Nothing Special   »   [go: up one dir, main page]

WO2007052796A1 - Module for optical device, method of manufacturing module for optical device and structure for device - Google Patents

Module for optical device, method of manufacturing module for optical device and structure for device Download PDF

Info

Publication number
WO2007052796A1
WO2007052796A1 PCT/JP2006/322121 JP2006322121W WO2007052796A1 WO 2007052796 A1 WO2007052796 A1 WO 2007052796A1 JP 2006322121 W JP2006322121 W JP 2006322121W WO 2007052796 A1 WO2007052796 A1 WO 2007052796A1
Authority
WO
WIPO (PCT)
Prior art keywords
effective pixel
optical device
translucent
solid
pixel region
Prior art date
Application number
PCT/JP2006/322121
Other languages
French (fr)
Japanese (ja)
Inventor
Tohru Ida
Morihiro Kada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2007052796A1 publication Critical patent/WO2007052796A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14618Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector

Definitions

  • Optical device module optical device module manufacturing method, and structure
  • the present invention relates to an optical device module mounted as an imaging unit in an optical device, and a method for manufacturing the optical device module.
  • Patent Document 1 discloses an optical device module incorporated in a camera, that is, a camera module.
  • FIG. 9 is a cross-sectional view showing the structure of the camera module 100.
  • the camera module 100 includes an image sensor chip 101, a glass support substrate 102, and a lens 103.
  • the glass support substrate 102 is bonded and fixed on the light receiving surface 101 a of the image sensor chip 101.
  • the lens 103 is provided on the glass support substrate 102.
  • the light that has entered the lens 103 passes through the glass support substrate 102 and is condensed on the image sensor chip 101, and is converted into an electrical signal by the photoelectric conversion element formed on the light receiving surface 101a.
  • the glass supporting substrate 102 supports a thin image sensor chip 101 of about several hundreds / zm, and the image sensor chip 101 can be easily handled in the manufacturing process.
  • the camera module 100 further includes an electrode pad 106, a rewiring 107, and a bump electrode 108.
  • the electrode pad 106 is disposed on the surface of the image sensor chip 101 and is connected to an input / output circuit of the image sensor chip 101.
  • a rewiring 107 is formed from the back surface of the image sensor chip 101 to the electrode pad 106.
  • a bump electrode 108 serving as an external connection terminal is formed on a portion of the rewiring 107 exposed on the back surface of the chip.
  • a filter member 104 is attached to the curved surface of the lens 103.
  • the filter member 104 functions as a filter for blocking incident light in a predetermined wavelength region, specifically, an infrared cut filter.
  • a diaphragm member 105 is disposed on the filter member 104.
  • a camera module 100 that is small in size and low in manufacturing cost is realized by modularizing components such as a lens, an image sensor chip, and a glass support substrate.
  • Patent Document 1 Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2004-226873 (Publication Date: August 12, 2004)”
  • Patent Document 2 Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-296453 (Publication Date: October 21, 2004)”
  • a microlens array in which fine microlenses are formed in an array is provided in the effective pixel area of an image sensor chip (solid-state imaging device) for photoelectric conversion. It is indispensable to increase the light collecting property of the element.
  • the glass support substrate 102 is formed on the light receiving surface of the image sensor chip 101 by an adhesive. It is pasted directly. For this reason, when the above-mentioned conventional technology is applied to the image sensor chip 101 having fine microlenses formed on the surface, there is a problem that the microlenses are easily damaged in the manufacturing process.
  • the glass support substrate 102 is attached to the surface of the image sensor chip 101 with an adhesive in the manufacturing process. For this reason, when the above-described conventional technology is applied to the image sensor chip 101 on which fine microlenses are formed on the surface, the glass support substrate 102 comes into contact with the microphone opening lens when the glass support substrate 102 is attached. Cause damage. At this time, The periphery of the microlens formed on the surface of the chip 101 is filled with an adhesive.
  • the rewiring 107 is provided in the through hole 17 a extending from the back surface to the front surface of the image sensor chip 101.
  • the through hole is usually formed by deep etching from the back surface of the image sensor chip 101. In order to perform this deep etching, it is necessary to polish the back surface of the image sensor chip 101 with the glass support substrate 102 attached to the surface of the image sensor chip 101 to reduce the thickness of the chip.
  • the glass support substrate 102 is held and a mechanical force is applied to the image sensor chip 101 as in the above-described rear surface polishing, mechanical stress is applied to the microlens, and this mechanical This causes the problem of damage to the microlens due to mechanical stress.
  • the filter member 104 such as an infrared cut filter is attached to the curved surface of the force lens 103. For this reason, the entire surface of the filter is also curved, and depending on the incident angle of incident light, the predetermined filter performance determined at the time of designing the filter may not be sufficiently exhibited.
  • Electrode pad 106 is formed on the front surface, and bump electrode 108 is formed on the back surface through rewiring 107.
  • bump electrode 108 is formed on the back surface through rewiring 107.
  • the present invention has been made in view of the above problems, and an object of the present invention is a small module for an optical device including a solid-state imaging element including a microlens on a photoelectric conversion element, It is to realize a module for an optical device having a structure that can effectively prevent damage to a microlens in a manufacturing process.
  • a manufacturing method of a small module for an optical device having a solid-state imaging device in which a microlens is formed on a photoelectric conversion element and a manufacturing method with a high yield that effectively prevents damage to the microlens. There is to serve.
  • an optical device module has an effective pixel region including a microlens array, and an electrode pad is disposed outside the effective pixel region.
  • a solid-state imaging device having a light-transmitting property and a translucent covering material that has translucency and covers the effective pixel region, and the translucent covering material is connected to an output or input terminal of the solid-state imaging device. It is fixed to an area outside the effective pixel area in the solid-state imaging element through a fixing portion provided to embed an electrode pad, and the effective pixel area and the translucent covering material are separated from each other. It is characterized by that.
  • the solid-state imaging device and the translucent covering material are fixed in a state where the effective pixel region and the translucent covering material are separated by the action of the fixing portion. Is done.
  • covering material contacts the said micro lens array directly, and does not damage a micro lens array.
  • the fixing portion is, for example, an adhesive
  • the temperature of the fixing portion increases when the adhesive is solidified
  • no thermal stress is applied to the microlens array.
  • the solid-state imaging device is externally mechanically held while the translucent coating material is held. Even if a general force is applied, no mechanical stress is applied to the microlens array.
  • the electrode pad is also fixed to the solid-state image sensor by the action of the fixing portion in addition to its own coupling force to the solid-state image sensor. For this reason, according to the above configuration, it is possible to increase the bonding force of the electrode pad to the solid-state imaging device.
  • a through-hole extending from the back surface of the solid-state image sensor to the electrode pad in a state where the translucent covering material is fixed to the solid-state image sensor.
  • a manufacturing method of forming a rewiring in this through hole can be adopted.
  • the electrode pad is strongly coupled to the solid-state imaging device by the action of the fixing portion, according to the configuration, the electrode pad is prevented from being detached from the solid-state imaging device when a rewiring is formed. it can.
  • the optical device module may further include one or more lenses arranged on the subject side of the translucent covering material.
  • the distance between the effective pixel region and the translucent covering material is preferably 10 m or more.
  • the distance from the effective pixel region to the lower surface of the translucent covering material is 10 / zm or more. For this reason, even if dust adheres to the lower surface of the translucent coating material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
  • the distance from the effective pixel region to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface) is also greater than 10 m. Therefore, for the same reason as described above, even if dust adheres to the upper surface of the translucent covering material, this dust does not have an effective adverse effect on the optical characteristics of the effective pixel region.
  • the thickness of the translucent coating material is 300 ⁇ m or more.
  • the dust When dust adheres to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface), the dust creates a shadow on the effective pixel area, and this shadow is reflected in the effective pixel area.
  • the included pixels are defective pixel areas.
  • the distance between the upper surface of the translucent covering material and the effective pixel region is increased, the range of the defective pixel region is widened, but the shadow is reduced, and the dust optically in the defective pixel region is reduced. The impact will be reduced.
  • the distance force from the effective pixel region to the upper surface of the translucent coating material is greater than S300 m. For this reason, even if dust adheres to the upper surface of the translucent covering material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
  • the total of the separation between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the thickness of the solid-state imaging element is preferably 600 ⁇ m or more and 800 ⁇ m or less.
  • the fixing portion surrounds the effective pixel region, and seals a space formed between the effective pixel region and the translucent covering material. preferable.
  • the space formed between the effective pixel region and the translucent covering material is sealed by the fixing portion, so that foreign matters such as dust enter the space from the outside. None do. Therefore, it is possible to prevent a foreign pixel entering from the outside from attaching to the microlens array and generating a defective pixel region.
  • the light-transmitting coating material is plate-shaped, and it is preferable that an optical filter be formed on the surface of the light-transmitting coating material.
  • the optical filter is formed on the surface of a plate-like translucent coating material that does not curve. Therefore, according to the above configuration, when the predetermined filter performance determined at the time of design can be realized with respect to incident light having an arbitrary incident angle, a further effect can be obtained.
  • the fixing portion includes a photosensitive adhesive.
  • the fixing portion since the fixing portion includes a photosensitive adhesive, the fixing portion can be formed with high accuracy and efficiency by using a photolithography technique. The effect which becomes.
  • the solid-state imaging device includes the electrode.
  • the surface force on the back side of the surface on which the node is disposed also reaches the electrode pad and is connected to the electrode pad, and the surface on the back side of the surface on which the electrode pad is disposed is connected to the rewiring. It is preferable to have an external connection terminal.
  • the electrical signal output from the output terminal of the image sensor is transmitted to the external connection terminal disposed on the back surface of the solid-state image sensor via the electrode pad and rewiring. Is done.
  • the method for manufacturing a module for an optical device has an effective pixel region including a microlens array, and an electrode pad is disposed outside the effective pixel region.
  • a first step of fixing a translucent coating material covering the semiconductor wafer to a semiconductor wafer formed by arranging a plurality of solid-state imaging devices and in the first step, the translucent coating material
  • the electrode pad connected to the output or input terminal of the solid-state image sensor is embedded in an area outside the effective pixel area of each solid-state image sensor included in the semiconductor wafer, separated from the effective pixel area. It is characterized in that it is fixed through a fixing part that is provided.
  • the solid-state imaging device and the translucent material are separated in a state where the effective pixel region and the translucent covering material are separated by the action of the fixing portion.
  • the light coating material is fixed.
  • covering material and the said solid-state image sensor can be fixed without damaging a micro lens array.
  • the fixing portion is, for example, an adhesive
  • the temperature of the fixing portion increases when the adhesive is solidified
  • thermal stress is not applied to the microlens array.
  • mechanical force is applied from the outside to the solid-state image sensor while holding the translucent coating material, for example, for polishing the back surface of the solid-state image sensor, mechanical stress is applied to the microlens array.
  • the electrode pad is fixed to the solid-state image sensor by the action of the fixing portion in addition to its own binding force to the solid-state image sensor. For this reason, according to the above configuration, there is an effect of increasing the coupling force of the electrode pad to the solid-state imaging device.
  • a manufacturing method may be employed in which a through hole is formed from the back surface of the solid-state imaging device to the electrode pad, and a rewiring is formed in the through hole.
  • a through hole is formed from the back surface of the solid-state imaging device to the electrode pad, and a rewiring is formed in the through hole.
  • the manufacturing method is arranged on the surface of the translucent coating material opposite to the surface facing the semiconductor wafer, corresponding to the arrangement of the solid-state imaging elements on the semiconductor wafer.
  • a second step of attaching a lens assembly plate composed of a plurality of lenses may be included.
  • the distance between the effective pixel region and the translucent covering material is preferably 10 m or more.
  • the distance from the effective pixel region to the lower surface of the translucent covering material is 10 / zm or more. For this reason, even if dust adheres to the lower surface of the translucent coating material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
  • the distance from the effective pixel region to the surface of the translucent covering material facing the lens (hereinafter referred to as the upper surface) is also greater than 10 m. Therefore, for the same reason as described above, even if dust adheres to the upper surface of the translucent covering material, this dust does not have an effective adverse effect on the optical characteristics of the effective pixel region.
  • the cost for dust management in the manufacturing environment can be reduced.
  • the defect occurrence rate due to dust can be reduced, and the yield of the optical device module manufactured by the above manufacturing method can be further improved.
  • the translucent coating material preferably has a thickness of 300 m or more.
  • the dust When dust adheres to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface), the dust creates a shadow on the effective pixel region, and this shadow is reflected in the effective pixel region.
  • the included pixels are defective pixel areas.
  • the distance between the upper surface of the translucent covering material and the effective pixel region is increased, the range of the defective pixel region is widened, but the shadow becomes thin, and the optical effect of the dust in the defective pixel region is reduced. Will reduce
  • the distance force S300 m from the effective pixel region to the upper surface of the translucent covering material is larger. For this reason, even if dust adheres to the upper surface of the translucent covering material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
  • the separation between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the solid-state imaging device is preferably 600 ⁇ m or more and 800 ⁇ m or less.
  • the cost for dust management in the manufacturing process of the optical device module is reduced without causing an increase in the size of the optical device module, and the optical device module adheres to the translucent coating material.
  • the fixing portion is formed so as to surround each effective pixel region, and each effective pixel region and the translucent coating are formed. It is preferable to seal the space formed between the materials.
  • the space formed between the effective pixel region and the translucent covering material is sealed by the fixing portion. Therefore, it is possible to prevent foreign matter such as external force dust from entering the space after the first completion. Even when the structure produced by the first step is exposed to a chemical solution, such as an etching process using a chemical solution, after the first step, according to the above configuration, the microlens by the chemical solution is used. If damage or contamination, or contamination of the translucent covering material by a chemical solution can be prevented, a further effect can be obtained.
  • the translucent coating material is plate-shaped and an optical filter is formed on the surface of the translucent coating material.
  • the optical filter 1 is formed on the surface of the plate-shaped translucent covering material without being curved. Therefore, according to the above configuration, it is possible to manufacture an optical device module including an optical filter that realizes a predetermined filter performance determined at the time of design for incident light having an arbitrary incident angle. Play.
  • the fixing portion preferably includes a photosensitive adhesive.
  • the fixing portion includes a photosensitive adhesive
  • the fixing portion is formed with high accuracy using a photolithography technique, and the solid-state imaging device and the translucent coating material are formed. It has the further effect that it can be efficiently fixed.
  • each solid-state imaging device included in the semiconductor wafer reaches the electrode pad from the surface behind the surface on which the electrode pad is arranged.
  • a rewiring connected to the electrode pad; and an external connection terminal disposed on the back side of the surface on which the electrode pad is disposed and connected to the rewiring.
  • the solid-state imaging device is provided.
  • the fixing part is preferably formed so as to embed the electrode pad.
  • the electrical signal output from the output terminal of the image sensor is used as an external connection terminal disposed on the back surface of the solid-state image sensor via the electrode pad and rewiring. It is possible to manufacture a module for an optical device which can be transmitted to
  • the size of the translucent coating material is larger than the size of the semiconductor wafer.
  • the semiconductor wafer in the manufacturing process, the semiconductor wafer can be prevented from being damaged by coming into contact with an external obstacle.
  • the structure according to the present invention has an effective pixel region including a microlens array, and a solid-state imaging in which an electrode pad is disposed outside the effective pixel region
  • the above optical device module can be manufactured by dividing the above structure into individual pieces.
  • the module for an optical device includes a solid-state imaging device having an effective pixel region having a microlens array, and a translucent coating that has translucency and covers the effective pixel region.
  • the translucent covering material is fixed to an area outside the effective pixel area in the solid-state imaging device via a fixing portion, and the effective pixel area and the translucent covering material are separated from each other. Therefore, at least the translucent coating material is in direct contact with the microlens array and does not damage the microlens array. Further, it is possible to prevent thermal stress or mechanical stress from being applied to the microlens array in the manufacturing process of the optical device module.
  • the fixing portion is provided so as to embed the electrode pad connected to the output or input terminal of the solid-state image sensor, the electrode pad is applied to the solid-state image sensor. Coupling force can be increased, and for example, when the rewiring leading to the electrode pad is formed, the electrode pad can be prevented from being separated from the solid-state imaging device force.
  • the manufacturing method of the module for an optical device according to the present invention is as described above. Including a first step of fixing a translucent covering material covering the semiconductor wafer to a semiconductor wafer formed by arranging a plurality of solid-state imaging devices having an effective pixel region having a lens array, and the first step Then, the translucent covering material is fixed to a region outside the effective pixel region in each solid-state imaging device included in the semiconductor wafer via a fixing unit, apart from the effective pixel region.
  • the solid-state imaging device and the solid-state imaging device can be fixed without damaging the microlens array. Further, in the process following the first step, it is possible to prevent thermal stress or mechanical stress from being applied to the microlens array.
  • the fixing portion is also provided so as to embed the electrode pad connected to the output or input terminal of the solid-state imaging device, so that the electrode pad is applied to the solid-state imaging device. Coupling force can be increased, and for example, when the rewiring leading to the electrode pad is formed, the electrode pad can be prevented from being separated from the solid-state imaging device force.
  • FIG. 1 is a cross-sectional view showing a configuration of an optical device module according to an embodiment of the present invention.
  • FIG. 2 is a top view showing a configuration of a module for an optical device according to an embodiment of the present invention.
  • FIG. 3 is a perspective view showing a configuration of an optical device module according to an embodiment of the present invention.
  • FIG. 4 is an explanatory diagram for explaining the outline of the method for manufacturing the module for an optical device according to the embodiment of the present invention.
  • FIG. 5 (a) is a top view of a translucent plate material and a semiconductor wafer, showing a pattern of a light-sensitive adhesive in the method for manufacturing an optical device module according to the embodiment of the present invention.
  • FIG. 5 (b) is a cross-sectional view of a light-sensitive adhesive plate and a semiconductor wafer, showing a pattern of a light-sensitive adhesive in a method for manufacturing an optical device module according to an embodiment of the present invention.
