Nothing Special   »   [go: up one dir, main page]

WO2007060989A1 - Method and apparatus for detecting trace substances by surface-enhanced raman scattering (sers), and microchannel chip for detection of microanalyte - Google Patents

Method and apparatus for detecting trace substances by surface-enhanced raman scattering (sers), and microchannel chip for detection of microanalyte Download PDF

Info

Publication number
WO2007060989A1
WO2007060989A1 PCT/JP2006/323314 JP2006323314W WO2007060989A1 WO 2007060989 A1 WO2007060989 A1 WO 2007060989A1 JP 2006323314 W JP2006323314 W JP 2006323314W WO 2007060989 A1 WO2007060989 A1 WO 2007060989A1
Authority
WO
WIPO (PCT)
Prior art keywords
analyte
parallel
mixture
recesses
grooves
Prior art date
Application number
PCT/JP2006/323314
Other languages
French (fr)
Japanese (ja)
Inventor
Tomohiro Marui
Akito Sekiguchi
Original Assignee
Intellectual Property Bank Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Property Bank Corp. filed Critical Intellectual Property Bank Corp.
Publication of WO2007060989A1 publication Critical patent/WO2007060989A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons

Definitions

  • SERS surface enhanced Raman scattering
  • the present invention relates to a trace substance detection method and apparatus by surface enhanced Raman scattering (SERS).
  • SERS surface enhanced Raman scattering
  • the Raman scattering enhancement effect in the vicinity of the metal fine particles in the dried body obtained by drying the colloid in which the metal fine particles are suspended is used.
  • the present invention also utilizes a relatively clean metal surface that induces surface plasmon polaritons with irradiated light energy.
  • a metal surface that has the effect of further enhancing surface enhanced Raman scattering (SERS) in the vicinity of the metal surface is tentatively referred to as a “metal surface having a plasmon mirror effect”, and the metal surface is used.
  • the metal surface having the plasmon mirror effect is preferably a gold clean surface or a silver clean surface.
  • Patent Document 1 discloses a simple method for producing a substrate exhibiting high SERS activity by dispersing a SERS base material in a liquid and fixing it on a solid surface.
  • Patent Document 2 is also a method of forming a SERS substrate in which particles are periodically aligned and deposited by repeatedly pulling up a flat plate immersed in a solution containing metal fine particles at a predetermined speed.
  • a colloidal SERS substrate is easier to produce than a solid-phase SERS substrate, but has the disadvantage that the SERS activity disappears when it is separated and precipitated or immediately after separation and precipitation. For this reason, a method of stabilizing a SERS substrate for a long period of time with a clay-like substance such as smectite (see Patent Document 4) has been studied.
  • capillary capillary
  • Patent Document 6 It is also known that analytes and colloidal SERS substrates are mixed in a capillary phenomenon (capillary), and SERS Raman signals are analyzed to detect trace substances.
  • Patent Document 8 discloses a trace substance detection method and apparatus using the "Blasmon mirror effect".
  • the plasmon mirror effect means that the nanoparticles are self-assembled (self-aligned) in the vicinity of a relatively clean metal surface that induces surface plasmon polaritons with the same light energy, and a stronger SERS activity is obtained. is there.
  • the conditions and mechanism for obtaining the plasmon mirror effect are not clear, but it is considered important to self-assemble the nanoparticles in the vicinity of a relatively clean metal surface. (See Patent Document 8).
  • a group of nanoparticles is self-assembled on the metal surface, and metal deposition is further performed on the upper surface thereof, or nanoparticles are stacked in two steps on the metal surface to form a sandwich.
  • metal deposition is further performed on the upper surface thereof, or nanoparticles are stacked in two steps on the metal surface to form a sandwich.
  • sandwich Substrates J or “Sandwich architecturej is also known.
  • a strong sandwich configuration can provide stronger SERS activity than a single layer (see Patent Document 9, Non-Patent Document 6, and Non-Patent Document 7).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-077362 “Method for creating surface-enhanced Raman scattering active substrate” (Keio University)
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-170334 “Raman scattering measurement sensor and manufacturing method thereof” (Japan Science and Technology Agency, etc.)
  • Patent Document 3 Japanese Laid-Open Patent Publication No. 2005-233637 “Raman Spectroscopic Analysis with Gold Nanorod Thin Film” (Japan Science and Technology Agency)
  • Patent Document 4 Japanese Patent Application Laid-Open Publication No. 2004-205435 “Analytical method of binding analysis target substance that does not require labeling dye and analysis kit used therefor” (Fukuo Takao)
  • Patent Document 5 Japanese Laid-Open Patent Publication No. 2005-219184 “Metal Nano-Triangular Column Structure for Single-Molecular Raman Spectroscopy: Array Substrate Formation Method and Single-Molecule Analysis Method Using the Same” (National Institute of Advanced Industrial Science and Technology) No. "Capillary electrophoresis detector” (Nippon Telegraph and Telephone Corporation)
  • Patent Document 7 Special Table 2005-507500 Publication “Detection of microfluids by surface-enhanced resonance Raman scattering” (University of Strathclyde et al.)
  • Patent Document 8 International Publication WO2005 114298 Publication ⁇ OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERS J VP HODLINGS.LLC
  • Patent Document 9 US Patent US6149868 ⁇ Surface enhanced raman scattering from meta
  • Non-Patent Document 2 Takayuki Okamoto (RIKEN) “Metal Nanoparticle Interaction and Biosen Survey Research on Sir ”2002 Grant-in-Aid for Scientific Research (Basic Research C)“ Survey Research on Localization of Surface Brasmon and Its Application ”Research Results Report Individual Report
  • Non-Patent Document 3 Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM.TSERRS.In situ substrate formation and improved detection using microfluidic sJ Anal Chem. 2002 Apr 1; 74 (7) : 1503-8.
  • Non-Patent Document 4 Jaeyoun Kim, Gang L. Liu, and Luke P. Lee, ⁇ Lens- scanning Raman microspectroscopy system using compact disc optical pickup technology '', 13 June 2 005 Vol. 13, No. 12 OPTICS EXPRESS 4780
  • Non-Patent Document 5 Cameron L. Jones ⁇ ⁇ Cryptograpmc Hash Functions and CD-Based Optical Biosensors '', Problems of Nonlinear Analysis in Engineering Systems.No.2 (23), v.ll, 2005, pp.17-36.
  • Non-Patent Document 6 Jacquitta K. Daniels and George and humanov (Clemson University) “Na noparticle— Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering” J. Phys. Chem. B, 109 (38), 17936 -17942, 2005.
  • Non-Patent Document 7 Orendorff, CJ Gole, A. Sau, TK Murphy, CJ (University of South Carolina) ⁇ Surface- enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15 ; 77 (10): 3261-6.
  • An object of the present invention is to propose a method and a device that are more practical than conventional methods and devices for detecting trace substances using a SERS substrate or a SERS substrate.
  • the present invention proposes a method and apparatus that uses a colloidal SERS substrate without using a substrate in which metal fine particles are aligned in a solid phase, but does not cause a problem of separation and deposition of the substrate.
  • the present invention (Claim 1) is a method for discriminating and detecting a trace amount of analyte with surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where the analyte and metal fine particles are close to each other.
  • the step of supplying the mixture of the analyte and the metal fine particle colloid to the solid flat surface in which the plurality of grooves or the plurality of parallel recesses are arranged along the direction in which the grooves or the recesses are arranged is the same as that of electric energy. It may be a process of spraying the mixture onto a stationary solid surface by the pressure due to the volume change of the changing piezoelectric element.
  • the mixture supplying step of the present invention (Claim 2), after bringing the mixture into contact with the stationary solid plane, the mixture or the solid plane is moved in the direction in which the grooves or recesses are arranged. Is preferably supplied to the solid plane along the direction of the grooves or recesses. If supplied in this way, the mixture is smoothly extended. If the supply is not done in this way, it may not be spread and become a lump.
  • the colloidally prepared metal fine particle colloid is a clay-like material such as smectite, and it is not necessary to stabilize the SERS substrate for a long period of time.
  • known metal fine particle colloids obtained by reduction of metal salts such as citrate reduction of silver salts such as silver nitrate and reduction of silver salts such as silver nitrate with borohydride (borane).
  • borohydride reagent sodium borohydride is often used.
  • the solid to be dried is preferably glass or polycarbonate. Conventionally, it has been difficult to dry and observe a liquid phase mixture of metal fine particle colloid and analyte on a solid surface. In this plan, it is possible to prepare only ordinary metal fine particle colloids, mix them with an analyte, dry it, and observe the dried body without any particular elaboration of the stability.
  • FIGS. 2 to 4 The conventional method is shown in FIGS. 2 to 4, and the method of the present invention contrasted with this is shown in FIG.
  • SS is a known SERS substrate
  • SB is a bottle containing a known SERS substrate (SERS vial)
  • SX is a solid plane of the present plan for supplying a mixture of metal fine particle colloid and analyte. Or a plurality of parallel recesses are provided.
  • Ev indicates a part of a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses.
  • a dried body of a dried analyte and metal colloid mixture is shown.
  • P is a liquid supply means such as a micropipette.
  • Fig. 6 shows a flowchart of the method for detecting trace substances according to the present invention.
  • Fig. 5 shows a plurality of parallel grooves arranged on the solid plane SX of the present invention
  • Fig. 9 shows a plurality of concave portions arranged in parallel.
  • G in the figure is the interval between the grooves of 5 m or less arranged in parallel or the interval of the arrangement of the recesses of 5 ⁇ m or less.
  • the mixture of metal fine particle colloid and analyte supplied to the site with multiple parallel grooves or multiple parallel recesses becomes a thin and large surface area extended at the groove or recess site, and the drying phenomenon proceeds quickly. To do.
  • the groove or the concave portion is made to have a hydrophilic surface or a mixture of a hydrophilic surface and a hydrophobic surface, it may be effective for extending the mixture. Therefore, a hydrophilic / hydrophobic surface treatment may be appropriately performed. That is, (Claim 6), there is a difference between the water affinity of the plurality of groove recess surface materials arranged in parallel and the water affinity of the groove protrusion surface material, or the water affinity of the plurality of recess surface materials arranged in parallel There should be a difference in the water affinity of the surface material other than the recess.
  • Fig. 8 shows an optical micrograph of the condition in which the dried body was formed in the groove after standing for 5 minutes. Oligonucleotide has approximately 1000 bases. Similarly, the polycarbonate is provided with recesses of approximately 2 ⁇ m in length, approximately 0.5 m deep, approximately 0. Fig. 10 shows an optical micrograph of the condition in which the dried body was formed in the recess after standing for a minute.
  • FIG. 7 shows an example of Raman spectrum data obtained by the trace substance detection method of the present invention.
  • FF is a position that shows the Raman spectrum observed when a laser beam is irradiated after moving through a part of F that is dried by Ev.
  • is the position of the Raman spectrum that is observed when the part is moved linearly and irradiated with laser.
  • Ev indicates a part of a solid plane in which a plurality of parallel grooves or a plurality of parallel recesses are arranged
  • the present invention uses a colloidal SERS substrate, separation and precipitation of the substrate is not a problem. Therefore, it is practical because it suffices to prepare only ordinary colloidal metal fine particles that do not devise any means to stabilize the substrate.
  • it is practical because it suffices to prepare only ordinary colloidal metal fine particles that do not devise any means to stabilize the substrate.
  • Oh In the detection of trace substances, it may take time to identify the observation site.
  • the position of the groove or recess is known, so it can be observed quickly.
  • FIG. 1 Schematic diagram showing the work flow of the method for detecting a trace substance of the present invention.
  • FIG.2 Schematic diagram of the first method for producing a known SERS substrate (drop-and-dry method) and the method for detecting minute substances using it
  • FIG. 3 Schematic diagram of the second method for producing a known SERS substrate and the method for detecting trace substances using it.
  • the metal particles formed on the interface in the form of an LB film (Langmuir-Blodgett film) are trapped! SERS substrate manufacturing method
