Nothing Special   »   [go: up one dir, main page]

WO2007055373A1 - 液体回収部材、露光装置、露光方法、及びデバイス製造方法 - Google Patents

液体回収部材、露光装置、露光方法、及びデバイス製造方法 Download PDF

Info

Publication number
WO2007055373A1
WO2007055373A1 PCT/JP2006/322636 JP2006322636W WO2007055373A1 WO 2007055373 A1 WO2007055373 A1 WO 2007055373A1 JP 2006322636 W JP2006322636 W JP 2006322636W WO 2007055373 A1 WO2007055373 A1 WO 2007055373A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
recovery
exposure
exposure apparatus
Prior art date
Application number
PCT/JP2006/322636
Other languages
English (en)
French (fr)
Inventor
Hiroyuki Nagasaka
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2007544233A priority Critical patent/JPWO2007055373A1/ja
Priority to EP06832598A priority patent/EP1962328B1/en
Publication of WO2007055373A1 publication Critical patent/WO2007055373A1/ja
Priority to US12/149,782 priority patent/US8345217B2/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means

Definitions

  • Liquid recovery member Liquid recovery member, exposure apparatus, exposure method, and device manufacturing method
  • the present invention relates to a liquid recovery member used in an immersion exposure apparatus, an exposure apparatus that exposes a substrate, an exposure method, and a device manufacturing method.
  • an immersion type exposure apparatus that fills an optical path space of exposure light with a liquid and exposes a substrate through the liquid as disclosed in the following patent document Has been devised.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • the present invention relates to a liquid recovery member, an exposure apparatus, an exposure method, and a device manufacturing method that can recover liquid satisfactorily.
  • the present invention also provides an exposure apparatus, an exposure method, and a device using the exposure apparatus that can satisfactorily expose the substrate while the optical path space of the exposure light is filled with the liquid even when the exposure is performed while moving the substrate.
  • An object is to provide a manufacturing method.
  • the present invention adopts the following configuration associated with each drawing shown in the embodiment.
  • the parenthesized symbols attached to each element are only examples of the element and limit each element. is not.
  • the liquid (LQ) is recovered.
  • An exposure apparatus comprising a recovery member (25), wherein the recovery member (25) includes a first portion having a first recovery capability and a second portion having a second recovery capability different from the first recovery capability ( EX) is provided.
  • the substrate can be satisfactorily exposed while the optical path space of the exposure light is filled with the liquid.
  • a device can be manufactured using an exposure apparatus that can satisfactorily expose the substrate in a state where the optical path space of the exposure light is filled with the liquid.
  • an exposure method for exposing a substrate (P) by irradiating the substrate (P) with exposure light (EL), comprising: a liquid recovery member (25); Moving the substrate (P) to the opposite position, and recovering the liquid (LQ) on the substrate (P) with the first recovery capacity (25A) force of the liquid recovery member (25) The liquid on the substrate (P) with a second recovery capability different from the first recovery capability from the second portion (25B) disposed at a position different from the first portion (25A) of the liquid recovery component (25).
  • an exposure method including recovering (LQ) and irradiating the substrate (P) with exposure light (EL) through the liquid (LQ) on the substrate (P).
  • the third aspect of the present invention it is possible to satisfactorily recover the liquid on the substrate while filling the optical path space of the exposure light with the liquid even when the exposure is performed while moving the substrate.
  • the fourth aspect of the present invention it is possible to manufacture a device having desired performance by satisfactorily collecting the liquid on the substrate while filling the optical path space of the exposure light with the liquid.
  • the liquid recovery member (25) used for recovering the liquid (LQ) in the immersion exposure apparatus (EX) has the first liquid recovery capability.
  • the liquid in the immersion exposure apparatus, even when the exposure is performed while moving the substrate, the liquid can be satisfactorily recovered while filling the optical path space of the exposure light with the liquid. .
  • the substrate can be satisfactorily exposed in a state where the optical path space of the exposure light is filled with the liquid, and a device having desired performance can be manufactured.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to a first embodiment.
  • FIG. 2 is a partially cutaway view of a schematic perspective view showing the vicinity of a nozzle member according to the first embodiment.
  • FIG. 3 is a perspective view of the nozzle member according to the first embodiment viewed from the lower side force.
  • FIG. 4 is a side cross-sectional view parallel to the YZ plane of the nozzle member according to the first embodiment.
  • FIG. 5 is a side sectional view of the nozzle member according to the first embodiment parallel to the XZ plane.
  • FIG. 6 is a schematic view showing an example of a porous member.
  • FIG. 7A is a schematic diagram showing an example of the behavior of a liquid.
  • FIG. 7B is a schematic diagram showing an example of the behavior of a liquid.
  • FIG. 8A is a schematic diagram showing an example of the behavior of a liquid according to the first embodiment.
  • FIG. 8B is a schematic diagram showing an example of the behavior of the liquid according to the first embodiment.
  • FIG. 9 is a schematic view showing an example of a porous member.
  • FIG. 10 is a schematic view showing an example of a porous member.
  • FIG. 11 is a partially cutaway schematic perspective view showing the vicinity of a nozzle member according to a second embodiment.
  • FIG. 12 is a perspective view of the nozzle member according to the second embodiment as seen from the lower side force.
  • FIG. 13 is a side sectional view parallel to the YZ plane of a nozzle member according to a second embodiment.
  • FIG. 14 is a side sectional view parallel to the XZ plane of a nozzle member according to a second embodiment.
  • FIG. 15 is a partially cutaway schematic perspective view showing the vicinity of a nozzle member according to a third embodiment.
  • FIG. 16 is a perspective view of the nozzle member according to the third embodiment as seen from the lower side force.
  • FIG. 17 is a side sectional view parallel to the YZ plane of a nozzle member according to a third embodiment.
  • FIG. 18 is a side sectional view parallel to the XZ plane of a nozzle member according to a third embodiment.
  • FIG. 19A is a schematic diagram showing an example of the behavior of a liquid according to the third embodiment.
  • FIG. 19B is a schematic diagram showing an example of the behavior of the liquid according to the third embodiment.
  • FIG. 20 is a schematic diagram showing an example of an immersion system according to a fourth embodiment.
  • FIG. 21A is a schematic diagram showing an example of a porous member.
  • FIG. 21B is a schematic view showing an example of a porous member.
  • FIG. 22 is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a schematic block diagram that shows an exposure apparatus according to the first embodiment.
  • an exposure apparatus EX includes a mask stage 3 that can move while holding a mask M, a substrate stage 4 that can move while holding a substrate P, and a mask M that is held by the mask stage 3.
  • the illumination system IL that illuminates with the exposure light EL
  • the projection optical system PL that projects the no-turn image of the mask M illuminated with the exposure light EL onto the substrate P held by the substrate stage 4, and the entire exposure apparatus EX
  • a control device 7 for controlling the operation.
  • the substrate here includes a substrate such as a semiconductor wafer coated with a film such as a photosensitive material (photoresist) or a protective film.
  • the mask includes a reticle formed with a device pattern that is reduced and projected onto the substrate.
  • a force reflection type mask using a transmission type mask as a mask may be used.
  • a scanning exposure apparatus that exposes a pattern formed on mask M onto substrate P while synchronously moving mask M and substrate P in the scanning direction.
  • the synchronous movement direction (scanning direction) between the mask M and the substrate P is the Y-axis direction
  • the direction perpendicular to the ⁇ -axis direction is the X-axis direction (non-scanning direction)
  • the X-axis is defined as the axis direction.
  • the rotation (tilt) directions around the X, Y, and Z axes are the 0 X, 0 Y, and 0 Z directions, respectively.
  • the exposure apparatus EX of the present embodiment is an immersion type exposure apparatus to which an immersion method is applied, and fills the optical path space K of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ.
  • Immersion system 1 is provided.
  • the immersion system 1 is arranged on the substrate P so that the optical path space K of the exposure light EL between the final optical element FL of the projection optical system PL and the substrate P held by the substrate stage 4 is filled with the liquid LQ.
  • Liquid LQ immersion area LR is formed.
  • the final optical element FL is an optical element closest to the image plane of the projection optical system PL among the plurality of optical elements of the projection optical system PL.
  • the immersion system 1 is provided in the vicinity of the optical path space K of the exposure light EL on the image plane side of the projection optical system PL, and collects the supply port 12 and the liquid LQ that can supply the liquid LQ to the optical path space K.
  • the liquid immersion system 1 has different collection capacities for collecting the liquid LQ depending on each part of the nozzle member 70.
  • a porous member 25 is disposed at the recovery port 22, and the recovery capabilities for recovering the liquid LQ at each part of the porous member 25 disposed at the recovery port 22 are different from each other. .
  • the operations of the liquid supply device 11 and the liquid recovery device 21 are controlled by the control device 7.
  • the liquid supply device 11 is equipped with a temperature adjustment device for adjusting the temperature of the liquid LQ to be supplied and a filter device for removing foreign matters in the liquid LQ to be supplied. Liquid LQ can be delivered.
  • the liquid recovery device 21 includes a suction device capable of sucking fluid including liquid LQ and gas, such as a vacuum system, and can recover the liquid LQ.
  • the exposure apparatus EX projects the pattern image of the mask M onto the substrate P by irradiating the substrate P with the exposure light EL that has passed through the mask M via the projection optical system PL and the liquid LQ that fills the optical path space K. Then, the substrate P is exposed.
  • the exposure apparatus EX of the present embodiment is a liquid LQ. While the optical path space K is filled, a liquid LQ immersion region LR that is larger than the projection region AR and smaller than the substrate P is locally applied to a part of the region on the substrate P including the projection region AR of the projection optical system PL. Adopting a local liquid immersion method.
  • the exposure apparatus EX includes a base BP provided on the floor surface and a main frame 2 installed on the base BP.
  • the illumination system IL is supported by a subframe 2F fixed to the upper part of the main frame 2.
  • the illumination system IL illuminates a predetermined illumination area on the mask M with exposure light EL having a uniform illuminance distribution.
  • Illumination system IL force The exposure light EL emitted is, for example, bright ultraviolet rays emitted from mercury lamps (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm), etc. ), Vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 ⁇ m) and F laser light (wavelength 157nm). Book
  • ArF excimer laser light is used.
  • water is used as the liquid LQ.
  • Pure water can transmit not only ArF excimer laser light but also far ultraviolet light (DUV light) such as emission lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248 nm) emitted by mercury lamp force. It is.
  • pure water can be easily obtained in large quantities at semiconductor manufacturing plants and the like, and has the advantage that it does not adversely affect the substrate P and optical elements.
  • the mask stage 3 is held in the X-axis, Y-axis, and ⁇ -Z directions on the mask stage surface plate 3B while the mask M is held by the mask stage driving device 3D including an actuator such as a linear motor. It is movable.
  • Mask stage 3 is supported in a non-contact manner on the upper surface (guide surface) of mask stage surface plate 3B by air bearing 3A.
  • the mask stage surface plate 3B is supported by the upper support portion 2A protruding toward the inner side of the main frame 2 via the vibration isolator 3S.
  • the position information of mask stage 3 (H! / That is mask M) is measured by laser interferometer 3L.
  • the laser interferometer 3L measures the position information of the mask stage 3 using a reflecting mirror 3K provided on the mask stage 3.
  • the control device 7 controls the mask stage driving device 3D based on the measurement result of the laser interferometer 3L, and controls the position of the mask M held by the mask stage 3 !.
  • the reflecting mirror 3K may include not only a plane mirror but also a corner cube (retro reflector). Instead of fixing the reflecting mirror 3K to the mask stage, for example, a mask step
  • the end surface (side surface) of the surface 3 may be mirror-finished to form a reflective surface.
  • the mask stage 3 may be configured to be capable of coarse and fine movement disclosed in, for example, Japanese Patent Laid-Open No. 8-130179 (corresponding US Pat. No. 6,721,034).
  • the projection optical system PL projects the pattern image of the mask M onto the substrate P at a predetermined projection magnification, and has a plurality of optical elements, and these optical elements are held by the lens barrel 5.
  • the lens barrel 5 has a flange 5F, and the projection optical system PL is supported on the lens barrel base plate (main column) 5B via the flange 5F.
  • the main column 5B is supported by a lower support portion 2B protruding toward the inside of the main frame 2 via a vibration isolator 5S.
  • the projection optical system PL of the present embodiment is a reduction system whose projection magnification is, for example, 1Z4, 1/5, 1Z8, etc., and forms a reduced image of the mask pattern in a projection area conjugate with the illumination area described above.
  • the projection optical system PL may be any of a reduction system, a unity magnification system, and an enlargement system.
  • the projection optical system PL may be any of a refractive system that does not include a reflective optical element, a reflective system that does not include a refractive optical element, and a catadioptric system that includes a reflective optical element and a refractive optical element.
  • the projection optical system PL may form a deviation between an inverted image and an erect image.
  • the substrate stage 4 has a substrate holder 4H that holds the substrate P.
  • the substrate stage 4 is held in the state in which the substrate P is held on the substrate holder 4H by the substrate stage driving device 4D including an actuator such as a linear motor.
  • the substrate stage driving device 4D including an actuator such as a linear motor.
  • On the surface plate 4B it can move in the direction of 6 degrees of freedom in the X, Y, Z, 0 X, ⁇ Y, and ⁇ Z directions.
  • the substrate stage 4 is supported in a non-contact manner on the upper surface (guide surface) of the substrate stage surface plate 4B by the air bearing 4A.
  • the substrate stage surface plate 4B is supported by the base BP via a vibration isolator 4S.
  • the position information of the substrate stage 4 (and hence the substrate P) is measured by the laser interferometer 4L.
  • the laser interferometer 4L uses the reflecting mirror 4K provided on the substrate stage 4 to measure position information regarding the X-axis, Y-axis, and ⁇ Z directions of the substrate stage 4.
  • the surface position information of the surface of the substrate P held by the substrate stage 4 is detected by a focus' leveling detection system (not shown).
  • the control device 7 controls the substrate stage driving device 4D based on the measurement result of the laser interferometer 4L and the detection result of the focus / leveling detection system, and controls the position of the substrate P held by the substrate stage 4.
  • the focus' leveling detection system detects the tilt information (rotation angle) in the ⁇ X and ⁇ Y directions of the substrate by measuring the position information in the Z-axis direction of the substrate at each of the multiple measurement points. To do. Furthermore, for example, when the laser interferometer can measure the position information in the Z-axis, ⁇ X and ⁇ Y directions of the substrate, the position information in the Z-axis direction can be measured during the substrate exposure operation. It is possible to control the position of the substrate P in the Z-axis, ⁇ X, and ⁇ Y directions using the measurement results of the laser interferometer, at least during the exposure operation.
  • the substrate holder 4H is disposed in the recess 4R provided on the substrate stage 4, and the upper surface 4F provided around the recess 4R of the substrate stage 4 is The flat surface is almost the same height (level) as the surface of the substrate P held by the substrate holder 4H. There may be a step between the surface of the substrate P held by the substrate holder 4H and the upper surface 4F of the substrate stage 4.
  • the upper surface 4F of the substrate stage 4 may be substantially the same height as the surface of the substrate P only in a part thereof, for example, a predetermined region surrounding the substrate P.
  • the substrate holder 4H and the substrate stage 4 are configured separately, and the substrate holder 4H is fixed to the recess of the substrate stage 4 by, for example, vacuum suction. You can also form it together.
  • FIGS. 2 is a partially cutaway schematic perspective view showing the vicinity of the nozzle member 70
  • FIG. 3 is a perspective view of the nozzle member 70 viewed from below
  • FIG. 4 is a side sectional view parallel to the YZ plane
  • FIG. 5 is an XZ plane.
  • the nozzle member 70 has a supply port 12 for supplying the liquid LQ to the optical path space K and a recovery port 22 for recovering the liquid LQ.
  • the nozzle member 70 is an annular member and is provided so as to surround the final optical element FL.
  • the substrate P (substrate stage 4) is movable below the nozzle member 70.
  • the nozzle member 70 is supported by the lower support portion 2B of the main frame 2 via the support device 61, and the nozzle member 70 and the final optical element FL are is seperated.
  • the nozzle member 70 has a bottom plate 78 having an upper surface 79 that faces the lower surface T1 of the final optical element FL.
  • the substrate P (substrate stage 4) is disposed below the nozzle member 70, a part of the bottom plate 78 is Regarding the direction, it is arranged between the lower surface T1 of the final optical element FL and the substrate P (substrate stage 4).
  • a space having a predetermined gap is provided between the lower surface T1 of the final optical element FL and the upper surface 79 of the bottom plate 78.
  • the space inside the nozzle member 70 including the space between the lower surface T1 of the final optical element FL and the upper surface 79 of the bottom plate 78 is appropriately referred to as an internal space IS.
  • the XY cross-sectional shape of the exposure light EL (that is, the shape of the projection area AR) is a substantially rectangular shape with the X-axis direction as the longitudinal direction, and the opening 76 has the XY cross-sectional shape of the exposure light EL ( It is formed in a substantially rectangular shape according to the projection area AR).
  • the nozzle member 70 (bottom plate 78) has a flat lower surface 77 substantially parallel to the XY plane.
  • the lower surface 77 is provided so as to surround the opening 76 (the optical path K of the exposure light EL). Further, when the nozzle member 70 (bottom plate 78) and the substrate P (substrate stage 4) face each other, a part of the lower surface 77 is formed between the lower surface T1 of the final optical element FL of the projection optical system PL and the substrate P.
  • the liquid LQ can be held between the substrate P (substrate stage 4) and the lower surface 77.
  • the nozzle member 70 (bottom plate 78) is closest to the substrate P having the lower surface 77 held by the substrate stage 4 when the nozzle member 70 (bottom plate 78) and the substrate P (substrate stage 4) are opposed to each other. Configured and arranged to do.
  • the nozzle member 70 (bottom plate 78) has a lower surface 77 of the nozzle member 70 when the nozzle member 70 (bottom plate 78) and the substrate P (substrate stage 4) face each other. Arranged so as to be substantially parallel to the surface of the substrate P held by the substrate stage 4.
  • the lower surface 77 of the nozzle member 70 (bottom plate 78) is appropriately referred to as a land surface 77.
  • the outer shape of the land surface 77 is substantially square.
  • the liquid LQ that forms the liquid immersion region LR contacts the bottom plate 78 and the final optical element FL.
  • the land surface 77 is lyophilic with respect to the liquid LQ, and the contact angle of the liquid LQ with the land surface 77 is 40 ° or less, preferably 10 ° or less.
  • the bottom plate 78 having the land surface 77 is made of titanium and has lyophilicity (hydrophilicity).
  • the land surface 77 may be subjected to a surface treatment for enhancing lyophilicity.
  • the supply port 12 is connected to the internal space IS, and can supply the liquid LQ to the internal space IS. Inside the nozzle member 70, a supply flow path 14 connected to the supply port 12 is formed. The supply port 12 is connected to the liquid supply apparatus 11 via the supply flow path 14 and the supply pipe 13. In the present embodiment, the supply ports 12 are provided outside the optical path space K of the exposure light EL at respective predetermined positions V and on both sides in the Y-axis direction of the optical path space K.
  • the nozzle member 70 has a discharge port 16 that discharges (exhausts) the gas in the internal space IS to the external space (including the atmospheric space) OS.
  • the outlet 16 is connected to the internal space IS.
  • the discharge ports 16 are provided at predetermined positions on both sides of the optical path space K in the X-axis direction outside the optical path space K of the exposure light EL.
  • the gas in the internal space IS can be discharged to the external space OS via the discharge port 16 and the discharge flow path 15 formed in the nozzle member 70.
  • the recovery port 22 will be described.
  • the substrate P can be moved to a position facing the recovery port 22, and the recovery port 22 can recover the liquid LQ on the substrate P from above the substrate P held by the substrate stage 4.
  • the recovery port 22 is provided outside the supply port 12 and the discharge port 16 with respect to the optical path space K, and the optical path space K, the land surface 77, the supply port 12, and the discharge port 16 are provided. It is provided in an annular shape so as to surround.
  • the recovery port 22 is connected to a liquid recovery device 21 including a suction device capable of recovering the liquid LQ such as a vacuum system via a recovery flow path 24 and a recovery pipe 23. Note that the recovery port 22 does not have to be arranged farther from the supply port 12 with respect to the optical path space ⁇ .
  • a porous member 25 having a plurality of holes is disposed.
  • the porous member 25 is a member for collecting the liquid LQ, and has a plurality of holes capable of collecting (passing through) the liquid LQ.
  • the porous member 25 is a titanium mesh member, and includes a plate-like base material having a predetermined thickness and a plurality of holes formed so as to penetrate in the thickness direction of the base material. Have.
