | Mount Sinai School Of Medicine Of New York University | Influenza viruses and uses thereof |
MX2017001011A (en) | 2014-07-21 | 2018-05-28 | Novartis Ag | Treatment of cancer using humanized anti-bcma chimeric antigen receptor. |
US11542488B2 (en) | 2014-07-21 | 2023-01-03 | Novartis Ag | Sortase synthesized chimeric antigen receptors |
EP3172234B1 (en) | 2014-07-21 | 2020-04-08 | Novartis AG | Treatment of cancer using a cd33 chimeric antigen receptor |
EP3193915A1 (en) | 2014-07-21 | 2017-07-26 | Novartis AG | Combinations of low, immune enhancing. doses of mtor inhibitors and cars |
EP4205749A1 (en) | 2014-07-31 | 2023-07-05 | Novartis AG | Subset-optimized chimeric antigen receptor-containing cells |
WO2016025880A1 (en) | 2014-08-14 | 2016-02-18 | Novartis Ag | Treatment of cancer using gfr alpha-4 chimeric antigen receptor |
TW202140557A (en) | 2014-08-19 | 2021-11-01 | 瑞士商諾華公司 | Treatment of cancer using a cd123 chimeric antigen receptor |
KR20210149228A (en) | 2014-09-17 | 2021-12-08 | 노파르티스 아게 | Targeting cytotoxic cells with chimeric receptors for adoptive immunotherapy |
MA41044A (en) | 2014-10-08 | 2017-08-15 | Novartis Ag | COMPOSITIONS AND METHODS OF USE FOR INCREASED IMMUNE RESPONSE AND CANCER TREATMENT |
AU2015333687B2 (en) | 2014-10-14 | 2021-03-18 | Dana-Farber Cancer Institute, Inc. | Antibody molecules to PD-L1 and uses thereof |
WO2016090034A2 (en) | 2014-12-03 | 2016-06-09 | Novartis Ag | Methods for b cell preconditioning in car therapy |
TWI746437B (en) | 2015-04-08 | 2021-11-21 | 瑞士商諾華公司 | Cd20 therapies, cd22 therapies, and combination therapies with a cd19 chimeric antigen receptor (car)- expressing cell |
CN114272371A (en) | 2015-07-29 | 2022-04-05 | 诺华股份有限公司 | Combination therapy comprising anti-PD-1 antibody molecules |
PT3317301T (en) | 2015-07-29 | 2021-07-09 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
EP3316902A1 (en) | 2015-07-29 | 2018-05-09 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
KR20180088907A (en) | 2015-12-17 | 2018-08-07 | 노파르티스 아게 | Antibody molecules to PD-1 and uses thereof |
WO2017149515A1 (en) | 2016-03-04 | 2017-09-08 | Novartis Ag | Cells expressing multiple chimeric antigen receptor (car) molecules and uses therefore |
CN116769050A (en) | 2016-07-20 | 2023-09-19 | 犹他大学研究基金会 | CD229 CAR T cells and methods of use thereof |
TW202340473A (en) | 2016-10-07 | 2023-10-16 | 瑞士商諾華公司 | Treatment of cancer using chimeric antigen receptors |
CN109996809A (en) | 2016-11-14 | 2019-07-09 | 诺华股份有限公司 | Composition relevant to fusogenic protein MINION, method and therapeutical uses |
US10196616B2 (en) | 2017-02-15 | 2019-02-05 | The United States Of America, As Represented By The Secretary Of Agriculture | Altered avian virus for in-ovo inoculation and methods of use thereof |
CN111511907A (en) | 2017-03-14 | 2020-08-07 | 加利福尼亚大学董事会 | Whole genome identification of immune escape functional regions in viruses |
WO2018187191A1 (en) | 2017-04-03 | 2018-10-11 | Jounce Therapeutics, Inc | Compositions and methods for the treatment of cancer |
WO2018201056A1 (en) | 2017-04-28 | 2018-11-01 | Novartis Ag | Cells expressing a bcma-targeting chimeric antigen receptor, and combination therapy with a gamma secretase inhibitor |
US20200179511A1 (en) | 2017-04-28 | 2020-06-11 | Novartis Ag | Bcma-targeting agent, and combination therapy with a gamma secretase inhibitor |
US20210038659A1 (en) | 2018-01-31 | 2021-02-11 | Novartis Ag | Combination therapy using a chimeric antigen receptor |
WO2019227003A1 (en) | 2018-05-25 | 2019-11-28 | Novartis Ag | Combination therapy with chimeric antigen receptor (car) therapies |
US11608382B2 (en) | 2018-06-13 | 2023-03-21 | Novartis Ag | BCMA chimeric antigen receptors and uses thereof |
US11702453B2 (en) | 2018-08-21 | 2023-07-18 | Regents Of The University Of Michigan | Materials and methods for inhibiting flavivirus infection |
WO2020069409A1 (en) | 2018-09-28 | 2020-04-02 | Novartis Ag | Cd19 chimeric antigen receptor (car) and cd22 car combination therapies |
US20220047633A1 (en) | 2018-09-28 | 2022-02-17 | Novartis Ag | Cd22 chimeric antigen receptor (car) therapies |
KR102370100B1 (en) * | 2019-02-15 | 2022-03-07 | 아이디바이오 주식회사 | Recombinant influenza virus to form protection against heterologous influenza viruses and gene delivery and therapeutic vaccine comprising the same |
WO2020185739A1 (en) | 2019-03-11 | 2020-09-17 | Jounce Therapeutics, Inc. | Anti-icos antibodies for the treatment of cancer |
KR102154795B1 (en) * | 2019-10-18 | 2020-09-22 | 주식회사 바이오포아 | New castle virus expression system for expressing the H5N6 surface antigen of avian influenza virus subtype H5N6 and avian vaccine using the same |
KR102154794B1 (en) * | 2019-10-18 | 2020-09-22 | 주식회사 바이오포아 | New castle virus expression system for expressing the H5N6 surface antigen of avian influenza virus subtype H9N2 and avian vaccine using the same |
CN114787188A (en) | 2019-11-05 | 2022-07-22 | 震动疗法股份有限公司 | Methods of treating cancer with anti-PD-1 antibodies |