  • FIG. 4 Schematic diagram of a known SERS substrate (not a substrate because it is liquid) that has been designed to stabilize metal colloids for a long period of time and a method for detecting trace substances using it.
  • FIG. 5 is an explanatory diagram of a solid plane provided with parallel grooves.
  • the distance G between the parallel grooves is 5 microns or less.
  • FIG. 7 shows an example of Raman spectrum data obtained by the method for detecting a trace substance of the present invention.
  • FF is a position that shows the Raman spectrum observed when the laser beam is irradiated after moving in a straight line through a part of F that is dried by Ev.
  • N is F, and the laser beam is observed after moving the part linearly. The position showing the man spectrum.
  • FIG. 8 is an optical micrograph of a surface obtained by drying a mixture of silver nanoparticle colloid and a nucleic acid (analyte) analyte on a solid surface provided with parallel grooves of about 2 microns. The part written with a brush is the dry mixture.
  • FIG. 9 is an explanatory diagram of a solid plane provided with a plurality of parallel recesses.
  • the gap G between the multiple concave groups in parallel is 5 microns or less.
  • FIG. 10 An optical microscope photograph of a surface obtained by drying a mixture of silver nanoparticle colloid and nucleotide (nucleic acid) analyte on a solid surface having approximately 2 micrometer concave portions arranged in parallel. A site like a deposit is a dry mixture.
  • FIG. 12 Schematic diagram showing the work flow of the trace amount detection method of this proposal using multiple 8-strip multipipettes
  • A is in standby state
  • B is the first 8-strip multipipette with metal particulate colloid
  • the liquid phase mixture of id and 8 analytes is in contact with the solid plane at the same time
  • C moves the solid plane and supplies Ev to the colloid 'analyte mixture in the first 8 multipipette. It is in a state.
  • FIG. 13 Schematic diagrams ( a , b, c, d) showing the work flow of the trace substance detection method of this proposal using multiple 8-series multipipettes are 8 analysts for MP1, MP2, MP3 and MP4, respectively.
  • E Al, A2, A3, A4, respectively
  • the liquid phase mixture is simultaneously brought into contact with the solid plane, the solid plane is moved, and the colloid-analyte mixture is supplied to Ev.
  • F Move Rp to the position of A1 supplied by MP1 and dried, move Rh traverse on Rp, irradiate the laser for Raman analysis, receive Raman scattered light and collect data.
  • h collects Raman scattered light data of A2 supplied with MP2 and dried.
  • (i, j) collects Raman scattered light data of A3 supplied and dried by MP3.
  • (k, 1) collects Raman scattered light data of A3 supplied by MP3 and dried.
  • FIG.14 An example of the spreading means for extending the mixture on the solid plane to the solid plane.
  • Z has a plane that is roughly parallel to the solid plane, and the mixture is thinly stretched on the plane to increase the surface area and dry. To promote.
  • FIG. 16 Flow chart of the method for detecting a trace substance of the present invention (in the case of a metal surface having a plasmon mirror effect)
  • FIG. 17 is an explanatory view of a metal surface having a plasmon mirror effect in which a plurality of parallel recesses are arranged.
  • the distance G between the plurality of concave groups arranged in parallel is 5 microns or less.
  • the first low-pressure cavity (low-pressure chamber) to dry the analyte and metal colloid mixture, and to seal the area where Va becomes low-pressure
  • Vb is used to suck and move the analyte and metal colloid mixture.
  • P5 Channel for drying mixed metal colloid and analyte from reduced metal salt third channel
  • SX Ev is placed on the solid surface of the present plan, on which a mixture of metal fine particle colloid and analyte is supplied
  • the interval between the plurality of parallel grooves or the interval between the plurality of parallel recesses is 5 micrometers or less, and the depth of the grooves or recesses is 1 micrometer or less.
  • a mixture of 1-10 microliters of analyte and 1-10 microliters of metal particulate colloid is supplied to the solid surface.
  • the dried product according to the present invention (Claim 8) is obtained by mixing an analyte and a metal fine particle colloid and drying.
  • a dried body for detecting an analyte discrimination wherein a plurality of grooves arranged in parallel at intervals of 5 ⁇ m or less or a plurality of grooves arranged in parallel at intervals of 5 ⁇ m or less are disposed on the solid flat grooves or the recesses.
  • 1 to 10 microliters of metal along the direction of the alignment Fine particle colloid and 1 to: Drying by supplying a mixture of LO microliters of analyte is a dried body of width 5 microns or less and length 10 microns or more .
  • the analyte and the colloid may be caused to flow in the flow path.
  • (Claim 4) a step of fluidly mixing an analyte and a metal colloid prepared in advance in a liquid phase, and a plurality of parallel grooves or a plurality of parallel recesses provided in the fluid mixing step.
  • This is a method for detecting trace substances by surface-enhanced Raman scattering, which has a step of observing Raman scattered light by irradiating the dried mixture obtained in step 1 with laser light.
  • the interval between the plurality of parallel grooves arranged in the flow portion or the interval between the plurality of parallel recesses is 5 microns. It is preferable that the depth of the groove or the recess is 1 micrometer or less.
  • the water affinity of the plurality of groove recess surface materials arranged in parallel there is a difference between the water affinity of the plurality of groove recess surface materials arranged in parallel and the water affinity of the groove projection surface material, or the water affinity of the plurality of recess surface materials arranged in parallel
  • the water affinity of the surface material other than the recesses is a difference between the water affinity of the surface material other than the recesses.
  • An apparatus for carrying out the method of the present invention comprises a solid plane provided with a plurality of grooves arranged in parallel at intervals of 5 microns or less or a plurality of recesses arranged in parallel at intervals of 5 microns or less.
  • a solid surface provided with a mixing means for mixing an analyte and a metal colloid prepared in advance and a mixture obtained by the mixing means in which a plurality of parallel grooves or a plurality of parallel recesses are arranged.
  • the means for supplying the mixture obtained by the mixing means to a solid flat surface provided with a plurality of parallel grooves or a plurality of parallel recesses along the direction in which the grooves or the recesses are arranged is a piezoelectric element whose volume is changed by electric energy. It may be a means for spraying the mixture onto a stationary solid surface by the pressure due to the volume change.
  • Another apparatus for carrying out the method of the present invention by flowing an analyte and a colloid in a flow path is a plurality of grooves arranged in parallel at intervals of 5 microns or less, or 5 microns or less.
  • An apparatus having a flow path having a solid plane as an inner surface with a plurality of recesses arranged in parallel at intervals, and a fluid mixing means for fluidly mixing an analyte and a metal particulate colloid prepared in advance in a liquid phase;
  • a flow transfer means for flow-transferring the mixture obtained by the flow mixing means to a flow path having a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses as an inner surface; and a plurality of grooves paralleled by the flow transfer means or Drying means for standing and drying the mixture transferred to a solid plane provided with a plurality of parallel recesses, and observing Raman scattered light by irradiating the dried mixture obtained by the drying means with laser light Means to This is a detection device for trace substances.
  • the drying means for drying (Claim 13) of the apparatus of the present invention may also serve as a pressure reducing means for lowering the solid plane below atmospheric pressure. It may be combined with a V-type evaporator (constant pressure dryer).
  • the drying means (Claim 14) may also have an extending means for extending the mixture on the solid plane to the solid plane.
  • the extending means has, for example, a surface substantially parallel to the solid surface disposed on the solid surface, and the mixture is thinly stretched on the surface to increase the surface area to promote drying (see FIG. 14).
  • a configuration in which a plurality of analytes can be supplied simultaneously may be adopted.
  • a mixture of analyte and metal fine particle colloid is dispensed to each of a plurality of 8-multipipette MP1, MP2, MP3, and MP4 pipettes using a known automatic dispensing means.
  • a plurality of grooves arranged in parallel with a circumferential track on a solid plane or a plurality of parallel recesses arranged in a circle are prepared.
  • Circle While rotating the disk-shaped solid plane around the target axis, MP1, MP2, MP3, and MP4 sequentially supply the mixture along the circumferential direction of the grooves or recesses (see Fig. 13).
  • the pickup Rp with the laser irradiation head Rh for Raman analysis is moved to the mixture supply position, and the surface is enhanced by irradiating the laser beam while traversing Rp on the Rh (lateral movement).
  • the surface is enhanced by irradiating the laser beam while traversing Rp on the Rh (lateral movement).
  • Non-Patent Document 4 discloses a Raman device and an applied technology using an optical device portion of a known CD (Compact Disk) player.
  • Non-Patent Document 5 discloses a technique for analyzing a biological substance using a known CD (Compact Disc). By combining these with the present invention, it is possible to easily realize a compact trace substance discrimination detection device that is small and portable.
  • the apparatus using flow may be implemented by being incorporated in the microchannel described in Patent Document 7 and Non-Patent Document 3.
  • the micro-channel for detecting a small amount of analyte by a method for discriminating and detecting a small amount of analyte with surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where the analyte and metal fine particles are close to each other.
  • a micro-channel chip having a third channel having a surface on which a plurality of grooves continuous in parallel with the flow direction or a plurality of recesses parallel to the flow direction are arranged at the confluence of the first second flow channel Please implement as.
  • FIG. 11 is an explanatory diagram of the microchannel chip of the present invention.
  • W1 is a metal salt solution introduction hole (hole)
  • W2 is a metal salt reducing agent solution introduction well (hole)
  • W3 is an analyte introduction well (hole).
  • P1 is a channel that transports metal salt and metal salt reducing agent mixed (first channel)
  • P2 is a channel that transports analyte (second channel)
  • P3 is a metal core made of a reduced metal salt.
  • a first low-pressure cavity (low-pressure chamber) Ca that is connected to the first low-pressure suction source Va and seals the third flow path P5 may be provided.
  • Ca should be made of a material with small attenuation of the laser and Raman scattered light for Raman observation, or a certain type of material should be made to exclude Ca and be excluded after drying to observe Raman.
  • the solid surface may be a metal surface having a plasmon mirror effect (see FIGS. 15 to 18). .
  • the plasmon mirror effect will be supplemented.
  • the plasmon mirror effect is not academically recognized.
  • the surface on which the metal colloid is dropped is called the ⁇ lower layer ''
  • the lower layer is made of glass resin and the lower layer is made of metal
  • the electromagnetic enhancement field called “gap mode” described in Patent Document 8 between the lower layer metal and the upper layer metal fine particles is unknown and has not been acknowledged or verified scientifically.
  • a supplementary explanation will be given for the formation of a metal surface having a plasmon mirror effect.
  • the lower layer is a glass resin surface and the lower layer is a metal deposition surface that is simply formed on an arbitrary component layer, the latter gives a larger Raman signal. That is, the effect of the present invention can be obtained even by using a simple method called metal vapor deposition. More preferably, a clean and flat metal surface described as “mirror surface” in Patent Document 8 is formed by the method described in Patent Document 8 or cited in Patent Document 8! If you do, you can get a much larger Raman signal.
  • the analyte is dropped on the microscopic Raman observation stage and dried. It is assumed that the measurement is performed on the observation stage of the microscopic Raman, but a configuration in which the analyte is supplied in a direction not necessarily downward such as an inverted microscope or a side surface or an upper surface of the microchannel is also conceivable. Therefore, the dropping step and the dropping means in this specification are a supply process and a supplying means in a broader sense, and it is also effective to use the spraying means as in claim 11 as one supply means.
  • the spraying means may be a known piezoelectric element that is practically used in ink jet printers!