  • the porous member 25 is disposed outside the optical path space ⁇ ⁇ of the exposure light EL, and the liquid LQ on the substrate ⁇ ⁇ facing the porous member 25 is collected through the porous member 25.
  • the recovery port 22 (the porous member 25) is disposed outside the land surface 77 with respect to the optical path space of the exposure light EL.
  • the porous member 25 has a lower surface 26, and the liquid LQ on the substrate surface facing the lower surface 26 of the porous member 25 is collected through the porous member 25.
  • the lower surface 26 of the porous member 25 is a substantially flat surface substantially parallel to the flat surface.
  • the lower surface 26 and the land surface 77 are almost flush with each other. Therefore, in the present embodiment, when the lower surface 26 of the multi-hole member 25 and the substrate P face each other, the lower surface 26 of the porous member 25 is substantially parallel to the surface of the substrate P.
  • the liquid recovery apparatus 21 can recover the liquid LQ that forms the liquid immersion region LR through the hole of the porous member 25.
  • the liquid LQ that has passed through the hole of the porous member 25 is recovered by the liquid recovery device 21 via the recovery flow path 24 and the recovery pipe 23.
  • the liquid immersion system 1 has different recovery capabilities for recovering the liquid LQ depending on each part of the nozzle member 70. In the present embodiment, the liquid immersion system 1 has different recovery capabilities for recovering the liquid LQ at each part of the porous member 25 disposed in the recovery port 22.
  • the recovery capability for recovering the liquid LQ means that the recoverable amount per unit area on the predetermined surface (here, the lower surface 26) for recovering the liquid LQ is included.
  • each part of the porous member 25 is set according to the position of the exposure light EL with respect to the optical path space K.
  • the recovery power at each part of the porous member 25 is set according to the distance from the optical path space K of the exposure light EL.
  • the porous member 25 has a first region 25A having a first recovery capability and a second region 25B having a second recovery capability higher than the first recovery capability. ing.
  • the second region 25B is arranged at a position farther from the optical path space K of the exposure light EL than the first region 25A.
  • the first region 25A is arranged in a substantially rectangular shape (mouth shape) so as to surround the optical path space K (land surface 77) of the exposure light EL.
  • the second region 25B is arranged in a substantially rectangular shape (mouth shape) so as to surround the first region 25A.
  • the recovery capacity of the first region 25A near the land surface 77 of the porous member 25 is relatively low, whereas the recovery capacity of the second region 25B farther than the first region 25A is relatively low for the land surface 77 that is relatively low. It's getting higher.
  • the land surface 77 is an area where there is no recovery capability.
  • the structures of the porous member 25 at the respective portions are made different from each other, whereby the collection capacities at the respective portions are made different from each other.
  • the collection capacities are made different from each other by making the sizes of the holes in each part of the porous member 25 different from each other.
  • FIG. 6 is an enlarged view of a part of the porous member 25 in which the lower surface 26 side force is also seen.
  • the size of the holes in the first region 25A and the size of the holes in the second region 25B are different from each other. Specifically, a hole having a first size (for example, diameter) D1 is formed in the first region 25A, and a second size larger than the first size D1 is formed in the second region 25B.
  • a hole having a thickness D2 is formed. That is, the recovery capacity (first recovery capacity) of the liquid LQ in the first area 25A having the small holes is lower than the recovery capacity (second recovery capacity) of the liquid LQ in the second area 25B having the large holes. ing.
  • the liquid in the first and second regions 25A and 25B is made different from each other in the sizes of the holes in the first and second regions 25A and 25B of the porous member 25. Different collection capacity of LQ.
  • the porous member 25 is made of titanium and has lyophilicity (hydrophilicity) with respect to the liquid LQ.
  • the porous member 25 may be subjected to a surface treatment for enhancing lyophilicity.
  • the control device 7 drives each of the liquid supply device 11 and the liquid recovery device 21.
  • the liquid LQ delivered from the liquid supply device 11 flows through the supply pipe 13 and then is supplied from the supply port 12 to the internal space IS via the supply flow path 14 of the nozzle member 70.
  • the liquid LQ supplied from the supply port 12 to the internal space IS fills the internal space IS, and then flows into the space between the land surface 77 and the substrate P (substrate stage 4) through the opening 76, thereby exposing the exposure light. It fills the EL optical path space K and forms the immersion region LR.
  • the immersion system 1 supplies the liquid LQ from the supply port 12 to the internal space IS between the final optical element FL and the bottom plate 78, whereby the final optical element FL (projection optical system PL) and the substrate P are supplied.
  • the liquid recovery apparatus 21 recovers a predetermined amount of the liquid LQ per unit time.
  • the liquid recovery device 21 including a suction device such as a vacuum system makes the liquid LQ existing between the porous member 25 disposed in the recovery port 22 and the substrate P by making the recovery flow path 24 a negative pressure. It can be recovered through the porous member 25. Perforated member 25
  • the recovered liquid LQ flows into the recovery channel 24, flows through the recovery pipe 23, and is recovered by the liquid recovery device 21.
  • the control device 7 controls the liquid immersion system 1 to perform the liquid supply operation by the liquid supply device 11 and the liquid recovery operation by the liquid recovery device 21 in parallel during the exposure of the substrate P, so that the optical path space K
  • the liquid LQ immersion region LR is locally formed in a partial region on the substrate P so that the liquid LQ is filled with the liquid LQ.
  • control device 7 irradiates the exposure light EL onto the substrate P while moving the substrate P in the Y-axis direction with respect to the optical path space K in a state where the optical path space K of the exposure light EL is filled with the liquid LQ.
  • the nozzle member 70 can satisfactorily hold the liquid LQ between the land surface 77 and the surface of the substrate P. Therefore, even during the exposure of the substrate P, the final optical element FL and the substrate P The light path space K of the EL and the space between the land surface 77 and the substrate P can be satisfactorily filled with the liquid LQ. Further, in the present embodiment, since the nozzle member 70 has the discharge port 16, inconvenience that bubbles are generated in the liquid LQ that fills the optical path space K is suppressed. Therefore, the exposure light EL can reach the substrate P satisfactorily.
  • the liquid LQ is not recovered well, for example, between the substrate P and the nozzle member 70.
  • Liquid LQ may leak outside the space.
  • the land surface 77 capable of holding the liquid LQ with the surface of the substrate P is provided so as to surround the optical path space K of the exposure light EL.
  • the liquid LQ may leak when the substrate P is moved.
  • FIGS. 7A and 7B consider a case where the hole diameter of the porous member 25 'disposed in the recovery port 22 is uniform and the recovery capability of the porous member 25' is uniform. . From the first state where the liquid LQ is held between the land surface 77 and the surface of the substrate P as shown in FIG. 7A, the substrate P is moved in the Y direction by a predetermined distance in the Y direction with respect to the optical path space K. In the second state during the movement of the substrate P as shown in FIG.
  • the interface LG between the liquid LQ of the immersion region LR and the outer space moves in the Y direction, and the porous member
  • the liquid LQ that has come into contact with the lower surface 26 of 25 ′ is collected through the holes of the porous member 25 ′.
  • the liquid LQ mainly flows in the Y direction generated by the movement of the substrate P in the Y direction.
  • a component Fl and a flow component F2 ′ in an upward direction (+ Z direction) generated by the recovery operation of the recovery port 22 toward the hole of the porous member 25 ′ are generated.
  • the behavior (flow component) of the liquid LQ changes rapidly, there is a high possibility that the liquid LQ leaks or remains on the substrate P.
  • the behavior of the liquid LQ is considered to change more rapidly as the difference between the recovery capabilities of the surfaces adjacent to each other in the moving direction of the interface of the liquid LQ is larger on the surface facing the substrate P.
  • the land surface 77 having no recovery capability and the lower surface 26 of the porous member 25 ′ having a high recovery capability are adjacent to each other, and the recovery capability of the land surface 77 and the recovery capability of the porous member 25 ′ are Because of the large difference! /, There is a sudden change in the behavior of liquid LQ.
  • FIGS. 8A and 8B are schematic diagrams for explaining the behavior of the liquid LQ in a state where the porous member 25 according to the present embodiment is disposed in the recovery port 22.
  • the porous member 25 is arranged at a position adjacent to the land surface 77 in the same manner as in FIGS. 7A and 7B.
  • a first area 25A having a second recovery capability is arranged at a position farther from the land surface 77 than the first area 25A and a second area 25B having a second recovery capability higher than the first recovery capacity. Is arranged.
  • the recovery capability of the first region 25A close to the land surface 77 is relatively low.
  • the difference between the recovery capability of the land surface 77 and the recovery capability of the first region 25A of the porous member 25 is relatively low. Is small, the behavior of liquid LQ does not change abruptly. Accordingly, the first region 25A of the porous member 25 can favorably recover the liquid LQ that does not cause a sudden change in the behavior of the liquid LQ.
  • the second region 25B having a high recovery capability is disposed outside the first region 25A (around the first region 25A), the liquid LQ that has not been recovered in the first region 25A is removed from the second region 25B. Can be recovered in area 2 5B. Therefore, the liquid LQ existing in the space between the substrate P and the nozzle member 70 can be recovered satisfactorily through the recovery port 22 (the porous member 25) without leaking outside the space.
  • the porous member 25 causes a sudden change in the flow behavior of the liquid LQ. Liquid LQ can be recovered well.
  • the liquid LQ is held between the surface of the substrate P so as to surround the optical path space K of the exposure light EL.
  • a possible land surface 77 is provided, and a first region 25A having a relatively small first recovery capacity is arranged around the land surface 77, and a second recovery capacity around the first region 25A.
  • the second region 25B having Has been placed.
  • the recovery port 22 multi-hole member 25
  • the recovery capability of the porous member 25 arranged at the recovery port 22 is uniformly increased, as described with reference to FIGS. It may cause a sudden change in the behavior of the LQ (for example, the interface), and the liquid LQ may leak or droplets of the liquid LQ may remain on the substrate P.
  • the recovery capability of the porous member 25 is uniformly reduced to reduce the difference between the recovery capability of the land surface 77 and the recovery capability of the porous member 25, the liquid LQ may be recovered without remaining. It becomes difficult.
  • the recovery capability for recovering the liquid LQ of the porous member 25 is made different depending on the location of the porous member 25, thereby suppressing an increase in the recovery capability difference on the lower surface of the nozzle member 70. Liquid LQ can be recovered well without leaking.
  • the first region 25A is disposed so as to surround the optical path space K (land surface 77) of the exposure light EL, and the second region 25B is disposed so as to surround the first region 25A, the substrate P Even when the (immersion area LR interface) moves in any direction, leakage of the liquid LQ can be suppressed satisfactorily.
  • the force that makes the pore size at each part different from each other may be made different by making the density of the holes different from each other.
  • the density of the holes different from each other For example, as shown in the schematic diagram of FIG. 9, in the porous member 25, the density of the holes in the first region 25A close to the optical path space K of the exposure light EL is lowered, and the exposure light EL is lower than in the first region 25A.
  • the recovery capability of the first region 25A can be made lower than the recovery capability of the second region 25B.
  • the porous member 25 has a plate-like base material 28 having a predetermined thickness and a plurality of holes formed so as to penetrate the base material 28 in the thickness direction. And! Force By making the thickness of each part of the base material 28 of the porous member 25 different from each other, the recovery ability of each part of the porous member 25 can be made different. For example, as shown in the schematic diagram of FIG. 10, the base material 28 of the first region 25A close to the optical path space K (land surface 77) of the exposure light EL is set to the first thickness HI, and the exposure is more than the first region 25A.
  • the substrate 28 in the second area 25B which is far from the optical EL optical path space K, is thinner than the first thickness HI !, and the second thickness H2 makes the recovery capacity of the first area 25A the second area 25B. It can be made lower than the recovery capacity.
  • the flow path of the hole formed in the base material 28 having the first thickness HI in the first region 25A is more than the flow path of the hole formed in the base material 28 having the second thickness H2 in the second region 25B. As a result, the flow resistance of the liquid LQ increases. Therefore, by increasing the thickness of the base material 28 in the first area 25A and reducing the thickness of the base material 28 in the second area 25B, the recovery capacity of the first area 25A is increased, and the recovery capacity of the second area 25B is increased. Can be lower.
  • the recovery capability of the first region 25A differs from the recovery capability of the second region 25B by making the shape of the hole of the first region 25A different from the shape of the hole of the second region 25B. It may be allowed.
  • the shape of the hole in the first region 25A can be a polygonal shape (for example, a hexagonal shape), and the shape of the hole in the second region 25B can be a circular shape.
  • the resistance of the flow of the liquid LQ when flowing through the hole is larger than the resistance of the flow of the liquid LQ when flowing through the circular hole.
  • the porous member 25 has the first and second regions 25A and 25B having different recovery capacities, and two stages of recovery capacities different from each other ( However, it is possible to provide a region (region) having an arbitrary multiple-stage recovery capability of three or more stages.
  • the recovery port 22 (the multi-hole member 25) may be divided into two or more regions having different recovery capacities. Good.
  • the force that changes the recovery capability of adjacent portions of the recovery port 22 (the porous member 25) in a stepwise manner is provided for each part of the recovery port 22 (the lower surface 26 of the porous member 25).
  • the collection capacity may be changed continuously.
  • recovery port 22 (porous member 25) The recovery ability of each part of the exposure light EL is set so that it gradually increases from the optical path space K toward the outside.
  • FIG. 11 is a partially cutaway view of a schematic perspective view showing the vicinity of the nozzle member 70 according to the second embodiment
  • FIG. 12 is a perspective view of the nozzle member 70 viewed from below
  • FIG. 13 is parallel to the heel plane.
  • FIG. 14 is a side sectional view parallel to the heel plane.
  • the characteristic part of this embodiment is that the recovery capability at each part of the porous member 25 is set according to the direction of the exposure light EL with respect to the optical path space.
  • the nozzle member 70 has the land surface 77 capable of holding the liquid LQ with the surface of the substrate ridge, and the recovery port 22 is used for the exposure light EL. It is formed so as to surround the optical path space L and the land surface 77.
  • a porous member 25 is disposed in the recovery port 22. In this embodiment, the lower surface 26 of the porous member 25 is substantially parallel to the surface of the substrate ridge and is substantially flush with the land surface 77.
  • control device 7 performs exposure while relatively moving the exposure light EL and the substrate ⁇ in a predetermined scanning direction (here, the heel axis direction).
  • the recovery capability at each part of the porous member 25 is set according to the movement conditions of the substrate plate.
  • the first region 25 ⁇ of the porous member 25 is arranged on the side in the axial direction with respect to the optical path space ⁇ ⁇ of the exposure light EL, and the second region 25 ⁇ is the optical path space of the exposure light EL ⁇ Is arranged on the X-axis direction side that intersects the ⁇ axis direction.
  • the second recovery capacity of the second area 25 km is higher than the first recovery capacity of the first area 25 mm.
  • a hole having a first size D1 is formed in the first region 25 ⁇ , and a second size D2 larger than the first size D1 is formed in the second region 25B. The hole which has is formed.
  • the first region 25A having a low recovery capability is arranged on the side parallel to the direction of movement of the substrate P with respect to the optical path space K (land surface 77) of the exposure light EL, and the second region 25A having a high recovery capability.
  • the region 25B is arranged on the side of the direction intersecting the moving direction of the substrate P with respect to the optical path space K (land surface 77) of the exposure light EL. .
  • the first regions 25A are provided on both sides in the Y-axis direction with respect to the land surface 77, and the second regions 25B are provided on both sides in the X-axis direction with respect to the land surface 77.
  • a part of the second region 25B is disposed on both sides in the X-axis direction of the first region 25A.
  • the first region 25A is formed in a shape (trapezoidal shape) that gradually expands in the XY direction from the optical path space K of the exposure light EL in the Y-axis direction.
  • the second region 25B is formed in a shape (trapezoid) that gradually expands in the XY direction from the optical path space K of the exposure light EL in the X-axis direction.
  • the recovery capability at each part of the porous member 25 may be set in consideration of the movement of the substrate P during the exposure of the substrate P, for example, the moving direction of the substrate P.
  • the recovery capability of the porous member 25 arranged in the direction parallel to the moving direction of the substrate P is large, the behavior of the liquid LQ changes rapidly, Although the liquid LQ may leak, even when exposure is performed while moving the substrate P by reducing the recovery capability of the multi-hole member 25 arranged in a direction parallel to the direction of movement of the substrate P, Sudden changes in the behavior of liquid LQ can be suppressed.
  • the substrate P (substrate stage 4) frequently moves in the X-axis direction, such as a stepping movement in addition to the movement in the Y-axis direction, so that the second region 25B having a high recovery capability is formed.
  • the liquid LQ can be recovered well through the second region 25B, and the liquid immersion region LR can be expanded. , And leakage of liquid LQ can be suppressed.
  • the first region 25A and the second region 25B are different from each other in the same manner as in the first embodiment described above in order to make the recovery capacities of the first region 25A and the second region 25B different.
  • the hole density may be different between the first region 25A and the second region 25B, or the first region 25A may be different from the first region 25A.
  • the thickness of the base material of the porous member 25 with the two regions 25B may be different.
  • the lower surface 26 of the porous member 25 has a step between the land surface 77 and the lower surface 26 that is substantially flush with the land surface 77. Also good.
  • the lower surface 26 and the land surface 77 are arranged such that the lower surface 26 of the porous member 25 is separated from the land surface 77 with respect to the surface of the substrate P. There is a step between May be.
  • the lower surface 26 of the porous member 25 may be parallel to the land surface 77, that is, parallel to the surface of the substrate P, or the land surface 77 ( It may be inclined with respect to the surface of the substrate P).
  • FIGS. 15 is a partially cutaway view of a schematic perspective view showing the vicinity of the nozzle member 70 according to the third embodiment
  • FIG. 16 is a perspective view of the nozzle member 70 viewed from below
  • FIG. 17 is a side sectional view parallel to the YZ plane.
  • Fig. 18 is a side sectional view parallel to the XZ plane.
  • the nozzle member 70 has the land surface 77 that can hold the liquid LQ with the surface of the substrate P.
  • the outer shape of the land surface 77 is formed in a rectangular shape whose longitudinal direction is the X-axis direction according to the shape of the opening 76.
  • the land surface 77 is located on the substrate stage 4 in the portion of the nozzle member 70. It is provided at a position closest to the held substrate P and is substantially parallel to the surface of the substrate P.
  • the nozzle member 70 is provided outside the land surface 77 with respect to the optical path space K of the exposure light EL in the Y-axis direction, and is more than the land surface 77 with respect to the surface of the substrate P.
  • a second land surface 77 ' is provided at a distant position.
  • the second land surface 77 ′ is a surface inclined in the + Z direction with respect to the land surface 77. That is, in a state where the nozzle member 70 and the substrate P face each other, the distance between the second land surface 77 ′ and the surface of the substrate P increases as it moves away from the optical path space K of the exposure light EL in the Y-axis direction. It is a growing slope.
  • the second land surfaces 77 ′ are provided on both sides of the land surface 77 in the Y-axis direction.
  • the land surface 77 and the second land surface 77 are, when the liquid LQ is present between the surface of the substrate P and the second land surface 77, the surface of the substrate P and the second land surface 77.
  • the liquid LQ existing between and the second land surface 77 is not separated from the second land surface 77 and is provided in a predetermined positional relationship. Specifically, even when the substrate P is moved in a state where the optical path space K is filled with the liquid LQ, the liquid LQ existing between the surface of the substrate P and the second land surface 77 ′ remains in the second land surface 77.
  • the second land surface 77 ′ is provided at a predetermined angle with respect to the land surface 77 so as not to be separated from the surface (so as not to peel off).