IL292924A (en) | 2019-11-26 | 2022-07-01 | Novartis Ag | Cd19 and cd22 chimeric antigen receptors and uses thereof |
CN111117970B (en) * | 2020-01-20 | 2020-11-17 | 中国农业科学院哈尔滨兽医研究所(中国动物卫生与流行病学中心哈尔滨分中心) | Monoclonal antibody for recognizing N6 subtype avian influenza virus neuraminidase protein and application thereof |
MX2022013934A (en) * | 2020-05-07 | 2023-02-22 | Icahn School Med Mount Sinai | Recombinant newcastle disease virus expressing sars-cov-2 spike protein and uses thereof. |
WO2021229270A1 (en) | 2020-05-13 | 2021-11-18 | Laboratorio Avi-Mex, S.A. De C.V. | Recombinant vaccine against covid-19 in a viral vector |
CN112326963B (en) * | 2020-11-09 | 2024-02-06 | 扬州大学 | Application of eukaryotic expression type A influenza virus PB2cap protein |
AU2021378316A1 (en) | 2020-11-13 | 2023-06-01 | Novartis Ag | Combination therapies with chimeric antigen receptor (car)-expressing cells |
PE20210318A1 (en) * | 2021-01-08 | 2021-02-16 | Farm Veterinarios S A C | RECOMBINANT LIVE IMMUNOGENIC COMPOSITION INCLUDING NEWCASTLE DISEASE VIRUS (NDV) EXPRESSING THE S1 SUBUNIT AND THE SPIKE PROTEIN RBD OF SARS-COV-2 |
CN113069540B (en) * | 2021-03-15 | 2022-02-22 | 广州恩宝生物医药科技有限公司 | Novel coronavirus vaccine based on influenza virus vector and preparation method thereof |
TW202307210A (en) | 2021-06-01 | 2023-02-16 | 瑞士商諾華公司 | Cd19 and cd22 chimeric antigen receptors and uses thereof |
WO2023173032A2 (en) * | 2022-03-10 | 2023-09-14 | Icahn School Of Medicine At Mount Sinai | Recombinant newcastle disease viruses and immunogenic compositions for use in preventing covid-19 |
Family Cites Families (128)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4071618A (en) | 1974-09-03 | 1978-01-31 | Research Foundation For Microbial Diseases Of Osaka University | Process for preparing virus disease live vaccines |
US4444887A (en) | 1979-12-10 | 1984-04-24 | Sloan-Kettering Institute | Process for making human antibody producing B-lymphocytes |
US4716111A (en) | 1982-08-11 | 1987-12-29 | Trustees Of Boston University | Process for producing human antibodies |
US5106619A (en) | 1983-12-20 | 1992-04-21 | Diamond Scientific Co. | Preparation of inactivated viral vaccines |
US4693981A (en) | 1983-12-20 | 1987-09-15 | Advanced Genetics Research Institute | Preparation of inactivated viral vaccines |
GB8703696D0 (en) | 1987-02-18 | 1987-03-25 | Oxford J S | Influenza vaccine |
DE3806565A1 (en) | 1988-03-01 | 1989-09-14 | Deutsches Krebsforsch | VIRUS-MODIFIED TUMOR VACCINES FOR THE IMMUNOTHERAPY OF TUMOR METAL KEYS |
DE3922444A1 (en) | 1988-03-01 | 1991-01-10 | Deutsches Krebsforsch | Virus modified tumour specific vaccine - contains immunostimulating substances, and is used in immuno-therapy of tumours |
US5223409A (en) | 1988-09-02 | 1993-06-29 | Protein Engineering Corp. | Directed evolution of novel binding proteins |
US5786199A (en) * | 1989-08-28 | 1998-07-28 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand RNA virus expression systems and vaccines |
US5854037A (en) * | 1989-08-28 | 1998-12-29 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand RNA virus expression systems and vaccines |
US6001634A (en) | 1989-08-28 | 1999-12-14 | Palese; Peter | Recombinant negative strand RNA viruses |
US5166057A (en) | 1989-08-28 | 1992-11-24 | The Mount Sinai School Of Medicine Of The City University Of New York | Recombinant negative strand rna virus expression-systems |
US5840520A (en) | 1989-08-28 | 1998-11-24 | Aviron | Recombinant negative strand RNA virus expression systems |
ATE139258T1 (en) | 1990-01-12 | 1996-06-15 | Cell Genesys Inc | GENERATION OF XENOGENE ANTIBODIES |
US6887699B1 (en) | 1990-05-22 | 2005-05-03 | Medimmune Vaccines, Inc. | Recombinant negative strand RNA virus expression systems and vaccines |
CA2118234A1 (en) | 1992-04-14 | 1993-10-28 | Peter Palese | Genetically engineered attenuated viruses |
CA2161671A1 (en) | 1993-04-30 | 1994-11-10 | Robert M. Lorence | Methods of treating and detecting cancer using viruses |
ATE257175T1 (en) | 1994-07-18 | 2004-01-15 | Conzelmann Karl Klaus Prof Dr | RECOMBINANT INFECTIOUS NON-SEGMENTED, NEGATIVE STRAND RNA VIRUS |
US6300090B1 (en) | 1994-07-29 | 2001-10-09 | The Rockefeller University | Methods of use of viral vectors to deliver antigen to dendritic cells |
US5716821A (en) | 1994-09-30 | 1998-02-10 | Uab Research Foundation | Prevention and treatment of respiratory tract disease |
US5891680A (en) | 1995-02-08 | 1999-04-06 | Whitehead Institute For Biomedical Research | Bioactive fusion proteins comprising the p35 and p40 subunits of IL-12 |
EP0822830B1 (en) | 1995-04-27 | 2008-04-02 | Amgen Fremont Inc. | Human anti-IL-8 antibodies, derived from immunized xenomice |
CA2219486A1 (en) | 1995-04-28 | 1996-10-31 | Abgenix, Inc. | Human antibodies derived from immunized xenomice |
US7153510B1 (en) | 1995-05-04 | 2006-12-26 | Yale University | Recombinant vesiculoviruses and their uses |
EP0780475B2 (en) | 1995-08-09 | 2006-07-19 | SCHWEIZ. SERUM- & IMPFINSTITUT BERN | Process for the production of infectious negative-strand RNA viruses |