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

This invention provides a method and apparatus for detecting trace substances with a SERS substrate that are highly practical and can realize rapid observation. In the method, a microanalyte is discriminated and detected using surface-enhanced Raman scattered light obtained by applying a laser beam to a site at which an analyte is close to metallic fine particles. The method comprises the steps of mixing an analyte with a previously provided metallic fine particle colloid, supplying the mixture of the analyte with the metallic fine particle colloid to a solid plane, on which a plurality of juxtaposed grooves or a plurality of juxtaposed recesses are arranged, along the direction of the arrangement of the grooves or recesses, drying the supplied mixture on the solid plane, and applying a laser beam onto the dried mixture in the grooves or recesses on the solid plane to observe Raman scattered light. The Raman scattered light is observed by applying a laser beam to the dried product formed in the plurality of juxtaposed grooves or the plurality of juxtaposed recesses. The solid surface may also be a metallic surface having a plasmon mirror effect.

Description

明 細 書  Specification
表面増強ラマン散乱 (SERS)による微量物質の検知方法ならびに装置、 微量アナライト検知用マイクロ流路チップ  Detection method and apparatus for trace substances by surface enhanced Raman scattering (SERS), microchannel chip for trace analyte detection
技術分野  Technical field
[0001] 本発明は、表面増強ラマン散乱 (SERS)による微量物質検知方法ならびに装置で ある。本発明では金属微粒子を懸濁したコロイドを乾燥した乾燥体中の金属微粒子 近傍のラマン散乱増強効果をもちいる。また本発明は照射された光エネルギーで表 面プラズモンポラリトンを誘起する比較的清浄な金属面を利用する。かかる金属面で 金属面近傍の表面増強ラマン散乱 (SERS)をさらに増強する影響を与えるものを「プ ラズモンミラー効果を有する金属面」と仮称し、その金属面を利用する。当然ながら、 プラズモンミラー効果を有する金属面は金の清浄面、銀の清浄面が好適である。 背景技術  [0001] The present invention relates to a trace substance detection method and apparatus by surface enhanced Raman scattering (SERS). In the present invention, the Raman scattering enhancement effect in the vicinity of the metal fine particles in the dried body obtained by drying the colloid in which the metal fine particles are suspended is used. The present invention also utilizes a relatively clean metal surface that induces surface plasmon polaritons with irradiated light energy. Such a metal surface that has the effect of further enhancing surface enhanced Raman scattering (SERS) in the vicinity of the metal surface is tentatively referred to as a “metal surface having a plasmon mirror effect”, and the metal surface is used. Naturally, the metal surface having the plasmon mirror effect is preferably a gold clean surface or a silver clean surface. Background art
[0002] 金や銀など貴金属ナノ粒子群のプラズモン効果による表面増強ラマン散乱 (Surfac e-Enhanced Raman Scattering=SERS)を観測することでアナライトをラマン分析して 微量物質を弁別検知することは公知である (非特許文献 1、非特許文献 2参照)。ナノ 粒子が存在しな 、状態ではラマン信号が微弱な極微量の物質でも、プラズモン効果 によってラマン信号が増強され、弁別検知することが可能となる。 SERSのプラズモン 効果発現メカニズムは十分解明されていないが、有害物質センサーなどへの応用を 目的に研究開発が行われている。ここで、弁別検知対象物質をアナライトとも呼ぶこ とにする。  [0002] It is well known to detect and detect trace substances by Raman analysis of analytes by observing surface enhanced Raman scattering (SERS) due to plasmon effect of noble metal nanoparticles such as gold and silver (See Non-Patent Document 1 and Non-Patent Document 2). In the absence of nanoparticles, the Raman signal is enhanced by the plasmon effect and can be discriminated even with a very small amount of material with a weak Raman signal. The mechanism of SERS plasmon effect expression has not been fully elucidated, but research and development is being conducted with the aim of applying it to harmful substance sensors. Here, the substance for discrimination detection is also called an analyte.
[0003] 金や銀など貴金属ナノ粒子を含有する SERS基材を滴下し乾燥することで SERS 活性のある固体基板を得る方法は公知である(図 2参照)。たとえば特許文献 1は、液 体中で SERS基材を分散させ固体表面に定着させ、高い SERS活性を示す基板の 簡便な作成法を開示して 、る。  [0003] A method for obtaining a solid substrate having SERS activity by dropping a SERS base material containing noble metal nanoparticles such as gold and silver and drying it is known (see FIG. 2). For example, Patent Document 1 discloses a simple method for producing a substrate exhibiting high SERS activity by dispersing a SERS base material in a liquid and fixing it on a solid surface.
[0004] ナノ粒子群をセルフアセンブル (自己整列)させ強 ヽ SERS活性を得る工夫も研究 されている。たとえば LB膜 (Langmuir- Blodgett膜)の製法に準じて界面にセルファ センブルさせた金属微粒子群を掬い取って金属微粒子が整列した SERS基板作成 する方法も公知である(図 3および特許文献 3参照)。特許文献 2も、金属微粒子の含 有溶液中に浸した平板を所定速度で引き上げることを繰り返して粒子を周期的に整 列堆積させた SERS基板を形成する方法である。 [0004] A device for obtaining strong SERS activity by self-assembling nanoparticle groups has also been studied. For example, a SERS substrate in which metal fine particles are lined up by scraping a group of metal fine particles that have been self-assembled at the interface according to the LB film (Langmuir-Blodgett film) manufacturing method. This method is also known (see FIG. 3 and Patent Document 3). Patent Document 2 is also a method of forming a SERS substrate in which particles are periodically aligned and deposited by repeatedly pulling up a flat plate immersed in a solution containing metal fine particles at a predetermined speed.
[0005] LB膜を利用したナノ粒子整列の工夫以外にも、 SERS基板製法が多く提案されて いる。たとえば、水との親和性 (親水 ·撥水性)をもつ表面を利用した SERS基板の製 法 (特許文献 5参照)がある。 [0005] Besides the contrivance of nanoparticle alignment using LB films, many SERS substrate manufacturing methods have been proposed. For example, there is a method for producing a SERS substrate using a surface having affinity for water (hydrophilicity / water repellency) (see Patent Document 5).
[0006] 以上のような固相の SERS活性基板ではなぐ貴金属ナノ粒子を懸濁させたコロイ ドを SERS基質 (液状なので基板とは言わない)として、これにアナライトを液相混合 したもので表面増強ラマン散乱を観測してアナライトを弁別検知することも公知である[0006] A colloid in which noble metal nanoparticles suspended in a solid-state SERS active substrate as described above is suspended as a SERS substrate (it is not called a substrate because it is liquid), and this is a liquid phase mixture of analyte. It is also known to detect analytes by observing surface-enhanced Raman scattering.
(図 4および特許文献 4参照)。 (See FIG. 4 and Patent Document 4).
[0007] コロイド SERS基質は、固相 SERS基板よりも作成が容易であるが、分離沈殿しや すぐ分離沈殿状態では SERS活性が消失するという欠点がある。そのため、スメクタ イトのような粘土質の物質で SERS基質を長期間安定ィ匕する方法 (特許文献 4参照) などが研究されている。 [0007] A colloidal SERS substrate is easier to produce than a solid-phase SERS substrate, but has the disadvantage that the SERS activity disappears when it is separated and precipitated or immediately after separation and precipitation. For this reason, a method of stabilizing a SERS substrate for a long period of time with a clay-like substance such as smectite (see Patent Document 4) has been studied.
[0008] また極微量のアナライトの分析には毛細管現象 (キヤピラリー)を利用することも公知 である (特許文献 6参照)。毛細管現象 (キヤピラリー)中でアナライトとコロイド SERS 基質を混合し、 SERSのラマン信号を分析して極微量物質を弁別検知することも公 知である。  [0008] It is also known to use a capillary phenomenon (capillary) for analysis of an extremely small amount of analyte (see Patent Document 6). It is also known that analytes and colloidal SERS substrates are mixed in a capillary phenomenon (capillary), and SERS Raman signals are analyzed to detect trace substances.
[0009] 同様に、マイクロリットルレベルの極微量のアナライトとコロイド SERS基質を公知の マイクロ流路で流動混合して、 SERSのラマン信号を分析して極微量物質を弁別検 知することも公知である (特許文献 7、非特許文献 3参照)。なお、非特許文献 4と非 特許文献 5は発明を実施するための最良の形態で引用する。  [0009] Similarly, it is also known that a microliter level trace amount of analyte and a colloidal SERS substrate are flow-mixed in a known microchannel, and the SERS Raman signal is analyzed to detect a trace amount substance. (See Patent Document 7 and Non-Patent Document 3). Non-Patent Document 4 and Non-Patent Document 5 are cited in the best mode for carrying out the invention.
[0010] 一方、特許文献 8にて「ブラズモンミラー効果」を利用した微量物質の検知方法なら びに装置が開示されている。ここでプラズモンミラー効果とは、照射された光エネルギ 一で表面プラズモンポラリトンを誘起する比較的清浄な金属面の近傍にナノ粒子群 をセルフアセンブル(自己整列)させ、さらに強い SERS活性を得ることである。プラズ モンミラー効果を得るための条件やその機序は明らかでないが、比較的清浄な金属 面の近傍にナノ粒子群をセルフアセンブル(自己整列)させることが重要であるとされ ている (特許文献 8参照)。 [0010] On the other hand, Patent Document 8 discloses a trace substance detection method and apparatus using the "Blasmon mirror effect". Here, the plasmon mirror effect means that the nanoparticles are self-assembled (self-aligned) in the vicinity of a relatively clean metal surface that induces surface plasmon polaritons with the same light energy, and a stronger SERS activity is obtained. is there. The conditions and mechanism for obtaining the plasmon mirror effect are not clear, but it is considered important to self-assemble the nanoparticles in the vicinity of a relatively clean metal surface. (See Patent Document 8).
[0011] さらに一方、金属面上にナノ粒子群をセルフアセンブル(自己整列)させ、その上部 にさらに金属蒸着する、または、金属面上にナノ粒子を二段に積層することでサンド イッチとした! "Sandwich SubstratesJまたは「Sandwich architecturejも公知である。力か るサンドイッチ構成で単層よりも強 ヽ SERS活性が得られる場合がある(特許文献 9、 非特許文献 6、非特許文献 7参照)。  [0011] On the other hand, a group of nanoparticles is self-assembled on the metal surface, and metal deposition is further performed on the upper surface thereof, or nanoparticles are stacked in two steps on the metal surface to form a sandwich. ! "Sandwich Substrates J" or "Sandwich architecturej is also known. In some cases, a strong sandwich configuration can provide stronger SERS activity than a single layer (see Patent Document 9, Non-Patent Document 6, and Non-Patent Document 7).
[0012] 特許文献 1:特開 2005-077362号公報「表面増強ラマン散乱活性基板の作成方法」 ( 学校法人慶應義塾)  Patent Document 1: Japanese Patent Laid-Open No. 2005-077362 “Method for creating surface-enhanced Raman scattering active substrate” (Keio University)
特許文献 2:特開 2004-170334号公報「ラマン散乱測定センサ及びその製造方法」( 科学技術振興機構ほか)  Patent Document 2: Japanese Patent Application Laid-Open No. 2004-170334 “Raman scattering measurement sensor and manufacturing method thereof” (Japan Science and Technology Agency, etc.)
特許文献 3:特開 2005-233637号公報「金ナノロッド薄膜によるラマン分光分析」(科 学技術振興機構)  Patent Document 3: Japanese Laid-Open Patent Publication No. 2005-233637 “Raman Spectroscopic Analysis with Gold Nanorod Thin Film” (Japan Science and Technology Agency)
特許文献 4:特開 2004-205435号公報「標識色素を不要とする結合性分析対象物質 の分析方法ならびにそれに用いる分析キット」(福岡隆夫)  Patent Document 4: Japanese Patent Application Laid-Open Publication No. 2004-205435 “Analytical method of binding analysis target substance that does not require labeling dye and analysis kit used therefor” (Fukuo Takao)
特許文献 5 :特開 2005-219184号公報「単一分子ラマン分光用金属ナノ三角柱構造 アレイ基板の形成方法及びそれによる単一分子分析法」(産業技術総合研究所) 特許文献 6 :特許第 3462339号公報「キヤピラリー電気泳動用検出器」(日本電信電話 株式会社)  Patent Document 5: Japanese Laid-Open Patent Publication No. 2005-219184 “Metal Nano-Triangular Column Structure for Single-Molecular Raman Spectroscopy: Array Substrate Formation Method and Single-Molecule Analysis Method Using the Same” (National Institute of Advanced Industrial Science and Technology) No. "Capillary electrophoresis detector" (Nippon Telegraph and Telephone Corporation)