  • the second land surface 77 ′ is provided continuously with respect to the land surface 77. That is, of the second land surface 77 ′ provided on the + Y side with respect to the optical path space K, the Y side edge closest to the optical path space K of the exposure light EL and the + Y side edge of the land surface 77 are Of the second land surface 77 'provided at approximately the same position (height) with respect to the substrate P and on the Y side with respect to the optical path space K, the + Y side closest to the optical path space K of the exposure light EL
  • the edge of the land surface 77 and the edge on the Y side of the land surface 77 are provided substantially at the same Cf standing (height) with respect to the substrate P.
  • the recovery port 22 is formed so as to surround the optical path space K of the exposure light EL and the land surfaces 77 and 77 ′.
  • a porous member 25 is disposed in the recovery port 22.
  • control device 7 performs exposure while relatively moving the exposure light EL and the substrate P in a predetermined scanning direction (here, the Y-axis direction).
  • the recovery capability at each part of the porous member 25 is set according to the movement condition of the substrate P.
  • the first region 25A of the porous member 25 is arranged on the Y-axis direction side with respect to the optical path space K of the exposure light EL, and the second region 25B is the optical path space K of the exposure light EL. Is arranged on the X-axis direction side that intersects the Y-axis direction.
  • the second recovery capacity of the second area 25B is higher than the first recovery capacity of the first area 25A.
  • a hole having the first size D1 is formed in the first region 25A, and a second size D2 larger than the first size D1 is formed in the second region 25B. The hole which has is formed.
  • the first region 25A having a low recovery capability is arranged on the side parallel to the direction of movement of the substrate P with respect to the optical path space K (land surface) of the exposure light EL, and the second region 25B having a high recovery capability.
  • the first region 25A is provided on each of both sides in the Y-axis direction with respect to the optical path space K (land surfaces 77, 77 ′) of the exposure light EL
  • the second region 25B is the optical path space K ( Land side surfaces 77 and 77 ') are provided on both sides in the X-axis direction.
  • a part of the second region 25B is arranged on both sides of the first region 25A in the Y-axis direction.
  • the first region 25A is formed in a shape (trapezoidal shape) that gradually expands in the XY direction as it moves away from the optical path space K of the exposure light EL in the Y-axis direction.
  • Ru is formed in a shape (trapezoidal shape) that gradually expands with increasing distance from the optical path space K of the exposure light EL in the X-axis direction in the XY direction.
  • the lower surface 26A of the first region 25A is lower than the surface of the second region 25B with respect to the surface of the substrate P. More distant than 26B. Further, the lower surface 26B of the second region 25B is substantially parallel to the surface of the substrate P, and the lower surface 26A of the first region 25A is inclined with respect to the lower surface 26B of the second region 25B.
  • the lower surface 26 A of the first region 25 A is provided continuously with respect to the second land surface 77. That is, the lower surface 26A of the first region 25A provided on the + Y side with respect to the optical path space K and the second land surface 77 ′ are inclined at substantially the same angle with respect to the land surface 77, and are flush with each other. It is summer. Similarly, the lower surface 26A of the first region 25A provided on the Y side with respect to the optical path space K and the second land surface 77 ′ are inclined at substantially the same angle with respect to the land surface 77, and are flush with each other. It is.
  • FIGS. 19A and 8B are schematic diagrams for explaining the behavior of the liquid LQ when the substrate P is moved in the Y-axis direction.
  • a first region 25A of the porous member 25 is disposed in the Y-axis direction with respect to the second land surface 77 ′.
  • the substrate P is moved with respect to the optical path space K in the Y direction.
  • the liquid LQ in contact with the lower surface 26A is collected through the holes of the porous member 25.
  • the distance between the second land surface 77 ′ and the lower surface 26A of the first region 25A and the surface of the substrate P is larger than the distance between the land surface 77 and the surface of the substrate P.
  • the space between the large second land surface 77 ′ and the lower surface 26A and the surface of the substrate P is larger than the space between the land surface 77 and the surface of the substrate P. Therefore, in the second state during the movement of the substrate P as shown in FIG. 19B, the liquid LQ in the liquid immersion region LR flows toward the hole of the porous member 25 generated by the recovery operation of the recovery port 22.
  • the component F2 is generated and the liquid LQ flows in the forward direction (Y direction) of the substrate P (flow direction F1), and the flow moves obliquely upward along the lower surface 26A of the first region 25A of the porous member 25.
  • Component F3 is generated. Therefore, when the substrate P is moved, the interface LG in the first state as shown in FIG. 19A and the substrate P shown in FIG. The distance from the interface LG in the second state during movement can be made relatively small. Therefore, expansion (enlarging) of the immersion area LR can be suppressed.
  • the recovery capability of the first region 25A of the porous member 25 disposed at a position adjacent to the land surface 77 ′ having no recovery capability is obtained. Since it is lower, even when the substrate P is exposed while moving, rapid changes in the behavior of the liquid LQ can be suppressed.
  • the substrate P (substrate stage 4) frequently moves in the X-axis direction, such as a stepping movement, which is not only moved in the Y-axis direction
  • the second region 25B having a high recovery capability is exposed to the exposure light.
  • the liquid LQ can be recovered well through the second region 25B.
  • the lower surface 26B of the second region 25B of the porous member 25 is provided substantially parallel to the surface (XY plane) of the substrate P.
  • the lower surface 26B of the second region 25B of the porous member 25 and the land surface 77 are substantially flush with each other, and the lower surface 26 of the second region 25B of the porous member 25 having a high recovery capability is disposed at a position close to the substrate P. Yes. Therefore, the liquid immersion system 1 can recover the liquid LQ satisfactorily through the second region 25B of the porous member 25.
  • the sizes of the holes of the first region 25A and the second region 25B are made different. Forces The first region 25A and the second region 25B may have different hole densities, or the first region 25A and the second region 25B may have different thicknesses of the base material of the porous member 25. Good.
  • the moving speed of the substrate P It may be set according to the acceleration (deceleration) and the movement distance when the substrate P moves linearly in a predetermined direction.
  • the collection capacity (hole size, density, etc.) of the first and second regions 25A and 25B can be optimized according to the moving speed.
  • the movement conditions of the substrate P including the movement speed, acceleration (deceleration), movement direction, and movement distance when the substrate P moves in a predetermined direction when the substrate P is exposed are approximately in advance.
  • the power is divided, considering the movement conditions (at least one of the movement speed, acceleration (deceleration), movement direction, movement distance) of the substrate P, they have different collection capacities. It is possible to optimize the positional relationship (arrangement) of the parts (regions) and the recovery ability of Z or each part. Also, depending on the movement conditions of the substrate P, for example, the sizes of the first and second regions 25A and 25B may be optimized.
  • the inclination angle of the second land surface 77 ′ and the lower surface 26A of the first region 25A may be set according to the movement condition of the substrate P.
  • the structure at each part of the porous member 25 such as the size of the holes of the porous member 25, the density of the holes, and the thickness of the base material 28 are made different from each other.
  • the force that makes the recovery ability different By making the suction forces of the liquid recovery device 21 different from each other, the recovery ability at each part of the porous member 25 can be made different. This will be described with reference to FIG.
  • the nozzle member 70 includes a first recovery port 22A and a second recovery port 22B.
  • the first recovery port 22A is provided at a position near the optical path space K (land surface 77) of the exposure light EL on the lower surface of the nozzle member 70, and the second recovery port 22B is more exposed light than the first recovery port 22A.
  • the EL optical path space K-force is also located far away.
  • a porous member 25 is disposed in each of the recovery ports 22A and 22B.
  • a first recovery channel 24A connected to the first recovery port 22A and a second recovery channel 24B connected to the second recovery port 22B are provided inside the nozzle member 70.
  • a partition wall 27 is formed between the first recovery channel 24A and the second recovery channel 24B, and the first recovery channel 24A and the second recovery channel 24B are provided independently.
  • a first liquid recovery device 21A that sucks with a first suction force is connected to the first recovery flow path 24A, and a second stronger than the first suction force is connected to the second recovery flow path 24B.
  • the second liquid recovery device 21B that sucks with the suction force of is connected.
  • the control device 7 controls the first and second liquid recovery devices 21A and 21B to make the first and second suction forces different from each other, thereby collecting the first and second recovery ports 22A and 22B. Can be different from each other. That is, by making the pressure difference between the upper and lower surfaces of the porous member 25 different between the first recovery port 22A and the second recovery port 22B, the recovery capacities at the first and second recovery ports 22A and 22B are different from each other. Can be made.
  • the pressure at the first and second recovery ports 22A and 22B is made different by making the pressure of the first recovery flow path 24A (negative pressure) different from the pressure of the second recovery flow path 24B (negative pressure).
  • Different abilities Can do.
  • the structure of the porous member 25 arranged in the first recovery port 22A and the structure of the porous member 25 arranged in the second collection port 22B may be the same or different. May be.
  • a nozzle member similar to that of the first embodiment is used, and the first liquid sucked by the first suction force into the first recovery port 22A near the optical path space K of the exposure light EL.
  • the second liquid recovery device is connected to the recovery device 21A and sucks with a second suction force into the second recovery port 22B provided at a position farther than the first recovery port 22A with respect to the optical path space K of the exposure light EL.
  • 21B is connected, for example, using a nozzle member similar to the second and third embodiments, suction is performed with the first suction force in the Y-axis direction with respect to the optical path space K of the exposure light EL.
  • a first recovery port 22A connected to the first liquid recovery device 21A is arranged, and the second liquid recovery device 21B sucks with a second suction force in the X-axis direction with respect to the optical path space K of the exposure light EL. You may be allowed to place the connected second recovery port 22B.
  • the recovery port 22 (the porous member 25) may be divided into three or more regions having different recovery capacities, or the recovery port 22 (the porous port 25).
  • the collection capacity of each part of the member 25) may be continuously changed.
  • the first region 25A and the second region 25B may be provided in one member, or the porous member having the first region 25A is the second member. Unlike the porous member having the region 25B, it may be.
  • the recovery capability of each part of the recovery port 22 may be variable (adjustable).
  • the pore size of the porous member 25 may be variably provided.
  • the size of the hole of the porous member 25 may be changed according to the movement condition of the substrate P.
  • the porous member 25 has plate-like first and second base materials 28A and 28B in which a plurality of holes are formed.
  • a plurality of hexagonal holes are formed in each of the first and second base materials 28A and 28B.
  • the positional relationship between the first and second base materials 28A and 28B is adjusted by a predetermined driving device. For example, as shown in FIG. 21B, the positional relationship (overlapping) between the holes formed in the first base material 28A and the holes formed in the second base material 28B.
  • the size of the hole of the porous member 25 can be adjusted. In the positional relationship between the first and second base materials 28A and 28B shown in FIG.
  • a hole having a size D2 ′ is formed as the hole of the porous member 25, and the first and second bases shown in FIG. 21B are formed.
  • a hole having a size D1 ′ is formed as the hole of the porous member 25.
  • the recovery capability of each part of the recovery port 22 can, for example, open the exposure of the substrate P.
  • the substrate P may be adjusted based on the exposure conditions (such as the movement condition of the substrate P, the contact angle between the surface of the substrate P and the liquid), or during the exposure of the substrate P, etc. It may be changed dynamically according to the movement (movement direction, movement speed, etc.).
  • the porous member 25 for recovering the liquid LQ has a force disposed at a position facing the surface of the substrate P.
  • the liquid LQ is applied to the upper surface 4F of the substrate stage 4 or the like.
  • the recovery capability of each part of the recovery port may be made different.
  • a porous member as described in the above embodiment may be arranged at the recovery port.
  • the method of varying the recovery capability at each part of the recovery port is not limited to the above-described method, and it goes without saying that the above-described methods may be appropriately combined. That is, at least one of the pore diameter of the porous member, the density of the pores of the porous member, the shape of the pores of the porous member, the thickness of the porous member, and the pressure (suction force) of the recovery channel flowing through the porous member is different. By doing so, it is possible to vary the recovery force of each part of the recovery port.
  • the porous member 25 is disposed at the recovery port 22.
  • the porous member 25 may not be disposed at the force recovery port 22.
  • multiple collection ports 22 The porous member 25 may be disposed only in a part of the parts.
  • the optical path space K is set in a state where the substrate P is disposed at a position where the exposure light EL can be irradiated, that is, in a state where the projection optical system PL and the substrate P face each other.
  • an object other than the substrate P for example, the upper surface 4F of the substrate stage 4
  • the position where the exposure light EL can be irradiated includes a position facing the projection optical system PL.
  • the hole size of the porous member 25 is optimized and gas is not collected from the recovery port 22.
  • a scissor mechanism can also be used.
  • the projection optical system of the above-described embodiment fills the optical path space on the image plane side of the optical element at the tip with a liquid, but as disclosed in International Publication No. 2004Z019128, It is possible to adopt a projection optical system that fills the optical path space on the object plane side of the optical element with liquid.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not transmit water. So
  • liquid LQ for example, perfluorinated polyether (PFPE) and F laser light can be transmitted.
  • PFPE perfluorinated polyether
  • F laser light can be transmitted.
  • the part that comes into contact with the liquid LQ may be a fluorine-based fluid such as fluorine-based oil.
  • the part that comes into contact with the liquid LQ for example, has a small polarity including fluorine!
  • the film is made lyophilic by forming a thin film with a molecular structure.
  • the liquid LQ is stable to the projection optical system PL that is transmissive to the exposure light EL and has a refractive index as high as possible, and to the photoresist applied to the surface of the substrate P (for example, Cedar). Oil) can also be used.
  • Liquid LQ having a refractive index of about 1.6 to 1.8 may be used.
  • liquid Q include, for example, isopropanol having a refractive index of about 1.50, daricerol (glycerin) t having a refractive index of about 1.61, a C—H bond, and a predetermined liquid having an O—H bond, Specific liquids (organic solvents) such as hexane, heptane, decane, etc., and predetermined liquids such as decalin, bicyclohexyl, etc. Alternatively, any two or more of these predetermined liquids may be mixed, and the predetermined liquid may be added to (mixed with) pure water. It may be.
  • the liquid LQ in pure water, H +, Cs +, K +, Cl _, SO 2_,
  • a base or acid such as PO 2_ may be added (mixed). Furthermore, A1 acid in pure water
  • liquid LQs can transmit ArF excimer laser light.
  • a photosensitive material or a protective film (topcoat film) or a coating film coated on the surface of the projection optical systems PL and Z or the substrate P having a small light absorption coefficient and a small temperature dependency. It is preferably stable with respect to an antireflection film or the like.
  • the optical element LSI can be formed of, for example, quartz (silica). Alternatively, it may be formed of a single crystal material of a fluoride compound such as fluoride (fluorite), barium fluoride, strontium fluoride, lithium fluoride, sodium fluoride, and BaLiF. Furthermore, the final light
  • the academic element may be formed of lutetium aluminum garnet (LuAG). And a single crystal material of a fluoride compound such as sodium fluoride.
  • At least one optical element of the projection optical system may be formed of a material having a refractive index higher than that of quartz and Z or fluorite (for example, 1.6 or more).
  • a material having a refractive index higher than that of quartz and Z or fluorite for example, 1.6 or more.
  • salt potassium with a refractive index of about 1 75 etc. can be used.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus.
  • Reticle masters synthetic quartz, silicon wafers
  • the substrate may be in other shapes such as a rectangle other than a circular shape.
  • the exposure apparatus EX in addition to a step-and-scan type scanning exposure apparatus (scanning stepper) that performs mask exposure by scanning the mask M and the substrate P in synchronization with each other, a mask is used.
  • the present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • the exposure apparatus EX the first pattern and the substrate P are substantially stationary with the first pattern
  • a projection optical system for example, a refractive projection optical system that does not include a reflective element at a 1Z8 reduction magnification
  • a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system.
  • the stitch type exposure apparatus can also be applied to a step 'and' stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the present invention relates to Japanese Patent Laid-Open Nos. 10-163099, 10-214783, 2000-505958, US Pat. No. 6,341,007, US Pat. No. 6,400,441.
  • the present invention is also applicable to a twin stage type exposure apparatus having a plurality of substrate stages as disclosed in US Pat. No. 6,549,269 and US Pat. No. 6,590,634.
  • a substrate stage for holding the substrate and a reference mark are formed.
  • the present invention can also be applied to an exposure apparatus provided with a reference stage and a measurement stage on which various photoelectric sensors are mounted.
  • the mask is disposed above (+ Z side) with respect to the projection optical system, and the substrate is disposed below (one Z side).
  • the projection optical system plural of projection modules
  • the projection optical system is installed upside down in the vertical direction (Z-axis direction). Place the substrate on the (+ Z side) and place the mask below it (one Z side).
  • the position information of the mask stage and the substrate stage is measured using the interferometer system.
  • the present invention is not limited to this.
  • a scale diffiffraction grating
  • the hybrid system includes both the interferometer system and the encoder system, and the measurement result of the encoder system is calibrated (calibrated) using the measurement result of the interferometer system.
  • the position of the substrate stage may be controlled by switching between the interferometer system and the encoder system or using both. Yes.
  • the exposure apparatus provided with the projection optical system has been described as an example.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the projection optical system. Even when a projection optical system is not used, exposure light is irradiated onto the substrate via an optical member such as a mask or a lens, and a liquid immersion region is formed in a predetermined space between the optical member and the substrate. Is done.
  • the type of the exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on the substrate P.
  • force using a light-transmitting mask in which a predetermined light-shielding pattern (or phase pattern 'dimming pattern) is formed on a light-transmitting substrate is used instead of this mask.
  • a predetermined light-shielding pattern or phase pattern 'dimming pattern
  • an electronic mask (variable molding mask) that forms a transmission pattern, a reflection pattern, or a light emission pattern based on electronic data of a pattern to be exposed.
  • a DMD Digital Micro-mirror Device
  • spatial light modulator spatial light modulator
  • an exposure apparatus that exposes a line 'and' space pattern on the substrate P by forming interference fringes on the substrate P.
  • the present invention can also be applied to (lithography system).
  • JP-T-2004-519850 corresponding US Pat. No. 6,611,316
  • two mask patterns are combined on a substrate via a projection optical system.
  • the present invention can also be applied to an exposure apparatus that performs double exposure of one shot area on the substrate almost simultaneously by one scan exposure.
  • the exposure apparatus EX of each of the above embodiments can be assembled by assembling various subsystems including each component so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured. In order to ensure these various accuracies, before and after this assembly, various optical systems, adjustments to achieve optical accuracy, and various mechanical systems to achieve mechanical accuracy. Adjustments and various electrical systems are adjusted to achieve electrical accuracy.
  • the assembly process to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems.
  • a microdevice such as a semiconductor device is shown in FIG. 22, step 201 for designing the function / performance of the microdevice, step 202 for producing a mask (reticle) based on this design step, Step 203 for manufacturing a substrate that is a base material of the device, a step of exposing the mask pattern to the substrate by the exposure apparatus EX of the above-described embodiment, a step of developing the exposed substrate, heating (curing) of the developed substrate, and It is manufactured through a step 204 including a substrate processing process such as an etching process, a device assembly step (including a dicing process, a bonding process, and a knocking process) 205, an inspection step 206, and the like.
  • a substrate processing process such as an etching process
  • a device assembly step including a dicing process, a bonding process, and a knocking process