CA2230033C (en) | 1995-09-27 | 2010-01-26 | Peter L. Collins | Production of infectious respiratory syncytial virus from cloned nucleotide sequences |
EP0855918A4 (en) | 1995-10-17 | 2002-08-14 | Univ Wayne State | Chicken interleukin-15 and uses thereof |
ES2345643T3 (en) | 1996-07-15 | 2010-09-28 | The Government Of The Usa, As Represented By The Department Of Health And Human Services | PRODUCTION OF VACCINES BASED ON ATTENTIONED SYNTHETIC RESPIRATORY VIRUS, FROM CLUTED NUCLEOTIDIC SEQUENCES. |
WO1998013501A2 (en) | 1996-09-27 | 1998-04-02 | American Cyanamid Company | 3' genomic promoter region and polymerase gene mutations responsible for attenuation in viruses of the order designated mononegavirales |
US5916771A (en) | 1996-10-11 | 1999-06-29 | Abgenix, Inc. | Production of a multimeric protein by cell fusion method |
EP2305027B1 (en) | 1996-12-03 | 2014-07-02 | Amgen Fremont Inc. | Transgenic mammals having human Ig loci including plural VH and Vkappa regions and antibodies produced therefrom |
US5891705A (en) | 1997-04-08 | 1999-04-06 | Pentose Pharmaceuticals, Inc. | Method for inactivating a virus |
HU221818B1 (en) | 1997-04-14 | 2003-01-28 | Micromet Ag | Novel method for the production of anti-human antigen receptors and uses thereof |
US6884414B1 (en) | 1997-04-30 | 2005-04-26 | Mount Sinai School Of Medicine Of New York University | Recombinant influenza viruses expressing tumor-associated antigens as antitumor agents |
US6235883B1 (en) | 1997-05-05 | 2001-05-22 | Abgenix, Inc. | Human monoclonal antibodies to epidermal growth factor receptor |
WO1998053078A1 (en) | 1997-05-23 | 1998-11-26 | The Government Of The United States Of America, As Represented By The Department Of Health And Humanservices | Production of attenuated parainfluenza virus vaccines from cloned nucleotide sequences |
ATE361973T1 (en) | 1997-07-11 | 2007-06-15 | Univ Yale | RHABDOVIRUS WITH A GENETICALLY MODIFIED CASE |
AU9389998A (en) | 1997-09-19 | 1999-04-12 | American Cyanamid Company | Attenuated respiratory syncytial viruses |
US20030044384A1 (en) | 1997-10-09 | 2003-03-06 | Pro-Virus, Inc. | Treatment of neoplasms with viruses |
US7470426B1 (en) | 1997-10-09 | 2008-12-30 | Wellstat Biologics Corporation | Treatment of neoplasms with viruses |
NZ503664A (en) | 1997-10-09 | 2002-08-28 | Pro Virus Inc | A method for purifying an RNA virus comprising generating a clonal virus and purifying the clonal virus by ultracentrifugation without pelleting |
US7780962B2 (en) | 1997-10-09 | 2010-08-24 | Wellstat Biologics Corporation | Treatment of neoplasms with RNA viruses |
ES2653557T3 (en) | 1998-06-12 | 2018-02-07 | Icahn School Of Medicine At Mount Sinai | Flu viruses attenuated with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
JP4441595B2 (en) | 1998-06-12 | 2010-03-31 | マウント シナイ スクール オブ メディシン オブ ニューヨーク ユニバーシティー | Interferon-inducible genetically engineered attenuated virus |
EP0974660A1 (en) | 1998-06-19 | 2000-01-26 | Stichting Instituut voor Dierhouderij en Diergezondheid (ID-DLO) | Newcastle disease virus infectious clones, vaccines and diagnostic assays |
US6146642A (en) | 1998-09-14 | 2000-11-14 | Mount Sinai School Of Medicine, Of The City University Of New York | Recombinant new castle disease virus RNA expression systems and vaccines |
US6544785B1 (en) | 1998-09-14 | 2003-04-08 | Mount Sinai School Of Medicine Of New York University | Helper-free rescue of recombinant negative strand RNA viruses |
US7052685B1 (en) | 1998-10-15 | 2006-05-30 | Trustees Of The University Of Pennsylvania | Methods for treatment of cutaneous T-cell lymphoma |
AT407958B (en) | 1999-02-11 | 2001-07-25 | Immuno Ag | INACTIVATED INFLUENZA VIRUS VACCINE FOR NASAL OR ORAL APPLICATION |
EP1035209A1 (en) | 1999-03-06 | 2000-09-13 | ARTEMIS Pharmaceuticals GmbH | Stable recombinant influenza viruses free of helper viruses |
PT1185615E (en) | 1999-04-06 | 2007-10-04 | Wisconsin Alumni Res Found | Recombinant influenza viruses for vaccines and gene therapy |
NZ550861A (en) | 1999-04-15 | 2009-03-31 | Wellstat Biologics Corp | Treatment of neoplasms with viruses |
WO2000067786A1 (en) | 1999-05-05 | 2000-11-16 | University Of Maryland | PRODUCTION OF NOVEL NEWCASTLE DISEASE VIRUS STRAINS FROM cDNAS AND IMPROVED LIVE ATTENUATED NEWCASTLE DISEASE VACCINES |
US20030224017A1 (en) | 2002-03-06 | 2003-12-04 | Samal Siba K. | Recombinant Newcastle disease viruses useful as vaccines or vaccine vectors |
US7820182B2 (en) * | 1999-07-09 | 2010-10-26 | The United States Of America As Represented By The Department Of Health And Human Services | Production of attenuated, human-bovine chimeric respiratory syncytial viruses for use in immunogenic compositions |
EP1194580B2 (en) | 1999-07-14 | 2010-08-25 | Mount Sinai School of Medicine of New York University | In vitro reconstitution of segmented negative-strand rna viruses |
AU7607900A (en) | 1999-09-22 | 2001-04-24 | Mayo Foundation For Medical Education And Research | Therapeutic methods and compositions using viruses of the recombinant paramyxoviridae family |