特許文献 7:特表 2005-507500号公報「マイクロ流体の表面増強共鳴ラマン散乱法に よる検出」(ュニバーシティォブストラスクライドほか)  Patent Document 7: Special Table 2005-507500 Publication “Detection of microfluids by surface-enhanced resonance Raman scattering” (University of Strathclyde et al.)
特許文献 8 :国際公開 WO2005 114298公報「OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERS J VP HODLINGS.LLC  Patent Document 8: International Publication WO2005 114298 Publication `` OPTICAL SENSOR WITH LAYERED P LASMON STRUCTURE FOR ENHANCED DETECTION OF CHEMICAL GROUPS BY SERS J VP HODLINGS.LLC
特許文献 9 :米国特許 US6149868公報「Surface enhanced raman scattering from meta Patent Document 9: US Patent US6149868 `` Surface enhanced raman scattering from meta
1 nanoparticle-analyte-no Die metal substrate sandwiches」 (Michael J. Natan) 非特許文献 1:梶川浩太郎 (東工大)、三井圭太「局在プラズモン共鳴を利用したバイ ォセンシング」応用物理、 第 72卷、第 12号、 p.1541-1544 (2003) 1 nanoparticle-analyte-no Die metal substrate sandwiches ”(Michael J. Natan) Non-patent document 1: Kotaro Kajikawa (Tokyo Tech), Yuta Mitsui“ Bio-sensing using localized plasmon resonance ”Applied Physics, No. 72, No. 12, p.1541-1544 (2003)
非特許文献 2 :岡本隆之 (理化学研究所)「金属ナノ粒子相互作用および、バイオセン サーに関する調査研究」平成 14年度科学研究費補助金 (基礎研究 C)「表面ブラズモ ンの局在化とその応用に関する調査研究」研究成果報告書 個別報告 Non-Patent Document 2: Takayuki Okamoto (RIKEN) “Metal Nanoparticle Interaction and Biosen Survey Research on Sir ”2002 Grant-in-Aid for Scientific Research (Basic Research C)“ Survey Research on Localization of Surface Brasmon and Its Application ”Research Results Report Individual Report
非特許文献 3 : Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Coop er JM. TSERRS. In situ substrate formation and improved detection using microfluidic s.J Anal Chem. 2002 Apr 1 ;74(7): 1503-8.  Non-Patent Document 3: Keir R, Igata E, Arundell M, Smith WE, Graham D, McHugh C, Cooper JM.TSERRS.In situ substrate formation and improved detection using microfluidic sJ Anal Chem. 2002 Apr 1; 74 (7) : 1503-8.
非特許文献 4 :Jaeyoun Kim, Gang L. Liu, and Luke P. Lee、「Lens- scanning Raman microspectroscopy system using compact disc optical pickup technology」、 13 June 2 005 Vol. 13, No. 12 OPTICS EXPRESS 4780  Non-Patent Document 4: Jaeyoun Kim, Gang L. Liu, and Luke P. Lee, `` Lens- scanning Raman microspectroscopy system using compact disc optical pickup technology '', 13 June 2 005 Vol. 13, No. 12 OPTICS EXPRESS 4780
非特許文献 5 : Cameron L. Jones ^「Cryptograpmc Hash Functions and CD-Based O ptical Biosensors」、 Problems of Nonlinear Analysis in Engineering Systems. No.2(23) , v.l l, 2005, pp.17- 36.  Non-Patent Document 5: Cameron L. Jones ^ `` Cryptograpmc Hash Functions and CD-Based Optical Biosensors '', Problems of Nonlinear Analysis in Engineering Systems.No.2 (23), v.ll, 2005, pp.17-36.
非特許文献 6 :Jacquitta K. Daniels and Georgeし humanov (Clemson University) 「Na noparticle— Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering 」J. Phys. Chem. B, 109 (38), 17936 -17942, 2005.  Non-Patent Document 6: Jacquitta K. Daniels and George and humanov (Clemson University) “Na noparticle— Mirror Sandwich Substrates for Surface-Enhanced Raman Scattering” J. Phys. Chem. B, 109 (38), 17936 -17942, 2005.
非特許文献 7 : Orendorff, C. J. Gole, A. Sau, T. K. Murphy, C. J. (University of Sout h Carolina)「Surface- enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15; 77(10):3261-6.  Non-Patent Document 7: Orendorff, CJ Gole, A. Sau, TK Murphy, CJ (University of South Carolina) `` Surface- enhanced Raman spectroscopy of Self-assembled monolayers: S andwich architecture and nanoparticle shape dependencej Anal Chem. 2005 May 15 ; 77 (10): 3261-6.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明の課題は、従来の SERS基板や SERS基質による微量物質の検知方法と 装置よりも実用性に優れた方法と装置を提案するものである。本発明は固相で金属 微粒子を整列させた基板は用いずコロイド状 SERS基質を利用するが基質の分離沈 殿が問題にならない方法と装置を提案する。 [0013] An object of the present invention is to propose a method and a device that are more practical than conventional methods and devices for detecting trace substances using a SERS substrate or a SERS substrate. The present invention proposes a method and apparatus that uses a colloidal SERS substrate without using a substrate in which metal fine particles are aligned in a solid phase, but does not cause a problem of separation and deposition of the substrate.
課題を解決するための手段  Means for solving the problem
[0014] 本発明は (請求項 1)、 アナライトと金属微粒子とが近接する部位にレーザ光を照 射して得られる表面増強ラマン散乱光で微量アナライトを弁別検知する方法であって 、アナライトとあらかじめ用意された金属微粒子コロイドとを混合する工程と、アナライ トと金属微粒子コロイドの混合物を並列した複数の溝または並列した複数の凹部を 配設した固体平面に該溝または該凹部の並び方向に沿って供給する工程と、供給さ れた混合物を前記固体平面上で乾燥する工程と、固体平面上の溝または凹部の混 合物乾燥体にレーザ光を照射してラマン散乱光を観測する工程を有する表面増強ラ マン散乱による微量物質の検知方法である(図 1、図 6参照)。前記アナライトと金属 微粒子コロイドの混合物を並列した複数の溝または並列した複数の凹部を配設した 固体平面に該溝または該凹部の並び方向に沿って供給する工程は、電気工ネルギ 一で体積変化する圧電素子の体積変化による圧力によって、静止した固体平面に 混合物を吹き付ける工程であってもよ ヽ。 [0014] The present invention (Claim 1) is a method for discriminating and detecting a trace amount of analyte with surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where the analyte and metal fine particles are close to each other. Mixing the analyte with the colloidal metal particle colloid prepared in advance, Supplying a mixture of the colloidal particles and the metal fine particle colloid to a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses along the alignment direction of the grooves or the recesses, and supplying the supplied mixture to the solid This is a method for detecting trace substances by surface-enhanced Raman scattering, which has a step of drying on a flat surface and a step of observing Raman scattered light by irradiating a laser beam onto a dried product of grooves or recesses on a solid surface. (See Figure 1 and Figure 6.) The step of supplying the mixture of the analyte and the metal fine particle colloid to the solid flat surface in which the plurality of grooves or the plurality of parallel recesses are arranged along the direction in which the grooves or the recesses are arranged is the same as that of electric energy. It may be a process of spraying the mixture onto a stationary solid surface by the pressure due to the volume change of the changing piezoelectric element.
[0015] 本発明の混合物供給工程にて (請求項 2)、静止した固体平面に混合物を接触さ せた後に、溝または凹部の並びの方向に混合物または固体平面を移動することで混 合物を溝または凹部の並びの方向に沿って固体平面に供給するのが好ましい。この ように供給すれば、混合物が円滑に延展される。供給をこのようにやらないと、延展さ れず塊状になる場合がある。  [0015] In the mixture supplying step of the present invention (Claim 2), after bringing the mixture into contact with the stationary solid plane, the mixture or the solid plane is moved in the direction in which the grooves or recesses are arranged. Is preferably supplied to the solid plane along the direction of the grooves or recesses. If supplied in this way, the mixture is smoothly extended. If the supply is not done in this way, it may not be spread and become a lump.
[0016] ここで、あら力じめ用意された金属微粒子コロイドはスメクタイトのような粘土質の物 質で SERS基質を長期間安定ィ匕する必要がない。たとえば、硝酸銀などの銀塩をク ェン酸還元する、硝酸銀などの銀塩を水素化ホウ素(ボラン)で還元する、といったよ うに金属塩の還元による公知の金属微粒子コロイドでよ 、。水素化ホウ素試薬は水 素化ホウ素ナトリウムがよく用いられる。乾燥させる固体はガラスやポリカーボネートが 好適である。従来は金属微粒子コロイドとアナライトの液相混合物を固体平面上で乾 燥して観測することは行われな力つた。本案では特に安定ィ匕の工夫を凝らさな 、通 常の金属微粒子コロイドのみを用意しておき、それとアナライトを混ぜて乾燥し、その 乾燥体を観測すると 、うものである。  [0016] Here, the colloidally prepared metal fine particle colloid is a clay-like material such as smectite, and it is not necessary to stabilize the SERS substrate for a long period of time. For example, known metal fine particle colloids obtained by reduction of metal salts such as citrate reduction of silver salts such as silver nitrate and reduction of silver salts such as silver nitrate with borohydride (borane). As the borohydride reagent, sodium borohydride is often used. The solid to be dried is preferably glass or polycarbonate. Conventionally, it has been difficult to dry and observe a liquid phase mixture of metal fine particle colloid and analyte on a solid surface. In this plan, it is possible to prepare only ordinary metal fine particle colloids, mix them with an analyte, dry it, and observe the dried body without any particular elaboration of the stability.
[0017] 従来法を図 2から図 4に示し、これと対比させた本発明の方法を図 1に示す。これら の図で、 SSは公知の SERS基板、 SBは公知の SERS基質をいれた瓶(SERSバイ アル)、 SXが金属微粒子コロイドとアナライトの混合物を供給する本案の固体平面で 、並列した複数の溝または並列した複数の凹部が配設されている。 Evは並列した複 数の溝または並列した複数の凹部を配設した固体平面の部位を示し、 Fは Evにて乾 燥したアナライトと金属コロイド混合物の乾燥体を示す。また、 Pはマイクロピペットな どの液体の供給手段である。本発明の微量物質の検知方法のフローチャートを図 6 に示す。 The conventional method is shown in FIGS. 2 to 4, and the method of the present invention contrasted with this is shown in FIG. In these figures, SS is a known SERS substrate, SB is a bottle containing a known SERS substrate (SERS vial), and SX is a solid plane of the present plan for supplying a mixture of metal fine particle colloid and analyte. Or a plurality of parallel recesses are provided. Ev indicates a part of a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses. A dried body of a dried analyte and metal colloid mixture is shown. P is a liquid supply means such as a micropipette. Fig. 6 shows a flowchart of the method for detecting trace substances according to the present invention.
[0018] 本発明の固体平面 SXに配設される並列した複数の溝を図 5に、並列した複数の凹 部を図 9に示す。図中の Gは、並列した 5 m以下の溝の間隔または複数の凹部の 5 μ m以下の並びの間隔である。並列した複数の溝または並列した複数の凹部のある 部位に供給された金属微粒子コロイドとアナライトの混合物は、溝や凹部部位で薄く 比表面積が大きい延展された状態となり、乾燥現象がすみやかに進行する。かつま た、プラズモン効果を得るのに好適な金属微粒子とアナライトの集合体が形成されや すくなる。溝または凹部の並び方向に沿って供給することは、混合物が薄く比表面積 が大きく延展されるのに好適なためである。  [0018] Fig. 5 shows a plurality of parallel grooves arranged on the solid plane SX of the present invention, and Fig. 9 shows a plurality of concave portions arranged in parallel. G in the figure is the interval between the grooves of 5 m or less arranged in parallel or the interval of the arrangement of the recesses of 5 μm or less. The mixture of metal fine particle colloid and analyte supplied to the site with multiple parallel grooves or multiple parallel recesses becomes a thin and large surface area extended at the groove or recess site, and the drying phenomenon proceeds quickly. To do. In addition, an aggregate of metal fine particles and analyte suitable for obtaining the plasmon effect is easily formed. Supplying along the direction in which the grooves or recesses are arranged is because the mixture is thin and suitable for extending the specific surface area.
[0019] 溝または凹部で形成された乾燥体が金属微粒子とアナライトの集合体の形成に有 利である理由は明らかではないが、乾燥前に分散状態にある金属微粒子とアナライト が乾燥につれて表面近傍で集合体を形成する傾向にあるため、薄く比表面積が大き ぃ延展されることが金属微粒子とアナライトの集合形成に有利と推定している。  [0019] The reason why the dried body formed by the grooves or the recesses is advantageous for the formation of the aggregate of the metal fine particles and the analyte is not clear, but the metal fine particles and the analyte in the dispersed state before drying are dried. Since there is a tendency to form an aggregate near the surface, it is estimated that a thin and large specific surface area is advantageous for the formation of aggregates of fine metal particles and analyte.