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

 露光装置は、液体を回収するための回収部材(25)を備えている。回収部材(25)の液体を回収する回収能力は、その回収部材(25)の部位に応じて異なっている。

Description

明 細 書
液体回収部材、露光装置、露光方法、及びデバイス製造方法
技術分野
[0001] 本発明は、液浸露光装置で用いられる液体回収部材、基板を露光する露光装置、 露光方法、及びデバイス製造方法に関するものである。
本願は、 2005年 11月 14日に出願された特願 2005— 328549号に基づき優先権 を主張し、その内容をここに援用する。
背景技術
[0002] フォトリソグラフイエ程で用いられる露光装置において、下記特許文献に開示されて いるような、露光光の光路空間を液体で満たし、その液体を介して基板を露光する液 浸式の露光装置が案出されている。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 露光装置においては、デバイスの生産性向上等を目的として、基板の移動速度の 高速ィ匕が要求される。ところが、露光光の光路空間を液体で満たした状態で基板を 高速で移動した場合、例えば、液体が漏出したり、基板上に液体が残留する等の不 都合が生じる可能性がある。これら不都合が生じた場合、露光精度及び計測精度が 劣化し、製造されるデバイスの性能が劣化する可能性がある。
[0004] 本発明は、液体を良好に回収することができる液体回収部材、露光装置、露光方 法、デバイス製造方法に関するものである。
また、本発明は基板を移動しつつ露光するときにも、露光光の光路空間を液体で 満たした状態で基板を良好に露光することができる露光装置、露光方法、及びその 露光装置を用いるデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 本発明は実施の形態に示す各図に対応付けした以下の構成を採用している。但し 、各要素に付した括弧付き符号はその要素の例示に過ぎず、各要素を限定するもの ではない。
[0006] 本発明の第 1の態様に従えば、基板 (P)上に露光光 (EL)を照射して基板 (P)を露 光する露光装置において、液体 (LQ)を回収するための回収部材(25)を備え、回収 部材 (25)は、第 1の回収能力を有する第 1部分と前記第 1の回収能力と異なる第 2の 回収能力を有する第 2部分とを含む露光装置 (EX)が提供される。
本発明の第 1の態様によれば、基板を移動しつつ露光するときにも、露光光の光路 空間を液体で満たした状態で基板を良好に露光することができる。
[0007] 本発明の第 2の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。
本発明の第 2の態様によれば、露光光の光路空間を液体で満たした状態で基板を 良好に露光できる露光装置を用いてデバイスを製造することができる。
[0008] 本発明の第 3の態様に従えば、基板 (P)上に露光光 (EL)を照射することによって 基板 (P)を露光する露光方法であって、液体回収部材 (25)と対向する位置に基板 ( P)を移動することと、液体回収部材 (25)の第 1部分 (25A)力 第 1の回収能力で基 板 (P)上の液体 (LQ)を回収することと、液体回収部材 (25)の第 1部分 (25A)と異 なる位置に配置された第 2部分 (25B)から、第 1の回収能力と異なる第 2の回収能力 で基板 (P)上の液体 (LQ)を回収することと、基板 (P)上の液体 (LQ)を介して基板 ( P)に露光光 (EL)を照射することとを含む露光方法が提供される。
本発明の第 3の態様によれば、基板を移動しつつ露光するときにも、露光光の光路 空間を液体で満たしつつ、基板上の液体を良好に回収することができる。
[0009] 本発明の第 4の態様に従えば、上記態様の露光方法を用いるデバイス製造方法が 提供される。
本発明の第 4の態様によれば、露光光の光路空間を液体で満たしつつ、基板上の 液体を良好に回収して、所望性能を有するデバイスを製造することができる。
[0010] 本発明の第 5の態様に従えば、液浸露光装置 (EX)において液体 (LQ)を回収す るために用いられる液体回収部材(25)であって、第 1液体回収能力を有する第 1部 分 (25A)と、第 1部分 (25A)と異なる位置に配置され、第 1液体回収能力と異なる第 2液体回収能力を有する第 2部分 (25B)とを有する液体回収部材が提供される。 本発明の第 5の態様によれば、液浸露光装置において、基板を移動しつつ露光す るときにも、露光光の光路空間を液体で満たしつつ、液体を良好に回収することがで きる。
発明の効果
[0011] 本発明によれば、露光光の光路空間を液体で満たした状態で基板を良好に露光 することができ、所望の性能を有するデバイスを製造することができる。
図面の簡単な説明
[0012] [図 1]第 1実施形態に係る露光装置を示す概略構成図である。
[図 2]第 1実施形態に係るノズル部材近傍を示す概略斜視図の一部破断図である。
[図 3]第 1実施形態に係るノズル部材を下側力 見た斜視図である。
[図 4]第 1実施形態に係るノズル部材の YZ平面と平行な側断面図である。
[図 5]第 1実施形態に係るノズル部材の XZ平面と平行な側断面図である。
[図 6]多孔部材の一例を示す模式図である。
[図 7A]液体の挙動の一例を示す模式図である。
[図 7B]液体の挙動の一例を示す模式図である。
[図 8A]第 1実施形態に係る液体の挙動の一例を示す模式図である。
[図 8B]第 1実施形態に係る液体の挙動の一例を示す模式図である。
[図 9]多孔部材の一例を示す模式図である。
[図 10]多孔部材の一例を示す模式図である。
[図 11]第 2実施形態に係るノズル部材近傍を示す概略斜視図の一部破断図である。
[図 12]第 2実施形態に係るノズル部材を下側力 見た斜視図である。
[図 13]第 2実施形態に係るノズル部材の YZ平面と平行な側断面図である。
[図 14]第 2実施形態に係るノズル部材の XZ平面と平行な側断面図である。
[図 15]第 3実施形態に係るノズル部材近傍を示す概略斜視図の一部破断図である。
[図 16]第 3実施形態に係るノズル部材を下側力 見た斜視図である。
[図 17]第 3実施形態に係るノズル部材の YZ平面と平行な側断面図である。
[図 18]第 3実施形態に係るノズル部材の XZ平面と平行な側断面図である。
[図 19A]第 3実施形態に係る液体の挙動の一例を示す模式図である。 [図 19B]第 3実施形態に係る液体の挙動の一例を示す模式図である。
[図 20]第 4実施形態に係る液浸システムの一例を示す模式図である。
[図 21A]多孔部材の一例を示す模式図である。
[図 21B]多孔部材の一例を示す模式図である。
[図 22]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0013] 1…液浸システム、 4…基板ステージ、 7…制御装置、 11· ··液体供給装置、 12· ··供 給口、 21· ··液体回収装置、 22· ··回収口、 25· ··多孔部材、 25A…第 1領域、 25Β· ·· 第 2領域、 26· ··下面、 28· ··基材、 70· ··ノズル部材、 76· ··開口、 77· ··ランド面、 78 …底板、 EL…露光光、 EX…露光装置、 FL…最終光学素子、 K…光路空間、 LQ— 液体、 Ρ· ··基板、 PL…投影光学系
発明を実施するための最良の形態
[0014] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0015] <第 1実施形態 >
図 1は第 1実施形態に係る露光装置を示す概略構成図である。図 1において、露光 装置 EXは、マスク Mを保持して移動可能なマスクステージ 3と、基板 Pを保持して移 動可能な基板ステージ 4と、マスクステージ 3に保持されて 、るマスク Mを露光光 EL で照明する照明系 ILと、露光光 ELで照明されたマスク Mのノターン像を基板ステー ジ 4に保持されて ヽる基板 Pに投影する投影光学系 PLと、露光装置 EX全体の動作 を制御する制御装置 7とを備えて 、る。
[0016] なお、ここでいう基板は、半導体ウェハ等の基材上に感光材 (フォトレジスト)、保護 膜などの膜を塗布したものを含む。マスクは、基板上に縮小投影されるデバイスバタ ーンを形成されたレチクルを含む。また、本実施形態においては、マスクとして透過 型のマスクを用いる力 反射型のマスクを用いてもよい。
[0017] 本実施形態では、露光装置 EXとしてマスク Mと基板 Pとを走査方向に同期移動し つつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキ ヤニングステツパ)を使用する場合を例にして説明する。以下の説明において、水平 面内においてマスク Mと基板 Pとの同期移動方向(走査方向)を Y軸方向、水平面内 にお!/ヽて Υ軸方向と直交する方向を X軸方向(非走査方向)、 X軸及び Υ軸方向に垂 直で投影光学系 PLの光軸 ΑΧと平行な方向を Ζ軸方向とする。また、 X軸、 Y軸、及 び Z軸まわりの回転 (傾斜)方向をそれぞれ、 0 X、 0 Y、及び 0 Z方向とする。
[0018] 本実施形態の露光装置 EXは、液浸法を適用した液浸式の露光装置であって、投 影光学系 PLの像面側の露光光 ELの光路空間 Kを液体 LQで満たす液浸システム 1 を備えている。液浸システム 1は、投影光学系 PLの最終光学素子 FLと、基板ステー ジ 4に保持された基板 Pとの間の露光光 ELの光路空間 Kを液体 LQで満たすように、 基板 P上に液体 LQの液浸領域 LRを形成する。ここで、最終光学素子 FLとは、投影 光学系 PLの複数の光学素子のうち、投影光学系 PLの像面に最も近い光学素子で ある。
[0019] 液浸システム 1は、投影光学系 PLの像面側の露光光 ELの光路空間 K近傍に設け られ、光路空間 Kに対して液体 LQを供給可能な供給口 12及び液体 LQを回収可能 な回収口 22を有するノズル部材 70と、供給管 13、及びノズル部材 70の供給口 12を 介して光路空間 Kに液体 LQを供給する液体供給装置 11と、ノズル部材 70の回収 口 22、及び回収管 23を介して液体 LQを回収する液体回収装置 21とを備えている。
[0020] 後述するように、本実施形態においては、液浸システム 1は、液体 LQを回収する回 収能力を、ノズル部材 70の各部位に応じて互いに異ならせている。本実施形態にお いては、回収口 22には多孔部材 25が配置されており、回収口 22に配置された多孔 部材 25の各部位での液体 LQを回収する回収能力を互いに異ならせている。
[0021] 液体供給装置 11及び液体回収装置 21の動作は制御装置 7に制御される。液体供 給装置 11は、供給する液体 LQの温度を調整する温度調整装置、及び供給する液 体 LQ中の異物等を除去するためのフィルタ装置等を備えており、清浄で温度調整さ れた液体 LQを送出可能である。液体回収装置 21は、真空系等、液体 LQ及び気体 を含む流体を吸引可能な吸引装置を備えており、液体 LQを回収可能である。露光 装置 EXは、投影光学系 PL、及び光路空間 Kを満たす液体 LQを介してマスク Mを 通過した露光光 ELを基板 P上に照射することによって、マスク Mのパターン像を基板 P上に投影して、基板 Pを露光する。また、本実施形態の露光装置 EXは、液体 LQで 光路空間 Kが満たされるとともに、投影光学系 PLの投影領域 ARを含む基板 P上の 一部の領域に、投影領域 ARよりも大きく且つ基板 Pよりも小さい液体 LQの液浸領域 LRを局所的に形成する局所液浸方式を採用して 、る。
[0022] 露光装置 EXは、床面上に設けられたベース BPと、そのベース BP上に設置された メインフレーム 2とを備えている。照明系 ILは、メインフレーム 2の上部に固定されたサ ブフレーム 2Fにより支持される。照明系 ILは、マスク M上の所定の照明領域を均一 な照度分布の露光光 ELで照明するものである。照明系 IL力 射出される露光光 EL としては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFエキシマレ 一ザ光(波長 248nm)等の遠紫外光(DUV光)、 ArFエキシマレーザ光(波長 193η m)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用いられる。本
2
実施形態にぉ ヽては ArFエキシマレーザ光が用いられる。
[0023] 本実施形態にぉ 、ては、液体 LQとして水(純水)が用いられる。純水は ArFエキシ マレーザ光のみならず、例えば水銀ランプ力 射出される輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光(波長 248nm)等の遠紫外光(DUV光)も透過可能である。ま た、純水は、半導体製造工場等で容易に大量に入手できるとともに、基板 Pや光学 素子等に対する悪影響がない利点がある。
[0024] マスクステージ 3は、リニアモータ等のァクチユエータを含むマスクステージ駆動装 置 3Dにより、マスク Mを保持した状態で、マスクステージ定盤 3B上で、 X軸、 Y軸、 及び θ Z方向に移動可能である。マスクステージ 3は、エアベアリング 3Aによりマスク ステージ定盤 3Bの上面 (ガイド面)に対して非接触支持されている。マスクステージ 定盤 3Bは、メインフレーム 2の内側に向力つて突出する上側支持部 2Aに防振装置 3 Sを介して支持されて!、る。マスクステージ 3 (ひ!/ヽてはマスク M)の位置情報はレー ザ干渉計 3Lによって計測される。レーザ干渉計 3Lは、マスクステージ 3上に設けら れた反射鏡 3Kを用いてマスクステージ 3の位置情報を計測する。制御装置 7は、レ 一ザ干渉計 3Lの計測結果に基づ 、てマスクステージ駆動装置 3Dを制御し、マスク ステージ 3に保持されて!、るマスク Mの位置制御を行う。
[0025] なお、反射鏡 3Kは平面鏡のみでなくコーナーキューブ (レトロリフレクタ)を含むも のとしてもよいし、反射鏡 3Kをマスクステージに固設する代わりに、例えばマスクステ ージ 3の端面 (側面)を鏡面加工して反射面を形成してもよい。また、マスクステージ 3 は、例えば特開平 8— 130179号公報 (対応米国特許第 6, 721, 034号)に開示さ れる粗微動可能な構成としてもょ ヽ。
[0026] 投影光学系 PLは、マスク Mのパターン像を所定の投影倍率で基板 Pに投影するも のであって、複数の光学素子を有しており、それら光学素子は鏡筒 5で保持されてい る。鏡筒 5はフランジ 5Fを有しており、投影光学系 PLはフランジ 5Fを介して鏡筒定 盤 (メインコラム) 5Bに支持されている。メインコラム 5Bは、メインフレーム 2の内側に 向かって突出する下側支持部 2Bに防振装置 5Sを介して支持されている。本実施形 態の投影光学系 PLは、その投影倍率が例えば 1Z4、 1/5, 1Z8等の縮小系であ り、前述の照明領域と共役な投影領域にマスクパターンの縮小像を形成する。なお、 投影光学系 PLは縮小系、等倍系及び拡大系のいずれでもよい。また、投影光学系 PLは、反射光学素子を含まない屈折系、屈折光学素子を含まない反射系、反射光 学素子と屈折光学素子とを含む反射屈折系のいずれであってもよい。また、投影光 学系 PLは、倒立像と正立像との ヽずれを形成してもよ 、。
[0027] 基板ステージ 4は、基板 Pを保持する基板ホルダ 4Hを有しており、リニアモータ等 のァクチユエータを含む基板ステージ駆動装置 4Dにより、基板ホルダ 4Hに基板 Pを 保持した状態で、基板ステージ定盤 4B上で、 X軸、 Y軸、 Z軸、 0 X、 θ Y,及び θ Z 方向の 6自由度の方向に移動可能である。基板ステージ 4は、エアべァリング 4Aによ り基板ステージ定盤 4Bの上面 (ガイド面)に対して非接触支持されている。基板ステ 一ジ定盤 4Bは、ベース BPに防振装置 4Sを介して支持されている。基板ステージ 4 ( ひいては基板 P)の位置情報はレーザ干渉計 4Lによって計測される。レーザ干渉計 4Lは、基板ステージ 4に設けられた反射鏡 4Kを用いて基板ステージ 4の X軸、 Y軸、 及び θ Z方向に関する位置情報を計測する。また、基板ステージ 4に保持されている 基板 Pの表面の面位置情報 (Z軸、 Θ X、及び Θ Y方向に関する位置情報)は、不図 示のフォーカス'レべリング検出系によって検出される。制御装置 7は、レーザ干渉計 4Lの計測結果及びフォーカス'レべリング検出系の検出結果に基づいて基板ステー ジ駆動装置 4Dを制御し、基板ステージ 4に保持されて ヽる基板 Pの位置制御を行う [0028] フォーカス'レべリング検出系はその複数の計測点でそれぞれ基板の Z軸方向の位 置情報を計測することで、基板の Θ X及び Θ Y方向の傾斜情報(回転角)を検出する ものである。さらに、例えばレーザ干渉計が基板の Z軸、 Θ X及び Θ Y方向の位置情 報を計測可能であるときは、基板の露光動作中にその Z軸方向の位置情報が計測可 能となるようにフォーカス'レペリング検出系を設けなくてもよぐ少なくとも露光動作中 はレーザ干渉計の計測結果を用いて Z軸、 Θ X及び Θ Y方向に関する基板 Pの位置 制御を行うようにしてもよい。
[0029] なお、本実施形態にぉ ヽては、基板ホルダ 4Hは、基板ステージ 4上に設けられた 凹部 4Rに配置されており、基板ステージ 4の凹部 4Rの周囲に設けられた上面 4Fは 、基板ホルダ 4Hに保持された基板 Pの表面とほぼ同じ高さ(面一)になるような平坦 面となっている。なお、基板ホルダ 4Hに保持された基板 Pの表面と基板ステージ 4の 上面 4Fとの間に段差があってもよい。なお、基板ステージ 4の上面 4Fはその一部、 例えば基板 Pを囲む所定領域のみ、基板 Pの表面とほぼ同じ高さとしてもよい。また、 本実施形態では基板ホルダ 4Hと基板ステージ 4とを別々に構成し、例えば真空吸着 などによって基板ホルダ 4Hを基板ステージ 4の凹部に固定して ヽるが、基板ホルダ 4 Hを基板ステージ 4と一体に形成してもよ 、。
[0030] 次に、図 2〜図 5を参照しながら、液浸システム 1のノズル部材 70について説明する 。図 2はノズル部材 70近傍を示す概略斜視図の一部破断図、図 3はノズル部材 70を 下側から見た斜視図、図 4は YZ平面と平行な側断面図、図 5は XZ平面と平行な側 断面図である。
[0031] ノズル部材 70は、光路空間 Kに液体 LQを供給するための供給口 12、及び液体 L Qを回収するための回収口 22を有している。ノズル部材 70は環状の部材であって、 最終光学素子 FLを囲むように設けられている。基板 P (基板ステージ 4)は、ノズル部 材 70の下方で移動可能である。図 1に示したように、本実施形態においては、ノズル 部材 70は、支持装置 61を介してメインフレーム 2の下側支持部 2Bに支持されており 、ノズル部材 70と最終光学素子 FLとは離れている。また、ノズル部材 70は、最終光 学素子 FLの下面 T1と対向する上面 79を有する底板 78を有している。基板 P (基板 ステージ 4)がノズル部材 70の下方に配置されているときに、底板 78の一部は、 Z軸 方向に関して、最終光学素子 FLの下面 T1と基板 P (基板ステージ 4)との間に配置さ れる。また、最終光学素子 FLの下面 T1と底板 78の上面 79との間には所定のギヤッ プを有する空間が設けられている。以下の説明においては、最終光学素子 FLの下 面 T1と底板 78の上面 79との間の空間を含むノズル部材 70の内側の空間を適宜、 内部空間 IS、と称する。
[0032] また、底板 78の中央には、露光光 ELが通過する開口 76が形成されている。本実 施形態においては、露光光 ELの XY断面形状 (すなわち投影領域 ARの形状)は、 X 軸方向を長手方向とする略矩形状であり、開口 76は、露光光 ELの XY断面形状 (投 影領域 ARの形状)に応じた略矩形状に形成されて!ヽる。
[0033] ノズル部材 70 (底板 78)は XY平面とほぼ平行な平坦な下面 77を有する。下面 77 は、開口 76 (露光光 ELの光路 K)を囲むように設けられている。また、ノズル部材 70 ( 底板 78)と基板 P (基板ステージ 4)とが対向しているときに、下面 77の一部は投影光 学系 PLの最終光学素子 FLの下面 T1と基板 Pとの間に位置し、基板 P (基板ステー ジ 4)と下面 77との間に液体 LQを保持可能である。また、ノズル部材 70 (底板 78)は 、ノズル部材 70 (底板 78)と基板 P (基板ステージ 4)とが対向しているときに、下面 77 が基板ステージ 4に保持された基板 Pに最も接近するように構成、配置されている。ま た、本実施形態においては、ノズル部材 70 (底板 78)は、ノズル部材 70 (底板 78)と 基板 P (基板ステージ 4)とが対向しているときに、ノズル部材 70の下面 77が、基板ス テージ 4に保持された基板 Pの表面とほぼ平行になるように配置されている。以下の 説明においては、ノズル部材 70 (底板 78)の下面 77を適宜、ランド面 77、と称する。 本実施形態においては、ランド面 77の外形は、ほぼ正方形である。
[0034] 液浸領域 LRを形成する液体 LQは、底板 78及び最終光学素子 FLに接触する。ラ ンド面 77は、液体 LQに対して親液性を有しており、ランド面 77における液体 LQの 接触角は 40° 以下であり、望ましくは 10° 以下である。本実施形態においては、ラ ンド面 77を有する底板 78はチタンによって形成されており、親液性 (親水性)を有し ている。なお、ランド面 77に親液性を高めるための表面処理を施してもよい。
[0035] 供給口 12は、内部空間 ISに接続されており、内部空間 ISに液体 LQを供給可能で ある。ノズル部材 70の内部には供給口 12に接続する供給流路 14が形成されており 、供給口 12は、供給流路 14、及び供給管 13を介して液体供給装置 11に接続され ている。本実施形態においては、供給口 12は、露光光 ELの光路空間 Kの外側にお V、て、光路空間 Kの Y軸方向両側のそれぞれの所定位置に設けられて 、る。
[0036] また、ノズル部材 70は、内部空間 ISの気体を外部空間(大気空間を含む) OSに排 出(排気)する排出口 16を有している。排出口 16は内部空間 ISに接続されている。 本実施形態において、排出口 16は露光光 ELの光路空間 Kの外側において、光路 空間 Kの X軸方向両側のそれぞれの所定位置に設けられて 、る。内部空間 ISの気 体は、排出口 16、及びノズル部材 70の内部に形成された排出流路 15を介して外部 空間 OSに排出可能となっている。
[0037] 次に、回収口 22について説明する。基板 Pは回収口 22と対向する位置に移動可 能であり、回収口 22は、基板ステージ 4に保持された基板 Pの上方カゝら基板 P上の液 体 LQを回収することできる。本実施形態においては、回収口 22は、光路空間 Kに対 して供給口 12及び排出口 16の外側に設けられており、光路空間 K、ランド面 77、供 給口 12、及び排出口 16を囲むように環状に設けられている。回収口 22は、回収流 路 24、及び回収管 23を介して、真空系等の液体 LQを回収可能な吸引装置を含む 液体回収装置 21に接続されている。なお、回収口 22は光路空間 Κに対して供給口 12よりも離れて配置しなくてもよい。
[0038] 回収口 22には、複数の孔を有する多孔部材 25が配置されている。多孔部材 25は 、液体 LQを回収するための部材であって、液体 LQを回収可能 (通過可能)な複数 の孔を有している。本実施形態においては、多孔部材 25はチタン製のメッシュ部材 であり、所定の厚みを有する板状の基材と、その基材の厚み方向に貫通するように形 成された複数の孔とを有している。多孔部材 25は、露光光 ELの光路空間 Κの外側 に配置され、多孔部材 25と対向する基板 Ρ上の液体 LQが多孔部材 25を介して回収 される。
[0039] また、回収口 22 (多孔部材 25)は、露光光 ELの光路空間 Κに対してランド面 77より も外側に配置される。多孔部材 25は、下面 26を有し、多孔部材 25の下面 26と対向 する基板 Ρ上の液体 LQが多孔部材 25を介して回収される。本実施形態にぉ 、ては 、多孔部材 25の下面 26は ΧΥ平面とほぼ平行なほぼ平坦な面であり、多孔部材 25 の下面 26とランド面 77とはほぼ面一である。したがって、本実施形態においては、多 孔部材 25の下面 26と基板 Pとが対向しているとき、多孔部材 25の下面 26は、基板 P の表面とほぼ平行である。
[0040] 液体回収装置 21は、液浸領域 LRを形成する液体 LQを、多孔部材 25の孔を介し て回収可能である。多孔部材 25の孔を通過した液体 LQは、回収流路 24、及び回収 管 23を介して、液体回収装置 21に回収される。
[0041] 本実施形態においては、液浸システム 1は、液体 LQを回収する回収能力を、ノズ ル部材 70の各部位に応じて互いに異ならせている。本実施形態においては、液浸 システム 1は、回収口 22に配置された多孔部材 25の各部位での液体 LQを回収する 回収能力を互いに異ならせている。ここで、液体 LQを回収する回収能力とは、液体 LQを回収する所定面 (ここでは下面 26)における単位面積当たりの可能回収量を含 む意味である。
[0042] 多孔部材 25の各部位での回収能力は、露光光 ELの光路空間 Kに対する位置に 応じて設定されている。本実施形態においては、多孔部材 25の各部位での回収能 力力 露光光 ELの光路空間 Kに対する距離に応じて設定されている。
[0043] 本実施形態においては、多孔部材 25は、第 1の回収能力を有する第 1領域 25Aと 、第 1の回収能力よりも高い第 2の回収能力を有する第 2領域 25Bとを有している。第 2領域 25Bは、第 1領域 25Aよりも露光光 ELの光路空間 Kから遠い位置に配置され ている。本実施形態においては、第 1領域 25Aは、露光光 ELの光路空間 K (ランド 面 77)を囲むように、ほぼ矩形状 (口の字状)に配置される。第 2領域 25Bは、第 1領 域 25Aを囲むように、ほぼ矩形状 (口の字状)に配置されている。すなわち、多孔部 材 25のランド面 77に近い第 1領域 25Aの回収能力は、比較的低ぐランド面 77に対 して第 1領域 25Aよりも遠い第 2領域 25Bの回収能力は、比較的高くなつている。ま た、ランド面 77は、回収能力が無い領域である。
[0044] 本実施形態においては、多孔部材 25の各部位での構造を互いに異ならせることに よって、各部位における回収能力を互いに異ならせている。本実施形態においては 、多孔部材 25の各部位での孔の大きさを互いに異ならせることによって、回収能力を 互いに異ならせている。 [0045] 図 6は多孔部材 25の一部を下面 26側力も見た拡大図である。図 6に示すように、 第 1領域 25Aの孔の大きさと第 2領域 25Bの孔の大きさとは互いに異なっている。具 体的には、第 1領域 25Aには、第 1の大きさ(例えば直径) D1を有する孔が形成され 、第 2領域 25Bには、第 1の大きさ D1よりも大きい第 2の大きさ D2を有する孔が形成 されている。すなわち、小さい孔を有する第 1領域 25Aの液体 LQの回収能力(第 1 の回収能力)のほうが、大きい孔を有する第 2領域 25Bの液体 LQの回収能力(第 2 の回収能力)より低くなつている。このように、本実施形態においては、多孔部材 25の 第 1、第 2領域 25A、 25Bのそれぞれでの孔の大きさを互いに異ならせることによって 、第 1、第 2領域 25A、 25Bでの液体 LQの回収能力を異ならせている。
[0046] なお、上述のように、本実施形態においては、多孔部材 25はチタン製であり、液体 LQに対して親液性 (親水性)を有している。なお、多孔部材 25に親液性を高めるた めの表面処理を施してもよ 、。
[0047] 次に、上述した構成を有する露光装置 EXを用いてマスク Mのパターンの像で基板 Pを露光する方法にっ 、て説明する。
[0048] 露光光 ELの光路空間 Kを液体 LQで満たすために、制御装置 7は、液体供給装置 11及び液体回収装置 21のそれぞれを駆動する。液体供給装置 11から送出された 液体 LQは、供給管 13を流れた後、ノズル部材 70の供給流路 14を介して、供給口 1 2より内部空間 ISに供給される。供給口 12から内部空間 ISに供給された液体 LQは 、内部空間 ISを満たした後、開口 76を介してランド面 77と基板 P (基板ステージ 4)と の間の空間に流入し、露光光 ELの光路空間 Kを満たすとともに、液浸領域 LRを形 成する。このように、液浸システム 1は、供給口 12から最終光学素子 FLと底板 78との 間の内部空間 ISに液体 LQを供給することによって、最終光学素子 FL (投影光学系 PL)と基板 P (基板ステージ 4)との間の露光光 ELの光路空間 Kを液体 LQで満たす とともに、ノズル部材 70と基板 P (基板ステージ 4)との間の一部に液体 LQを保持して 、液浸領域 LRを形成する。このとき、液体回収装置 21は、単位時間当たり所定量の 液体 LQを回収している。真空系等の吸引装置を含む液体回収装置 21は、回収流 路 24を負圧にすることにより、回収口 22に配置されている多孔部材 25と基板 Pとの 間に存在する液体 LQを、多孔部材 25を介して回収することができる。多孔部材 25 力もの回収された液体 LQは、回収流路 24に流入し、回収管 23を流れた後、液体回 収装置 21に回収される。制御装置 7は、液浸システム 1を制御して、基板 Pの露光中 に、液体供給装置 11による液体供給動作と液体回収装置 21による液体回収動作と を並行して行うことで、光路空間 Kを液体 LQで満たすように、基板 P上の一部の領域 に液体 LQの液浸領域 LRを局所的に形成する。そして、制御装置 7は、露光光 ELの 光路空間 Kを液体 LQで満たした状態で、光路空間 Kに対して基板 Pを Y軸方向に 移動しつつ基板 P上に露光光 ELを照射する。
[0049] ノズル部材 70は、ランド面 77と基板 Pの表面との間で液体 LQを良好に保持するこ とができるため、基板 Pの露光中等においても、最終光学素子 FLと基板 Pとの間の露 光光 ELの光路空間 K及びランド面 77と基板 Pとの間の空間を液体 LQで良好に満た すことができる。また、本実施形態においては、ノズル部材 70は、排出口 16を有して いるため、光路空間 Kを満たす液体 LQ中に気泡が生成されてしまう不都合が抑制さ れる。したがって、露光光 ELを基板 Pまで良好に到達させることができる。
[0050] このような走査型露光装置において、光路空間 Kを液体 LQで満たした状態で基板 Pを移動したとき、液体 LQが良好に回収されず、例えば基板 Pとノズル部材 70との間 の空間よりも外側へ液体 LQが漏出する可能性がある。上述のように、本実施形態に お!、ては、基板 Pの表面との間で液体 LQを保持可能なランド面 77が露光光 ELの光 路空間 Kを囲むように設けられているが、例えば、露光光 ELの光路空間 Kに対して ランド面 77よりも外側に配置された回収口 22の回収能力によっては、基板 Pを移動 したときに、液体 LQが漏出する可能性がある。
[0051] 例えば、図 7A及び 7Bに示すように、回収口 22に配置された多孔部材 25'の孔の 径が一様であり、多孔部材 25'の回収能力が一様である場合について考える。図 7A に示すような、ランド面 77と基板 Pの表面との間に液体 LQが保持されている第 1状態 から、光路空間 Kに対して基板 Pを Y方向に所定速度で所定距離だけ移動し、図 7 Bに示すような、基板 Pの移動中における第 2状態になった場合、液浸領域 LRの液 体 LQとその外側の空間との界面 LGは Y方向へ移動し、多孔部材 25'の下面 26 に接触した液体 LQは、多孔部材 25'の孔を介して回収される。第 2状態においては 、液体 LQには、主に、基板 Pの Y方向への移動により発生する Y方向への流れ 成分 Flと、回収口 22の回収動作により発生する多孔部材 25'の孔へ向力うほぼ上 方向(+Z方向)への流れ成分 F2'とが生成される。
[0052] 図 7A及び 7Bにおいて、ランド面 77には液体 LQを回収する回収能力が無いので 、ランド面 77の下に存在する液体 LQには、 +Z方向へ向力う流れ成分 F2'は生成さ れず、ランド面 77の下から多孔部材 25'の下に移動した液体 LQには、 +Z方向へ向 力 流れ成分 F2'が生成される。ここで、ランド面 77に隣り合う位置に配置されている 多孔部材 25 'の回収能力が比較的高い場合 (例えば、上述の第 2の回収能力を有 する場合)、ランド面 77の下力も多孔部材 25'の下に移動した液体 LQには、 +Z方 向へ向かう流れ成分 F2'が急激に生成される。 Y方向へ移動している液体 LQに +Z方向への流れ成分 F2'が急激に生成されると、界面 LGの形状が乱れ、液体 LQ が漏出したり、漏出した液体 LQが滴となって基板 Pの表面に残留する可能性がある 。例えば、図 7Bに示すように、基板 Pの表面近傍の液体 LQだけが基板 Pとともに Y方向へ移動し、基板 P上に液体 LQの薄膜が形成される。その薄膜の一部が液浸 領域 LRを形成する液体 LQカゝら分離すると、液体 LQが滴となって基板 Pの表面に残 留する現象が生じる可能性がある。
[0053] すなわち、液体 LQの挙動(流れ成分)が急激に変化すると、液体 LQが漏出したり 、基板 P上に残留する可能性が高くなる。液体 LQの挙動は、基板 Pと対向する面に ぉ 、て、液体 LQの界面の移動方向に互いに隣り合う面どうしの回収能力の差が大き いほど、急激に変化すると考えられる。図 7A及び 7Bにおいては、回収能力が無いラ ンド面 77と、回収能力が高い多孔部材 25'の下面 26とが隣り合っており、ランド面 77 の回収能力と多孔部材 25 'の回収能力との差が大き!/、ため、液体 LQの挙動に急激 な変化が生じる。
[0054] 図 8A及び 8Bは、本実施形態に係る多孔部材 25が回収口 22に配置されている状 態での液体 LQの挙動を説明するための模式図である。上述したように、多孔部材 2 5は、図 7A及び図 7Bの場合と同様に、ランド面 77に隣り合う位置に配置されている 力 ランド面 77に隣接する位置には、比較的小さな第 1の回収能力を有する第 1領 域 25Aが配置され、第 1領域 25Aよりもランド面 77から遠い位置には、第 1の回収能 力よりも高い第 2の回収能力を有する第 2領域 25Bとが配置されている。図 8Aに示 すような、ランド面 77と基板 Pの表面との間に液体 LQが保持されている第 1状態から 、光路空間 Kに対して基板 Pを Y方向に所定速度で所定距離だけ移動し、図 8Bに 示すような、基板 Pの移動中における第 2状態になった場合、液体 LQは、多孔部材 2 5の孔を介して回収される。図 8A及び 8Bにおいて、ランド面 77に隣り合う位置に配 置された多孔部材 25の第 1領域 25Aの回収能力は比較的低いので、基板 Pの移動 方向前方向(一 Y方向)への液体 LQの流れ成分 F1に対して、回収口 22の回収動作 により発生する多孔部材 25の孔へ向力 ほぼ上方向(+Z方向)への流れ成分 F2は 比較的小さい。これにより、液体 LQの挙動が急激に変化することが抑制される。
[0055] すなわち、図 8A及び 8Bにおいては、ランド面 77に近い第 1領域 25Aの回収能力 は比較的低ぐランド面 77の回収能力と多孔部材 25の第 1領域 25Aの回収能力と の差は小さいため、液体 LQの挙動は急激には変化しない。したがって、多孔部材 2 5の第 1領域 25Aは、液体 LQの挙動に急激な変化をもたらすことなぐ液体 LQを良 好に回収することができる。
[0056] 第 1領域 25Aの外側 (第 1領域 25Aの周囲)には、高い回収能力を有する第 2領域 25Bが配置されているので、第 1領域 25Aで回収されなかった液体 LQを第 2領域 2 5Bで回収することができる。したがって、回収口 22 (多孔部材 25)を介して、基板 Pと ノズル部材 70との間の空間に存在する液体 LQを、その空間より外側に漏出させるこ となぐ良好に回収することができる。ここで、多孔部材 25の第 1領域 25Aの回収能 力と、第 2領域 25Bの回収能力との差は小さいため、多孔部材 25は、液体 LQの流 れの挙動に急激な変化をもたらすことなぐ液体 LQを良好に回収することができる。
[0057] 以上説明したように、多孔部材 25の液体 LQを回収する回収能力を、多孔部材 25 の部位に応じて互いに異ならせることにより、その多孔部材 25を用いて液体 LQを回 収するときにおいても、液体 LQの挙動の急激な変化を抑え、液体 LQが漏出したり、 基板 P上に滴となって残留することを抑えることができる。そして、本実施形態におい ては、露光光 ELの光路空間 Kを液体 LQで良好に満たすために、露光光 ELの光路 空間 Kを囲むように、基板 Pの表面との間で液体 LQを保持可能なランド面 77が設け られており、そのランド面 77の周囲に、比較的小さな第 1の回収能力を有する第 1領 域 25Aが配置され、第 1領域 25Aの周囲に第 2の回収能力を有する第 2領域 25Bが 配置されている。これにより、ノズル部材 70の下面における各部位間(ランド面 77と 多孔部材 25の第 1領域 25Aとの回収能力の差、及び多孔部材 25の第 1領域 25Aと 第 2領域 25Bとの回収能力の差)の回収能力の差を小さくし、露光光 ELの光路空間 Kを液体 LQで満たしつつ、液体 LQを良好に回収することができる。
[0058] 例えば、基板 P上に液体 LQを残存させることなく回収するためには、回収口 22 (多 孔部材 25)の回収能力を高めることが有効である。しかしながら、回収口 22に配置さ れた多孔部材 25の回収能力を一様に高めた場合、図 7A及び 7Bを参照して説明し たように、ランド面 77の回収能力との差によって、液体 LQの挙動(例えば、界面)に 急激な変化をもたらし、液体 LQが漏出したり、基板 P上に液体 LQの滴が残留したり する可能性がある。一方、ランド面 77の回収能力と多孔部材 25の回収能力との差を 小さくするために、多孔部材 25の回収能力を一様に低くした場合、液体 LQを残存さ せずに回収することが困難となる。本実施形態においては、多孔部材 25の液体 LQ を回収する回収能力を、多孔部材 25の部位に応じて互いに異ならせることにより、ノ ズル部材 70の下面における回収能力の差が大きくなるのを抑え、液体 LQを漏出さ せることなぐ良好に回収することができる。
[0059] また、第 1領域 25Aを、露光光 ELの光路空間 K (ランド面 77)を囲むように配置し、 第 2領域 25Bを、第 1領域 25Aを囲むように配置したので、基板 P (液浸領域 LRの界 面)がいずれの方向に移動した場合にも、液体 LQの漏出等を良好に抑えることがで きる。
[0060] なお、上述の実施形態においては、多孔部材 25の各部位での回収能力を互いに 異ならせるために、各部位での孔の大きさを互いに異ならせている力 多孔部材 25 の各部位での孔の密度を互いに異ならせることによって、多孔部材 25の各部位での 回収能力を異ならせてもよい。例えば、図 9の模式図に示すように、多孔部材 25のう ち、露光光 ELの光路空間 Kに近い第 1領域 25Aの孔の密度を低くし、第 1領域 25A よりも露光光 ELの光路空間 Kから遠い第 2領域 25Bの孔の密度を高くすることで、第 1領域 25Aの回収能力を、第 2領域 25Bの回収能力よりも低くすることができる。
[0061] また、上述の実施形態において、多孔部材 25は、所定の厚みを有する板状の基材 28と、その基材 28の厚み方向に貫通するように形成された複数の孔とを有して!/、る 力 その多孔部材 25の基材 28の各部位での厚みを互いに異ならせることによって、 多孔部材 25の各部位での回収能力を異ならせることができる。例えば、図 10の模式 図に示すように、露光光 ELの光路空間 K (ランド面 77)に近い第 1領域 25Aの基材 2 8を第 1の厚み HIとし、第 1領域 25Aよりも露光光 ELの光路空間 Kから遠い第 2領域 25Bの基材 28を第 1の厚み HIよりも薄!、第 2の厚み H2とすることで、第 1領域 25A の回収能力を、第 2領域 25Bの回収能力よりも低くすることができる。第 1領域 25Aの 第 1の厚み HIを有する基材 28に形成された孔の流路は、第 2領域 25Bの第 2の厚 み H2を有する基材 28に形成された孔の流路よりも長くなるため、液体 LQの流れの 抵抗が大きくなる。したがって、第 1領域 25Aの基材 28の厚みを厚くし、第 2領域 25 Bの基材 28の厚みを薄くすることで、第 1領域 25Aの回収能力を、第 2領域 25Bの回 収能力よりも低くすることができる。
[0062] なお、第 1領域 25Aの孔の形状と、第 2領域 25Bの孔の形状とを異ならせることによ つて、第 1領域 25Aの回収能力と第 2領域 25Bの回収能力とを異ならせてもよい。例 えば、第 1領域 25Aの孔の形状を多角形状 (例えば 6角形状)にし、第 2領域 25Bの 孔の形状を円形状にすることができる。多角形状の孔の場合、その孔を流れる際の 液体 LQの流れの抵抗力、円形状の孔を流れる際の液体 LQの流れの抵抗よりも大き くなるため、多角形状の孔を第 1領域 25Aに設け、円形状の孔を第 2領域 25Bに設 けることにより、第 1領域 25Aの回収能力を第 2領域 25Bの回収能力よりも低くするこ とがでさる。
[0063] なお、上述の実施形態においては、多孔部材 25は、互いに異なる回収能力を有す る第 1、第 2領域 25A、 25Bを有しており、互いに異なる 2段階の回収能力の部位 (領 域)を有しているように説明したが、 3段階以上の任意の複数段階の回収能力の部位 (領域)が設けられてもよい。すなわち、上述の実施形態においては、回収口 22 (多 孔部材 25)は、互いに回収能力が異なる 2つの領域に分けられている力 互いに回 収能力が異なる 3つ以上の領域に分けられてもよい。
また、上述の実施形態においては、回収口 22 (多孔部材 25)の互いに隣り合う部 位の回収能力を段階的に変化させている力 回収口 22 (多孔部材 25の下面 26)の 各部位の回収能力を連続的に変化させてもよい。例えば、回収口 22 (多孔部材 25) の各部位の回収能力力 露光光 ELの光路空間 Kから外側に向かうにつれて漸次高 くなるように設定されてもょ 、。
[0064] <第 2実施形態 >
次に、第 2実施形態について、図 11〜図 14を参照して説明する。以下の説明にお いて、上述の第 1実施形態と同一又は同等の構成部分については同一の符号を付 し、その説明を簡略若しくは省略する。
[0065] 図 11は第 2実施形態に係るノズル部材 70近傍を示す概略斜視図の一部破断図、 図 12はノズル部材 70を下側から見た斜視図、図 13は ΥΖ平面と平行な側断面図、 図 14は ΧΖ平面と平行な側断面図である。本実施形態の特徴的な部分は、多孔部 材 25の各部位での回収能力が、露光光 ELの光路空間 Κに対する方向に応じて設 定されている点にある。
[0066] 第 2実施形態にぉ 、ても、ノズル部材 70は、基板 Ρの表面との間で液体 LQを保持 可能なランド面 77を有しており、回収口 22は、露光光 ELの光路空間 L及びランド面 77を囲むように形成されている。回収口 22には、多孔部材 25が配置されている。な お、本実施形態において、多孔部材 25の下面 26は、基板 Ρの表面とほぼ平行であり 、ランド面 77とほぼ面一である。
[0067] 本実施形態においても、制御装置 7は、露光光 ELと基板 Ρとを所定の走査方向(こ こでは Υ軸方向)に相対的に移動しつつ露光を行う。そして、多孔部材 25の各部位 での回収能力が、基板 Ρの移動条件に応じて設定されている。
[0068] 具体的には、多孔部材 25の第 1領域 25Αは、露光光 ELの光路空間 Κに対して Υ 軸方向の側に配置され、第 2領域 25Βは、露光光 ELの光路空間 Κに対して Υ軸方 向と交差する X軸方向の側に配置されている。また、第 2領域 25Βの第 2の回収能力 は、第 1領域 25Αの第 1の回収能力よりも高い。本実施形態においては、第 1領域 25 Αには、第 1の大きさ D1を有する孔が形成され、第 2領域 25Bには、第 1の大きさ D1 よりも大きい第 2の大きさ D2を有する孔が形成されている。すなわち、回収能力が低 い第 1領域 25Aは、露光光 ELの光路空間 K (ランド面 77)に対して基板 Pの移動方 向と平行な方向の側に配置され、回収能力が高い第 2領域 25Bは、露光光 ELの光 路空間 K (ランド面 77)に対して基板 Pの移動方向と交差する方向の側に配置される 。第 1領域 25Aは、ランド面 77に対して Y軸方向両側のそれぞれに設けられ、第 2領 域 25Bは、ランド面 77に対して X軸方向両側のそれぞれに設けられている。また、第 2領域 25Bの一部は、第 1領域 25Aの X軸方向の両側に配置されている。
[0069] 本実施形態においては、第 1領域 25Aは、 XY方向において、露光光 ELの光路空 間 Kから Y軸方向に離れるにつれて漸次拡がる形状 (台形状)に形成されている。第 2領域 25Bは、 XY方向において、露光光 ELの光路空間 Kから X軸方向に離れるに つれて漸次拡がる形状 (台形状)に形成されている。
[0070] このように、基板 Pの露光中における基板 Pの動き、例えば基板 Pの移動方向を考 慮して、多孔部材 25の各部位での回収能力を設定するようにしてもよい。図 7A及び 7B等を参照して説明したように、基板 Pの移動方向と平行な方向に配置されている 多孔部材 25の回収能力の変化が大きい場合、液体 LQの挙動が急激に変化し、液 体 LQが漏出する可能性があるが、基板 Pの移動方向と平行な方向に配置された多 孔部材 25の回収能力を低くすることにより、基板 Pを移動しつつ露光した場合にも、 液体 LQの挙動の急激な変化を抑制することができる。
[0071] そして、基板 P (基板ステージ 4)は、 Y軸方向への移動だけでなぐ例えばステツビ ング移動など、 X軸方向への移動も頻繁に行うので、回収能力が高い第 2領域 25B を、露光光 ELの光路空間 K (ランド面 77)に対して X軸方向の両側に設けることによ り、その第 2領域 25Bを介して液体 LQが良好に回収され、液浸領域 LRの拡大、及 び液体 LQの漏れ出しを抑制することができる。
[0072] なお、第 2実施形態においては、第 1領域 25Aと第 2領域 25Bとの回収能力を異な らせるために、上述の第 1実施形態同様、第 1領域 25Aと第 2領域 25Bとの孔の大き さを異ならせているが、第 1実施形態でも述べたように、第 1領域 25Aと第 2領域 25B とで孔の密度を異ならせてもよいし、第 1領域 25Aと第 2領域 25Bとの多孔部材 25の 基材の厚みを異ならせてもよ 、。
[0073] なお、上述の第 1、第 2実施形態においては、多孔部材 25の下面 26は、ランド面 7 7とほぼ面一である力 ランド面 77と下面 26との間に段差があってもよい。例えば、ノ ズル部材 70と基板 Pとが対向しているときに、多孔部材 25の下面 26が、基板 Pの表 面に対してランド面 77よりも離れるように、下面 26とランド面 77との間に段差を設け てもよい。また、ノズル部材 70と基板 Pとが対向しているときに、多孔部材 25の下面 2 6は、ランド面 77と平行、すなわち基板 Pの表面と平行であってもよいし、ランド面 77 ( 基板 Pの表面)に対して傾斜していてもよい。
[0074] <第 3実施形態 >
次に、第 3実施形態について、図 15〜図 18を参照して説明する。図 15は第 3実施 形態に係るノズル部材 70近傍を示す概略斜視図の一部破断図、図 16はノズル部材 70を下側から見た斜視図、図 17は YZ平面と平行な側断面図、図 18は XZ平面と平 行な側断面図である。
[0075] 第 3実施形態にぉ 、ても、ノズル部材 70は、基板 Pの表面との間で液体 LQを保持 可能なランド面 77を有している。本実施形態においては、ランド面 77の外形は、開 口 76の形状に応じて、 X軸方向を長手方向とする矩形状に形成されている。なお、 上述の第 1及び第 2実施形態同様、ノズル部材 70と基板 P (基板ステージ 4)とが対向 しているときに、ランド面 77は、ノズル部材 70の部位のうち、基板ステージ 4に保持さ れた基板 Pに最も近 、位置に設けられており、基板 Pの表面とほぼ平行である。
[0076] 本実施形態においては、ノズル部材 70は、 Y軸方向に関して露光光 ELの光路空 間 Kに対してランド面 77の外側に設けられ、基板 Pの表面に対してランド面 77よりも 離れた位置に設けられた第 2ランド面 77'を有している。第 2ランド面 77'はランド面 7 7に対して +Z方向に傾斜した面であり、る。すなわち、ノズル部材 70と基板 Pとが対 向している状態においては、第 2ランド面 77'は、露光光 ELの光路空間 Kから Y軸方 向に離れるにつれて基板 Pの表面との間隔が大きくなる斜面である。第 2ランド面 77' は、ランド面 77の Y軸方向両側のそれぞれに設けられている。
[0077] ランド面 77と第 2ランド面 77,とは、液体 LQが基板 Pの表面と第 2ランド面 77,との 間に存在する場合において、その基板 Pの表面と第 2ランド面 77'との間に存在する 液体 LQが第 2ランド面 77 'から離れな 、ように、所定の位置関係で設けられて!/、る。 具体的には、光路空間 Kを液体 LQで満たした状態で基板 Pを移動した場合でも、基 板 Pの表面と第 2ランド面 77 'との間に存在する液体 LQが第 2ランド面 77 'から離れ ないように (剥離しないように)、第 2ランド面 77'がランド面 77に対して所定の角度で 設けられている。 [0078] 本実施形態においては、第 2ランド面 77'は、ランド面 77に対して連続的に設けら れている。すなわち、光路空間 Kに対して +Y側に設けられた第 2ランド面 77'のうち 露光光 ELの光路空間 Kに最も近い Y側のエッジと、ランド面 77の +Y側のエッジ とが基板 Pに対してほぼ同じ位置 (高さ)に設けられ、光路空間 Kに対して Y側に設 けられた第 2ランド面 77'のうち露光光 ELの光路空間 Kに最も近い +Y側のエッジと 、ランド面 77の一 Y側のエッジとが基板 Pに対してほぼ同 Cf立置(高さ)に設けられて いる。
[0079] また、上述の実施形態同様、回収口 22は、露光光 ELの光路空間 K及びランド面 7 7、 77'を囲むように形成されている。回収口 22には、多孔部材 25が配置されている
[0080] 本実施形態においても、制御装置 7は、露光光 ELと基板 Pとを所定の走査方向(こ こでは Y軸方向)に相対的に移動しつつ露光を行う。そして、多孔部材 25の各部位 での回収能力が、基板 Pの移動条件に応じて設定されている。
[0081] 具体的には、多孔部材 25の第 1領域 25Aは、露光光 ELの光路空間 Kに対して Y 軸方向の側に配置され、第 2領域 25Bは、露光光 ELの光路空間 Kに対して Y軸方 向と交差する X軸方向の側に配置されている。また、第 1領域 25Aの第 1の回収能力 よりも第 2領域 25Bの第 2の回収能力が高い。本実施形態においても、第 1領域 25A には、第 1の大きさ D1を有する孔が形成され、第 2領域 25Bには、第 1の大きさ D1よ りも大きい第 2の大きさ D2を有する孔が形成されている。すなわち、回収能力が低い 第 1領域 25Aは、露光光 ELの光路空間 K (ランド面)に対して基板 Pの移動方向と平 行な方向の側に配置され、回収能力が高い第 2領域 25Bは、露光光 ELの光路空間 K (ランド面)に対して基板 Pの移動方向と交差する方向の側に配置される。第 1領域 25Aは、露光光 ELの光路空間 K (ランド面 77, 77' )に対して Y軸方向両側のそれ ぞれに設けられ、第 2領域 25Bは、露光光 ELの光路空間 K (ランド面 77, 77' )に対 して X軸方向両側のそれぞれに設けられている。また第 2領域 25Bの一部は、 Y軸方 向にお 、て、第 1領域 25Aの両側に配置されて 、る。
[0082] また、第 2実施形態と同様に、第 1領域 25Aは、 XY方向において、露光光 ELの光 路空間 Kから Y軸方向に離れるにつれて漸次拡がる形状 (台形状)に形成されて ヽる 。第 2領域 25Bは、 XY方向において、露光光 ELの光路空間 Kから X軸方向に離れ るにつれて漸次拡がる形状 (台形状)に形成されて 、る。
[0083] また、本実施形態においては、ノズル部材 70と基板 Pの表面とが対向しているとき に、第 1領域 25Aの下面 26Aは、基板 Pの表面に対して第 2領域 25Bの下面 26Bよ りも離れている。また、第 2領域 25Bの下面 26Bは、基板 Pの表面とほぼ平行であり、 第 1領域 25Aの下面 26Aは、第 2領域 25Bの下面 26Bに対して傾斜している。
[0084] 本実施形態においては、第 1領域 25Aの下面 26Aは、第 2ランド面 77,に対して連 続的に設けられている。すなわち、光路空間 Kに対して +Y側に設けられた第 1領域 25Aの下面 26Aと第 2ランド面 77'とは、ランド面 77に対してほぼ同じ角度で傾斜し ており、面一となつている。同様に、光路空間 Kに対して— Y側に設けられた第 1領域 25Aの下面 26Aと第 2ランド面 77'とは、ランド面 77に対してほぼ同じ角度で傾斜し ており、面一となつている。
[0085] 図 19A及び 8Bは、基板 Pを Y軸方向に移動したときの液体 LQの挙動を説明する ための模式図である。第 2ランド面 77'に対して Y軸方向には多孔部材 25の第 1領域 25Aが配置されている。図 19Aに示すような、ランド面 7及び第 2ランド面 77'と基板 Pの表面との間に液体 LQが保持されている第 1状態から、光路空間 Kに対して基板 Pを— Y方向に所定速度で所定距離だけ移動し、図 19Bに示すような、基板 Pの移 動中における第 2状態になった場合、下面 26Aと接する液体 LQは、多孔部材 25の 孔を介して回収される。
[0086] 本実施形態において、第 2ランド面 77'及び第 1領域 25Aの下面 26Aと基板 Pの表 面との間の距離は、ランド面 77と基板 Pの表面との間の距離よりも大きぐ第 2ランド 面 77'及び下面 26Aと基板 Pの表面との間の空間は、ランド面 77と基板 Pの表面との 間の空間よりも大きい。そのため、図 19Bに示すような基板 Pの移動中の第 2状態に おいては、液浸領域 LRの液体 LQには、回収口 22の回収動作により発生する多孔 部材 25の孔へ向力 流れ成分 F2が生成されるとともに、基板 Pの移動方向前方向( Y方向)へ向かう液体 LQの流れ成分 F1と、多孔部材 25の第 1領域 25Aの下面 2 6Aに沿って斜め上方に移動する流れ成分 F3とが生成される。したがって、基板 Pを 移動したとき、図 19Aに示すような第 1状態での界面 LGと、図 19Bに示す基板 Pの 移動中の第 2状態での界面 LGとの距離を比較的小さくすることができる。そのため、 液浸領域 LRの拡大(巨大化)を抑制することができる。
[0087] 本実施形態においても、基板 Pの移動方向と平行な方向において、回収能力を持 たないランド面 77'と隣り合う位置に配置された多孔部材 25の第 1領域 25Aの回収 能力が低くなつているので、基板 Pを移動しつつ露光した場合にも、液体 LQの挙動 の急激な変化を抑制することができる。
[0088] 基板 P (基板ステージ 4)は、 Y軸方向への移動だけでなぐ例えばステッピング移動 など、 X軸方向への移動も頻繁に行うので、回収能力が高い第 2領域 25Bを、露光 光 ELの光路空間 Kに対して X軸方向に設けることにより、その第 2領域 25Bを介して 液体 LQを良好に回収することができる。多孔部材 25の第 2領域 25Bの下面 26Bは 、基板 Pの表面 (XY平面)とほぼ平行に設けられている。多孔部材 25の第 2領域 25 Bの下面 26Bとランド面 77とはほぼ面一であり、回収能力が高い多孔部材 25の第 2 領域 25Bの下面 26は、基板 Pに近い位置に配置されている。したがって、液浸シス テム 1は、多孔部材 25の第 2領域 25Bを介して、液体 LQを良好に回収することがで きる。
[0089] なお、第 3実施形態においても、第 1領域 25Aと第 2領域 25Bとの回収能力を異な らせるために、第 1領域 25Aと第 2領域 25Bとの孔の大きさを異ならせている力 第 1 領域 25Aと第 2領域 25Bとで孔の密度を異ならせてもよいし、第 1領域 25Aと第 2領 域 25Bとの多孔部材 25の基材の厚みを異ならせてもよい。
[0090] なお、上述の第 2、第 3実施形態においては、基板 Pの移動方向に応じて、多孔部 材 25の各部位での回収能力が異なっている力 例えば、基板 Pの移動速度、加速度 (減速度)、及び基板 Pが所定の一方向に直線移動するときの移動距離に応じて設 定されてもよい。例えば、基板 Pが高速で移動する場合には、その移動速度に応じて 、第 1、第 2領域 25A、 25Bの回収能力(孔の大きさ、密度など)を最適化することが できる。基板 Pを露光するときの基板 Pの移動速度、加速度 (減速度)、移動方向、及 び基板 Pが所定の一方向に移動するときの移動距離などを含む基板 Pの移動条件は 、予めほぼ分力つているので、その基板 Pの移動条件 (移動速度、加速度 (減速度)、 移動方向、移動距離の少なくとも一つ)を考慮して、互いに異なる回収能力を有する 部位 (領域)の位置関係 (配置)及び Z又は各部位の回収能力を最適化することがで きる。また、基板 Pの移動条件に応じて、例えば第 1、第 2領域 25A、 25Bのそれぞれ の大きさを最適化するようにしてもょ 、。
[0091] また、第 3実施形態においては、基板 Pの移動条件に応じて、第 2ランド面 77'、及 び第 1領域 25Aの下面 26Aの傾斜角度を設定するようにしてもょ 、。
[0092] <第 4実施形態 >
上述の第 1〜第 3実施形態においては、多孔部材 25の孔の大きさ、孔の密度、及 び基材 28の厚みなど、多孔部材 25の各部位での構造を互いに異ならせることによつ て、回収能力を異ならせている力 液体回収装置 21による吸引力を互いに異ならせ ることによって、多孔部材 25の各部位での回収能力を異ならせることができる。このこ とについて、図 20を参照して説明する。
[0093] 図 20において、ノズル部材 70は、第 1回収口 22Aと第 2回収口 22Bとを備えている 。第 1回収口 22Aは、ノズル部材 70の下面のうち、露光光 ELの光路空間 K (ランド面 77)に近い位置に設けられ、第 2回収口 22Bは、第 1回収口 22Aよりも露光光 ELの 光路空間 K力も遠い位置に設けられている。また、回収口 22A, 22Bのそれぞれに は、多孔部材 25が配置されている。また、ノズル部材 70の内部には、第 1回収口 22 Aに接続する第 1回収流路 24Aと、第 2回収口 22Bに接続する第 2回収流路 24Bと が設けられている。第 1回収流路 24Aと第 2回収流路 24Bとの間には隔壁 27が形成 されており、第 1回収流路 24Aと第 2回収流路 24Bとは独立して ヽる。
[0094] 第 1回収流路 24Aには、第 1の吸引力で吸引する第 1液体回収装置 21Aが接続さ れ、第 2回収流路 24Bには、第 1の吸引力よりも強い第 2の吸引力で吸引する第 2液 体回収装置 21Bが接続される。制御装置 7は、第 1、第 2液体回収装置 21A、 21Bを 制御して、第 1、第 2の吸引力を互いに異ならせることにより、第 1、第 2回収口 22A、 22Bでの回収能力を互いに異ならせることができる。すなわち、多孔部材 25の上面 と下面との圧力差を、第 1回収口 22Aと第 2回収口 22Bとで異ならせることによって、 第 1、第 2回収口 22A、 22Bでの回収能力を互いに異ならせることができる。より具体 的には、第 1回収流路 24Aの圧力 (負圧)と第 2回収流路 24Bの圧力 (負圧)を異なら せることによって、第 1、第 2回収口 22A、 22Bでの回収能力を互いに異ならせること ができる。この場合、第 1回収口 22Aに配置されている多孔部材 25の構造と、第 2回 収口 22Bに配置されて 、る多孔部材 25の構造とは同じであってもよ 、し、異なって いてもよい。
[0095] なお、図 20においては、第 1実施形態に類似のノズル部材を用い、露光光 ELの光 路空間 Kに近い第 1回収口 22Aに、第 1の吸引力で吸引する第 1液体回収装置 21A が接続され、露光光 ELの光路空間 Kに対して第 1回収口 22Aよりも遠い位置に設け られた第 2回収口 22Bに、第 2の吸引力で吸引する第 2液体回収装置 21Bが接続さ れているが、例えば、第 2及び第 3実施形態に類似のノズル部材を用いて、露光光 E Lの光路空間 Kに対して Y軸方向に、第 1の吸引力で吸引する第 1液体回収装置 21 Aに接続された第 1回収口 22Aを配置し、露光光 ELの光路空間 Kに対して X軸方向 に、第 2の吸引力で吸引する第 2液体回収装置 21Bに接続された第 2回収口 22Bを 酉己置するようにしてもよ ヽ。
また、第 2、第 3、及び第 4実施形態においても、回収口 22 (多孔部材 25)が、互い に回収能力が異なる 3つ以上の領域に分けられてもよいし、回収口 22 (多孔部材 25 )の各部位の回収能力を連続的に変化させてもよい。
[0096] なお、上述の第 1〜第 4実施形態において、第 1領域 25A及び第 2領域 25Bは、一 つの部材に設けられていてもよいし、第 1領域 25Aを有する多孔部材が第 2領域 25 Bを有する多孔部材と異なって 、てもよ 、。
また、上述の第 1〜第 4実施形態において、回収口 22 (多孔部材 25)の各部位の 回収能力を可変 (調整可能)に構成してもよい。例えば、多孔部材 25の孔の大きさを 可変に設けてもよい。例えば基板 Pの移動条件に応じて、多孔部材 25の孔の大きさ を変えるようにしてもよい。図 21A及び 8Bを参照しながら、回収口 22に配置される多 孔部材 25の孔の大きさを変える方法の一例について説明する。
[0097] 図 21Aにおいて、多孔部材 25は、複数の孔が形成されている板状の第 1、第 2基 材 28A、 28Bを有している。本実施形態においては、第 1、第 2基材 28A、 28Bのそ れぞれには、六角形状の孔が複数形成されている。第 1、第 2基材 28A、 28Bは、所 定の駆動装置によって、互いの位置関係を調整される。例えば、図 21Bに示すように 、第 1基材 28Aに形成された孔と、第 2基材 28Bに形成された孔との位置関係 (重な りの度合い)を調整することで、多孔部材 25の孔の大きさを調整することができる。図 21Aに示す第 1、第 2基材 28A、 28Bの位置関係においては、多孔部材 25の孔とし て、大きさ D2'を有する孔が形成されており、図 21Bに示す第 1、第 2基材 28A、 28 Bの位置関係においては、多孔部材 25の孔として、大きさ D1 'を有する孔が形成さ れている。
[0098] なお、ここでは、孔を有する基材が 2枚の場合について説明したが、もちろん、 3枚 以上の任意の数の基材を設けることもできる。また、これら基材の互いの位置関係を 適宜調整することによって、多孔部材 25の孔の密度、あるいは多孔部材 25の厚さ、 あるいは多孔部材 25の孔の形状を調整するようにしてもょ 、。
また、回収口 22 (多孔部材 25)の複数の部位のうちの一部の回収能力だけが可変 であってもよい。
また、回収口 22 (多孔部材 25)の各部位の回収能力を可変 (調整可能)に構成した 場合、回収口 22 (多孔部材 25)の各部位の回収能力は、例えば基板 Pの露光を開 始する前に、その基板 Pの露光条件 (基板 Pの移動条件、基板 Pの表面と液体との接 触角など)に基づいて調整してもよいし、基板 Pの露光中などに、基板 Pの動き (移動 方向、移動速度など)に合わせてダイナミックに変化させてもよい。
[0099] なお、上述の各実施形態においては、液体 LQを回収するための多孔部材 25は、 基板 Pの表面と対向する位置に配置されている力 例えば基板ステージ 4の上面 4F などに液体 LQを回収するための回収口が設けられて 、る場合には、その回収口の 各部位の回収能力を異ならせてもよい。この場合、その回収口に、上述の実施形態 で説明したような多孔部材を配置するようにしてもよい。
[0100] なお、回収口の各部位における回収能力を異ならせる方法は、上述した方法に限 られないことは言うまでもなぐ上述した方法を適宜組み合わせてもよい。すなわち、 上述の多孔部材の孔径、多孔部材の孔の密度、多孔部材の孔の形状、多孔部材の 厚さ、及び多孔部材に流通する回収流路の圧力(吸引力)の少なくとも一つを異なら せることによって、回収口の各部位の回収力を異ならせることができる。
さらに、上述の各実施形態においては、回収口 22に多孔部材 25が配置されている 力 回収口 22に多孔部材 25が配置されていなくてもよい。例えば、回収口 22の複数 の部位のうちの一部のみに多孔部材 25が配置されてもよい。
[0101] なお、上述の各実施形態においては、露光光 ELが照射可能な位置に基板 Pを配 置した状態で、すなわち投影光学系 PLと基板 Pとが対向している状態で光路空間 K が液体 LQで満たされて 、る場合にっ 、て説明した力 基板 P以外の物体 (例えば基 板ステージ 4の上面 4F)が投影光学系 PLと対向して 、る状態で光路空間 Kが液体 L Qで満たされている場合も同様である。ここで、露光光 ELが照射可能な位置とは、投 影光学系 PLと対向する位置を含む。
[0102] また、液浸システム 1として、国際公開第 2005/024517号パンフレットに開示され ているように、多孔部材 25の孔のサイズなどを最適化して、回収口 22から気体が回 収されな ヽ機構を用いることもできる。
[0103] なお、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子の物体面側の光路空間も液体で満たす投影光学系を採 用することちでさる。
[0104] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されているフオトレ ジストに対して安定なもの(例えばセダー油)を用いることも可能である。
[0105] また、液体 LQとしては、屈折率が 1. 6〜1. 8程度のものを使用してもよい。液体し Qとしては、例えば、屈折率が約 1. 50のイソプロパノール、屈折率が約 1. 61のダリ セロール (グリセリン) t 、つた C— H結合ある 、は O—H結合を持つ所定液体、へキ サン、ヘプタン、デカン等の所定液体 (有機溶剤)、デカリン、バイサイクロへクシル等 の所定液体が挙げられる。あるいは、これら所定液体のうち任意の 2種類以上の液体 が混合されたものであってもょ ヽし、純水に上記所定液体が添カ卩(混合)されたもの であってもよい。あるいは、液体 LQとしては、純水に、 H+、 Cs+、 K+、 Cl_、 SO 2_
4
PO 2_等の塩基又は酸を添加(混合)したものであってもよい。更には、純水に A1酸
4
化物等の微粒子を添加(混合)したものであってもよい。これら液体 LQは、 ArFェキ シマレーザ光を透過可能である。また、液体 LQとしては、光の吸収係数が小さぐ温 度依存性が少なぐ投影光学系 PL及び Z又は基板 Pの表面に塗布されて 、る感光 材 (又は保護膜 (トップコート膜)あるいは反射防止膜など)に対して安定なものである ことが好ましい。
[0106] 光学素子 LSIは、例えば石英 (シリカ)で形成することができる。あるいは、フッ化力 ルシゥム(蛍石)、フッ化バリウム、フッ化ストロンチウム、フッ化リチウム、フッ化ナトリウ ム、及び BaLiF等のフッ化化合物の単結晶材料で形成されてもよい。更に、最終光
3
学素子は、ルテチウムアルミニウムガーネット (LuAG)で形成されてもよい。及びフッ 化ナトリウム等のフッ化化合物の単結晶材料で形成されてもよい。
[0107] 投影光学系の少なくとも 1つの光学素子を、石英及び Z又は蛍石よりも屈折率が高 い(例えば 1. 6以上)材料で形成してもよい。例えば、国際公開第 2005Z059617 号パンフレットに開示されているような、サファイア、二酸ィ匕ゲルマニウム等、あるいは 、国際公開第 2005Z059618号パンフレットに開示されているような、塩ィ匕カリウム( 屈折率約 1. 75)等を用いることができる。
[0108] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。基板はその形状が円形に限られるものでなぐ矩形など 他の形状でもよい。
[0109] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0110] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。
[0111] また、本発明は、特開平 10— 163099号公報、特開平 10— 214783号公報、特表 2000— 505958号公報、米国特許 6, 341, 007号、米国特許 6, 400, 441号、米 国特許 6, 549, 269号、及び米国特許 6, 590,634号などに開示されているような 複数の基板ステージを備えたツインステージ型の露光装置にも適用できる。
[0112] 更に、特開平 11 135400号公報、特開 2000— 164504号公報、米国特許 6, 8 97, 963号などに開示されているように、基板を保持する基板ステージと基準マーク が形成された基準部材ゃ各種の光電センサを搭載した計測ステージとを備えた露光 装置にも本発明を適用することができる。
[0113] 上記各実施形態における露光装置は、投影光学系に対してその上方(+Z側)に マスクが配置され、その下方(一 Z側)に基板が配置されるものとしたが、例えば国際 公開第 2004Z090956号パンフレツ卜(対応米国公開 2006Z0023188A1)に開 示されているように、鉛直方向(Z軸方向)に関して投影光学系(複数の投影モジユー ル)を上下反転させて設け、その上方(+Z側)に基板を配置し、その下方(一 Z側)に マスクを酉己置するようにしてもょ 、。
[0114] 上記各実施形態では干渉計システムを用いてマスクステージ及び基板ステージの 位置情報を計測するものとしたが、これに限らず、例えば基板ステージの上面に設け られるスケール(回折格子)を検出するエンコーダシステムを用いてもよ!、。この場合 、干渉計システムとエンコーダシステムの両方を備えるハイブリッドシステムとし、干渉 計システムの計測結果を用いてエンコーダシステムの計測結果の較正 (キヤリブレー シヨン)を行うことが好ましい。また、干渉計システムとエンコーダシステムとを切り替え て用いる、あるいはその両方を用いて、基板ステージの位置制御を行うようにしてもよ い。
[0115] 上記各実施形態では投影光学系を備えた露光装置を例に挙げて説明してきたが、 投影光学系を用いない露光装置及び露光方法に本発明を適用することができる。投 影光学系を用いない場合であっても、露光光はマスク又はレンズなどの光学部材を 介して基板に照射され、そのような光学部材と基板との間の所定空間に液浸領域が 形成される。
[0116] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置、薄膜磁気ヘッド、撮像素子 (CCD)、マイクロマシン、 MEMS, DNAチッ プ、あるいはレチクル又はマスクなどを製造するための露光装置などにも広く適用で きる。
[0117] なお、上述の実施形態においては、光透過性の基板上に所定の遮光パターン (又 は位相パターン '減光パターン)を形成した光透過型マスクを用いた力 このマスクに 代えて、例えば米国特許第 6, 778, 257号公報に開示されているように、露光すベ きパターンの電子データに基づ 、て透過パターン又は反射パターン、あるいは発光 パターンを形成する電子マスク(可変成形マスクとも呼ばれ、例えば非発光型画像表 示素子(空間光変調器)の一種である DMD (Digital Micro-mirror Device)などを含 む)を用いてもよい。
[0118] また、例えば、国際公開第 2001Z035168号パンフレットに開示されているように 、干渉縞を基板 P上に形成することによって、基板 P上にライン 'アンド'スペースパタ ーンを露光する露光装置 (リソグラフィシステム)にも本発明を適用することができる。
[0119] さらに、例えば特表 2004— 519850号公報(対応米国特許第 6, 611, 316号)に 開示されているように、 2つのマスクのパターンを、投影光学系を介して基板上で合 成し、 1回のスキャン露光によって基板上の 1つのショット領域をほぼ同時に二重露光 する露光装置にも本発明を適用することができる。
[0120] なお、法令で許容される限りにおいて、上記各実施形態及び変形例で引用した露 光装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の 一部とする。 [0121] 以上のように、上記各実施形態の露光装置 EXは、各構成要素を含む各種サブシ ステムを、所定の機械的精度、電気的精度、光学的精度を保つように、組み立てるこ とで製造される。これら各種精度を確保するために、この組み立ての前後には、各種 光学系につ 、ては光学的精度を達成するための調整、各種機械系につ 、ては機械 的精度を達成するための調整、各種電気系につ 、ては電気的精度を達成するため の調整が行われる。各種サブシステム力 露光装置への組み立て工程は、各種サブ システム相互の、機械的接続、電気回路の配線接続、気圧回路の配管接続等が含 まれる。この各種サブシステム力 露光装置への組み立て工程の前に、各サブシス テム個々の組み立て工程があることはいうまでもない。各種サブシステムの露光装置 への組み立て工程が終了したら、総合調整が行われ、露光装置全体としての各種精 度が確保される。なお、露光装置の製造は温度およびクリーン度等が管理されたタリ ーンルームで行うことが望まし 、。
[0122] 半導体デバイス等のマイクロデバイスは、図 22〖こ示すよう〖こ、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光する工程、露光した基 板を現像する工程、現像した基板の加熱 (キュア)及びエッチング工程などの基板処 理プロセスを含むステップ 204、デバイス組み立てステップ(ダイシング工程、ボンデ イング工程、ノ ッケージ工程を含む) 205、検査ステップ 206等を経て製造される。

Claims

請求の範囲
[I] 基板上に露光光を照射することによって前記基板を露光する露光装置にぉ 、て、 液体を回収するための回収部材を備え、前記回収部材は、第 1の液体回収能力を 有する第 1部分と、前記第 1部分と異なる位置に配置され、前記第 1液体回収能力と 異なる第 2の液体回収能力を有する第 2部分とを含む露光装置。
[2] 前記回収部材は、前記基板が前記回収部材と対向する位置に移動されたときに、 前記第 1部分及び前記第 2部分にお 、て、前記基板上の液体を回収可能である請 求項 1記載の露光装置。
[3] 前記回収部材は、前記露光光の光路の外側に設けられている請求項 1又は 2記載 の露光装置。
[4] 前記露光光が通過する開口を有する第 1面をさらに備え、
前記回収部材は、前記露光光の光路に対して前記第 1面よりも外側に配置され、 前記基板が前記第 1面と対向しているときに、前記第 1面と前記基板との間に液体 を保持可能である請求項 1〜3のいずれか一項記載の露光装置。
[5] 前記回収部材は、前記第 1面とほぼ面一である第 2面を有する請求項 4記載の露 光装置。
[6] 前記基板の表面が前記第 1面と対向しているときに、前記基板の表面と前記第 1面 とはほぼ面一である請求項 5記載の露光装置。
[7] 前記第 1部分と前記第 2部分とは、前記露光光の光路に対する位置が異なる請求 項 1〜6のいずれか一項記載の露光装置。
[8] 前記第 1部分と前記第 2部分とは、前記露光光の光路からの距離が異なる請求項 7 記載の露光装置。
[9] 前記第 2部分は、前記第 1部分よりも前記露光光の光路から遠い位置に配置され、 前記第 2の液体回収能力が、前記第 1の液体回収能力よりも高い請求項 8記載の露 光装置。
[10] 前記第 1部分は、前記露光光の光路を囲み、
前記第 2部分は、前記第 1部分を囲む請求項 9記載の露光装置。
[II] 前記第 1部分が、前記露光光の光路に対して第 1方向の側に配置され、前記第 2 部分が、前記光路に対して前記第 1方向と異なる第 2方向の側に配置されて 、る請 求項 7又は 8記載の露光装置。
[12] 前記基板の移動条件に応じて、前記第 1部分の位置、前記第 2部分の位置、前記 第 1液体回収能力、及び前記第 2液体回収能力のそれぞれが設定される請求項 1〜 11の 、ずれか一項記載の露光装置。
[13] 前記露光光に対して前記基板が前記第 1の方向に沿って移動し、
前記第 1部分は、前記露光光の光路に対して前記第 1の方向の側に配置され、 前記第 2部分は、前記露光光の光路に対して前記第 1の方向と交差する第 2の方 向の側に配置され、
前記第 2液体回収能力が、前記第 1液体回収能力よりも高い請求項 11記載の露光 装置。
[14] 前記回収部材と前記基板とが対向しているときに、前記第 1部分と前記基板との間 隔は、前記第 2部分と前記基板との間隔と異なる請求項 13記載の露光装置。
[15] 前記回収部材と前記基板とが対向しているときに、前記第 1部分と前記基板との間 隔は、前記第 2部分と前記基板との間隔よりも大きい請求項 14記載の露光装置。
[16] 前記回収部材と前記基板とが対向しているときに、前記第 2部分の表面は、前記第
1部分の表面に対して傾斜している請求項 14又は 15記載の露光装置。
[17] 前記回収部材と前記基板とが対向しているときに、前記第 2部分の表面は、前記基 板の表面とほぼ平行である請求項 16記載の露光装置。
[18] 前記回収部材と前記基板とが対向しているときに、前記第 1部分と前記基板との間 隔は、前記第 2部分と前記基板との間隔と異なる請求項 1〜7のいずれか一項記載 の露光装置。
[19] 前記回収部材は、多孔部材を含む請求項 1〜18のいずれか一項記載の露光装置
[20] 前記多孔部材は、液体を回収可能な吸引装置に接続された回収口に配置される 請求項 19記載の露光装置。
[21] 前記多孔部材の前記第 1部分の構造と前記第 2部分の構造とを互いに異ならせる ことによって、液体回収能力を異ならせる請求項 19又は 20記載の露光装置。
[22] 前記多孔部材の前記第 1部分の孔の大きさと前記第 2部分の孔の大きさとが互い に異なる請求項 21記載の露光装置。
[23] 前記多孔部材の前記第 1部分の孔の密度と前記第 2部分の孔の密度とが互いに異 なる請求項 21又は 22記載の露光装置。
[24] 前記多孔部材は、板状の部材であり、
前記多孔部材の前記第 1部分の厚みと前記第 2部分の厚みとが互いに異なる請求 項 21〜23のいずれか一項記載の露光装置。
[25] 前記回収部材の前記第 1部分と前記第 2部分は、液体を回収可能な吸引装置に接 続され、
前記回収部材の前記第 1部分と前記第 2部分とで、前記吸引装置による吸引力を 互いに異ならせることによって、前記第 1液体回収能力と前記第 2液体回収能力とを 異ならせる請求項 1〜 13の 、ずれか一項記載の露光装置。
[26] 前記第 1液体回収能力、又は前記第 2液体回収能力、及びその両方が、調整可能 である請求項 1〜25のいずれか一項記載の露光装置。
[27] 請求項 1〜請求項 26のいずれか一項記載の露光装置を用いて基板を露光するこ とと、
該露光後の基板を現像することとを含むデバイス製造方法。
[28] 基板上に露光光を照射することによって前記基板を露光する露光方法にぉ 、て、 液体回収部材と対向する位置に前記基板を移動することと、
前記回収部材の第 1部分力 第 1の回収能力で前記基板上の液体を回収すること と、
前記回収部材の前記第 1部分と異なる位置に配置された第 2部分から、前記第 1の 回収能力と異なる第 2の回収能力で前記基板上の液体を回収することと、
前記基板上の液体を介して前記基板に露光光を照射することとを含む露光方法。
[29] 前記露光光の光路と前記第 1部分との位置関係と、前記露光光の光路と前記第 2 部分との位置関係が異なる請求項 28記載の露光方法。
[30] 前記第 1部分と前記第 2部分とは、前記露光光の光路からの距離が互いに異なる 請求項 29記載の露光方法。
[31] 前記露光光の光路に対して前記第 1部分は第 1方向の側に配置され、前記第 2部 分の前記第 1方向と交差する第 2方向の側に配置される請求項 29又は 30記載の露 光方法。
[32] 前記回収部材の前記第 1部分、又は前記第 2部分、又はその両方において、前記 基板上の液体は、多孔部材を介して回収される請求項 28〜31のいずれか一項記載 の露光方法。
[33] 前記第 1部分及び前記第 2部分にお 、て、前記基板上の液体は、前記多孔部材を 介して回収され、
前記第 1部分の前記多孔部材の構造と前記第 2部分の前記多孔部材の構造とが 異なる請求項 32記載の露光方法。
[34] 前記多孔部材の構造は、孔の大きさを含む請求項 33記載の露光方法。
[35] 前記多孔部材の構造は、孔の密度を含む請求項 33又は 34記載の露光方法。
[36] 前記多孔部材は、板状の部材であり、
前記多孔部材の構造は、厚さを含む請求項 33〜35の 、ずれか一項記載の露光 方法。
[37] 前記第 1部分で回収された液体が流入する回収流路の圧力と、前記第 2部分で回 収された液体が流入する回収流路の圧力とが異なる請求項 28〜36のいずれか一 項記載の露光方法。
[38] 前記第 1液体回収能力、又は前記第 2液体回収能力、及びその両方を調整するこ とを含む請求項 28〜37のいずれか一項記載の露光方法。
[39] 請求項 28〜38の 、ずれか一項記載の露光方法を用いて基板を露光することと、 該露光された基板を現像することとを含むデバイス製造方法。
[40] 液浸露光装置において液体を回収するために用いられる液体回収部材であって、 第 1液体回収能力を有する第 1部分と、
前記第 1部分と異なる位置に配置され、前記第 1液体回収能力と異なる第 2液体回 収能力を有する第 2部分とを有する液体回収部材。
[41] 前記第 1部分及び前記第 2部分はそれぞれ複数の孔を有し、前記複数の孔を介し て液体が回収される請求項 40記載の液体回収部材。
[42] 前記第 1部分の前記孔の大きさは、前記第 2部分の前記孔の大きさと異なる請求項
41記載の液体回収部材。
[43] 前記第 1部分の前記孔の密度は、前記第 2部分の前記孔の密度と異なる請求項 4
1または 42記載の液体回収部材。
[44] 前記第 1部分の前記孔の形状は、前記第 2部分の前記孔の形状と異なる請求項 4
1〜43の!ヽずれか一項記載の液体回収部材。
[45] 前記第 1部分及び前記第 2部分には、前記複数の孔が形成された板部材を備え、 前記第 1部分における前記板部材の厚さが、前記第 2部分における前記板部材の 厚さと異なる請求項 41〜44のいずれか一項記載の液体回収部材。
[46] 前記第 1部分に配置される前記板部材と前記第 2部分に配置される前記板部材は
、同一の部材である請求項 45記載の液体回収部材。
[47] 前記液浸露光装置にお!、て、被露光基板は、前記第 1部分及び前記第 2部分と対 向する位置に移動可能であり、前記第 1部分及び前記第 2部分を介して前記基板上 の液体を回収可能である請求項 40〜46のいずれか一項記載の液体回収部材。
PCT/JP2006/322636 2005-11-14 2006-11-14 液体回収部材、露光装置、露光方法、及びデバイス製造方法 WO2007055373A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007544233A JPWO2007055373A1 (ja) 2005-11-14 2006-11-14 液体回収部材、露光装置、露光方法、及びデバイス製造方法
EP06832598A EP1962328B1 (en) 2005-11-14 2006-11-14 Exposure apparatus, exposure method, and device fabricating method
US12/149,782 US8345217B2 (en) 2005-11-14 2008-05-08 Liquid recovery member, exposure apparatus, exposing method, and device fabricating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-328549 2005-11-14
JP2005328549 2005-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/149,782 Continuation US8345217B2 (en) 2005-11-14 2008-05-08 Liquid recovery member, exposure apparatus, exposing method, and device fabricating method

Publications (1)

Publication Number Publication Date
WO2007055373A1 true WO2007055373A1 (ja) 2007-05-18

Family

ID=38023364

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322636 WO2007055373A1 (ja) 2005-11-14 2006-11-14 液体回収部材、露光装置、露光方法、及びデバイス製造方法

Country Status (6)

Country Link
US (1) US8345217B2 (ja)
EP (1) EP1962328B1 (ja)
JP (2) JPWO2007055373A1 (ja)
KR (1) KR20080068013A (ja)
TW (1) TWI397945B (ja)
WO (1) WO2007055373A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090262318A1 (en) * 2008-04-16 2009-10-22 Asml Netherlands B.V. Lithographic apparatus
JP2012524983A (ja) * 2009-04-24 2012-10-18 株式会社ニコン 液浸部材
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701551B2 (en) 2006-04-14 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
KR101495231B1 (ko) * 2006-12-28 2015-02-24 야마하하쓰도키 가부시키가이샤 부품 인식 장치, 표면 실장기, 및 부품 시험 장치
US20090009733A1 (en) * 2007-07-06 2009-01-08 Canon Kabushiki Kaisha Exposure apparatus
DE102008050868A1 (de) * 2008-09-30 2010-04-08 M+W Zander Products Gmbh Einrichtung zur Temperaturstabilisierung von Flüssigkeiten, vorzugsweise von ultrareinem Wasser, bei der Herstellung von Chips sowie Verfahren zur Temperaturstabilisierung von Flüssigkeiten zur Anwendung bei der Herstellung von Chips
US20100196832A1 (en) * 2009-01-30 2010-08-05 Nikon Corporation Exposure apparatus, exposing method, liquid immersion member and device fabricating method
US20110222031A1 (en) * 2010-03-12 2011-09-15 Nikon Corporation Liquid immersion member, exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US20120013864A1 (en) * 2010-07-14 2012-01-19 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US8937703B2 (en) * 2010-07-14 2015-01-20 Nikon Corporation Liquid immersion member, immersion exposure apparatus, liquid recovering method, device fabricating method, program, and storage medium
US20120019802A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, immersion exposure apparatus, device fabricating method, program, and storage medium
US20120019803A1 (en) * 2010-07-23 2012-01-26 Nikon Corporation Cleaning method, liquid immersion member, immersion exposure apparatus, device fabricating method, program, and storage medium
US8632153B2 (en) * 2011-08-25 2014-01-21 Eastman Kodak Company Printing system having multiple sided pattern registration

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08130179A (ja) 1994-11-01 1996-05-21 Nikon Corp ステージ装置
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
WO2004090956A1 (ja) 2003-04-07 2004-10-21 Nikon Corporation 露光装置及びデバイス製造方法
WO2004092833A2 (en) * 2003-04-10 2004-10-28 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
JP2005012195A (ja) * 2003-05-23 2005-01-13 Nikon Corp 露光装置、並びにデバイス製造方法
JP2005045232A (ja) * 2003-07-09 2005-02-17 Nikon Corp 露光装置、露光方法、並びにデバイス製造方法
WO2005024517A2 (en) 2003-09-03 2005-03-17 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
JP2005085789A (ja) * 2003-09-04 2005-03-31 Canon Inc 露光装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
JP2005191344A (ja) * 2003-12-26 2005-07-14 Nikon Corp 露光装置及びデバイス製造方法

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029182B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 露光方法
JP4029183B2 (ja) 1996-11-28 2008-01-09 株式会社ニコン 投影露光装置及び投影露光方法
JP4210871B2 (ja) 1997-10-31 2009-01-21 株式会社ニコン 露光装置
SG135052A1 (en) * 2002-11-12 2007-09-28 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
WO2004053955A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP4720106B2 (ja) * 2003-05-23 2011-07-13 株式会社ニコン 露光方法、並びにデバイス製造方法
TWI463533B (zh) 2003-05-23 2014-12-01 尼康股份有限公司 An exposure method, an exposure apparatus, and an element manufacturing method
US7154232B2 (en) * 2003-06-24 2006-12-26 International Rectifier Corporation Ballast control IC with multi-function feedback sense
JP3862678B2 (ja) * 2003-06-27 2006-12-27 キヤノン株式会社 露光装置及びデバイス製造方法
KR101296501B1 (ko) * 2003-07-09 2013-08-13 가부시키가이샤 니콘 노광 장치 및 디바이스 제조 방법
JP4474652B2 (ja) * 2003-08-26 2010-06-09 株式会社ニコン 光学素子及び露光装置
JP4444920B2 (ja) * 2003-09-19 2010-03-31 株式会社ニコン 露光装置及びデバイス製造方法
US7369217B2 (en) * 2003-10-03 2008-05-06 Micronic Laser Systems Ab Method and device for immersion lithography
WO2005059617A2 (en) 2003-12-15 2005-06-30 Carl Zeiss Smt Ag Projection objective having a high aperture and a planar end surface
EP3376523A1 (en) * 2004-01-05 2018-09-19 Nikon Corporation Exposure apparatus, exposure method, and device producing method
JP4479269B2 (ja) * 2004-02-20 2010-06-09 株式会社ニコン 露光装置及びデバイス製造方法
WO2005104195A1 (ja) * 2004-04-19 2005-11-03 Nikon Corporation 露光装置及びデバイス製造方法
US20080068567A1 (en) * 2004-06-10 2008-03-20 Hiroyuki Nagasaka Exposure Apparatus, Exposure Method, and Method for Producing Device
EP2624282B1 (en) 2004-06-10 2017-02-08 Nikon Corporation Immersion exposure apparatus and method, and methods for producing a device
JP4543767B2 (ja) * 2004-06-10 2010-09-15 株式会社ニコン 露光装置及びデバイス製造方法
US7701550B2 (en) * 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7411654B2 (en) * 2005-04-05 2008-08-12 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6721034B1 (en) 1994-06-16 2004-04-13 Nikon Corporation Stage unit, drive table, and scanning exposure apparatus using the same
JPH08130179A (ja) 1994-11-01 1996-05-21 Nikon Corp ステージ装置
US6341007B1 (en) 1996-11-28 2002-01-22 Nikon Corporation Exposure apparatus and method
US6400441B1 (en) 1996-11-28 2002-06-04 Nikon Corporation Projection exposure apparatus and method
US6549269B1 (en) 1996-11-28 2003-04-15 Nikon Corporation Exposure apparatus and an exposure method
US6590634B1 (en) 1996-11-28 2003-07-08 Nikon Corporation Exposure apparatus and method
JP2000505958A (ja) 1996-12-24 2000-05-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 2個の物品ホルダを有する二次元バランス位置決め装置及びこの位置決め装置を有するリソグラフ装置
US6897963B1 (en) 1997-12-18 2005-05-24 Nikon Corporation Stage device and exposure apparatus
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2000164504A (ja) 1998-11-30 2000-06-16 Nikon Corp ステージ装置、露光装置、及び前記ステージ装置を用いた位置決め方法
WO2001035168A1 (en) 1999-11-10 2001-05-17 Massachusetts Institute Of Technology Interference lithography utilizing phase-locked scanning beams
JP2004519850A (ja) 2001-02-27 2004-07-02 エイエスエムエル ユーエス, インコーポレイテッド デュアルレチクルイメージを露光する方法および装置
US6611316B2 (en) 2001-02-27 2003-08-26 Asml Holding N.V. Method and system for dual reticle image exposure
US6778257B2 (en) 2001-07-24 2004-08-17 Asml Netherlands B.V. Imaging apparatus
WO2004019128A2 (en) 2002-08-23 2004-03-04 Nikon Corporation Projection optical system and method for photolithography and exposure apparatus and method using same
WO2004090956A1 (ja) 2003-04-07 2004-10-21 Nikon Corporation 露光装置及びデバイス製造方法
US20060023188A1 (en) 2003-04-07 2006-02-02 Nikon Corporation Exposure apparatus and method for manufacturing device
WO2004092833A2 (en) * 2003-04-10 2004-10-28 Nikon Corporation Environmental system including a transport region for an immersion lithography apparatus
JP2005012195A (ja) * 2003-05-23 2005-01-13 Nikon Corp 露光装置、並びにデバイス製造方法
JP2005045232A (ja) * 2003-07-09 2005-02-17 Nikon Corp 露光装置、露光方法、並びにデバイス製造方法
WO2005024517A2 (en) 2003-09-03 2005-03-17 Nikon Corporation Apparatus and method for providing fluid for immersion lithography
JP2005085789A (ja) * 2003-09-04 2005-03-31 Canon Inc 露光装置
WO2005059618A2 (en) 2003-12-19 2005-06-30 Carl Zeiss Smt Ag Microlithography projection objective with crystal lens
JP2005191344A (ja) * 2003-12-26 2005-07-14 Nikon Corp 露光装置及びデバイス製造方法

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8675177B2 (en) 2003-04-09 2014-03-18 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in first and second pairs of areas
US9164393B2 (en) 2003-04-09 2015-10-20 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger in four areas
US9146474B2 (en) 2003-04-09 2015-09-29 Nikon Corporation Exposure method and apparatus, and method for fabricating device with light amount distribution having light larger and different linear polarization states in an on-axis area and a plurality of off-axis areas
US9678437B2 (en) 2003-04-09 2017-06-13 Nikon Corporation Illumination optical apparatus having distribution changing member to change light amount and polarization member to set polarization in circumference direction
US9885959B2 (en) 2003-04-09 2018-02-06 Nikon Corporation Illumination optical apparatus having deflecting member, lens, polarization member to set polarization in circumference direction, and optical integrator
US9140992B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9760014B2 (en) 2003-10-28 2017-09-12 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9244359B2 (en) 2003-10-28 2016-01-26 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9146476B2 (en) 2003-10-28 2015-09-29 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9140993B2 (en) 2003-10-28 2015-09-22 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423697B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9423698B2 (en) 2003-10-28 2016-08-23 Nikon Corporation Illumination optical apparatus and projection exposure apparatus
US9885872B2 (en) 2003-11-20 2018-02-06 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical integrator and polarization member that changes polarization state of light
US10281632B2 (en) 2003-11-20 2019-05-07 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power to rotate linear polarization direction
US9164209B2 (en) 2003-11-20 2015-10-20 Nikon Corporation Illumination optical apparatus, exposure apparatus, and exposure method with optical member with optical rotatory power having different thicknesses to rotate linear polarization direction
US9140990B2 (en) 2004-02-06 2015-09-22 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9423694B2 (en) 2004-02-06 2016-08-23 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10241417B2 (en) 2004-02-06 2019-03-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US9429848B2 (en) 2004-02-06 2016-08-30 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US20130271945A1 (en) 2004-02-06 2013-10-17 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10007194B2 (en) 2004-02-06 2018-06-26 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10234770B2 (en) 2004-02-06 2019-03-19 Nikon Corporation Polarization-modulating element, illumination optical apparatus, exposure apparatus, and exposure method
US10495980B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10495981B2 (en) 2005-03-04 2019-12-03 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10451973B2 (en) 2005-05-03 2019-10-22 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US10488759B2 (en) 2005-05-03 2019-11-26 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US9310696B2 (en) 2005-05-12 2016-04-12 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US8854601B2 (en) 2005-05-12 2014-10-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9360763B2 (en) 2005-05-12 2016-06-07 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9429851B2 (en) 2005-05-12 2016-08-30 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9891539B2 (en) 2005-05-12 2018-02-13 Nikon Corporation Projection optical system, exposure apparatus, and exposure method
US9366970B2 (en) 2007-09-14 2016-06-14 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US8451427B2 (en) 2007-09-14 2013-05-28 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US9057963B2 (en) 2007-09-14 2015-06-16 Nikon Corporation Illumination optical system, exposure apparatus, optical element and manufacturing method thereof, and device manufacturing method
US10101666B2 (en) 2007-10-12 2018-10-16 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US9097981B2 (en) 2007-10-12 2015-08-04 Nikon Corporation Illumination optical apparatus, exposure apparatus, and device manufacturing method
US8508717B2 (en) 2007-10-16 2013-08-13 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8520291B2 (en) 2007-10-16 2013-08-27 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US8462317B2 (en) 2007-10-16 2013-06-11 Nikon Corporation Illumination optical system, exposure apparatus, and device manufacturing method
US9341954B2 (en) 2007-10-24 2016-05-17 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9057877B2 (en) 2007-10-24 2015-06-16 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US8379187B2 (en) 2007-10-24 2013-02-19 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9857599B2 (en) 2007-10-24 2018-01-02 Nikon Corporation Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method
US9678332B2 (en) 2007-11-06 2017-06-13 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9116346B2 (en) 2007-11-06 2015-08-25 Nikon Corporation Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method
US9036127B2 (en) * 2008-04-16 2015-05-19 Asml Netherlands B.V. Lithographic apparatus
US20090262318A1 (en) * 2008-04-16 2009-10-22 Asml Netherlands B.V. Lithographic apparatus
US9465302B2 (en) 2008-04-16 2016-10-11 Asml Netherlands B.V. Lithographic apparatus
US10649341B2 (en) 2008-04-16 2020-05-12 Asml Netherlands B.V. Lithographic apparatus
US8456624B2 (en) 2008-05-28 2013-06-04 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8446579B2 (en) 2008-05-28 2013-05-21 Nikon Corporation Inspection device and inspecting method for spatial light modulator, illumination optical system, method for adjusting the illumination optical system, exposure apparatus, and device manufacturing method
US8953143B2 (en) 2009-04-24 2015-02-10 Nikon Corporation Liquid immersion member
JP2012524983A (ja) * 2009-04-24 2012-10-18 株式会社ニコン 液浸部材

Also Published As

Publication number Publication date
EP1962328A1 (en) 2008-08-27
JP2013012775A (ja) 2013-01-17
TW200731338A (en) 2007-08-16
KR20080068013A (ko) 2008-07-22
EP1962328B1 (en) 2013-01-16
JPWO2007055373A1 (ja) 2009-04-30
US8345217B2 (en) 2013-01-01
US20080231824A1 (en) 2008-09-25
EP1962328A4 (en) 2010-05-26
TWI397945B (zh) 2013-06-01

Similar Documents

Publication Publication Date Title
WO2007055373A1 (ja) 液体回収部材、露光装置、露光方法、及びデバイス製造方法
CN107422612B (zh) 液浸构件、曝光装置、液浸曝光装置、液浸曝光方法及元件制造方法
WO2007132862A1 (ja) 投影光学系、露光方法、露光装置、及びデバイス製造方法
JP4872916B2 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2007129753A1 (ja) 露光装置及びデバイス製造方法
WO2007055237A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2005104195A1 (ja) 露光装置及びデバイス製造方法
JP5516598B2 (ja) 液浸部材、露光装置、露光方法及びデバイス製造方法
US9223225B2 (en) Liquid immersion member, exposure apparatus, exposure method, and device manufacturing method
WO2007083592A1 (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
WO2006106907A1 (ja) 露光装置、露光方法及びデバイス製造方法
JP2007053193A (ja) 露光装置及びデバイス製造方法
WO2006106851A1 (ja) 露光装置、露光方法及びデバイス製造方法
JP2016157148A (ja) 露光装置、及び液体保持方法
US20130050666A1 (en) Exposure apparatus, liquid holding method, and device manufacturing method
JP2006310827A (ja) 露光装置、露光方法、及びデバイス製造方法
US20100196832A1 (en) Exposure apparatus, exposing method, liquid immersion member and device fabricating method
JP5375843B2 (ja) 露光装置、露光方法、及びデバイス製造方法
WO2007052659A1 (ja) 露光装置、露光方法、及びデバイス製造方法
JP2006310588A (ja) 基板保持装置及び露光装置、並びにデバイス製造方法
JP2008021718A (ja) 露光装置及びデバイス製造方法
WO2007034838A1 (ja) 露光装置及び露光方法、並びにデバイス製造方法
JP2007088339A (ja) 露光装置、及びデバイス製造方法
JP2010267972A (ja) 露光装置、露光方法、及びデバイス製造方法
JP2010267810A (ja) 露光装置、露光方法、及びデバイス製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020087008357

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2007544233

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006832598

Country of ref document: EP