US6896881B1 (en) | 1999-09-24 | 2005-05-24 | Mayo Foundation For Medical Education And Research | Therapeutic methods and compositions using viruses of the recombinant paramyxoviridae family |
ES2246314T3 (en) | 2000-01-20 | 2006-02-16 | Universitat Zurich Institut Fur Medizinische Virologie | INTRATUMORAL ADMINISTRATION OF NUCLEIC NUDE ACID MOLECULES CODING IL-12. |
WO2001064860A2 (en) | 2000-03-02 | 2001-09-07 | Polymun Scientific Immunbiologische Forschung Gmbh | Recombinant influenza a viruses |
US6635416B2 (en) | 2000-04-10 | 2003-10-21 | Mount Sinai School Of Medicine Of New York University | Screening methods for identifying viral proteins with interferon antagonizing functions and potential antiviral agents |
JP5008244B2 (en) | 2000-06-23 | 2012-08-22 | ワイス・ホールディングズ・コーポレイション | Assembly of wild-type and chimeric influenza virus-like particles (VLPs) |
US20040241139A1 (en) * | 2000-07-20 | 2004-12-02 | Gerd Hobom | Recombinant influenza viruses with bicistronic vRNAs coding for two genes in tandem arrangement |
US6818444B2 (en) | 2000-08-04 | 2004-11-16 | Heska Corporation | Canine and feline proteins, nucleic acid molecules and uses thereof |
HU226256B1 (en) | 2000-11-02 | 2008-07-28 | Intervet Int Bv | A recombinant newcastle disease virus nucleoprotein mutant as a marker vaccine |
FR2823222B1 (en) | 2001-04-06 | 2004-02-06 | Merial Sas | VACCINE AGAINST NILE FEVER VIRUS |
WO2002102404A1 (en) | 2001-06-18 | 2002-12-27 | Institut National De La Recherche Agronomique | Uses of cytokines |
EP1485488A4 (en) | 2002-02-21 | 2005-03-02 | Sinai School Medicine | Recombinant negative strand virus rna expression systems and vaccines |
WO2003092579A2 (en) | 2002-04-29 | 2003-11-13 | Hadasit Medical Research Services And Development Company Ltd. | Compositions and methods for treating cancer with an oncolytic viral agent |
CN1675357A (en) | 2002-06-03 | 2005-09-28 | 株式会社载体研究所 | Pramyxovirus vectors encoding antibody and utilization thereof |
WO2004015572A1 (en) | 2002-08-07 | 2004-02-19 | Mmagix Technology Limited | Apparatus, method and system for a synchronicity independent, resource delegating, power and instruction optimizing processor |
SE0203159D0 (en) | 2002-10-25 | 2002-10-25 | Electrolux Ab | Handle for a motor driven handheld tool |
US9068234B2 (en) | 2003-01-21 | 2015-06-30 | Ptc Therapeutics, Inc. | Methods and agents for screening for compounds capable of modulating gene expression |
US20040197312A1 (en) | 2003-04-02 | 2004-10-07 | Marina Moskalenko | Cytokine-expressing cellular vaccine combinations |
ATE516305T1 (en) | 2004-02-27 | 2011-07-15 | Inst Nat Sante Rech Med | IL-15 BINDING SITE FOR IL-15-RALPHA AND SPECIFIC IL-15 MUTANTS ACTING AS AGONISTS/ANTAGONISTS |
AU2005248375B2 (en) | 2004-05-25 | 2010-12-16 | Medimmune, Llc | Influenza hemagglutinin and neuraminidase varians |
NZ581958A (en) | 2004-11-12 | 2011-01-28 | Bayer Schering Pharma Ag | Recombinant newcastle disease virus comprising a transgene encoding a prodrug-converting enzyme or protease for use in the treatment of cancer |
PL3263581T3 (en) | 2005-05-17 | 2021-05-04 | University Of Connecticut | Compositions and methods for immunomodulation in an organism |
US20090214590A1 (en) | 2005-07-08 | 2009-08-27 | Wayne State University | Virus Vaccines Comprising Envelope-Bound Immunomodulatory Proteins and Methods of Use Thereof |
EP1777294A1 (en) | 2005-10-20 | 2007-04-25 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | IL-15Ralpha sushi domain as a selective and potent enhancer of IL-15 action through IL-15Rbeta/gamma, and hyperagonist (IL15Ralpha sushi -IL15) fusion proteins |
EA016217B1 (en) | 2005-12-02 | 2012-03-30 | Маунт Синай Скул Оф Медсин | Chimeric viruses presenting non-native surface proteins and uses thereof |
JP5709356B2 (en) | 2006-01-13 | 2015-04-30 | アメリカ合衆国 | Codon optimized IL-15 and IL-15R-α genes for expression in mammalian cells |
MX2008011728A (en) | 2006-03-15 | 2008-12-10 | Intervet Int Bv | Recombinant newcastle disease virus expressing h5 hemagglutinin of avian influenza virus. |
EP2007423A2 (en) | 2006-04-05 | 2008-12-31 | Pfizer Products Incorporated | Ctla4 antibody combination therapy |
US20090175826A1 (en) | 2006-06-05 | 2009-07-09 | Elankumaran Subbiah | Genetically-engineered newcastle disease virus as an oncolytic agent, and methods of using same |
CA2658584A1 (en) | 2006-07-27 | 2008-01-31 | Ottawa Health Research Institute | Staged immune-response modulation in oncolytic therapy |
WO2008134879A1 (en) | 2007-05-04 | 2008-11-13 | University Health Network | Il-12 immunotherapy for cancer |
CA3028038C (en) | 2007-05-11 | 2021-08-10 | Altor Bioscience Corporation | Fusion molecules and il-15 variants |
NZ582150A (en) | 2007-06-18 | 2012-08-31 | Msd Oss Bv | Antibodies to human programmed death receptor pd-1 |
EP2724727A1 (en) | 2007-06-27 | 2014-04-30 | The United States of America, as Represented by The Secretary, Department of Health and Human Services | Complexes of IL-15 and IL-15R alpha and uses thereof |