[0020] 溝や凹部部位を親水性の表面としたり、親水性表面と疎水性表面が混在したもの にすると混合物の延展に有効な場合もあるので、適宜親水疎水表面処理を実施する とよい。すなわち(請求項 6)、並列した複数の溝凹部表面材の水親和性と溝凸部表 面材の水親和性とに差異がある、または並列した複数の凹部表面材の水親和性と該 凹部以外の表面材の水親和性とに差異があるとよい。  [0020] If the groove or the concave portion is made to have a hydrophilic surface or a mixture of a hydrophilic surface and a hydrophobic surface, it may be effective for extending the mixture. Therefore, a hydrophilic / hydrophobic surface treatment may be appropriately performed. That is, (Claim 6), there is a difference between the water affinity of the plurality of groove recess surface materials arranged in parallel and the water affinity of the groove protrusion surface material, or the water affinity of the plurality of recess surface materials arranged in parallel There should be a difference in the water affinity of the surface material other than the recess.
[0021] 平坦なポリカーボネート表面に約 2 μ mの溝間隔、約 0. 5 μ mの深さの溝を配設し 、硝酸銀をクェン酸還元して生成した粒径 20から 30ナノメートルの銀微粒子コロイド とアナライトであるオリゴヌクレオチドとの混合物を供給した。その後 5分間静置し溝に 乾燥体が形成された状況の光学顕微鏡写真を図 8に示す。オリゴヌクレオチドの塩 基数はおよそ 1000である。同様にポリカーボネートに約 2 μ mの凹部の並び間隔、 約 0. 5 mの深さ、約 0. の幅、 1力も 5 mの長さの凹部を配設し、同じ混合 物を供給し 5分間静置し凹部に乾燥体が形成された状況の光学顕微鏡写真を図 10 に示す。 Fは乾燥体を示す。 [0022] 図 7が本発明の微量物質の検知方法によるラマンスペクトルのデータ例である。 FF が Evにて乾燥した Fのある部位を直線状に移動してレーザを照射し観測されたラマ ンスペクトルを示す位置。 Νは Fのな 、部位を直線状に移動してレーザを照射し観測 されたラマンスペクトルを示す位置。(Evは並列した複数の溝または並列した複数の 凹部を配設した固体平面の部位を示す) [0021] Silver having a particle size of 20 to 30 nanometers produced by reducing citrate with silver nitrate by arranging grooves with a groove interval of about 2 μm and a depth of about 0.5 μm on a flat polycarbonate surface. A mixture of particulate colloid and analyte oligonucleotide was supplied. Fig. 8 shows an optical micrograph of the condition in which the dried body was formed in the groove after standing for 5 minutes. Oligonucleotide has approximately 1000 bases. Similarly, the polycarbonate is provided with recesses of approximately 2 μm in length, approximately 0.5 m deep, approximately 0. Fig. 10 shows an optical micrograph of the condition in which the dried body was formed in the recess after standing for a minute. F represents a dried product. FIG. 7 shows an example of Raman spectrum data obtained by the trace substance detection method of the present invention. FF is a position that shows the Raman spectrum observed when a laser beam is irradiated after moving through a part of F that is dried by Ev. Ν is the position of the Raman spectrum that is observed when the part is moved linearly and irradiated with laser. (Ev indicates a part of a solid plane in which a plurality of parallel grooves or a plurality of parallel recesses are arranged)
発明の効果  The invention's effect
[0023] 本発明はコロイド状 SERS基質を利用するが基質の分離沈殿が問題にならない。し たがって特に基質の安定ィ匕のための工夫を凝らさない通常の金属微粒子コロイドの みを用意しておけばよいので実用的である。また、乾燥体の周縁部に形成される溝 または凹部で増強された大きなラマン信号が得られることがわ力つて 、るので、ラマン スペクトル観測する際に溝または凹部のみでラマン信号を得ればょ 、。極微量物質 の検知では、観測部位の特定に時間を要する場合があるが、本案では溝または凹部 の位置は既知なので迅速な観測が可能である。  [0023] Although the present invention uses a colloidal SERS substrate, separation and precipitation of the substrate is not a problem. Therefore, it is practical because it suffices to prepare only ordinary colloidal metal fine particles that do not devise any means to stabilize the substrate. In addition, since it is possible to obtain a large Raman signal enhanced by the grooves or recesses formed in the peripheral edge of the dry body, it is necessary to obtain the Raman signal only by the grooves or recesses when observing the Raman spectrum. Oh ,. In the detection of trace substances, it may take time to identify the observation site. However, in this proposal, the position of the groove or recess is known, so it can be observed quickly.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の微量物質の検知方法の作業の流れを示す模式図 [0024] [Fig. 1] Schematic diagram showing the work flow of the method for detecting a trace substance of the present invention.
[図 2]公知の SERS基板の第一の製法 (ドロップアンドドライ製法)とそれを用いた微 量物質の検知法の模式図  [Fig.2] Schematic diagram of the first method for producing a known SERS substrate (drop-and-dry method) and the method for detecting minute substances using it
[図 3]公知の SERS基板の第二の製法とそれを用いた微量物質の検知法の模式図 LB膜 (Langmuir-Blodgett膜)状に界面に形成した金属微粒子を掬!ヽ取って乾燥す る SERS基板の製法  [Fig. 3] Schematic diagram of the second method for producing a known SERS substrate and the method for detecting trace substances using it. The metal particles formed on the interface in the form of an LB film (Langmuir-Blodgett film) are trapped! SERS substrate manufacturing method
[図 4]金属微粒子コロイドを長期安定化させる工夫をした公知の SERS基質 (液体状 なので基板とは言わな 、)とそれを用いた微量物質の検知法の模式図  [Fig. 4] Schematic diagram of a known SERS substrate (not a substrate because it is liquid) that has been designed to stabilize metal colloids for a long period of time and a method for detecting trace substances using it.
[図 5]並列した溝を配設した固体平面の説明図。並列した溝の溝同士の間隔 Gは 5ミ クロンメートル以下である。  FIG. 5 is an explanatory diagram of a solid plane provided with parallel grooves. The distance G between the parallel grooves is 5 microns or less.
[図 6]本発明の微量物質の検知方法のフローチャート  [Fig. 6] Flow chart of trace substance detection method of the present invention
[図 7]本発明の微量物質の検知方法によるラマンスペクトルのデータ例。 FFが Evに て乾燥した Fのある部位を直線状に移動してレーザを照射し観測されたラマンスぺク トルを示す位置。 Nは Fのな 、部位を直線状に移動してレーザを照射し観測されたラ マンスペクトルを示す位置。 FIG. 7 shows an example of Raman spectrum data obtained by the method for detecting a trace substance of the present invention. FF is a position that shows the Raman spectrum observed when the laser beam is irradiated after moving in a straight line through a part of F that is dried by Ev. N is F, and the laser beam is observed after moving the part linearly. The position showing the man spectrum.
[図 8]並列した約 2ミクロンメートルの溝を配設した固体表面に銀ナノ粒子コロイドとヌ クレオチド (核酸)であるアナライトとの混合物を乾燥させた表面の光学顕微鏡写真で あって、白く刷毛で書いたような部位が乾燥混合体である。  FIG. 8 is an optical micrograph of a surface obtained by drying a mixture of silver nanoparticle colloid and a nucleic acid (analyte) analyte on a solid surface provided with parallel grooves of about 2 microns. The part written with a brush is the dry mixture.
[図 9]並列した複数の凹部を配設した固体平面の説明図。並列した複数の凹部群同 士の間隔 Gは 5ミクロンメートル以下である。  FIG. 9 is an explanatory diagram of a solid plane provided with a plurality of parallel recesses. The gap G between the multiple concave groups in parallel is 5 microns or less.
[図 10]並列した約 2ミクロンメートルの凹部を配設した固体表面に銀ナノ粒子コロイド とヌクレオチド (核酸)であるアナライトとの混合物を乾燥させた表面の光学顕微鏡写 真であって、黒 、付着物のような部位が乾燥混合体である。  [FIG. 10] An optical microscope photograph of a surface obtained by drying a mixture of silver nanoparticle colloid and nucleotide (nucleic acid) analyte on a solid surface having approximately 2 micrometer concave portions arranged in parallel. A site like a deposit is a dry mixture.
圆 11]マイクロ流路チップの説明図 圆 11] Microchannel chip explanatory diagram
[図 12]複数の 8連マルチピペットを用いた本案の微量物質の検知方法の作業の流れ を示す模式図 (A)は待機状態、(B)が第 1の 8連マルチピペットで金属微粒子コロ イドと 8つのアナライトの液相混合物を同時に固体平面に接触させた状態、(C)が固 体平面を移動させて Evに第 1の 8連マルチピペット内コロイド 'アナライト混合物を供 給している状態である。  [Fig. 12] Schematic diagram showing the work flow of the trace amount detection method of this proposal using multiple 8-strip multipipettes (A) is in standby state, (B) is the first 8-strip multipipette with metal particulate colloid The liquid phase mixture of id and 8 analytes is in contact with the solid plane at the same time, (C) moves the solid plane and supplies Ev to the colloid 'analyte mixture in the first 8 multipipette. It is in a state.
[図 13]複数の 8連マルチピペットを用いた本案の微量物質の検知方法の作業の流れ を示す模式図 (a、 b、 c、 d)はそれぞれ MP1、 MP2、 MP3、 MP4で 8つのアナライ ト群 (それぞれ Al、 A2、 A3、 A4とする)の液相混合物を同時に固体平面に接触さ せた後固体平面を移動させ Evにコロイド ·アナライト混合物を供給して 、る状態、(e、 f)は MP1で供給され乾燥した A1の位置に Rpを移動させ、 Rhを Rp上でトラバース 移動させラマン分析用のレーザーを照射しラマン散乱光を受光してデータ採取する 。同様に 、 h)は MP2で供給され乾燥した A2のラマン散乱光データを採取する。 同様に (i、 j)は MP3で供給され乾燥した A3のラマン散乱光データを採取する。同様 に (k、 1)は MP3で供給され乾燥した A3のラマン散乱光データを採取する。 [Fig. 13] Schematic diagrams ( a , b, c, d) showing the work flow of the trace substance detection method of this proposal using multiple 8-series multipipettes are 8 analysts for MP1, MP2, MP3 and MP4, respectively. (E, Al, A2, A3, A4, respectively), the liquid phase mixture is simultaneously brought into contact with the solid plane, the solid plane is moved, and the colloid-analyte mixture is supplied to Ev. , F) Move Rp to the position of A1 supplied by MP1 and dried, move Rh traverse on Rp, irradiate the laser for Raman analysis, receive Raman scattered light and collect data. Similarly, h) collects Raman scattered light data of A2 supplied with MP2 and dried. Similarly, (i, j) collects Raman scattered light data of A3 supplied and dried by MP3. Similarly, (k, 1) collects Raman scattered light data of A3 supplied by MP3 and dried.
[図 14]固体平面上の混合物を固体平面に延展する延展手段の例図で Zが固体面と 概平行なる面をもつものであって、混合物を面に薄く引き延ばし被表面積を大きくし て乾燥を促進させる。 [Fig.14] An example of the spreading means for extending the mixture on the solid plane to the solid plane. Z has a plane that is roughly parallel to the solid plane, and the mixture is thinly stretched on the plane to increase the surface area and dry. To promote.
圆 15]並列した溝を配設したプラズモンミラー効果を有する金属面の説明図。並列し た溝の溝同士の間隔 Gは 5ミクロンメートル以下である。 15] An explanatory view of a metal surface having a plasmon mirror effect in which parallel grooves are arranged. In parallel The distance G between the grooves is 5 microns or less.
[図 16]本発明の微量物質の検知方法のフローチャート(ブラズモンミラー効果を有す る金属面の場合)  [Fig. 16] Flow chart of the method for detecting a trace substance of the present invention (in the case of a metal surface having a plasmon mirror effect)
[図 17]並列した複数の凹部を配設したプラズモンミラー効果を有する金属面の説明 図。並列した複数の凹部群同士の間隔 Gは 5ミクロンメートル以下である。  FIG. 17 is an explanatory view of a metal surface having a plasmon mirror effect in which a plurality of parallel recesses are arranged. The distance G between the plurality of concave groups arranged in parallel is 5 microns or less.
[図 18]プラズモンミラー効果の例で、 2つのアナライト(アナライト A=アデノシン、アナ ライト B =グアノシン)の混合を検知した例 [Fig.18] Example of plasmon mirror effect in which mixing of two analytes (analyte A = adenosine, analyte B = guanosine) is detected
符号の説明 Explanation of symbols
A1 金属コロイドと混合し Evにて乾燥した第 1のアナライト群 A1 First analyte group mixed with metal colloid and dried by Ev
Α2 金属コロイドと混合し Evにて乾燥した第 2のアナライト群 Α2 Second analyte group mixed with metal colloid and dried by Ev
A3 金属コロイドと混合し Evにて乾燥した第 3のアナライト群 A3 Third analyte group mixed with metal colloid and dried by Ev
A4 金属コロイドと混合し Evにて乾燥した第 4のアナライト群 A4 4th analyte group mixed with metal colloid and dried by Ev