  • FIG. 5 (c) shows another pattern of the photosensitive adhesive in the method for manufacturing the module for an optical device according to the embodiment of the present invention, and is a cross-sectional view of a translucent plate material and a semiconductor wafer. is there. 6 (a)] A pattern of a photosensitive adhesive in the method for manufacturing a module for an optical device according to an embodiment of the present invention, showing a translucent plate and a top view of a semiconductor wafer.
  • FIG. 6 (b)] shows a pattern of a light-sensitive adhesive in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and is a cross-sectional view of a translucent plate material and a semiconductor wafer.
  • FIG. 6 (c)] is a sectional view of the light-sensitive adhesive material and the semiconductor wafer, showing another pattern of the photosensitive adhesive in the method for manufacturing the module for an optical device according to the embodiment of the present invention. .
  • FIG. 7 (a)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows an upper surface of a translucent plate material and a semiconductor wafer.
  • ⁇ 7 (b)] shows a step of forming rewiring and external connection terminals in the method for manufacturing an optical device module according to the embodiment of the present invention, and shows a cross section of a translucent plate material and a semiconductor wafer FIG.
  • ⁇ 7 (c)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows a cross section of a translucent plate material and a semiconductor wafer FIG.
  • ⁇ 7 (d)] shows a step of forming the rewiring and the external connection terminal in the method for manufacturing the module for an optical device according to the embodiment of the present invention, and shows a cross section of the translucent plate material and the semiconductor wafer.
  • FIG. 7 (e)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows a bottom surface of a light-transmitting plate and a semiconductor wafer.
  • FIG. 8 (a)] shows the structure of a structure including a translucent plate, a semiconductor wafer, and a lens assembly plate in the method for manufacturing an optical device module according to an embodiment of the present invention.
  • 1 is a cross-sectional view of a structure including a light plate, a semiconductor wafer, and a lens assembly plate.
  • FIG. 9 is a cross-sectional view showing a configuration of a camera module, which is a conventional module for an optical device.
  • One embodiment of the module for an optical device according to the present invention is based on Figs.
  • V is as follows.
  • FIG. 1 is a cross-sectional view of an optical device module 1 according to the present embodiment
  • FIG. FIG. 2 is a top view of the module 1 for academic equipment
  • FIG. 3 is a perspective view of the module 1 for the optical device.
  • the cross-sectional view shown in FIG. 1 shows a cross section of the optical device module 1 along the line XX, as shown in FIGS.
  • the optical device module 1 includes a solid-state imaging device 11, a translucent lid 12 (a translucent covering material), and a lens 13.
  • the solid-state image sensor 11 has a rectangular effective pixel area including a photoelectric conversion element in the vicinity of a central portion of a surface (hereinafter referred to as an upper surface) facing a translucent lid portion 12 described later. 11a.
  • the effective pixel region 11a includes a plurality of photoelectric conversion elements such as photodiodes corresponding to a plurality of pixels, and converts the light received by each photoelectric conversion element into an electrical signal and outputs it.
  • the effective pixel region 11a includes a microlens array l ib that covers the surface of the effective pixel region 11a and includes a plurality of microlenses arranged in an array. As a result, the light incident on the effective pixel region 11a can be converted into electric power by the photoelectric conversion element with high light collection efficiency.
  • the translucent lid 12 is a plate-like glass, and covers the effective pixel region 11a as shown in FIG.
  • the translucent lid 12 is bonded and fixed to the solid-state imaging device 11 via an adhesive portion 14 (fixing portion) in a state of being separated from the effective pixel region 11a.
  • the translucent lid 12 is not limited to plate-like glass, but may be a translucent covering material, that is, a transparent member that has translucency and covers the effective pixel region 11a.
  • An air layer 15 is formed between the translucent lid 12 and the effective pixel region 11a.
  • a photosensitive adhesive can be used as the bonding portion 14.
  • the bonding portion 14 can be formed by photolithography.
  • the bonding portion 14 is formed on the outer peripheral region 11c outside the effective pixel region 11a and surrounding the effective pixel region 11a shown in FIG. 2, and the translucent lid 12 and the effective pixel region 11a Air layer 15 (space) between is sealed.
  • the lens 13 has a configuration for refracting incident light so as to form an image of a subject on the effective pixel region 11a.
  • the lens 13 is supported by a lens frame 13a integrated with the lens 13, and the image formation distance of the lens 13 and the optical distance between the lens 13 and the effective pixel region 11a coincide with each other. Is held in.
  • the light incident on the lens 13 is transmitted through the translucent lid. Is transmitted through the unit 12 and the air layer 15 and collected on the effective pixel region 11a of the solid-state imaging device 11, and converted into an electric signal by the photoelectric conversion element formed on the effective pixel region 11a.
  • the optical device module 1 further includes an electrode pad 16, a rewiring 17, and an external connection terminal 18.
  • the electrode pad 16 is disposed in the outer peripheral region 11c of the solid-state image sensor 11, and is connected to an input / output circuit of the solid-state image sensor.
  • the solid-state image sensor 11 is provided with a rewiring 17 extending from the back surface of the solid-state image sensor 11 to the electrode pad 16. Further, an external connection terminal 18 is formed on a portion of the rewiring 17 exposed on the back surface of the solid-state imaging device 11. As a result, the electric signal generated by the photoelectric conversion element in the effective pixel region 11a can be taken out from the external connection terminal 18 provided on the back surface of the solid-state imaging element 11.
  • the electrode pad 16 is embedded in the bonding portion 14 described above. Accordingly, it is possible to prevent the electrode pad 16 from being detached from the solid-state image sensor 11 when rewiring is formed from the back surface of the solid-state image sensor 11. A method for forming the rewiring 17 will be described later.
  • the optical device module 1 further includes an optical filter 19.
  • the optical filter 19 is a filter that blocks incident light in a specific wavelength region, for example, an infrared cut filter that blocks infrared rays.
  • the optical filter 19 is formed on a translucent lid portion 12 formed in a plate shape. Therefore, unlike the case where the optical filter 19 is attached to the lens 13 having a curved surface, the optical filter 19 is capable of receiving incident light of a specific wavelength with a predetermined performance determined at the time of design. Can be cut off.
  • the optical filter 19 is a force applied to the upper surface of the translucent lid 12, that is, the surface facing the lens 13. Is not limited to this. That is, the optical filter 19 may be configured to be attached to the lower surface of the translucent lid portion 12, that is, the surface facing the effective pixel region 11a. When the optical filter 19 is attached to the lower surface of the translucent lid 12, damage to the optical filter 19 and adhesion of dust can be effectively prevented in the manufacturing process described later.
  • a diaphragm member having a window portion in the center may be provided on the upper surface or the lower surface of the translucent lid portion 12.
  • the optical filter 19 and the diaphragm member may be provided at the same time.
  • the optical device module 1 the solid-state imaging device 11, the translucent lid 12, and the separation between the translucent lid 12 and the effective pixel region 11a, that is, the air layer 15
  • the thickness will be further explained.
  • the thickness of the solid-state imaging device 11 is h3 and the thickness of the translucent lid 12 is h2.
  • the thickness of the air layer 15 is hi.
  • the lower surface of the translucent lid 12 and the effective pixel region The distance hi between 1 la is preferably 10 m or more. Furthermore, if the distance hi between the lower surface of the translucent lid 12 and the effective pixel region 11a is 20 m or more, dust adhering to the lower surface of the translucent lid 12 enters the light receiving state of the effective pixel region 11a. The impact can be further reduced.
  • the thickness h2 of the translucent lid 12 is preferably 300 ⁇ m or more. At this time, the distance between the upper surface of the transparent lid 12 and the effective pixel region 11a is at least 300 m or more. Therefore, it is possible to prevent dust attached to the upper surface of the translucent lid 12 from having an effective influence on the light receiving state of the effective pixel region 11a. Furthermore, if the thickness h2 of the translucent lid 12 is 400 m or more, the influence of dust attached to the upper surface of the translucent lid 12 on the light receiving state of the effective pixel region 11a can be further reduced.
  • the total hl + h2 + h3 of the thickness hl of the air layer 15, the thickness h2 of the light-transmitting lid 12 and the thickness h3 of the solid-state imaging device 11 is 600 / zm or more and 800 m or less. It's better! By setting the total thickness to 600 m or more and 800 m or less, it is possible to prevent the optical device module 1 from being damaged during the process transfer without causing an increase in the size of the optical device module 1.
  • the total thickness is 700 m to 800 m
  • the total thickness is 650 ⁇ m to 750 ⁇ m
  • the total thickness is 600 ⁇ m or more. It should be 700 ⁇ m or less.
  • FIG. 4 is an explanatory diagram showing an outline of a method for manufacturing the optical device module 1 according to the present embodiment.
  • the semiconductor wafer 21 and the translucent plate 22 are fixed.
  • the semiconductor wafer 21 is an aggregate of solid-state image sensors in which a plurality of solid-state image sensors are arranged in an array. Since each individual image pickup device in the semiconductor wafer 21 has the same configuration as that of the solid-state image pickup device 11 described above, the description thereof is omitted here, and the constituent members of the individual image pickup devices are members of the constituent members of the solid-state image pickup device 11. Reference with the same part number as the number. In addition, on the surface of the semiconductor wafer 21 on which the effective pixel region 11a of each individual image sensor 1 is formed, the electrode pad 16 is formed in advance, and the electrode pad 16 and the output terminal of the solid-state image sensor 11 are electrically connected. Keep it.
  • the translucent plate 22 is glass formed in a plate shape, and the one obtained by dividing the glass into the size of the solid-state imaging device 11 corresponds to the translucent lid 12.
  • the translucent plate material 22 is not limited to plate-like glass, and any transparent member that covers the semiconductor wafer 21 is sufficient.
  • twenty three Including a step (first step) of bonding and fixing via the (fixing portion).
  • Battering of the photosensitive adhesive 23 and the process of solidifying the photosensitive adhesive 23 and bonding and fixing the semiconductor wafer 21 and the translucent plate 2 2 are well known as photolithography techniques. It can be performed by each process such as development. Thereby, the position of the fixed portion and the height of the fixed portion (that is, the distance between the translucent lid portion 12 and the effective pixel region 11a) in the optical device module 1 can be adjusted with high accuracy.
  • the transparent plate member 22 fixed to the thin semiconductor wafer 21 functions as a wafer support in the manufacturing process of the module for an optical device.
  • the semiconductor wafer 21 can be transported without being damaged, and the back surface of the semiconductor wafer 21 can be polished as will be described later.
  • the size of the translucent plate 22 is preferably set larger than the size of the semiconductor wafer 21, for example, 0.1 to 2 mm larger than the size of the semiconductor wafer 21. As a result, it is possible to prevent the semiconductor wafer 21 from coming into contact with external obstacles and being damaged in the manufacturing process, particularly the manufacturing process after the process of polishing the back surface of the semiconductor wafer 21 described later.
  • the photosensitive adhesive 23 may be applied to the light transmissive plate 22 side, or may be applied to the semiconductor wafer 21 side. Therefore, the case where the photosensitive adhesive 23 is applied to the translucent plate 22 will be described with reference to FIG. 5, and the case where the photosensitive adhesive 23 is applied to the semiconductor wafer 21 will be described with reference to FIG. While explaining.
  • FIG. 5 is a view for explaining the patterning of the photosensitive adhesive 23 when the photosensitive adhesive 23 is applied to the translucent plate 22.
  • Fig. 5 (a) is a top view of the translucent plate 22 and the semiconductor wafer 21
  • Fig. 5 (b) is a cross-sectional view of the translucent plate 22 and the semiconductor wafer 21 along the Y-Y 'cross section
  • FIG. 5C is a cross-sectional view of the light-transmitting plate 22 and the semiconductor wafer 21 taken along the line YY ′ for showing another patterning of the photosensitive adhesive 23.
  • the photosensitive adhesive 23 is bonded to a lattice-like region including a scribe line corresponding to the boundary 21a of the solid-state imaging element 11 on the semiconductor wafer 21 after bonding. 23 is applied so as not to contact each effective pixel region 11a. Further, as shown in FIG. 5 (c), the photosensitive adhesive 23 is an area excluding the lattice area force scribe line directly above. You may apply to.
  • FIG. 6 is a diagram for explaining the patterning of the photosensitive adhesive 23 when the photosensitive adhesive 23 is applied to the semiconductor wafer 21.
  • FIG. 6 (a) is a top view of the translucent plate 22 and the semiconductor wafer 21
  • FIG. 6 (b) is a cross-sectional view of the translucent plate 22 and the semiconductor wafer 21 in the Y-Y 'cross section
  • FIG. (c) is a cross-sectional view of the light-transmitting plate 22 and the semiconductor wafer 21 taken along the line YY ′, showing another patterning of the photosensitive adhesive 23.
  • the photosensitive adhesive 23 is applied to the grid-like region including the boundary 21a of the solid-state imaging element 11 on the semiconductor wafer 21 so as not to contact each effective pixel region 11a. It is. Further, as shown in FIG. 6 (c), the photosensitive adhesive 23 may be applied to a region excluding the scribe line from the lattice region.
  • the electrode pad 16 is embedded in the photosensitive adhesive 23 both when the patterning shown in FIG. 5 is adopted and when the patterning shown in FIG. 6 is adopted. Therefore, even when the photosensitive adhesive 23 is solidified or annealed, even if the fixing portion made of the photosensitive adhesive 23 is slightly deformed, the sealing of the air layer 15 by the photosensitive adhesive 23 is broken. That It can be effectively prevented.
  • the thickness of the photosensitive adhesive 23 is preferably set to have a thickness of 10 m or more after solidification, and is more preferably set to have a thickness of 20 m or more after solidification. Is preferable. By setting the thickness of the photosensitive adhesive 23 in this way, even if dust adheres to the translucent plate 22, the optical device module that does not effectively affect the light receiving state of the effective pixel area 1 la. 1 can be manufactured.
  • the pattern of the photosensitive adhesive 23 is not limited to that described above, and at least the area outside the effective pixel area 11a of each individual image sensor 11 included in the semiconductor wafer 21 and the translucent plate 22 are included. Any material can be used as long as it is fixed via the photosensitive adhesive 23.
  • the photosensitive adhesive 23 preferably further has flame retardancy.
  • V-0 By manufacturing the optical device module 1 using a photosensitive adhesive having flame retardancy as the photosensitive adhesive 23, V-0 can be confirmed, for example, in a flame retardant test in accordance with UL-94. It is possible to provide the optical device module 1 that passes the flammability test. Such an optical device module 1 can be suitably used for an optical device that is supposed to be used in a high temperature environment.
  • the photosensitive adhesive 23 is used as a fixing portion for fixing the semiconductor wafer 21 and the translucent plate member 22.
  • the present invention is not limited to this. Absent. That is, for example, a sheet-like photosensitive film can be patterned by photolithography, and the semiconductor wafer 21 and the translucent plate 22 can be fixed using this as a fixing part. It is also possible to print and form the fixed part using a print mask.
  • the back surface of the semiconductor wafer 21 is polished.
  • the backside polishing of the semiconductor wafer 21 is a process for thinning the semiconductor wafer 21 to a thickness of several tens / z m to several hundreds / z m.
  • the back surface of the semiconductor wafer 21 is polished using, for example, a back grinder, using the translucent plate 22 as a wafer support.
  • the thickness of the semiconductor wafer 21 after polishing is such that the through-hole 17a leading to each electrode pad 16 can be formed in a practical time without technical trouble by the back surface force of the semiconductor wafer 21. If so, good.
  • the semiconductor wafer 21 and the wafer support are used. Mechanical stress is applied between the translucent plate 22. However, since the semiconductor wafer 21 and the translucent plate 22 are fixed via the photosensitive adhesive 23 in the area outside the effective pixel area 11a, this mechanical stress is applied to the microscopic area on the effective pixel area 11a. It does not affect the lens array l ib. Therefore, the microlens array 1 lb is not damaged in this process.
  • FIG. 7 (a) is a top view of the structure composed of the semiconductor wafer 21 and the translucent plate 22, and FIGS. 7 (b) to 7 (d) show Y—Y ′ of the structure.
  • FIG. 7 (e) is a bottom view showing the state of the bottom surface of the structure after the external connection terminals 18 are formed.
  • through-holes 17a reaching the respective electrode pads 16 are formed by deep etching as well as the back surface force of the semiconductor wafer 21.
  • the through hole 17a may be formed by reactive ion etching that is generally performed.
  • an insulating film is formed on the inner wall of the through hole 17a after the through hole 17a is formed.
  • the insulating film may be formed by plasma CVD.
  • a conductive layer composed of a noria layer such as TaN, a Cu seed layer, and Cu plating is formed, and then a through hole 17a and a rewiring 17 are formed on the back surface of the wafer by photolithography and etching.
  • a protective film is formed on the back side of the semiconductor wafer 21, and an external connection terminal 18 is formed at a part where a part of the protective film is opened and the rewiring 17 is exposed so as to be electrically connected to the part.
  • the electrode pad 16 also presses the rewiring 17 with the surface side force of the semiconductor wafer 21, thereby preventing the rewiring 17 from being exposed to the surface side of the semiconductor wafer 21.
  • the electrode pad 16 since the electrode pad 16 is embedded in the solidified translucent adhesive 23 as described above, the electrode pad 16 does not release the surface force of the semiconductor wafer 21.
  • the external connection terminals 18 are arranged in the periphery of the back surface of each solid-state imaging element 11 included in the semiconductor wafer 21, but in addition to these external connection terminals 18, each individual imaging element is further provided.
  • the external connection terminal 18a may be arranged at the center of the back surface of 1.
  • the external connection terminals 18a arranged in the center of these are the above-mentioned external terminals arranged in the periphery.
  • it may be electrically connected to the output or input terminal of the solid-state imaging device 11, or may be a dummy terminal. In this way, FIG.
  • FIG. 7 (d) shows a cross-sectional view of the semiconductor wafer 21 with external connection terminals formed on the entire back surface of each individual image pickup device 11 included in the semiconductor wafer 21, and FIG. Shown in (e).
  • FIG. 7 (e) by arranging the external connection terminals 18 and 18a in a well-balanced manner on the entire back surface of the solid-state imaging device 11, when mounting the optical device module 1 on the optical device, the optical device module Thermal stress or mechanical stress applied to 1 can be effectively dispersed to prevent the optical device module 1 from being damaged.
  • a step (second step) of fixing the lens assembly plate 24 to the structure composed of the semiconductor wafer 21 and the translucent plate 22 is performed.
  • the lens assembly plate 24 has a plurality of lens forces arranged corresponding to the arrangement of the solid-state imaging elements 11 on the semiconductor wafer 21.
  • each lens included in the lens assembly plate 24 has the same structure as the lens 13 described above.
  • the lens assembly plate 24 is aligned and transparent so that the center of each lens included in the lens assembly plate 24 and the center of the effective pixel region 11a of each solid-state imaging device 11 included in the semiconductor wafer 21 are aligned. Bonded and fixed to the optical plate 22.
  • FIG. 8 shows a structure 25 composed of a semiconductor wafer 21, a translucent plate member 22, and a lens assembly plate 24 obtained by completing the process of fixing the lens assembly plate 24.
  • FIG. 8 (a) is a top view of the structure 25
  • FIG. 8 (b) is a sectional view showing a Y-Y 'cross section of the structure
  • the structure 25 including the semiconductor wafer 21, the translucent plate 22 and the lens assembly plate 24 is replaced with, for example, a dicing saw 26 or the like.
  • the above-described individual optical device modules 1 are formed by dividing into individual pieces using.
  • the module for an optical device according to the present invention is used as an imaging means mounted on the optical device.
  • it is suitable for use in a small optical device such as a camera-equipped mobile phone.
  • a camera module for in-vehicle use or medical equipment.
  • OPIC Optical IC: registered trademark.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Optical Filters (AREA)

Abstract

In order to realize a module for an optical device having a structure to prevent a microlens from being damaged in its manufacturing process, the module (1) for the optical device is provided with a solid-state image pick-up element (11) including an effective image region (11a) having a microlens array (11b), and an optically transparent cover (12) to cover the effective image region (11a). The transparent cover (12) is fixed to the outside of the effective image region (11a) of the solid-state image pick-up element (11) through an adhesive portion (14) and the effective image region (11a) is separated from the transparent cover (12). Further, the adhesive portion (14) includes an electrode pad (16) disposed outside the effective image region (11a).