EP2085092A1 (en) | 2008-01-29 | 2009-08-05 | Bayer Schering Pharma Aktiengesellschaft | Attenuated oncolytic paramyxoviruses encoding avian cytokines |
US8114845B2 (en) | 2008-08-25 | 2012-02-14 | Amplimmune, Inc. | Compositions of PD-1 antagonists and methods of use |
US8475790B2 (en) | 2008-10-06 | 2013-07-02 | Bristol-Myers Squibb Company | Combination of CD137 antibody and CTLA-4 antibody for the treatment of proliferative diseases |
CN101787373B (en) | 2009-01-23 | 2013-06-19 | 中国人民解放军第二军医大学东方肝胆外科医院 | Foreign gene-carrying recombinant virus vector efficiently produced in packaging cell and construction method and application thereof |
EP2987856B1 (en) | 2009-02-05 | 2018-07-25 | Icahn School of Medicine at Mount Sinai | Chimeric newcastle disease viruses and uses thereof |
US20100297072A1 (en) | 2009-05-19 | 2010-11-25 | Depinho Ronald A | Combinations of Immunostimulatory Agents, Oncolytic Virus, and Additional Anticancer Therapy |
EP3135294B1 (en) | 2009-08-14 | 2020-06-03 | The Government of the United States of America as represented by the Secretary of the Department of Health and Human Services | Use of il-15-il-15 receptor heterodimers to treat lymphopenia |
CA2775761C (en) | 2009-09-30 | 2018-08-28 | Memorial Sloan-Kettering Cancer Center | Combination immunotherapy for the treatment of cancer |
US10238734B2 (en) | 2010-03-23 | 2019-03-26 | The Regents Of The University Of California | Compositions and methods for self-adjuvanting vaccines against microbes and tumors |
WO2012000188A1 (en) | 2010-06-30 | 2012-01-05 | Tot Shanghai Rd Center Co., Ltd. | Recombinant tumor vaccine and method of producing such |
JP6251570B2 (en) | 2010-09-21 | 2017-12-20 | アルター・バイオサイエンス・コーポレーション | Multimeric IL-15 soluble fusion molecule and methods for its production and use |
US11149254B2 (en) | 2011-04-15 | 2021-10-19 | Genelux Corporation | Clonal strains of attenuated vaccinia viruses and methods of use thereof |
EP2537933A1 (en) | 2011-06-24 | 2012-12-26 | Institut National de la Santé et de la Recherche Médicale (INSERM) | An IL-15 and IL-15Ralpha sushi domain based immunocytokines |
ES2671728T3 (en) | 2011-10-11 | 2018-06-08 | Universität Zürich Prorektorat Mnw | Combination medicament comprising IL-12 and an agent for blocking T-lymphocyte inhibitor molecules for tumor therapy |
CA2862390A1 (en) | 2012-01-25 | 2013-08-01 | Dnatrix, Inc. | Biomarkers and combination therapies using oncolytic virus and immunomodulation |
EP2669381A1 (en) | 2012-05-30 | 2013-12-04 | AmVac AG | Method for expression of heterologous proteins using a recombinant negative-strand RNA virus vector comprising a mutated P protein |
US20150250837A1 (en) | 2012-09-20 | 2015-09-10 | Morningside Technology Ventures Ltd. | Oncolytic virus encoding pd-1 binding agents and uses of the same |
EP2911684B1 (en) | 2012-10-24 | 2019-06-19 | Novartis Ag | Il-15r alpha forms, cells expressing il-15r alpha forms, and therapeutic uses of il-15r alpha and il-15/il-15r alpha complexes |
AP2015008685A0 (en) | 2013-03-14 | 2015-08-31 | Sloan Kettering Inst Cancer | Newcastle disease viruses and uses thereof |
PL2986312T3 (en) | 2013-04-19 | 2022-04-19 | Cytune Pharma | Cytokine derived treatment with reduced vascular leak syndrome |
PL3030262T3 (en) | 2013-08-08 | 2020-07-27 | Cytune Pharma | Combined pharmaceutical composition |
BR112016002614B8 (en) | 2013-08-08 | 2023-10-03 | Hopitaux Paris Assist Publique | Immunocytokine and pharmaceutical composition |
DK3508209T3 (en) | 2013-09-03 | 2022-05-30 | Medimmune Ltd | COMPOSITIONS WITH AN ANIMATED NEWCASTLE DISEASE VIRUS AND METHODS OF USE FOR THE TREATMENT OF NEOPLASI |
CN107073099B (en) | 2014-02-27 | 2022-09-27 | 默沙东公司 | Combination methods for treating cancer |
EP2915569A1 (en) | 2014-03-03 | 2015-09-09 | Cytune Pharma | IL-15/IL-15Ralpha based conjugates purification method |
WO2016018920A1 (en) | 2014-07-29 | 2016-02-04 | Admune Therapeutics Llc | Il-15 and il-15ralpha heterodimer dose escalation regimens for treating conditions |
WO2016048903A1 (en) | 2014-09-22 | 2016-03-31 | Intrexon Corporation | Improved therapeutic control of heterodimeric and single chain forms of interleukin-12 |
BR112017012222A2 (en) | 2014-12-09 | 2018-01-30 | Merck Sharp & Dohme | methods for deriving a gene signature biomarker and for treating a patient having a tumor, method and system for testing a tumor sample removed from a patient, and kit. |
CN106166294A (en) | 2015-05-18 | 2016-11-30 | 国科丹蓝生物科技(北京)有限公司 | A kind of compound for preoperative intervention radiotherapy in the treatment tumor |
PT3317301T (en) | 2015-07-29 | 2021-07-09 | Novartis Ag | Combination therapies comprising antibody molecules to lag-3 |
EP3316902A1 (en) | 2015-07-29 | 2018-05-09 | Novartis AG | Combination therapies comprising antibody molecules to tim-3 |
CN114272371A (en) | 2015-07-29 | 2022-04-05 | 诺华股份有限公司 | Combination therapy comprising anti-PD-1 antibody molecules |
WO2017062953A1 (en) | 2015-10-10 | 2017-04-13 | Intrexon Corporation | Improved therapeutic control of proteolytically sensitive, destabilized forms of interleukin-12 |
SG11201803546WA (en) | 2015-11-09 | 2018-05-30 | Immune Design Corp | Compositions comprising lentiviral vectors expressing il-12 and methods of use thereof |
CN109415703B (en) | 2016-01-08 | 2024-08-30 | 雷普利穆内有限公司 | Modified oncolytic viruses |
EP3402517A4 (en) | 2016-01-15 | 2020-01-15 | RFEMB Holdings, LLC | Immunologic treatment of cancer |
US10344067B2 (en) | 2016-02-25 | 2019-07-09 | Deutsches Krebsforschungszentrum | RNA viruses expressing IL-12 for immunovirotherapy |
-
2006
- 2006-12-01 EA EA200801501A patent/EA016217B1/en unknown
- 2006-12-01 EP EP12173114.5A patent/EP2529747B1/en active Active
- 2006-12-01 AP AP2008004504A patent/AP2911A/en active
- 2006-12-01 MY MYPI20081903A patent/MY147379A/en unknown
- 2006-12-01 WO PCT/US2006/045859 patent/WO2007064802A1/en active Application Filing
- 2006-12-01 HU HUE12173114A patent/HUE037460T2/en unknown
- 2006-12-01 NZ NZ595736A patent/NZ595736A/en unknown
- 2006-12-01 HU HUE10173295A patent/HUE037464T2/en unknown
- 2006-12-01 SG SG2011082328A patent/SG176468A1/en unknown
- 2006-12-01 CL CL200603348A patent/CL2006003348A1/en unknown
- 2006-12-01 PT PT121731145T patent/PT2529747T/en unknown
- 2006-12-01 JP JP2008543465A patent/JP5603012B2/en active Active
- 2006-12-01 AU AU2006320490A patent/AU2006320490A1/en not_active Abandoned
- 2006-12-01 EP EP06838693A patent/EP1962893A4/en not_active Withdrawn
- 2006-12-01 TW TW095144777A patent/TWI531652B/en active
- 2006-12-01 US US11/633,130 patent/US9387242B2/en active Active
- 2006-12-01 EP EP10173295.6A patent/EP2251034B1/en active Active
- 2006-12-01 GE GEAP200610793A patent/GEP20135924B/en unknown
- 2006-12-01 ES ES12173114.5T patent/ES2668464T3/en active Active
- 2006-12-01 ES ES10173295.6T patent/ES2668018T3/en active Active
- 2006-12-01 PL PL10173295T patent/PL2251034T3/en unknown
- 2006-12-01 GB GB0811526.3A patent/GB2447187C/en active Active
- 2006-12-01 MX MX2008007056A patent/MX2008007056A/en active IP Right Grant
- 2006-12-01 CN CN2006800522857A patent/CN101365479B/en active Active
- 2006-12-01 PT PT101732956T patent/PT2251034T/en unknown
- 2006-12-01 CA CA2631812A patent/CA2631812C/en active Active
- 2006-12-01 KR KR1020087016080A patent/KR101492643B1/en active IP Right Grant
- 2006-12-01 PL PL12173114T patent/PL2529747T3/en unknown
-
2008
- 2008-05-29 IL IL191835A patent/IL191835A/en active IP Right Grant
- 2008-06-11 CR CR10064A patent/CR10064A/en unknown
- 2008-06-17 NO NO20082743A patent/NO20082743L/en not_active Application Discontinuation
- 2008-07-02 EC EC2008008599A patent/ECSP088599A/en unknown
-
2009
- 2009-07-24 HK HK09106837.5A patent/HK1127731A1/en unknown
-
2016
- 2016-03-03 US US15/059,927 patent/US10308913B2/en active Active
Non-Patent Citations (4)
Title |
---|
MAEDA ET AL.: "Live Bivalent Vaccine for Parainfluenza and Influenza Virus Infections", JOURNAL OF VIROLOGY, vol. 79, no. 11, June 2005 (2005-06-01), pages 6674 - 6679, XP003013375 * |
PEETERS ET AL.: "Generation of a recombinant chimeric Newcastle disease virus vaccine that allows serological differentiation between vaccinated and infected animals", VACCINE, vol. 19, 2001, pages 1616 - 1627, XP003013376 * |
SCHICKLI ET AL.: "Plasmid-only rescue of influenza A virus vaccine candidates", PHIL. TRANS. R. SOC. LOND., vol. 356, 2001, pages 1965 - 1973, XP002314283 * |
ZIMMER ET AL.: "A Chimeric Respiratory Syncytial Virus Fusion Protein Functionally Replaces the F and HN Glycoproteins in Recombinant Sendai Virus", JOURNAL OF VIROLOGY, vol. 79, no. 16, August 2005 (2005-08-01), pages 10467 - 10477, XP003013377 * |
Cited By (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8057803B2 (en) | 1998-06-12 | 2011-11-15 | Mount Sinai School Of Medicine | Attenuated negative strand viruses with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
US9387240B2 (en) | 1998-06-12 | 2016-07-12 | Icahn School Of Medicine At Mount Sinai | Attenuated negative strand viruses with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
US8765139B2 (en) | 1998-06-12 | 2014-07-01 | Icahn School Of Medicine At Mount Sinai | Attenuated negative strand viruses with altered interferon antagonist activity for use as vaccines and pharmaceuticals |
US9352033B2 (en) | 1998-06-12 | 2016-05-31 | Icahn School Of Medicine At Mount Sinai | Methods for the propagation of modified influenza viruses in embryonated eggs |
US8124101B2 (en) | 2004-06-01 | 2012-02-28 | Mount Sinai School Of Medicine | Genetically engineered swine influenza virus and uses thereof |
US10543268B2 (en) | 2004-06-01 | 2020-01-28 | Icahn School Of Medicine At Mount Sinai | Genetically engineered swine influenza virus and uses thereof |
US10098945B2 (en) | 2004-06-01 | 2018-10-16 | Icahn School Of Medicine At Mount Sinai | Genetically engineered swine influenza virus and uses thereof |
US8999352B2 (en) | 2004-06-01 | 2015-04-07 | Icahn School Of Medicine At Mount Sinai | Genetically engineered swine influenza virus and uses thereof |
US9549975B2 (en) | 2004-06-01 | 2017-01-24 | Icahn School Of Medicine At Mount Sinai | Genetically engineered swine influenza virus and uses thereof |
US10308913B2 (en) | 2005-12-02 | 2019-06-04 | Icahn School Of Medicine At Mount Sinai | Chimeric viruses presenting non-native surface proteins and uses thereof |
US9387242B2 (en) | 2005-12-02 | 2016-07-12 | Icahn School Of Medicine At Mount Sinai | Chimeric viruses presenting non-native surface proteins and uses thereof |
WO2008115785A2 (en) * | 2007-03-16 | 2008-09-25 | Wyeth | Multivalent avian influenza vaccines and methods |
WO2008115785A3 (en) * | 2007-03-16 | 2009-01-29 | Wyeth Corp | Multivalent avian influenza vaccines and methods |
WO2009035971A3 (en) * | 2007-09-10 | 2009-06-18 | Intervet Int Bv | Compositions and methods for preventing influenza infection in canines, felines and equines |
WO2009035971A2 (en) * | 2007-09-10 | 2009-03-19 | Intervet International B.V. | Compositions and methods for preventing influenza infection in canines, felines and equines |
US10035984B2 (en) | 2009-02-05 | 2018-07-31 | Icahn School Of Medicine At Mount Sinai | Chimeric newcastle disease viruses and uses thereof |
US8591881B2 (en) | 2009-02-05 | 2013-11-26 | Mount Sinai School Of Medicine | Chimeric Newcastle disease viruses and uses thereof |
US9217136B2 (en) | 2009-02-05 | 2015-12-22 | Icahn School Of Medicine At Mount Sinai | Chimeric Newcastle disease viruses and uses thereof |
US9849172B2 (en) | 2009-03-30 | 2017-12-26 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
WO2010117786A1 (en) | 2009-03-30 | 2010-10-14 | Mount Sinai School Of Medicine Of New York University | Influenza virus vaccines and uses thereof |
EP3009145A1 (en) | 2009-03-30 | 2016-04-20 | Mount Sinai School of Medicine of New York University | Influenza virus vaccines and uses thereof |
US9175069B2 (en) | 2009-05-26 | 2015-11-03 | Icahn School Of Medicine At Mount Sinai | Monoclonal antibodies against influenza virus generated by cyclical administration and uses thereof |
US8377450B2 (en) | 2009-11-30 | 2013-02-19 | United Cancer Research Institute | Clone of Newcastle disease virus, its manufacture and its application in the medical treatment of cancer |
US9701723B2 (en) | 2010-02-18 | 2017-07-11 | Icahn School Of Medicine At Mount Sinai | Vaccines for use in the prophylaxis and treatment of influenza virus disease |
EP3248615A1 (en) | 2010-03-30 | 2017-11-29 | Mount Sinai School of Medicine of New York University | Influenza virus vaccines and uses thereof |
EP3900740A1 (en) | 2010-03-30 | 2021-10-27 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
US9708373B2 (en) | 2010-03-30 | 2017-07-18 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccine and uses thereof |
US10179806B2 (en) | 2010-03-30 | 2019-01-15 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US10131695B2 (en) | 2011-09-20 | 2018-11-20 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
EP4241785A2 (en) | 2011-09-20 | 2023-09-13 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
EP2758075A4 (en) * | 2011-09-20 | 2015-05-20 | Sinai School Medicine | Influenza virus vaccines and uses thereof |
EP4241785A3 (en) * | 2011-09-20 | 2023-09-27 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
US9968670B2 (en) | 2012-12-18 | 2018-05-15 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
EP4154907A1 (en) | 2012-12-18 | 2023-03-29 | Icahn School of Medicine at Mount Sinai | Influenza virus vaccines and uses thereof |
US9371366B2 (en) | 2012-12-18 | 2016-06-21 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US10137189B2 (en) | 2012-12-18 | 2018-11-27 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US10583188B2 (en) | 2012-12-18 | 2020-03-10 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccines and uses thereof |
US9908930B2 (en) | 2013-03-14 | 2018-03-06 | Icahn School Of Medicine At Mount Sinai | Antibodies against influenza virus hemagglutinin and uses thereof |
US10544207B2 (en) | 2013-03-14 | 2020-01-28 | Icahn School Of Medicine At Mount Sinai | Antibodies against influenza virus hemagglutinin and uses thereof |
US10251922B2 (en) | 2013-03-14 | 2019-04-09 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
WO2014158811A1 (en) | 2013-03-14 | 2014-10-02 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
US11389495B2 (en) | 2014-02-27 | 2022-07-19 | Merck Sharp & Dohme Llc | Combination method for treatment of cancer |
US10736956B2 (en) | 2015-01-23 | 2020-08-11 | Icahn School Of Medicine At Mount Sinai | Influenza virus vaccination regimens |
US10029005B2 (en) | 2015-02-26 | 2018-07-24 | Boehringer Ingelheim Vetmedica Gmbh | Bivalent swine influenza virus vaccine |
WO2017088017A1 (en) * | 2015-11-24 | 2017-06-01 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in avian eggs |
US11118166B2 (en) | 2015-11-24 | 2021-09-14 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in avian eggs |