Ca 第一の低圧キヤビティ (低圧室)で、アナライトと金属コロイド混合物の乾燥のた め Vaで低圧となす密閉部位 Ca The first low-pressure cavity (low-pressure chamber) to dry the analyte and metal colloid mixture, and to seal the area where Va becomes low-pressure
Cb 第二の低圧キヤビティ (低圧室)で、アナライトと金属コロイド混合物を吸引移動 させるため Vbで低圧となす密閉部位  Cb In the second low-pressure cavity (low-pressure chamber), Vb is used to suck and move the analyte and metal colloid mixture.
Ev 並列した複数の溝または並列した複数の凹部を配設した固体平面の部位 Ev Solid part with multiple parallel grooves or multiple parallel recesses
F Evにて乾燥したアナライトと金属コロイド混合物の乾燥体 Dry body of analyte and metal colloid mixture dried by F Ev
FF Evにて乾燥した Fのある部位を直線状に移動してレーザを照射し観測されたラ マンスペクトルを示す位置  A position showing the Raman spectrum observed when a laser beam is radiated from a part of F dried by FF Ev.
MP1 第 1の 8連マルチピペット  MP1 1st 8 multipipette
MP2 第 2の 8連マルチピペット  MP2 second 8 multipipette
MP3 第 3の 8連マルチピペット  MP3 3rd 8 multipipette
MP4 第 4の 8連マルチピペット  MP4 4th 8 multipipette
N Fのな 、部位を直線状に移動してレーザを照射し観測されたラマンスペクトルを 示す位置  In the case of N F, the position showing the Raman spectrum observed by moving the part linearly and irradiating the laser
G 並列した 5 μ m以下の溝の間隔または複数の凹部の 5 μ m以下の並びの間隔 P1 金属塩と金属塩の還元剤を混合させつつ移送する流路 (第一流路) P2 アナライトを移送する流路 (第二流路) G Spacing between parallel grooves of 5 μm or less or spacing between multiple recesses of 5 μm or less P1 Flow path for transporting mixed metal salt and metal salt reducing agent (first flow path) P2 Analyte channel (second channel)
P3 還元された金属塩による金属コロイドとアナライトとが混合する流路部位  P3 Channel part where metal colloid and analyte are mixed by reduced metal salt
P4 還元された金属塩による金属コロイドとアナライトを混合させつつ移送する流路 P5 還元された金属塩による金属コロイドとアナライトとの混合体を乾燥させる流路( 第三流路)  P4 Channel for transporting mixed metal colloid and analyte from reduced metal salt P5 Channel for drying mixed metal colloid and analyte from reduced metal salt (third channel)
Rh ラマン分析用のレーザー照射ヘッド、ラマン散乱光受光ヘッド  Rh Laser irradiation head for Raman analysis, Raman scattering light receiving head
Rp Rhを配設したピックアップ  Pickup with Rp Rh
SB 公知の SERS基質をいれた瓶(SERSバイアル)  SB A bottle containing a known SERS substrate (SERS vial)
SS 公知の SERS基板 (SERS=表面増強ラマン散乱)  SS Known SERS substrate (SERS = surface enhanced Raman scattering)
SX Evが配設されている本案の固体平面であってこの上に金属微粒子コロイドとァ ナライトの混合物を供給する  SX Ev is placed on the solid surface of the present plan, on which a mixture of metal fine particle colloid and analyte is supplied
Va 第一の低圧力の吸引源  Va first low pressure suction source
Vb 第二の低圧力の吸引源  Vb Second low pressure suction source
W1 金属塩溶液導入ゥ ル (孔)  W1 Metal salt solution introduction tool (hole)
W2 金属塩の還元剤溶液導入ゥエル (孔)  W2 Metal salt reducing agent solution introduction well (hole)
W3 アナライト導入ゥエル (孔)  W3 Analyst introduction well (hole)
W4 流動出口側のゥ ル(孔)  W4 Flow outlet side hole
Z 固体平面上の混合物を固体平面に延展する延展手段  Z Extension means for extending the mixture on the solid plane to the solid plane
Zp 並列した複数の溝または並列した複数の凹部にて、プラズモンミラー効果を有 する金属面の部位 (斜線で示す)  Zp Parts of metal surface with plasmon mirror effect in parallel grooves or recesses (indicated by diagonal lines)
Zx 並列した複数の溝または並列した複数の凹部にて、プラズモンミラー効果を有 する金属面以外の部位  Zx Parts other than metal surfaces with plasmon mirror effect in multiple parallel grooves or multiple parallel recesses
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明では (請求項 3)、並列した複数の溝同士の間隔または並列した複数の凹部 同士の間隔が 5ミクロンメートル以下であり、溝または凹部の深さが 1ミクロンメートル 以下であり、 1〜10マイクロリットルのアナライトと 1〜10マイクロリットルの金属微粒子 コロイドの混合物を固体平面に供給するのが好適である。 [0026] In the present invention (Claim 3), the interval between the plurality of parallel grooves or the interval between the plurality of parallel recesses is 5 micrometers or less, and the depth of the grooves or recesses is 1 micrometer or less. Preferably, a mixture of 1-10 microliters of analyte and 1-10 microliters of metal particulate colloid is supplied to the solid surface.
[0027] 本発明による乾燥体は (請求項 8)、アナライトと金属微粒子コロイドとを混合し乾燥 したアナライト弁別検知用乾燥体であって、 5ミクロンメートル以下の間隔で並列した 複数の溝または 5ミクロンメートル以下の間隔で並列した複数の凹部を配設した固体 平面の前記溝または前記凹部の並びの方向に沿って 1〜10マイクロリットルの金属 微粒子コロイドと 1〜: LOマイクロリットルのアナライトの混合物を供給して乾燥した幅 5 ミクロンメートル以下で長さ 10ミクロンメートル以上の乾燥体である。溝または凹部で 形成された乾燥体が金属微粒子とアナライトの集合体の形成に有利で、プラズモン 効果を得るのに好適な理由は明らかではないが、アナライトと金属微粒子とが近接す る部位にレーザ光を照射して得られる表面増強ラマン散乱光で微量アナライトを弁別 検知する方法にて有効である。 [0027] The dried product according to the present invention (Claim 8) is obtained by mixing an analyte and a metal fine particle colloid and drying. A dried body for detecting an analyte discrimination, wherein a plurality of grooves arranged in parallel at intervals of 5 μm or less or a plurality of grooves arranged in parallel at intervals of 5 μm or less are disposed on the solid flat grooves or the recesses. 1 to 10 microliters of metal along the direction of the alignment Fine particle colloid and 1 to: Drying by supplying a mixture of LO microliters of analyte is a dried body of width 5 microns or less and length 10 microns or more . The reason why a dry body formed by grooves or recesses is advantageous for the formation of aggregates of fine metal particles and analyte, and it is not suitable for obtaining a plasmon effect, is not clear. This method is effective in discriminating and detecting trace analytes using surface-enhanced Raman scattering light obtained by irradiating a laser beam on the surface.
[0028] また本発明では、流路でアナライトとコロイドを流動させて実施してもよい。すなわち [0028] In the present invention, the analyte and the colloid may be caused to flow in the flow path. Ie
(請求項 4)、アナライトとあらかじめ用意された金属微粒子コロイドとを液相で流動混 合する工程と、流動混合工程で得た混合物を並列した複数の溝または並列した複数 の凹部を配設した固体平面上に流動移送する工程と、流動移送工程で移送された 混合物を並列した複数の溝または並列した複数の凹部を配設した固体平面上で静 置乾燥する工程と、静置乾燥工程で得た混合物乾燥体にレーザ光を照射してラマン 散乱光を観測する工程を有する表面増強ラマン散乱による微量物質の検知方法で ある。  (Claim 4), a step of fluidly mixing an analyte and a metal colloid prepared in advance in a liquid phase, and a plurality of parallel grooves or a plurality of parallel recesses provided in the fluid mixing step. A flow transfer process on the solid plane, a process of static drying on the solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses, and a static drying process. This is a method for detecting trace substances by surface-enhanced Raman scattering, which has a step of observing Raman scattered light by irradiating the dried mixture obtained in step 1 with laser light.
[0029] 流路でアナライトとコロイドを流動させる場合も(請求項 5)、流動部に配設される並 列した複数の溝同士の間隔または並列した複数の凹部同士の間隔が 5ミクロンメート ル以下であり、溝または凹部の深さが 1ミクロンメートル以下であるのが好適である。ま た (請求項 6)、並列した複数の溝凹部表面材の水親和性と溝凸部表面材の水親和 性とに差異がある、または並列した複数の凹部表面材の水親和性と該凹部以外の表 面材の水親和性とに差異があるとょ 、。  [0029] Even when the analyte and the colloid are caused to flow in the flow path (Claim 5), the interval between the plurality of parallel grooves arranged in the flow portion or the interval between the plurality of parallel recesses is 5 microns. It is preferable that the depth of the groove or the recess is 1 micrometer or less. Further, (Claim 6), there is a difference between the water affinity of the plurality of groove recess surface materials arranged in parallel and the water affinity of the groove projection surface material, or the water affinity of the plurality of recess surface materials arranged in parallel There is a difference in the water affinity of the surface material other than the recesses.
[0030] 本発明の方法を実施する装置は (請求項 10)、 5ミクロンメートル以下の間隔で並列 した複数の溝または 5ミクロンメートル以下の間隔で並列した複数の凹部を配設した 固体平面をもつ装置であって、アナライトとあらかじめ用意された金属微粒子コロイド とを混合する混合手段と、混合手段で得た混合物を並列した複数の溝または並列し た複数の凹部を配設した固体平面に該溝または該凹部の並び方向に沿って供給す る供給手段と、供給手段で複数の溝または並列した複数の凹部を配設した固体平面 上に供給された混合物を該固体平面上で乾燥する乾燥手段と、乾燥手段で得た混 合物乾燥体にレーザ光を照射してラマン散乱光を観測する手段を有する微量物質 の検知装置である。前記混合手段で得た混合物を並列した複数の溝または並列した 複数の凹部を配設した固体平面に該溝または該凹部の並び方向に沿って供給する 手段は、電気エネルギーで体積変化する圧電素子の体積変化による圧力によって 静止した固体平面に混合物を吹き付ける手段であってもよい。 [0030] An apparatus for carrying out the method of the present invention (Claim 10) comprises a solid plane provided with a plurality of grooves arranged in parallel at intervals of 5 microns or less or a plurality of recesses arranged in parallel at intervals of 5 microns or less. A solid surface provided with a mixing means for mixing an analyte and a metal colloid prepared in advance and a mixture obtained by the mixing means in which a plurality of parallel grooves or a plurality of parallel recesses are arranged. Supply along the direction in which the grooves or the recesses are arranged Supply means, a drying means for drying the mixture supplied on the solid plane provided with a plurality of grooves or a plurality of parallel recesses on the supply means, and drying the mixture obtained by the drying means It is a trace substance detection device that has means for irradiating a body with laser light and observing Raman scattered light. The means for supplying the mixture obtained by the mixing means to a solid flat surface provided with a plurality of parallel grooves or a plurality of parallel recesses along the direction in which the grooves or the recesses are arranged is a piezoelectric element whose volume is changed by electric energy. It may be a means for spraying the mixture onto a stationary solid surface by the pressure due to the volume change.
[0031] 本発明の方法を流路でアナライトとコロイドを流動させて実施する別の装置は (請求 項 12)、 5ミクロンメートル以下の間隔で並列した複数の溝または 5ミクロンメートル以 下の間隔で並列した複数の凹部を配設した固体平面を内面とした流路をもつ装置で あって、アナライトとあらかじめ用意された金属微粒子コロイドとを液相で流動混合す る流動混合手段と、流動混合手段で得た混合物を並列した複数の溝または並列した 複数の凹部を配設した固体平面を内面とした流路に流動移送する流動移送手段と、 流動移送手段で並列した複数の溝または並列した複数の凹部を配設した固体平面 に移送された混合物を該固体平面上で静置乾燥する乾燥手段と、乾燥手段で得た 混合物乾燥体にレーザ光を照射してラマン散乱光を観測する手段を有する微量物 質の検知装置である。  [0031] Another apparatus for carrying out the method of the present invention by flowing an analyte and a colloid in a flow path (Claim 12) is a plurality of grooves arranged in parallel at intervals of 5 microns or less, or 5 microns or less. An apparatus having a flow path having a solid plane as an inner surface with a plurality of recesses arranged in parallel at intervals, and a fluid mixing means for fluidly mixing an analyte and a metal particulate colloid prepared in advance in a liquid phase; A flow transfer means for flow-transferring the mixture obtained by the flow mixing means to a flow path having a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses as an inner surface; and a plurality of grooves paralleled by the flow transfer means or Drying means for standing and drying the mixture transferred to a solid plane provided with a plurality of parallel recesses, and observing Raman scattered light by irradiating the dried mixture obtained by the drying means with laser light Means to This is a detection device for trace substances.