Description

明 細 書  Specification
光学装置用モジュール、光学装置用モジュールの製造方法、及び、構造 体  Optical device module, optical device module manufacturing method, and structure
技術分野  Technical field
[0001] 本発明は、光学装置に撮像手段として搭載される光学装置用モジュール、および、 光学装置用モジュールの製造方法に関する。  TECHNICAL FIELD [0001] The present invention relates to an optical device module mounted as an imaging unit in an optical device, and a method for manufacturing the optical device module.
背景技術  Background art
[0002] 近年普及しているカメラ付き携帯電話等の光学装置には、固体撮像素子とレンズと を一体ィ匕した光学装置用モジュールが内蔵されている。特許文献 1には、カメラに内 蔵される光学装置用モジュール、すなわち、カメラモジュールが開示されている。  [0002] Optical devices such as camera-equipped mobile phones that have been widely used in recent years incorporate a module for an optical device in which a solid-state imaging device and a lens are integrated. Patent Document 1 discloses an optical device module incorporated in a camera, that is, a camera module.
[0003] 図 9に基づいて、特許文献 1に記載のカメラモジュール 100について説明する。図 9 は、カメラモジュール 100の構造を示す断面図である。  A camera module 100 described in Patent Document 1 will be described with reference to FIG. FIG. 9 is a cross-sectional view showing the structure of the camera module 100.
[0004] 図 9に示すように、カメラモジュール 100は、イメージセンサ'チップ 101、ガラス支持 基板 102、レンズ 103を備えている。  As shown in FIG. 9, the camera module 100 includes an image sensor chip 101, a glass support substrate 102, and a lens 103.
[0005] ガラス支持基板 102は、イメージセンサ'チップ 101の受光面 101a上に接着固定さ れている。また、レンズ 103は、該ガラス支持基板 102上に設けられている。該レンズ 103に入射した光は、ガラス支持基板 102を透過してイメージセンサ'チップ 101上 に集光され、上記受光面 101a上に形成された光電変換素子により電気信号に変換 される。ここで、ガラス支持基板 102が、数百/ z m程度の薄いイメージセンサ'チップ 1 01を支持し、製造工程において、該イメージセンサ'チップ 101を容易にハンドリング することを可能にしている。  The glass support substrate 102 is bonded and fixed on the light receiving surface 101 a of the image sensor chip 101. The lens 103 is provided on the glass support substrate 102. The light that has entered the lens 103 passes through the glass support substrate 102 and is condensed on the image sensor chip 101, and is converted into an electrical signal by the photoelectric conversion element formed on the light receiving surface 101a. Here, the glass supporting substrate 102 supports a thin image sensor chip 101 of about several hundreds / zm, and the image sensor chip 101 can be easily handled in the manufacturing process.
[0006] 図 9に示すように、カメラモジュール 100は、さらに、電極パッド 106、再配線 107、 および、バンプ電極 108を備えている。電極パッド 106は、イメージセンサ'チップ 10 1の表面に配置され、該イメージセンサ'チップ 101の入出力回路と接続されている。 そして、イメージセンサ'チップ 101の裏面から、電極パッド 106へと至る、再配線 10 7が形成されている。さらに、該再配線 107のチップ裏面に表出した部位には、外部 接続端子となるバンプ電極 108が形成されて 、る。 [0007] また、図 9に示すように、レンズ 103の湾曲した表面には、フィルタ一部材 104が被 着されている。フィルタ一部材 104は、所定の波長領域の入射光を遮断するための フィルター、具体的には、赤外線カットフィルタ一等として機能する。また、該フィルタ 一部材 104上には絞り部材 105が配置されている。 As shown in FIG. 9, the camera module 100 further includes an electrode pad 106, a rewiring 107, and a bump electrode 108. The electrode pad 106 is disposed on the surface of the image sensor chip 101 and is connected to an input / output circuit of the image sensor chip 101. A rewiring 107 is formed from the back surface of the image sensor chip 101 to the electrode pad 106. Further, a bump electrode 108 serving as an external connection terminal is formed on a portion of the rewiring 107 exposed on the back surface of the chip. Further, as shown in FIG. 9, a filter member 104 is attached to the curved surface of the lens 103. The filter member 104 functions as a filter for blocking incident light in a predetermined wavelength region, specifically, an infrared cut filter. A diaphragm member 105 is disposed on the filter member 104.
[0008] 上述したように、レンズ、イメージセンサ ·チップ、ガラス支持基板等の構成部材をモ ジュールィ匕することにより、小型で製造コストの低いカメラモジュール 100が実現され ている。  [0008] As described above, a camera module 100 that is small in size and low in manufacturing cost is realized by modularizing components such as a lens, an image sensor chip, and a glass support substrate.
特許文献 1 :日本国公開特許公報「特開 2004-226873号公報 (公開日:平成 16年 8月 12日)」  Patent Document 1: Japanese Published Patent Publication “Japanese Unexamined Patent Publication No. 2004-226873 (Publication Date: August 12, 2004)”
特許文献 2 :日本国公開特許公報「特開 2004— 296453号公報 (公開日:平成 16年 10月 21日)」  Patent Document 2: Japanese Patent Publication “Japanese Patent Laid-Open No. 2004-296453 (Publication Date: October 21, 2004)”
発明の開示  Disclosure of the invention
[0009] 最近の高集積画素化が進んだイメージセンサにおいては、微細なマイクロレンズを アレイ状に形成したマイクロレンズアレイをイメージセンサ'チップ(固体撮像素子)の 有効画素領域に具備し、光電変換素子の集光性を高めることが不可欠となって 、る  [0009] In recent image sensors with highly integrated pixels, a microlens array in which fine microlenses are formed in an array is provided in the effective pixel area of an image sensor chip (solid-state imaging device) for photoelectric conversion. It is indispensable to increase the light collecting property of the element.
[0010] しかしながら、上記従来のカメラモジュール 100においては、数百 μ m程度のィメー ジセンサ'チップ 101を支持するために、該イメージセンサ'チップ 101の受光面上に ガラス支持基板 102が接着剤により直接貼り合わされている。このため、表面に微細 なマイクロレンズが形成されたイメージセンサ'チップ 101に対して上記従来技術を適 用すると、その製造工程において、マイクロレンズが容易に損傷を受けるという問題 かあつた。 [0010] However, in the conventional camera module 100, in order to support the image sensor chip 101 of about several hundred μm, the glass support substrate 102 is formed on the light receiving surface of the image sensor chip 101 by an adhesive. It is pasted directly. For this reason, when the above-mentioned conventional technology is applied to the image sensor chip 101 having fine microlenses formed on the surface, there is a problem that the microlenses are easily damaged in the manufacturing process.
[0011] 上記問題について具体的に説明すれば以下の通りである。  [0011] The above problem will be specifically described as follows.
[0012] 上記従来のカメラモジュール 100においては、その製造工程で、イメージセンサ'チ ップ 101の表面にガラス支持基板 102を接着剤により取り付ける。このため、該表面 に微細なマイクロレンズが形成されたイメージセンサ'チップ 101に対して上記従来 技術を適用すると、ガラス支持基板 102の取り付け時に、該ガラス支持基板 102がマ イク口レンズに接触して損傷を与えるという問題が生じる。また、このとき、イメージセン サ'チップ 101の表面に形成されたマイクロレンズの周囲は、接着剤により満たされる[0012] In the conventional camera module 100, the glass support substrate 102 is attached to the surface of the image sensor chip 101 with an adhesive in the manufacturing process. For this reason, when the above-described conventional technology is applied to the image sensor chip 101 on which fine microlenses are formed on the surface, the glass support substrate 102 comes into contact with the microphone opening lens when the glass support substrate 102 is attached. Cause damage. At this time, The periphery of the microlens formed on the surface of the chip 101 is filled with an adhesive.
。このため、該接着剤の固化時には、マイクロレンズも加熱され、この熱的ストレスによ りマイクロレンズが容易に損傷を受けると 、う問題が生じる。 . For this reason, when the adhesive is solidified, the microlens is also heated. If the microlens is easily damaged by the thermal stress, a problem arises.
[0013] また、上記従来のカメラモジュール 100においては、イメージセンサ ·チップ 101の 裏面から表面に至る貫通孔 17aに、再配線 107が設けられている。該貫通孔は、通 常、イメージセンサ'チップ 101の裏面からの深堀エッチングにより形成される。この 深堀エッチングを行うためには、イメージセンサ.チップ 101の表面にガラス支持基板 102を取り付けた状態で、イメージセンサ'チップ 101の裏面を研磨し、チップの厚み を薄くする必要がある。しかしながら、ガラス支持基板 102を保持して、上述の裏面研 磨のように、イメージセンサ'チップ 101に対して機械的な力を作用させると、マイクロ レンズに対して機械的ストレスが加わり、この機械的ストレスによりマイクロレンズに損 傷を与えるという問題を生じる。  In the conventional camera module 100, the rewiring 107 is provided in the through hole 17 a extending from the back surface to the front surface of the image sensor chip 101. The through hole is usually formed by deep etching from the back surface of the image sensor chip 101. In order to perform this deep etching, it is necessary to polish the back surface of the image sensor chip 101 with the glass support substrate 102 attached to the surface of the image sensor chip 101 to reduce the thickness of the chip. However, if the glass support substrate 102 is held and a mechanical force is applied to the image sensor chip 101 as in the above-described rear surface polishing, mechanical stress is applied to the microlens, and this mechanical This causes the problem of damage to the microlens due to mechanical stress.
[0014] また、表面に微細なマイクロレンズが形成されたイメージセンサ'チップ 101に対し て上記従来技術を適用した場合、以下のような問題も同時に生じる。  [0014] In addition, when the above-described prior art is applied to the image sensor chip 101 having a fine microlens formed on the surface, the following problems occur simultaneously.
[0015] すなわち、ガラス支持基板 102にダストが付着した場合、このダストがイメージセン サ'チップ 101の表面に形成されたマイクロレンズに影を落とし、光電変換素子の集 光性を低下させる。このため、製造環境におけるダスト排除のためのコストの上昇、あ るいは、ダストによる不良発生率の上昇により、歩留まりの悪ィ匕を招来するという問題 ち生じる。  That is, when dust adheres to the glass support substrate 102, the dust casts a shadow on the microlens formed on the surface of the image sensor chip 101, thereby reducing the light collecting property of the photoelectric conversion element. For this reason, there arises a problem that the cost for eliminating dust in the manufacturing environment or the increase in the occurrence rate of defects due to dust causes a bad yield.
[0016] また、表面に微細なマイクロレンズが形成されたイメージセンサ'チップ 101に対し て上記従来技術を適用した場合、上述したように該マイクロレンズの周囲は接着材で 満たされる。このため、マイクロレンズを空気中で用いる場合と比べ、マイクロレンズの 集光性能が低下するという問題も生じる。  [0016] Further, when the above-described conventional technique is applied to the image sensor chip 101 on which fine microlenses are formed on the surface, the periphery of the microlenses is filled with an adhesive as described above. For this reason, compared with the case where a microlens is used in air, the problem that the condensing performance of a microlens will also arise arises.
[0017] また、上記従来のカメラモジュール 100においては、赤外線カットフィルタ等のフィ ルター部材 104力 レンズ 103の湾曲した表面に被着されている。このため、フィルタ 一面も湾曲し、入射光の入射角によっては、当該フィルターの設計時に定められた 所定のフィルター性能が十分に発揮されな 、と 、う問題も生じる。  In the conventional camera module 100, the filter member 104 such as an infrared cut filter is attached to the curved surface of the force lens 103. For this reason, the entire surface of the filter is also curved, and depending on the incident angle of incident light, the predetermined filter performance determined at the time of designing the filter may not be sufficiently exhibited.
[0018] また、上記従来のカメラモジュール 100においては、イメージセンサ ·チップ 101の 表面には電極パッド 106が形成され、また、裏面には再配線 107介して接続された バンプ電極 108が形成される力 これらがイメージセンサ ·チップ 101の対向する 2辺 又は 3辺に偏った場合、アセンブリ時の熱又は機械的ストレスで容易にイメージセン サ ·チップ 101に損傷を与えると 、う問題も生じて 、た。 [0018] In the conventional camera module 100, the image sensor chip 101 Electrode pad 106 is formed on the front surface, and bump electrode 108 is formed on the back surface through rewiring 107. When these are biased to two or three opposite sides of the image sensor chip 101 If the image sensor chip 101 was easily damaged by heat or mechanical stress during assembly, problems would occur.
[0019] 本発明は、上記問題点に鑑みてなされたものであり、その目的は、光電変換素子 上にマイクロレンズを具備する固体撮像素子を備えた小型の光学装置用モジュール であって、その製造工程におけるマイクロレンズの損傷を有効に防止できる構造を有 する光学装置用モジュールを実現することである。また、光電変換素子上にマイクロ レンズが形成された固体撮像素子を備えた小型の光学装置用モジュールの製造方 法であって、マイクロレンズの損傷を有効に防止する、歩留まりの良い製造方法を提 供することにある。 [0019] The present invention has been made in view of the above problems, and an object of the present invention is a small module for an optical device including a solid-state imaging element including a microlens on a photoelectric conversion element, It is to realize a module for an optical device having a structure that can effectively prevent damage to a microlens in a manufacturing process. In addition, a manufacturing method of a small module for an optical device having a solid-state imaging device in which a microlens is formed on a photoelectric conversion element, and a manufacturing method with a high yield that effectively prevents damage to the microlens. There is to serve.
[0020] 本発明に係る光学装置用モジュールは、上記課題を解決するために、マイクロレン ズアレイを具備した有効画素領域を有し、該有効画素領域の外部の領域に電極パッ ドが配置されて!ヽる固体撮像素子と、透光性を有し上記有効画素領域を覆う透光性 被覆材とを備え、上記透光性被覆材は、上記固体撮像素子の出力又は入力端子に 接続された上記電極パッドを埋蔵するように設けられた固定部を介して上記固体撮 像素子における上記有効画素領域の外部の領域に固定され、上記有効画素領域と 上記透光性被覆材とが隔てられて 、ることを特徴として 、る。  [0020] In order to solve the above problems, an optical device module according to the present invention has an effective pixel region including a microlens array, and an electrode pad is disposed outside the effective pixel region. ! A solid-state imaging device having a light-transmitting property and a translucent covering material that has translucency and covers the effective pixel region, and the translucent covering material is connected to an output or input terminal of the solid-state imaging device. It is fixed to an area outside the effective pixel area in the solid-state imaging element through a fixing portion provided to embed an electrode pad, and the effective pixel area and the translucent covering material are separated from each other. It is characterized by that.
[0021] 上記構成によれば、上記固定部の作用により、上記有効画素領域と上記透光性被 覆材とが隔てられた状態で、上記固体撮像素子と上記透光性被覆材とが固定される 。このため、上記構成によれば、上記透光性被覆材が上記マイクロレンズアレイに直 接接触し、マイクロレンズアレイに損傷を与えることはない。  [0021] According to the above configuration, the solid-state imaging device and the translucent covering material are fixed in a state where the effective pixel region and the translucent covering material are separated by the action of the fixing portion. Is done. For this reason, according to the said structure, the said translucent coating | covering material contacts the said micro lens array directly, and does not damage a micro lens array.
[0022] また、上記構成によれば、上記固定部の固体撮像素子側の一端は有効画素領域 の外部の領域に固定されるため、上記有効画素領域と上記固定部とが熱的および 機械的に直接接触することはない。従って、上記固定部が例えば接着剤であって、 該接着剤固化時に上記固定部の温度が上昇することがあっても、マイクロレンズァレ ィに対して熱的ストレスを与えることはない。また、例えば固体撮像素子の裏面研磨 等のために、上記透光性被覆材を保持した状態で、固体撮像素子に外部から機械 的な力を作用させたとしても、マイクロレンズアレイに機械的ストレスを与えることはな い。 [0022] According to the above configuration, since the one end of the fixed portion on the solid-state imaging device side is fixed to an area outside the effective pixel area, the effective pixel area and the fixed section are thermally and mechanically There is no direct contact. Therefore, even if the fixing portion is, for example, an adhesive, and the temperature of the fixing portion increases when the adhesive is solidified, no thermal stress is applied to the microlens array. In addition, for example, for polishing the back surface of the solid-state imaging device, the solid-state imaging device is externally mechanically held while the translucent coating material is held. Even if a general force is applied, no mechanical stress is applied to the microlens array.
[0023] 従って、上記構成によれば、当該光学装置用モジュールの製造工程にけるマイクロ レンズアレイの損傷を防止できると ヽぅ効果を奏する。  Therefore, according to the above configuration, it is possible to prevent the microlens array from being damaged in the manufacturing process of the optical device module.
[0024] し力も、上記構成によれば、上記電極パッドは、それ自身の上記固体撮像素子へ の結合力に加え、上記固定部の作用によっても固体撮像素子に固定される。このた め、上記構成によれば、上記電極パッドの上記固体撮像素子への結合力を高めるこ とができると!、う効果を奏する。  [0024] According to the above configuration, the electrode pad is also fixed to the solid-state image sensor by the action of the fixing portion in addition to its own coupling force to the solid-state image sensor. For this reason, according to the above configuration, it is possible to increase the bonding force of the electrode pad to the solid-state imaging device.
[0025] 上記構成を備えた光学装置用モジュールを製造するために、上記透光性被覆材を 上記固体撮像素子に固定した状態で、上記固体撮像素子の裏面から上記電極パッ ドに至る貫通孔を形成し、この貫通孔に再配線を形成する製造方法が採用できる。こ のとき、電極パッドは上記固定部の作用により固体撮像素子に強く結合しているため 、上記構成によれば、再配線の形成に際して上記電極パッドが上記固体撮像素子か ら離脱することを防止できる。  [0025] In order to manufacture an optical device module having the above-described configuration, a through-hole extending from the back surface of the solid-state image sensor to the electrode pad in a state where the translucent covering material is fixed to the solid-state image sensor. A manufacturing method of forming a rewiring in this through hole can be adopted. At this time, since the electrode pad is strongly coupled to the solid-state imaging device by the action of the fixing portion, according to the configuration, the electrode pad is prevented from being detached from the solid-state imaging device when a rewiring is formed. it can.
[0026] なお、上記光学装置用モジュールは、さらに、上記透光性被覆材の被写体側に配 置された 1つ以上のレンズとを備える構成としても良い。  [0026] The optical device module may further include one or more lenses arranged on the subject side of the translucent covering material.
[0027] 本発明に係る光学装置用モジュールにおいては、上記有効画素領域と上記透光 性被覆材との間の隔たりは、 10 m以上であることが好ましい。  In the module for an optical device according to the present invention, the distance between the effective pixel region and the translucent covering material is preferably 10 m or more.
[0028] 上記透光性被覆材の上記有効画素領域に対向する面 (以下、下面)にダストが付 着した場合、該ダストが上記有効画素領域上に影を作り、上記有効画素領域におい てこの影に含まれる領域は不良画素領域となる。し力しながら、上記透光性被覆材の 下面と上記有効画素領域との間の距離を大きくすると、当該不良画素領域の範囲は 広がるものの、その影は薄くなり、不良画素領域における上記ダストの光学的な影響 は低下する。  [0028] When dust adheres to a surface (hereinafter referred to as a lower surface) facing the effective pixel region of the translucent coating material, the dust creates a shadow on the effective pixel region, and the dust is formed in the effective pixel region. An area included in the shadow is a defective pixel area. However, if the distance between the lower surface of the translucent covering material and the effective pixel region is increased, the range of the defective pixel region is widened, but the shadow is reduced, and the dust in the defective pixel region is reduced. The optical effect is reduced.
[0029] 上記構成によれば、上記有効画素領域から上記透光性被覆材の下面までの距離 が 10 /z m以上になる。このため、製造工程において上記透光性被覆材の下面にダ ストが付着しても、このダストが有効画素領域の光学特性に実効的な悪影響を与える ことはない。 [0030] また、上記構成によれば、上記有効画素領域から上記透光性被覆材のレンズに対 向する面(以下、上面)までの距離も 10 mより大きくなる。従って、上述と同様の理 由により、上記透光性被覆材の上面にダストが付着しても、このダストが有効画素領 域の光学特性に実効的な悪影響を与えることはない。 [0029] According to the above configuration, the distance from the effective pixel region to the lower surface of the translucent covering material is 10 / zm or more. For this reason, even if dust adheres to the lower surface of the translucent coating material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region. [0030] According to the above configuration, the distance from the effective pixel region to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface) is also greater than 10 m. Therefore, for the same reason as described above, even if dust adheres to the upper surface of the translucent covering material, this dust does not have an effective adverse effect on the optical characteristics of the effective pixel region.
[0031] 従って、上記構成によれば、当該光学装置用モジュールの製造環境におけるダス ト管理のためのコストの低減、あるいは、ダストによる不良発生率の低減が可能であり 、上記光学装置用モジュールの歩留まりを向上させることができるという更なる効果を 奏する。  Therefore, according to the above configuration, it is possible to reduce the cost for dust management in the manufacturing environment of the optical device module, or to reduce the incidence of defects due to dust. There is a further effect that the yield can be improved.
[0032] 本発明に係る光学装置用モジュールにお 、ては、上記透光性被覆材の厚みは、 3 00 μ m以上であることが好ましい。  [0032] In the optical device module according to the present invention, it is preferable that the thickness of the translucent coating material is 300 μm or more.
[0033] 上記透光性被覆材の上記レンズに対向する面(以下、上面)にダストが付着した場 合、該ダストが上記有効画素領域上に影を作り、上記有効画素領域においてこの影 に含まれる画素は不良画素領域となる。しかしながら、上記透光性被覆材の上面と 上記有効画素領域との間の距離を大きくすると、当該不良画素領域の範囲は広がる ものの、その影は薄くなり、不良画素領域における上記ダストの光学的な影響は低減 する。  [0033] When dust adheres to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface), the dust creates a shadow on the effective pixel area, and this shadow is reflected in the effective pixel area. The included pixels are defective pixel areas. However, when the distance between the upper surface of the translucent covering material and the effective pixel region is increased, the range of the defective pixel region is widened, but the shadow is reduced, and the dust optically in the defective pixel region is reduced. The impact will be reduced.
[0034] 上記構成によれば、上記有効画素領域から上記透光性被覆材の上面までの距離 力 S300 mより大きくなる。このため、製造工程において上記透光性被覆材の上面に ダストが付着しても、このダストが有効画素領域の光学特性に実効的な悪影響を与え ることはない。  [0034] According to the above configuration, the distance force from the effective pixel region to the upper surface of the translucent coating material is greater than S300 m. For this reason, even if dust adheres to the upper surface of the translucent covering material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
[0035] 従って、上記構成によれば、当該光学装置用モジュールの製造環境におけるダス ト管理のためのコストの低減、および、ダストによる不良発生率の低減が可能であり、 上記光学装置用モジュールの歩留まりを向上させることができるという更なる効果を 奏する。  Therefore, according to the above configuration, it is possible to reduce the cost for dust management in the manufacturing environment of the optical device module, and to reduce the incidence of defects due to dust. There is a further effect that the yield can be improved.
[0036] 本発明に係る光学装置用モジュールにおいては、上記有効画素領域と上記透光 性被覆材との間の隔たり、上記透光性被覆材の厚み、および、上記固体撮像素子の 厚みの合計は、 600 μ m以上 800 μ m以下であることが好ましい。  In the module for an optical device according to the present invention, the total of the separation between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the thickness of the solid-state imaging element. Is preferably 600 μm or more and 800 μm or less.
[0037] 上記有効画素領域と上記透光性被覆材との間の隔たり、上記透光性被覆材の厚 み、および、上記固体撮像素子の厚みの合計力 、さい場合、上記透光性被覆材、 および、上記固体撮像素子の厚みを十分に確保できないため、上記光学装置用モ ジュールの強度が低下して、プロセス搬送時における破損の可能性が高まる。また、 逆に、上記有効画素領域と上記透光性被覆材との間の隔たり、上記透光性被覆材 の厚み、および、上記固体撮像素子の厚みの合計が大きいと、光学装置用モジユー ルが大型化する。 [0037] A gap between the effective pixel region and the translucent coating material, or a thickness of the translucent coating material. And the total force of the thickness of the solid-state image sensor, and in this case, the thickness of the translucent coating material and the solid-state image sensor cannot be sufficiently secured, so that the strength of the module for the optical device is reduced. This increases the possibility of damage during process transfer. On the other hand, if the total distance between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the thickness of the solid-state imaging device is large, the module for the optical device is used. Increases in size.
[0038] 従って、上記構成によれば、光学装置用モジュールの大型化を招来することなぐ プロセス搬送に支障がない光学装置用モジュールを実現できるという更なる効果を 奏する。  Therefore, according to the above configuration, there is an additional effect that it is possible to realize an optical device module that does not hinder the process conveyance without causing an increase in the size of the optical device module.
[0039] 本発明に係る光学装置用モジュールにおいては、上記固定部は上記有効画素領 域を取り囲み、上記有効画素領域と上記透光性被覆材との間に形成された空間を 密閉することが好ましい。  In the optical device module according to the present invention, the fixing portion surrounds the effective pixel region, and seals a space formed between the effective pixel region and the translucent covering material. preferable.
[0040] 上記構成によれば、上記有効画素領域上と上記透光性被覆材との間に形成される 空間は上記固定部により密閉されるため、外部からダストなどの異物が上記空間へ 侵入することはない。従って、外部から侵入した異物が上記マイクロレンズアレイに付 着して不良画素領域が発生することを防止できるという更なる効果を奏する。  [0040] According to the above configuration, the space formed between the effective pixel region and the translucent covering material is sealed by the fixing portion, so that foreign matters such as dust enter the space from the outside. Never do. Therefore, it is possible to prevent a foreign pixel entering from the outside from attaching to the microlens array and generating a defective pixel region.
[0041] 本発明に係る光学装置用モジュールにおいては、上記透光性被覆材は板状であり 、上記透光性被覆材の表面に光学フィルターが形成されて ヽることが好ま ヽ。  [0041] In the module for an optical device according to the present invention, the light-transmitting coating material is plate-shaped, and it is preferable that an optical filter be formed on the surface of the light-transmitting coating material.
[0042] 上記構成によれば、上記光学フィルタ一は、湾曲することなぐ板状の透光性被覆 材の表面に形成される。従って、上記構成によれば、任意の入射角の入射光に対し 、設計時に定められた所定のフィルター性能を実現できると 、ぅ更なる効果を奏する  [0042] According to the above configuration, the optical filter is formed on the surface of a plate-like translucent coating material that does not curve. Therefore, according to the above configuration, when the predetermined filter performance determined at the time of design can be realized with respect to incident light having an arbitrary incident angle, a further effect can be obtained.
[0043] 本発明に係る光学装置用モジュールにおいては、上記固定部は、感光性接着剤を 含むことが好ましい。 [0043] In the optical device module according to the present invention, it is preferable that the fixing portion includes a photosensitive adhesive.
[0044] 上記構成によれば、上記固定部が感光性接着剤を含むことから、上記固定部をフ オトリソグラフィ技術を用いて高精度に、かつ、効率良く形成することが可能になると いう更なる効果を奏する。  [0044] According to the above configuration, since the fixing portion includes a photosensitive adhesive, the fixing portion can be formed with high accuracy and efficiency by using a photolithography technique. The effect which becomes.
[0045] 本発明に係る光学装置用モジュールにお 、て、上記固体撮像素子は、上記電極 ノッドが配置された面の裏側の面力も上記電極パッドに至り上記電極パッドに接続さ れた再配線と、上記電極パッドが配置された面の裏側の面に配置され上記再配線に 接続された外部接続端子とを備えて ヽることが好ま ヽ。 [0045] In the module for an optical device according to the present invention, the solid-state imaging device includes the electrode. The surface force on the back side of the surface on which the node is disposed also reaches the electrode pad and is connected to the electrode pad, and the surface on the back side of the surface on which the electrode pad is disposed is connected to the rewiring. It is preferable to have an external connection terminal.
[0046] 上記構成によれば、上記撮像素子の出力端子から出力された電気信号は、電極パ ッド、および、再配線を介して当該固体撮像素子の裏面に配置された外部接続端子 に伝送される。 [0046] According to the above configuration, the electrical signal output from the output terminal of the image sensor is transmitted to the external connection terminal disposed on the back surface of the solid-state image sensor via the electrode pad and rewiring. Is done.
[0047] 本発明に係る光学装置用モジュールの製造方法は、上記課題を解決するために、 マイクロレンズアレイを備えた有効画素領域を有し、該有効画素領域の外部の領域 に電極パッドが配置されている固体撮像素子を複数配列してなる半導体ウェハに、 上記半導体ウェハを覆う透光性被覆材を固定する第 1の工程を含み、上記第 1のェ 程では、上記透光性被覆材を、上記有効画素領域と隔てて、上記半導体ウェハに含 まれる各固体撮像素子における上記有効画素領域の外部の領域に、上記固体撮像 素子の出力又は入力端子に接続された上記電極パッドを埋蔵するように設けられた 固定部を介して固定することを特徴としている。  [0047] In order to solve the above problems, the method for manufacturing a module for an optical device according to the present invention has an effective pixel region including a microlens array, and an electrode pad is disposed outside the effective pixel region. Including a first step of fixing a translucent coating material covering the semiconductor wafer to a semiconductor wafer formed by arranging a plurality of solid-state imaging devices, and in the first step, the translucent coating material The electrode pad connected to the output or input terminal of the solid-state image sensor is embedded in an area outside the effective pixel area of each solid-state image sensor included in the semiconductor wafer, separated from the effective pixel area. It is characterized in that it is fixed through a fixing part that is provided.
[0048] 上記構成によれば、上記第 1の工程において、上記固定部の作用により、上記有 効画素領域と上記透光性被覆材とが隔てられた状態で、上記固体撮像素子と上記 透光性被覆材とが固定される。このため、上記構成によれば、上記透光性被覆材と 上記固体撮像素子とを、マイクロレンズアレイに損傷を与えることなぐ固定することが できる。 [0048] According to the above configuration, in the first step, the solid-state imaging device and the translucent material are separated in a state where the effective pixel region and the translucent covering material are separated by the action of the fixing portion. The light coating material is fixed. For this reason, according to the said structure, the said translucent coating | covering material and the said solid-state image sensor can be fixed without damaging a micro lens array.
[0049] また、上記構成によれば、上記固定部の固体撮像素子側の一端は有効画素領域 の外部の領域に固定されるため、上記有効画素領域と上記固定部とが熱的'機械的 に直接接触することはない。従って、上記固定部が例えば接着剤であって、該接着 剤固化時に上記固定部の温度が上昇することがあったとしても、マイクロレンズアレイ に熱的ストレスを与えることはない。また、例えば固体撮像素子の裏面研磨等のため に、上記透光性被覆材を保持した状態で、固体撮像素子に外部から機械的な力を 作用させたとしても、マイクロレンズアレイに機械的ストレスを与えることはない。  [0049] According to the above configuration, since the one end of the fixed portion on the solid-state imaging device side is fixed to an area outside the effective pixel area, the effective pixel area and the fixed section are thermally and mechanically There is no direct contact. Therefore, even if the fixing portion is, for example, an adhesive, and the temperature of the fixing portion increases when the adhesive is solidified, thermal stress is not applied to the microlens array. In addition, even if mechanical force is applied from the outside to the solid-state image sensor while holding the translucent coating material, for example, for polishing the back surface of the solid-state image sensor, mechanical stress is applied to the microlens array. Never give.
[0050] 従って、上記構成によれば、マイクロレンズアレイに損傷を与えることなぐ光学装置 用モジュールを製造できると 、う効果を奏する。 [0051] し力も、上記構成によれば、上記電極パッドはそれ自身の上記固体撮像素子への 結合力に加え、上記固定部の作用により、固体撮像素子に固定される。このため、上 記構成によれば、上記電極パッドの上記固体撮像素子への結合力を高めるという効 果を奏する。 Therefore, according to the above configuration, it is possible to produce an optical device module that does not damage the microlens array. [0051] According to the above-described configuration, the electrode pad is fixed to the solid-state image sensor by the action of the fixing portion in addition to its own binding force to the solid-state image sensor. For this reason, according to the above configuration, there is an effect of increasing the coupling force of the electrode pad to the solid-state imaging device.
[0052] 上記第 1の工程の後に、上記固体撮像素子の裏面から上記電極パッドに至る貫通 孔を形成し、この貫通孔に再配線を形成する製造方法が採用できる。このとき、電極 パッドは、上記固定部の作用により固体撮像素子に強く結合しているため、上記構成 によれば、再配線の形成に際して上記電極パッドが上記固体撮像素子から離脱する ことを防止できる。  [0052] After the first step, a manufacturing method may be employed in which a through hole is formed from the back surface of the solid-state imaging device to the electrode pad, and a rewiring is formed in the through hole. At this time, since the electrode pad is strongly coupled to the solid-state imaging device by the action of the fixing portion, according to the configuration, it is possible to prevent the electrode pad from being detached from the solid-state imaging device when the rewiring is formed. .
[0053] なお、上記製造法は、上記透光性被覆材の上記半導体ウェハに対向する面とは反 対側の面に、上記半導体ウェハにおける上記固体撮像素子の配列に対応して配列 された複数のレンズからなるレンズ集合板を取り付ける第 2の工程を含んでも良い。  [0053] The manufacturing method is arranged on the surface of the translucent coating material opposite to the surface facing the semiconductor wafer, corresponding to the arrangement of the solid-state imaging elements on the semiconductor wafer. A second step of attaching a lens assembly plate composed of a plurality of lenses may be included.
[0054] 本発明に係る光学装置用モジュールの製造方法においては、上記有効画素領域 と上記透光性被覆材との間の隔たりは、 10 m以上であることが好ましい。  In the method for manufacturing a module for an optical device according to the present invention, the distance between the effective pixel region and the translucent covering material is preferably 10 m or more.
[0055] 上記透光性被覆材の上記有効画素領域に対向する面 (以下、下面)にダストが付 着した場合、該ダストが上記有効画素領域上に影を作り、上記有効画素領域におい てこの影に含まれる領域は不良画素領域となる。し力しながら、上記透光性被覆材の 下面と上記有効画素領域との間の距離、当該不良画素領域の範囲は広がるものの、 影は薄くなり、不良画素領域における上記ダストの光学的な影響は低下する。  [0055] When dust adheres to a surface (hereinafter referred to as a lower surface) of the translucent covering material that faces the effective pixel region, the dust creates a shadow on the effective pixel region, and the dust is formed in the effective pixel region. An area included in the shadow is a defective pixel area. However, although the distance between the lower surface of the translucent covering material and the effective pixel region and the range of the defective pixel region are widened, the shadow becomes thin, and the optical effect of the dust in the defective pixel region is reduced. Will decline.
[0056] 上記構成によれば、上記有効画素領域から上記透光性被覆材の下面までの距離 が 10 /z m以上になる。このため、製造工程において上記透光性被覆材の下面にダ ストが付着しても、このダストが有効画素領域の光学特性に実効的な悪影響を与える ことはない。  [0056] According to the above configuration, the distance from the effective pixel region to the lower surface of the translucent covering material is 10 / zm or more. For this reason, even if dust adheres to the lower surface of the translucent coating material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
[0057] また、上記構成によれば、上記有効画素領域から上記透光性被覆材のレンズに対 向する面(以下、上面)までの距離も 10 mより大きくなる。従って、上述と同様の理 由により、上記透光性被覆材の上面にダストが付着しても、このダストが有効画素領 域の光学特性に実効的な悪影響を与えることはない。  [0057] According to the above configuration, the distance from the effective pixel region to the surface of the translucent covering material facing the lens (hereinafter referred to as the upper surface) is also greater than 10 m. Therefore, for the same reason as described above, even if dust adheres to the upper surface of the translucent covering material, this dust does not have an effective adverse effect on the optical characteristics of the effective pixel region.
[0058] 従って、上記構成によれば、製造環境におけるダスト管理のためのコストの低減、あ るいは、ダストによる不良発生率の低減が可能であり、上記製造方法により製造され る光学装置用モジュールの歩留まりを向上させることができるという更なる効果を奏 する。 Therefore, according to the above configuration, the cost for dust management in the manufacturing environment can be reduced. Alternatively, the defect occurrence rate due to dust can be reduced, and the yield of the optical device module manufactured by the above manufacturing method can be further improved.
[0059] 本発明に係る光学装置用モジュールの製造方法においては、上記透光性被覆材 の厚みは、 300 m以上であることが好ましい。  [0059] In the method for manufacturing an optical device module according to the present invention, the translucent coating material preferably has a thickness of 300 m or more.
[0060] 上記透光性被覆材の上記レンズに対向する面(以下、上面)にダストが付着した場 合、該ダストが上記有効画素領域上に影を作り、上記有効画素領域においてこの影 に含まれる画素は不良画素領域となる。しかしながら、上記透光性被覆材の上面と 上記有効画素領域との間の距離を大きくすると、当該不良画素領域の範囲は広がる ものの、影は薄くなり、不良画素領域における上記ダストの光学的な影響は低減する  [0060] When dust adheres to the surface of the translucent coating material facing the lens (hereinafter referred to as the upper surface), the dust creates a shadow on the effective pixel region, and this shadow is reflected in the effective pixel region. The included pixels are defective pixel areas. However, when the distance between the upper surface of the translucent covering material and the effective pixel region is increased, the range of the defective pixel region is widened, but the shadow becomes thin, and the optical effect of the dust in the defective pixel region is reduced. Will reduce
[0061] 上記構成によれば、上記有効画素領域から上記透光性被覆材の上面までの距離 力 S300 mより大きくなる。このため、製造工程において上記透光性被覆材の上面に ダストが付着しても、このダストが有効画素領域の光学特性に実効的な悪影響を与え ることはない。 [0061] According to the above configuration, the distance force S300 m from the effective pixel region to the upper surface of the translucent covering material is larger. For this reason, even if dust adheres to the upper surface of the translucent covering material in the manufacturing process, the dust does not have an adverse effect on the optical characteristics of the effective pixel region.
[0062] 従って、上記構成によれば、製造環境におけるダスト管理のためのコストの低減、 および、ダストによる不良発生率の低減が可能であり、上記光学装置用モジュールの 歩留まりを向上させることができるという更なる効果を奏する。  Therefore, according to the above-described configuration, it is possible to reduce the cost for dust management in the manufacturing environment, and to reduce the rate of occurrence of defects due to dust, and to improve the yield of the optical device module. There is a further effect.
[0063] 本発明に係る光学装置用モジュールの製造方法においては、上記有効画素領域 と上記透光性被覆材との間の隔たり、上記透光性被覆材の厚み、および、上記固体 撮像素子の厚みの合計は、 600 μ m以上 800 μ m以下であることが好ましい。  [0063] In the method for manufacturing an optical device module according to the present invention, the separation between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the solid-state imaging device The total thickness is preferably 600 μm or more and 800 μm or less.
[0064] 上記構成によれば、光学装置用モジュールの大型化を招来することなく当該光学 装置用モジュールの製造工程におけるダスト管理のためのコストの低減、および、上 記透光性被覆材に付着したダストによる不良発生率の低減が可能であって、かつ、 プロセス搬送に支障がない光学装置用モジュールを製造できるという更なる効果を 奏する。  [0064] According to the above configuration, the cost for dust management in the manufacturing process of the optical device module is reduced without causing an increase in the size of the optical device module, and the optical device module adheres to the translucent coating material. Thus, it is possible to reduce the defect occurrence rate due to the dust, and to produce an optical device module that does not interfere with the process transfer.
[0065] 本発明に係る光学装置用モジュールの製造方法においては、上記固定部を上記 各有効画素領域を取り囲むように形成し、上記各有効画素領域と上記透光性被覆 材との間に形成された空間を密閉することが好ま ヽ。 In the method for manufacturing a module for an optical device according to the present invention, the fixing portion is formed so as to surround each effective pixel region, and each effective pixel region and the translucent coating are formed. It is preferable to seal the space formed between the materials.
[0066] 上記構成によれば、上記第 1の工程が完了すると、上記有効画素領域上と上記透 光性被覆材との間に形成される空間は上記固定部により密閉される。従って、上記 第 1の完了後、当該空間へ外部力 ダストなどの異物が混入することを防止すること ができる。また、上記第 1の工程の後に、薬液によるエッチング処理など、上記第 1の 工程により生成された構造体が薬液に晒される工程を含む場合でも、上記構成によ れば、薬液によるマイクロレンズの損傷や汚染、あるいは、薬液による上記透光性被 覆材の汚染を防止できると 、ぅ更なる効果を奏する。  [0066] According to the above configuration, when the first step is completed, the space formed between the effective pixel region and the translucent covering material is sealed by the fixing portion. Therefore, it is possible to prevent foreign matter such as external force dust from entering the space after the first completion. Even when the structure produced by the first step is exposed to a chemical solution, such as an etching process using a chemical solution, after the first step, according to the above configuration, the microlens by the chemical solution is used. If damage or contamination, or contamination of the translucent covering material by a chemical solution can be prevented, a further effect can be obtained.
[0067] 本発明に係る光学装置用モジュールの製造方法においては、上記透光性被覆材 は板状であり、上記透光性被覆材の表面に光学フィルターが形成されて ヽることが 好ましい。  In the method for manufacturing a module for an optical device according to the present invention, it is preferable that the translucent coating material is plate-shaped and an optical filter is formed on the surface of the translucent coating material.
[0068] 上記構成によれば、上記光学フィルタ一は、湾曲することなく板状の透光性被覆材 の表面に形成されている。従って、上記構成によれば、任意の入射角の入射光に対 して設計時に定められた所定のフィルター性能を実現する光学フィルターを備えた 光学装置用モジュールを製造することができるという更なる効果を奏する。  [0068] According to the above configuration, the optical filter 1 is formed on the surface of the plate-shaped translucent covering material without being curved. Therefore, according to the above configuration, it is possible to manufacture an optical device module including an optical filter that realizes a predetermined filter performance determined at the time of design for incident light having an arbitrary incident angle. Play.
[0069] 本発明に係る光学装置用モジュールの製造方法においては、上記固定部は感光 性接着剤を含むことが好まし ヽ。  [0069] In the method for manufacturing a module for an optical device according to the present invention, the fixing portion preferably includes a photosensitive adhesive.
[0070] 上記構成によれば、上記固定部が感光性接着剤を含むことから、上記固定部をフ オトリソグラフィ技術を用いて高精度に形成し、上記固体撮像素子と上記透光性被覆 材とを効率良く固定することが可能になるという更なる効果を奏する。  [0070] According to the above configuration, since the fixing portion includes a photosensitive adhesive, the fixing portion is formed with high accuracy using a photolithography technique, and the solid-state imaging device and the translucent coating material are formed. It has the further effect that it can be efficiently fixed.
[0071] 本発明に係る光学装置用モジュールの製造方法において、上記半導体ウェハに 含まれる各固体撮像素子は、上記電極パッドが配置された面の裏側の面カゝら上記電 極パッドに至り上記電極パッドに接続された再配線と、上記電極パッドが配置された 面の裏側の面に配置され上記再配線に接続された外部接続端子とを備え、上記第 1 の工程では、上記固体撮像素子に上記電極パッドを形成した後、上記電極パッドを 埋蔵するよう上記固定部を形成することが好ましい。  [0071] In the method for manufacturing a module for an optical device according to the present invention, each solid-state imaging device included in the semiconductor wafer reaches the electrode pad from the surface behind the surface on which the electrode pad is arranged. A rewiring connected to the electrode pad; and an external connection terminal disposed on the back side of the surface on which the electrode pad is disposed and connected to the rewiring. In the first step, the solid-state imaging device is provided. After forming the electrode pad, the fixing part is preferably formed so as to embed the electrode pad.
[0072] 上記構成によれば、上記撮像素子の出力端子から出力された電気信号を、電極パ ッド、および、再配線を介して当該固体撮像素子の裏面に配置された外部接続端子 に伝送可能な光学装置用モジュールを製造することができる。 [0072] According to the above configuration, the electrical signal output from the output terminal of the image sensor is used as an external connection terminal disposed on the back surface of the solid-state image sensor via the electrode pad and rewiring. It is possible to manufacture a module for an optical device which can be transmitted to
[0073] 本発明に係る光学装置用モジュールの製造方法においては、上記透光性被覆材 のサイズは、上記半導体ウェハのサイズより大き!、ことが好ま 、。  In the method for manufacturing a module for an optical device according to the present invention, it is preferable that the size of the translucent coating material is larger than the size of the semiconductor wafer.
[0074] 上記構成によれば、製造工程において、半導体ウェハが外部の障害物に接触して 損傷することを防止することができる。  [0074] According to the above configuration, in the manufacturing process, the semiconductor wafer can be prevented from being damaged by coming into contact with an external obstacle.
[0075] 本発明に係る構造体は、上記課題を解決するために、マイクロレンズアレイを備え た有効画素領域を有し、該有効画素領域の外部の領域に電極パッドが配置されて いる固体撮像素子を複数配列してなる半導体ウェハに、上記半導体ウェハを覆う透 光性被覆材が固定されてなる構造体であって、上記透光性被覆材は、上記半導体ゥ ェハに含まれる各固体撮像素子における上記有効画素領域の外部の領域に、上記 固体撮像素子の出力又は入力端子に接続された上記電極パッドを埋蔵するように設 けられた固定部を介して固定されており、上記有効画素領域と隔てられていることを 特徴としている。  In order to solve the above problems, the structure according to the present invention has an effective pixel region including a microlens array, and a solid-state imaging in which an electrode pad is disposed outside the effective pixel region A structure in which a translucent covering material that covers the semiconductor wafer is fixed to a semiconductor wafer in which a plurality of elements are arranged, and the translucent covering material is made of each solid contained in the semiconductor wafer. It is fixed to the area outside the effective pixel area of the image sensor via a fixing portion provided so as to embed the electrode pad connected to the output or input terminal of the solid-state image sensor. It is characterized by being separated from the pixel area.
[0076] 上記構造体を個片化することにより、以上のような光学装置用モジュールを製造す ることがでさる。  [0076] The above optical device module can be manufactured by dividing the above structure into individual pieces.
[0077] 本発明に係る光学装置用モジュールは、以上のように、マイクロレンズアレイを具備 した有効画素領域を有する固体撮像素子と、透光性を有し上記有効画素領域を覆う 透光性被覆材とを備え、上記透光性被覆材は固定部を介して上記固体撮像素子に おける上記有効画素領域の外部の領域に固定され、上記有効画素領域と上記透光 性被覆材とが隔てられているので、少なくとも、上記透光性被覆材が上記マイクロレ ンズアレイに直接接触し、マイクロレンズアレイに損傷を与えることはない。また、当該 光学装置用モジュールの製造工程において、熱的ストレス、あるいは、機械的ストレ スがマイクロレンズアレイに加わることを防止することができる。  As described above, the module for an optical device according to the present invention includes a solid-state imaging device having an effective pixel region having a microlens array, and a translucent coating that has translucency and covers the effective pixel region. The translucent covering material is fixed to an area outside the effective pixel area in the solid-state imaging device via a fixing portion, and the effective pixel area and the translucent covering material are separated from each other. Therefore, at least the translucent coating material is in direct contact with the microlens array and does not damage the microlens array. Further, it is possible to prevent thermal stress or mechanical stress from being applied to the microlens array in the manufacturing process of the optical device module.
[0078] し力も、上記固定部は、上記固体撮像素子の出力又は入力端子に接続された上記 電極パッドを埋蔵するように設けられて ヽるので、上記電極パッドの上記固体撮像素 子への結合力を高めることができ、例えば、上記電極パッドに至る再配線の形成に 際して上記電極パッドが上記固体撮像素子力も離脱することを防止できる。  [0078] Since the fixing portion is provided so as to embed the electrode pad connected to the output or input terminal of the solid-state image sensor, the electrode pad is applied to the solid-state image sensor. Coupling force can be increased, and for example, when the rewiring leading to the electrode pad is formed, the electrode pad can be prevented from being separated from the solid-state imaging device force.
[0079] また、本発明に係る光学装置用モジュールの製造方法は、以上のように、マイクロ レンズアレイを備えた有効画素領域を有する固体撮像素子を複数配列してなる半導 体ウェハに、上記半導体ウェハを覆う透光性被覆材を固定する第 1の工程を含み、 上記第 1の工程では、上記透光性被覆材を、上記有効画素領域と隔てて、上記半導 体ウェハに含まれる各固体撮像素子における上記有効画素領域の外部の領域に固 定部を介して固定するので、上記固体撮像素子と上記固体撮像素子とを、マイクロレ ンズアレイに損傷を与えることなぐ固定することができる。また、第 1の工程に続くェ 程において、熱的ストレス、あるいは、機械的ストレスがマイクロレンズアレイに加わる ことを防止することができる。 [0079] Further, the manufacturing method of the module for an optical device according to the present invention is as described above. Including a first step of fixing a translucent covering material covering the semiconductor wafer to a semiconductor wafer formed by arranging a plurality of solid-state imaging devices having an effective pixel region having a lens array, and the first step Then, the translucent covering material is fixed to a region outside the effective pixel region in each solid-state imaging device included in the semiconductor wafer via a fixing unit, apart from the effective pixel region. The solid-state imaging device and the solid-state imaging device can be fixed without damaging the microlens array. Further, in the process following the first step, it is possible to prevent thermal stress or mechanical stress from being applied to the microlens array.
[0080] し力も、上記固定部は、上記固体撮像素子の出力又は入力端子に接続された上記 電極パッドを埋蔵するように設けられて ヽるので、上記電極パッドの上記固体撮像素 子への結合力を高めることができ、例えば、上記電極パッドに至る再配線の形成に 際して上記電極パッドが上記固体撮像素子力も離脱することを防止できる。  [0080] The fixing portion is also provided so as to embed the electrode pad connected to the output or input terminal of the solid-state imaging device, so that the electrode pad is applied to the solid-state imaging device. Coupling force can be increased, and for example, when the rewiring leading to the electrode pad is formed, the electrode pad can be prevented from being separated from the solid-state imaging device force.
図面の簡単な説明  Brief Description of Drawings
[0081] [図 1]本発明の実施形態に係る光学装置用モジュールの構成を示す断面図である。  FIG. 1 is a cross-sectional view showing a configuration of an optical device module according to an embodiment of the present invention.
[図 2]本発明の実施形態に係る光学装置用モジュールの構成を示す上面図である。  FIG. 2 is a top view showing a configuration of a module for an optical device according to an embodiment of the present invention.
[図 3]本発明の実施形態に係る光学装置用モジュールの構成を外観力ゝらを示す斜視 図である。  FIG. 3 is a perspective view showing a configuration of an optical device module according to an embodiment of the present invention.
[図 4]本発明の実施の形態に係る光学装置用モジュールの製造方法の概略を説明 する、説明図である。  FIG. 4 is an explanatory diagram for explaining the outline of the method for manufacturing the module for an optical device according to the embodiment of the present invention.
[図 5(a)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤のパターンを示すものであり、透光性板材および半導体ウェハの上面図 である。  FIG. 5 (a) is a top view of a translucent plate material and a semiconductor wafer, showing a pattern of a light-sensitive adhesive in the method for manufacturing an optical device module according to the embodiment of the present invention.
[図 5(b)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤のパターンを示すものであり、透光性板材および半導体ウェハの断面図 である。  FIG. 5 (b) is a cross-sectional view of a light-sensitive adhesive plate and a semiconductor wafer, showing a pattern of a light-sensitive adhesive in a method for manufacturing an optical device module according to an embodiment of the present invention.
[図 5(c)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤の他のパターンを示すものであり、透光性板材および半導体ウェハの断 面図である。 圆 6(a)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤のパターンを示すものであり、透光性板材および半導体ウェハの上面図 である。 FIG. 5 (c) shows another pattern of the photosensitive adhesive in the method for manufacturing the module for an optical device according to the embodiment of the present invention, and is a cross-sectional view of a translucent plate material and a semiconductor wafer. is there. 6 (a)] A pattern of a photosensitive adhesive in the method for manufacturing a module for an optical device according to an embodiment of the present invention, showing a translucent plate and a top view of a semiconductor wafer.
圆 6(b)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤のパターンを示すものであり、透光性板材および半導体ウェハの断面図 である。 FIG. 6 (b)] shows a pattern of a light-sensitive adhesive in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and is a cross-sectional view of a translucent plate material and a semiconductor wafer.
圆 6(c)]本発明の実施の形態に係る光学装置用モジュールの製造方法における感 光性接着剤の他のパターンを示すものであり、透光性板材および半導体ウェハの断 面図である。 FIG. 6 (c)] is a sectional view of the light-sensitive adhesive material and the semiconductor wafer, showing another pattern of the photosensitive adhesive in the method for manufacturing the module for an optical device according to the embodiment of the present invention. .
圆 7(a)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、再 配線および外部接続端子を形成する工程を示すものであり、透光性板材および半導 体ウェハの上面図である。 7 (a)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows an upper surface of a translucent plate material and a semiconductor wafer. FIG.
圆 7(b)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、再 配線および外部接続端子を形成する工程を示すものであり、透光性板材および半導 体ウェハの断面図である。 圆 7 (b)] shows a step of forming rewiring and external connection terminals in the method for manufacturing an optical device module according to the embodiment of the present invention, and shows a cross section of a translucent plate material and a semiconductor wafer FIG.
圆 7(c)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、再 配線および外部接続端子を形成する工程を示すものであり、透光性板材および半導 体ウェハの断面図である。 圆 7 (c)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows a cross section of a translucent plate material and a semiconductor wafer FIG.
圆 7(d)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、再 配線および外部接続端子を形成する工程を示すものであり、透光性板材および半導 体ウェハの断面図である。 圆 7 (d)] shows a step of forming the rewiring and the external connection terminal in the method for manufacturing the module for an optical device according to the embodiment of the present invention, and shows a cross section of the translucent plate material and the semiconductor wafer. FIG.
圆 7(e)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、再 配線および外部接続端子を形成する工程を示すものであり、透光性板材および半導 体ウェハの下面図である。 7 (e)] shows a step of forming a rewiring and an external connection terminal in the method for manufacturing a module for an optical device according to an embodiment of the present invention, and shows a bottom surface of a light-transmitting plate and a semiconductor wafer. FIG.
圆 8(a)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、透 光性板材、半導体ウェハ、レンズ集合板を含む構造体の構造を示すものであり、当 該構造体の上面図である。 8 (a)] shows the structure of a structure including a translucent plate, a semiconductor wafer, and a lens assembly plate in the method for manufacturing an optical device module according to an embodiment of the present invention. FIG.
圆 8(b)]本発明の実施の形態に係る光学装置用モジュールの製造方法における、透 光性板材、半導体ウェハ、レンズ集合板を含む構造体の構造を示すものであり、当 該構造体の断面図である。 8 (b)] In the method for manufacturing an optical device module according to an embodiment of the present invention, 1 is a cross-sectional view of a structure including a light plate, a semiconductor wafer, and a lens assembly plate.
[図 9]従来の光学装置用モジュールである、カメラモジュールの構成を示す断面図で ある。  FIG. 9 is a cross-sectional view showing a configuration of a camera module, which is a conventional module for an optical device.
符号の説明  Explanation of symbols
[0082] 1 光学装置用モジュール  [0082] 1 Module for optical device
11 固体撮像素子  11 Solid-state image sensor
11a 有効画素領域  11a Effective pixel area
l ib マイクロレンズアレイ  l ib micro lens array
11c 外周領域  11c Peripheral area
12 透光性蓋部 (透光性被覆材)  12 Translucent lid (translucent coating)
13 レンズ  13 Lens
13a レンズ枠  13a Lens frame
14 接着部(固定部)  14 Bonding part (fixing part)
15 空気層(空間)  15 Air layer (space)
16 電極パッド  16 electrode pads
17 再配線  17 Rewiring
17a 負 is孔  17a negative is hole
18 外部接続端子  18 External connection terminal
19 光学フィルター  19 Optical filter
21 半導体ウェハ  21 Semiconductor wafer
22 透光性板材 (透光性被覆材)  22 Translucent plate (Translucent coating)
23 感光性接着剤(固定部)  23 Photosensitive adhesive (fixing part)
24 レンズ集合板  24 Lens assembly plate
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0083] 本発明に係る光学装置用モジュールの一実施形態について、図 1から図 8に基づ[0083] One embodiment of the module for an optical device according to the present invention is based on Figs.
V、て説明すれば以下の通りである。 V is as follows.
[0084] 図 1は、本実施の形態に係る光学装置用モジュール 1の断面図であり、図 2は同光 学装置用モジュール 1の上面図である。また、図 3は同光学装置用モジュール 1の斜 視図である。なお、図 1に示した断面図は、図 2および図 3に示すように、光学装置用 モジュール 1の X—X,断面を示している。 FIG. 1 is a cross-sectional view of an optical device module 1 according to the present embodiment, and FIG. FIG. 2 is a top view of the module 1 for academic equipment. FIG. 3 is a perspective view of the module 1 for the optical device. The cross-sectional view shown in FIG. 1 shows a cross section of the optical device module 1 along the line XX, as shown in FIGS.
[0085] 図 1に示すように、光学装置用モジュール 1は、固体撮像素子 11、透光性蓋部 12 ( 透光性被覆材)、および、レンズ 13を備えている。  As shown in FIG. 1, the optical device module 1 includes a solid-state imaging device 11, a translucent lid 12 (a translucent covering material), and a lens 13.
[0086] 固体撮像素子 11は、図 1に示すように、後述の透光性蓋部 12と対向する面(以下 、上面)の中央部付近に、光電変換素子を含む矩形上の有効画素領域 11aを有して いる。有効画素領域 11aは複数の画素に対応する複数のフォトダイオード等の光電 変換素子を含み、各光電変換素子で受光した光を電気信号に変えて出力する。また 、図 1に示すように、有効画素領域 11aは、該有効画素領域 11aの表面を被覆する、 複数のマイクロレンズをアレイ状に配置してなるマイクロレンズアレイ l ibを具備して いる。これにより、高い集光効率で、有効画素領域 11aに入射した光を光電変換素 子で電力に変換することができる。  As shown in FIG. 1, the solid-state image sensor 11 has a rectangular effective pixel area including a photoelectric conversion element in the vicinity of a central portion of a surface (hereinafter referred to as an upper surface) facing a translucent lid portion 12 described later. 11a. The effective pixel region 11a includes a plurality of photoelectric conversion elements such as photodiodes corresponding to a plurality of pixels, and converts the light received by each photoelectric conversion element into an electrical signal and outputs it. Further, as shown in FIG. 1, the effective pixel region 11a includes a microlens array l ib that covers the surface of the effective pixel region 11a and includes a plurality of microlenses arranged in an array. As a result, the light incident on the effective pixel region 11a can be converted into electric power by the photoelectric conversion element with high light collection efficiency.
[0087] 透光性蓋部 12は、板状のガラスであり、図 1に示すように、有効画素領域 11aを被 覆している。該透光性蓋部 12は、有効画素領域 11aと隔てられた状態で、接着部 14 (固定部)を介して固体撮像素子 11に接着固定されている。なお、透光性蓋部 12は 、板状のガラスに限らず、透光性被覆材、すなわち、透光性を有し有効画素領域 11 aを被覆する透明部材であれば良い。該透光性蓋部 12と有効画素領域 11aとの間に は空気層 15が形成されて 、る。  The translucent lid 12 is a plate-like glass, and covers the effective pixel region 11a as shown in FIG. The translucent lid 12 is bonded and fixed to the solid-state imaging device 11 via an adhesive portion 14 (fixing portion) in a state of being separated from the effective pixel region 11a. The translucent lid 12 is not limited to plate-like glass, but may be a translucent covering material, that is, a transparent member that has translucency and covers the effective pixel region 11a. An air layer 15 is formed between the translucent lid 12 and the effective pixel region 11a.
[0088] 接着部 14としては、感光性接着材を用いることが可能であり、この場合、後述する ように、接着部 14をフォトリソグラフィによって形成することができる。接着部 14は、図 2に示す、有効画素領域 11aの外部にあって該有効画素領域 11aを取り囲む外周領 域 11c上に形成されており、該透光性蓋部 12と有効画素領域 11aとの間の空気層 1 5 (空間)を密閉している。  [0088] A photosensitive adhesive can be used as the bonding portion 14. In this case, as will be described later, the bonding portion 14 can be formed by photolithography. The bonding portion 14 is formed on the outer peripheral region 11c outside the effective pixel region 11a and surrounding the effective pixel region 11a shown in FIG. 2, and the translucent lid 12 and the effective pixel region 11a Air layer 15 (space) between is sealed.
[0089] レンズ 13は、被写体の像を有効画素領域 11a上に結像させるよう入射光を屈折す るための構成である。図 1に示したように、レンズ 13は、当該レンズ 13と一体化したレ ンズ枠 13aにより支持され、レンズ 13の結像距離と、レンズ 13と有効画素領域 11aと の光学距離が一致する位置に保持されている。レンズ 13に入射した光は、透光性蓋 部 12および空気層 15を透過して固体撮像素子 11の有効画素領域 11a上に集光さ れ、該有効画素領域 11a上に形成された光電変換素子により電気信号に変換される The lens 13 has a configuration for refracting incident light so as to form an image of a subject on the effective pixel region 11a. As shown in FIG. 1, the lens 13 is supported by a lens frame 13a integrated with the lens 13, and the image formation distance of the lens 13 and the optical distance between the lens 13 and the effective pixel region 11a coincide with each other. Is held in. The light incident on the lens 13 is transmitted through the translucent lid. Is transmitted through the unit 12 and the air layer 15 and collected on the effective pixel region 11a of the solid-state imaging device 11, and converted into an electric signal by the photoelectric conversion element formed on the effective pixel region 11a.
[0090] 図 1に示すように、光学装置用モジュール 1は、さらに、電極パッド 16、再配線 17、 外部接続端子 18を備えている。 As shown in FIG. 1, the optical device module 1 further includes an electrode pad 16, a rewiring 17, and an external connection terminal 18.
[0091] 電極パッド 16は、図 1に示すように、固体撮像素子 11における外周領域 11cに配 置され、該固体撮像素子の入出力回路と接続されている。そして、固体撮像素子 11 には、該固体撮像素子 11の裏面カゝら電極パッド 16へと至る再配線 17が形成されて いる。さらに、該再配線 17の固体撮像素子 11裏面に表出した部分に、外部接続端 子 18が形成されている。これにより、上記有効画素領域 11aにおいて光電変換素子 により生成された電気信号を、固体撮像素子 11の裏面に設けられた外部接続端子 1 8から取り出すことができる。  As shown in FIG. 1, the electrode pad 16 is disposed in the outer peripheral region 11c of the solid-state image sensor 11, and is connected to an input / output circuit of the solid-state image sensor. The solid-state image sensor 11 is provided with a rewiring 17 extending from the back surface of the solid-state image sensor 11 to the electrode pad 16. Further, an external connection terminal 18 is formed on a portion of the rewiring 17 exposed on the back surface of the solid-state imaging device 11. As a result, the electric signal generated by the photoelectric conversion element in the effective pixel region 11a can be taken out from the external connection terminal 18 provided on the back surface of the solid-state imaging element 11.
[0092] また、電極パッド 16は、上述した接着部 14に埋設されている。これ〖こより、固体撮 像素子 11の裏面からの再配線形成時に、電極パッド 16が固体撮像素子 11から離 脱することを防止できる。なお、再配線 17の形成方法については後述する。  In addition, the electrode pad 16 is embedded in the bonding portion 14 described above. Accordingly, it is possible to prevent the electrode pad 16 from being detached from the solid-state image sensor 11 when rewiring is formed from the back surface of the solid-state image sensor 11. A method for forming the rewiring 17 will be described later.
[0093] 図 1に示すように、光学装置用モジュール 1は、さらに、光学フィルター 19を備えて いる。光学フィルター 19は、特定の波長領域の入射光を遮断するフィルターであり、 例えば、赤外線を遮断する赤外線カットフィルターである。  As shown in FIG. 1, the optical device module 1 further includes an optical filter 19. The optical filter 19 is a filter that blocks incident light in a specific wavelength region, for example, an infrared cut filter that blocks infrared rays.
[0094] 光学フィルター 19は、図 1に示すように、板状に形成された透光性蓋部 12上に形 成されている。従って、表面の湾曲したレンズ 13に被着されている場合と異なり、光 学フィルター 19は、任意の方向から入射する入射光に対して、設計時に定められた 所定の性能で特定波長の入射光を遮断することができる。  As shown in FIG. 1, the optical filter 19 is formed on a translucent lid portion 12 formed in a plate shape. Therefore, unlike the case where the optical filter 19 is attached to the lens 13 having a curved surface, the optical filter 19 is capable of receiving incident light of a specific wavelength with a predetermined performance determined at the time of design. Can be cut off.
[0095] なお、図 1に示すように、光学装置用モジュール 1において、光学フィルター 19は 透光性蓋部 12の上面、すなわち、レンズ 13と対向する面に被着されている力 本発 明はこれに限定されるものではない。すなわち、光学フィルター 19を、透光性蓋部 1 2の下面、すなわち、有効画素領域 11aと対向する面に被着する構成とすることも可 能である。光学フィルター 19を透光性蓋部 12の下面に被着する場合、後述する製 造工程において、光学フィルター 19に対する損傷やダストの付着を有効に防止でき る。 As shown in FIG. 1, in the optical device module 1, the optical filter 19 is a force applied to the upper surface of the translucent lid 12, that is, the surface facing the lens 13. Is not limited to this. That is, the optical filter 19 may be configured to be attached to the lower surface of the translucent lid portion 12, that is, the surface facing the effective pixel region 11a. When the optical filter 19 is attached to the lower surface of the translucent lid 12, damage to the optical filter 19 and adhesion of dust can be effectively prevented in the manufacturing process described later. The
[0096] また、光学フィルター 19の代わりに、透光性蓋部 12の上面、あるいは、下面に、中 央に窓部を有する絞り部材を設けることも可能である。また、上記光学フィルター 19と 上記絞り部材とを同時に備える構成としても良い。  [0096] Further, instead of the optical filter 19, a diaphragm member having a window portion in the center may be provided on the upper surface or the lower surface of the translucent lid portion 12. The optical filter 19 and the diaphragm member may be provided at the same time.
[0097] 次に、光学装置用モジュール 1における、固体撮像素子 11、透光性蓋部 12、およ び、透光性蓋部 12と有効画素領域 11aとの隔たり、すなわち、空気層 15の厚みに関 して、さらに説明する。なお、以下の説明では、図 1に示したように、固体撮像素子 11 の厚みを h3、透光性蓋部 12の厚みを h2とする。また、空気層 15の厚みを hiとする  [0097] Next, in the optical device module 1, the solid-state imaging device 11, the translucent lid 12, and the separation between the translucent lid 12 and the effective pixel region 11a, that is, the air layer 15 The thickness will be further explained. In the following description, as shown in FIG. 1, the thickness of the solid-state imaging device 11 is h3 and the thickness of the translucent lid 12 is h2. The thickness of the air layer 15 is hi.
[0098] はじめに、透光性蓋部 12に付着したダストが有効画素領域 11aの光学特性に与え る影響について述べる。 First, the effect of dust attached to the translucent lid 12 on the optical characteristics of the effective pixel region 11a will be described.
[0099] 透光性蓋部 12の有効画素領域 11aに対向する面(以下、下面)、あるいは、レンズ 13に対向する面 (以下、上面)にダストが付着した場合、該ダストが有効画素領域 11 a上に影を作り、上記有効画素領域 1 laにおいてこの影に含まれる領域は受光状態 が悪い不良画素領域となる。  [0099] When dust adheres to the surface (hereinafter referred to as the lower surface) facing the effective pixel region 11a of the translucent lid 12 or the surface facing the lens 13 (hereinafter referred to as the upper surface), the dust is applied to the effective pixel region. 11a creates a shadow on the effective pixel area 1la, and the area included in this shadow is a defective pixel area having a poor light receiving state.
[0100] し力しながら、透光性蓋部 12の上面あるいは下面と有効画素領域 11aとの間の距 離を大きくすると、当該不良画素領域の範囲は広がるものの、影は薄くなり、不良画 素領域におけるダストの光学的な影響は低下する。従って、これらの距離をより大きく 設定することにより、透光性蓋部 12にダストが付着した場合でも、有効画素領域 11a の受光状態に実効的な影響を与えない光学装置用モジュール 1を実現できる。  [0100] If the distance between the upper or lower surface of the translucent lid 12 and the effective pixel region 11a is increased while the force is applied, the range of the defective pixel region is widened, but the shadow becomes lighter and the defective image region becomes defective. The optical effect of dust in the elementary region is reduced. Therefore, by setting these distances to be larger, it is possible to realize the optical device module 1 that does not effectively affect the light receiving state of the effective pixel region 11a even when dust adheres to the translucent lid portion 12. .
[0101] 透光性蓋部 12の下面に付着したダストが有効画素領域 11aの受光状態に実効的 な影響を与えな 、ようにするために、透光性蓋部 12の下面と有効画素領域 1 laとの 間の距離 hiは、 10 m以上であることが好ましい。さらに、透光性蓋部 12の下面と 有効画素領域 11aとの間の距離 hiが 20 m以上であれば、透光性蓋部 12の下面 に付着したダストが有効画素領域 11aの受光状態に与える影響をより一層軽減でき る。  [0101] In order to prevent dust adhering to the lower surface of the translucent lid 12 from having an effective influence on the light receiving state of the effective pixel region 11a, the lower surface of the translucent lid 12 and the effective pixel region The distance hi between 1 la is preferably 10 m or more. Furthermore, if the distance hi between the lower surface of the translucent lid 12 and the effective pixel region 11a is 20 m or more, dust adhering to the lower surface of the translucent lid 12 enters the light receiving state of the effective pixel region 11a. The impact can be further reduced.
[0102] また、透光性蓋部 12の厚み h2は、 300 μ m以上であることが好ましい。このとき、透 光性蓋部 12の上面と有効画素領域 11aとの間の距離は、少なくとも 300 m以上に なるから、透光性蓋部 12の上面に付着したダストが有効画素領域 11aの受光状態に 実効的な影響を与えないようにすることができる。さらに、透光性蓋部 12の厚み h2が 400 m以上であれば、透光性蓋部 12の上面に付着したダストが有効画素領域 11 aの受光状態に与える影響をより一層軽減できる。 [0102] The thickness h2 of the translucent lid 12 is preferably 300 μm or more. At this time, the distance between the upper surface of the transparent lid 12 and the effective pixel region 11a is at least 300 m or more. Therefore, it is possible to prevent dust attached to the upper surface of the translucent lid 12 from having an effective influence on the light receiving state of the effective pixel region 11a. Furthermore, if the thickness h2 of the translucent lid 12 is 400 m or more, the influence of dust attached to the upper surface of the translucent lid 12 on the light receiving state of the effective pixel region 11a can be further reduced.
[0103] また、空気層 15の厚 hl、透光性蓋部 12の厚 h2、固体撮像素子 11の厚 h3の合計 hl +h2+h3は、 600 /z m以上 800 m以下であること力 子まし!/ヽ。上記厚みの合 計を 600 m以上 800 m以下に設定することで、光学装置用モジュール 1の大型 化を招来することなぐプロセス搬送時における光学装置用モジュール 1の破損を防 止できる。特に、 12inchウェハでは上記厚みの合計を 700 m以上 800 m以下、 8inchウェハでは上記厚みの合計を 650 μ m以上 750 μ m以下、また、 6inchゥェ ハでは上記厚みの合計を 600 μ m以上 700 μ m以下にすると良い。  [0103] Further, the total hl + h2 + h3 of the thickness hl of the air layer 15, the thickness h2 of the light-transmitting lid 12 and the thickness h3 of the solid-state imaging device 11 is 600 / zm or more and 800 m or less. It's better! By setting the total thickness to 600 m or more and 800 m or less, it is possible to prevent the optical device module 1 from being damaged during the process transfer without causing an increase in the size of the optical device module 1. In particular, for 12-inch wafers, the total thickness is 700 m to 800 m, for 8-inch wafers, the total thickness is 650 μm to 750 μm, and for 6-inch wafers, the total thickness is 600 μm or more. It should be 700 μm or less.
[0104] 次に、本実施の形態に係る光学装置用モジュール 1の製造方法の概略について、 図 4に基づいて説明する。図 4は、本実施の形態に係る光学装置用モジュール 1の 製造方法の概略を示す説明図である。  Next, an outline of a manufacturing method of the optical device module 1 according to the present embodiment will be described with reference to FIG. FIG. 4 is an explanatory diagram showing an outline of a method for manufacturing the optical device module 1 according to the present embodiment.
[0105] 図 4に示したように、当該製造方法においては、はじめに半導体ウェハ 21と透光性 板材 22 (透光性被覆材)とを固定する。  As shown in FIG. 4, in the manufacturing method, first, the semiconductor wafer 21 and the translucent plate 22 (translucent covering material) are fixed.
[0106] ここで、半導体ウェハ 21は複数の固体撮像素子がアレイ状に配列された固体撮像 素子の集合体である。半導体ウェハ 21における各個体撮像素子は、上述した固体 撮像素子 11と同一の構成を有するので、ここでは説明を省略するとともに、各個体撮 像素子の構成部材は固体撮像素子 11の構成部材の部材番号と同じ部材番号で参 照する。また、半導体ウェハ 21において、各個体撮像素子 1の有効画素領域 11aが 形成された面上に、予め電極パッド 16を形成し、電極パッド 16と固体撮像素子 11の 出力端子とを電気的に接続しておく。  Here, the semiconductor wafer 21 is an aggregate of solid-state image sensors in which a plurality of solid-state image sensors are arranged in an array. Since each individual image pickup device in the semiconductor wafer 21 has the same configuration as that of the solid-state image pickup device 11 described above, the description thereof is omitted here, and the constituent members of the individual image pickup devices are members of the constituent members of the solid-state image pickup device 11. Reference with the same part number as the number. In addition, on the surface of the semiconductor wafer 21 on which the effective pixel region 11a of each individual image sensor 1 is formed, the electrode pad 16 is formed in advance, and the electrode pad 16 and the output terminal of the solid-state image sensor 11 are electrically connected. Keep it.
[0107] また、透光性板材 22は板状に形成されたガラスであり、これを固体撮像素子 11の サイズに分割したものが透光性蓋部 12に相当する。なお、透光性板材 22は板状の ガラスに限らず、半導体ウェハ 21を被覆する透明部材であれば十分である。  [0107] The translucent plate 22 is glass formed in a plate shape, and the one obtained by dividing the glass into the size of the solid-state imaging device 11 corresponds to the translucent lid 12. The translucent plate material 22 is not limited to plate-like glass, and any transparent member that covers the semiconductor wafer 21 is sufficient.
[0108] 図 4に示したように、本実施の形態に係る製造方法は、はじめに、半導体ウェハ 21 に、透光性板材 22を、後述するように格子状にパターユングされた感光性接着剤 23 (固定部)を介して接着固定する工程 (第 1の工程)を含む。感光性接着剤 23のバタ 一ユング処理、および、感光性接着材 23を固化して半導体ウェハ 21と透光性板材 2 2とを接着固定する処理は、フォトリソグラフィー技術として周知の塗布 ·露光 ·現像な どの各処理により行なうことができる。これにより、光学装置用モジュール 1における固 定部の位置と、固定部の高さ (すなわち透光性蓋部 12と有効画素領域 11aとの隔た り)を、高精度に調整できる。 As shown in FIG. 4, in the manufacturing method according to the present embodiment, first, a photosensitive adhesive obtained by patterning a translucent plate 22 on a semiconductor wafer 21 in a lattice pattern as will be described later. twenty three Including a step (first step) of bonding and fixing via the (fixing portion). Battering of the photosensitive adhesive 23 and the process of solidifying the photosensitive adhesive 23 and bonding and fixing the semiconductor wafer 21 and the translucent plate 2 2 are well known as photolithography techniques. It can be performed by each process such as development. Thereby, the position of the fixed portion and the height of the fixed portion (that is, the distance between the translucent lid portion 12 and the effective pixel region 11a) in the optical device module 1 can be adjusted with high accuracy.
[0109] 薄い半導体ウェハ 21に固定された透明性板材 22は、当該光学装置用モジュール の製造工程において、ウェハ支持体として機能する。これにより、半導体ウェハ 21を 破損することなく搬送したり、また、後述するように、半導体ウェハ 21の裏面を研磨し たりすることが可能になる。また、透光性板材 22のサイズは、半導体ウェハ 21のサイ ズより大きぐ例えば半導体ウェハ 21のサイズより 0. l〜2mm大きく設定するのが好 ましい。これにより、製造工程、特に後述する半導体ウェハ 21の裏面を研磨する工程 の後の製造工程において、半導体ウェハ 21が外部の障害物に接触して損傷するこ とを防止することがでさる。  The transparent plate member 22 fixed to the thin semiconductor wafer 21 functions as a wafer support in the manufacturing process of the module for an optical device. As a result, the semiconductor wafer 21 can be transported without being damaged, and the back surface of the semiconductor wafer 21 can be polished as will be described later. The size of the translucent plate 22 is preferably set larger than the size of the semiconductor wafer 21, for example, 0.1 to 2 mm larger than the size of the semiconductor wafer 21. As a result, it is possible to prevent the semiconductor wafer 21 from coming into contact with external obstacles and being damaged in the manufacturing process, particularly the manufacturing process after the process of polishing the back surface of the semiconductor wafer 21 described later.
[0110] ここで、感光性接着剤 23のパターニングに関して説明する。感光性接着材 23は、 透光性板材 22の側に塗布しても良いし、あるいは、半導体ウェハ 21の側に塗布して も良い。そこで、感光性接着剤 23を透光性板材 22に塗布する場合については、図 5 を参照しながら説明し、感光性接着剤 23を半導体ウェハ 21に塗布する場合につい ては、図 6を参照しながら説明する。  Here, the patterning of the photosensitive adhesive 23 will be described. The photosensitive adhesive 23 may be applied to the light transmissive plate 22 side, or may be applied to the semiconductor wafer 21 side. Therefore, the case where the photosensitive adhesive 23 is applied to the translucent plate 22 will be described with reference to FIG. 5, and the case where the photosensitive adhesive 23 is applied to the semiconductor wafer 21 will be described with reference to FIG. While explaining.
[0111] 図 5は透光性板材 22に感光性接着剤 23を塗布する場合の感光性接着剤 23のパ ターニングについて説明するための図である。ここで、図 5 (a)は透光性板材 22およ び半導体ウェハ 21の上面図、図 5 (b)は透光性板材 22および半導体ウェハ 21の Y — Y'断面における断面図、図 5 (c)は感光性接着剤 23の他のパターユングを示す ための透光性板材 22および半導体ウェハ 21の Y—Y'断面における断面図である。  FIG. 5 is a view for explaining the patterning of the photosensitive adhesive 23 when the photosensitive adhesive 23 is applied to the translucent plate 22. Here, Fig. 5 (a) is a top view of the translucent plate 22 and the semiconductor wafer 21, and Fig. 5 (b) is a cross-sectional view of the translucent plate 22 and the semiconductor wafer 21 along the Y-Y 'cross section. FIG. 5C is a cross-sectional view of the light-transmitting plate 22 and the semiconductor wafer 21 taken along the line YY ′ for showing another patterning of the photosensitive adhesive 23.
[0112] 図 5 (b)に示すように、感光性接着材 23は、半導体ウェハ 21における固体撮像素 子 11の境界 21aに対応するスクライブラインを含む格子状領域に、接着後に感光性 接着剤 23が各有効画素領域 11a〖こ接触しないよう塗布される。また、感光性接着剤 23は、図 5 (c)に示すように、上記格子状領域力 スクライブライン真上を除いた領域 に塗布しても良い。 [0112] As shown in FIG. 5 (b), the photosensitive adhesive 23 is bonded to a lattice-like region including a scribe line corresponding to the boundary 21a of the solid-state imaging element 11 on the semiconductor wafer 21 after bonding. 23 is applied so as not to contact each effective pixel region 11a. Further, as shown in FIG. 5 (c), the photosensitive adhesive 23 is an area excluding the lattice area force scribe line directly above. You may apply to.
[0113] 図 5 (b)に示した格子状領域に感光性接着剤 23を塗布する場合、接着面積が広く なる分、空気層 15の外部環境からの密閉度が向上するというメリットがある。一方、図 5 (c)に示した領域に感光性接着剤 23を塗布する場合、接着領域の段差で発生す る可能性のあるボイド(隙間)を抑制できるというメリットがある。  [0113] When the photosensitive adhesive 23 is applied to the lattice region shown in FIG. 5 (b), there is a merit that the airtightness of the air layer 15 from the outside environment is improved as the adhesion area is increased. On the other hand, when the photosensitive adhesive 23 is applied to the area shown in FIG. 5 (c), there is an advantage that voids (gap) that may be generated at the level difference in the adhesion area can be suppressed.
[0114] 図 5 (b)や図 5 (c)に示したような、透光性板材 22に接着材パターンを形成する場 合には共通して、接着剤パターンが形成される面の平坦性により、現像残渣除去が 容易になると 、うメリットがある。  [0114] When the adhesive pattern is formed on the translucent plate 22 as shown in Fig. 5 (b) and Fig. 5 (c), the surface on which the adhesive pattern is formed is common. This makes it easier to remove development residues.
[0115] 図 6は半導体ウェハ 21に感光性接着剤 23を塗布する場合の感光性接着剤 23の パター-ングについて説明するための図である。ここで、図 6 (a)は透光性板材 22お よび半導体ウェハ 21の上面図、図 6 (b)は透光性板材 22および半導体ウェハ 21の Y— Y'断面における断面図、図 6 (c)は感光性接着剤 23の他のパターユングを示す 、透光性板材 22および半導体ウェハ 21の Y—Y'断面における断面図である。  FIG. 6 is a diagram for explaining the patterning of the photosensitive adhesive 23 when the photosensitive adhesive 23 is applied to the semiconductor wafer 21. Here, FIG. 6 (a) is a top view of the translucent plate 22 and the semiconductor wafer 21, FIG. 6 (b) is a cross-sectional view of the translucent plate 22 and the semiconductor wafer 21 in the Y-Y 'cross section, and FIG. (c) is a cross-sectional view of the light-transmitting plate 22 and the semiconductor wafer 21 taken along the line YY ′, showing another patterning of the photosensitive adhesive 23.
[0116] 図 6 (b)に示すように、感光性接着材 23は、半導体ウェハ 21における固体撮像素 子 11の境界 21aを含む格子状領域に、各有効画素領域 11aに接触しないよう塗布さ れる。また、感光性接着剤 23は、図 6 (c)に示すように、上記格子状領域からスクライ ブライン真上を除 、た領域に塗布しても良 、。  [0116] As shown in FIG. 6 (b), the photosensitive adhesive 23 is applied to the grid-like region including the boundary 21a of the solid-state imaging element 11 on the semiconductor wafer 21 so as not to contact each effective pixel region 11a. It is. Further, as shown in FIG. 6 (c), the photosensitive adhesive 23 may be applied to a region excluding the scribe line from the lattice region.
[0117] 図 6 (b)に示した格子状領域に感光性接着剤 23を塗布する場合、接着面積が広く なる分、空気層 15の外部環境からの密閉度が向上するというメリットがある。一方、図 6 (c)に示した領域に感光性接着剤 23を塗布する場合、接着領域の段差で発生す る可能性のあるボイド(隙間)を抑制できるというメリットがある。  [0117] When the photosensitive adhesive 23 is applied to the lattice-shaped region shown in FIG. 6 (b), there is an advantage that the airtightness of the air layer 15 from the outside environment is improved as the adhesion area is increased. On the other hand, when the photosensitive adhesive 23 is applied to the region shown in FIG. 6 (c), there is an advantage that voids (gap) that may be generated at the step of the adhesive region can be suppressed.
[0118] 図 6 (b)や図 6 (c)に示したような、半導体ウェハ 21に接着材パターンを形成する場 合には共通して、半導体ウェハ 21と透光性板材 22との位置合わせが容易になると いうメリットがある。  [0118] When an adhesive pattern is formed on the semiconductor wafer 21 as shown in FIG. 6 (b) and FIG. 6 (c), the positions of the semiconductor wafer 21 and the translucent plate 22 are common. There is a merit that alignment becomes easy.
[0119] 図 5に示したパターユングを採用する場合も、図 6に示したパターユングを採用する 場合も、電極パッド 16は感光性接着剤 23に埋設されている。従って、感光性接着剤 23の固化時、あるいは、アニーリング時に、感光性接着剤 23からなる固定部がわず かに変形を被った場合でも、感光性接着剤 23による空気層 15の密閉が破れることを 有効に防止することができる。 The electrode pad 16 is embedded in the photosensitive adhesive 23 both when the patterning shown in FIG. 5 is adopted and when the patterning shown in FIG. 6 is adopted. Therefore, even when the photosensitive adhesive 23 is solidified or annealed, even if the fixing portion made of the photosensitive adhesive 23 is slightly deformed, the sealing of the air layer 15 by the photosensitive adhesive 23 is broken. That It can be effectively prevented.
[0120] なお、感光性接着剤 23の厚みは、固化後に 10 m以上の厚みを有するように設 定されることが好ましぐ固化後に 20 m以上の厚みを有するように設定されるとさら に好ましい。このように感光性接着剤 23の厚みを設定することで、透光性板材 22に ダストが付着した場合でも、有効画素領域 1 laの受光状態に実効的な影響を与えな い光学装置用モジュール 1を製造することが可能になる。  [0120] Note that the thickness of the photosensitive adhesive 23 is preferably set to have a thickness of 10 m or more after solidification, and is more preferably set to have a thickness of 20 m or more after solidification. Is preferable. By setting the thickness of the photosensitive adhesive 23 in this way, even if dust adheres to the translucent plate 22, the optical device module that does not effectively affect the light receiving state of the effective pixel area 1 la. 1 can be manufactured.
[0121] なお、感光性接着剤 23のパターンは上述のものに限らず、少なくとも半導体ウェハ 21に含まれる各個体撮像素子 11の有効画素領域 11aの外部の領域と上記透光性 板材 22とが感光性接着剤 23を介して固定されるものであれば良い。  [0121] The pattern of the photosensitive adhesive 23 is not limited to that described above, and at least the area outside the effective pixel area 11a of each individual image sensor 11 included in the semiconductor wafer 21 and the translucent plate 22 are included. Any material can be used as long as it is fixed via the photosensitive adhesive 23.
[0122] また、感光性接着剤 23はさらに難燃性を備えていることが好ましい。感光性接着剤 23として難燃性を有する感光性接着剤を用いて光学装置用モジュール 1を製造する ことで、例えば UL— 94に準拠した難燃性試験で V—0が確認できる、すなわち難燃 性試験に合格となる光学装置用モジュール 1を提供することができる。このような、光 学装置用モジュール 1は高温環境での使用が前提とされる光学装置にも、好適に利 用できる。  [0122] The photosensitive adhesive 23 preferably further has flame retardancy. By manufacturing the optical device module 1 using a photosensitive adhesive having flame retardancy as the photosensitive adhesive 23, V-0 can be confirmed, for example, in a flame retardant test in accordance with UL-94. It is possible to provide the optical device module 1 that passes the flammability test. Such an optical device module 1 can be suitably used for an optical device that is supposed to be used in a high temperature environment.
[0123] また、本実施の形態においては、半導体ウェハ 21と透光性板材 22とを固定する固 定部として、感光性接着剤 23を用いたが、本発明はこれに限定されるものではない。 すなわち、例えば、シート状の感光性フィルムをフォトリソグラフィ一でパターユングし 、これを固定部として用いて、半導体ウェハ 21と透光性板材 22とを固定することも可 能である。また、印刷マスクを用いて固定部を印刷して形成することも可能である。  [0123] In the present embodiment, the photosensitive adhesive 23 is used as a fixing portion for fixing the semiconductor wafer 21 and the translucent plate member 22. However, the present invention is not limited to this. Absent. That is, for example, a sheet-like photosensitive film can be patterned by photolithography, and the semiconductor wafer 21 and the translucent plate 22 can be fixed using this as a fixing part. It is also possible to print and form the fixed part using a print mask.
[0124] 図 4に示したように、上記工程に続いて、半導体ウェハ 21の裏面研磨が行なわれる 。半導体ウェハ 21の裏面研磨は、半導体ウェハ 21を数十/ z mから数百/ z mの厚さ に薄膜ィ匕するための工程である。具体的には、透光性板材 22をウェハ支持体として 、半導体ウェハ 21の裏面を、例えばバックグラインダーを用いて研磨する。なお、研 磨後の半導体ウェハ 21の厚みは、半導体ウェハ 21の裏面力も各電極パッド 16に至 る貫通孔 17aを深堀エッチングにより技術的な支障なく実用的な時間で形成すること が可能な厚みであれば良 、。  [0124] As shown in FIG. 4, following the above-described steps, the back surface of the semiconductor wafer 21 is polished. The backside polishing of the semiconductor wafer 21 is a process for thinning the semiconductor wafer 21 to a thickness of several tens / z m to several hundreds / z m. Specifically, the back surface of the semiconductor wafer 21 is polished using, for example, a back grinder, using the translucent plate 22 as a wafer support. The thickness of the semiconductor wafer 21 after polishing is such that the through-hole 17a leading to each electrode pad 16 can be formed in a practical time without technical trouble by the back surface force of the semiconductor wafer 21. If so, good.
[0125] 上述したバックグラインダーによる研磨時には、半導体ウェハ 21とウェハ支持体で ある透光性板材 22との間に機械的なストレスが加わる。しかしながら、半導体ウェハ 2 1と透光性板材 22とは有効画素領域 11aの外部の領域において感光性接着剤 23を 介して固定されているため、この機械的なストレスが有効画素領域 11a上のマイクロ レンズアレイ l ibに作用することはない。従って、当該工程において、マイクロレンズ アレイ 1 lbが損傷を受けることはな 、。 [0125] During polishing by the back grinder described above, the semiconductor wafer 21 and the wafer support are used. Mechanical stress is applied between the translucent plate 22. However, since the semiconductor wafer 21 and the translucent plate 22 are fixed via the photosensitive adhesive 23 in the area outside the effective pixel area 11a, this mechanical stress is applied to the microscopic area on the effective pixel area 11a. It does not affect the lens array l ib. Therefore, the microlens array 1 lb is not damaged in this process.
[0126] 続いて、図 4に示したように、再配線 17および外部接続端子 18の形成する工程が 行なわれる。再配線 17および外部接続端子 18の形成する工程について、図 7を参 照しながら説明する。ここで、図 7 (a)は、半導体ウェハ 21と透光性板材 22とからなる 構造体の上面図であり、図 7 (b)から図 7 (d)は該構造体の Y— Y'断面を示す断面図 であり、図 7 (e)は外部接続端子 18形成後の該構造体を下面の状態を示す下面図 である。 Subsequently, as shown in FIG. 4, a process of forming the rewiring 17 and the external connection terminal 18 is performed. The process of forming the rewiring 17 and the external connection terminal 18 will be described with reference to FIG. Here, FIG. 7 (a) is a top view of the structure composed of the semiconductor wafer 21 and the translucent plate 22, and FIGS. 7 (b) to 7 (d) show Y—Y ′ of the structure. FIG. 7 (e) is a bottom view showing the state of the bottom surface of the structure after the external connection terminals 18 are formed.
[0127] 図 7 (c)に示したように、半導体ウェハ 21の裏面力も各電極パッド 16に至る貫通孔 17aを深堀エッチングにより形成する。当該貫通孔 17aは、一般的に行われている反 応性イオンエッチングにより形成すれば良い。半導体ウェハ 21と再配線 17とを絶縁 するために、貫通孔 17a形成後に、該貫通孔 17aの内壁に絶縁膜を形成する。当該 絶縁膜は、例えば、プラズマ CVDにより形成すれば良い。続けて、 TaN等のノリア 層、 Cuシード層、及び Cuメツキなどから成る導電層を形成し、その後、フォトリソダラ フィとエッチングにより、貫通孔 17a、及びウェハ裏面に再配線 17を形成する。その 後、半導体ウェハ 21の裏側に保護膜を形成し、これの一部を窓明けし再配線 17が 露出した部位に、該部位と電気的に接続するよう、外部接続端子 18を形成する。ここ で、電極パッド 16は再配線 17を半導体ウェハ 21の表面側力も押圧し、再配線 17が 半導体ウェハ 21の表面側に露出することを妨げている。ここで、電極パッド 16は上 述したように固化した透光性接着剤 23に埋蔵されているので、電極パッド 16が半導 体ウェハ 21の表面力も離脱することはない。  As shown in FIG. 7 (c), through-holes 17a reaching the respective electrode pads 16 are formed by deep etching as well as the back surface force of the semiconductor wafer 21. The through hole 17a may be formed by reactive ion etching that is generally performed. In order to insulate the semiconductor wafer 21 from the rewiring 17, an insulating film is formed on the inner wall of the through hole 17a after the through hole 17a is formed. For example, the insulating film may be formed by plasma CVD. Subsequently, a conductive layer composed of a noria layer such as TaN, a Cu seed layer, and Cu plating is formed, and then a through hole 17a and a rewiring 17 are formed on the back surface of the wafer by photolithography and etching. After that, a protective film is formed on the back side of the semiconductor wafer 21, and an external connection terminal 18 is formed at a part where a part of the protective film is opened and the rewiring 17 is exposed so as to be electrically connected to the part. Here, the electrode pad 16 also presses the rewiring 17 with the surface side force of the semiconductor wafer 21, thereby preventing the rewiring 17 from being exposed to the surface side of the semiconductor wafer 21. Here, since the electrode pad 16 is embedded in the solidified translucent adhesive 23 as described above, the electrode pad 16 does not release the surface force of the semiconductor wafer 21.
[0128] 上述の工程において、外部接続用端子 18は半導体ウェハ 21に含まれる各固体撮 像素子 11の裏面周辺部に配置されるが、これらの外部接続端子 18に加え、さらに各 個体撮像素子 1の裏面中心部にも外部接続端子 18aを配置する構成としても良い。 これらの中心部に配置された外部接続端子 18aは、周辺部に配置された上述の外 部接続端子 18と同様、固体撮像素子 11の出力又は入力端子と電気的に接続され ていても良いし、あるいは、ダミー端子であっても良い。このようにして、半導体ウェハ 21に含まれる各個体撮像素子 11の裏面全体に外部接続端子を形成した状態の半 導体ウェハ 21の断面図を図 7 (d)に、また、下面図を図 7 (e)に示す。図 7 (e)に示し たように外部接続端子 18および 18aを固体撮像素子 11の裏面全体にバランス良く 配置することで、光学装置用モジュール 1を光学装置に実装する際に、光学装置用 モジュール 1に加わる熱的ストレス、または、機械的ストレスを効果的に分散し、光学 装置用モジュール 1が破損することを防止することができる。 [0128] In the above-described steps, the external connection terminals 18 are arranged in the periphery of the back surface of each solid-state imaging element 11 included in the semiconductor wafer 21, but in addition to these external connection terminals 18, each individual imaging element is further provided. The external connection terminal 18a may be arranged at the center of the back surface of 1. The external connection terminals 18a arranged in the center of these are the above-mentioned external terminals arranged in the periphery. Similarly to the unit connection terminal 18, it may be electrically connected to the output or input terminal of the solid-state imaging device 11, or may be a dummy terminal. In this way, FIG. 7 (d) shows a cross-sectional view of the semiconductor wafer 21 with external connection terminals formed on the entire back surface of each individual image pickup device 11 included in the semiconductor wafer 21, and FIG. Shown in (e). As shown in FIG. 7 (e), by arranging the external connection terminals 18 and 18a in a well-balanced manner on the entire back surface of the solid-state imaging device 11, when mounting the optical device module 1 on the optical device, the optical device module Thermal stress or mechanical stress applied to 1 can be effectively dispersed to prevent the optical device module 1 from being damaged.
[0129] 続けて、図 4に示したように、半導体ウェハ 21と透光性板材 22とからなる構造体に 、さらにレンズ集合板 24を固定する工程 (第 2の工程)が行なわれる。レンズ集合板 2 4は、半導体ウェハ 21における固体撮像素子 11の配列に対応して配列された複数 のレンズ力 構成されている。ここで、レンズ集合板 24に含まれる各レンズは、上述し たレンズ 13と同様の構造を有している。レンズ集合板 24は、レンズ集合板 24に含ま れる各レンズの中心と、半導体ウェハ 21に含まれる各固体撮像素子 11の有効画素 領域 11aの中心とがー致するよう、位置あわせして、透光性板材 22に接着固定され る。図 8に、レンズ集合板 24を固定する工程を完了して得られる、半導体ウェハ 21と 透光性板材 22とレンズ集合板 24とからなる構造体 25を示す。ここで、図8 (a)は当該 構造体 25の上面図であり、図 8 (b)は当該構造体の Y—Y'断面を示す断面図である Subsequently, as shown in FIG. 4, a step (second step) of fixing the lens assembly plate 24 to the structure composed of the semiconductor wafer 21 and the translucent plate 22 is performed. The lens assembly plate 24 has a plurality of lens forces arranged corresponding to the arrangement of the solid-state imaging elements 11 on the semiconductor wafer 21. Here, each lens included in the lens assembly plate 24 has the same structure as the lens 13 described above. The lens assembly plate 24 is aligned and transparent so that the center of each lens included in the lens assembly plate 24 and the center of the effective pixel region 11a of each solid-state imaging device 11 included in the semiconductor wafer 21 are aligned. Bonded and fixed to the optical plate 22. FIG. 8 shows a structure 25 composed of a semiconductor wafer 21, a translucent plate member 22, and a lens assembly plate 24 obtained by completing the process of fixing the lens assembly plate 24. Here, FIG. 8 (a) is a top view of the structure 25, FIG. 8 (b) is a sectional view showing a Y-Y 'cross section of the structure
[0130] 最後に、図 4に示したように、上記各工程が終了した後、半導体ウェハ 21と透光性 板材 22とレンズ集合板 24とからなる構造体 25を、例えば、ダイシングソー 26などを 用いて分割し個片化することにより、上述した個々の光学装置用モジュール 1が形成 される。 [0130] Finally, as shown in FIG. 4, after each of the above steps is completed, the structure 25 including the semiconductor wafer 21, the translucent plate 22 and the lens assembly plate 24 is replaced with, for example, a dicing saw 26 or the like. The above-described individual optical device modules 1 are formed by dividing into individual pieces using.
[0131] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性  [0131] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention. Industrial applicability
[0132] 本発明に係る光学装置用モジュールは、光学装置に搭載する撮像手段として利用 することが可能であり、特に、カメラ付き携帯電話など小型の光学装置に搭載して利 用するのに好適である。また、車載用、あるいは、医療機器用のカメラモジュールとし ても好適に利用できる。さらに、 OPIC (Optical IC :登録商標)用の受光素子としても 好適に利用できる。 [0132] The module for an optical device according to the present invention is used as an imaging means mounted on the optical device. In particular, it is suitable for use in a small optical device such as a camera-equipped mobile phone. Further, it can be suitably used as a camera module for in-vehicle use or medical equipment. Furthermore, it can be suitably used as a light receiving element for OPIC (Optical IC: registered trademark).

Claims

請求の範囲 The scope of the claims
[1] マイクロレンズアレイを具備した有効画素領域を有し、該有効画素領域の外部の領 域に電極パッドが配置されている固体撮像素子と、  [1] A solid-state imaging device having an effective pixel region including a microlens array, and an electrode pad disposed in a region outside the effective pixel region;
透光性を有し上記有効画素領域を覆う透光性被覆材とを備え、  A translucent covering material that has translucency and covers the effective pixel region,
上記透光性被覆材は、上記固体撮像素子の出力又は入力端子に接続された上記 電極パッドを埋蔵するように設けられた固定部を介して上記固体撮像素子における 上記有効画素領域の外部の領域に固定され、上記有効画素領域と上記透光性被覆 材とが隔てられていることを特徴とする光学装置用モジュール。  The translucent covering material is an area outside the effective pixel area in the solid-state image sensor via a fixing portion provided so as to embed the electrode pad connected to the output or input terminal of the solid-state image sensor. An optical device module, wherein the effective pixel region and the translucent coating material are separated from each other.
[2] 上記有効画素領域と上記透光性被覆材との間の隔たりは、 10 μ m以上であること を特徴とする請求項 1に記載の光学装置用モジュール。  [2] The optical device module according to [1], wherein a distance between the effective pixel region and the translucent coating material is 10 μm or more.
[3] 上記透光性被覆材の厚みは、 300 μ m以上であることを特徴とする請求項 1または[3] The thickness of the translucent coating material is 300 μm or more, or 1 or
2に記載の光学装置用モジュール。 2. The module for an optical device according to 2.
[4] 上記有効画素領域と上記透光性被覆材との間の隔たり、上記透光性被覆材の厚 み、および、上記固体撮像素子の厚みの合計は、 600 m以上 800 m以下である ことを特徴とする請求項 1から 3のうち何れか 1項に記載の光学装置用モジュール。 [4] The total distance between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the thickness of the solid-state imaging device is 600 m or more and 800 m or less. The optical device module according to any one of claims 1 to 3, wherein the module is for an optical device.
[5] 上記固定部は上記有効画素領域を取り囲み、上記有効画素領域と上記透光性被 覆材との間に形成された空間を密閉することを特徴とする請求項 1から 4のうちの何 れか 1項に記載の光学装置用モジュール。 5. The fixing unit surrounds the effective pixel region, and seals a space formed between the effective pixel region and the translucent covering material. Any one of the modules for optical devices according to item 1.
[6] 上記透光性被覆材は板状であり、 [6] The translucent coating material is plate-shaped,
上記透光性被覆材の表面に光学フィルターが形成されていることを特徴とする請 求項 1から 5のうち何れか 1項に記載の光学装置用モジュール。  6. The optical device module according to any one of claims 1 to 5, wherein an optical filter is formed on a surface of the translucent coating material.
[7] 上記固定部は、感光性接着剤を含むことを特徴とする請求項 1から 6のうち何れか 1 項に記載の光学装置用モジュール。 7. The optical device module according to any one of claims 1 to 6, wherein the fixing portion includes a photosensitive adhesive.
[8] 上記固体撮像素子は、上記電極パッドが配置された面の裏側の面力も上記電極パ ッドに至り上記電極パッドに接続された再配線と、上記電極パッドが配置された面の 裏側の面に配置され上記再配線に接続された外部接続端子とを備えている、ことを 特徴とする請求項 1から 7のうち何れ力 1項に記載の光学装置用モジュール。 [8] In the solid-state imaging device, the surface force on the back side of the surface on which the electrode pad is arranged also reaches the electrode pad and is connected to the electrode pad, and on the back side of the surface on which the electrode pad is arranged The optical device module according to any one of claims 1 to 7, further comprising an external connection terminal disposed on the surface and connected to the rewiring.
[9] マイクロレンズアレイを備えた有効画素領域を有し、該有効画素領域の外部の領域 に電極パッドが配置されている固体撮像素子を複数配列してなる半導体ウェハに、 上記半導体ウェハを覆う透光性被覆材を固定する第 1の工程を含み、 [9] An effective pixel area having a microlens array, and an area outside the effective pixel area Including a first step of fixing a light-transmitting coating material covering the semiconductor wafer to a semiconductor wafer in which a plurality of solid-state imaging devices having electrode pads arranged thereon are arranged,
上記第 1の工程では、上記透光性被覆材を、上記有効画素領域と隔てて、上記半 導体ウェハに含まれる各固体撮像素子における上記有効画素領域の外部の領域に 、上記固体撮像素子の出力又は入力端子に接続された上記電極パッドを埋蔵する ように設けられた固定部を介して固定することを特徴とする光学装置用モジュールの 製造方法。  In the first step, the translucent covering material is separated from the effective pixel region, and the region of the solid-state image sensor is disposed outside the effective pixel region in each solid-state image sensor included in the semiconductor wafer. A method for manufacturing a module for an optical device, wherein the electrode pad connected to an output or input terminal is fixed through a fixing portion provided so as to be embedded.
[10] 上記有効画素領域と上記透光性被覆材との間の隔たりは、 10 μ m以上であること を特徴とする請求項 9に記載の光学装置用モジュールの製造方法。  10. The method for manufacturing a module for an optical device according to claim 9, wherein a distance between the effective pixel region and the translucent covering material is 10 μm or more.
[11] 上記透光性被覆材の厚みは、 300 μ m以上であることを特徴とする請求項 9または 10に記載の光学装置用モジュールの製造方法。  [11] The method for manufacturing a module for an optical device according to [9] or [10], wherein the translucent coating material has a thickness of 300 μm or more.
[12] 上記有効画素領域と上記透光性被覆材との間の隔たり、上記透光性被覆材の厚 み、および、上記固体撮像素子の厚みの合計は、 600 m以上 800 m以下である ことを特徴とする請求項 9から 11のうち何れか 1項に記載の光学装置用モジュールの 製造方法。  [12] The distance between the effective pixel region and the translucent coating material, the thickness of the translucent coating material, and the total thickness of the solid-state imaging device is 600 m or more and 800 m or less. The method for manufacturing a module for an optical device according to any one of claims 9 to 11, wherein:
[13] 上記固定部を上記各有効画素領域を取り囲むように形成し、上記各有効画素領域 と上記透光性被覆材との間に形成された空間を密閉することを特徴とする請求項 9 から 12のうち何れか 1項に記載の光学装置用モジュールの製造方法。  13. The fixing portion is formed so as to surround each effective pixel region, and a space formed between each effective pixel region and the translucent covering material is sealed. 13. A method for producing a module for an optical device according to any one of items 1 to 12.
[14] 上記固定部は感光性接着剤を含むことを特徴とする請求項 9から 13のうち何れ力 1 項に記載の光学装置用モジュールの製造方法。  14. The method for manufacturing a module for an optical device according to any one of claims 9 to 13, wherein the fixing portion includes a photosensitive adhesive.
[15] 上記半導体ウェハに含まれる各固体撮像素子は、上記電極パッドが配置された面 の裏側の面から上記電極パッドに至り上記電極パッドに接続された再配線と、上記 電極パッドが配置された面の裏側の面に配置され上記再配線に接続された外部接 続端子とを備え、  [15] Each solid-state imaging device included in the semiconductor wafer includes a rewiring that reaches the electrode pad from the back surface of the surface on which the electrode pad is disposed and is connected to the electrode pad, and the electrode pad is disposed. An external connection terminal disposed on the back side of the back surface and connected to the rewiring,
上記第 1の工程では、上記固体撮像素子に上記電極パッドを形成した後、上記電 極パッドを埋蔵するように上記固定部を形成することを特徴とする請求項 9から 14の うち何れか 1項に記載の光学装置用モジュールの製造方法。  15. The method according to claim 9, wherein, in the first step, after the electrode pad is formed on the solid-state imaging device, the fixing portion is formed so as to bury the electrode pad. The manufacturing method of the module for optical apparatuses as described in a term.
[16] 上記透光性被覆材のサイズは、上記半導体ウェハのサイズより大きいことを特徴と する請求項 9から 15のうち何れか 1項に記載の光学装置用モジュールの製造方法。 マイクロレンズアレイを備えた有効画素領域を有し、該有効画素領域の外部の領域 に電極パッドが配置されている固体撮像素子を複数配列してなる半導体ウェハに、 上記半導体ウェハを覆う透光性被覆材が固定されてなる構造体であって、 [16] The size of the translucent coating material is larger than the size of the semiconductor wafer. The method for manufacturing a module for an optical device according to any one of claims 9 to 15. A translucent material that covers the semiconductor wafer on a semiconductor wafer having a plurality of solid-state imaging devices having an effective pixel area having a microlens array and electrode pads arranged in an area outside the effective pixel area. A structure in which a covering material is fixed,
上記透光性被覆材は、上記半導体ウェハに含まれる各固体撮像素子における上 記有効画素領域の外部の領域に、上記固体撮像素子の出力又は入力端子に接続 された上記電極パッドを埋蔵するように設けられた固定部を介して固定されており、 上記有効画素領域と隔てられていることを特徴とする構造体。  The translucent covering material embeds the electrode pad connected to the output or input terminal of the solid-state image sensor in an area outside the effective pixel area of each solid-state image sensor included in the semiconductor wafer. The structure is fixed through a fixing portion provided in the structure, and is separated from the effective pixel region.
PCT/JP2006/322121 2005-11-07 2006-11-06 Module for optical device, method of manufacturing module for optical device and structure for device WO2007052796A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-322687 2005-11-07
JP2005322687A JP2007129164A (en) 2005-11-07 2005-11-07 Module for optical apparatus, method of manufacturing same, and structure

Publications (1)

Publication Number Publication Date
WO2007052796A1 true WO2007052796A1 (en) 2007-05-10

Family

ID=38005947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/322121 WO2007052796A1 (en) 2005-11-07 2006-11-06 Module for optical device, method of manufacturing module for optical device and structure for device

Country Status (3)

Country Link
JP (1) JP2007129164A (en)
TW (1) TW200720709A (en)
WO (1) WO2007052796A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8456560B2 (en) * 2007-01-26 2013-06-04 Digitaloptics Corporation Wafer level camera module and method of manufacture
JP2009010261A (en) * 2007-06-29 2009-01-15 Fujikura Ltd Semiconductor package and manufacturing method thereof
KR100959922B1 (en) 2007-11-20 2010-05-26 삼성전자주식회사 Camera modules and methods of fabricating the same
JP4891214B2 (en) * 2007-12-13 2012-03-07 シャープ株式会社 Electronic element wafer module, electronic element module, sensor wafer module, sensor module, lens array plate, sensor module manufacturing method, and electronic information device
TWI402979B (en) * 2007-12-13 2013-07-21 Sharp Kk Electronic element wafer module, electronic element module, sensor wafer module, sensor module, lens array plate, manufacturing method for the sensor module, and electronic information device
JP4800291B2 (en) * 2007-12-13 2011-10-26 シャープ株式会社 Method for manufacturing sensor module and method for manufacturing electronic information device
TW200937642A (en) * 2007-12-19 2009-09-01 Heptagon Oy Wafer stack, integrated optical device and method for fabricating the same
FR2931587B1 (en) * 2008-05-21 2011-05-13 Commissariat Energie Atomique METHOD FOR PRODUCING AN OPTICAL DEVICE WITH INTEGRATED OPTOELECTRONIC COMPONENTS
JP4764941B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4764942B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4768060B2 (en) * 2008-09-25 2011-09-07 シャープ株式会社 Optical element, optical element wafer, optical element wafer module, optical element module, optical element module manufacturing method, electronic element wafer module, electronic element module manufacturing method, electronic element module, and electronic information device
JP4819152B2 (en) * 2008-09-25 2011-11-24 シャープ株式会社 Optical element wafer, optical element wafer module, optical element module, method for manufacturing optical element module, electronic element wafer module, method for manufacturing electronic element module, electronic element module, and electronic information device
JP5165524B2 (en) * 2008-10-10 2013-03-21 シャープ株式会社 Wafer scale lens, wafer scale module, and electronic device
JP5498684B2 (en) 2008-11-07 2014-05-21 ラピスセミコンダクタ株式会社 Semiconductor module and manufacturing method thereof
US9419032B2 (en) 2009-08-14 2016-08-16 Nanchang O-Film Optoelectronics Technology Ltd Wafer level camera module with molded housing and method of manufacturing
JP5010661B2 (en) * 2009-09-30 2012-08-29 株式会社東芝 Electronic device and method for manufacturing electronic device
US8388793B1 (en) * 2011-08-29 2013-03-05 Visera Technologies Company Limited Method for fabricating camera module

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207461A (en) * 2002-12-25 2004-07-22 Olympus Corp Solid-state image pickup device and its manufacturing method
JP2005056998A (en) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd Solid-state image pickup device and its manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207461A (en) * 2002-12-25 2004-07-22 Olympus Corp Solid-state image pickup device and its manufacturing method
JP2005056998A (en) * 2003-08-01 2005-03-03 Fuji Photo Film Co Ltd Solid-state image pickup device and its manufacturing method

Also Published As

Publication number Publication date
JP2007129164A (en) 2007-05-24
TW200720709A (en) 2007-06-01

Similar Documents

Publication Publication Date Title
WO2007052796A1 (en) Module for optical device, method of manufacturing module for optical device and structure for device
JP3881888B2 (en) Optical device manufacturing method
JP5175620B2 (en) Electronic element wafer module and manufacturing method thereof, electronic element module, and electronic information device
TWI264118B (en) Covers for microelectronic imagers and methods for wafer-level packaging of microelectronic imagers
JP4160083B2 (en) Optical device module and method of manufacturing optical device module
JP3675402B2 (en) OPTICAL DEVICE AND ITS MANUFACTURING METHOD, OPTICAL MODULE, CIRCUIT BOARD AND ELECTRONIC DEVICE
KR100691711B1 (en) Solid-state imaging device and manufacturing method thereof, and camera module
JP4693827B2 (en) Semiconductor device and manufacturing method thereof
JP2004088082A (en) Solid-state imaging device and method of manufacturing the same
CN102386192B (en) Method of manufacturing optical sensor, optical sensor, and camera including optical sensor
JP2006228837A (en) Semiconductor device and its manufacturing method
JP2011523777A (en) Method of making an optical device comprising integrated optoelectronic components
JP2009290033A (en) Electronic device wafer module and its production process, electronic device module, electronic information equipment
JP2002329850A (en) Chip size package and its manufacturing method
JP2003197927A (en) Optical device and method for manufacturing the same and optical module and circuit board and electronic apparatus
JP2004063751A (en) Solid-state image sensing device and its manufacturing method
JP2010080591A (en) Camera module and method of manufacturing the same
JP2010165939A (en) Solid-state imaging device and method of manufacturing the same
KR100809682B1 (en) Method of manufacturing optical device attached transparent cover and method of manufacturing optical device module using the same
JP2011077297A (en) Semiconductor device, semiconductor device manufacturing method, electronic apparatus, and electronic apparatus manufacturing method
JP2010245121A (en) Semiconductor device
JP2004031499A (en) Solid-state imaging device and method of manufacturing the same
WO2020003796A1 (en) Solid-state imaging device, electronic apparatus, and manufacturing method of solid-state imaging device
JP2004063782A (en) Solid-state image sensing device and its manufacturing method
JP4407800B2 (en) Manufacturing method of semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06823034

Country of ref document: EP

Kind code of ref document: A1