US10907133B2 (en) | 2015-11-24 | 2021-02-02 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in avian eggs |
US11174466B2 (en) | 2015-11-24 | 2021-11-16 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in cell culture |
US12054750B2 (en) | 2015-11-24 | 2024-08-06 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in cell culture |
US10626379B2 (en) | 2015-11-24 | 2020-04-21 | Commonwealth Scientific And Industrial Research Organisation | Production of viruses in cell culture |
US11266734B2 (en) | 2016-06-15 | 2022-03-08 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
US11865173B2 (en) | 2016-06-15 | 2024-01-09 | Icahn School Of Medicine At Mount Sinai | Influenza virus hemagglutinin proteins and uses thereof |
EP3542818A4 (en) * | 2016-11-17 | 2020-07-29 | Japan as Represented by The Director-General of National Institute of Infectious Diseases | Infectious disease vaccine using non-infectious paramyxovirus particle |
US11103574B2 (en) | 2016-11-17 | 2021-08-31 | Japan, as represented by the Director-General of National Institute of Infectious Disease | Infectious disease vaccine using non-infectious paramyxovirus particle |
US11254733B2 (en) | 2017-04-07 | 2022-02-22 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
US12030928B2 (en) | 2017-04-07 | 2024-07-09 | Icahn School Of Medicine At Mount Sinai | Anti-influenza B virus neuraminidase antibodies and uses thereof |
WO2018209194A2 (en) | 2017-05-12 | 2018-11-15 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
US12042534B2 (en) | 2017-05-12 | 2024-07-23 | Icahn School Of Medicine At Mount Sinai | Newcastle disease viruses and uses thereof |
WO2018218299A1 (en) * | 2017-05-31 | 2018-12-06 | Commonwealth Scientific And Industrial Research Organisation | Trait selection in avians |
EP3715458A4 (en) * | 2017-11-21 | 2021-12-01 | Ltd. Zhejiang Difference Biological Technology Co. | H7 avian influenza vaccine strain which differentiates infected from vaccinated animals, preparation method therefor, and application |
EP3715459A4 (en) * | 2017-11-21 | 2021-12-01 | Jiasheng Song | H9 avian influenza vaccine strain which differentiates infected from vaccinated animals, and preparation method therefor |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10308913B2 (en) | Chimeric viruses presenting non-native surface proteins and uses thereof | |
US8828406B2 (en) | Influenza viruses and uses thereof | |
US11865173B2 (en) | Influenza virus hemagglutinin proteins and uses thereof | |
Lee et al. | Avian influenza virus: prospects for prevention and control by vaccination | |
US9217157B2 (en) | Recombinant influenza viruses and uses thereof | |
CA3104297A1 (en) | Mosaic influenza virus hemagglutinin polypeptides and uses thereof | |
JP2022553342A (en) | Recombinant neuraminidase and use thereof | |
BRPI0619133B1 (en) | CHIMERIC NEWCASTLE DISEASE VIRUS, IMMUNOGENIC COMPOSITION, METHOD FOR PRODUCING AN IMMUNOGENIC FORMULATION, AND, USE OF A CHIMERIC VIRUS | |
Kawaoka et al. | Reverse Genetics Approaches for Rational Design of Inactivated and Live Attenuated Influenza Vaccines | |
Cai | Live-attenuated vaccines against influenza viruses and role of NS1 in host response |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 191835 Country of ref document: IL |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008543465 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008060906 Country of ref document: EG |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2631812 Country of ref document: CA Ref document number: MX/a/2008/007056 Country of ref document: MX Ref document number: 12008501307 Country of ref document: PH |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006320490 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: AP/P/2008/004504 Country of ref document: AP |
|
WWE | Wipo information: entry into national phase |
Ref document number: CR2008-010064 Country of ref document: CR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 569208 Country of ref document: NZ |
|
ENP | Entry into the national phase |
Ref document number: 0811526 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20061201 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 0811526.3 Country of ref document: GB |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2006838693 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10793 Country of ref document: GE Ref document number: 200801501 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: a200808696 Country of ref document: UA Ref document number: 08067535 Country of ref document: CO Ref document number: 3414/CHENP/2008 Country of ref document: IN |
|
ENP | Entry into the national phase |
Ref document number: 2006320490 Country of ref document: AU Date of ref document: 20061201 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200680052285.7 Country of ref document: CN |
|
ENP | Entry into the national phase |
Ref document number: PI0619133 Country of ref document: BR Kind code of ref document: A2 Effective date: 20080602 |