[0032] 本発明の装置の乾燥する乾燥手段 (請求項 13)が、固体平面を大気圧よりも下げ る低圧化手段を兼備してもよ ヽ。 Vヽゎゆるエバポレータ (定圧乾燥器)と組み合わせ てもよい。また乾燥手段 (請求項 14)が、固体平面上の混合物を固体平面に延展す る延展手段を兼備してもよい。延展手段は、たとえば固体面上に配設された固体面と 概平行なる面をもつものであって、混合物を面に薄く引き延ばし被表面積を大きくし て乾燥を促進させる(図 14参照)。  [0032] The drying means for drying (Claim 13) of the apparatus of the present invention may also serve as a pressure reducing means for lowering the solid plane below atmospheric pressure. It may be combined with a V-type evaporator (constant pressure dryer). The drying means (Claim 14) may also have an extending means for extending the mixture on the solid plane to the solid plane. The extending means has, for example, a surface substantially parallel to the solid surface disposed on the solid surface, and the mixture is thinly stretched on the surface to increase the surface area to promote drying (see FIG. 14).
[0033] また、複数のアナライトを迅速に弁別検知するために複数アナライトの供給を同時 に行える装置構成としてもよい。たとえば、図 12のように、複数の 8連マルチピペット MP1、 MP2、 MP3、 MP4の各ピペットに公知の自動分注手段でアナライトと金属微 粒子コロイドの混合物を分注しておき、円盤状の形態である固体平面の円周トラック に並列した複数の溝または並列した複数の凹部を円形配設したものを準備する。円 盤状固体平面を対象軸周りに回転させながら、 MP1、 MP2、 MP3、 MP4で順次混 合物を溝または凹部の円周方向の並びに沿って供給する(図 13参照)。 [0033] In addition, in order to quickly detect and discriminate a plurality of analytes, a configuration in which a plurality of analytes can be supplied simultaneously may be adopted. For example, as shown in Fig. 12, a mixture of analyte and metal fine particle colloid is dispensed to each of a plurality of 8-multipipette MP1, MP2, MP3, and MP4 pipettes using a known automatic dispensing means. In this form, a plurality of grooves arranged in parallel with a circumferential track on a solid plane or a plurality of parallel recesses arranged in a circle are prepared. Circle While rotating the disk-shaped solid plane around the target axis, MP1, MP2, MP3, and MP4 sequentially supply the mixture along the circumferential direction of the grooves or recesses (see Fig. 13).
[0034] 供給後に、ラマン分析用のレーザー照射ヘッド Rhが配設されたピックアップ Rpを 混合物の供給位置に移動し、 Rpを Rh上でトラバース (横移動)しつつレーザ光を照 射し表面増強ラマン散乱光を採取して 、けば、多数のアナライトを効率よく迅速に弁 別検知できる。 [0034] After supply, the pickup Rp with the laser irradiation head Rh for Raman analysis is moved to the mixture supply position, and the surface is enhanced by irradiating the laser beam while traversing Rp on the Rh (lateral movement). By collecting Raman scattered light, a large number of analytes can be distinguished and detected efficiently and quickly.
[0035] 非特許文献 4に、公知の CD (Compact Disk)プレーヤの光学機器部分を利用した ラマン装置と応用技術が開示されている。非特許文献 5に、公知の CD (Compact Dis k)を生体物質の分析の技術が開示されている。これらと本発明を組み合わせれば、 小型で持ち運びできるコンパクトな微量物質弁別検知装置が容易に実現できる。  [0035] Non-Patent Document 4 discloses a Raman device and an applied technology using an optical device portion of a known CD (Compact Disk) player. Non-Patent Document 5 discloses a technique for analyzing a biological substance using a known CD (Compact Disc). By combining these with the present invention, it is possible to easily realize a compact trace substance discrimination detection device that is small and portable.
[0036] 流動による装置について、より具体的には特許文献 7、非特許文献 3に記載された マイクロ流路に組み込んで実施してもよい。すなわち(請求項 16)、アナライトと金属 微粒子とが近接する部位にレーザ光を照射して得られる表面増強ラマン散乱光で微 量アナライトを弁別検知する方法による微量アナライト検知用マイクロ流路チップであ つて、金属塩と該金属塩の還元剤とを流動混合して流動中に金属塩を還元する第一 流路と、該第一流路と合流するアナライトを流動させる第二流路と、前記第一第二流 路の合流点に連続し流動方向に並列した複数の溝または流動方向に並列した複数 の凹部を配設した面を有する第三流路を具備するマイクロ流路チップとして実施して ちょい。  [0036] More specifically, the apparatus using flow may be implemented by being incorporated in the microchannel described in Patent Document 7 and Non-Patent Document 3. In other words, the micro-channel for detecting a small amount of analyte by a method for discriminating and detecting a small amount of analyte with surface-enhanced Raman scattering light obtained by irradiating a laser beam to a site where the analyte and metal fine particles are close to each other. A first channel for flowing and mixing a metal salt and a reducing agent for the metal salt to reduce the metal salt during the flow, and a second channel for flowing the analyte that merges with the first channel. And a micro-channel chip having a third channel having a surface on which a plurality of grooves continuous in parallel with the flow direction or a plurality of recesses parallel to the flow direction are arranged at the confluence of the first second flow channel Please implement as.
[0037] 図 11が本発明のマイクロ流路チップの説明図である。 W1が金属塩溶液導入ゥヱ ル (孔)、 W2が金属塩の還元剤溶液導入ゥエル (孔)、 W3がアナライト導入ゥエル( 孔)である。 P1が金属塩と金属塩の還元剤を混合させつつ移送する流路 (第一流路 )、 P2がアナライトを移送する流路 (第二流路)、 P3が還元された金属塩による金属コ ロイドとアナライトとが混合する流路部位、 P4が還元された金属塩による金属コロイド とアナライトを混合させつつ移送する流路であり、 P5が還元された金属塩による金属 コロイドとアナライトとの混合体を乾燥させる流路 (第三流路)である。ここでは特許文 献 7、非特許文献 3の記載同様 P3、 P4で流動中に金属微粒子コロイドを生成する。 したがって原料となる金属塩溶液と還元剤溶液を用意しておけばよい。 [0038] 流動出口側のゥエル (孔) W4に配設された第-の低圧キヤビティ (低圧室)で、アナ ライトと金属コロイド混合物を吸引移動させるため Vbで低圧となす密閉部位 Cbにて、 Cbを第二の低圧力の吸引源 Vbに接続し吸引することで流動させる。逆に入り口側 Wl、 W2、 W3で加圧してもよいが、吸引したほうが流れを乱れない層流としゃすい。 第三流路 P5に並列した複数の溝または並列した複数の凹部を配設した Evの部位が あり、混合物が Evの部位に流動移送される。 FIG. 11 is an explanatory diagram of the microchannel chip of the present invention. W1 is a metal salt solution introduction hole (hole), W2 is a metal salt reducing agent solution introduction well (hole), and W3 is an analyte introduction well (hole). P1 is a channel that transports metal salt and metal salt reducing agent mixed (first channel), P2 is a channel that transports analyte (second channel), and P3 is a metal core made of a reduced metal salt. The flow path part where Lloyd and the analyte are mixed, the flow path where the metal colloid and the analyte are mixed with the P4 reduced metal salt and the analyte is transferred, and the metal colloid and the analyte are mixed with the P5 reduced metal salt. This is a flow path (third flow path) for drying the mixture. Here, as described in Patent Document 7 and Non-Patent Document 3, P3 and P4 generate metal particulate colloids during flow. Therefore, a metal salt solution and a reducing agent solution as raw materials may be prepared. [0038] In the first low-pressure cavity (low-pressure chamber) arranged in the well (hole) W4 on the flow outlet side, in order to move the analyte and the metal colloid mixture by suction, at the sealed part Cb where the pressure is reduced by Vb, Cb is fluidized by connecting to the second low-pressure suction source Vb and suctioning. On the other hand, it may be pressurized at the inlet side Wl, W2, W3, but it sucks with a laminar flow that does not disturb the flow when sucked. There is a part of Ev provided with a plurality of grooves parallel to the third flow path P5 or a plurality of concave parts arranged in parallel, and the mixture is fluidly transferred to the part of Ev.
[0039] 乾燥を促進するために第一の低圧力の吸引源 Vaに接続され、第三流路 P5を密閉 するような第一の低圧キヤビティ (低圧室) Caをもうけてもよい。その場合、 Caはラマ ン観測のためにレーザとラマン散乱光の減衰が小さく薄 、材料で作成するか、ある ヽ は Caを排除できる構成にしておき乾燥完了後は排除してラマン観測するようにしても よい。  [0039] To promote drying, a first low-pressure cavity (low-pressure chamber) Ca that is connected to the first low-pressure suction source Va and seals the third flow path P5 may be provided. In that case, Ca should be made of a material with small attenuation of the laser and Raman scattered light for Raman observation, or a certain type of material should be made to exclude Ca and be excluded after drying to observe Raman. Anyway.
[0040] また (請求項 7、 9、 15、 17)、本発明の方法、乾燥体、装置にて固体表面はプラズ モンミラー効果を有する金属面であってもよい(図 15から図 18参照)。  [0040] (Claims 7, 9, 15, 17) In the method, dry body, and apparatus of the present invention, the solid surface may be a metal surface having a plasmon mirror effect (see FIGS. 15 to 18). .
[0041] プラズモンミラー効果にっ 、て補足する。現状では、プラズモンミラー効果は学術 的に認知 '検証されたものではない。金属微粒子コロイドを滴下する面を「下層」と呼 ぶとし、下層をガラスゃ榭脂面、下層を金属とした場合とを比較すると、後者のほうが より大きなラマンシグナルが得られることは現象として事実で再現性がある(図 18参 照)。しかしこれが、下層金属と上層金属微粒子間で特許文献 8に記載された「ギヤッ プモード」という電磁増強場に起因するものか否かは不明で学術的に認知 '検証され ていない。  [0041] The plasmon mirror effect will be supplemented. At present, the plasmon mirror effect is not academically recognized. When the surface on which the metal colloid is dropped is called the `` lower layer '', and when the lower layer is made of glass resin and the lower layer is made of metal, it is a fact that the latter gives a larger Raman signal. And reproducible (see Figure 18). However, whether this is due to the electromagnetic enhancement field called “gap mode” described in Patent Document 8 between the lower layer metal and the upper layer metal fine particles is unknown and has not been acknowledged or verified scientifically.
[0042] プラズモンミラー効果を有する金属面の形成について補足する。実験的な事実とし て下層をガラスゃ榭脂面、下層を任意成分層上に簡易に形成された金属蒸着面とし た場合とを比較すると、後者のほうがより大きなラマンシグナルが得られる。つまり金 属蒸着という簡単な方法を用いても本発明の効果は得られる。より好適には、特許文 献 8に記載または特許文献 8中に引用されて!、る文献記載の方法で、特許文献 8中 に「ミラー表面」と記載された洗浄かつ平坦な金属面を形成すればよぐそのほうがさ らに大きなラマンシグナルが得られる。  A supplementary explanation will be given for the formation of a metal surface having a plasmon mirror effect. As an experimental fact, when compared to the case where the lower layer is a glass resin surface and the lower layer is a metal deposition surface that is simply formed on an arbitrary component layer, the latter gives a larger Raman signal. That is, the effect of the present invention can be obtained even by using a simple method called metal vapor deposition. More preferably, a clean and flat metal surface described as “mirror surface” in Patent Document 8 is formed by the method described in Patent Document 8 or cited in Patent Document 8! If you do, you can get a much larger Raman signal.
[0043] 本明細書では、アナライトを顕微ラマンの観察ステージに滴下(ドロップ)して、乾燥 させ、顕微ラマンの観察ステージにて測定することを想定しているが、倒立顕微鏡や マイクロ流路の側面や上面など、必ずしも下方でない方向にアナライトを供給する構 成も考えられる。ゆえに本明細書の滴下工程と滴下手段はより広い意味では供給ェ 程と供給手段であって、請求項 11のような吹き付け手段をひとつの供給手段として 用いることも有効である。そうすれば必ずしも下方でな 、方向にアナライトを供給する ことができるし、圧電素子の電気エネルギーによって定量的な圧力を導出する特性 からアナライト供給量の精度が増し、測定できるに至る乾燥に要する時間の予測精 度もよくなるので、より好適である。吹き付け手段はインクジェット印字機に実用的に 利用されて ヽる公知の圧電素子をもち ヽればよ!/ヽ。 [0043] In this specification, the analyte is dropped on the microscopic Raman observation stage and dried. It is assumed that the measurement is performed on the observation stage of the microscopic Raman, but a configuration in which the analyte is supplied in a direction not necessarily downward such as an inverted microscope or a side surface or an upper surface of the microchannel is also conceivable. Therefore, the dropping step and the dropping means in this specification are a supply process and a supplying means in a broader sense, and it is also effective to use the spraying means as in claim 11 as one supply means. In this way, the analyte can be supplied in a direction that is not necessarily downward, and the accuracy of the analyte supply amount is increased due to the property of deriving a quantitative pressure by the electric energy of the piezoelectric element, so that drying can be performed. This is more preferable because the prediction accuracy of the time required is improved. The spraying means may be a known piezoelectric element that is practically used in ink jet printers!

Claims

請求の範囲 The scope of the claims
[1] アナライトと金属微粒子とが近接する部位にレーザ光を照射して得られる  [1] Obtained by irradiating laser light to the area where the analyte and metal fine particles are close to each other
表面増強ラマン散乱光で微量アナライトを弁別検知する方法であって、  A method for discriminating and detecting a trace amount of analyte with surface-enhanced Raman scattered light,
アナライトとあらかじめ用意された金属微粒子コロイドとを混合する工程と、 アナライトと金属微粒子コロイドの混合物を  The process of mixing the analyte with the metal particulate colloid prepared in advance, and the mixture of the analyte and the metal particulate colloid
並列した複数の溝または並列した複数の凹部を配設した固体平面に  On a solid plane with multiple parallel grooves or multiple parallel recesses
該溝または該凹部の並び方向に沿って供給する工程と、  Supplying along the direction in which the grooves or the recesses are arranged;
供給された混合物を前記固体平面上で乾燥する工程と、  Drying the supplied mixture on the solid plane;
固体平面上の溝または凹部の混合物乾燥体にレーザ光を照射して  Irradiate laser beam to dry mixture of groove or recess on solid surface
ラマン散乱光を観測する工程を有する  A step of observing Raman scattered light
表面増強ラマン散乱による微量物質の検知方法。  A method for detecting trace substances by surface-enhanced Raman scattering.
[2] アナライトと金属微粒子コロイドの混合物を固体平面に供給する工程が、  [2] The step of supplying the mixture of the analyte and the metal fine particle colloid to the solid plane
静止した固体平面に混合物を接触させた後に、  After contacting the mixture with a stationary solid plane,
溝または凹部の並びの方向に混合物または固体平面を移動することで  By moving the mixture or solid plane in the direction of the grooves or recesses
混合物を溝または凹部の並びの方向に沿って固体平面に供給する  Supply the mixture to the solid plane along the direction of the grooves or recesses
請求項 1の微量物質の検知方法。  The method for detecting a trace substance according to claim 1.
[3] 並列した複数の溝同士の間隔または並列した複数の凹部同士の間隔が [3] The distance between the parallel grooves or the distance between the parallel recesses
5ミクロンメートル以下であり、溝または凹部の深さが 1ミクロンメートル以下であり、 1〜10マイクロリットルのアナライトと 1〜10マイクロリットルの金属微粒子コロイドの混 合物を  5 micrometer or less, groove or recess depth of 1 micrometer or less, 1-10 microliters of analyte and 1-10 microliters of metal particulate colloid mixture
固体平面に供給する請求項 1の微量アナライト検知方法。  The method for detecting a minute amount of analyte according to claim 1, wherein the method is supplied to a solid plane.
[4] アナライトと金属微粒子とが近接する部位にレーザ光を照射して得られる [4] Obtained by irradiating the area where the analyte and metal fine particles are close to each other with laser light
表面増強ラマン散乱光で微量アナライトを弁別検知する方法であって、  A method for discriminating and detecting a trace amount of analyte with surface-enhanced Raman scattered light,
アナライトとあらかじめ用意された金属微粒子コロイドとを液相で流動混合する工程と 流動混合工程で得た混合物を  The process of fluidly mixing the analyte and the prepared metal fine particle colloid in the liquid phase and the mixture obtained by the fluidized mixing process
並列した複数の溝または並列した複数の凹部を配設した固体平面上に流動移送す る工程と、 流動移送工程で移送された混合物を Flow-transferring on a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses; and The mixture transferred in the fluid transfer process
並列した複数の溝または並列した複数の凹部を配設した固体平面上で静置乾燥す る工程と、  A process of standing and drying on a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses;
静置乾燥工程で得た混合物乾燥体にレーザ光を照射してラマン散乱光を観測する 工程を有する  It has a step of observing Raman scattered light by irradiating laser light to the dried mixture obtained in the stationary drying step
表面増強ラマン散乱による微量物質の検知方法。  A method for detecting trace substances by surface-enhanced Raman scattering.
[5] 並列した複数の溝同士の間隔または並列した複数の凹部同士の間隔が [5] The distance between the parallel grooves or the distance between the parallel recesses is
5ミクロンメートル以下であり、溝または凹部の深さが 1ミクロンメートル以下である 請求項 4の微量アナライト検知方法。  5. The method for detecting a minute amount of analyte according to claim 4, wherein the depth is 5 μm or less and the depth of the groove or the recess is 1 μm or less.
[6] 並列した複数の溝凹部表面材の水親和性と溝凸部表面材の水親和性とに差異が ある、または [6] There is a difference between the water affinity of the plurality of groove concave surface materials arranged in parallel and the water affinity of the groove convex surface material, or
並列した複数の凹部表面材の水親和性と該凹部以外の表面材の水親和性とに差異 がある、  There is a difference between the water affinity of a plurality of concave surface materials arranged in parallel and the water affinity of surface materials other than the concave portions,
請求項 1または請求項 4の表面増強ラマン散乱による微量物質の検知方法。  The method for detecting a trace substance by surface-enhanced Raman scattering according to claim 1 or 4.
[7] 固体平面がプラズモンミラー効果を有する金属面である [7] Solid plane is a metal surface with plasmon mirror effect
請求項 1から請求項 6のいずれかに記載された微量物質の検知方法。  The method for detecting a trace substance according to any one of claims 1 to 6.
[8] アナライトと金属微粒子とが近接する部位にレーザ光を照射して得られる [8] Obtained by irradiating the area where the analyte and metal fine particles are close to each other with laser light
表面増強ラマン散乱光で微量アナライトを弁別検知する方法に用いる  Used in the method of discriminating and detecting trace analytes with surface enhanced Raman scattered light
アナライトと金属微粒子コロイドとを混合し乾燥したアナライト弁別検知用乾燥体であ つて、  A dried substance for detecting an analyte discrimination, which is obtained by mixing an analyte and a metal fine particle colloid and drying it.
5ミクロンメートル以下の間隔で並列した複数の溝または  Multiple grooves in parallel with an interval of 5 microns or less or
5ミクロンメートル以下の間隔で並列した複数の凹部を配設した  A plurality of recesses arranged in parallel at intervals of 5 microns or less
固体平面の前記溝または前記凹部の並びの方向に沿って  Along the direction of the alignment of the grooves or recesses on a solid plane
1〜10マイクロリットルの金属微粒子コロイドと 1〜10マイクロリットルのアナライトの混 合物を  1-10 microliters of fine metal particle colloid and 1-10 microliters of analyte mixture
供給して乾燥した幅 5ミクロンメートル以下で長さ 10ミクロンメートル以上の乾燥体。  Supply and dry a dried body with a width of 5 microns or less and a length of 10 microns or more.
[9] 固体平面がプラズモンミラー効果を有する金属面である [9] Solid plane is a metal surface with plasmon mirror effect
請求項 8の乾燥体。 The dried body according to claim 8.
[10] 請求項 1に記載された微量物質の検知方法を実施するための、 [10] For carrying out the method for detecting a trace substance according to claim 1,
5ミクロンメートル以下の間隔で並列した複数の溝または  Multiple grooves in parallel with an interval of 5 microns or less or
5ミクロンメートル以下の間隔で並列した複数の凹部を配設した固体平面をもつ装置 であって、  A device having a solid plane provided with a plurality of recesses arranged in parallel at intervals of 5 microns or less,
アナライトとあらかじめ用意された金属微粒子コロイドとを混合する混合手段と、 混合手段で得た混合物を  A mixing means for mixing the analyte and the metal fine particle colloid prepared in advance, and a mixture obtained by the mixing means
並列した複数の溝または並列した複数の凹部を配設した固体平面に  On a solid plane with multiple parallel grooves or multiple parallel recesses
該溝または該凹部の並び方向に沿って供給する供給手段と、  Supply means for supplying along the direction in which the grooves or the recesses are arranged;
供給手段で複数の溝または並列した複数の凹部を配設した固体平面上に供給され た混合物を  The mixture supplied on the solid plane provided with a plurality of grooves or a plurality of parallel recesses by the supply means
該固体平面上で乾燥する乾燥手段と、  Drying means for drying on the solid plane;
乾燥手段で得た混合物乾燥体にレーザ光を照射してラマン散乱光を観測する手段 を有する微量物質の検知装置。  A trace substance detection device having means for observing Raman scattered light by irradiating a dry mixture obtained by a drying means with laser light.
[11] 前記供給手段が、電気エネルギーで体積変化する圧電素子の該体積変化による 圧力によって静止した固定平面に混合物を吹き付けることを特徴とする請求項 10の 微量物質の検知装置。 11. The apparatus for detecting a trace substance according to claim 10, wherein the supply means sprays the mixture onto a stationary plane that is stationary by a pressure generated by the volume change of the piezoelectric element that changes in volume by electric energy.
[12] 請求項 4に記載された微量物質の検知方法を実施するための、 [12] For carrying out the method for detecting trace substances according to claim 4,
5ミクロンメートル以下の間隔で並列した複数の溝または  Multiple grooves in parallel with an interval of 5 microns or less or
5ミクロンメートル以下の間隔で並列した複数の凹部を配設した固体平面を内面とし た流路をもつ装置であって、  An apparatus having a flow path with a solid plane as an inner surface, in which a plurality of recesses arranged in parallel at intervals of 5 microns or less are arranged,
アナライトとあらかじめ用意された金属微粒子コロイドとを液相で流動混合する流動 混合手段と、  A fluid mixing means for fluidly mixing an analyte and a metal colloid prepared in advance in a liquid phase;
流動混合手段で得た混合物を  The mixture obtained by fluid mixing means
並列した複数の溝または並列した複数の凹部を配設した固体平面を内面とした流路 に流動移送する流動移送手段と、  Fluid transfer means for fluidly transferring to a flow path having a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses as an inner surface;
流動移送手段で並列した複数の溝または並列した複数の凹部を配設した固体平面 に移送された混合物を  A mixture transferred to a solid plane provided with a plurality of parallel grooves or a plurality of parallel recesses by a fluid transfer means.
該固体平面上で静置乾燥する乾燥手段と、 乾燥手段で得た混合物乾燥体にレーザ光を照射してラマン散乱光を観測する手段 を有する微量物質の検知装置。 Drying means for standing and drying on the solid plane; A trace substance detection device having means for observing Raman scattered light by irradiating a dry mixture obtained by a drying means with laser light.
[13] 混合物を固体平面上で乾燥する乾燥手段が、固体平面を大気圧よりも下げる低圧 化手段  [13] The drying means for drying the mixture on the solid plane reduces the solid plane below atmospheric pressure.
を兼備する請求項 10または請求項 12の微量物質の検知装置。  13. The trace substance detection device according to claim 10 or claim 12, which also comprises:
[14] 乾燥手段が固体平面上の混合物を固体平面に延展する延展手段 [14] A spreading means in which the drying means extends the mixture on the solid plane to the solid plane
を兼備する請求項 10または請求項 12の微量物質の検知装置。  13. The trace substance detection device according to claim 10 or claim 12, which also comprises:
[15] 固体平面がプラズモンミラー効果を有する金属面である [15] Solid plane is a metal surface with plasmon mirror effect
請求項 10から請求項 14のいずれかに記載された微量物質の検知装置。  15. The trace substance detection device according to any one of claims 10 to 14.
[16] アナライトと金属微粒子とが近接する部位にレーザ光を照射して得られる [16] Obtained by irradiating the area where the analyte and metal fine particles are close to each other with laser light
表面増強ラマン散乱光で微量アナライトを弁別検知する方法による微量アナライト検 知用マイクロ流路チップであって、  A micro-channel chip for detecting a small amount of analyte by a method of discriminating and detecting a small amount of analyte with surface-enhanced Raman scattered light,
金属塩と該金属塩の還元剤とを流動混合して流動中に金属塩を還元する第一流路 と、  A first channel for fluidly mixing a metal salt and a reducing agent for the metal salt to reduce the metal salt during the flow;
該第一流路と合流するアナライトを流動させる第二流路と、  A second flow path for flowing the analyte that merges with the first flow path;
前記第一第二流路の合流点に連続し流動方向に並列した複数の溝または流動方向 に並列した複数の凹部を配設した固定平面を有する第三流路を具備するマイクロ流 路チップ。  A microchannel chip comprising a third channel having a fixed plane in which a plurality of grooves continuous in parallel with the flow direction or a plurality of recesses arranged in parallel with the flow direction are arranged at a confluence of the first second channel.
[17] 固体平面がプラズモンミラー効果を有する金属面である  [17] Solid plane is a metal surface with plasmon mirror effect
請求項 16のマイクロ流路チップ。  17. The microchannel chip according to claim 16.
PCT/JP2006/323314 2005-11-22 2006-11-22 Method and apparatus for detecting trace substances by surface-enhanced raman scattering (sers), and microchannel chip for detection of microanalyte WO2007060989A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-336514 2005-11-22
JP2005336514 2005-11-22
JP2006022622 2006-01-31
JP2006-022622 2006-01-31

Publications (1)

Publication Number Publication Date
WO2007060989A1 true WO2007060989A1 (en) 2007-05-31

Family

ID=38067214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/323314 WO2007060989A1 (en) 2005-11-22 2006-11-22 Method and apparatus for detecting trace substances by surface-enhanced raman scattering (sers), and microchannel chip for detection of microanalyte

Country Status (1)

Country Link
WO (1) WO2007060989A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017846A1 (en) * 2007-07-30 2009-02-05 President And Fellows Of Harvard College Substrates for raman spectroscopy having discontinuous metal coatings
US7586601B2 (en) 2005-06-14 2009-09-08 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US7715003B2 (en) 2005-06-14 2010-05-11 President & Fellows Of Harvard College Metalized semiconductor substrates for raman spectroscopy
WO2010101209A1 (en) * 2009-03-04 2010-09-10 有限会社マイテック Assaying substrate with surface-enhanced raman scattering activity
JP2011056626A (en) * 2009-09-10 2011-03-24 Fuji Electric Systems Co Ltd Particulate array structure and method for producing the same
US8184284B2 (en) 2005-06-14 2012-05-22 Ebstein Steven M Laser-processed substrate for molecular diagnostics
US8294891B2 (en) 2007-01-23 2012-10-23 President And Fellows Of Harvard College Non-invasive optical analysis using surface enhanced raman spectroscopy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530569A (en) * 2000-04-08 2003-10-14 ユニバーシティ オブ ストラスクライド Specimen detection method and apparatus
JP2005519622A (en) * 2002-03-14 2005-07-07 インテル・コーポレーション Method for enhancing nucleotide signal by Raman scattering

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003530569A (en) * 2000-04-08 2003-10-14 ユニバーシティ オブ ストラスクライド Specimen detection method and apparatus
JP2005519622A (en) * 2002-03-14 2005-07-07 インテル・コーポレーション Method for enhancing nucleotide signal by Raman scattering

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7586601B2 (en) 2005-06-14 2009-09-08 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US7715003B2 (en) 2005-06-14 2010-05-11 President & Fellows Of Harvard College Metalized semiconductor substrates for raman spectroscopy
US7969570B2 (en) 2005-06-14 2011-06-28 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US8184284B2 (en) 2005-06-14 2012-05-22 Ebstein Steven M Laser-processed substrate for molecular diagnostics
US8325339B2 (en) 2005-06-14 2012-12-04 Ebstein Steven M Applications of laser-processed substrate for molecular diagnostics
US8294891B2 (en) 2007-01-23 2012-10-23 President And Fellows Of Harvard College Non-invasive optical analysis using surface enhanced raman spectroscopy
WO2009017846A1 (en) * 2007-07-30 2009-02-05 President And Fellows Of Harvard College Substrates for raman spectroscopy having discontinuous metal coatings
US7864312B2 (en) 2007-07-30 2011-01-04 President And Fellows Of Harvard College Substrates for Raman spectroscopy having discontinuous metal coatings
WO2010101209A1 (en) * 2009-03-04 2010-09-10 有限会社マイテック Assaying substrate with surface-enhanced raman scattering activity
US9658163B2 (en) 2009-03-04 2017-05-23 Mytech Co., Ltd. Assaying substrate with surface-enhanced raman scattering activity
JP2011056626A (en) * 2009-09-10 2011-03-24 Fuji Electric Systems Co Ltd Particulate array structure and method for producing the same

Similar Documents

Publication Publication Date Title
US7586601B2 (en) Applications of laser-processed substrate for molecular diagnostics
US8184284B2 (en) Laser-processed substrate for molecular diagnostics
López-Lorente Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review
Liu et al. Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix
Viehrig et al. Quantitative SERS assay on a single chip enabled by electrochemically assisted regeneration: a method for detection of melamine in milk
Smith Practical understanding and use of surface enhanced Raman scattering/surface enhanced resonance Raman scattering in chemical and biological analysis
US7292334B1 (en) Binary arrays of nanoparticles for nano-enhanced Raman scattering molecular sensors
Zhou et al. Review of microfluidic approaches for surface-enhanced Raman scattering
Fu et al. Nanopore electrochemistry: a nexus for molecular control of electron transfer reactions
WO2007060989A1 (en) Method and apparatus for detecting trace substances by surface-enhanced raman scattering (sers), and microchannel chip for detection of microanalyte
Wang et al. Analytical characterization using surface-enhanced Raman scattering (SERS) and microfluidic sampling
JP2016538563A (en) Surface enhanced Raman spectroscopic substrate and method for producing the same
Wallace et al. Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates
Bai et al. Recent advances in the fabrication of highly sensitive surface-enhanced Raman scattering substrates: nanomolar to attomolar level sensing
CN102706835A (en) Sensing chip of dual-detecting biochemical sensing detector and preparation method thereof
Lee et al. Surface enhanced Raman scattering (SERS) based biomicrofluidics systems for trace protein analysis
Kugel et al. Nanopillars for sensing
CN110790220A (en) Surface-enhanced Raman scattering substrate, preparation method thereof and in-situ rapid detection method
WO2007060988A1 (en) Method and device for detecting trace substance by surface enhanced raman scattering
US9829425B2 (en) Optofluidic devices and methods for sensing single particles
Nsiah et al. Microfluidic Patterning of Chemically Modified Nanoparticles for Surface Enhanced Raman Spectroscopic Mapping
US20110290008A1 (en) Novel technique for uniformly applying analyte to a structured surface
Krause et al. Optical investigation of diffusion of single Ag markers in confined water films
Saleh Surface enhanced Raman scattering spectroscopy for pharmaceutical determination
Boca et al. Chemiresistive/SERS dual sensor based on densely packed gold nanoparticles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06833136

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP