Nothing Special   »   [go: up one dir, main page]

WO2007046275A1 - Glareless film, polarizing plate and display - Google Patents

Glareless film, polarizing plate and display Download PDF

Info

Publication number
WO2007046275A1
WO2007046275A1 PCT/JP2006/320254 JP2006320254W WO2007046275A1 WO 2007046275 A1 WO2007046275 A1 WO 2007046275A1 JP 2006320254 W JP2006320254 W JP 2006320254W WO 2007046275 A1 WO2007046275 A1 WO 2007046275A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
convex structure
layer
ink
antiglare
Prior art date
Application number
PCT/JP2006/320254
Other languages
French (fr)
Japanese (ja)
Inventor
Sota Kawakami
Daiki Minamino
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2007540934A priority Critical patent/JPWO2007046275A1/en
Publication of WO2007046275A1 publication Critical patent/WO2007046275A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133502Antiglare, refractive index matching layers

Definitions

  • Anti-glare film, polarizing plate and display device
  • the present invention relates to an antiglare film, a polarizing plate and a display device, and has an antiglare film, a polarizing plate and an antiglare film which are excellent in antiglare property and have a desired fine uneven structure formed effectively and stably with high productivity. It relates to a display device.
  • the antiglare layer reduces the visibility of the reflected image by blurring the outline of the image reflected on the surface, and the reflected image is reflected when using an image display device such as a liquid crystal display, an organic EL display, or a plasma display. It is intended not to worry about the complexity.
  • Patent Document 3 describes a method of forming fine unevenness using phase separation of rosin using spinodal decomposition, but the state of phase separation changes depending on the reaction conditions and immediately stabilizes the antiglare film. Difficult to make.
  • Patent Document 4 discloses a technique in which a hard coat layer is provided on a cured resin dispersed in a dot shape so as to have a smooth surface. However, in the invention, the antiglare property is exhibited. In the present invention, it is not intended to smooth the film surface.
  • Patent Document 11 describes that an anti-glare node coat film is provided with an overcoat layer, which is intended for antifouling properties, easy cleaning properties, light reflection prevention properties, and the like.
  • V there is no description about covering the convex structure and exhibiting antiglare properties!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 59-58036
  • Patent Document 2 JP-A-6-234175
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-227407
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-84477
  • Patent Document 5 Japanese Patent Laid-Open No. 2001-281410
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-4404
  • Patent Document 7 Japanese Unexamined Patent Application Publication No. 2004-125985
  • Patent Document 8 Japanese Unexamined Patent Application Publication No. 2004-24967
  • Patent Document 9 Japanese Unexamined Patent Application Publication No. 2004-4777
  • Patent Document 10 Japanese Unexamined Patent Publication No. 2003-121620
  • Patent Document 11 Japanese Unexamined Patent Publication No. 2003-26832
  • the present invention has been made in view of the above problems, and its purpose is to capture external light and reduce contrast without reducing the sharpness of high-definition images due to pixel size reduction or the like.
  • An object of the present invention is to provide an anti-glare film that can effectively prevent a decrease and has a desired fine relief structure formed effectively and stably with good productivity, and further to provide a polarizing plate and a display device using the anti-glare film.
  • R a Surface roughness (R a) force of antiglare layer surface constituted by the convex structure part and the transparent resin layer 0 to: LOOOnm, average center distance (Sm) force of convex part or concave part 3.
  • the antiglare film as described in 1 or 2 above, which is from 0 to 200 ⁇ m.
  • the convex structure part or the transparent resin layer is a thermosetting resin. 5.
  • the antiglare film according to any one of 1 to 4 above.
  • the convex structure is formed from an ink composition containing at least 60% by mass of at least one solvent having a boiling point of 140 to 250 ° C and a viscosity measured at 25 ° C of 1 to 15 mPa's.
  • Rl, R2 hydrogen atom, aryl group, alkyl group having 1 to 6 carbon atoms, alkoxyalkyl group, alkylcarbonyl group.
  • the hydrocarbon chain may be linear or branched. However, at least one of Rl and R2 is a substituent other than a hydrogen atom.
  • x integer from 2 to 4.
  • a polarizing plate characterized by using the antiglare film described in any one of 1 to 8 above.
  • FIG. 1 is a schematic view showing a state where gentle irregularities are formed by covering both a convex structure portion and a portion without a convex structure portion with a transparent resin layer.
  • FIG. 2 is a schematic view of a fine concavo-convex structure portion preferable for the present invention.
  • FIG. 3 is a schematic diagram showing an example of flexographic printing used in the present invention.
  • FIG. 4 A schematic diagram of flexographic printing by the two-roll method.
  • FIG. 5 is a schematic diagram of flexographic printing in which ink is supplied by an extrusion coater.
  • FIG. 6 is a perspective view of an arlock roll.
  • FIG. 7 is a perspective view for explaining an AROX cell.
  • FIG. 8 is a cross-sectional view showing an example of an ink jet head that can be used in the ink jet method according to the present invention.
  • FIG. 9 is a schematic view showing an example of an inkjet head unit and a nozzle plate that can be used in the present invention.
  • FIG. 10 is a schematic diagram showing an example of an ink jet system that can be preferably used in the present invention.
  • FIG. 11 is an example of a method for forming a fine relief structure on a base film by flexographic printing.
  • FIG. 12 is a diagram schematically showing an environment during observation when an antiglare antireflection film is applied to a liquid crystal display device.
  • FIG. 13 is a view showing an effect of improving the antiglare property by covering the transparent resin layer.
  • the present inventors have found that the dots are separated from each other as described in Patent Document 11, and only the dots are in the state of a flat substrate between the dots.
  • the flat base material portion does not exhibit satisfactory anti-glare properties, but by overcoating, the inter-dot flat base material portion is covered with an inclined overcoat, and the anti-glare property is remarkably improved. It is a thing.
  • FIG. 13 is a diagram showing the effect of improving the antiglare property by covering the transparent resin layer.
  • the numerical value ⁇ of anti-glare property is expressed as a logarithmic value of an integral value of scattered light intensity at a scanning angle ⁇ 1 to 3.5 ° (excluding a regular reflection region).
  • the anti-glare film of the present invention has 10 to 10,000 fine convex structures per 1 mm 2 on a base film having a long diameter of 1 to 30 111 and a dot height of 0.5 to 10 m. And a transparent resin layer is formed so as to cover the convex structure portion, and the refractive index of the convex structure portion and the transparent resin layer is the same.
  • the antiglare film of the present invention is prepared by forming the convex structure part (also referred to as a dot) by a pattern production method such as a gravure method, a screen printing method, a flexographic printing method, or an ink jet method. Is cured by actinic rays or heating, and then a microgravure method, It is produced by uniformly coating a transparent resin layer by a thin film uniform coating method such as an extrusion coating method, a wire bar method, a spray coating method, a flexographic printing method, or an ink jet method.
  • a pattern production method such as a gravure method, a screen printing method, a flexographic printing method, or an ink jet method.
  • the convex structure has a certain random arrangement in the plane by means of FM screening and the like, and the height is uniformly produced within a certain range, so that the surface roughness (Ra) is stable over the entire surface.
  • the unevenness is not formed at a uniform interval, moire is not generated between the pixels of the display.
  • irregularities with an appropriate and stable surface roughness are formed on the surface of the transparent resin layer, while maintaining the antiglare effect. Since haze increase due to light scattering is suppressed and white turbidity due to scattered light is suppressed, a high-contrast image can be seen.
  • the refractive index of the convex structure portion the same as the refractive index of the transparent resin layer, it is possible to suppress the internal scattering effect and to suppress the glare of transmitted light from the display side.
  • the present inventors have an anti-glare property having a convex structure even at a printing speed of 10 mZ / min or more and 500 mZ / min. Films can be produced, and it is possible to effectively prevent external light reflection and contrast reduction without reducing the sharpness of high-definition images. ⁇ It has been found that a stably formed antiglare film can be obtained, and an antiglare antireflection film, a polarizing plate and a display device using the same can be obtained.
  • the method for forming the convex structure is not particularly limited, but in particular, the flexographic printing method has a high production speed and can form a fine convex structure, and the inkjet method has the presence of the convex structure. It is excellent in that the pattern can be changed flexibly, the cross-sectional shape of the convex structure can be formed into a bowl shape, and the surface shape after the provision of the transparent resin layer is smoothed into gentle irregularities.
  • FIG. 1 shows that a convex structure portion is formed in a pattern on a base film, and a transparent resin layer is applied to form a transparent resin layer on both the convex structure portion and the portion without the convex structure portion.
  • the height of the dots defined in the present invention is defined as the height from the base film surface as a base to the top of the convex structure, and the long diameter of the dots is in contact with the base.
  • Convex structure is defined as the maximum bottom length.
  • the fine convex structure portion on the surface can be measured by a commercially available stylus type surface roughness measuring machine or a commercially available optical interference type surface roughness measuring machine.
  • an optical interference type surface roughness measuring instrument [Accordingly, the range of about 4000 ⁇ m 2 (55 m X 75 m)] [Two!
  • the colors are displayed and the height of the convex portion relative to the film surface and the diameter of the convex portion, which is the major axis of the convex structure portion, are measured.
  • the number of convex structures can be obtained by converting the number of convex structures obtained per lmm 2 . These measurements are taken as the average value of any 10 points in the relevant part of the substrate film.
  • FIG. 2 is a schematic view of a concavo-convex structure that is preferable for the present invention formed on a substrate film and is coated with a transparent resin layer.
  • Fig. 2 (a) is a perspective view of the convex structure portion, and (b) is a cross-sectional view.
  • the height of the convex portion when the surface roughness (Ra) is determined is indicated by e in the figure, and is the difference in height between the convex portion and the concave portion.
  • the concavo-convex structure on the surface of the transparent resin layer can be measured by a commercially available stylus type surface roughness measuring machine or a commercially available optical interference type surface roughness measuring machine. For example, unevenness is measured two-dimensionally within a certain range with an optical interference type surface roughness measuring instrument, and the unevenness is color-coded as contour lines from the bottom side and displayed.
  • the height is determined with respect to the concave bottom adjacent to each fine concavo-convex structure as an average value.
  • the average center-to-center distance (Sm) between adjacent convex portions or concave portions is the same as that defined as the average length of the contour element curve in JIS B0601, and g (in this case, the convex portion) ), And the average of the distance between the centers of adjacent convex portions or concave portions with the vertex of the convex portion or concave portion as the center of the convex portion or concave portion.
  • the average distance between convex parts or concave parts can be measured with a stylus type surface roughness measuring machine, etc. It is possible to obtain knowledge as a surface roughness curve by scanning the surface in a certain direction, measuring the movement change in the vertical direction of the measuring needle in that case, and recording the change. Measure the distance between Can be sought. Alternatively, it can be measured by an optical interference type surface roughness measuring machine as described above.
  • the surface roughness (Ra) defined in the present invention is defined by JIS B0601, and is a value obtained by the following formula expressed in micrometers ( ⁇ m).
  • the measurement samples are measured in the above environment after being conditioned for 24 hours under the condition that the measurement samples do not overlap each other in an environment of 25 ° C and 65% RH. Can be requested.
  • the non-overlapping conditions mentioned here are, for example, a method of winding with the edge portion of the sample raised, a method of stacking paper with the sample sandwiched between them, a frame made of cardboard, etc., and fixing the four corners One of the methods.
  • Examples of measuring devices that can be used include RSTPLUS non-contact three-dimensional micro surface shape measuring system (a typical example of an optical interference type surface roughness measuring machine) manufactured by WYKO.
  • the surface roughness (Ra) of the concavo-convex structure on the surface of the transparent resin layer of the present invention is from 50 to: LOOOnm, more preferably from 100 to 500 nm.
  • the average distance between the centers (Sm) of the uneven structure on the surface of the transparent resin layer is preferably 10 to 200 ⁇ m, more preferably 10 to 50 ⁇ m. Beyond these ranges, it becomes difficult to achieve both an antiglare effect and contrast.
  • Ra and Sm above are the height of the convex structure, the arrangement of the convex structure pattern, the adjustment of the thickness of the transparent resin layer, and the ink composition used for the transparent resin layer (ink liquid). It can be controlled by adjusting physical properties such as viscosity.
  • the convex structure portion of the present invention and the transparent resin layer have the same refractive index, but the difference is that the refractive index difference is less than 0.02. Indicates that Furthermore, it is more preferable that the refractive index difference power ⁇ .
  • the refractive index of the convex structure portion and the transparent resin layer is measured by applying an ink composition that forms the convex structure portion and the transparent resin layer to a substrate film, and applying the obtained film to the refractive index. It can be obtained by measuring with a meter.
  • the ink composition for forming the convex structure part and the transparent resin layer is applied using a micro gravure coater, dried at 90 ° C, and then the illuminance of the irradiated part is 0 using an ultraviolet lamp. lWZcm 2 with an irradiation dose of 0.UZcm 2 , cure the coating layer to form a 5 m thick film, and measure the refractive index with an Abbe refractometer.
  • the convex structure portion has a dot major axis of 1 to 30 ⁇ m, more preferably 3 to 10 ⁇ m, and a dot height of 0.5 to: LO / zm, more preferably 2 to 5 m.
  • the dot arrangement that preferably has a certain size and height is preferably random arrangement by a method such as FM screening.
  • the major axis of the dot represents the diameter when the dot is circular, and the diameter converted into the same area when the dot is triangular, quadrangular, polygonal or indefinite.
  • the height of a dot means the difference in height of the highest part of a dot from a base film surface as above-mentioned.
  • the FM screening method is a method of expressing light and shade by modulating the interval between dots, that is, the frequency, and the frequency (dot density) of hitting basic dots. FM screening methods are sometimes called random 'screening methods or strike stick' screening methods. The FM screening method refers to a method of modulating the periodicity, that is, the interval between dots.
  • Crystal Raster 'screening method (Agfa' Gevart '), Diamond' Screen method (Rhinotype 'Hell'), Class' screening method and full tone screening method (Cytex), Velvet screening method (Udala Koichihan), Accutone Screening (Dannery), Megadot 'Screening (American' Color '), Clear' Screening (Shiichiritsu), Monet 'Screening (Parco) ) Etc.
  • All of these methods have different dot generation algorithms, but are methods of expressing shading by changing the dot density, and can be said to be various aspects of the FM screening method.
  • the size of the dot on which ink is placed is constant, and the frequency of dot appearance changes according to the density of the image.
  • the size of each dot in FM screening Since it is smaller than the halftone dot, it is possible to reproduce the required pattern with high resolution. Unlike so-called halftone dots, dots in FM screening are not periodically arranged. In FM screening, since the dot arrangement is not periodic, moire does not occur! / ,!
  • the transparent resin layer of the present invention is coated on the above-mentioned convex structure portion, and covers the convex structure portion, so that the unevenness formed only by the convex structure portion becomes smooth, and a preferable surface shape. As a result, excellent antiglare properties can be exhibited.
  • the thickness of the transparent resin layer is preferably 1 to 5 ⁇ m thicker than the height of the convex structure portion. Further, in order to cover the entire surface of the convex structure part, the coating film thickness is preferably 2 to 5 times the height of the convex structure part. If the coating solution is thick, the convex structure can be covered completely, but if it is too thick, it is affected by drying unevenness during drying and the uniformity of the thickness is impaired. It is preferable that 50% or more of the resin contained in the transparent resin layer is the same as the resin used in the convex structure part. This allows sufficient adhesion between the convex structure part and the transparent resin layer. And the refractive index can be made the same.
  • the composition forming the convex structure part and the transparent resin layer is referred to as an ink composition.
  • the ink composition for forming the convex structure portion and the transparent resin layer according to the present invention is not particularly limited, but is an actinic ray curable resin, a photopolymerization initiator, a photoreaction initiator, It preferably contains a photosensitizer, thermosetting resin, thermoplastic resin, ultraviolet absorber, fine particles, solvent and the like.
  • the above-mentioned actinic ray curable resin or thermosetting resin is preferable.
  • the refractive index of the ink composition can be selected in the range of 1.35-19-1.
  • the transmittance of the ink composition is 80% or more, preferably 90% or more.
  • the viscosity of the ink composition is preferably 0.1 to 20 mPa's at a measurement temperature of 25 ° C, more preferably 0.5 to LOmPa's. If the viscosity is less than 0.5 mPa's, the viscosity is too low to obtain a convex structure pattern of the desired shape, and if it exceeds 20 mPa's, the fluidity of the ink is poor and the transferability of the ink is reduced. It is not preferable.
  • At least one solvent having a boiling point of 140 to 250 ° C and a viscosity measured at 25 ° C of 1 to 15 mPa's described later is used in an amount of 60% by mass or more of the ink composition. It is preferable to adjust by this.
  • the viscosity of the ink is measured using a rotational, vibration, or capillary type viscometer that is not particularly limited as long as it has been tested with a standard solution for viscometer calibration specified in JIS Z 8809. be able to.
  • the viscometer can be measured with Saybolt viscometer, Redwood viscometer, etc.For example, Tokimec, cone-plate E viscometer, Toki Sangyo E Type Viscome ter (rotary viscometer), Tokyo Keiki
  • the actinic ray curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams.
  • actinic ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin that is cured by irradiation with an actinic ray other than an ultraviolet ray or an electron beam.
  • Examples of the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet ray curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin. Examples thereof include a resin and an ultraviolet curable epoxy resin.
  • UV-curable acrylic urethane-based resins are generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxy cetyl acrylate, 2-hydroxy ethynole methacrylate. (Hereinafter, only acrylate is included in the acrylate as including methacrylate), and it can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • UV-curable polyester acrylate resins generally have a hydroxyl group or carboxyl group at the end of a polyester reacted with a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylate. It can be easily obtained (for example, JP-A-59-151112).
  • the ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride or glycidyl acrylate.
  • ultraviolet curable polyol acrylate-based resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane tritalylate, and pentaerythritol.
  • examples thereof include triatalylate, pentaerythritol tetraatalylate, dipentaerythritol pentaatalylate, dipentaerythritol hexaatalylate, alkyl-modified dipentaerythritol pentaatalylate, and the like.
  • ultraviolet curable epoxy acrylate resin examples include an epoxy actinic ray reactive compound preferably used.
  • ( g ) Diglycidyl ether of glycol, for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl etherate, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, copoly (ethylene glycol propylene glycol) diglycidyl Ether, 1,4 butanediol diglycidyl ether, 1,6 hexanediol diglycidino oleore
  • glycol for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl etherate, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, copoly (ethylene glycol propylene glycol) diglycidyl Ether, 1,4 butanediol diglycidyl ether, 1,6
  • Glycidyl ethers of polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetradalysidyl ether, dalco-triglycidyl ether
  • Examples of the (k) fluorine-containing alkane-terminated diol daricidyl ether include fluorine-containing epoxy compounds of fluorine-containing resins having the above-described low refractive index materials.
  • the molecular weight of the epoxy compound is 2000 or less as an average molecular weight, preferably 1000 or less.
  • the photopolymerization initiator or photosensitizer for cationically polymerizing the epoxy-based actinic ray reactive compound is a compound capable of releasing the cationic polymerization initiator by irradiation with actinic rays, and is particularly preferable. Is a group of double salts that release a Lewis acid capable of initiating cationic polymerization upon irradiation.
  • the actinic ray-reactive composite epoxy resin forms a polymerized, crosslinked structure or network structure by cationic polymerization rather than by radical polymerization. Unlike radical polymerization, it is a preferred actinic ray-reactive resin because it is not affected by oxygen in the reaction system.
  • the actinic ray-reactive epoxy resin useful in the present invention is polymerized by a photopolymerization initiator or a photosensitizer that releases a substance that initiates cationic polymerization upon irradiation with actinic rays.
  • a photopolymerization initiator a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization upon irradiation with light is particularly preferred! /.
  • a typical example is a compound represented by the following general formula (a).
  • R 4 is an organic group which may be the same or different.
  • a, b, c and d are each an integer of 0 to 3, and a + b + c + d is equal to the valence of Z.
  • Me is the metal or metalloid that is the central atom of the halide complex.
  • X is halogen
  • w is the net charge of the halogenated complex ion
  • V is the number of halogen atoms in the halogenated complex ion.
  • MeX ⁇ - include tetrafluoroborate (BF-), tetrafluorophosphate (PF-), tetrafluoroantimonate (SbF -), Tetra
  • an aromatic salt salt as a cationic polymerization initiator, and among them, JP-A-50-151996 and JP-A-50-158680.
  • Um salt, oxosulfoxo-um salt described in JP-A-56-8428, 56-149402, 57-192429, etc., and aromatic diazo-um salt described in JP-B-49-17040 The thiopyrilum salts described in U.S. Pat. No. 4,139,655 are preferred.
  • Examples of the aluminum complex include photodegradable silicon compound-based polymerization initiators.
  • the cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether or thixanthone.
  • an actinic ray reactive compound having an epoxy acrylate group a photosensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine, or the like can be used.
  • the photosensitizer or photoinitiator used in this actinic ray reactive compound is sufficient to initiate the photoreaction at 0.1 to 15 parts by mass with respect to 100 parts by mass of the ultraviolet responsive compound, Preferably they are 1 mass part-10 mass parts.
  • This sensitizer preferably has an absorption maximum from the near ultraviolet region to the visible light region.
  • the photopolymerization initiator is generally used in an amount of 100 parts by mass of an actinic ray curable epoxy resin (prepolymer). 0.1 to 15 parts by mass is more preferable, and an additive in the range of 1 to 10 parts by mass is preferable.
  • the epoxy resin can be used in combination with the urethane acrylate resin, polyether acrylate resin, etc.
  • an actinic ray radical polymerization initiator and an actinic ray power thione polymerization initiator are used. It is preferable to use it together.
  • an oxetane compound can also be used as a photopolymerization initiator.
  • V the oxetane compound
  • a compound having an oxetane ring containing oxygen is preferable.
  • the oxetane ring may be substituted with a halogen atom, a haloalkyl group, an arylalkyl group, an alkoxyl group, an aryloxy group, or an acetyloxy group.
  • 3,3-bis (chloromethyl) oxetane, 3,3-bis (odomethyl) oxetane, 3,3-bis (methoxymethyl) oxetane, 3,3-bis (phenoxymethyl) oxetane, 3-methyl- Examples include 3-chloromethyloxetane, 3,3-bis (acetoxymethyl) oxetane, 3,3-bis (fluoromethyl) oxetane, 3,3-bis (bromomethyl) oxetane, and 3,3-dimethyloxetane.
  • any of a monomer, an oligomer and a polymer may be used.
  • ultraviolet curable resin examples include, for example, Ade force Optomer KR, BY series KR-400, KR-410, KR-550, KR-566, KR 567 BY-320B (Asahi Denka Kogyo Co., Ltd.), Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M — 102, T— 10
  • the solid concentration of the actinic ray curable resin in the ink composition is 10 to 95% by mass, and the optimum concentration is selected depending on the coating method and the like.
  • an ultraviolet curable resin is used as the actinic ray curable resin
  • the ultraviolet light is used.
  • An ultraviolet absorber may be included in the ultraviolet curable resin composition so as not to interfere with the photocuring of the curable resin.
  • the ultraviolet absorber those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
  • the ink composition according to the present invention includes conductive fine particles such as SnO, ITO, and
  • an antistatic agent such as thione polymer particles.
  • an antistatic agent such as thione polymer particles.
  • fine particles in the present invention, it is also preferable to include fine particles in the ink composition.
  • inorganic fine particles or organic fine particles can be added.
  • the inorganic fine particles include, for example, a compound containing silicon, silicon dioxide, acid aluminum, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium carbonate, hydrated calcium silicate, Aluminum silicate, magnesium silicate, phosphate, and the like are more preferable, and inorganic compounds containing zirconium and zirconium oxide are preferable, but silicon dioxide is particularly preferably used. These include particles having a spherical shape, a flat plate shape, an amorphous shape, and the like.
  • fine particles of silicon dioxide for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 manufactured by Nippon Aerosil Co., Ltd.
  • fine particles of zirconium oxide for example, commercially available products such as Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
  • organic fine particles polymethacrylic acid methyl acrylate fine resin particles, acryl styrene-based fine particles, polymethyl methacrylate fine particles, silicon-based fine particles, polystyrene-based fine particles, Polycarbonate resin fine particles, benzoguanamine resin fine particles, melamine resin fine particles, polyolefin resin fine particles, polyester resin Examples thereof include fine particles, polyamide-based resin fine particles, polyimide-based resin fine particles, and polyfluorinated styrene-based resin fine particles.
  • the average particle size is preferably 5 to 300 nm force S, more preferably 20 to LOOnm. Two or more kinds of fine particles having different particle diameters and refractive indexes may be contained. The content is preferably 5 to 50% by mass with respect to the convex structure part or the transparent resin layer.
  • an actinic ray irradiation method includes transferring the ink onto a transparent substrate, printing a solvent, etc. After evaporating, it is preferable to irradiate actinic rays.
  • the timing of irradiation can be determined in consideration of the shape of the pattern to be formed.For example, when the ink is solvent-free, irradiation is performed immediately after transfer printing to 2 minutes later. Irradiation can be performed immediately after the solvent has been volatilized and after 2 minutes.
  • the term "immediately after transfer printing of the ink on the substrate film or the solvent in the ink has been volatilized" as used in the present invention specifically refers to a period of up to 5 seconds after the transfer printing.
  • the irradiation of the active light may be in a half-cured state as long as the ink is lowered to the extent that the fluidity of the ink is reduced and a desired pattern shape can be formed. In this case, it can be completely cured by irradiating an active light source separately installed on the downstream side.
  • the actinic ray that can be used in the present invention is not limited as long as it is a light source that activates the actinic ray curable resin formed into a pattern with ultraviolet rays, electron beams, ⁇ rays, or the like.
  • ultraviolet rays and electron beams are preferred. Especially when handling is easy and high-energy energy can be obtained easily, ultraviolet rays are preferred.
  • an ultraviolet light source for photopolymerizing an ultraviolet reactive compound any light source that generates ultraviolet light can be used.
  • a low-pressure mercury lamp a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used.
  • An ArF excimer laser, KrF excimer laser, excimer lamp, synchrotron radiation, or the like can also be used. Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably lmjZcm 2 or more, more preferably 20 mjZcm 2 to 10000 mjZcm 2 and particularly preferably 50 m] A / cm ⁇ 2000mjZcm 2.
  • Electron beams can also be used in the same manner.
  • an electron beam 50 to 1 OOOke V emitted from various electron beam accelerators such as cockroft Walton type, bandegraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc.
  • the oxygen concentration in the atmosphere during irradiation with actinic rays is 10% or less, particularly
  • the substrate film or the like can also be heated in order to efficiently advance the curing reaction of actinic rays.
  • the heating method is not particularly limited, but it is preferable to use a method such as a heat plate, a heat roll, a thermal head, or a method of spraying hot air on the surface of transfer-printed ink.
  • the back roll used on the opposite side across the base film of the flexographic printing section may be continuously heated as a heat roll.
  • the heating temperature cannot be generally specified depending on the type of actinic ray curable resin to be used, but is preferably within a temperature range that does not affect the base film such as thermal deformation. 30 to 200 ° C is preferable, and 50 to 120 ° C is more preferable, and 70 to 100 ° C is particularly preferable.
  • thermosetting resin used in the ink composition used for forming the convex structure portion or the transparent resin layer of the present invention will be described.
  • thermosetting resins examples include unsaturated polyester resins, epoxy resins, vinyl ester resins, phenol resins, thermosetting polyimide resins, and thermosetting polyamideimides. And so on.
  • polyester resins examples include orthophthalic acid resins, isophthalic acid resins, terephthalic acid resins, bisphenolic resins, propylene glycol-maleic acid resins, dicyclopentagen. However, the derivative was introduced into an unsaturated polyester composition to obtain a low molecular weight, or a low styrene volatile resin or a thermoplastic resin added with a film-forming wax compound (polyvinyl acetate).
  • Reactive types such as direct bromination of Br with Br2 or copolymerization of hept acid or dibromoneopentyl glycol, halogenated compounds such as chlorinated paraffin and tetrabromobisphenol, and antimony trioxide, Addition-type flame retardant resin using a combination of phosphorus compounds or hydroxyaluminum hydroxide as additive, toughness hybridized with polyurethane or silicone, or IPN toughness (high strength, high elastic modulus, High elongation) tough resin.
  • Examples of the epoxy resin include glycidyl ether type epoxy resin including bisphenol A type, novolak phenol type, bisphenol F type, brominated bisphenol A type, glycidylamine type, glycidyl ester type, ring And a special epoxy resin containing a heterocyclic fatty acid and a heterocyclic epoxy resin.
  • the bule ester resin is, for example, a product obtained by dissolving an oligomer obtained by ring-opening addition reaction of an ordinary epoxy resin and an unsaturated monobasic acid such as methacrylic acid in a monomer such as styrene.
  • an unsaturated monobasic acid such as methacrylic acid
  • a monomer such as styrene.
  • vinyl monomers with vinyl groups at the molecular ends and side chains examples of the glycidyl ether-based epoxy resin resin include bisphenol, novolac, and brominated bisphenol, and special bull ester resins include butyl ester urethane, isocyanuric acid, There are chain bull ester type.
  • Phenolic resin is obtained by polycondensation using phenols and formaldehyde as raw materials, and is available in resol type and novolac type.
  • thermosetting polyimide resins include maleic acid-based polyimides such as polymaleimide amine, polyamino bismaleimide, bismaleimide ⁇ ⁇ , ⁇ '— diallyl bisphenol.
  • thermosetting resin a part of the actinic ray curable resin described above can also be used as the thermosetting resin.
  • the ink composition comprising the thermosetting resin used in the present invention appropriately employs the anti-oxidation agent and ultraviolet absorber described in the ink composition containing actinic ray curable resin. Also good.
  • the convex structure portion or the transparent resin layer formed by flexographic printing or an ink jet method contains a thermosetting resin, the ink is transferred onto the base film as a heating method. It is preferable to perform heat treatment immediately after.
  • the term "immediately after transfer printing the ink according to the present invention on the base film” is specifically based on the pre-preferred state that the ink is preferably heated at the same time as the transfer printing or within 5 seconds.
  • the temperature of the material film can be raised.
  • the base film can be wound on a heat roll, and the ink can be transferred by printing, more preferably at the same time as the transfer printing or for 2 seconds.
  • the distance between the nozzle part and the heating part is too close and heat is transferred to the head part, the nozzle part will clog due to curing at the nozzle part.
  • the heating interval exceeds 5 seconds as necessary, a smooth fine relief structure can be obtained by causing the flow-printed ink to flow and deform.
  • the heating method is not particularly limited, but it is preferable to use a method such as a heat plate, a heat roll, a thermal head, or a method of spraying hot air on the surface of the ink printed by transfer printing. Further, the back roll provided on the opposite side across the base film of the flexographic printing section may be continuously heated as a heat roll.
  • the heating temperature cannot be generally specified depending on the type of thermosetting resin to be used, but it is preferably in the temperature range that does not affect the heat deformation of the transparent substrate. 50 to 120 ° C is more preferable, and 70 to 100 ° C is particularly preferable.
  • any of the above-mentioned actinic ray curable resin and thermosetting resin can be used for forming a convex structure or a transparent resin layer.
  • actinic ray curable rosin is used.
  • the convex structure part and the transparent resin layer ink of the present invention include silicone oil, modified silicone oil, silicone surfactant, fluorine surfactant, fluorine resin, fluorine oligomer, and fluorine modified silicone. It is preferable to contain 0.1 parts by mass or more and 5 parts by mass or less of an activator such as oil or a fluorine-based silane coupling agent. If the amount added is too large, the transparent resin layer cannot be applied on the convex structure due to the water / oil repellent effect, and if the amount added is too small, the shape of the convex structure may not be constant.
  • the amount of surfactant depends on the ink composition, solvent composition, and surface energy of the base material, so it is essential to add it. There is no.
  • the silicone oils used in the present invention can be roughly classified into straight silicone oils and modified silicone oils, depending on the type of organic group bonded to the silicon atom.
  • Straight silicone oil refers to those bonded with a methyl group, a phenol group, or a hydrogen atom as a substituent.
  • a modified silicone oil is one that has components derived secondarily from straight silicone oil. On the other hand, it can be classified from the reactivity of silicone oil.
  • Non-reactive silicone oil dimethyl, methylphenol substitution, etc.
  • Reactive silicone oil methyl hydrogen substitution, etc.
  • Modified silicone oil is born by introducing various organic groups into dimethyl silicone oil.
  • Non-reactive silicone oil alkyl, alkyl Z aralkyl, alkyl Z polymer, polyether, higher fatty acid ester substitution, etc.
  • Alkyl / aralkyl-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with a long-chain alkyl group or a phenyl alkyl group.
  • Polyether-modified silicone oil is a silicone-based polymeric surfactant in which hydrophilic polyoxyalkylene is introduced into hydrophobic dimethyl silicone,
  • Higher fatty acid-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with higher fatty acid ester,
  • the amino-modified silicone oil is a silicone oil having a structure in which a part of the methyl group of the silicone oil is replaced with an aminoalkyl group.
  • Epoxy-modified silicone oil is a silicone oil having a structure in which a part of methyl group of silicone oil is replaced with an epoxy group-containing alkyl group,
  • Carboxyl-modified or alcohol-modified silicone oil Silicone oil with a structure in which part of the methyl group is substituted with a carboxyl group or a hydroxyl group-containing alkyl group
  • polyether-modified silicone oil is preferably added.
  • the number average molecular weight of the polyether-modified silicone oil is, for example, 1,000 to 100,000, preferably 2000 to 50,000, and when the number average molecular weight is less than 1,000, the drying property of the coating film is decreased. When the molecular weight exceeds 100,000, it tends to be difficult to bleed out to the coating surface.
  • Specific products include L45, L9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, FZ-3504, FZ from Nippon Car Co., Ltd. — 3508, FZ—3705, FZ—3707, FZ—3710, FZ—3750, FZ—3760, FZ—3785, FZ—378 5, Y—7499, Shinetsu Yakakusha KF96L, KF96, KF96H, KF99, KF54, KF965, KF968, KF56, KF995, KF351, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100 etc.
  • silicone surfactant used in the present invention one obtained by substituting a part of methyl group of silicone oil with a hydrophilic group can be used.
  • the position of substitution includes the side chain of silicone oil, both ends, one end, both end side chains, and the like.
  • hydrophilic groups include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.
  • a nonionic surfactant is a generic term for surfactants that do not have a group capable of dissociating into ions in an aqueous solution.
  • a hydroxyl group of a polyhydric alcohol can also be used as a hydrophilic group. It has a reoxyalkylene chain (polyoxyethylene) or the like as a hydrophilic group. The hydrophilicity becomes stronger as the number of alcoholic hydroxyl groups increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer.
  • the nonionic surfactant used in the present invention preferably has dimethylpolysiloxane as a hydrophobic group.
  • nonionic active agents include, for example, Nippon Surfer Co., Ltd., silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L- 7604, Y — 7006, FZ— 2101, FZ— 2104, FZ— 2105, FZ— 2110, FZ— 2118, FZ— 2 120, FZ— 2122, FZ— 2123, FZ— 2130, FZ— 2154, FZ— 2161 FZ-2162, FZ-2163, FZ-2164, FZ-2166, FZ-2191 and the like.
  • silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L- 7604, Y — 7006, FZ— 2101, FZ— 2104, FZ— 2105, FZ— 2110, FZ— 2118, FZ— 2 120, FZ— 2122, FZ— 2123, FZ— 2130, FZ— 2154, FZ— 2161 FZ-21
  • nonionic surfactants are preferably composed of dimethylpolysiloxane having a hydrophobic group and polyoxyalkylene having a hydrophilic group.
  • the structure includes a dimethylpolysiloxane structure portion and a polyoxyalkylene.
  • a linear block copolymer in which chains are alternately and repeatedly bonded is preferable. It is excellent because it has a linear structure with a long chain length of the main chain skeleton. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle so as to cover the surface of the silica fine particle at a plurality of locations by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.
  • silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208, etc., manufactured by Nippon Car Co., Ltd.
  • silicone oils or silicone surfactants those having a polyether group are preferred.
  • the ink according to the present invention may contain a solvent, if necessary.
  • the actinic ray curable resin monomer component or the thermosetting resin monomer component may be dissolved or dispersed in an aqueous solvent, or an organic solvent may be used.
  • Solvents that can be used in the ink according to the present invention include, for example, alcohols such as methanol, ethanol, 1 propanol, 2-propanol, and butanol; acetone, methyl ethyl ketone, cyclohexanone, and the like.
  • Ketones Ketones; Ketone alcohols such as diacetone alcohol; Aromatic hydrocarbons such as benzene, toluene and xylene; Glycols such as ethylene glycol, propylene glycol and hexylene glycol; Ethyl cell solve, Butyl cell sorb, Ethyl carbide Tall, butyl carbitol, jetyl cell Glycol ethers such as sonolev, jetyl carbitol, propylene glycol monomethyl ether; esters such as N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, amyl acetate; dimethyl ether, jeti Examples include ethers such as ruether, water and the like, and these can be used alone or in admixture of two or more.
  • the ink composition forming the convex structure portion according to the present invention, among the above solvents, at least one solvent having a boiling point of 140 to 250 ° C and a viscosity of 1 to 15 mPa ⁇ s at 25 ° C is used. As mentioned above, it is preferable that 60 mass% or more is contained. More preferably, at least one solvent having a boiling point of 180 to 230 ° C. and a viscosity of 1 to lOmPa ⁇ s at 25 ° C. is contained in an amount of 70% by mass or more.
  • the solvent contained in the ink composition for forming a convex structure part is preferably volatilized and dried as quickly as the desired pattern shape is maintained after transfer printing or landing. If it exceeds the range, the adhesion to the base is inferior, drying unevenness occurs between the formed convex structure patterns, and the subsequent covering with the transparent resin layer is not uniformly performed, resulting in anti-glare. This is because deterioration of the physical properties of the conductive film, non-uniformity in the optical performance between the production lots and within the production lot, etc. are likely to occur.
  • the boiling point as used in the present invention is a boiling point under a pressure of 1 atm, that is, 1.013 x 10 5 NZm 2 .
  • a known technique can be applied, and in the case of a simple substance, values described in documents such as a chemical handbook can also be referred to.
  • Rl, R2 hydrogen atom, aryl group, alkyl group having 1 to 6 carbon atoms, alkoxyalkyl group, alkylcarbonyl group.
  • the hydrocarbon chain may be linear or branched. However, at least one of Rl and R2 is a substituent other than a hydrogen atom.
  • x integer from 2 to 4.
  • Specific examples of the solvent preferably used in the ink of the present invention include the following solvents.
  • the compound represented by the general formula (1) is not specifically limited to the powers specifically mentioned in the following solvents.
  • Viscosity Boiling point Compound represented by general formula (1) n X R1 R2
  • ethylene glycol monoisopropyl ether ethylene glycol mono-tert-butylene ethere, diethylene glycol mono-monopropylene ether, diethylene glycol mono-isopropyl ether, diethylene glycol mono-butyl ether, propylene glycol monolenoate Tenole, Propylene glycol monopropinoreateol, Propylene glycol monoisopropyl ether, Propylene glycol monobutinoate ether, Propylene glycol mono-t-butyl ether, Dipropylene glycol monoethyl ether, Dipropylene glycol monopropyl ether, Dipropylene glycol Rumonoisopropyl ether, dipropylene glycol monobutyl ether, ethylene glycol No-isopropyl ether acetate, ethylene glycol mono-t-butyl etherol acetate, diethylene glycol no-monomethylol etherate acetate
  • the convex structures and the pattern shape can be controlled by mixing solvents having different boiling points and viscosities from these solvents and changing the ratios as appropriate.
  • flexographic printing is a printing method using a relief printing plate made of flexible rubber or resin and a solvent-based evaporation-drying ink mainly composed of water or alcohol.
  • a convex structure is formed in a pattern on the surface of the base film using flexographic printing, and a transparent resin layer is further formed thereon by microgravure method, extrusion coating method, wire bar method, flexographic printing method, By applying uniformly by a thin film uniform coating method such as an ink jet method, a fine concavo-convex structure can be formed while maintaining high productivity.
  • 3 and 4 are schematic views showing an example of flexographic printing according to the present invention.
  • the continuously running substrate film 10 is sandwiched between a plate cylinder 3 composed of an impression cylinder 5, a resin plate roll 2, and a seamless resin plate 1 that forms a fine relief structure on the substrate film after transfer printing. Then, the ink 8 is supplied to the plate cylinder 3 by the arrox roll 4 whose amount of transfer ink is adjusted by the doctor blade 6, and transfer printing is performed on the base film.
  • ink is supplied to the plate cylinder 3 by the arlocks roll 4, and the ink amount on the arlocks roll surface is controlled by the doctor blade system shown in FIG. 3 or the two-roll shown in FIG.
  • a method based on the method is generally known.
  • ink 8 is supplied from the ink pan to the roller roll 4 by the fountain roll 7 and further supplied to the plate cylinder 3, and the ink is transferred to the base film 10 by transfer transfer.
  • the ink 8 is adjusted by the number of engraving lines of the arlock roll 4 and the depth and shape of the cell, and between the fountain roll 7 and the arlock roll 4 3)
  • the method shown in FIG. 3 is preferred in the present invention because the amount of ink supplied is controlled by the strength of the poop pressure and the amount of ink transferred is not stable.
  • Fig. 5 shows a schematic diagram of flexographic printing in which ink is supplied by an extrusion coater.
  • Ink 8 is extruded directly onto the seamless resin plate 1 mounted on the resin plate roll 2 by the extrusion coater 9, and is sandwiched between the plate cylinder 3 and the impression cylinder 5 on the base film 10 that is continuously running. Transfer printed. In this case, since there is no arrox roll, the amount of ink supplied depends on the accuracy of the extrusion coater.
  • the amount of ink transferred to the plate cylinder 3 is determined by the number of engraving lines of the arlock roll 4 and the shape of the cell, and the amount of ink transferred can be stabilized.
  • the ink that fills the cells of the arrox roll uses the doctor blade to scatter excess ink on the surface of the arrox roll, so the transferred ink is determined by the number of engraving lines and the shape and volume of the cell. is there.
  • the surface of the iron cylinder is subjected to copper plating if necessary, and the cell is formed by engraving on the surface, and the surface processing with hardness is performed by using the nickel or chrome plating.
  • the ceramic coated type is preferred.
  • FIG. 6 is a perspective view of an arlock roll.
  • FIG. 7 is a perspective view for explaining an AROX cell.
  • the Erox roll 4 can be formed by chemical corrosion in the same manner as the gravure plate provided on the copper surface, but it tends to cause treatment of the corrosion liquid and variations in depth. In view of this, it is desirable to provide the cell b by machine or laser engraving. And the surface of an arrox roll is usually made by chrome plating after pressing with a mill. However, the point of abrasion resistance, corrosion resistance, and ink transferability is preferably one formed by spraying inorganic oxide such as acid chrome or tungsten carbide.
  • the sculpture shape of the Arrox roll 4 is not shown in the figure other than the lattice-type cell, but there are shapes such as a helicity type, a pyramid type, a diagonal type, and a hexagonal Herka pattern, Although it is not particularly limited, it is preferable to use a hammer pattern from the viewpoint of reproducibility of ink transfer during high-speed printing.
  • the number of engraving lines and the depth d of the cell b shown in FIGS. 6 and 7 have a great influence on the amount of ink transferred, and form a fine uneven structure on the surface of the antiglare film according to the present invention. In this case, it is preferable that 600 lines Z2. 54 cm or more and the cell depth d is 5 to 30 m.
  • the selection of the engraving shape and the number of lines is a force that is considered in accordance with the type of substrate to be printed and the number of lines on the printing screen.
  • the bank a (non-recessed) of the cell should be small enough not to impair the wear resistance.Spot power that can increase the amount of ink charge is also preferred. It is preferable to provide 1 to 0.5 times.
  • the arlock roll controls the amount of ink supplied to the printing plate by doctoring during flexographic printing. In the doctoring process, wear and damage occur, and the cell becomes shallow, causing a decrease in ink transfer. Therefore, compared to conventional metals (sculpture and chrome finish on iron or copper), ceramic arrox rolls can reduce the amount of wear caused by doctoring and greatly contribute to the repetitive stability of uneven patterns. .
  • the present invention preferably uses a flexographic printing apparatus as shown in Fig. 3 to provide a plate cylinder 3 in which a seamless resin plate 1 having a diameter of 50 to LOOOmm is mounted on a resin plate roll 2, and preferably ceramicsco.
  • Ink transfer roll printing is performed on the base film 10 using the coated arrox roll 4, and the convex structure portion is formed on the base film by heating or irradiating with actinic rays.
  • the material of the above-mentioned slab roll 2 is not particularly limited, and is preferably a metal such as iron, stainless steel or aluminum, or a synthetic or natural rubber, as long as it can maintain the strength.
  • a composite member of metal and rubber may be used.
  • the diameter of the resin plate roll 2 is selected so that the diameter (roll diameter) when the seamless resin plate 1 is mounted on the resin plate roll 2 is in the range of 50 to: LOOO mm. If you can. If the diameter of the seamless resin plate 1 is less than 50mm This is not preferable because the rotational speed is too high to maintain the strength, and the pattern repeating pattern of the convex structure portion is short and the anti-glare effect is reduced. If the diameter exceeds 1000 mm, the apparatus becomes too large, which is expensive to operate and disadvantageous in terms of cost. In addition, uneven rotation is likely to occur, and the pattern formation accuracy decreases.
  • a photosensitive resin plate to which photopolymerization of a polymer and a monomer as a photoreactive substance is applied as the resin plate used for the seamless resin plate 1.
  • This photosensitive resin plate includes a photopolymer, a monomer that is photopolymerized by exposure to ultraviolet rays, a sensitizer that initiates photopolymerization between the polymer and the monomer, and a plasticizer that adjusts the physical properties of the plate material.
  • the composition is made of the composition, and the above pattern is engraved on the photosensitive resin plate by a conventional mask making, or the photosensitive resin layer provided on the entire surface of the cylinder (axial core) is irradiated with laser light. By doing so, the pattern can be directly engraved.
  • the photosensitive resin composition used in the present invention those known for flexographic printing plates can be used.
  • a composition mainly composed of a binder polymer, at least one ethylenically unsaturated monomer and a photoinitiator is used.
  • additives such as a sensitizer, a thermal polymerization inhibitor, a plasticizer, and a colorant can be included depending on the properties required for the photosensitive resin layer.
  • Noinder polymer for example, a thermoplastic elastomer obtained by polymerizing a monobule-substituted aromatic hydrocarbon monomer and a synergistic monomer is used.
  • Monobutyl-substituted aromatic hydrocarbon monomers include styrene, ⁇ -methyl styrene, ⁇ -methyl styrene, ⁇ -methoxy styrene, and conjugated gen monomers include butadiene and isoprene. Specific examples include styrene butadiene styrene block copolymer and styrene isoprene styrene block copolymer.
  • the at least one ethylenically unsaturated monomer is compatible with the binder polymer.
  • t-butyl alcohol is an ester of lauryl alcohol and an acrylic acid or methacrylic acid, or lauryl maleimide or cyclohexane.
  • Maleyl derivatives such as xylmaleimide and benzylmaleimide, alcohol and fumaric acid esters such as dioctyl fumarate, hexanediol di (meth) acrylate, Examples thereof include esters of polyhydric alcohols such as nandiol di (meth) acrylate and trimethylolpropane tri (meth) acrylate and acrylic acid and methacrylic acid.
  • Photoinitiators include aromatic ketones such as benzophenone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, a-methylol benzoin methyl ether, ⁇ -methoxybenzoin methyl ether, 2, It is used in combination with a known photopolymerization initiator such as 2-benzoin ethers such as 2-jetoxy-lucacetophenone.
  • aromatic ketones such as benzophenone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, a-methylol benzoin methyl ether, ⁇ -methoxybenzoin methyl ether, 2, It is used in combination with a known photopolymerization initiator such as 2-benzoin ethers such as 2-jetoxy-lucacetophenone.
  • the photosensitive resin layer can be prepared by various methods.
  • the raw materials to be blended may be dissolved and mixed in a suitable solvent, for example, a solvent such as black mouth form, tetrachloroethylene, methyl ethyl ketone, or toluene, and coated on a suitable support by a coater.
  • a suitable solvent for example, a solvent such as black mouth form, tetrachloroethylene, methyl ethyl ketone, or toluene
  • it can be cast into a mold to evaporate the solvent and be used as a plate as it is.
  • it can be kneaded with an edder or a roll mill and formed into a plate having a desired thickness by an extruder, an injection molding machine, a press or the like.
  • the photosensitive resin sheet When the photosensitive resin sheet is wound around the resin plate roll, the sheet is accurately cut and used so that there is no gap between the ends of the photosensitive resin in order to form a seamless resin plate. It is necessary. Usually, after winding the photosensitive resin plate around the resin plate roll, the photosensitive resin is heated to a temperature higher than the soft point of the photosensitive resin to melt-bond the ends of the photosensitive resin. The heating time is usually 20 minutes to 1 hour, and is determined based on the fact that the ends are fused according to the temperature and the softness point of the resin.
  • the surface of the photosensitive resin is polished with a grinder to completely eliminate the joints, and at the same time the accuracy is given, and then the heating treatment is performed again above the soft point of the photosensitive resin. .
  • the time is about 10 to 40 minutes, depending on the temperature, and is done until the entire surface of the photosensitive resin becomes glossy. If heating is continued for a long time, the accuracy of the printing plate is impaired, so it is desirable to process within one hour.
  • a photosensitive resin layer should be applied to make the base material rubber, polyester film, aluminum plate, steel plate, or aluminum resin plate roll that can be mounted on the cylinder, seamless so that there is no seam. You can also.
  • the rubber hardness of the seamless resin plate is preferably in the range of 30 to 80 degrees, and the rubber hardness of the resin plate is within this range for performing transfer printing of a stable fine uneven structure with high accuracy. It is preferable that it exists in a range. Since the rubber hardness of the roll-shaped seamless resin plate 1 is also affected by the thickness of the resin plate, the thickness is preferably in the range of 30 to 80 degrees in the resin plate having a thickness of 0.5 to LOmm. Better ,. More preferably, it is in the range of 40 to 80 degrees.
  • the rubber hardness of the resin plate is less than 30 degrees, it is not preferable because the plate is too soft and it is difficult to form a desired fine uneven structure, and the plate itself is easily worn. If the rubber hardness of the stencil plate exceeds 80 degrees, the plate cylinder rotates at a high speed and lacks flexibility when printing, and the reproducibility of the ink transfer amount is poor. Rubber hardness Shown as a value measured with a durometer in accordance with the method described in IS K 6253.
  • Mask plate making is used as a method for imprinting a pattern with a fine relief structure on a seamless resin plate.
  • a resin plate provided with a layer of photosensitive resin material is covered with a negative film as an original mask and exposed.
  • the photosensitive resin layer is hardened or insolubilized by light, particularly ultraviolet energy having a wavelength of 350 to 45 Onm.
  • the uncured resin in the unexposed area is maintained in a soluble state in water, an aqueous alkaline solution, or an organic solvent such as alcohol. Accordingly, the unexposed area is washed out with a solvent corresponding to the unexposed area (development process), so that only the exposed area remains and forms a relief printing plate (flexographic printing plate).
  • a complete endless plate can be produced by directly engraving a cured resin plate with a laser beam or an engraving machine based on a corrected image signal! .
  • an unexposed photosensitive resin plate can be scanned with a laser beam modulated with a modified image signal in a cylindrical shape and patterned, and then developed in the usual manner from the viewpoint of forming an endless plate. I like it.
  • the convex structure part of the present invention is formed.
  • FIG. 8 is a cross-sectional view showing an example of an inkjet head that can be used in the inkjet method used in the present invention.
  • Fig. 8 (a) is a cross-sectional view of the inkjet head
  • Fig. 8 (b) is an enlarged view taken along line AA in Fig. 8 (a).
  • 11 is a substrate
  • 12 is a piezoelectric element
  • 13 is a flow path plate
  • 13a is an ink flow path
  • 13b is a wall
  • 14 is a common liquid chamber component
  • 14a is a common liquid chamber
  • 15 is an ink supply pipe
  • 16 is the nozzle plate
  • 16a is the nozzle
  • 17 is the drive circuit printed board (PCB)
  • 18 is the lead
  • 19 is the drive electrode
  • 20 is the groove
  • 21 is the protective plate
  • 22 is the fluid resistance
  • 23 and 24 are the electrodes 25 is an upper partition wall
  • 26 is a heater
  • 27 is a heater power supply
  • 28 is a heat transfer member
  • 30 is an inkjet head.
  • the laminated piezoelectric element 12 having the electrodes 23, 24 is subjected to groove processing in the direction of the flow path 13a corresponding to the flow path 13a. And drive piezoelectric element 12b and non-drive piezoelectric element 12a.
  • the groove 20 is filled with a filler.
  • the flow path plate 13 is joined to the piezoelectric element 12 that has been subjected to the groove processing via the upper partition wall 25. That is, the upper partition wall 25 is supported by the non-driving piezoelectric element 12a and the wall portion 13b separating the adjacent flow path.
  • the width of the driving piezoelectric element 12b is slightly narrower than the width of the flow path 13a, and the driving piezoelectric element 12b selected by the driving circuit on the driving circuit printed board (PCB) is driven when a pulse signal voltage is applied.
  • the piezoelectric element 12b changes in the thickness direction, and the volume of the flow path 13a changes via the upper partition 25. As a result, ink droplets are ejected from the nozzles 16a of the nozzle plate 16.
  • Heaters 26 are bonded to the flow path plate 13 via heat transfer members 28, respectively.
  • the heat transfer member 28 is provided around the nozzle surface.
  • the heat transfer member 28 is intended to efficiently transfer the heat from the heater 26 to the flow path plate 13 and to carry the heat from the heater 26 to the vicinity of the nozzle surface to warm the air near the nozzle surface.
  • a material with good thermal conductivity is used.
  • preferred materials include metals such as aluminum, iron, nickel, copper, and stainless steel, and ceramics such as SiC, BeO, and A1N.
  • FIG. 9 is a schematic view showing an example of an inkjet head unit and a nozzle plate that can be used in the present invention.
  • FIG. 9 (a) of FIG. 9 is a cross-sectional view of the head portion, and (b) of FIG. 9 is a plan view of the nozzle plate.
  • 10 is a substrate film
  • 31 is an ink droplet
  • 32 is a nozzle
  • 29 is an actinic ray irradiation part.
  • the ink droplets 31 ejected from the nozzle 32 fly in the direction of the substrate film 10 and adhere.
  • the ink droplets that have landed on the base film 10 are immediately irradiated with actinic rays from an actinic ray irradiating unit disposed upstream thereof and cured.
  • Reference numeral 35 denotes a back roll for holding the substrate film 10.
  • the nozzles of the inkjet head part are preferably arranged in a zigzag pattern, and are arranged in multiple stages in parallel in the transport direction of the base film 10. It is preferable to provide it. In addition, it is preferable to apply fine vibrations to the ink jet head portion during ink ejection so that ink droplets randomly land on the transparent substrate. Thereby, generation of interference fringes can be suppressed.
  • the fine vibration is a force that can be applied by a high-frequency voltage, a sound wave, an ultrasonic wave, or the like, but is not limited to these.
  • the convex structure forming method used in the present invention is preferably an ink jet method in which a small nozzle droplet is ejected from a multi-nozzle cover.
  • FIG. 10 shows an example of an ink jet system that can be preferably used in the present invention.
  • FIG. 10 (a) in FIG. 10 is a method in which the inkjet head 30 is arranged in the width direction of the base film 10 and a convex structure is formed on the surface of the base film 10 while being transported. (Line head method), (b) in FIG. 10 is a method of forming a convex structure on the surface of the inkjet head 30 while moving in the sub-scanning direction (flat head method), and c) in FIG. Ink jet head 30 force A method of forming a convex structure portion on the surface of the base film 10 while scanning the width direction on the base film 10 (capstan method). V, displacement method can also be used, but in the present invention In view of productivity, the line head method is preferable. Note that reference numeral 29 in FIGS. 10A to 10C denotes an actinic ray irradiating unit used when an actinic ray curable resin described later is used as the ink.
  • another actinic ray irradiation unit may be provided on the downstream side in the conveyance direction of the base film in (a), (b), and (c) of FIG.
  • 0.1 to: LOOpl is preferable as an ink droplet
  • 0.1 to 50pl is more preferable
  • 0.1 to LOLO is particularly preferable.
  • the viscosity of the ink droplet is preferably 0.1 to 20 mPa's at 25 ° C, more preferably 0.5 to LOmPa's.
  • the transparent resin layer is composed of an actinic ray curable resin, a photopolymerization initiator, a photoinitiator, a photosensitizer, a thermosetting resin, and a thermoplastic as described in detail in the above-mentioned convex structure section.
  • An ink composition is prepared by appropriately using a resin, an ultraviolet absorber, fine particles, a solvent, and the like, and further coated on the convex structure portion by an arbitrary coating method.
  • the method of applying the transparent resin layer is not particularly limited, but the ink composition may be made of grabiaco ⁇ ⁇ "' ⁇ ”, Dipco ⁇ ⁇ "Ta' ⁇ ”, renoku ⁇ ⁇ "sco ⁇ It is preferable to coat by a known method such as ⁇ "' ⁇ ", wire 1 "" no- 1 "” co 1 "” ta " ⁇ , die coater, ink jet method, flexographic printing method.
  • FIG. 11 shows an example of the formation of a convex structure portion by flexographic printing preferably used in the present invention and the formation of a transparent resin layer by a coating method using a die coater that is subsequently performed.
  • the base film 502 fed out from the roll 501 is conveyed, and the flexographic printing part A is coated with a pattern-like convex structure part by flexographic printing.
  • the ink liquid is supplied from the ink supply tank 508 to the arrox roll 510, and the ink is transferred to the resin plate 509 having a pattern structure which is a flexographic printing section.
  • the actinic ray curable resin is used for the transfer-printed ink
  • the ink uses thermosetting resin, it is heated and cured by a drying zone 505A, for example, a heat plate. Also preferred is the method of heating the back roll 5 04A as a heat roll!
  • the actinic light irradiation part 506A and the stencil plate 509 should be moderately attached so as not to directly affect the ink of the actinic light irradiation part 506A.
  • the resin plate 509 is covered with a heat insulating cover, or the drying air in the drying zone 505A is blocked as shown in the figure. It is preferable to install such a partition.
  • the base film 502 that has been cured to such an extent that the pattern formed by the transfer-printed ink can be maintained, completes curing by evaporating unnecessary organic solvent and the like in the drying zone 505A.
  • the composition for the hard coat layer supplied from the coater 503 is applied to the entire surface including the convex structure part, and the convex structure part non-formed part is formed. An uneven structure is formed between them.
  • the transparent resin layer contains actinic ray curable resin, actinic rays are irradiated by the actinic ray irradiation sections 506B and 506C. Further, it is dried and solidified by the drying zone 505B.
  • the method for forming a pattern-like convex structure portion by flexographic printing is preferably performed while the substrate film is transferred at 1 to 500 mZmin, preferably 10 to 300 mZmin.
  • the base film used for transfer printing of the ink is preferably subjected to slow charging immediately before it is preferable that there is no unevenness in charging, or it may be uniformly charged.
  • the anti-glare property such as haze and transmission sharpness was measured for the pattern formed by transfer printing of the ink, and it was confirmed that it was a predetermined value. It is preferable to adjust the ink by feeding back and replace the resin plate.
  • the substrate film used in the present invention is easy to manufacture, has good adhesion to the actinic ray curable resin layer, is optically isotropic, and is optically transparent. Etc. are preferred and listed as requirements.
  • transparent means a visible light transmittance of 60% or more, preferably 80
  • % Or more particularly preferably 90% or more.
  • Cellulose esterores such as Inolem, Cellulose Triacetate Finolem, Cellulose Acetate Propionate Finolem, Cellulose Acetate Butyrate Finolem, Polyester Film, Polycarbonate Film, Polyarylate Film, Polysulfone (Polyether) (Including sulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polybutyl alcohol film, polyethylene alcohol film, syndiotactic polystyrene Film, polycarbonate film, norbornene resin film, polymethylpentene film, polyester Ether ketone film, polyether ketone imide film, a polyamide film include fluorine ⁇ film, nylon film, polymethyl methacrylate Tari acetate film, acrylic film or a glass plate or the like. Of
  • the norbornene-based resin film preferably used in the present invention is an amorphous polyolefin film having a norbornene structure, for example, APO manufactured by Mitsui Petrochemical Co., Ltd., ZEONEX manufactured by Nippon Zeon Co., Ltd., There is ARTON etc. made by JSR Corporation.
  • a cellulose ester film As senorelose esterolate, cellulose acetate butyrate, sennellose acetate phthalate, and cellulose acetate propionate are preferred, although senorelose acetate, senololose acetate butyrate, and cellulose acetate propionate are preferred. .
  • cellulose ester films for example, Co-Camino Nortack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4FR (manufactured by Co-Power Minoltopto Co., Ltd.) View power such as surface, transparency, and adhesiveness is preferably used.
  • These films may be films produced by melt casting film formation or films produced by solution casting film formation.
  • the present invention provides a fine concavo-convex structure of an antiglare film having the convex structure portion and a transparent resin layer. It is preferable to provide an antiglare antireflection film by providing the following low refractive index layer on the surface having a structure.
  • the low refractive index layer is coated with a low refractive index layer coating solution containing hollow silica-based fine particles that have an outer shell layer and are porous or hollow inside! It is preferable to do this.
  • the refractive index of the low refractive index layer according to the present invention is lower than the refractive index of the substrate film as the support, and is 23 ° C., wavelength 550 nm SlJ constant, and 1.30 to: L 45 Better!/,.
  • the film thickness of the low refractive index layer is preferably 5 nm to 0.5 ⁇ m, more preferably 10 nm to 0.3 ⁇ m, and 30 ⁇ ! Most preferred is ⁇ 0.2 m.
  • the composition for forming a low refractive index layer used in the present invention comprises (a) an organosilicon compound represented by the following general formula (2) or a hydrolyzate thereof or a polycondensate thereof; It is preferable that hollow silica-based fine particles having a shell layer and having a porous or hollow interior constitute the composition.
  • R is an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms.
  • a solvent and if necessary, a silane coupling agent, a curing agent and the like may be added.
  • the hollow silica-based fine particle comprises (I) a porous particle and a composite particle that works with the coating layer provided on the surface of the porous particle, or (II) a cavity inside, and the content is a solvent, Cavity particles filled with gas or porous material.
  • the low refractive index layer includes (I) composite particles or (II) hollow particles! /, Misalignment! /, If necessary, both are included! /, Even! / ,.
  • the hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls.
  • the cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm.
  • the hollow fine particles used are the thickness of the transparent film to be formed. Depending on the thickness, the thickness of the transparent coating such as a low refractive index layer to be formed is 2Z3 to 1
  • These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer.
  • an appropriate medium for example, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diaceton alcohol) are preferable.
  • the thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm.
  • the coating layer thickness is less than lnm, the particles may not be completely covered. The composite particles may easily enter the interior of the composite particle and the internal porosity may be reduced, and the low refractive index effect may not be sufficiently obtained.
  • the thickness of the coating layer exceeds 20 nm, the above-mentioned carboxylic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficient. May not be obtained.
  • the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index is not sufficiently exhibited. There is.
  • the coating layer of the composite particles or the particle wall of the hollow particles preferably contains silica as a main component.
  • specific components other than silica may be included. Al O, B 2 O, TiO
  • porous particles constituting the core examples include those made of silica, those made of silica and inorganic compounds other than silica, and those made of CaF, NaF, NaAlF, MgF, and the like. This
  • porous particles having a complex acidity of silica and an inorganic compound other than silica are particularly preferable.
  • Inorganic compounds other than silica include Al 2 O, B 2 O, TiO, ZrO, SnO, and CeO.
  • silica is represented by SiO, and inorganic compounds other than silica are oxidized.
  • the molar ratio of porous particles MO / SiO is 0.0.
  • Refractive index is difficult to obtain less than 001, and even if obtained, the pore volume is small Low particle size cannot be obtained. Also, the molar ratio of porous particles MO / SiO force exceeds 1.0
  • the ratio of silica is reduced, the pore volume is increased, and it may be difficult to obtain a material having a lower refractive index.
  • the pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml Zg, preferably 0.2 to 1.5 ml Zg. If the pore volume is less than 0.1 mlZg, particles having a sufficiently low refractive index cannot be obtained, and if it exceeds 1.5 mlZg, the strength of the fine particles may be lowered, and the strength of the resulting film may be lowered.
  • the pore volume of such porous particles can be determined by mercury porosimetry.
  • the contents of the hollow particles include the solvent, gas, and porous material used at the time of particle preparation.
  • the solvent may contain unreacted particle precursors used in preparing the hollow particles, the catalyst used, and the like.
  • examples of the porous material include compounds having the compound power exemplified by the porous particles. These contents may consist of a single component or a mixture of multiple components.
  • R represents an alkyl group having 1 to 4 carbon atoms.
  • tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
  • the low refractive index layer may contain a fluorine-substituted alkyl group-containing silane compound represented by the following general formula (3).
  • 1 ⁇ to 1 ⁇ are alkyl groups having 1 to 16 carbon atoms, preferably 1 to 4 carbon atoms, 1 to 6 carbon atoms, preferably 1 to 4 halogenated alkyl groups, 6 to 12 carbon atoms.
  • An alkoxy group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, a hydrogen atom or a halogen atom.
  • Rf represents — (C H F) —, a is an integer from 1 to 12, b + c is 2a, b is an integer from 0 to 24 a c
  • Rf is preferably a group having a fluoroalkylene group and an alkylene group.
  • fluorine-containing silicone compounds include (MeO) SiC H C F C H Si (MeO), (MeO) SiC H C F C H Si (MeO), (
  • Methoxydisilane compounds represented by H C O) SiC H C F C H Si (OC H)
  • the noinder if the fluorine-substituted alkyl group-containing silane compound is included! /, Since the formed transparent film itself has hydrophobicity, the transparent film is not sufficiently densified. Even if it is porous or has cracks or voids, entry into the transparent film by water or chemicals such as acid or alkali is suppressed. Furthermore, fine particles such as metals contained in the conductive layer, which is the substrate surface or the lower layer, do not react with chemicals such as moisture or acid or alkali. For this reason, such a transparent film has excellent chemical resistance.
  • a fluorine-substituted alkyl group-containing silane compound is included as a binder, not only the hydrophobicity but also the slipperiness is good (the contact resistance is low), and thus the scratch strength is increased. An excellent transparent film can be obtained. Furthermore, when the binder contains a fluorine-substituted alkyl group-containing silane compound having such a structural unit, when the conductive layer is formed in the lower layer, the shrinkage of the binder is equivalent to that of the conductive layer. Since these are close to each other, a transparent film having excellent adhesion to the conductive layer can be formed. Furthermore, when the transparent film is heat-treated, the conductive layer does not peel off due to the difference in shrinkage rate, and a portion having no electrical contact with the transparent conductive layer does not occur. For this reason, sufficient conductivity can be maintained for the entire film.
  • a transparent coating comprising a fluorine-substituted alkyl group-containing silane compound and the hollow silica fine particles having the outer shell layer and being porous or hollow inside has a high scratch strength and an eraser.
  • An excellent transparent film can be formed on the basis of high pencil hardness and high film strength evaluated by strength or nail strength.
  • the low refractive index layer according to the present invention may contain a silane coupling agent!
  • Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, etyltrimethoxysilane, etyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane.
  • silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethylenoresimethoxymethoxysilane, pheninolemethinoresimethoxymethoxysilane, dimethylenolegetoxysilane, pheninolemethinolegetoxy.
  • Propyltrimethoxysilane which has a disubstituted alkyl group with respect to silicon, ⁇ -Ataryloxypropyl propylmethyldimethoxysilane, ⁇ Ataryloxypropylmethyl jetoxysilane, oral pyrmethylmethoxysilane, methylbiphenyl two dimethoxysilane and Mechirubi two Rujeto Kishishiran is preferred instrument y- Atari Roy Ruo trimethoxysilane and ⁇ - methacryloyloxy Ruo trimethoxysilane, ⁇ - Atari Roy Ruo carboxypropyl methyl dimethacrylate Toki Silane, .gamma.
  • Two or more coupling agents may be used in combination.
  • other silane coupling agents may be used.
  • Other silane coupling agents include alkyl esters of orthokeys (eg, methyl orthokeate, ethyl orthokete, ⁇ -propyl orthokeate, i-propyl orthokeate, n-butyl orthokeate, ortho (Sec-butyl cate, t-butyl orthokeate) and hydrolysates thereof.
  • Examples of the polymer used as the other binder in the low refractive index layer include polybutyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, dicetinoresenololose, triacetinol.
  • Examples include senorelose, nitrosenololose, polyesterol and alkyd rosin.
  • the low refractive index layer preferably contains 5 to 80 mass% of the binder as a whole.
  • the binder 1 has a function of adhering the hollow silica fine particles and maintaining the structure of the low refractive index layer including voids. The amount of the binder used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
  • the low refractive index layer according to the present invention preferably contains an organic solvent.
  • organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, Methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, propyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylace
  • the content of the organic solvent is preferably 1 to 4% by mass of the solid content concentration in the low refractive index layer coating composition. 1% by weight or more is preferred to prevent uniform coating and prevent uniform coating of organic solvents. If it exceeds 4% by weight, the drying load increases, which is not preferable because it increases the size of the drying equipment and increases the time. .
  • a high refractive index layer preferable for the present invention contains (c) metal oxide fine particles having an average particle diameter of 10 to 200 nm, (d) a metal compound, and (e) an actinic ray curable resin. It is preferable.
  • the high refractive index layer of the present invention preferably contains metal oxide fine particles.
  • Types of metal oxide fine particles are not particularly limited Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S force
  • Metal oxides having at least one element selected can be used, and these metal oxide fine particles are doped with a small amount of atoms such as Al, In, Sn, Sb, Nb, halogen elements, Ta, etc. You can do it. A mixture of these may also be used.
  • the metal oxide fine particles are preferably used as the main component, and indium tin oxide (ITO) is particularly preferable.
  • the average particle diameter of the primary particles of the metal oxide fine particles is in the range of 10 nm to 200 nm, and particularly preferably 10 to 150 nm.
  • the average particle size of metal oxide fine particles can be measured from electron micrographs using a scanning electron microscope (SEM), etc., and a particle size distribution meter that uses dynamic light scattering or static light scattering. You can also measure by If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased.
  • the shape of the metal oxide fine particles is preferably a rice granular shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an irregular shape.
  • the refractive index of the high refractive index layer is specifically higher than the refractive index of the substrate film as the support, and is in the range of 1.50-1.90 at 23 ° C and wavelength of 550 nm. It is preferable.
  • the means for adjusting the refractive index of the high refractive index layer is dominated by the type and amount of metal oxide fine particles, so the refractive index of the metal oxide fine particles is preferably 1.80-2.60. 1. 85-2.50 is more preferable.
  • the metal oxide fine particles may be surface-treated with an organic compound.
  • an organic compound By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. it can.
  • the amount of surface modification with a preferable organic compound is 0.1% with respect to metal oxide particles. It is 0.5 mass%-5 mass%, More preferably, it is 0.5 mass%-3 mass%.
  • organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents and titanate coupling agents. Of these, the silane coupling agents described below are preferred. You can combine two or more surface treatments.
  • the thickness of the high refractive index layer containing the metal oxide fine particles is 5 ⁇ ! It is preferable that it is ⁇ 1 ⁇ m, and it is more preferable that it is 10 nm to 0.2 m, and it is most preferable that it is 30 nm to 0.1 m.
  • the ratio of the metal oxide fine particles to be used and a binder such as actinic ray curable resin to be described later varies depending on the kind of metal oxide fine particles, the particle size, etc., but the volume ratio of the former 1% versus the latter 2 Therefore, the latter 1 is preferable to the former 2.
  • the amount of the metal oxide fine particles used in the present invention is preferably 5% by mass to 85% by mass in the high refractive index layer, more preferably 10% by mass to 80% by mass. 20-75% by weight is most preferred. If the amount used is small, the desired refractive index and the effect of the present invention cannot be obtained, and if it is too large, the film strength deteriorates.
  • the metal oxide fine particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium.
  • a dispersion medium for metal oxide particles it is preferable to use a liquid having a boiling point of 60 to 170 ° C.
  • dispersion solvent examples include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol ( E.g., diacetone alcohol), esters (e.g., methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyrate formate), aliphatic hydrocarbons (e.g., hexane, cyclohexane) Hexane), halogenated hydrocarbons (eg, methyl chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide,
  • the metal oxide fine particles can be dispersed in the medium using a disperser.
  • the dispersing machine include a sand grinder mill (eg, a bead mill with a pin), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill.
  • a sand grinder mill and a high-speed impeller mill are particularly preferred.
  • preliminary dispersion processing may be performed.
  • the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an etastruder.
  • metal oxide fine particles having a core Z shell structure may be further contained.
  • One shell may be formed around the core, or a plurality of layers may be formed in order to further improve the light resistance.
  • the core is preferably completely covered by the shell.
  • the core can use titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, dumbbell, cerium oxide, indium oxide doped with tin, tin oxide doped with antimony, etc.
  • the main component is rutile titanium oxide.
  • the shell preferably contains an inorganic compound other than titanium oxide as a main component and also forms a metal oxide or sulfide force.
  • inorganic materials mainly composed of silicon dioxide (silica), aluminum oxide (alumina), zirconium oxide, dumbbell, tin oxide, antimony oxide, indium oxide, iron oxide, zinc oxide zinc, etc. A compound is used. Of these, alumina, silica and zirconium (acid zirconium) are preferable. A mixture of these may also be used.
  • the coating amount of the shell with respect to the core is 2 to 50% by mass in average coating amount. Preferably it is 3-40 mass%, More preferably, it is 4-25 mass%.
  • the coating amount of the shell is large, the refractive index of the fine particles is lowered, and when the coating amount is too small, the light resistance is deteriorated.
  • the core of titanium oxide a core produced by a liquid phase method or a gas phase method can be used.
  • methods for forming the shell around the core include, for example, U.S. Pat. No. 3,410,708, JP-B 58-47061, U.S. Pat. No. 2,885,366, and 3,437,502.
  • No. 1 British Patent No. 1,134,249, U.S. Pat.No. 3,383,231, British Patent No. 2,629,953, No. 1,365,999, etc. be able to.
  • the metal compound used in the present invention is a compound represented by the following general formula (4) or a key thereof.
  • a rate-i compound can be used.
  • represents a metal atom
  • represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group
  • B represents an atomic group covalently or ionically bonded to the metal atom M.
  • X represents the valence of the metal atom M
  • n represents an integer of 2 or more and X or less.
  • Examples of the hydrolyzable functional group A include an alkoxyl group, a halogen such as a chloro atom, an ester group, an amide group, and the like.
  • the metal compound belonging to the above formula (4) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof.
  • Preferable metal compounds include titanium alkoxides, zinc alkoxides, and chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in large quantities.
  • Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating.
  • titanium alkoxide has the effect of accelerating the reaction of UV-cured resin and metal alkoxide, so that the physical properties of the coating film can be improved by adding a small amount.
  • titanium alkoxide examples include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium. Etc.
  • Zirconium alkoxides include, for example, tetramethoxyzirconium, tetraethoxyzinorecordium, tetra-iso-propoxyzirconium, tetra-n-propoxyzirconium, tetra-n-butoxyzirconium, tetra-sec-butoxyzirconium, tetra-tert-butoxy Zirconium etc. are mentioned.
  • Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, ethylene glycol, diethylene glycol, and propylene glycol. And glycols such as acetylacetone, acetylacetoacetate and the like having a molecular weight of 10,000 or less.
  • alkanolamines such as diethanolamine and triethanolamine
  • glycols such as acetylacetone, acetylacetoacetate and the like having a molecular weight of 10,000 or less.
  • Actinic ray curable resin is added as a binder for metal oxide fine particles in order to improve the film formability and physical properties of the coating film.
  • Actinic ray curable resin is a monomer or oligomer having two or more functional groups that undergo polymerization reaction directly by irradiation of actinic rays such as ultraviolet rays or electron beams or indirectly by the action of a photopolymerization initiator.
  • the functional group include a group having an unsaturated double bond such as a (meth) ataryloxy group, an epoxy group, and a silanol group. Of these, radically polymerizable monomers and oligomers having two or more unsaturated double bonds can be preferably used.
  • a photopolymerization initiator may be combined as necessary.
  • actinic ray curable resin include polyfunctional attareito toy compounds, pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and It is preferable that the compound is selected from the group power consisting of dipentaerythritol polyfunctional metatalylate.
  • the polyfunctional ate relato toy compound is a compound having two or more allyloyloxy groups and Z or methacryloxy groups in the molecule.
  • Examples of the monomer of the polyfunctional talarito toy compound include ethylene glycol ditalylate, diethylene glycol ditalylate, 1,6-hexanediol ditalylate, neopentylglycol ditalylate, and triglyceride.
  • Methylolpropane tritalylate trimethylolethane tritalylate, tetramethylol methane tritalylate, tetramethylol methane tetratalylate, pentaglycerol tritalylate, pentaerythritol diatalate, pentaerythritol tritalylate, pentaerythritol tetra Atalylate, Glycerin triatalylate, Dipentaerythritol triatalylate, Dipentaerythritol Tetraatalylate, Dipentaerythritol Pentaatalylate , Dipentaerythritol hexaoxatalylate, tris (atallyloyloxetyl) isocyanurate, ethylene glycol dimetatalylate, diethylene glycol dimetatalylate, 1,6-hexanediol dimetatalylate,
  • It may be an oligomer such as a dimer or trimer.
  • the addition amount of the actinic ray curable resin is preferably less than 50% by mass in the solid content of the high refractive index composition.
  • the photopolymerization initiator and the acrylic compound having two or more polymerizable unsaturated bonds in the molecule were used in a mass ratio of 3: 7.
  • photopolymerization initiator examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, a amioxime ester, thixanthone, and derivatives thereof.
  • organic solvent used for coating the high refractive index layer of the present invention examples include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, and pentaanol).
  • alcohols for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, and pentaanol.
  • polyhydric alcohols eg, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexane
  • Diol pentanediol, glycerin, hexanetriol, thiodiglycol, etc.
  • polyhydric alcohol ethers for example, ethylenic glycolanol monomer
  • Chinoleatenore ethyleneglycolenomonochinenoatenore, ethyleneglycolenoremonobutinoreethenore, diethyleneglycololemonomethinoreatenore, jetylene glycolenoremonomethinoreatenore, diethyleneglycolenoremonobutinoreatenore, Professional Pyreneglycolole
  • Amides eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.
  • heterocyclics eg, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexylpyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.
  • sulfoxides eg, dimethyl sulfoxide, etc.
  • sulfones eg, sulfolane, etc.
  • urea acetonitryl, acetone, etc.
  • alcohols, polyhydric alcohols, and polyhydric alcohol ethers are preferred.
  • the antiglare film or antiglare antireflection film of the present invention is preferably provided with an antifouling layer on the outermost layer.
  • the antifouling layer preferable for the present invention preferably contains a fluorine-containing silane compound in the antifouling layer forming composition, and is coated with a silane compound solution having a fluoroalkyl group or a fluoroalkyl ether group.
  • a fluorine-containing silane compound is silazane or alkoxysilane.
  • one Si atom is bonded to Si atoms at a ratio of 1 or less with respect to one Si atom having a fluoroalkyl group in the silane compound.
  • the remainder is preferably a silane compound which is a hydrolyzable group or a siloxane linking group.
  • the hydrolyzable group is a group such as an alkoxy group, for example, and becomes a hydroxyl group by hydrolysis, whereby the silanic compound forms a polycondensate.
  • the above silane compound is a by-product alcohol with water (in the presence of an acid catalyst if necessary).
  • the reaction is carried out in the range of room temperature to 100 ° C. while distilling off the solvent.
  • the alkoxysilane is (partially) hydrolyzed to cause a partial condensation reaction, and can be obtained as a hydrolyzate having a hydroxyl group.
  • the degree of hydrolysis and condensation can be appropriately adjusted depending on the amount of water to be reacted.
  • water is not actively added to the silane compound solution used for the antifouling treatment, and after the preparation, It is preferred to dilute the solid content of the solution thinly to cause a hydrolysis reaction with moisture in the air during drying.
  • the silane compound having a fluoroalkyl group is represented by the following general formula (5), and the concentration of the silane compound is 0.01 to It is to be used as a solution diluted to 5% by mass and subjected to antifouling treatment.
  • n is an integer from 0 to 10.
  • Ra represents the same or different alkyl group.
  • Ra is preferably an alkyl group having 3 or less carbon atoms and capable of acting only on carbon and hydrogen, for example, a group such as methyl, ethyl, and isopropyl.
  • Examples of the silane compound having a fluoroalkyl group or a fluoroalkyl ether group preferably used in the present invention include CF (CH) Si (OCH), CF (CH
  • fluorine-based silane compounds examples include KP801M, X-24-9146, Shinichi Shingaku Kogyo Co., Ltd. Optool DSX, FG5010 manufactured by Fluoro Technology Co., Ltd., etc., and as a compound for surface treatment, perfluoroalkylsilazane, monofluoroalkylsilane, or perfluoropolyether group-containing silane Examples of the compound include perfluoroalkyl trialkoxysilane, perfluoropolyether trialkoxysilane, and perfluoropolyether ditrialkoxysilane.
  • silanic compounds When these silanic compounds are used, they are 0.01 to 10% by mass, preferably 0.03 to 5% by mass, more preferably 0.05 to 2% by mass in an organic solvent not containing fluorine. It is preferably used in a state diluted to%.
  • fluorine-free organic solvents are preferably used for preparing the silane compound solution. Examples thereof include the following.
  • Solvents for the coating composition for the antifouling layer used in the present invention include propylene glycol mono (C1-C4) alkyl ether and Z or propylene glycol mono (C1-C4) alkyl ether ester, propylene glycol Specific examples of mono (C1 to C4) alkyl ethers include propylene glycol monomethyl ether (PGME), propylene glycol monomethenoleatenore, propylene glycolenolemono-n-propinoreethenole, propylene alcohol monoisopropyl Ether, propylene glycol monobutyl ether, etc.
  • PGME propylene glycol monomethyl ether
  • PGME propylene glycol monomethenoleatenore
  • propylene glycolenolemono-n-propinoreethenole propylene alcohol monoisopropyl Ether
  • propylene glycol monobutyl ether etc.
  • propylene glycol mono (C1 to C4) alkyl ether esters are particularly propylene glycol monoalkyl ether acetates, specifically propylene glycol monomono methinoate etherate, propylene glycol monomethenoate etherate acetate. Tate etc. are mentioned.
  • Propylene glycol mono (C1-C4) alkyl ether and / or propylene glycol mono (C1-C4) alkyl ether ester such as methanol, ethanol, propanol, n -butanol, 2-butanol, t-butanol, Alcohols such as clohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, esters such as ethyl acetate, methyl acetate, ethyl lactate, isopropyl acetate, amyl acetate, ethyl butyrate, benzene, toluene, xylene And hydrocarbons such as dioxane, N, N-dimethylformamide and other solvents. Alternatively, these solvents are used by being appropriately mixed. The solvent to be mixed is not particularly limited to these.
  • solvent one or more organic solvents selected from ethanol, isopropyl alcohol, propylene glycol, and propylene glycol monomethyl ether carbonate.
  • solvents those having a boiling point of less than 100 ° C (low-boiling solvent) such as methanol, ethanol and isopropyl alcohol, and boiling points such as propylene glycol monomethyl ether and n-butyl alcohol It is preferable to use a solvent having a boiling point of 100 ° C. or higher (high boiling solvent). It is particularly preferable to use a solvent having a boiling point of 60 to 98 ° C. and that having a boiling point of 100 to 160 ° C.
  • low-boiling solvent such as methanol, ethanol and isopropyl alcohol
  • boiling points such as propylene glycol monomethyl ether and n-butyl alcohol
  • the ratio of the low-boiling point solvent to the high-boiling point solvent is preferably 98.0% by mass or more in the composition of the low-boiling solvent and 0.5-2% by mass of the high-boiling solvent.
  • the composition for forming an antifouling layer used in the present invention it is preferable to adjust the pH to 5.0 or less by adding an acid. Since the acid promotes hydrolysis of the silane compound and acts as a catalyst for the polycondensation reaction, the polycondensation film of the silane compound can be easily formed on the surface of the base material, and the antifouling property can be enhanced.
  • the pH is good in the range of 1.5 to 5.0. Below 1.5, the acidity of the solution is too strong, and there is a risk of damaging the container and piping. Above 5 the reaction is difficult to proceed.
  • the pH is preferably in the range of 2.0 to 4.0.
  • the silanic compound solution used for the antifouling treatment is not actively added with water, and after the preparation, a hydrolysis reaction is caused mainly by moisture in the air at the time of drying. Is preferred. Therefore, it is used when the solid content concentration of the solution is diluted. If too much water is added to the treatment solution, the pot life will be shortened accordingly.
  • sulfuric acid hydrochloric acid, nitric acid, hypochlorous acid, boric acid, hydrofluoric acid, preferably inorganic acids such as hydrochloric acid and nitric acid, as well as sulfo groups (also referred to as sulfonic acid groups) or carboxyl groups.
  • Group Organic acids such as acetic acid, polyacrylic acid, benzenesulfonic acid, p-toluenesulfonic acid, methylsulfonic acid and the like are used.
  • the organic acid is more preferably a compound having a hydroxyl group and a carboxyl group in one molecule, for example, hydroxydicarboxylic acid such as citrate or tartaric acid.
  • the organic acid is more preferably a water-soluble acid.
  • levulinic acid formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxalic acid.
  • Oral acetic acid, pyruvic acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D-darconic acid, malonic acid, maleic acid, oxalic acid, isochenic acid, lactic acid and the like are preferably used.
  • benzoic acid, hydroxybenzoic acid, atorvaic acid and the like can be used as appropriate.
  • the addition amount is 0.1 parts by mass to 10 parts by mass, preferably 0.2 parts by mass to 5 parts by mass with respect to 100 parts by mass of the partial hydrolyzate of the silane compound.
  • an amount equivalent to 100% to 300%, preferably 100% to 200%, should be added as long as the partial hydrolyzate is theoretically capable of 100% hydrolysis. Gayo! /.
  • the method for providing the antireflection layer is not particularly limited, but it is preferably formed by coating.
  • a concavo-convex structure is formed on a base film by a convex structure portion and a transparent resin layer, and the above-described high refractive index layer composition and low refractive index layer composition are used in sequence. It is preferable to produce an antireflection layer by the coating step. It is also preferable to coat the antifouling layer.
  • the antiglare layer of the present invention means a layer comprising the convex structure portion and the transparent resin layer according to the present invention.
  • Base film Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Base film z Antistatic layer z Antiglare layer of the present invention z Low refractive index layer Base film z Antistatic layer Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Base film z of the present invention Antiglare layer Z Low refractive index layer Z Antifouling layer
  • Base film z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Z Antifouling layer
  • Base film z Antistatic layer Z Antiglare layer of the present invention Z Low refractive index layer Z Antifouling layer
  • Base film z Antistatic layer Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Z Antifouling layer
  • the surface of the antiglare layer of the present invention is subjected to surface treatment, and the surface treatment of the antiglare layer of the present invention is applied to the low refractive index according to the present invention. It is preferable to form a layer (and a high refractive index layer). It is also preferable to subject the low refractive index layer to a surface treatment before providing the antifouling layer.
  • Examples of the surface treatment include cleaning methods, alkali treatment methods, flame plasma treatment methods, high-frequency discharge plasma methods, electron beam methods, ion beam methods, sputtering methods, acid treatments, corona treatment methods, and atmospheric pressure glow discharge plasma methods.
  • the alkali treatment method and the corona treatment method are preferred, and the alkali treatment method can be used particularly preferably.
  • Corona treatment is a treatment performed by applying a high voltage of lkV or more between electrodes under atmospheric pressure and discharging it, and is a device that is commercially available from Kasuga Electric Co., Ltd., Toyo Electric Co., Ltd., etc. Can be used.
  • the intensity of the corona discharge treatment depends on the distance between the electrodes, the output per unit area, and the generator frequency.
  • One of the electrodes of the corona treatment device can be a commercially available one, but the material can be selected from aluminum or stainless steel.
  • the other is an electrode (B electrode) for holding the plastic film, and is a roll electrode installed at a certain distance from the A electrode so that the corona treatment is performed stably and uniformly.
  • This can also be a commercially available material, and the material is a roll made of aluminum, stainless steel, or a metal thereof, and ceramic, silicon, EPT rubber, hyperon rubber, etc. are lined. Is preferably used.
  • the frequency used for the corona treatment used in the present invention is a frequency of 20 kHz or more and 100 kHz or less, and a frequency of 30 kHz to 60 kHz is preferable!
  • the output of the corona treatment is 1 to 5 wmin. Zm 2 , but an output of 2 to 4 wmin. Zm 2 is preferable.
  • the distance between the electrode and the film is 5 mm or more and 50 mm or less, and preferably 10 mm or more and 35 mm or less.
  • the alkali treatment method is not particularly limited as long as it is a method in which a film provided with a hard coat layer is immersed in an alkaline aqueous solution.
  • an aqueous sodium hydroxide solution As the alkaline aqueous solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous ammonia solution, or the like can be used, and among them, an aqueous sodium hydroxide solution is preferable.
  • the alkali concentration of the alkali aqueous solution for example Mizusani ⁇ sodium concentration is preferably 0.1 to 25 mass%, 0.5 to 15 weight 0/0 is more preferable.
  • the alkali treatment temperature is usually 10 to 80 ° C, preferably 20 to 60 ° C.
  • the alkali treatment time is 5 seconds to 5 minutes, preferably 30 seconds to 3 minutes. It is preferable to neutralize the alkali-treated film with acid water and then wash it thoroughly with water.
  • Each layer of the antireflection layer is formed on the concavo-convex structure portion and the transparent resin layer by the dip coating method, the air knife coating method, the curtain coating method, the roller coating method, the wire bar coating method, the gravure coating method, and the micro gravure method. It can be formed by coating using a coating method or an etching coating method.
  • the substrate film should be rolled up in the form of a roll after applying the above-mentioned coating, drying and curing treatment, with the state force being rolled up in a width of 1.4 to 4 m. Preferred.
  • the antiglare antireflection film using the antiglare film of the present invention is obtained by laminating the antireflection layer on a base film and then winding it in a roll shape at 50 to 150 ° C. 1 ⁇
  • the duration of the heat treatment may be determined appropriately according to the set temperature.For example, if it is 50 ° C, it is preferably 3 days or more and less than 30 days, and if it is 150 ° C, it is in the range of 1 to 3 days. Is preferred. Normal It is preferable to set it at a relatively low temperature for about 3 to 7 days at around 50 to 80 ° C so that the heat treatment effect on the outside of the heel, the center of the heel, and the core portion is not biased.
  • any material can be used as the winding core, whether it is a cylindrical core.
  • the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature.
  • phenol resin, xylene resin examples thereof include resins such as fat, melamine resin, polyester resin, and epoxy resin.
  • a thermosetting resin reinforced with a filler such as glass fiber is preferred.
  • the winding number of these winding cores is preferably 100 windings or more, and more preferably 500 windings or more.
  • the winding thickness is more preferably 5 cm or more.
  • the roll is rotated.
  • the preferred rotation may be continuous or intermittent rotation where a speed of less than one rotation per minute is preferred.
  • it is preferable that the roll is rewinded once or more during the heating period.
  • the stop time is within 10 hours. It is preferable that the stop position is uniform in the circumferential direction. The stop time is preferably 10 minutes. It is more preferable to be within the range. Most preferred is continuous rotation.
  • the rotation speed for continuous rotation is preferably set to 10 hours or less for one rotation, and if it is fast, it will be a burden on the apparatus, so a range of 15 minutes to 2 hours is preferable. Good.
  • the optical film tool can be rotated during movement and storage. In this case, this occurs when the storage period is long. Rotation functions effectively as a measure against rack band.
  • the polarizing plate can be produced by a general method.
  • Anti-glare film and anti-glare film of the present invention The back side of the anti-glare antireflection film is subjected to alkali hatching treatment, and is immersed and stretched in an iodine solution. It is preferable to bond together using an aqueous solution.
  • the film may be used on the other surface, or another polarizing plate protective film may be used.
  • the polarizing plate protective film used on the other surface has an in-plane retardation Ro of 590 nm, 30 to 300 nm, and Rt of 70 to 400 nm. It preferably has a phase difference.
  • a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal.
  • the optically anisotropic layer can be formed by the method described in JP-A-2003-98348.
  • a polarizing film which is a main component of a polarizing plate, is an element that passes only light having a polarization plane in a certain direction.
  • a typical polarizing film that is currently known is a polyvinyl alcohol polarizing film.
  • polybutalolic film dyed with iodine and dichroic dye As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound.
  • one side of the antiglare film and the antiglare antireflection film of the present invention is bonded to form a polarizing plate.
  • they are bonded together with a water-based adhesive whose main component is complete acid polybutyl alcohol or the like.
  • Anti-glare film and anti-glare anti-reflection film of the present invention are reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type It is preferably used in LCDs with various drive systems. Further, the antiglare film and the antiglare antireflection film of the present invention have excellent flatness, and are preferably used for various display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper. It is done.
  • the effect of eliminating white spots at the periphery of the screen is maintained for a long period of time.
  • MVA liquid crystal display devices, IPS liquid crystal display devices A remarkable effect is observed in the setting.
  • the effect of the present invention was that the eyes did not get tired even during long-time appreciation with less color unevenness, glare and wavy unevenness.
  • a cellulose ester solution was prepared using the following cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent, and cellulose ester film 1 was prepared by a solution casting film forming method.
  • Plasticizer Trimethylolpropane tribenzoate 5kg
  • Plasticizer Ethylphthalyl Ethyl Dalicolate 5kg
  • UV absorber Tinubin 109, manufactured by Ciba Specialty Chemicals Co., Ltd.
  • UV absorber Chinbin 171; manufactured by Ciba Specialty Chemicals Co., Ltd.
  • a cellulose ester solution (dope) was prepared using the above cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent.
  • the cellulose ester solution whose temperature was adjusted to 33 ° C was fed to a die and uniformly cast from a die slit onto a stainless steel belt.
  • the cast part of the stainless belt was heated from the back with hot water of 37 ° C.
  • the dope film on the metal support (casted on a stainless steel belt, hereinafter referred to as the web) is dried by applying hot air of 44 ° C, and the residual solvent in the peeling is peeled off at 120% by weight. Applying the tension during stretching, the film was stretched to a longitudinal stretching ratio of 1 ⁇ , and then the web edge was gripped with a tenter while the residual solvent amount was from 35% to 10% by weight.
  • the film was stretched so as to have a draw ratio of 1.1 times. After stretching, hold for several seconds while maintaining its width, relax the tension in the width direction, release the width holding, and further convey it for 20 minutes in the third drying zone set at 125 ° C, Drying was performed to produce a cellulose ester film 1 having a width of 1.5 m, a film thickness of 80 ⁇ m, and a length of 3000 m.
  • the following coating liquid for hard coat layer 1 is filtered through a polypropylene filter with a pore size of 20 ⁇ m to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, dried at 90 ° C, and then irradiated with an ultraviolet lamp.
  • a hard coat layer coating solution which is applied using a micro gravure coater, dried at 90 ° C, and then irradiated with an ultraviolet lamp.
  • the coating layer was cured to form an antiglare node coat layer having a thickness of 5 m, and antiglare film 1 was produced.
  • Ra average surface roughness
  • the average distance between the centers of the convex portions was 77 m.
  • a coating solution excluding synthetic silica fine particles was prepared separately from the coating solution 1 for hard coat layer, and the film prepared under the same coating and curing conditions as described above was measured with an Abbe refractometer. Was 1.517. [0311] (Hardcoat layer coating solution 1)
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Synthetic silica fine particles Average particle size 1. 40 parts by mass Surfactant (Silicone surfactant; FZ2207 (manufactured by Nippon Car) 10% by mass propylene glycol monomethyl ether solution)
  • a roll provided with a ridge after stretching with a tenter (after forming the irregularities, the height of the convex part 1 / ⁇ ⁇ , the size of the convex part (long side) 10 m, the distance between the convex parts B side of the film (the side that was in contact with the stainless steel band support is the B side) with the film containing the solvent sandwiched between the concave and convex part where the back roll force is also configured)
  • the opposite side is the A side, and a hot roll with a saddle shape is pressed against the M rule, a back roll is placed on the A side, and the unevenness is formed on the B side by passing between both rolls.
  • An embossed cellulose ester film 2 was produced in the same manner except that the film was formed, and a static elimination wire was installed in the vicinity of the concavo-convex forming part to suppress charging of the film.
  • the coating layer coating solution 2 is filtered through a polypropylene filter having a pore size of 20 ⁇ m to prepare a hard coating layer coating solution, which is applied using a micro gravure coater, dried at 90 ° C, and then an ultraviolet lamp.
  • the coating layer was cured with an illuminance of 0.1 lWZcm 2 and an irradiation amount of 0.UZcm 2 to form an antiglare hard coat layer having a thickness of 5 m, thereby producing an antiglare film 2.
  • Ra average surface roughness
  • the average center distance of the protrusions was 65 ⁇ m.
  • a film prepared by separately applying the coating solution 2 for hard coat layer under the same coating and curing conditions as described above was measured with an Abbe refractometer, and the refractive index was 1.521.
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • the convex structure After forming the convex structure, it was dried at 90 ° C in the drying zone 505A, and then cured using an ultraviolet lamp 506A at an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation dose of 0.1 ljZcm 2 .
  • the average height of the convex structure was controlled by controlling the amount of coating liquid supplied from the Arox roll.
  • Photosensitive rosin plate 98 parts of 2-hydroxyethyl acrylate and butanediol dialkylate
  • a core-shell type microgel (core Z shell 2Zl) obtained by reacting a core obtained by reacting 1 part with 20 parts of methacrylic acid and 80 parts of N-butyl acrylate.
  • Trimethylol propane ethoxytri A photosensitive resin composition obtained by mixing 25 g of attalylate and 4 g of 2,2-dimethoxy-2-phenylacetophenone was applied onto a polyester film having a thickness of 2 mm, and then an ultraviolet ray having a wavelength of 360 nm. From this, lOOOnj / cm was exposed to obtain a printing master for laser engraving. Next, engrave the fine relief structure under the following laser engraving conditions, and attach it to the resin plate roll while vacuuming as shown in Fig. 3. When the whole is heated at 120 ° C for 20 minutes, the joints disappear and a seamless resin plate is obtained. became.
  • the resin plate diameter was 500 mm, and the rubber hardness of the resin plate was 50. Rubber hardness Measured with a durometer according to the method described in ⁇ . IS K 6253.
  • cellulose ester film 1 On the surface of the cellulose ester film 1 (B side; surface in contact with the support mirror surface of the stainless steel band used in the casting film forming method; support side) 6 is ejected as ink droplets by ink jet method at 2 to 16 pl, and after 0.2 seconds after drying, it is hardened with a UV light illuminance of 0.1 lWZcm 2 and a dose of 0.1 ljZcm 2 A convex structure was formed.
  • the inkjet ejection device uses the line head method (Fig. 10 (a)) and the nozzle diameter is 3.
  • the ink jet head having the configuration shown in FIG. 9 was used.
  • the ink supply system consists of an ink supply tank, a filter, a piezo-type inkjet head, and piping.
  • the ink supply tank to the inkjet head section is insulated and heated (40 ° C), and the emission temperature is The driving frequency was 40 ° C and the driving frequency was 20kHz.
  • convex structures were prepared using electrostatic ink jetting with ink droplets of lpl or less.
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Propylene glycol monomethyl ether 50 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.2 part by mass The above composition was mixed and stirred to prepare ink liquid 1 for convex structure.
  • the UV illuminance is 0.1 lWZcm 2 and the irradiation dose is
  • a film prepared by curing with ljZcm 2 was measured with an Abbe refractometer, and the refractive index was 1.5.
  • ITO dispersed particles (average particle size 65nm) 70 parts by mass
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Silicone compound (BYK- 307 (by Big Chemie Japan)) 0.2 parts by mass Propylene glycol monomethyl ether 100 parts by mass Ethyl acetate 100 parts by mass
  • the above composition was mixed and stirred to prepare an ink liquid 2 for convex structures.
  • the film prepared by curing with an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation amount of 0.1 ljZcm 2 was measured with an Abbe refractometer, Refractive index is 1.5 56.
  • Oxidized titanium fine particle dispersion (Oxidized titanium fine particle concentration 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 50 parts by mass
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Surfactant polydimethylsiloxane; KF96 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 3 for convex structures.
  • the UV illuminance is 0.1 lWZcm 2 and the irradiation amount is
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Propylene glycol monomethyl ether 150 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 4 for convex structure parts.
  • ITO dispersed particles (average particle size 65nm) 50 parts by mass
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Silicone compound (BYK- 307 (manufactured by Big Chemie Japan)) 0.2 parts by mass Propylene glycol monomethyl ether 300 parts by mass Ethyl acetate 300 parts by mass
  • the above composition was mixed and stirred to prepare an ink liquid 5 for convex structures.
  • Ink liquid 5 for convex structure after coating and drying, UV illumination is 0.1 lWZcm 2 and irradiation dose is 0
  • a film made by curing with UZcm 2 was measured with an Abbe refractometer.
  • the refractive index was 1.55.
  • Oxidized titanium fine particle dispersion (Oxidized titanium fine particle concentration 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 70 parts by mass
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Surfactant polydimethylsiloxane; KF96 (manufactured by Shin-Etsu Chemical Co., Ltd.)
  • 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 6 for convex structures.
  • the UV illuminance is 0.1 lWZcm 2 and the irradiation amount is When a film prepared by curing at 0. lj / cm 2 was measured with an Abbe refractometer, the refractive index was 1.573.
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • Propylene glycol monomethyl ether 50 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.5 part by mass The above composition was mixed and stirred to prepare ink solution 1 for a transparent resin layer.
  • ITO dispersed particles (average particle size 65nm) 70 parts by mass
  • the viscosity of the ink liquid was 40 ° C, and measured using a B-type viscometer BL manufactured by Tokyo Keiki Co., Ltd.
  • Ink liquid 2 for transparent resin layer was applied, dried and irradiated with UV illumination of 0.1 lWZcm 2
  • the refractive index was 1.556.
  • Dispersion of silicon oxide fine particles (concentration of silicon oxide fine particles 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 100 parts by mass
  • Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
  • the above composition was mixed and stirred to prepare an ink liquid 3 for a transparent resin layer.
  • the film prepared by applying the ink solution 3 for the transparent resin layer after being dried and cured with an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation dose of 0.1 ljZcm 2 was measured with an Abbe refractometer.
  • the refractive index was 1.471.
  • the convex structure part diameter, convex structure part height, and number of convex structure parts (per lmm 2 ) were measured using an optical interference type surface roughness measuring machine manufactured by WYKO using the film sample before applying the transparent resin layer. 3 ⁇ 44000 ⁇ m 2 ($ aH (55 ⁇ m X 75 ⁇ m) was measured two-dimensionally, and the convex part was color-coded and displayed as a contour line from the bottom side, and the convex part height relative to the film surface was displayed. The length of the convex part, which is the major axis of the convex structure part, was measured, and the number of convex structure parts was obtained by converting the number of convex structure parts obtained per lmm 2 . Ten arbitrary points of the relevant part of the material film were measured and obtained as an average value.
  • each film was spread on a desk, and fluorescent lighting on the ceiling and reflection of external light on the film were evaluated as follows.
  • the produced film was visually checked for glare.
  • the produced film was visually judged for white turbidity.
  • the antiglare film 1 imparted with a fine concavo-convex structure by means of fine particle-added powder was inferior in power, glare, and white turbidity due to dispersion of fine particle dispersibility.
  • the anti-glare film 2 with a fine uneven structure by embossing was slightly inferior in anti-glare effect and glare, and cloudy.
  • the height and size of the fine concavo-convex structure differed between the head and tail of the antiglare film 2, and clogging due to the film dissolved in a part of the saddle was observed when the saddle was observed.
  • the antiglare films 3 to 28 of the present invention were excellent in antiglare effect and glare, and were not at the level of white turbidity.
  • the height and size of the fine concavo-convex structure at the front and rear of the anti-glare film are uniform, and it has been found that it has high uniformity and production stability.
  • the anti-glare film 20 in which the uneven portion is covered with the transparent resin layer is effective in improving the anti-glare property. Is clear.
  • Each anti-glare film was immersed in 1.5molZl-NaOH aqueous solution heated to 50 ° C for 2 minutes for alkali treatment, washed with water, and then washed with 0.5 mass% -HSO aqueous solution at room temperature.
  • the following low refractive index layer coating composition 1 is applied by an extrusion coater, dried at 100 ° C for 1 minute, cured by UV irradiation at 0. UZcm 2 and further cured at 120 ° C for 5 minutes. Then, a low refractive index layer was provided so as to have a thickness of 95 nm, and antiglare antireflection films 1 to 30 were produced. The refractive index of this low refractive index layer was 1.37.
  • Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of a 0.15% acetic acid aqueous solution, and stirring in water nose at 25 ° C. for 30 hours.
  • KBM503 Silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.
  • FZ-2207 linear dimethyl silicone-EO block copolymer
  • step (c) A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethylsilique HSiO (28 mass%) was added. 1Surface of porous particles with silica coating
  • a silica-based silica fine particle (P-2) dispersion with a solid concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
  • the thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 47 nm, M Ox / SiO 2 (molar ratio) was 0.0041, and the refractive index was 1.28. Where the average particle size is dynamic
  • a 120 m thick polybulal alcohol film was uniaxially stretched (temperature: 110 ° C, stretch ratio: 5 times). This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium yowi and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizing film.
  • the polarizing plate was produced by bonding.
  • Step 1 An antiglare antireflection film in which the side to be bonded to the polarizing film is hatched by dipping in a 1 mol ZL sodium hydroxide solution at 50 ° C for 60 seconds, then washing with water and drying. A cellulose ester film was obtained.
  • Step 2 The polarizing film was immersed in a polybulal alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
  • Step 3 Lightly wipe off excess adhesive adhering to the polarizing film in Step 2, and place it on the anti-glare antireflection film or cellulose ester film processed in Step 1, and Lamination was done with the anti-reflection layer on the outside.
  • Step 4 The antiglare antireflection film, the polarizing film, and the cellulose ester film sample laminated in Step 3 were bonded at a pressure of 20 to 30 NZcm 2 and a conveying speed of about 2 mZ.
  • Step 5 A sample obtained by bonding the polarizing film, the cellulose ester film, and the antiglare antireflection film 1 to 30 prepared in Step 4 in a dryer at 80 ° C is dried for 2 minutes to obtain a polarizing plate 1 ⁇ 30 were made.
  • a liquid crystal panel was produced as follows, and the characteristics as a liquid crystal display device were evaluated.
  • a commercially available 32-inch liquid crystal television (MVA cell) was previously bonded, the polarizing plate on the surface was peeled off, and the above-prepared polarizing plates 1 to 30 were each bonded to the glass surface of the liquid crystal cell. did.
  • the direction of bonding of the polarizing plate is such that the surface of the cellulose ester film having a phase difference is on the liquid crystal cell side and in the same direction as the polarizing plate previously bonded.
  • Liquid crystal display devices 1 to 30 were respectively produced so that the absorption axis was directed.
  • the obtained liquid crystal display devices 1 to 30 were observed in an environment as shown in FIG. Visual evaluation was made according to the criteria.
  • 10 40W fluorescent lamps (FLR40S—EX-D / M manufactured by Matsushita Electric) were installed on the ceiling.
  • the window force was also evaluated in the state where external light was inserted.
  • Anti-glare antireflection film The composition of the liquid crystal display and the evaluation results are shown in Table 5 below.
  • the liquid crystal display device 1 provided with a fine uneven structure by means of a fine particle additive is Due to dispersion of dispersibility, the antiglare effect and glare improvement were in progress, and the black color was inferior.
  • the liquid crystal display device 2 provided with a fine concavo-convex structure by embossing had difficulty in forming a uniform concavo-convex structure, and was inferior to glare and black solids.
  • liquid crystal display devices 3 to 28 using the antiglare and antireflection film of the present invention include:
  • the convex structure described in 7 was formed.
  • the ink solution 1 for transparent resin layer prepared in Example 1 was applied by a reduced pressure extrusion method to produce antiglare films 32 to 51.
  • the produced anti-glare film was cut into A4 size (297 x 210mm), and the anti-glare layer was formed on the black acrylic board with 1mm thickness on the surface (acrylic resin manufactured by Nitto Seiryo Co., Ltd. The back surface was not reflected and the partial unevenness of the antiglare layer was visually determined according to the following criteria.
  • the comparative antiglare films 1 and 2 produced in Example 1 and the antiglare film 19 of the present invention were evaluated simultaneously.
  • a low refractive index layer was coated on the transparent resin layer of the antiglare films 32 to 51 by the method described in Example 2.
  • the obtained antiglare antireflection film was bonded to a glass substrate and fixed on a mask pattern (aperture ratio 25%) on a light box [Co-Power Minolta Co., Ltd .: AD-LUX SLIM A4].
  • the degree of glare in a minute range was observed with a magnifier (Tokai Sangyo Co., Ltd .: peak zoom magnifier 10-20 times) and magnified 20 times, and evaluated according to the following criteria.
  • the antiglare film of the invention has excellent antiglare effect, glare and white turbidity, as well as glare and antiglare parts in a minute range. It is clear that it is excellent in manufacturing stability with little unevenness.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Polarising Elements (AREA)

Abstract

A glareless film in which reflection of external light and deterioration in contrast can be prevented effectively without causing deterioration in sharpness of a high by fine image due to reduction in pixel size, and a desired structure of micro protrusions and recesses is formed effectively and stably with high productivity. A polarizing plate and a display employing such glareless film are also provided. The glareless film has 10-10,000 micro protrusion structures per 1 mm2 on a base material film. In the micro protrusion structure, the long diameter of dot is 1-30 μm and the dot height is 0.5-10μm. Furthermore, a transparent resin layer is formed to cover the protrusion structure and the refractive index of the protrusion structure and that of the transparent resin layer are identical.

Description

明 細 書  Specification
防眩性フィルム、偏光板及び表示装置  Anti-glare film, polarizing plate and display device
技術分野  Technical field
[0001] 本発明は防眩性フィルム、偏光板及び表示装置に関し、防眩性に優れ、所望の微 細凹凸構造を生産性よく効果的,安定的に形成した防眩性フィルム、偏光板及び表 示装置に関する。  The present invention relates to an antiglare film, a polarizing plate and a display device, and has an antiglare film, a polarizing plate and an antiglare film which are excellent in antiglare property and have a desired fine uneven structure formed effectively and stably with high productivity. It relates to a display device.
背景技術  Background art
[0002] 近年、薄型軽量ノートパソコンの開発が進んで 、る。それに伴って、液晶表示装置 等の表示装置で用いられる偏光板の保護フィルムもますます薄膜化、高性能化への 要求が強くなつてきている。また、視認性向上のために反射防止層を設けたり、また、 写り込みを防いだり、ギラツキの少ない表示性能を得るために表面を凹凸にして反射 光を散乱させる防眩層を付与した、コンピュータやワープロ等の液晶画像表示装置( 液晶ディスプレイとも 、う)が多く使用されるようになってきた。  In recent years, development of thin and light notebook personal computers has progressed. Along with this, the demand for thinner and higher performance protective films for polarizing plates used in display devices such as liquid crystal display devices is also increasing. In addition, an anti-reflection layer is provided to improve visibility, and an anti-glare layer that scatters reflected light with an uneven surface to obtain a display performance with less glare and less glare is provided. Liquid crystal image display devices (also known as liquid crystal displays) such as word processors and word processors have come to be widely used.
[0003] 反射防止層や防眩層は用途に応じてさまざまな種類や性能の改良がなされ、これ らの機能を有する種々の前面板を液晶ディスプレイの偏光子等に貼り合わせることで 、ディスプレイに視認性向上のために反射防止機能または防眩機能等を付与する方 法が用いられている。  [0003] Various types and performance improvements of antireflection layers and antiglare layers have been made depending on applications, and various front plates having these functions are bonded to polarizers of liquid crystal displays, etc. A method of imparting an antireflection function or an antiglare function is used to improve visibility.
[0004] 防眩層は、表面に反射した像の輪郭をぼかすことによって反射像の視認性を低下 させて、液晶ディスプレイ、有機 ELディスプレイ、プラズマディスプレイといった画像 表示装置などの使用時に反射像の写り込みが気にならないようにするものである。  [0004] The antiglare layer reduces the visibility of the reflected image by blurring the outline of the image reflected on the surface, and the reflected image is reflected when using an image display device such as a liquid crystal display, an organic EL display, or a plasma display. It is intended not to worry about the complexity.
[0005] 画像表示装置の前面板最表面に適切な微細凹凸構造を設けることによって、上記 のような性質を持たせることができる。例えば、微粒子を用いる方法 (例えば、特許文 献 1参照。)、表面にエンボス加工を施す方法 (例えば、特許文献 2参照。)等種々の 方法がある。  [0005] By providing an appropriate fine concavo-convex structure on the outermost surface of the front plate of the image display device, the above-described properties can be provided. For example, there are various methods such as a method using fine particles (for example, see Patent Document 1) and a method for embossing the surface (for example, see Patent Document 2).
[0006] し力しながら、微粒子を用いる方法は、バインダー層中に微粒子を含有させることの みによって微細凹凸構造を形成する為、微粒子を適切に分散することが必要であり、 所望の微細凹凸構造を効果的に安定に形成することがむず力しぐ防眩性フィルム としての十分なぎらつき防止効果を得ることに大きな障害を有していた。特に、微粒 子を用いる方法は、微粒子の存在密度が制御できず、また微粒子が複数重なる部分 で、凸部の高さが周囲より高くなるため、安定に均一な凹凸構造を作ることができな いことが欠点であった。またエンボス加工により微細凹凸構造を形成する方法は、生 産性に劣り、特に微細凹凸構造を安定に形成することは極めて困難である。 [0006] However, in the method using fine particles, since the fine uneven structure is formed only by containing fine particles in the binder layer, it is necessary to appropriately disperse the fine particles. Anti-glare film that is difficult to form effectively and stably As a result, there was a great obstacle to obtaining a sufficient glare prevention effect. In particular, the method using fine particles cannot control the density of the fine particles, and the height of the convex portions is higher than the surroundings in the portion where the fine particles overlap, so that a stable uniform uneven structure cannot be formed. It was a drawback. Also, the method of forming a fine concavo-convex structure by embossing is inferior in productivity, and in particular, it is extremely difficult to stably form a fine concavo-convex structure.
[0007] 特許文献 3にはスピノーダル分解を利用した榭脂の相分離を利用した微細凹凸形 成方法の記載があるが、反応条件により相分離の状態が変わりやすぐ防眩性フィル ムを安定に作ることが難しい。  [0007] Patent Document 3 describes a method of forming fine unevenness using phase separation of rosin using spinodal decomposition, but the state of phase separation changes depending on the reaction conditions and immediately stabilizes the antiglare film. Difficult to make.
[0008] 特許文献 4にはドット状に点在させた硬化榭脂上に、表面が平滑となるようハードコ 一ト層を設ける技術が公開されているが、該発明では防眩性は発現することはなぐ 本発明ではフィルム表面を平滑にすることを目指すものではな 、。  [0008] Patent Document 4 discloses a technique in which a hard coat layer is provided on a cured resin dispersed in a dot shape so as to have a smooth surface. However, in the invention, the antiglare property is exhibited. In the present invention, it is not intended to smooth the film surface.
[0009] また、近年、画像の高画質が進む中で、防眩性を有しつつ、かつコントラストの高い 表示装置が求められている。例えば液晶表示装置の最表面は、微粒子法などの従 来の防眩性フィルムではコントラストが不充分であり、またクリアハードコート反射防止 フィルムでは外光の写り込みが問題となる。この欠点に対応するため、防眩性フィル ム上に光干渉による反射防止層 (低屈折率層)をコーティングした防眩性反射防止フ イルムに関する技術が多数提案されている(例えば、特許文献 3〜8参照。 )0しかし ながら、これらによってもより視認性の優れた表示装置を得る上で、充分な防眩性や コントラストを得るまでに至って ヽな 、。 [0009] In recent years, a display device having anti-glare properties and high contrast has been demanded as image quality has been improved. For example, on the outermost surface of a liquid crystal display device, a conventional antiglare film such as a fine particle method has insufficient contrast, and a clear hard coat antireflection film has a problem of reflection of external light. In order to cope with this drawback, a number of technologies relating to an antiglare antireflection film in which an antireflection layer (low refractive index layer) due to light interference is coated on an antiglare film have been proposed (for example, Patent Document 3). (See ~ 8)) 0 However, in order to obtain a display device with higher visibility, it is difficult to obtain sufficient anti-glare property and contrast.
[0010] また、特許文献 11には防眩性ノヽードコートフィルムにオーバーコート層を設ける記 載があるが、防汚性、易洗浄性、光反射防止性等を目的としたものであり、本発明で V、う凸構造部を被覆し、防眩性が発現することに関する記載は一切な!、。  [0010] Further, Patent Document 11 describes that an anti-glare node coat film is provided with an overcoat layer, which is intended for antifouling properties, easy cleaning properties, light reflection prevention properties, and the like. In the present invention, V, there is no description about covering the convex structure and exhibiting antiglare properties!
特許文献 1:特開昭 59 - 58036号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 59-58036
特許文献 2:特開平 6 - 234175号公報  Patent Document 2: JP-A-6-234175
特許文献 3:特開 2005 - 227407号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-227407
特許文献 4:特開 2000 - 84477号公報  Patent Document 4: Japanese Unexamined Patent Publication No. 2000-84477
特許文献 5:特開 2001 - 281410号公報  Patent Document 5: Japanese Patent Laid-Open No. 2001-281410
特許文献 6:特開 2004— 4404号公報 特許文献 7 :特開 2004— 125985号公報 Patent Document 6: Japanese Patent Application Laid-Open No. 2004-4404 Patent Document 7: Japanese Unexamined Patent Application Publication No. 2004-125985
特許文献 8:特開 2004 - 24967号公報  Patent Document 8: Japanese Unexamined Patent Application Publication No. 2004-24967
特許文献 9:特開 2004— 4777号公報  Patent Document 9: Japanese Unexamined Patent Application Publication No. 2004-4777
特許文献 10:特開 2003— 121620号公報  Patent Document 10: Japanese Unexamined Patent Publication No. 2003-121620
特許文献 11:特開 2003— 26832号公報  Patent Document 11: Japanese Unexamined Patent Publication No. 2003-26832
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 従って本発明は上記課題に鑑みなされたものであり、その目的は画素サイズの小 型化等による高精細な画像の鮮明性を低下させることなぐ外光の写り込みや、コント ラストの低下を有効に防止出来、所望の微細凹凸構造を生産性よく効果的,安定的 に形成した防眩性フィルムを提供し、更にそれを用いた偏光板、及び表示装置を提 供することにある。 Accordingly, the present invention has been made in view of the above problems, and its purpose is to capture external light and reduce contrast without reducing the sharpness of high-definition images due to pixel size reduction or the like. An object of the present invention is to provide an anti-glare film that can effectively prevent a decrease and has a desired fine relief structure formed effectively and stably with good productivity, and further to provide a polarizing plate and a display device using the anti-glare film.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の上記目的は、下記構成により達成された。 [0012] The above object of the present invention has been achieved by the following constitution.
[0013] 1.基材フィルム上に、ドットの長径が 1〜30 μ m、ドットの高さが 0. 5〜10 μ mであ る微細な凸構造部を lmm2あたり 10〜: LOOOO個有し、更に該凸構造部を被覆するよ うに透明榭脂層が形成されており、かつ該凸構造部と該透明樹脂層の屈折率が同 一であることを特徴とする防眩性フィルム。 [0013] 1. On a base film, 10 to 10 LOOOO fine convex structures with a major axis of dots of 1 to 30 μm and a dot height of 0.5 to 10 μm per lmm 2 And an antiglare film characterized in that a transparent resin layer is formed so as to cover the convex structure part, and the refractive index of the convex structure part and the transparent resin layer is the same. .
[0014] 2.前記透明榭脂層の上に更に、反射防止層または防汚層が形成されたことを特 徴とする前記 1に記載の防眩性フィルム。 [0014] 2. The antiglare film as described in 1 above, wherein an antireflection layer or an antifouling layer is further formed on the transparent resin layer.
[0015] 3.前記凸構造部、前記透明榭脂層によって構成される防眩層表面の表面粗さ (R a)力 0〜: LOOOnm、凸部または凹部の平均中心間距離(Sm)力 0〜200 μ mであ ることを特徴とする前記 1または 2に記載の防眩性フィルム。 [0015] 3. Surface roughness (R a) force of antiglare layer surface constituted by the convex structure part and the transparent resin layer 0 to: LOOOnm, average center distance (Sm) force of convex part or concave part 3. The antiglare film as described in 1 or 2 above, which is from 0 to 200 μm.
[0016] 4.前記凸構造部の高さに対し、前記透明榭脂層の厚みが 1〜5 m厚いことを特 徴とする前記 1〜 3のいずれ力 1項に記載の防眩性フィルム。 [0016] 4. The antiglare film according to any one of 1 to 3 above, wherein the thickness of the transparent resin layer is 1 to 5 m thicker than the height of the convex structure portion. .
[0017] 5.前記凸構造部または前記透明榭脂層が活性光線硬化型榭脂であることを特徴 とする前記 1〜4のいずれ力 1項に記載の防眩性フィルム。 [0017] 5. The antiglare film as described in any one of 1 to 4 above, wherein the convex structure part or the transparent resin layer is an actinic ray curable resin.
[0018] 6.前記凸構造部または前記透明榭脂層が熱硬化性榭脂であることを特徴とする 前記 1〜4のいずれ力 1項に記載の防眩性フィルム。 [0018] 6. The convex structure part or the transparent resin layer is a thermosetting resin. 5. The antiglare film according to any one of 1 to 4 above.
[0019] 7.前記凸構造部が、沸点が 140〜250°C、 25°C測定の粘度が l〜15mPa' sであ る少なくとも 1種類の溶媒を 60質量%以上含むインキ組成物から形成されることを特 徴とする前記 1〜6のいずれ力 1項に記載の防眩性フィルム。 [0019] 7. The convex structure is formed from an ink composition containing at least 60% by mass of at least one solvent having a boiling point of 140 to 250 ° C and a viscosity measured at 25 ° C of 1 to 15 mPa's. The antiglare film according to any one of 1 to 6 above, which is characterized in that
[0020] 8.前記溶媒が、下記の一般式(1)で表される化合物であることを特徴とする前記 7 に記載の防眩性フィルム。 [0020] 8. The antiglare film as described in 7 above, wherein the solvent is a compound represented by the following general formula (1).
一般式(1) Rl— O— (C H -0) n-R2  Formula (1) Rl— O— (C H -0) n-R2
2x  2x
Rl、 R2:水素原子、ァリール基、炭素数 1〜6のアルキル基、アルコキシアルキル基 、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、 Rl、 R2 の少なくとも一方は水素原子以外の置換基である。  Rl, R2: hydrogen atom, aryl group, alkyl group having 1 to 6 carbon atoms, alkoxyalkyl group, alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of Rl and R2 is a substituent other than a hydrogen atom.
n: 1〜3の整数  n: Integer from 1 to 3
x: 2〜4の整数  x: integer from 2 to 4
9.前記 1〜8の 、ずれか 1項に記載の防眩性フィルムを用 、たことを特徴とする偏 光板。  9. A polarizing plate characterized by using the antiglare film described in any one of 1 to 8 above.
[0021] 10.前記 1〜8のいずれか 1項に記載の防眩性フィルム、前記 9に記載の偏光板を 用いたことを特徴とする表示装置。  [0021] 10. A display device using the antiglare film described in any one of 1 to 8 above and the polarizing plate described in 9 above.
発明の効果  The invention's effect
[0022] 本発明により画素サイズの小型化等による高精細な画像の鮮明性を低下させること なぐ外光の写り込みや、コントラストの低下を有効に防止出来、所望の微細凹凸構 造を生産性よく効果的 ·安定的に形成した防眩性フィルムを提供出来、更にそれを 用いた偏光板、及び表示装置を提供することが出来た。  [0022] According to the present invention, it is possible to effectively prevent the reflection of external light and the decrease in contrast without reducing the sharpness of a high-definition image due to the reduction in pixel size, etc., and to produce a desired fine uneven structure. We were able to provide an anti-glare film that was well effective and stable, and also provided a polarizing plate and a display device using it.
図面の簡単な説明  Brief Description of Drawings
[0023] [図 1]凸構造部と凸構造部の無い部分の両者を透明榭脂層が覆うことで、なだらかな 凹凸が形成される様子を示した模式図である。  [0023] FIG. 1 is a schematic view showing a state where gentle irregularities are formed by covering both a convex structure portion and a portion without a convex structure portion with a transparent resin layer.
[図 2]本発明に好ましい微細凹凸構造部の模式図である。  FIG. 2 is a schematic view of a fine concavo-convex structure portion preferable for the present invention.
[図 3]本発明に用いられるフレキソ印刷の一例を示す模式図である。  FIG. 3 is a schematic diagram showing an example of flexographic printing used in the present invention.
[図 4]ツーロール方式によるものフレキソ印刷の模式図である。  [Fig. 4] A schematic diagram of flexographic printing by the two-roll method.
[図 5]インキの供給を押出しコーターにより行うフレキソ印刷の模式図である。 [図 6]ァ-ロックスロールの斜視図である。 FIG. 5 is a schematic diagram of flexographic printing in which ink is supplied by an extrusion coater. FIG. 6 is a perspective view of an arlock roll.
[図 7]ァ-ロックスのセルを説明するための斜視図である。  FIG. 7 is a perspective view for explaining an AROX cell.
[図 8]本発明に係るインクジェット方法に用いることのできるインクジェットヘッドの一例 を示す断面図である。  FIG. 8 is a cross-sectional view showing an example of an ink jet head that can be used in the ink jet method according to the present invention.
[図 9]本発明で用いることのできるインクジェットヘッド部、ノズルプレートの一例を示 す概略図である。  FIG. 9 is a schematic view showing an example of an inkjet head unit and a nozzle plate that can be used in the present invention.
[図 10]本発明で好ましく用いることのできるインクジェット方式の一例を示す模式図で ある。  FIG. 10 is a schematic diagram showing an example of an ink jet system that can be preferably used in the present invention.
[図 11]基材フィルム上にフレキソ印刷により微細凹凸構造形成を行う方法の一例であ る。  FIG. 11 is an example of a method for forming a fine relief structure on a base film by flexographic printing.
圆 12]防眩性反射防止フィルムを液晶表示装置に適用した時の観察時の環境を模 式的に示した図である。 [12] FIG. 12 is a diagram schematically showing an environment during observation when an antiglare antireflection film is applied to a liquid crystal display device.
圆 13]透明榭脂層の被覆による防眩性向上効果を示す図である。 [13] FIG. 13 is a view showing an effect of improving the antiglare property by covering the transparent resin layer.
符号の説明 Explanation of symbols
1 シームレス榭脂版  1 Seamless grease version
2 榭脂版ロール  2 Oil-resisting roll
3 版胴  3 plate cylinder
4 ァニックスローノレ  4 Annix Throw
5 圧胴  5 impression cylinder
6 ドクターブレード  6 Doctor blade
7 ファンテンローノレ  7 Phanten Ronore
8 インキ  8 Ink
9 押出しコーター  9 Extrusion coater
10 基材フィルム  10 Base film
11 基板  11 Board
12 圧電素子  12 Piezoelectric element
13 流路版  13 Channel plate
13a インク流路 b 壁部 13a Ink flow path b Wall
共通液室構成部材 インク供給パイプ ノズルプレートa ノズル  Common liquid chamber components Ink supply pipe Nozzle plate a Nozzle
駆動用回路プリント板 リード部  Driving circuit printed board Lead part
駆動電極  Driving electrode
 Groove
保護板  Protective plate
流体抵抗  Fluid resistance
、 24 電極 24 electrodes
上部隔壁  Upper partition
ヒータ  Heater
ヒータ電源  Heater power
伝熱部材  Heat transfer member
活性光線照射部 インクジェットヘッド 液滴  Actinic ray irradiation part Inkjet head Droplet
ノズル  Nozzle
ノ ックローノレ Noc Ronore
1 フイノレムローノレ 基材フィルム コータ1 Fino Rem Ronore Base film coater
A、 B、 C ノ ックローノレ A、B 乾燥ゾーン A、B、C UV照射部 インキ供給タンク 509 フレキソ榭脂版 A, B, C Knock Roulette A, B Drying zone A, B, C UV irradiation part Ink supply tank 509 flexo oil and fat version
510 ァ-ロックスローノレ  510 A Rock Throw
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0025] 以下本発明を実施するための最良の形態について詳細に説明する力 本発明はこ れらに限定されるものではない。 [0025] The following is a detailed description of the best mode for carrying out the present invention. The present invention is not limited to these.
[0026] 本発明者らは、上記課題に対し鋭意検討した結果、特許文献 11に記載されて ヽる ようなドットとドットが離れていて、ドット間が平面基材の状態の場合、ドットのみでは該 平面基材部分によって満足な防眩性を示さないが、オーバーコートすることで、その ドット間平面基材部分が傾斜状態のオーバーコートで覆われて著しく防眩性が向上 することを見出したものである。 [0026] As a result of intensive studies on the above problems, the present inventors have found that the dots are separated from each other as described in Patent Document 11, and only the dots are in the state of a flat substrate between the dots. However, the flat base material portion does not exhibit satisfactory anti-glare properties, but by overcoating, the inter-dot flat base material portion is covered with an inclined overcoat, and the anti-glare property is remarkably improved. It is a thing.
[0027] 図 13は、透明榭脂層の被覆による防眩性向上効果を示す図である。 FIG. 13 is a diagram showing the effect of improving the antiglare property by covering the transparent resin layer.
[0028] (防眩性評価方法) [0028] (Anti-glare evaluation method)
ドットのみの防眩性フィルムと、ドットを透明榭脂層で被覆した防眩性フィルムを試 料として、ォプテック社製 ゴ-オフオトメーター GP— 1— 3Dを用いて反射角度分 布を測定する。投光径 φ = 10mm,受光径 φ = 3mm0 Using a dot-only anti-glare film and an anti-glare film coated with a transparent resin layer as a sample, measure the reflection angle distribution using Op-Tech's Go-Off Otometer GP-1-3D . Emitted diameter φ = 10mm, Received diameter φ = 3mm 0
[0029] 防眩性の数値ィ匕は、走査角度 ± 1〜3. 5° (正反射領域を除く)の散乱光強度の 積分値の対数値で表す。 [0029] The numerical value 眩 of anti-glare property is expressed as a logarithmic value of an integral value of scattered light intensity at a scanning angle ± 1 to 3.5 ° (excluding a regular reflection region).
[0030] 図 13の結果より以下の関係がある。 [0030] From the results of FIG.
[0031] 散乱光強度積分値の対数 防眩性  [0031] Logarithm of scattered light intensity integral value Antiglare property
ドットのみ —1. 5 低  Dot only —1.5 low
ドットを透明榭脂層で被覆 0. 48 高  Cover the dots with a transparent resin layer 0.48 High
本発明の防眩性フィルムは、基材フィルム上に、ドットの長径が1〜30 111、ドットの 高さが 0. 5〜 10 mである微細な凸構造部を lmm2あたり 10〜 10000個有し、更に 該凸構造部を被覆するように透明榭脂層が形成されており、かつ該凸構造部と該透 明榭脂層の屈折率が同一であることを特徴とする。 The anti-glare film of the present invention has 10 to 10,000 fine convex structures per 1 mm 2 on a base film having a long diameter of 1 to 30 111 and a dot height of 0.5 to 10 m. And a transparent resin layer is formed so as to cover the convex structure portion, and the refractive index of the convex structure portion and the transparent resin layer is the same.
[0032] 本発明の防眩性フィルムは、グラビア法、スクリーン印刷法、フレキソ印刷法、インク ジェット法等のパターン作製方法により、上記凸構造部(ドットとも言う)を作成し、該 凸構造部を活性光線もしくは加熱により硬化した後、その上に、マイクログラビア法、 押出し塗布法、ワイヤーバー法、スプレーコート法、フレキソ印刷法、インクジェット法 等の薄膜均一塗布法により、透明榭脂層を均一塗布することで作製される。この際、 凸構造部は、面内では FMスクリーニング等の手段により一定のランダム配置を取り、 高さは一定の範囲内で均一に作製されることで、表面粗さ (Ra)は全面において安定 し、かつ凹凸の形成は一律の間隔とならないことで、ディスプレイの画素との間でモア レを発生することがない。凸構造部の高さと透明榭脂層の膜厚を適切に設定すること で、透明榭脂層の表面には適度で安定した表面粗さを持つ凹凸が形成され、防眩 効果を維持しつつ、光散乱によるヘイズの増加が抑えられ、散乱光による白濁が押 えられるため、コントラストの高い画像を見ることができる。また、凸構造部の屈折率を 、透明榭脂層の屈折率と同一とすることにより、内部散乱効果を抑制し、ディスプレイ 側からの透過光がギラつくことも押えることができる。 [0032] The antiglare film of the present invention is prepared by forming the convex structure part (also referred to as a dot) by a pattern production method such as a gravure method, a screen printing method, a flexographic printing method, or an ink jet method. Is cured by actinic rays or heating, and then a microgravure method, It is produced by uniformly coating a transparent resin layer by a thin film uniform coating method such as an extrusion coating method, a wire bar method, a spray coating method, a flexographic printing method, or an ink jet method. At this time, the convex structure has a certain random arrangement in the plane by means of FM screening and the like, and the height is uniformly produced within a certain range, so that the surface roughness (Ra) is stable over the entire surface. In addition, since the unevenness is not formed at a uniform interval, moire is not generated between the pixels of the display. By appropriately setting the height of the convex structure and the film thickness of the transparent resin layer, irregularities with an appropriate and stable surface roughness are formed on the surface of the transparent resin layer, while maintaining the antiglare effect. Since haze increase due to light scattering is suppressed and white turbidity due to scattered light is suppressed, a high-contrast image can be seen. In addition, by making the refractive index of the convex structure portion the same as the refractive index of the transparent resin layer, it is possible to suppress the internal scattering effect and to suppress the glare of transmitted light from the display side.
[0033] 本発明者らは、上記グラビア法、スクリーン印刷法、フレキソ印刷法、インクジェット 法等によれば、印刷速度を 10mZ毎分以上、 500mZ毎分という速度でも凸構造部 を有する防眩性フィルムを作製することが出来、高精細な画像の鮮明性を低下させ ることなく、外光の写り込みや、コントラストの低下を有効に防止出来、所望の微細凹 凸構造を生産性よく効果的 ·安定的に形成した防眩性フィルムが得られ、また、それ を用いた防眩性反射防止フィルム、偏光板及び表示装置が得られることを見出した ものである。 [0033] According to the above gravure method, screen printing method, flexographic printing method, ink jet method, etc., the present inventors have an anti-glare property having a convex structure even at a printing speed of 10 mZ / min or more and 500 mZ / min. Films can be produced, and it is possible to effectively prevent external light reflection and contrast reduction without reducing the sharpness of high-definition images. · It has been found that a stably formed antiglare film can be obtained, and an antiglare antireflection film, a polarizing plate and a display device using the same can be obtained.
[0034] 凸構造部形成方法は、特に限定されるものではないが、中でもフレキソ印刷法は生 産速度が速いこと、微小な凸構造を形成できることから、またインクジェット法は凸構 造部の存在パターンをフレキシブルに変更できること、凸構造の断面形状をお椀状 に形成でき、透明榭脂層を設けたあとの表面形状をなだらかな凹凸にしゃすいことで 優れている。  [0034] The method for forming the convex structure is not particularly limited, but in particular, the flexographic printing method has a high production speed and can form a fine convex structure, and the inkjet method has the presence of the convex structure. It is excellent in that the pattern can be changed flexibly, the cross-sectional shape of the convex structure can be formed into a bowl shape, and the surface shape after the provision of the transparent resin layer is smoothed into gentle irregularities.
[0035] 以下、本発明を詳細に説明する。  [0035] Hereinafter, the present invention will be described in detail.
[0036] 《凸構造部、透明榭脂層》  [0036] << Convex structure, transparent resin layer >>
本発明でいう凸構造部(ドットともいう)を図をもって説明する。  The convex structure (also referred to as a dot) in the present invention will be described with reference to the drawings.
[0037] 図 1は基材フィルム上に凸構造部をパターン状に形成し、更に透明榭脂層を塗布 することで、凸構造部と凸構造部の無い部分の両者を透明榭脂層が覆うことで、なだ らかな凹凸が形成される様子を示した模式図である。 [0037] FIG. 1 shows that a convex structure portion is formed in a pattern on a base film, and a transparent resin layer is applied to form a transparent resin layer on both the convex structure portion and the portion without the convex structure portion. By covering It is the schematic diagram which showed a mode that a gentle unevenness | corrugation was formed.
[0038] 本発明で規定するドットの高さとは、下地である基材フィルム表面を底部として凸構 造部の頂部までの高さと定義し、同様にドットの長径とは基材に接している凸構造部 底の最大長と定義する。  [0038] The height of the dots defined in the present invention is defined as the height from the base film surface as a base to the top of the convex structure, and the long diameter of the dots is in contact with the base. Convex structure is defined as the maximum bottom length.
[0039] 表面の微細な凸構造部は、市販の触針式表面粗さ測定機或いは市販の光学干渉 式表面粗さ測定機等によって測定することができる。例えば、光学干渉式表面粗さ測 定機【こよって、約 4000 μ m2の範囲(55 m X 75 m)【こつ!ヽて 2次元的【こ¾定し、 凸部を底部側より等高線のごとく色分けして表示し、フィルム面を基準とした凸部高さ 及び凸構造部の長径である凸部径を測定する。また、凸構造部個数は得られた凸構 造部の個数を lmm2あたりに換算して求めることができる。これらの測定は、基材フィ ルムの該当箇所の任意の 10点を測定してその平均値として求める。 [0039] The fine convex structure portion on the surface can be measured by a commercially available stylus type surface roughness measuring machine or a commercially available optical interference type surface roughness measuring machine. For example, an optical interference type surface roughness measuring instrument [Accordingly, the range of about 4000 μm 2 (55 m X 75 m)] [Two! As shown above, the colors are displayed and the height of the convex portion relative to the film surface and the diameter of the convex portion, which is the major axis of the convex structure portion, are measured. The number of convex structures can be obtained by converting the number of convex structures obtained per lmm 2 . These measurements are taken as the average value of any 10 points in the relevant part of the substrate film.
[0040] 図 2は、基材フィルム上に形成された本発明に好まし!/、透明榭脂層を被覆した凹凸 構造の模式図である。  [0040] FIG. 2 is a schematic view of a concavo-convex structure that is preferable for the present invention formed on a substrate film and is coated with a transparent resin layer.
[0041] 図 2 (a)は凸構造部の斜視図であり、(b)は断面図である。  [0041] Fig. 2 (a) is a perspective view of the convex structure portion, and (b) is a cross-sectional view.
[0042] 表面粗さ (Ra)を求める時の凸部の高さは図中 eで示されるものであり凸部と凹部と の高低差をいう。透明榭脂層表面の凹凸構造は市販の触針式表面粗さ測定機或い は市販の光学干渉式表面粗さ測定機等によって測定することができる。例えば、光 学干渉式表面粗さ測定機によって、一定の範囲内について凹凸を 2次元的に測定し 、凹凸を底部側より等高線のごとく色分けして表示する。ここで各微細凹凸構造の隣 接する凹部底を基準としたその高さを求め平均値とする。  [0042] The height of the convex portion when the surface roughness (Ra) is determined is indicated by e in the figure, and is the difference in height between the convex portion and the concave portion. The concavo-convex structure on the surface of the transparent resin layer can be measured by a commercially available stylus type surface roughness measuring machine or a commercially available optical interference type surface roughness measuring machine. For example, unevenness is measured two-dimensionally within a certain range with an optical interference type surface roughness measuring instrument, and the unevenness is color-coded as contour lines from the bottom side and displayed. Here, the height is determined with respect to the concave bottom adjacent to each fine concavo-convex structure as an average value.
[0043] 隣り合う凸部又は凹部間の平均中心間距離 (Sm)は、 JIS B0601中で輪郭要素 曲線の平均長さとして定義されるものと同一であり、図中 g (この場合は凸部)で表さ れるが、凸部又は凹部の頂点を該凸部又は凹部の中心とし、隣り合う凸部又は凹部 中心間の距離を平均したものである。凸部又は凹部間の平均距離は触針式表面粗 さ測定機などにより測定出来、例えばダイヤモンドからなる先端部を頂角 55度の円 錐形とした直径 lmmの測定針を介して微細凹凸構造面上を一定方向に走査し、そ の場合の測定針の上下方向の移動変化を測定してそれを記録した表面粗さ曲線と して知見を得ることが出来、その結果より凸部又は凹部間の距離を測定し平均値を 求めることができる。或いは前述のごとく光学干渉式表面粗さ測定機によっても測定 することができる。 [0043] The average center-to-center distance (Sm) between adjacent convex portions or concave portions is the same as that defined as the average length of the contour element curve in JIS B0601, and g (in this case, the convex portion) ), And the average of the distance between the centers of adjacent convex portions or concave portions with the vertex of the convex portion or concave portion as the center of the convex portion or concave portion. The average distance between convex parts or concave parts can be measured with a stylus type surface roughness measuring machine, etc. It is possible to obtain knowledge as a surface roughness curve by scanning the surface in a certain direction, measuring the movement change in the vertical direction of the measuring needle in that case, and recording the change. Measure the distance between Can be sought. Alternatively, it can be measured by an optical interference type surface roughness measuring machine as described above.
[0044] 本発明で規定する表面粗さ(Ra)は、 JIS B0601により定義され、下式によって求 められる値をマイクロメートル( μ m)で表したものを!、う。  [0044] The surface roughness (Ra) defined in the present invention is defined by JIS B0601, and is a value obtained by the following formula expressed in micrometers (μm).
[0045] [数 1] [0045] [Equation 1]
Ra = ^|^|f(x dx Ra = ^ | ^ | f (x dx
[0046] 表面粗さ (Ra)の測定方法としては、 25°C、 65%RH環境下で測定試料同士が重 なり合わな 、条件で 24時間調湿したのち、上記環境下で測定して求めることができ る。ここでいう重なり合わない条件とは、例えば、試料のエッジ部分を高くした状態で 巻き取る方法や試料と試料の間に紙を挟んで重ねる方法、厚紙等で枠を作製しその 四隅を固定する方法のいずれかである。用いることのできる測定装置としては、例え ば、 WYKO社製 RSTPLUS非接触三次元微小表面形状測定システム (光学干渉 式表面粗さ測定機の代表例)等を挙げることができる。 [0046] As a method of measuring the surface roughness (Ra), the measurement samples are measured in the above environment after being conditioned for 24 hours under the condition that the measurement samples do not overlap each other in an environment of 25 ° C and 65% RH. Can be requested. The non-overlapping conditions mentioned here are, for example, a method of winding with the edge portion of the sample raised, a method of stacking paper with the sample sandwiched between them, a frame made of cardboard, etc., and fixing the four corners One of the methods. Examples of measuring devices that can be used include RSTPLUS non-contact three-dimensional micro surface shape measuring system (a typical example of an optical interference type surface roughness measuring machine) manufactured by WYKO.
[0047] 本発明の透明榭脂層表面の凹凸構造の表面粗さ (Ra)は、 50〜: LOOOnm、さらに 好ましくは、 100〜500nmである。また透明榭脂層表面の凹凸構造の平均中心間 距離(Sm)は 10〜200 μ mであることが好ましぐさらに好ましくは 10〜50 μ mであ る。これらの範囲を超えると防眩効果とコントラストを両立させることが難しくなる。上記 Ra、 Smは、各種印刷法や材料の選択による凸構造部の高さ、凸構造パターンの配 置、透明榭脂層の厚みの調整、透明榭脂層に使用するインキ組成物 (インキ液ともい う)の粘度等の物性調整等により制御することができる。  [0047] The surface roughness (Ra) of the concavo-convex structure on the surface of the transparent resin layer of the present invention is from 50 to: LOOOnm, more preferably from 100 to 500 nm. The average distance between the centers (Sm) of the uneven structure on the surface of the transparent resin layer is preferably 10 to 200 μm, more preferably 10 to 50 μm. Beyond these ranges, it becomes difficult to achieve both an antiglare effect and contrast. Ra and Sm above are the height of the convex structure, the arrangement of the convex structure pattern, the adjustment of the thickness of the transparent resin layer, and the ink composition used for the transparent resin layer (ink liquid). It can be controlled by adjusting physical properties such as viscosity.
[0048] 本発明の凸構造部と透明榭脂層の屈折率は同一であることが本発明の効果を得る 上で必要であるが、同一であるとは屈折率の差力 0. 02未満であることを示す。更 に屈折率差力^であることがより好ま 、。  [0048] It is necessary for obtaining the effect of the present invention that the convex structure portion of the present invention and the transparent resin layer have the same refractive index, but the difference is that the refractive index difference is less than 0.02. Indicates that Furthermore, it is more preferable that the refractive index difference power ^.
[0049] 凸構造部、及び透明榭脂層の屈折率の測定は、該凸構造部、及び透明榭脂層を 形成するインキ組成物を基材フィルムに塗布し、得られた皮膜を屈折率計により測定 して求めることがでさる。 [0050] 例えば、該凸構造部、及び透明榭脂層を形成するインキ組成物をマイクログラビア コーターを用いて塗布し、 90°Cで乾燥の後、紫外線ランプを用い照射部の照度が 0 . lWZcm2で、照射量を 0. UZcm2として塗布層を硬化させ、厚さ 5 mの皮膜を 形成し、アッベの屈折計で屈折率を測定する。 [0049] The refractive index of the convex structure portion and the transparent resin layer is measured by applying an ink composition that forms the convex structure portion and the transparent resin layer to a substrate film, and applying the obtained film to the refractive index. It can be obtained by measuring with a meter. [0050] For example, the ink composition for forming the convex structure part and the transparent resin layer is applied using a micro gravure coater, dried at 90 ° C, and then the illuminance of the irradiated part is 0 using an ultraviolet lamp. lWZcm 2 with an irradiation dose of 0.UZcm 2 , cure the coating layer to form a 5 m thick film, and measure the refractive index with an Abbe refractometer.
[0051] 凸構造部と透明榭脂層の屈折率が同一であることにより、防眩層内では内部散乱 が発生せず、透明性が高ぐ黒のしまりの良い画像を得ることができる。  [0051] Since the refractive index of the convex structure portion and the transparent resin layer is the same, internal scattering does not occur in the antiglare layer, and an image with high transparency and high blackness can be obtained.
[0052] 凸構造部と透明榭脂層の屈折率を同一にするには、インキ組成物の材料や構成を 適宜選択することにより調整することが可能である。  [0052] In order to make the refractive index of the convex structure portion and the transparent resin layer the same, it is possible to adjust by appropriately selecting the material and configuration of the ink composition.
[0053] 凸構造部は、ドットの長径が 1〜30 μ m、さらに好ましくは 3〜10 μ mであり、ドット の高さが 0. 5〜: LO/z m さらに好ましくは、 2〜5 mの一定のサイズと高さを有して いることが好ましぐドットの配置は、 FMスクリーニング等の方法により、ランダムな配 置とされることが好ましい。ここでドットの長径とは、ドットが円形の場合は直径を、三 角形、四角形、多角形、不定形の場合は同一面積に換算した直径を表す。ドットの 高さとは、前述の通り基材フィルム面からドットの最も高い部分の高さの差をいう。  [0053] The convex structure portion has a dot major axis of 1 to 30 μm, more preferably 3 to 10 μm, and a dot height of 0.5 to: LO / zm, more preferably 2 to 5 m. The dot arrangement that preferably has a certain size and height is preferably random arrangement by a method such as FM screening. Here, the major axis of the dot represents the diameter when the dot is circular, and the diameter converted into the same area when the dot is triangular, quadrangular, polygonal or indefinite. The height of a dot means the difference in height of the highest part of a dot from a base film surface as above-mentioned.
[0054] FMスクリーニング法とはドットとドットの間隔すなわち周期性 (frequency)を変調す る(modulate)すること、基本ドットを打つ頻度(ドットの密度)で濃淡を表現する方法 である。 FMスクリーニング法は、ランダム 'スクリーニング法またスト力スティック'スクリ ニーング法と呼ばれることもある。 FMスクリーニング法とは、ドットとドットの間隔すな わち周期性を変調する方法を指す。具体的には、クリスタル ·ラスター'スクリーニング 法 (ァグファ 'ゲバルト社)、ダイヤモンド 'スクリーン法 (ライノタイプ 'ヘル社)、クラス' スクリーニング法およびフルトーン.スクリーニング法(サイテックス社)、ベルベット.ス クリーニング法 (ウダラ ·コ一ハン社)、アキュトーン ·スクリーニング法 (ダネリー社)、メ ガドット 'スクリーニング法 (アメリカン 'カラー社)、クリア 'スクリーニング法 (シ一力ラー 社)、モネット'スクリーニング法 (パルコ社)等が知られている。これら方法はいずれも ドット発生のアルゴリズムは異なっているが、ドット密度の変化により濃淡を表現する 方法であり、 FMスクリーニング法の種々の態様であるということができる。  [0054] The FM screening method is a method of expressing light and shade by modulating the interval between dots, that is, the frequency, and the frequency (dot density) of hitting basic dots. FM screening methods are sometimes called random 'screening methods or strike stick' screening methods. The FM screening method refers to a method of modulating the periodicity, that is, the interval between dots. Specifically, Crystal Raster 'screening method (Agfa' Gevart '), Diamond' Screen method (Rhinotype 'Hell'), Class' screening method and full tone screening method (Cytex), Velvet screening method (Udala Koichihan), Accutone Screening (Dannery), Megadot 'Screening (American' Color '), Clear' Screening (Shiichiritsu), Monet 'Screening (Parco) ) Etc. are known. All of these methods have different dot generation algorithms, but are methods of expressing shading by changing the dot density, and can be said to be various aspects of the FM screening method.
[0055] FMスクリーニングでは、インクが乗るドットのサイズは一定とし、画像の濃度に応じ てドットの出現頻度が変化する。 FMスクリーニングにおける各ドットのサイズはいわゆ る網点に比べて小さいので、必要とするパターンを高分解能で再現することが可能で ある。 FMスクリーニングにおけるドットは、いわゆる網点とは異なり、ドットの配列が周 期的ではない。 FMスクリーニングでは、ドットの配列が周期的でないので、モアレは 生じな!/、と!/、う特徴を持って!/、る。 In FM screening, the size of the dot on which ink is placed is constant, and the frequency of dot appearance changes according to the density of the image. The size of each dot in FM screening Since it is smaller than the halftone dot, it is possible to reproduce the required pattern with high resolution. Unlike so-called halftone dots, dots in FM screening are not periodically arranged. In FM screening, since the dot arrangement is not periodic, moire does not occur! / ,!
[0056] 本発明の透明榭脂層は、前述の凸構造部の上に塗布され、凸構造部を被覆するこ とにより、凸構造部のみで形成される凹凸をなだらかにして、好ましい表面形状を得 ることで、優れた防眩性を発現させることができる。  [0056] The transparent resin layer of the present invention is coated on the above-mentioned convex structure portion, and covers the convex structure portion, so that the unevenness formed only by the convex structure portion becomes smooth, and a preferable surface shape. As a result, excellent antiglare properties can be exhibited.
[0057] 透明榭脂層の厚みは、凸構造部の高さに対し、 1〜5 μ m厚いことが好ましい。また 、凸構造部を全面被覆するために、塗布膜厚は、凸構造部の高さの 2倍以上 5倍以 下であることが好ましい。塗布液膜厚が厚いことにより、凸構造部を完全に覆うことが できるが、厚すぎると、乾燥時の乾燥ムラ等の影響を受け、膜厚の均一性が損われる 。透明榭脂層に含まれる榭脂の内、 50%以上は凸構造部に用いられる榭脂と同一 であることが好ましぐこのことにより、凸構造部と透明榭脂層の十分な接着性を確保 でき、かつ屈折率を同一にすることができる。  [0057] The thickness of the transparent resin layer is preferably 1 to 5 µm thicker than the height of the convex structure portion. Further, in order to cover the entire surface of the convex structure part, the coating film thickness is preferably 2 to 5 times the height of the convex structure part. If the coating solution is thick, the convex structure can be covered completely, but if it is too thick, it is affected by drying unevenness during drying and the uniformity of the thickness is impaired. It is preferable that 50% or more of the resin contained in the transparent resin layer is the same as the resin used in the convex structure part. This allows sufficient adhesion between the convex structure part and the transparent resin layer. And the refractive index can be made the same.
[0058] (凸構造部、及び透明榭脂層を形成するインキ組成物)  (Ink composition for forming convex structure part and transparent resin layer)
本発明では、凸構造部、及び透明榭脂層を形成する組成物のことをインキ組成物 と称する。  In the present invention, the composition forming the convex structure part and the transparent resin layer is referred to as an ink composition.
[0059] 本発明に係る凸構造部、及び透明榭脂層を形成するインキ組成物は、特に制限さ れるものではないが、活性光線硬化型榭脂、光重合開始剤、光反応開始剤、光増感 剤、熱硬化性榭脂、熱可塑性榭脂、紫外線吸収剤、微粒子、溶媒等を含むことが好 ましい。ノ^ンダ一としては、上記活性光線硬化型榭脂、または熱硬化性榭脂が好ま しい。  [0059] The ink composition for forming the convex structure portion and the transparent resin layer according to the present invention is not particularly limited, but is an actinic ray curable resin, a photopolymerization initiator, a photoreaction initiator, It preferably contains a photosensitizer, thermosetting resin, thermoplastic resin, ultraviolet absorber, fine particles, solvent and the like. As the solder, the above-mentioned actinic ray curable resin or thermosetting resin is preferable.
[0060] 上記インキ組成物の屈折率は、 1. 35-1. 9の範囲で選択することができる。イン キ組成物の透過率は、 80%以上、好ましくは 90%以上であることが好ましい。  [0060] The refractive index of the ink composition can be selected in the range of 1.35-19-1. The transmittance of the ink composition is 80% or more, preferably 90% or more.
[0061] インキ組成物の粘度は測定温度 25°Cにおいて、 0. l〜20mPa' sであることが好ま しく、 0. 5〜: LOmPa' sの範囲が更に好ましい。粘度が 0. 5mPa' s未満の場合は粘 度が低過ぎて所望の形状の凸構造部パターンが得られなくなり、 20mPa ' sを超える とインキの流動性が悪くインキの転移性も低下する為好ましくない。 [0062] インキ組成物の粘度は、後述する沸点が 140〜250°C、 25°C測定の粘度が 1〜15 mPa' sである少なくとも 1種類の溶媒をインキ組成物の 60質量%以上用いることによ り調整されることが好ましい。 [0061] The viscosity of the ink composition is preferably 0.1 to 20 mPa's at a measurement temperature of 25 ° C, more preferably 0.5 to LOmPa's. If the viscosity is less than 0.5 mPa's, the viscosity is too low to obtain a convex structure pattern of the desired shape, and if it exceeds 20 mPa's, the fluidity of the ink is poor and the transferability of the ink is reduced. It is not preferable. [0062] Regarding the viscosity of the ink composition, at least one solvent having a boiling point of 140 to 250 ° C and a viscosity measured at 25 ° C of 1 to 15 mPa's described later is used in an amount of 60% by mass or more of the ink composition. It is preferable to adjust by this.
[0063] インキの粘度の測定は、 JIS Z 8809に規定されている粘度計校正用標準液で検 定されたものであれば特に制限はなぐ回転式、振動式や細管式の粘度計を用いる ことができる。粘度計としては、 Saybolt粘度計、 Redwood粘度計等で測定出来、例 えば、トキメック社製、円錐平板型 E型粘度計、東機産業社製の E Type Viscome ter (回転粘度計)、東京計器社製の B型粘度計 BL、山一電機社製の FVM— 80A、 Nametore工業社製の Viscoliner、山一電気社製の VISCO MATE MODEL VM— 1 A等を挙げることができる。  [0063] The viscosity of the ink is measured using a rotational, vibration, or capillary type viscometer that is not particularly limited as long as it has been tested with a standard solution for viscometer calibration specified in JIS Z 8809. be able to. The viscometer can be measured with Saybolt viscometer, Redwood viscometer, etc.For example, Tokimec, cone-plate E viscometer, Toki Sangyo E Type Viscome ter (rotary viscometer), Tokyo Keiki For example, B-type viscometer BL manufactured by Yamashita Electric Co., Ltd., FVM-80A manufactured by Yamaichi Electronics Co., Ltd., Viscoliner manufactured by Nametore Industry Co., Ltd., VISCO MATE MODEL VM-1 A manufactured by Yamaichi Electric Co., Ltd., and the like.
[0064] 本発明の凸構造部、及び透明榭脂層を形成するインキ組成物として、好ましく用い られる活性光線硬化型榭脂について説明する。  [0064] The actinic ray curable resin preferably used as the ink composition for forming the convex structure portion and the transparent resin layer of the present invention will be described.
[0065] 活性光線硬化型榭脂とは、紫外線や電子線のような活性光線照射により架橋反応 等を経て硬化する榭脂である。活性光線硬化型榭脂としては、紫外線硬化性榭脂ゃ 電子線硬化性榭脂等が代表的なものとして挙げられるが、紫外線や電子線以外の 活性光線照射によって硬化する榭脂でもよ 、。  [0065] The actinic ray curable resin is a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams. Typical examples of the actinic ray curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin that is cured by irradiation with an actinic ray other than an ultraviolet ray or an electron beam.
[0066] 紫外線硬化性榭脂としては、例えば、紫外線硬化型アクリルウレタン系榭脂、紫外 線硬化型ポリエステルアタリレート系榭脂、紫外線硬化型エポキシアタリレート系榭脂 、紫外線硬化型ポリオールアタリレート系榭脂、または紫外線硬化型エポキシ榭脂等 を挙げることができる。  [0066] Examples of the ultraviolet curable resin include, for example, an ultraviolet curable acrylic urethane resin, an ultraviolet ray curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, and an ultraviolet curable polyol acrylate resin. Examples thereof include a resin and an ultraviolet curable epoxy resin.
[0067] 紫外線硬化型アクリルウレタン系榭脂は、一般にポリエステルポリオールにイソシァ ネートモノマー、またはプレボリマーを反応させて得られた生成物に更に 2—ヒドロキ シェチルアタリレート、 2—ヒドロキシェチノレメタタリレート(以下アタリレートにはメタタリ レートを包含するものとしてアタリレートのみを表示する)、 2—ヒドロキシプロピルアタリ レート等の水酸基を有するアタリレート系のモノマーを反応させることによって容易に 得ることができる。例えば、特開昭 59— 151110号に記載の、ュ-ディック 17— 806 (大日本インキ (株)製) 100部とコロネート L (日本ポリウレタン (株)製) 1部との混合物 等が好ましく用いられる。 [0068] 紫外線硬化型ポリエステルアタリレート系榭脂は、一般にポリエステル末端の水酸 基やカルボキシル基に 2—ヒドロキシェチルアタリレート、グリシジルアタリレート、ァク リル酸のようなのモノマーを反応させることによって容易に得ることができる(例えば、 特開昭 59— 151112号公報)。 [0067] UV-curable acrylic urethane-based resins are generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxy cetyl acrylate, 2-hydroxy ethynole methacrylate. (Hereinafter, only acrylate is included in the acrylate as including methacrylate), and it can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. For example, a mixture of 100 parts Dudic 17-806 (Dainippon Ink Co., Ltd.) and 1 part Coronate L (Nihon Polyurethane Co., Ltd.) described in JP-A-59-151110 is preferably used. It is done. [0068] UV-curable polyester acrylate resins generally have a hydroxyl group or carboxyl group at the end of a polyester reacted with a monomer such as 2-hydroxyethyl acrylate, glycidyl acrylate, or acrylate. It can be easily obtained (for example, JP-A-59-151112).
[0069] 紫外線硬化型エポキシアタリレート系榭脂は、エポキシ榭脂の末端の水酸基にァク リル酸、アクリル酸クロライド、グリシジルアタリレートのようなモノマーを反応させて得ら れる。  [0069] The ultraviolet curable epoxy acrylate resin is obtained by reacting a terminal hydroxyl group of an epoxy resin with a monomer such as acrylic acid, acrylic acid chloride or glycidyl acrylate.
[0070] 紫外線硬化型ポリオールアタリレート系榭脂としては、エチレングリコール (メタ)ァク リレート、ポリエチレングリコールジ (メタ)アタリレート、グリセリントリ(メタ)アタリレート、 トリメチロールプロパントリアタリレート、ペンタエリスリトールトリアタリレート、ペンタエリ スリトールテトラアタリレート、ジペンタエリスリトールペンタアタリレート、ジペンタエリス リトールへキサアタリレート、アルキル変性ジペンタエリスリトールペンタアタリレート等 を挙げることができる。  [0070] Examples of ultraviolet curable polyol acrylate-based resins include ethylene glycol (meth) acrylate, polyethylene glycol di (meth) acrylate, glycerol tri (meth) acrylate, trimethylolpropane tritalylate, and pentaerythritol. Examples thereof include triatalylate, pentaerythritol tetraatalylate, dipentaerythritol pentaatalylate, dipentaerythritol hexaatalylate, alkyl-modified dipentaerythritol pentaatalylate, and the like.
[0071] 紫外線硬化型エポキシアタリレート系榭脂、紫外線硬化型エポキシ榭脂の例として 、好ましく用いられるエポキシ系活性光線反応性ィ匕合物を示す。  [0071] As examples of the ultraviolet curable epoxy acrylate resin and the ultraviolet curable epoxy resin, an epoxy actinic ray reactive compound preferably used is shown.
[0072] (a)ビスフエノール Aのグリシジルエーテル(この化合物はェピクロルヒドリンとビスフ ェノール Aとの反応により、重合度の異なる混合物として得られる)  [0072] (a) Glycidyl ether of bisphenol A (this compound is obtained as a mixture having different degrees of polymerization by the reaction of epichlorohydrin and bisphenol A)
(b)ビスフエノール A等のフエノール性 OHを 2個有する化合物に、ェピクロルヒドリ ン、エチレンオキサイド及び Zまたはプロピレンオキサイドを反応させ末端にグリシジ ルエーテル基を有する化合物  (b) A compound having a glycidyl ether group at the terminal by reacting a compound having two phenolic OH such as bisphenol A with epichlorohydrin, ethylene oxide and Z or propylene oxide
(c) 4, 4' ーメチレンビスフエノールのグリシジルエーテル  (c) 4,4'-Methylenebisphenol glycidyl ether
(d)ノボラック榭脂またはレゾール榭脂のフエノールフオルムアルデヒド榭脂のェポ キシ化合物  (d) Epoxy compound of phenol formaldehyde resin of novolak resin or resole resin
(e)脂環式エポキシドを有する化合物、例えば、ビス(3, 4—エポキシシクロへキシ ルメチル)ォキザレート、ビス(3, 4—エポキシシクロへキシルメチル)アジペート、ビス (3, 4 エポキシ 6—シクロへキシノレメチノレ)アジペート、ビス(3, 4—エポキシシク 口へキシルメチルピメレート)、 3, 4 エポキシシクロへキシルメチルー 3, 4—ェポキ シシクロへキサンカルボキシレート、 3, 4 エポキシ 1ーメチルシクロへキシルメチ ルー 3' , 4' エポキシシクロへキサンカルボキシレート、 3, 4 エポキシ 1ーメ チルーシクロへキシルメチルー 3' , 4' —エポキシ一!/ ーメチルシクロへキサン力 ルボキシレート、 3, 4 エポキシー6—メチルーシクロへキシルメチルー 3' , 4' エポキシ 6' —メチノレー!/ ーシクロへキサン力ノレボキシレート、 2—(3, 4 ェポ キシシクロへキシノレ 5, , 5' —スピロ 3,, , 4,, —エポキシ)シクロへキサンーメ タージォキサン (e) Compounds having an alicyclic epoxide, such as bis (3,4-epoxycyclohexylmethyl) oxalate, bis (3,4-epoxycyclohexylmethyl) adipate, bis (3,4 epoxy 6-cyclohex Xinolemethinole) adipate, bis (3,4-epoxycyclohexylmethyl pimelate), 3, 4 epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate, 3, 4 epoxy 1-methylcyclohexylmethy Lou 3 ', 4' Epoxycyclohexanecarboxylate, 3, 4 Epoxy 1-methyl-cyclohexylmethyl 3 ', 4' —Epoxy! / -Methylcyclohexane force Ruboxylate, 3, 4 Epoxy-6-Methyl-cyclohexylmethyl-3 ', 4' Epoxy 6'-Methinore! / -Cyclohexanoyl norboxoxylate, 2 -— (3,4 epoxyoxycyclohexylene 5,, 5 '—spiro 3 ,,, 4 ,, —epoxy) cyclohexane metadioxane
(f) 2塩基酸のジグリシジルエーテル、例えば、ジグリシジルォキザレート、ジグリシ ジルアジペート、ジグリシジルテトラヒドロフタレート、ジグリシジノレへキサヒドロフタレー ト、ジグリシジルフタレート  (f) Diglycidyl ethers of dibasic acids such as diglycidyl oxalate, diglycidyl adipate, diglycidyl tetrahydrophthalate, diglycidino hexahydrophthalate, diglycidyl phthalate
(g)グリコールのジグリシジルエーテル、例えば、エチレングリコールジグリシジルェ 一テル、ジエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジ ノレエーテノレ、ポリエチレングリコールジグリシジルエーテル、ポリプロピレングリコール ジグリシジルエーテル、コポリ(エチレングリコール プロピレングリコール)ジグリシジ ルエーテル、 1, 4 ブタンジオールジグリシジルエーテル、 1, 6 へキサンジオール ジグリシジノレエーテノレ ( g ) Diglycidyl ether of glycol, for example, ethylene glycol diglycidyl ether, diethylene glycol diglycidyl ether, propylene glycol diglycidyl etherate, polyethylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, copoly (ethylene glycol propylene glycol) diglycidyl Ether, 1,4 butanediol diglycidyl ether, 1,6 hexanediol diglycidino oleore
(h)ポリマー酸のグリシジルエステル、例えば、ポリアクリル酸ポリグリシジルエステ  (h) Glycidyl ester of polymer acid, for example, polyglycidyl ester polyacrylate
(i)多価アルコールのグリシジルエーテル、例えば、グリセリントリグリシジルエーテ ル、トリメチロールプロパントリグリシジルエーテル、ペンタエリスリトールジグリシジル エーテル、ペンタエリスリトールトリグリシジルエーテル、ペンタエリスリトールテトラダリ シジルエーテル、ダルコ一ストリグリシジルエーテル (i) Glycidyl ethers of polyhydric alcohols such as glycerin triglycidyl ether, trimethylolpropane triglycidyl ether, pentaerythritol diglycidyl ether, pentaerythritol triglycidyl ether, pentaerythritol tetradalysidyl ether, dalco-triglycidyl ether
(j) 2—フルォロアルキル— 1, 2—ジオールのジグリシジルエーテルとしては、前記 低屈折率物質のフッ素含有樹脂のフッ素含有エポキシィ匕合物に挙げた化合物例と 同様のもの  (j) The diglycidyl ether of 2-fluoroalkyl-1,2-diol is the same as the compound examples given in the fluorine-containing epoxy compound of the fluorine-containing resin of the low refractive index substance.
(k)含フッ素アルカン末端ジオールダリシジルエーテルとしては、上記低屈折率物 質のフッ素含有樹脂のフッ素含有エポキシィ匕合物等を挙げることができる。  Examples of the (k) fluorine-containing alkane-terminated diol daricidyl ether include fluorine-containing epoxy compounds of fluorine-containing resins having the above-described low refractive index materials.
上記エポキシィ匕合物の分子量は、平均分子量として 2000以下で、好ましくは 100 0以下である。 [0074] 上記のエポキシィ匕合物を活性光線により硬化する場合、より硬度を上げるためには 、 (h)または (i)の多官能のエポキシ基を有する化合物を混合して用いると効果的で ある。 The molecular weight of the epoxy compound is 2000 or less as an average molecular weight, preferably 1000 or less. [0074] When the above epoxy compound is cured with actinic rays, it is effective to use a compound having a polyfunctional epoxy group of (h) or (i) in order to increase the hardness. is there.
[0075] エポキシ系活性光線反応性ィ匕合物をカチオン重合させる光重合開始剤または光 増感剤は、活性光線照射によりカチオン重合開始物質を放出することが可能な化合 物であり、特に好ましくは、照射によりカチオン重合開始能のあるルイス酸を放出する ォ -ゥム塩の一群の複塩である。  [0075] The photopolymerization initiator or photosensitizer for cationically polymerizing the epoxy-based actinic ray reactive compound is a compound capable of releasing the cationic polymerization initiator by irradiation with actinic rays, and is particularly preferable. Is a group of double salts that release a Lewis acid capable of initiating cationic polymerization upon irradiation.
[0076] 活性光線反応性ィ匕合物エポキシ榭脂は、ラジカル重合によるのではなぐカチオン 重合により重合、架橋構造または網目構造を形成する。ラジカル重合と異なり反応系 中の酸素に影響を受けないため好ましい活性光線反応性榭脂である。  [0076] The actinic ray-reactive composite epoxy resin forms a polymerized, crosslinked structure or network structure by cationic polymerization rather than by radical polymerization. Unlike radical polymerization, it is a preferred actinic ray-reactive resin because it is not affected by oxygen in the reaction system.
[0077] 本発明に有用な活性光線反応性エポキシ榭脂は、活性光線照射によりカチオン重 合を開始させる物質を放出する光重合開始剤または光増感剤により重合する。光重 合開始剤としては、光照射によりカチオン重合を開始させるルイス酸を放出するォニ ゥム塩の複塩の一群が特に好まし!/、。  [0077] The actinic ray-reactive epoxy resin useful in the present invention is polymerized by a photopolymerization initiator or a photosensitizer that releases a substance that initiates cationic polymerization upon irradiation with actinic rays. As the photopolymerization initiator, a group of double salts of onium salts that release a Lewis acid that initiates cationic polymerization upon irradiation with light is particularly preferred! /.
[0078] 力かる代表的なものは下記一般式 (a)で表される化合物である。  [0078] A typical example is a compound represented by the following general formula (a).
[0079] 一般式 (a)  [0079] General formula (a)
[ (R1) (R2) (R3) (R4) Z]^ [MeX ]w" [(R 1 ) (R 2 ) (R 3 ) (R 4 ) Z] ^ [MeX] w "
a b e d v  a b e d v
式中、カチオンはォ -ゥムであり、 Zは S、 Se、 Te、 P、 As、 Sb、 Bi、 0、ハロゲン(例 えば、 I、 Br、 CI)、または N = N (ジァゾ)であり、
Figure imgf000018_0001
R4は同一であっても異 なっていてもよい有機の基である。 a、 b、 c、 dはそれぞれ 0〜3の整数であって、 a + b + c + dは Zの価数に等しい。 Meはハロゲン化物錯体の中心原子である金属または 半金属(metalloid)であり、 B、 P、 Asゝ Sbゝ Feゝ Snゝ Biゝ Al、 Caゝ In、 Ti、 Znゝ Sc、 V、 Cr、 Mn、 Co等である。 Xはハロゲンであり、 wはハロゲン化錯体イオンの正味の 電荷であり、 Vはハロゲン化錯体イオン中のハロゲン原子の数である。
Where the cation is o-um and Z is S, Se, Te, P, As, Sb, Bi, 0, halogen (eg, I, Br, CI), or N = N (diazo) Yes,
Figure imgf000018_0001
R 4 is an organic group which may be the same or different. a, b, c and d are each an integer of 0 to 3, and a + b + c + d is equal to the valence of Z. Me is the metal or metalloid that is the central atom of the halide complex. B, P, As ゝ Sb ゝ Fe ゝ Sn ゝ Bi ゝ Al, Ca ゝ In, Ti, Zn ゝ Sc, V, Cr, Mn, Co, etc. X is halogen, w is the net charge of the halogenated complex ion, and V is the number of halogen atoms in the halogenated complex ion.
[0080] 上記一般式 (a)の陰イオン〔MeX Γ—の具体例としては、テトラフルォロボレート(BF ―)、テトラフルォロホスフェート(PF―)、テトラフルォロアンチモネート(SbF―)、テトラ[0080] Anions of the above general formula (a) [Specific examples of MeX Γ- include tetrafluoroborate (BF-), tetrafluorophosphate (PF-), tetrafluoroantimonate (SbF -), Tetra
4 4 4 フルォロアルセネート(AsF―)、テトラクロ口アンチモネート(SbCl―)等を挙げることが 4 4 4 Fluoroarsenate (AsF-), Tetrachrome mouth antimonate (SbCl-), etc.
4 4  4 4
出来る。 [0081] また、その他の陰イオンとしては過塩素酸イオン (CIO ")、トリフルォロメチル亜硫酸 I can do it. [0081] Other anions include perchlorate ion (CIO "), trifluoromethyl sulfite.
4  Four
イオン(CF SO―)、フノレオロスノレホン酸イオン(FSO―)、トノレエンスノレホン酸イオン、  Ion (CF SO-), fonoreros norephonate ion (FSO-), tonorenos nolephonate ion,
3 3 3  3 3 3
トリ-トロベンゼン酸陰イオン等を挙げることが出来る。  And tri-trobenzene acid anion.
[0082] この様なォ-ゥム塩の中でも特に芳香族ォ-ゥム塩をカチオン重合開始剤として使 用するのが有効であり、中でも特開昭 50— 151996号、同 50— 158680号等に記 載の芳香族ノヽ口-ゥム塩、特開昭 50— 151997号、同 52— 30 号、 ^159- 554 20号、同 55— 125105号等に記載の VIA族芳香族ォ -ゥム塩、特開昭 56— 8428 号、同 56— 149402号、同 57— 192429号等に記載のォキソスルホキソ-ゥム塩、 特公昭 49— 17040号等に記載の芳香族ジァゾ -ゥム塩、米国特許第 4, 139, 655 号等に記載のチォピリリュム塩等が好ましい。また、アルミニウム錯体ゃ光分解性け い素化合物系重合開始剤等を挙げることができる。上記カチオン重合開始剤と、ベ ンゾフエノン、ベンゾインイソプロピルエーテル、チォキサントン等の光増感剤を併用 することができる。 [0082] Among such salt salts, it is particularly effective to use an aromatic salt salt as a cationic polymerization initiator, and among them, JP-A-50-151996 and JP-A-50-158680. VIA group aromatic salts described in JP-A-50-151997, 52-30, ^ 159-55420, 55-125105, etc. Um salt, oxosulfoxo-um salt described in JP-A-56-8428, 56-149402, 57-192429, etc., and aromatic diazo-um salt described in JP-B-49-17040 The thiopyrilum salts described in U.S. Pat. No. 4,139,655 are preferred. Examples of the aluminum complex include photodegradable silicon compound-based polymerization initiators. The cationic polymerization initiator can be used in combination with a photosensitizer such as benzophenone, benzoin isopropyl ether or thixanthone.
[0083] また、エポキシアタリレート基を有する活性光線反応性ィ匕合物の場合は、 n—プチ ルァミン、トリェチルァミン、トリ一 n—ブチルホスフィン等の光増感剤を用いることがで きる。この活性光線反応性化合物に用いられる光増感剤ゃ光開始剤は、紫外線反 応性化合物 100質量部に対して 0. 1質量部〜 15質量部で光反応を開始するには 十分であり、好ましくは 1質量部〜 10質量部である。この増感剤は近紫外線領域から 可視光線領域に吸収極大のあるものが好ましい。  In the case of an actinic ray reactive compound having an epoxy acrylate group, a photosensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine, or the like can be used. The photosensitizer or photoinitiator used in this actinic ray reactive compound is sufficient to initiate the photoreaction at 0.1 to 15 parts by mass with respect to 100 parts by mass of the ultraviolet responsive compound, Preferably they are 1 mass part-10 mass parts. This sensitizer preferably has an absorption maximum from the near ultraviolet region to the visible light region.
[0084] 本発明に有用な活性光線硬化型榭脂を含むインキ組成物にぉ ヽて、光重合開始 剤は、一般的には、活性光線硬化性エポキシ榭脂(プレボリマー) 100質量部に対し て 0. 1質量部〜 15質量部の使用が好ましぐ更に好ましくは、 1質量部〜 10質量部 の範囲の添カ卩が好ましい。  [0084] In an ink composition containing an actinic ray curable resin useful for the present invention, the photopolymerization initiator is generally used in an amount of 100 parts by mass of an actinic ray curable epoxy resin (prepolymer). 0.1 to 15 parts by mass is more preferable, and an additive in the range of 1 to 10 parts by mass is preferable.
[0085] また、エポキシ榭脂を上記ウレタンアタリレート型榭脂、ポリエーテルアタリレート型 榭脂等と併用することも出来、この場合、活性光線ラジカル重合開始剤と活性光線力 チオン重合開始剤を併用することが好まし 、。  [0085] In addition, the epoxy resin can be used in combination with the urethane acrylate resin, polyether acrylate resin, etc. In this case, an actinic ray radical polymerization initiator and an actinic ray power thione polymerization initiator are used. It is preferable to use it together.
[0086] また、本発明では、光重合開始剤としてォキセタン化合物を用いることもできる。用 V、られるォキセタン化合物は、酸素または硫黄を含む 3員環のォキセタン環を有する 化合物である。中でも酸素を含むォキセタン環を有する化合物が好ましい。ォキセタ ン環は、ハロゲン原子、ハロアルキル基、ァリールアルキル基、アルコキシル基、ァリ ルォキシ基、ァセトキシ基で置換されていてもよい。具体的には、 3, 3—ビス(クロル メチル)ォキセタン、 3, 3—ビス(ョードメチル)ォキセタン、 3, 3—ビス(メトキシメチル )ォキセタン、 3, 3—ビス(フエノキシメチル)ォキセタン、 3—メチルー 3クロルメチルォ キセタン、 3, 3—ビス(ァセトキシメチル)ォキセタン、 3, 3—ビス(フルォロメチル)ォ キセタン、 3, 3—ビス(ブロモメチル)ォキセタン、 3, 3—ジメチルォキセタン等が挙げ られる。尚、本発明ではモノマー、オリゴマー、ポリマーのいずれであってもよい。 [0086] In the present invention, an oxetane compound can also be used as a photopolymerization initiator. V, the oxetane compound, has a three-membered oxetane ring containing oxygen or sulfur A compound. Among these, a compound having an oxetane ring containing oxygen is preferable. The oxetane ring may be substituted with a halogen atom, a haloalkyl group, an arylalkyl group, an alkoxyl group, an aryloxy group, or an acetyloxy group. Specifically, 3,3-bis (chloromethyl) oxetane, 3,3-bis (odomethyl) oxetane, 3,3-bis (methoxymethyl) oxetane, 3,3-bis (phenoxymethyl) oxetane, 3-methyl- Examples include 3-chloromethyloxetane, 3,3-bis (acetoxymethyl) oxetane, 3,3-bis (fluoromethyl) oxetane, 3,3-bis (bromomethyl) oxetane, and 3,3-dimethyloxetane. In the present invention, any of a monomer, an oligomer and a polymer may be used.
[0087] 本発明で用いることのできる紫外線硬化性榭脂の具体例としては、例えば、アデ力 ォプトマ一 KR、 BYシリーズの KR— 400、 KR—410、 KR—550、 KR—566、 KR 567、 BY— 320B (以上、旭電化工業 (株)製)、コーエイハードの A— 101— KK 、 A— 101— WS、 C— 302、 C— 401— N、 C— 501、 M— 101、 M— 102、 T— 10[0087] Specific examples of the ultraviolet curable resin that can be used in the present invention include, for example, Ade force Optomer KR, BY series KR-400, KR-410, KR-550, KR-566, KR 567 BY-320B (Asahi Denka Kogyo Co., Ltd.), Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M — 102, T— 10
2、 D— 102、 NS— 101、 FT— 102Q8、 MAG— 1— P20、 AG— 106、 M— 101— C (以上、広栄化学工業 (株)製)、セイカビームの PHC2210 (S)、 PHCX— 9 (K— 3)、 PHC2213、 DP— 10、 DP— 20、 DP— 30、 P1000、 P1100、 P1200、 P130 0、 P1400、 P1500、 P1600、 SCR900 (以上、大日精ィ匕工業 (株)製)、 KRM7032, D—102, NS—101, FT—102Q8, MAG—1—P20, AG—106, M—101—C (manufactured by Guangei Chemical Co., Ltd.), Seika Beam PHC2210 (S), PHCX— 9 (K-3), PHC2213, DP-10, DP-20, DP-30, P1000, P1100, P1200, P130 0, P1400, P1500, P1600, SCR900 (above, manufactured by Dainichi Seiki Kogyo Co., Ltd.) , KRM703
3、 KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL292 02 (以上、ダイセル'ユーシービー(株))、 RC— 5015、 RC— 5016、 RC— 5020、 RC— 5031、 RC— 5100、 RC— 5102、 RC— 5120、 RC— 5122、 RC— 5152、 R C- 5171, RC— 5180、 RC— 5181 (以上、大日本インキ化学工業 (株)製)、ォー レックス No. 340クリャ(中国塗料 (株)製)、サンラッド H— 601、RC— 750、RC— 700、 RC— 600、 RC— 500、 RC— 611、 RC— 612 (以上、三洋ィ匕成工業 (株)製)3, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL292 02 (above, Daicel UC Corporation), RC—5015, RC—5016, RC—5020, RC—5031, RC—5100, RC—5102, RC— 5120, RC—5122, RC—5152, RC-5171, RC—5180, RC—5181 (above, manufactured by Dainippon Ink & Chemicals, Inc.), Orex No. 340 Clear (made by China Paint Co., Ltd.) ), Sunrad H—601, RC—750, RC—700, RC—600, RC—500, RC—611, RC—612 (above, manufactured by Sanyo Kosei Co., Ltd.)
、 SP— 1509、 SP— 1507 (以上、昭和高分子(株)製)、 RCC—15C (グレース.ジャ パン (株)製)、ァロニックス M— 6100、 M— 8030、 M— 8060 (以上、東亞合成(株) 製)、またはその他の市販のものから適宜選択して利用することができる。 , SP-1509, SP-1507 (above, Showa Polymer Co., Ltd.), RCC-15C (Grace Japan Co., Ltd.), Aronix M-6100, M-8030, M-8060 (above, Dongguan) (Manufactured by Synthetic Co., Ltd.) or other commercially available ones.
[0088] インキ組成物中の活性光線硬化型榭脂の固形分濃度は 10〜95質量%であること が好ましぐ塗布方法等により最適な濃度が選ばれる。  [0088] The solid concentration of the actinic ray curable resin in the ink composition is 10 to 95% by mass, and the optimum concentration is selected depending on the coating method and the like.
[0089] また、活性光線硬化型榭脂として、紫外線硬化性榭脂を用いる場合、前記紫外線 硬化性榭脂の光硬化を妨げな!/ヽ程度に、紫外線吸収剤を紫外線硬化性榭脂組成 物に含ませてもよい。紫外線吸収剤としては、波長 370nm以下の紫外線の吸収能 に優れ、かつ良好な液晶表示性の観点から、波長 400nm以上の可視光の吸収が 少ないものが好ましく用いられる。 [0089] Further, in the case where an ultraviolet curable resin is used as the actinic ray curable resin, the ultraviolet light is used. An ultraviolet absorber may be included in the ultraviolet curable resin composition so as not to interfere with the photocuring of the curable resin. As the ultraviolet absorber, those excellent in the ability to absorb ultraviolet rays having a wavelength of 370 nm or less and having little absorption of visible light having a wavelength of 400 nm or more are preferably used from the viewpoint of good liquid crystal display properties.
[0090] 本発明に好ましく用いられる紫外線吸収剤の具体例としては、例えば、ォキシベン ゾフエノン系化合物、ベンゾトリアゾール系化合物、サリチル酸エステル系化合物、ベ ンゾフエノン系化合物、シァノアクリレート系化合物、トリアジン系化合物、ニッケル錯 塩系化合物等が挙げられるが、これらに限定されない。  [0090] Specific examples of the ultraviolet absorber preferably used in the present invention include, for example, oxybenzozophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, triazine compounds, Examples include, but are not limited to, nickel complex compounds.
[0091] 本発明に係るインキ組成物には、 SnO、 ITO、 ΖηΟ等の導電性微粒子や架橋力  [0091] The ink composition according to the present invention includes conductive fine particles such as SnO, ITO, and
2  2
チオンポリマー粒子等の帯電防止剤を含有させることも好まし 、。本発明では帯電防 止剤を透明榭脂層に添加することも好ま 、。  It is also preferable to include an antistatic agent such as thione polymer particles. In the present invention, it is also preferable to add an antistatic agent to the transparent resin layer.
[0092] 本発明において、インキ組成物中に微粒子を含有させることも好ましぐ例えば、無 機微粒子または有機微粒子を添加することができる。  In the present invention, it is also preferable to include fine particles in the ink composition. For example, inorganic fine particles or organic fine particles can be added.
[0093] 無機微粒子としては、例えば、珪素を含む化合物、二酸化珪素、酸ィ匕アルミニウム 、酸ィ匕ジルコニウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケィ酸カル シゥム、水和ケィ酸カルシウム、ケィ酸アルミニウム、ケィ酸マグネシウム及びリン酸力 ルシゥム等が好ましぐ更に好ましくは、ケィ素を含む無機化合物や酸化ジルコユウ ムであるが、二酸ィ匕珪素が特に好ましく用いられる。これらは球状、平板状、無定形 状等の形状の粒子が挙げられる。  [0093] The inorganic fine particles include, for example, a compound containing silicon, silicon dioxide, acid aluminum, zirconium oxide, calcium carbonate, talc, clay, calcined kaolin, calcined calcium carbonate, hydrated calcium silicate, Aluminum silicate, magnesium silicate, phosphate, and the like are more preferable, and inorganic compounds containing zirconium and zirconium oxide are preferable, but silicon dioxide is particularly preferably used. These include particles having a spherical shape, a flat plate shape, an amorphous shape, and the like.
[0094] 二酸化珪素の微粒子としては、例えば、ァエロジル R972、 R972V、 R974、 R812 、 200、 200V, 300、 R202、 OX50、 TT600 (以上日本ァェロジル (株)製)等の巿 販品が使用できる。  [0094] As fine particles of silicon dioxide, for example, commercially available products such as Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
[0095] 酸化ジルコニウムの微粒子としては、例えば、ァエロジル R976及び R811 (以上日 本ァエロジル (株)製)等の市販品が使用できる。  As the fine particles of zirconium oxide, for example, commercially available products such as Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) can be used.
[0096] また、有機微粒子としては、ポリメタアクリル酸メチルアタリレート榭脂微粒子、アタリ ルスチレン系榭脂微粒子、ポリメチルメタタリレート榭脂微粒子、シリコン系榭脂微粒 子、ポリスチレン系榭脂微粒子、ポリカーボネート榭脂微粒子、ベンゾグアナミン系榭 脂微粒子、メラミン系榭脂微粒子、ポリオレフイン系榭脂微粒子、ポリエステル系榭脂 微粒子、ポリアミド系榭脂微粒子、ポリイミド系榭脂微粒子、またはポリ弗化工チレン 系榭脂微粒子等を挙げることができる。 [0096] Further, as the organic fine particles, polymethacrylic acid methyl acrylate fine resin particles, acryl styrene-based fine particles, polymethyl methacrylate fine particles, silicon-based fine particles, polystyrene-based fine particles, Polycarbonate resin fine particles, benzoguanamine resin fine particles, melamine resin fine particles, polyolefin resin fine particles, polyester resin Examples thereof include fine particles, polyamide-based resin fine particles, polyimide-based resin fine particles, and polyfluorinated styrene-based resin fine particles.
[0097] 本発明では、凸構造部、透明榭脂層共に上記微粒子を含有する場合、その平均 粒径は、 5〜300nm力 S好ましく、更に好ましくは 20〜: LOOnmである。粒径や屈折率 の異なる 2種以上の微粒子を含有させてもよい。また、含有量は凸構造部若しくは透 明榭脂層に対し 5〜50質量%であることが好ま 、。  [0097] In the present invention, when both the convex structure portion and the transparent resin layer contain the fine particles, the average particle size is preferably 5 to 300 nm force S, more preferably 20 to LOOnm. Two or more kinds of fine particles having different particle diameters and refractive indexes may be contained. The content is preferably 5 to 50% by mass with respect to the convex structure part or the transparent resin layer.
[0098] 本発明にお ヽて、凸構造部もしくは透明榭脂層が活性光線硬化型榭脂を含む場 合、活性光線の照射方法としては、インキを透明基体上に転移印刷させ、溶媒等を 蒸発させた後、活性光線を照射することが好ましい。照射のタイミングは形成するパ ターン形状を考慮して決定することが出来、例えば、インクが無溶媒の場合は、転移 印刷直後〜 2min後に照射すること、またインクが溶媒を含む場合はインク中の溶媒 が揮発し終った直後〜 2min後に照射することができる。  [0098] In the present invention, when the convex structure portion or the transparent resin layer contains an actinic ray curable resin, an actinic ray irradiation method includes transferring the ink onto a transparent substrate, printing a solvent, etc. After evaporating, it is preferable to irradiate actinic rays. The timing of irradiation can be determined in consideration of the shape of the pattern to be formed.For example, when the ink is solvent-free, irradiation is performed immediately after transfer printing to 2 minutes later. Irradiation can be performed immediately after the solvent has been volatilized and after 2 minutes.
[0099] 本発明でいうインキを基材フィルム上に転移印刷、もしくはインク中の溶媒が揮発し 終った直後とは、具体的にはインキが転移印刷後から 5秒までの間をさす。また、活 性光線の照射は、インキの流動性を低下させ、所望のパターン形状が形成できる程 度に照射すればよぐハーフキュア状態でもよい。この場合には、別途下流側に設置 した活性光源を照射して、完全に硬化させることができる。本発明では凸構造部の形 成及び透明榭脂層の形成に活性光線硬化型榭脂を使用することが好ましい。  [0099] The term "immediately after transfer printing of the ink on the substrate film or the solvent in the ink has been volatilized" as used in the present invention specifically refers to a period of up to 5 seconds after the transfer printing. In addition, the irradiation of the active light may be in a half-cured state as long as the ink is lowered to the extent that the fluidity of the ink is reduced and a desired pattern shape can be formed. In this case, it can be completely cured by irradiating an active light source separately installed on the downstream side. In the present invention, it is preferable to use an actinic ray curable resin for forming the convex structure and forming the transparent resin layer.
[0100] 本発明に使用することができる活性光線としては、紫外線、電子線、 γ線等で、パ ターン状に形成された活性光線硬化型榭脂を活性化させる光源であれば制限なく 使用できるが、紫外線、電子線が好ましぐ特に取り扱いが簡便で高工ネルギ一が容 易に得られると!ヽぅ点で紫外線が好ま ヽ。紫外線反応性化合物を光重合させる紫 外線の光源としては、紫外線を発生する光源であれば何れも使用できる。例えば、低 圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハラ イドランプ、キセノンランプ等を用いることができる。また、 ArFエキシマレーザ、 KrF エキシマレーザ、エキシマランプまたはシンクロトロン放射光等も用いることができる。 照射条件はそれぞれのランプによって異なるが、照射光量は lmjZcm2以上が好ま しぐ更に好ましくは、 20mjZcm2〜10000mjZcm2であり、特に好ましくは、 50m] / cm 〜 2000mjZcm2である。 [0100] The actinic ray that can be used in the present invention is not limited as long as it is a light source that activates the actinic ray curable resin formed into a pattern with ultraviolet rays, electron beams, γ rays, or the like. However, ultraviolet rays and electron beams are preferred. Especially when handling is easy and high-energy energy can be obtained easily, ultraviolet rays are preferred. As an ultraviolet light source for photopolymerizing an ultraviolet reactive compound, any light source that generates ultraviolet light can be used. For example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, an ultrahigh-pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, or the like can be used. An ArF excimer laser, KrF excimer laser, excimer lamp, synchrotron radiation, or the like can also be used. Irradiation conditions vary depending on each lamp, but the amount of irradiation light is preferably lmjZcm 2 or more, more preferably 20 mjZcm 2 to 10000 mjZcm 2 and particularly preferably 50 m] A / cm ~ 2000mjZcm 2.
[0101] また、電子線も同様に使用できる。電子線としては、コックロフトワルトン型、バンデ グラフ型、共振変圧型、絶縁コア変圧器型、直線型、ダイナミトロン型、高周波型等の 各種電子線加速器から放出される 50〜 1 OOOke V、好ましくは 100〜 300keVのェ ネルギーを有する電子線を挙げることができる。 [0101] Electron beams can also be used in the same manner. As an electron beam, 50 to 1 OOOke V emitted from various electron beam accelerators such as cockroft Walton type, bandegraph type, resonant transformer type, insulated core transformer type, linear type, dynamitron type, high frequency type, etc. Can be an electron beam having an energy of 100 to 300 keV.
[0102] 本発明においては、活性光線照射の時の雰囲気中の酸素濃度が 10%以下、特に[0102] In the present invention, the oxygen concentration in the atmosphere during irradiation with actinic rays is 10% or less, particularly
1%以下であることが好ましい。該雰囲気にするには窒素ガス等を導入することが有 効である。 It is preferably 1% or less. In order to make this atmosphere, it is effective to introduce nitrogen gas or the like.
[0103] また、本発明においては、活性光線の硬化反応を効率的に進めるため、基材フィ ルム等を加熱することもできる。加熱方法としては、特に制限はないが、ヒートプレート 、ヒートロール、サーマルヘッド、或いは転移印刷したインキ表面に熱風を吹き付ける 等の方法を使用するのが好ましい。また、フレキソ印刷部の基材フィルムを挟んで反 対側に用いられるバックロールを、ヒートロールとして、連続的に加熱を施してもよい。  [0103] In the present invention, the substrate film or the like can also be heated in order to efficiently advance the curing reaction of actinic rays. The heating method is not particularly limited, but it is preferable to use a method such as a heat plate, a heat roll, a thermal head, or a method of spraying hot air on the surface of transfer-printed ink. Further, the back roll used on the opposite side across the base film of the flexographic printing section may be continuously heated as a heat roll.
[0104] 加熱温度としては、使用する活性光線硬化型榭脂の種類により一概には規定出来 な 、が、基材フィルムへの熱変形等の影響を与えな 、温度範囲であることが好ましく 、 30〜200°Cが好ましぐ更に 50〜120°Cが好ましぐ特に好ましくは 70〜100°Cで ある。  [0104] The heating temperature cannot be generally specified depending on the type of actinic ray curable resin to be used, but is preferably within a temperature range that does not affect the base film such as thermal deformation. 30 to 200 ° C is preferable, and 50 to 120 ° C is more preferable, and 70 to 100 ° C is particularly preferable.
[0105] 次いで、本発明の凸構造部もしくは透明榭脂層形成に用いられるインキ組成物に 使用する熱硬化性榭脂について説明する。  [0105] Next, the thermosetting resin used in the ink composition used for forming the convex structure portion or the transparent resin layer of the present invention will be described.
[0106] 本発明で用いることのできる熱硬化性榭脂としては、不飽和ポリエステル榭脂、ェ ポキシ榭脂、ビニルエステル榭脂、フエノール榭脂、熱硬化性ポリイミド榭脂、熱硬化 性ポリアミドイミドなどを挙げることができる。  [0106] Examples of thermosetting resins that can be used in the present invention include unsaturated polyester resins, epoxy resins, vinyl ester resins, phenol resins, thermosetting polyimide resins, and thermosetting polyamideimides. And so on.
[0107] 不飽和ポリエステル榭脂としては、例えば、オルソフタル酸系榭脂、イソフタル酸系 榭脂、テレフタル酸系榭脂、ビスフエノール系榭脂、プロピレングリコールーマレイン 酸系榭脂、ジシクロペンタジェンな 、しその誘導体を不飽和ポリエステル組成に導入 して低分子量ィ匕した、或 、は被膜形成性のワックスコンパゥンドを添加した低スチレ ン揮発性榭脂、熱可塑性榭脂 (ポリ酢酸ビニル榭脂、スチレン 'ブタジエン共重合体 、ポリスチレン、飽和ポリエステルなど)を添加した低収縮性榭脂、不飽和ポリエステ ルを直接 Br2でブロム化する、或いはへット酸、ジブロムネオペンチルグリコールを共 重合するなどした反応性タイプ、塩素化パラフィン、テトラブロムビスフエノール等のハ ロゲン化物と三酸ィ匕アンチモン、燐ィ匕合物の組み合わせや水酸ィ匕アルミニウムなど を添加剤として用いる添加タイプの難燃性榭脂、ポリウレタンやシリコーンとハイブリツ ド化、または IPN化した強靭性 (高強度、高弾性率、高伸び率)の強靭性榭脂等があ る。 [0107] Examples of unsaturated polyester resins include orthophthalic acid resins, isophthalic acid resins, terephthalic acid resins, bisphenolic resins, propylene glycol-maleic acid resins, dicyclopentagen. However, the derivative was introduced into an unsaturated polyester composition to obtain a low molecular weight, or a low styrene volatile resin or a thermoplastic resin added with a film-forming wax compound (polyvinyl acetate). Low-shrinkage resin and unsaturated polyester with addition of resin, styrene 'butadiene copolymer, polystyrene, saturated polyester, etc.) Reactive types such as direct bromination of Br with Br2 or copolymerization of hept acid or dibromoneopentyl glycol, halogenated compounds such as chlorinated paraffin and tetrabromobisphenol, and antimony trioxide, Addition-type flame retardant resin using a combination of phosphorus compounds or hydroxyaluminum hydroxide as additive, toughness hybridized with polyurethane or silicone, or IPN toughness (high strength, high elastic modulus, High elongation) tough resin.
[0108] エポキシ榭脂としては、例えば、ビスフエノール A型、ノボラックフエノール型、ビスフ ェノール F型、臭素化ビスフエノール A型を含むグリシジルエーテル系エポキシ榭脂、 グリシジルァミン系、グリシジルエステル系、環式脂肪系、複素環式エポキシ系を含 む特殊エポキシ榭脂等を挙げることができる。  [0108] Examples of the epoxy resin include glycidyl ether type epoxy resin including bisphenol A type, novolak phenol type, bisphenol F type, brominated bisphenol A type, glycidylamine type, glycidyl ester type, ring And a special epoxy resin containing a heterocyclic fatty acid and a heterocyclic epoxy resin.
[0109] ビュルエステル榭脂としては、例えば、普通エポキシ榭脂とメタクリル酸等の不飽和 一塩基酸とを開環付加反応して得られるオリゴマーをスチレン等のモノマーに溶解し た物である。また、分子末端や側鎖にビニル基を持ちビニルモノマーを含有する等の 特殊タイプもある。グリシジルエーテル系エポキシ榭脂のビュルエステル榭脂として は、例えば、ビスフエノール系、ノボラック系、臭素化ビスフエノール系等があり、特殊 ビュルエステル榭脂としてはビュルエステルウレタン系、イソシァヌル酸ビュル系、側 鎖ビュルエステル系等がある。  [0109] The bule ester resin is, for example, a product obtained by dissolving an oligomer obtained by ring-opening addition reaction of an ordinary epoxy resin and an unsaturated monobasic acid such as methacrylic acid in a monomer such as styrene. There are also special types such as vinyl monomers with vinyl groups at the molecular ends and side chains. Examples of the glycidyl ether-based epoxy resin resin include bisphenol, novolac, and brominated bisphenol, and special bull ester resins include butyl ester urethane, isocyanuric acid, There are chain bull ester type.
[0110] フエノール榭脂は、フエノール類とフオルムアルデヒド類を原料として重縮合して得 られ、レゾール型とノボラック型がある。  [0110] Phenolic resin is obtained by polycondensation using phenols and formaldehyde as raw materials, and is available in resol type and novolac type.
[0111] 熱硬化性ポリイミド榭脂としては、例えば、マレイン酸系ポリイミド、例えばポリマレイ ミドアミン、ポリアミノビスマレイミド、ビスマレイミド ·ο, ο' —ジァリルビスフエノール [0111] Examples of thermosetting polyimide resins include maleic acid-based polyimides such as polymaleimide amine, polyamino bismaleimide, bismaleimide · ο, ο '— diallyl bisphenol.
— Α榭脂、ビスマレイミド 'トリアジン榭脂等、またナジック酸変性ポリイミド、及びァセ チレン末端ポリイミド等がある。 — Coffin, bismaleimide 'triazine resin, nadic acid-modified polyimide, acetylene-terminated polyimide, etc.
[0112] また、上述した活性光線硬化型榭脂の一部も、熱硬化性榭脂として用いることがで きる。 [0112] In addition, a part of the actinic ray curable resin described above can also be used as the thermosetting resin.
[0113] 尚、本発明に用いられる熱硬化性榭脂からなるインキ組成物には、活性光線硬化 型榭脂を含むインキ組成物に記載した酸ィ匕防止剤や紫外線吸収剤を適宜用いても よい。 [0114] 本発明において、フレキソ印刷やインクジェット法により形成した凸構造部や透明榭 脂層が熱硬化性榭脂を含む場合、加熱方法としては、インキを基材フィルム上に転 移印刷させた直後に加熱処理を行うことが好ま 、。 [0113] It should be noted that the ink composition comprising the thermosetting resin used in the present invention appropriately employs the anti-oxidation agent and ultraviolet absorber described in the ink composition containing actinic ray curable resin. Also good. [0114] In the present invention, when the convex structure portion or the transparent resin layer formed by flexographic printing or an ink jet method contains a thermosetting resin, the ink is transferred onto the base film as a heating method. It is preferable to perform heat treatment immediately after.
[0115] 本発明でいうインキを基材フィルム上に転移印刷させた直後とは、具体的にはイン キが転移印刷と同時または 5秒以内に加熱が開始されることが好ましぐ予め基材フ イルムの温度を上げておくことができる。例えば、基材フィルムをヒートロール上に巻き 付けて、これにインキを転移印刷させることが出来、より好ましくは転移印刷と同時ま たは 2秒の間である。また、ノズル部と加熱部の距離が接近し過ぎて、熱がヘッド部に 伝達すると、ノズル部での硬化によりノズル詰まりを起こすため注意が必要である。ま た、必要に応じて加熱間隔が 5秒を超えることによって、転移印刷したインキの流動、 変形させなだらかな微細凹凸構造を得ることもできる。  [0115] The term "immediately after transfer printing the ink according to the present invention on the base film" is specifically based on the pre-preferred state that the ink is preferably heated at the same time as the transfer printing or within 5 seconds. The temperature of the material film can be raised. For example, the base film can be wound on a heat roll, and the ink can be transferred by printing, more preferably at the same time as the transfer printing or for 2 seconds. In addition, if the distance between the nozzle part and the heating part is too close and heat is transferred to the head part, the nozzle part will clog due to curing at the nozzle part. In addition, if the heating interval exceeds 5 seconds as necessary, a smooth fine relief structure can be obtained by causing the flow-printed ink to flow and deform.
[0116] 加熱方法としては、特に制限はないが、ヒートプレート、ヒートロール、サーマルへッ ド、或いは転移印刷したインキ表面に熱風を吹き付ける等の方法を使用するのが好 ましい。また、フレキソ印刷部の基材フィルムを挟んで反対側に設けるバックロールを 、ヒートロールとして、連続的に加熱を施してもよい。加熱温度としては、使用する熱 硬化性榭脂の種類により一概には規定出来ないが、透明基材への熱変形等の影響 を与えない温度範囲であることが好ましぐ 30〜200°Cが好ましぐ更に 50〜120°C が好ましぐ特に好ましくは 70〜100°Cである。  [0116] The heating method is not particularly limited, but it is preferable to use a method such as a heat plate, a heat roll, a thermal head, or a method of spraying hot air on the surface of the ink printed by transfer printing. Further, the back roll provided on the opposite side across the base film of the flexographic printing section may be continuously heated as a heat roll. The heating temperature cannot be generally specified depending on the type of thermosetting resin to be used, but it is preferably in the temperature range that does not affect the heat deformation of the transparent substrate. 50 to 120 ° C is more preferable, and 70 to 100 ° C is particularly preferable.
[0117] 本発明で用いられるインキ組成物として、凸構造部もしくは透明榭脂層作成のため 、上述した活性光線硬化型榭脂、熱硬化性榭脂のいずれも用いることができるが、好 ましくは活性光線硬化型榭脂を用いることである。  [0117] As the ink composition used in the present invention, any of the above-mentioned actinic ray curable resin and thermosetting resin can be used for forming a convex structure or a transparent resin layer. In other words, actinic ray curable rosin is used.
[0118] 本発明の凸構造部及び透明榭脂層用インキは、シリコーンオイル、変性シリコーン オイル、シリコーン系界面活性剤、フッ素系界面活性剤、フッ素系榭脂、フッ素系オリ ゴマー、フッ素変性シリコーンオイル、フッ素系シランカップリング剤等の活性剤を 0. 1質量部以上 5質量部以下含有することが好ましい。添加量が多すぎると、撥水撥油 効果により透明榭脂層が凸構造部の上に塗布できなくなり、好ましくなぐ添加量が 少ないと凸構造の形状が一定とならないことがある。界面活性剤量は、インク組成、 溶媒組成、下地基材の表面エネルギーにも依存するため、添加されることが必須で はない。 [0118] The convex structure part and the transparent resin layer ink of the present invention include silicone oil, modified silicone oil, silicone surfactant, fluorine surfactant, fluorine resin, fluorine oligomer, and fluorine modified silicone. It is preferable to contain 0.1 parts by mass or more and 5 parts by mass or less of an activator such as oil or a fluorine-based silane coupling agent. If the amount added is too large, the transparent resin layer cannot be applied on the convex structure due to the water / oil repellent effect, and if the amount added is too small, the shape of the convex structure may not be constant. The amount of surfactant depends on the ink composition, solvent composition, and surface energy of the base material, so it is essential to add it. There is no.
[0119] 本発明に用いられるシリコーンオイルは、ケィ素原子に結合した有機基の種類によ り、ストレートシリコーンオイルと変性シリコーンオイルに大別できる。ストレートシリコー ンオイルとは、メチル基、フエ-ル基、水素原子を置換基として結合したものをいう。 変性シリコーンオイルとは、ストレートシリコーンオイルから二次的に誘導された構成 部分をもつものである。一方、シリコーンオイルの反応性からも分類することができる。 これらをまとめると、以下のようになる。  [0119] The silicone oils used in the present invention can be roughly classified into straight silicone oils and modified silicone oils, depending on the type of organic group bonded to the silicon atom. Straight silicone oil refers to those bonded with a methyl group, a phenol group, or a hydrogen atom as a substituent. A modified silicone oil is one that has components derived secondarily from straight silicone oil. On the other hand, it can be classified from the reactivity of silicone oil. These are summarized as follows.
[0120] シリコーンオイル  [0120] Silicone oil
1.ストレートシリコーン才ィル  1.Straight silicone talent
1— 1.非反応性シリコーンオイル:ジメチル、メチルフエ-ル置換等  1— 1. Non-reactive silicone oil: dimethyl, methylphenol substitution, etc.
1 - 2.反応性シリコーンオイル:メチル水素置換等  1-2. Reactive silicone oil: methyl hydrogen substitution, etc.
2.変性シリコーンオイル  2. Modified silicone oil
ジメチルシリコーンオイルに、さまざまな有機基を導入することで生まれたものが、変 性シリコーンオイル  Modified silicone oil is born by introducing various organic groups into dimethyl silicone oil.
2- 1.非反応性シリコーンオイル:アルキル、アルキル Zァラルキル、アルキル Zポ リエ一テル、ポリエーテル、高級脂肪酸エステル置換等、  2- 1. Non-reactive silicone oil: alkyl, alkyl Z aralkyl, alkyl Z polymer, polyether, higher fatty acid ester substitution, etc.
アルキル/ァラルキル変性シリコーンオイルは、ジメチルシリコーンオイルのメチル 基の一部を長鎖アルキル基あるいはフエ-ルアルキル基に置換えたシリコーンオイ ル、  Alkyl / aralkyl-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with a long-chain alkyl group or a phenyl alkyl group.
ポリエーテル変性シリコーンオイルは、親水性のポリオキシアルキレンを疎水性のジ メチルシリコーンに導入したシリコーン系高分子界面活性剤、  Polyether-modified silicone oil is a silicone-based polymeric surfactant in which hydrophilic polyoxyalkylene is introduced into hydrophobic dimethyl silicone,
高級脂肪酸変性シリコーンオイルは、ジメチルシリコーンオイルのメチル基の一部を 高級脂肪酸エステルに置換えたシリコーンオイル、  Higher fatty acid-modified silicone oil is a silicone oil in which a part of methyl group of dimethyl silicone oil is replaced with higher fatty acid ester,
ァミノ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をァミノアルキル 基に置換えた構造をもつシリコーンオイル、  The amino-modified silicone oil is a silicone oil having a structure in which a part of the methyl group of the silicone oil is replaced with an aminoalkyl group.
エポキシ変性シリコーンオイルは、シリコーンオイルのメチル基の一部をエポキシ基 含有アルキル基に置換えた構造をもつシリコーンオイル、  Epoxy-modified silicone oil is a silicone oil having a structure in which a part of methyl group of silicone oil is replaced with an epoxy group-containing alkyl group,
カルボキシル変性あるいはアルコール変性シリコーンオイルは、シリコーンオイルの メチル基の一部をカルボキシル基あるいは水酸基含有アルキル基に置換えた構造を もつシリコーンオイル Carboxyl-modified or alcohol-modified silicone oil Silicone oil with a structure in which part of the methyl group is substituted with a carboxyl group or a hydroxyl group-containing alkyl group
2- 2.反応性シリコーンオイル:アミ入エポキシ、カルボキシル、アルコール置換 等  2- 2. Reactive silicone oil: Amide-containing epoxy, carboxyl, alcohol substitution, etc.
これらの内、ポリエーテル変性シリコーンオイルが好ましく添加される。ポリエーテル 変性シリコーンオイルの数平均分子量は、例えば、 1000〜100000、好ましくは 200 0〜50000が適当であり、数平均分子量が 1000未満では、塗膜の乾燥性が低下し 、逆に、数平均分子量が 100000を越えると、塗膜表面にブリードアウトしにくくなる 傾向にある。  Of these, polyether-modified silicone oil is preferably added. The number average molecular weight of the polyether-modified silicone oil is, for example, 1,000 to 100,000, preferably 2000 to 50,000, and when the number average molecular weight is less than 1,000, the drying property of the coating film is decreased. When the molecular weight exceeds 100,000, it tends to be difficult to bleed out to the coating surface.
[0121] 具体的な商品としては、 日本ュ-カー(株)社の L 45、 L 9300、 FZ— 3704、 F Z— 3703、 FZ— 3720、 FZ— 3786、 FZ— 3501、 FZ— 3504、 FZ— 3508、 FZ— 3705、 FZ— 3707、 FZ— 3710、 FZ— 3750、 FZ— 3760、 FZ— 3785、 FZ— 378 5、 Y— 7499、信越ィ匕学社の KF96L、 KF96、 KF96H、 KF99、 KF54、 KF965、 KF968、 KF56、 KF995、 KF351、 KF352、 KF353、 KF354, KF355、 KF615 、 KF618、 KF945、 KF6004、 FL100等力ある。  [0121] Specific products include L45, L9300, FZ-3704, FZ-3703, FZ-3720, FZ-3786, FZ-3501, FZ-3504, FZ from Nippon Car Co., Ltd. — 3508, FZ—3705, FZ—3707, FZ—3710, FZ—3750, FZ—3760, FZ—3785, FZ—378 5, Y—7499, Shinetsu Yakakusha KF96L, KF96, KF96H, KF99, KF54, KF965, KF968, KF56, KF995, KF351, KF352, KF353, KF354, KF355, KF615, KF618, KF945, KF6004, FL100 etc.
[0122] 本発明に用いられるシリコーン界面活性剤は、シリコーンオイルのメチル基の一部 を親水性基に置換したものを用いることができる。置換の位置は、シリコーンオイルの 側鎖、両末端、片末端、両末端側鎖等がある。親水性基としては、ポリエーテル、ポリ グリセリン、ピロリドン、ベタイン、硫酸塩、リン酸塩、 4級塩等がある。  [0122] As the silicone surfactant used in the present invention, one obtained by substituting a part of methyl group of silicone oil with a hydrophilic group can be used. The position of substitution includes the side chain of silicone oil, both ends, one end, both end side chains, and the like. Examples of hydrophilic groups include polyether, polyglycerin, pyrrolidone, betaine, sulfate, phosphate, and quaternary salt.
[0123] 非イオン界面活性剤は、水溶液中でイオンに解離する基を有しな ヽ界面活性剤を 総称していうが、疎水基のほか親水性基として多価アルコール類の水酸基、また、ポ リオキシアルキレン鎖 (ポリオキシエチレン)等を親水基として有するものである。親水 性はアルコール性水酸基の数が多くなるに従って、またポリオキシアルキレン鎖(ポリ ォキシエチレン鎖)が長くなるに従って強くなる。本発明に用いられる非イオン界面活 性剤は疎水基としてジメチルポリシロキサンを有することが好ましい。  [0123] A nonionic surfactant is a generic term for surfactants that do not have a group capable of dissociating into ions in an aqueous solution. However, in addition to a hydrophobic group, a hydroxyl group of a polyhydric alcohol can also be used as a hydrophilic group. It has a reoxyalkylene chain (polyoxyethylene) or the like as a hydrophilic group. The hydrophilicity becomes stronger as the number of alcoholic hydroxyl groups increases and as the polyoxyalkylene chain (polyoxyethylene chain) becomes longer. The nonionic surfactant used in the present invention preferably has dimethylpolysiloxane as a hydrophobic group.
[0124] 疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレン力も構成される非 イオン界面活性剤を用いると、後述する低屈折率層のムラや膜表面の防汚性が向上 する。ポリメチルシロキサン力もなる疎水基が表面に配向し汚れにくい膜表面を形成 するものと考えられる。他の界面活性剤を用いることでは得られない効果である。 [0124] When a nonionic surfactant in which the hydrophobic group is dimethylpolysiloxane and the hydrophilic group is also composed of polyoxyalkylene is used, unevenness of the low refractive index layer and the antifouling property of the film surface described later are improved. Polymethylsiloxane-powered hydrophobic groups are oriented on the surface to form a film surface that is resistant to contamination It is thought to do. This effect cannot be obtained by using other surfactants.
[0125] これらの非イオン活性剤の具体例としては、例えば、 日本ュ-カー (株)製、シリコー ン界面活性剤 SILWET L— 77、 L— 720、 L— 7001、 L— 7002、 L— 7604、 Y — 7006、 FZ— 2101、 FZ— 2104、 FZ— 2105、 FZ— 2110、 FZ— 2118、 FZ— 2 120、 FZ— 2122、 FZ— 2123、 FZ— 2130、 FZ— 2154、 FZ— 2161、 FZ— 2162 、 FZ— 2163、 FZ— 2164、 FZ— 2166、 FZ— 2191等力挙げられる。  [0125] Specific examples of these nonionic active agents include, for example, Nippon Surfer Co., Ltd., silicone surfactants SILWET L-77, L-720, L-7001, L-7002, L- 7604, Y — 7006, FZ— 2101, FZ— 2104, FZ— 2105, FZ— 2110, FZ— 2118, FZ— 2 120, FZ— 2122, FZ— 2123, FZ— 2130, FZ— 2154, FZ— 2161 FZ-2162, FZ-2163, FZ-2164, FZ-2166, FZ-2191 and the like.
[0126] また、 SUPERSILWET SS— 2801、 SS— 2802、 SS— 2803、 SS— 2804、 S S— 2805等が挙げられる。  [0126] Further, SUPERSILWET SS-2801, SS-2802, SS-2803, SS-2804, SS-2805 and the like can be mentioned.
[0127] また、これら、疎水基がジメチルポリシロキサン、親水基がポリオキシアルキレンから 構成される非イオン系の界面活性剤の好まし 、構造としては、ジメチルポリシロキサ ン構造部分とポリオキシアルキレン鎖が交互に繰り返し結合した直鎖状のブロックコ ポリマーであることが好ましい。主鎖骨格の鎖長が長ぐ直鎖状の構造であることから 、優れている。親水基と疎水基が交互に繰り返したブロックコポリマーであることにより 、シリカ微粒子の表面を 1つの活性剤分子が、複数の箇所で、これを覆うように吸着 することができるためと考えられる。  [0127] These nonionic surfactants are preferably composed of dimethylpolysiloxane having a hydrophobic group and polyoxyalkylene having a hydrophilic group. The structure includes a dimethylpolysiloxane structure portion and a polyoxyalkylene. A linear block copolymer in which chains are alternately and repeatedly bonded is preferable. It is excellent because it has a linear structure with a long chain length of the main chain skeleton. This is considered to be due to the fact that one activator molecule can be adsorbed on the surface of the silica fine particle so as to cover the surface of the silica fine particle at a plurality of locations by being a block copolymer in which hydrophilic groups and hydrophobic groups are alternately repeated.
[0128] これらの具体例としては、例えば、 日本ュ-カー (株)製、シリコーン界面活性剤 A BN SILWET FZ— 2203、 FZ— 2207、 FZ— 2208等力挙げられる。  Specific examples of these include, for example, silicone surfactants ABN SILWET FZ-2203, FZ-2207, FZ-2208, etc., manufactured by Nippon Car Co., Ltd.
[0129] これらのシリコーンオイルまたはシリコーン界面活性剤の中では、ポリエーテル基を 有するものが好ましい。  [0129] Among these silicone oils or silicone surfactants, those having a polyether group are preferred.
[0130] 本発明に係る上記インキには、必要に応じて溶媒を含有させることができる。例え ば、水系溶媒に前記活性光線硬化型榭脂モノマー成分、或いは熱硬化性榭脂モノ マー成分を溶解もしくは分散させてもよぐ或 、は有機溶媒を用いてもょ ヽ。  [0130] The ink according to the present invention may contain a solvent, if necessary. For example, the actinic ray curable resin monomer component or the thermosetting resin monomer component may be dissolved or dispersed in an aqueous solvent, or an organic solvent may be used.
[0131] 本発明に係るインキにおいて用いることができる溶媒としては、例えば、メタノール、 エタノール、 1 プロパノール、 2—プロパノール、ブタノール等のアルコール類;ァセ トン、メチルェチルケトン、シクロへキサノン等のケトン類;ジアセトンアルコール等のケ トンアルコール類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;エチレング リコーノレ、プロピレングリコール、へキシレングリコール等のグリコール類;ェチルセル ソルブ、ブチルセルソルブ、ェチルカルビトール、ブチルカルビトール、ジェチルセル ソノレブ、ジェチルカルビトール、プロピレングリコールモノメチルエーテル等のグリコー ルエーテル類; N—メチルピロリドン、ジメチルフオルムアミド、乳酸メチル、乳酸ェチ ル、酢酸メチル、酢酸ェチル、酢酸アミル等のエステル類;ジメチルエーテル、ジェチ ルエーテル等のエーテル類、水等が挙げられ、それらを単独または 2種以上混合し て使用することができる。 [0131] Solvents that can be used in the ink according to the present invention include, for example, alcohols such as methanol, ethanol, 1 propanol, 2-propanol, and butanol; acetone, methyl ethyl ketone, cyclohexanone, and the like. Ketones; Ketone alcohols such as diacetone alcohol; Aromatic hydrocarbons such as benzene, toluene and xylene; Glycols such as ethylene glycol, propylene glycol and hexylene glycol; Ethyl cell solve, Butyl cell sorb, Ethyl carbide Tall, butyl carbitol, jetyl cell Glycol ethers such as sonolev, jetyl carbitol, propylene glycol monomethyl ether; esters such as N-methylpyrrolidone, dimethylformamide, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, amyl acetate; dimethyl ether, jeti Examples include ethers such as ruether, water and the like, and these can be used alone or in admixture of two or more.
[0132] 本発明に係る凸構造部を形成するインキ組成物においては、上記溶媒の中でも沸 点が 140〜250°C、 25°Cでの粘度が 1〜 15mPa · sの溶媒が少なくとも 1種類以上、 60質量%以上含まれることが好ましい。より好ましくは沸点が 180〜230°C、 25°Cで の粘度が 1〜 lOmPa · sの溶媒が少なくとも 1種類以上、 70質量%以上含まれること が好ましい。この理由は、上記凸構造部形成用インキ組成物に含まれる溶媒は、転 移印刷、または着弾後に所望のパターン形状が維持される程度に速やかに揮発、乾 燥されることが望ましいが、上記範囲を超えると、下地との密着性が劣り、更に形成さ れた凸構造部パターン間で乾燥ムラが発生し、続 、て行われる透明榭脂層による被 覆が均一に行われず、防眩性フィルムの物性の劣化、製造ロット間、製造ロット内の 光学性能に対する不均一性等発生し易くなるためである。 [0132] In the ink composition forming the convex structure portion according to the present invention, among the above solvents, at least one solvent having a boiling point of 140 to 250 ° C and a viscosity of 1 to 15 mPa · s at 25 ° C is used. As mentioned above, it is preferable that 60 mass% or more is contained. More preferably, at least one solvent having a boiling point of 180 to 230 ° C. and a viscosity of 1 to lOmPa · s at 25 ° C. is contained in an amount of 70% by mass or more. The reason for this is that the solvent contained in the ink composition for forming a convex structure part is preferably volatilized and dried as quickly as the desired pattern shape is maintained after transfer printing or landing. If it exceeds the range, the adhesion to the base is inferior, drying unevenness occurs between the formed convex structure patterns, and the subsequent covering with the transparent resin layer is not uniformly performed, resulting in anti-glare. This is because deterioration of the physical properties of the conductive film, non-uniformity in the optical performance between the production lots and within the production lot, etc. are likely to occur.
[0133] 本発明でいう沸点とは、 1気圧、即ち 1. 013 X 105NZm2の圧力下での沸点であ る。沸点の測定は公知の技術を適用できる他、単体の場合には化学便覧等の文献 中に記載の値も参照することができる。 [0133] The boiling point as used in the present invention is a boiling point under a pressure of 1 atm, that is, 1.013 x 10 5 NZm 2 . For the measurement of the boiling point, a known technique can be applied, and in the case of a simple substance, values described in documents such as a chemical handbook can also be referred to.
[0134] 上記の沸点、粘度を満たす溶媒の中でも、下記の一般式(1)で表される化合物が より好ましく用いられる。  [0134] Among the solvents satisfying the above boiling point and viscosity, a compound represented by the following general formula (1) is more preferably used.
一般式(1) Rl— O— (C H -0) n-R2  Formula (1) Rl— O— (C H -0) n-R2
2x  2x
Rl、 R2:水素原子、ァリール基、炭素数 1〜6のアルキル基、アルコキシアルキル基 、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、 Rl、 R2 の少なくとも一方は水素原子以外の置換基である。  Rl, R2: hydrogen atom, aryl group, alkyl group having 1 to 6 carbon atoms, alkoxyalkyl group, alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of Rl and R2 is a substituent other than a hydrogen atom.
n: 1〜3の整数  n: Integer from 1 to 3
x: 2〜4の整数  x: integer from 2 to 4
更に好ましくは、 x= 2または 3、 R2がァセチル基である化合物である。  More preferred are compounds wherein x = 2 or 3, and R2 is a acetyl group.
[0135] 本発明のインキに好ましく用いられる溶媒について、具体的には下記の溶媒が挙 げられる力 特にこれらに限定されるものではな 、。 [0135] Specific examples of the solvent preferably used in the ink of the present invention include the following solvents. The power that can be gained.
[表 1]  [table 1]
Figure imgf000030_0001
Figure imgf000030_0001
[0137] 更に、上記一般式(1)で表される化合物について、具体的には下記の溶媒が挙げ られる力 特にこれらに限定されるものではない。 [0137] Further, the compound represented by the general formula (1) is not specifically limited to the powers specifically mentioned in the following solvents.
[0138] [表 2] [0138] [Table 2]
粘度 沸点 一般式(1 )で表される化合物 n X R1 R2 Viscosity Boiling point Compound represented by general formula (1) n X R1 R2
(mPa · s) (。c ) ェチレングリコールモノェチルエーテルァセテ一ト  (mPa · s) (.c) Ethylene glycol monoethyl ether acetate
1 2 C2H5 COCHs 1.0 156 別名:酢酸2—ェトキシェチル 1 2 C2H5 COCHs 1.0 156 Also known as: 2 -acetoxyl acetate
ェチレンク"リコールジァセテート  Echilenk "Recall Disassembling
1 2 COCIb COCHs 2.8 190 別名:二酢酸エチレン  1 2 COCIb COCHs 2.8 190 Alias: Ethylene diacetate
エチレングリコールモノブチルエーテルァセテ一ト  Ethylene glycol monobutyl ether acetate
1 2 C4H9 COCHs 1 .5 192 別名:酢酸2— n—ブトキシェチル 1 2 C4H9 COCHs 1.5 192 Alias: Acetic acid 2 — n-Butkischetil
2 2 C4H9 COCHs 3.0 247 別名:酢酸2— (2— n—ブトキンエトキシ)ェチル 2 2 C4H9 COCHs 3.0 247 Alias: Acetic acid 2 — ( 2 — n-Butkinethoxy) ethyl
エチレングリコールモノブチルエーテル 1 2 C4H9 H 3.2 171 ジェチレングリコールェチルメチルエーテノレ 2 2 C2H5 CHs 1 .0 179 ジェチレングリコ一ルジェチルェ一テ 2 2 C2H5 C2H5 1 .2 188 ジェチレングリコールモノメチルエーテル 2 2 CHs H 3.5 194 ジェチレングリコールモノェチルエーテル 2 2 C2HS H 3.7 202 ジェチレングリコールモノブチルエーテル 2 2 C4H9 H 6.0 231 ト リエチレングリコールモノメチルエーテル 3 2 CHs H 7.0 245 プロピレンダリコールモノメチルエーテルァセテ一ト 1 3 CHs COCH3 1 . 1 146 ジプロピレングリコールモノメチルエーテル 2 3 CHs H 3.3 189 トリプロピレングリコ一ルモノメチルエーテル 3 3 CHs H 6.2 243  Ethylene glycol monobutyl ether 1 2 C4H9 H 3.2 171 Jetylene glycol ethyl methyl ethereol 2 2 C2H5 CHs 1.0 .179 Jetylene glycol monoethyl ether 2 2 C2H5 C2H5 1.2 188 Jetylene glycol monomethyl ether 2 2 CHs H 3.5 194 Jetylene glycol monoethyl ether 2 2 C2HS H 3.7 202 Jetylene glycol monobutyl ether 2 2 C4H9 H 6.0 231 Triethylene glycol monomethyl ether 3 2 CHs H 7.0 245 Propylene Daricol monomethyl ether acetate 1 3 CHs COCH3 1.1 146 Dipropylene glycol monomethyl ether 2 3 CHs H 3.3 189 Tripropylene glycol monomethyl ether 3 3 CHs H 6.2 243
上記の他、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノー tーブチノレエーテノレ、ジエチレングリコーノレモノプロピノレエ一テル、ジエチレングリコ ールモノイソプロピルエーテル、ジエチレングリコールモノー t ブチルエーテル、プ ロピレングリコーノレモノェチノレエーテノレ、プロピレングリコーノレモノプロピノレエーテノレ、 プロピレングリコールモノイソプロピルエーテル、プロピレングリコーノレモノブチノレエー テル、プロピレングリコールモノー t—ブチルエーテル、ジプロピレングリコールモノエ チルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコー ルモノイソプロピルエーテル、ジプロピレングリコールモノブチルエーテル、エチレン グリコールモノイソプロピルエーテルアセテート、エチレングリコールモノー t ブチル エーテノレアセテート、ジエチレングリコーノレモノメチノレエーテノレアセテート、ジェチレ ングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノイソプロピル エーテルアセテート、プロピレングリコールモノェチルエーテルアセテート、プロピレン グリコールモノプロピルエーテルアセテート、プロピレングリコールモノイソプロピルェ 一テルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレング リコ一ノレモノ t ブチノレエーテノレアセテート、ジプロピレングリコーノレモノェチノレエ 一テル、ジプロピレングリコーノレモノプロピノレエ一テル、ジプロピレングリコーノレモノィ ソプロピルエーテル、エチレングリコールモノメトキシメチルエーテル、ジエチレングリ コールモノェチルエーテルアセテート(別名:酢酸 2- (エトキシエトキシ)ェチル)、トリ エチレングリコールジメチルエーテル、ジエチレングリコーノレジアセテート、プロピレン グリコールジアセテート(別名:1, 2-ジァセトキシプロパン)、ジプロピレングリコール ジメチルエーテル、ジプロピレングリコールモノメチルエーテルアセテート等も、好まし く用いられる。 In addition to the above, ethylene glycol monoisopropyl ether, ethylene glycol mono-tert-butylene ethere, diethylene glycol mono-monopropylene ether, diethylene glycol mono-isopropyl ether, diethylene glycol mono-butyl ether, propylene glycol monolenoate Tenole, Propylene glycol monopropinoreateol, Propylene glycol monoisopropyl ether, Propylene glycol monobutinoate ether, Propylene glycol mono-t-butyl ether, Dipropylene glycol monoethyl ether, Dipropylene glycol monopropyl ether, Dipropylene glycol Rumonoisopropyl ether, dipropylene glycol monobutyl ether, ethylene glycol No-isopropyl ether acetate, ethylene glycol mono-t-butyl etherol acetate, diethylene glycol no-monomethylol etherate acetate, diethylene glycol monopropyl ether acetate, diethylene glycol monoisopropyl ether acetate, propylene glycol monoethyl ether acetate, propylene glycol monopropyl Ether acetate, Propylene glycol monoisopropyl ether acetate, Propylene glycol monobutyl ether acetate, Propylene glycol monoethanol t Butinoleate alcoholate, Dipropylene glycol monoethanolate Diterpylene glycol monopropylene ether, dipropylene glycol monoisopropyl ether, ethylene glycol monomethoxymethyl ether, diethylene glycol monoethyl ether acetate (also known as 2- (ethoxyethoxy) ethyl acetate) ), Triethylene glycol dimethyl ether, diethylene glyconoresate acetate, propylene glycol diacetate (also known as 1,2-diacetoxypropane), dipropylene glycol dimethyl ether, dipropylene glycol monomethyl ether acetate, etc. are also preferably used. .
[0140] これらの溶媒の中から沸点、粘度の異なる溶媒を混合してその比率を適宜変更す ることで、凸構造部、パターン形状を制御することもできる。  [0140] The convex structures and the pattern shape can be controlled by mixing solvents having different boiling points and viscosities from these solvents and changing the ratios as appropriate.
[0141] 《凸構造部の作製》 [0141] << Production of Convex Structure >>
以下に、凸構造部の作製方法の一例を示すが、本発明はこれに限定されるもので はない。  An example of a method for producing the convex structure portion is shown below, but the present invention is not limited to this.
[0142] 〈フレキソ印刷による凸構造部の形成の例〉  [0142] <Example of formation of convex structure by flexographic printing>
一般にフレキソ印刷とは、フレキシブルなゴム又は榭脂からなる凸版と、水又はアル コールを主とする溶剤系の蒸発乾燥型のインキを用 、た印刷方法である。  In general, flexographic printing is a printing method using a relief printing plate made of flexible rubber or resin and a solvent-based evaporation-drying ink mainly composed of water or alcohol.
[0143] 基材フィルム表面へフレキソ印刷を用いて凸構造部をパターン状に形成し、更にそ の上に透明榭脂層を、マイクログラビア法、押出し塗布法、ワイヤーバー法、フレキソ 印刷法、インクジェット法等の薄膜均一塗布法により、均一に塗布することにより、高 度な生産性を維持したまま微細凹凸構造を形成することができる。 [0143] A convex structure is formed in a pattern on the surface of the base film using flexographic printing, and a transparent resin layer is further formed thereon by microgravure method, extrusion coating method, wire bar method, flexographic printing method, By applying uniformly by a thin film uniform coating method such as an ink jet method, a fine concavo-convex structure can be formed while maintaining high productivity.
[0144] まず本発明に好ましく用いられるフレキソ印刷について図をもって説明する。 [0144] First, flexographic printing preferably used in the present invention will be described with reference to the drawings.
[0145] 図 3、図 4は本発明に係るフレキソ印刷の一例を示す模式図である。 3 and 4 are schematic views showing an example of flexographic printing according to the present invention.
[0146] 連続走行する基材フィルム 10は圧胴 5と榭脂版ロール 2と転移印刷後に基材フィル ム上に微細凹凸構造を形成するシームレス榭脂版 1によって構成される版胴 3に挟ま れ、ドクターブレード 6によって転移インキ量が調整されたァ-ロックスロール 4によつ てインキ 8を版胴 3に供給し基材フィルム上に転移印刷される。 [0146] The continuously running substrate film 10 is sandwiched between a plate cylinder 3 composed of an impression cylinder 5, a resin plate roll 2, and a seamless resin plate 1 that forms a fine relief structure on the substrate film after transfer printing. Then, the ink 8 is supplied to the plate cylinder 3 by the arrox roll 4 whose amount of transfer ink is adjusted by the doctor blade 6, and transfer printing is performed on the base film.
[0147] フレキソ印刷における、版胴 3に対するインキ供給は、ァ-ロックスロール 4により行 われ、ァ-ロックスロール面のインキ量の制御は、図 3に示すドクターブレード方式、 又は図 4に示すツーロール方式によるものなどが一般的に知られている。図 4に示す ツーロール方式は、インキパンからインキ 8をフアウンテンロール 7でァ-ロックスロー ル 4に、更に版胴 3にインキを供給し、基材フィルム 10にインキを転移印刷するもので ある。図 4の方式によればインキ 8は、ァ-ロックスロール 4の彫刻線数、セルの深さ及 び形状で調整する他に、フアウンテンロール 7とァ-ロックスロール 4間の(変動し易い ) -ップ圧の強弱でインキ供給量を制御するものでありインキの転移量が安定しな ヽ t 、う問題がある為、本発明では図 3の方法が好ま 、。 [0147] In flexographic printing, ink is supplied to the plate cylinder 3 by the arlocks roll 4, and the ink amount on the arlocks roll surface is controlled by the doctor blade system shown in FIG. 3 or the two-roll shown in FIG. A method based on the method is generally known. Shown in Figure 4 In the two-roll method, ink 8 is supplied from the ink pan to the roller roll 4 by the fountain roll 7 and further supplied to the plate cylinder 3, and the ink is transferred to the base film 10 by transfer transfer. According to the method of FIG. 4, the ink 8 is adjusted by the number of engraving lines of the arlock roll 4 and the depth and shape of the cell, and between the fountain roll 7 and the arlock roll 4 3) The method shown in FIG. 3 is preferred in the present invention because the amount of ink supplied is controlled by the strength of the poop pressure and the amount of ink transferred is not stable.
[0148] また別の方式として、図 5にインキの供給を押出しコーターにより行うフレキソ印刷の 模式図を示す。 [0148] As another method, Fig. 5 shows a schematic diagram of flexographic printing in which ink is supplied by an extrusion coater.
[0149] インキ 8は押出しコーター 9により榭脂版ロール 2に装着されたシームレス榭脂版 1 上に直接押し出され、版胴 3と圧胴 5に挟まれ連続走行している基材フィルム 10に転 移印刷される。この装置の場合はァ-ロックスロールが無いため、インキの供給量は 押出しコーターの精度に左右される。  [0149] Ink 8 is extruded directly onto the seamless resin plate 1 mounted on the resin plate roll 2 by the extrusion coater 9, and is sandwiched between the plate cylinder 3 and the impression cylinder 5 on the base film 10 that is continuously running. Transfer printed. In this case, since there is no arrox roll, the amount of ink supplied depends on the accuracy of the extrusion coater.
[0150] 図 3に示すドクターブレード方式における、版胴 3へのインキ転移量は、ァ-ロックス ロール 4の彫刻線数とセルの形状で決まりインキ転移量としては安定できるものであ る。そして、ァ-ロックスロールのセルに充填するインキは、ァ-ロックスロール表面の 過剰インキをドクターブレードで搔きとるため、転移するインキは彫刻線数とセルの形 状、容積で決められるものである。そして、ァ-ロックスロールのセルは、例えば鉄シリ ンダー表面に必要に応じて銅メツキを施して、その面に彫刻でセルを形成し、 -ッケ ル或いはクロムメツキで硬度のある表面加工を行う。ァ-ロックスロールの材質は、鉄 シリンダー表面に銅メツキ等を行ったタイプ、またはセラミックコーティングしたタイプ があるが、本発明では耐摩耗性及び、彫刻線数の細線ィ匕が容易な点カゝらセラミックコ 一ティングしたタイプが好まし 、。  [0150] In the doctor blade system shown in Fig. 3, the amount of ink transferred to the plate cylinder 3 is determined by the number of engraving lines of the arlock roll 4 and the shape of the cell, and the amount of ink transferred can be stabilized. The ink that fills the cells of the arrox roll uses the doctor blade to scatter excess ink on the surface of the arrox roll, so the transferred ink is determined by the number of engraving lines and the shape and volume of the cell. is there. For the cell of an arrox roll, for example, the surface of the iron cylinder is subjected to copper plating if necessary, and the cell is formed by engraving on the surface, and the surface processing with hardness is performed by using the nickel or chrome plating. . There are two types of arclox rolls, one with the copper cylinder surface plated with copper, or the other with ceramic coating. In the present invention, however, the wear resistance and the number of engraving lines can be easily reduced. The ceramic coated type is preferred.
[0151] 図 6はァ-ロックスロールの斜視図である。  [0151] FIG. 6 is a perspective view of an arlock roll.
[0152] 図 7はァ-ロックスのセルを説明するための斜視図である。  FIG. 7 is a perspective view for explaining an AROX cell.
[0153] ァ-ロックスロール 4は、図 6に示すようにセラミックス面を、銅面に設けるグラビア版 と同様に化学腐食によっても形成できるが、腐食液の処理や深さのばらつきを生じ易 い点から、機械もしくはレーザー彫刻によりセル bを設けることが望ましい。そして、ァ 二ロックスロールの表面は、通常ミルによる押圧力卩ェの後クロムメツキ加工して作られ るが耐摩耗性、耐食性及びインキ転移性の点力も酸ィ匕クローム、タングステンカーバ イドなどの無機酸ィ匕物を熔射形成したものが好ま 、。 [0153] As shown in Fig. 6, the Erox roll 4 can be formed by chemical corrosion in the same manner as the gravure plate provided on the copper surface, but it tends to cause treatment of the corrosion liquid and variations in depth. In view of this, it is desirable to provide the cell b by machine or laser engraving. And the surface of an arrox roll is usually made by chrome plating after pressing with a mill. However, the point of abrasion resistance, corrosion resistance, and ink transferability is preferably one formed by spraying inorganic oxide such as acid chrome or tungsten carbide.
[0154] ァ-ロックスロール 4の彫刻形状は、格子型のセルの他に、図示はしないが、ヘリ力 ル型、ピラミッド型、斜線型、六角形状のハ-カムパターンなどの形状があり、特に限 定されるものではな 、が、高速印刷時におけるインキ転移の再現性の点からハ-カ ムパターンであることが好ましい。そして、図 6及び図 7に示す彫刻線数やセル bの深 さ dは、インキの転移量に大きな影響を与えるもので、本発明に係る防眩性フィルム 表面上の微細凹凸構造を形成するには、 600線 Z2. 54cm以上、セルの深さ dが 5 〜30 mであることが好ましい。彫刻形状と線数の選択は被印刷体の種類や印刷ス クリーン線数に合せて考慮される力 被吸収性が少な 、プラスチックフィルムには線 数の細力 、ものが好ましく使用される。そして、セルの土手 a (非凹部)は、耐摩耗性 に支障がない程度に小さく設けた方力 Sインキチャージ量を多くできる点力も好ましぐ 具体的には土手幅をセル幅の 0. 1〜0. 5倍に設けることが好ましい。ァ-ロックスロ ールは、フレキソ印刷にぉ 、て版面にインキ量の供給量をドクタリングで制御するも のである。そして、ドクタリングの過程で摩耗 '損傷が起こり、セルが浅くなりインキ転 移量が減少する原因となる。したがって、従来の金属 (鉄、又は銅に彫刻、クロームメ ツキ仕上げ)と比較して、セラミックスのァ-ロックスロールは、ドクタリングによる摩耗 量が少なく凹凸パターンの繰り返し安定性に大きく貢献できるものである。  [0154] The sculpture shape of the Arrox roll 4 is not shown in the figure other than the lattice-type cell, but there are shapes such as a helicity type, a pyramid type, a diagonal type, and a hexagonal Herka pattern, Although it is not particularly limited, it is preferable to use a hammer pattern from the viewpoint of reproducibility of ink transfer during high-speed printing. The number of engraving lines and the depth d of the cell b shown in FIGS. 6 and 7 have a great influence on the amount of ink transferred, and form a fine uneven structure on the surface of the antiglare film according to the present invention. In this case, it is preferable that 600 lines Z2. 54 cm or more and the cell depth d is 5 to 30 m. The selection of the engraving shape and the number of lines is a force that is considered in accordance with the type of substrate to be printed and the number of lines on the printing screen. The bank a (non-recessed) of the cell should be small enough not to impair the wear resistance.Spot power that can increase the amount of ink charge is also preferred. It is preferable to provide 1 to 0.5 times. The arlock roll controls the amount of ink supplied to the printing plate by doctoring during flexographic printing. In the doctoring process, wear and damage occur, and the cell becomes shallow, causing a decrease in ink transfer. Therefore, compared to conventional metals (sculpture and chrome finish on iron or copper), ceramic arrox rolls can reduce the amount of wear caused by doctoring and greatly contribute to the repetitive stability of uneven patterns. .
[0155] 本発明は、好ましくは図 3に示すようなフレキソ印刷装置により、 50〜: LOOOmm径 のシームレス榭脂版 1を榭脂版ロール 2に装着した版胴 3と、好ましくはセラミツクスコ 一ティングしたァ-ロックスロール 4とを用いて、基材フィルム 10にインキを転移印刷 し、活性光線を照射するカゝまたは加熱して、基材フィルム上に凸構造部を形成するも のである。  [0155] The present invention preferably uses a flexographic printing apparatus as shown in Fig. 3 to provide a plate cylinder 3 in which a seamless resin plate 1 having a diameter of 50 to LOOOmm is mounted on a resin plate roll 2, and preferably ceramicsco. Ink transfer roll printing is performed on the base film 10 using the coated arrox roll 4, and the convex structure portion is formed on the base film by heating or irradiating with actinic rays.
[0156] 上記榭脂版ロール 2の材質は特に限定されるものではなぐ強度を維持できるもの であればよぐ鉄、ステンレス、アルミ等の金属、または合成または天然ゴムであること が好ましぐ金属とゴムの複合部材でもよい。本発明では榭脂版ロール 2の径はシ一 ムレス榭脂版 1が榭脂版ロール 2に装着された時の径 (ロールの直径)が 50〜: LOOO mmの範囲になるように選択されればょ 、。シームレス榭脂版 1の径が 50mm未満で は回転速度が速過ぎて強度を維持出来ないこと、また凸構造部のパターンの繰り返 しの周期が短くて防眩効果が低下することがあり好ましくない。径が 1000mmを超え ると、装置が大きくなり過ぎて運転費用が力かりコスト的に不利であり、また回転むら が生じやすくパターン形成の精度が低下する。 [0156] The material of the above-mentioned slab roll 2 is not particularly limited, and is preferably a metal such as iron, stainless steel or aluminum, or a synthetic or natural rubber, as long as it can maintain the strength. A composite member of metal and rubber may be used. In the present invention, the diameter of the resin plate roll 2 is selected so that the diameter (roll diameter) when the seamless resin plate 1 is mounted on the resin plate roll 2 is in the range of 50 to: LOOO mm. If you can. If the diameter of the seamless resin plate 1 is less than 50mm This is not preferable because the rotational speed is too high to maintain the strength, and the pattern repeating pattern of the convex structure portion is short and the anti-glare effect is reduced. If the diameter exceeds 1000 mm, the apparatus becomes too large, which is expensive to operate and disadvantageous in terms of cost. In addition, uneven rotation is likely to occur, and the pattern formation accuracy decreases.
[0157] 本発明にお 、てシームレス榭脂版 1に用いる榭脂版は、光反応物質であるポリマー とモノマーとの光重合を応用した感光性樹脂版を用いることが好ましい。この感光性 榭脂版は、フォトポリマー、紫外線の露光により光重合するモノマー、ポリマーとモノ マー間とで光重合を開始する増感剤、及び版材の物理的性状を調整する可塑剤等 の組成物から構成され、感光性榭脂版上に従来のマスク製版により上記パターンを 刻印するか、または、シリンダー (軸芯)の全面に塗布等により設けた感光性榭脂層 にレーザー光を照射することにより直接該パターンを彫刻することもできる。  [0157] In the present invention, it is preferable to use a photosensitive resin plate to which photopolymerization of a polymer and a monomer as a photoreactive substance is applied as the resin plate used for the seamless resin plate 1. This photosensitive resin plate includes a photopolymer, a monomer that is photopolymerized by exposure to ultraviolet rays, a sensitizer that initiates photopolymerization between the polymer and the monomer, and a plasticizer that adjusts the physical properties of the plate material. The composition is made of the composition, and the above pattern is engraved on the photosensitive resin plate by a conventional mask making, or the photosensitive resin layer provided on the entire surface of the cylinder (axial core) is irradiated with laser light. By doing so, the pattern can be directly engraved.
[0158] 本発明において用いる感光性榭脂組成物は、フレキソ印刷版用として公知のもの が使用できる。一般的にはバインダーポリマーと少なくとも一種のエチレン性不飽和 モノマーと光開始剤を主成分とする組成物が用いられる。さらに、この感光性榭脂層 に要求される特性に応じて増感剤、熱重合禁止剤、可塑剤、着色剤などの添加剤を 含むことができる。 [0158] As the photosensitive resin composition used in the present invention, those known for flexographic printing plates can be used. In general, a composition mainly composed of a binder polymer, at least one ethylenically unsaturated monomer and a photoinitiator is used. Furthermore, additives such as a sensitizer, a thermal polymerization inhibitor, a plasticizer, and a colorant can be included depending on the properties required for the photosensitive resin layer.
[0159] ノインダーポリマーとしては、例えばモノビュル置換芳香族炭化水素モノマーと共 役ジェンモノマーを重合して得られる熱可塑性エラストマ一が用いられる。モノビュル 置換芳香族炭化水素モノマーとしては、スチレン、 α—メチルスチレン、 ρ—メチルス チレン、 ρ—メトキシスチレン等力 また共役ジェンモノマーとしてはブタジエン、イソ プレン等が挙げられる。具体例としてはスチレン ブタジエン スチレンブロック共重 合体や、スチレン イソプレン スチレンブロック共重合体などを挙げることができる  [0159] As the Noinder polymer, for example, a thermoplastic elastomer obtained by polymerizing a monobule-substituted aromatic hydrocarbon monomer and a synergistic monomer is used. Monobutyl-substituted aromatic hydrocarbon monomers include styrene, α-methyl styrene, ρ-methyl styrene, ρ-methoxy styrene, and conjugated gen monomers include butadiene and isoprene. Specific examples include styrene butadiene styrene block copolymer and styrene isoprene styrene block copolymer.
[0160] 少なくとも一種のエチレン性不飽和モノマーとしては、バインダーポリマーと相溶性 のあるもので、例えば t ブチルアルコールゃラウリルアルコールなどのアルコールと アクリル酸、メタクリル酸とのエステル、或いはラウリルマレイミド、シクロへキシルマレ イミド、ベンジルマレイミドなどのマレイミド誘導体、又はジォクチルフマレートなどのァ ルコールとフマール酸のエステル、さらにはへキサンジオールジ(メタ)アタリレート、ノ ナンジオールジ (メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレートなどの 多価アルコールとアクリル酸、メタクリル酸とのエステルなどを挙げることができる。 [0160] The at least one ethylenically unsaturated monomer is compatible with the binder polymer. For example, t-butyl alcohol is an ester of lauryl alcohol and an acrylic acid or methacrylic acid, or lauryl maleimide or cyclohexane. Maleyl derivatives such as xylmaleimide and benzylmaleimide, alcohol and fumaric acid esters such as dioctyl fumarate, hexanediol di (meth) acrylate, Examples thereof include esters of polyhydric alcohols such as nandiol di (meth) acrylate and trimethylolpropane tri (meth) acrylate and acrylic acid and methacrylic acid.
[0161] 光開始剤としては、ベンゾフエノンのような芳香族ケトン類やべンゾインメチルエー テル、ベンゾインェチルエーテル、ベンゾインイソプロピルエーテル、 aーメチロール ベンゾインメチルエーテル、 α—メトキシベンゾインメチルエーテル、 2, 2—ジェトキ シフエ-ルァセトフエノン等のベンゾインエーテル類などの公知の光重合開始剤の中 力 選択し、また組み合わせて使用される。  [0161] Photoinitiators include aromatic ketones such as benzophenone, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, a-methylol benzoin methyl ether, α-methoxybenzoin methyl ether, 2, It is used in combination with a known photopolymerization initiator such as 2-benzoin ethers such as 2-jetoxy-lucacetophenone.
[0162] 感光性榭脂層は種々の方法で調製することができる。例えば配合される原料を適 当な溶媒、例えばクロ口ホルム、テトラクロルエチレン、メチルェチルケトン、トルエン 等の溶剤に溶解させて混合し、コーターにより適当な支持体上に塗布して設けること もできるし、型枠の中に流延して溶剤を蒸発させ、そのまま板とすることができる。また 溶剤を用いず、エーダー或いはロールミルで混練し、押し出し機、射出成形機、プレ スなどにより所望の厚さの板に成形することができる。  [0162] The photosensitive resin layer can be prepared by various methods. For example, the raw materials to be blended may be dissolved and mixed in a suitable solvent, for example, a solvent such as black mouth form, tetrachloroethylene, methyl ethyl ketone, or toluene, and coated on a suitable support by a coater. Alternatively, it can be cast into a mold to evaporate the solvent and be used as a plate as it is. Further, without using a solvent, it can be kneaded with an edder or a roll mill and formed into a plate having a desired thickness by an extruder, an injection molding machine, a press or the like.
[0163] 感光性榭脂シートを榭脂版ロールに巻き付けるにあたっては、シームレス榭脂版を 形成する為に感光性榭脂の端部同士に隙間が出来ないよう、正確にシートを切断し て用いることが必要である。通常感光性榭脂版を榭脂版ロールに巻き付けた後、感 光性榭脂の軟ィ匕点以上に加温して感光性榭脂の端部同士を溶融接着させる。加温 時間は通常 20分から 1時間で、温度と榭脂の軟ィ匕点に応じて端部同士が融着するこ とを目安に決められる。次 ヽでグラインダーで感光性榭脂表面を研磨してつなぎ目を 完全に無くすと同時に精度を出した後、感光性榭脂の軟ィヒ点以上に再度加温処理 を行うことがシームレス化において好ましい。その時間は温度によるが 10から 40分程 度で、感光性榭脂表面全体に光沢が見られるようになるまで行う。長時間加温し続け ると印刷版としての精度が損なわれるので一時間以内で処理することが望ましい。ま たベース材であるゴム、ポリエステルフィルム、アルミニウム板、スチール板或いは、シ リンダ一に装着できるアルミニウム製榭脂版ロールに直接継ぎ目がないように感光性 榭脂層を塗設しシームレス化することもできる。  [0163] When the photosensitive resin sheet is wound around the resin plate roll, the sheet is accurately cut and used so that there is no gap between the ends of the photosensitive resin in order to form a seamless resin plate. It is necessary. Usually, after winding the photosensitive resin plate around the resin plate roll, the photosensitive resin is heated to a temperature higher than the soft point of the photosensitive resin to melt-bond the ends of the photosensitive resin. The heating time is usually 20 minutes to 1 hour, and is determined based on the fact that the ends are fused according to the temperature and the softness point of the resin. In the next step, it is preferable for seamless processing that the surface of the photosensitive resin is polished with a grinder to completely eliminate the joints, and at the same time the accuracy is given, and then the heating treatment is performed again above the soft point of the photosensitive resin. . The time is about 10 to 40 minutes, depending on the temperature, and is done until the entire surface of the photosensitive resin becomes glossy. If heating is continued for a long time, the accuracy of the printing plate is impaired, so it is desirable to process within one hour. In addition, a photosensitive resin layer should be applied to make the base material rubber, polyester film, aluminum plate, steel plate, or aluminum resin plate roll that can be mounted on the cylinder, seamless so that there is no seam. You can also.
[0164] 本発明ではシームレス榭脂版のゴム硬度は 30〜80度の範囲であることが好ましく 、精度よく安定した微細凹凸構造の転移印刷を行う上で榭脂版のゴム硬度がこの範 囲にあることが好ましい。ロール状シームレス榭脂版 1のゴム硬度は、榭脂版の厚み によっても影響される為、厚みが 0. 5〜: LOmmの範囲の榭脂版において 30〜80度 の範囲であることが好まし 、。より好ましくは 40〜80度の範囲である。 [0164] In the present invention, the rubber hardness of the seamless resin plate is preferably in the range of 30 to 80 degrees, and the rubber hardness of the resin plate is within this range for performing transfer printing of a stable fine uneven structure with high accuracy. It is preferable that it exists in a range. Since the rubber hardness of the roll-shaped seamless resin plate 1 is also affected by the thickness of the resin plate, the thickness is preferably in the range of 30 to 80 degrees in the resin plate having a thickness of 0.5 to LOmm. Better ,. More preferably, it is in the range of 40 to 80 degrees.
[0165] 榭脂版のゴム硬度が 30度未満であると、版が柔らか過ぎて所望の微細凹凸構造を 形成するのに難があり、また版自体も摩耗し易くなる為好ましくない。榭脂版のゴム硬 度が 80度を超えると、版胴が高速回転して印刷する際の柔軟性に欠けインキ転移量 の再現性に乏しくなる。ゴム硬度 ίお IS K 6253に記載の方法に準じてデュロメータ 等で測定した値で示される。  [0165] If the rubber hardness of the resin plate is less than 30 degrees, it is not preferable because the plate is too soft and it is difficult to form a desired fine uneven structure, and the plate itself is easily worn. If the rubber hardness of the stencil plate exceeds 80 degrees, the plate cylinder rotates at a high speed and lacks flexibility when printing, and the reproducibility of the ink transfer amount is poor. Rubber hardness Shown as a value measured with a durometer in accordance with the method described in IS K 6253.
[0166] シームレス榭脂版上に微細凹凸構造のパターンを刻印する方法としてマスク製版 が利用される。マスク製版では、感光性榭脂材料の層を設けた榭脂版に原版マスク であるネガフィルムでカバーして露光する。感光性榭脂層は光、特に波長 350〜45 Onmの紫外線エネルギーで硬化、或いは不溶化するものである。未露光部の未硬 化榭脂は水、アルカリ水溶液、或いはアルコールなどの有機溶剤に可溶性の状態で 維持される。したがって、未露光部をそれに応じた溶剤で洗い出す (現像工程)ことに より、露光された部分のみが残って凸版 (フレキソ版)を形成するものである。  [0166] Mask plate making is used as a method for imprinting a pattern with a fine relief structure on a seamless resin plate. In mask plate making, a resin plate provided with a layer of photosensitive resin material is covered with a negative film as an original mask and exposed. The photosensitive resin layer is hardened or insolubilized by light, particularly ultraviolet energy having a wavelength of 350 to 45 Onm. The uncured resin in the unexposed area is maintained in a soluble state in water, an aqueous alkaline solution, or an organic solvent such as alcohol. Accordingly, the unexposed area is washed out with a solvent corresponding to the unexposed area (development process), so that only the exposed area remains and forms a relief printing plate (flexographic printing plate).
[0167] また、最近の刷版方法としては、修正画像信号に基づ!、て硬化済の榭脂版に直接 レーザー光或いは彫刻機で彫刻することにより完全なエンドレス版を作製することが できる。或いは、未露光の感光性榭脂版に円筒状のまま修正済画像信号で変調され たレーザー光で走査しパター-ングした後通常の方法で現像する方法がエンドレス の版を形成する上からも好まし 、。  [0167] Further, as a recent printing plate method, a complete endless plate can be produced by directly engraving a cured resin plate with a laser beam or an engraving machine based on a corrected image signal! . Alternatively, an unexposed photosensitive resin plate can be scanned with a laser beam modulated with a modified image signal in a cylindrical shape and patterned, and then developed in the usual manner from the viewpoint of forming an endless plate. I like it.
[0168] 上記フレキソ印刷により、基材フィルム上に、ドットの長径が 1〜30 μ m、ドットの高 さ力 O. 5〜10 μ mである微細な凸構造を lmm2あたり 10〜 10000個作製することで[0168] By flexographic printing, 10 to 10000 fine convex structures with a long diameter of dots of 1 to 30 μm and dot height O. 5 to 10 μm per lmm 2 on the base film. By making
、本発明の凸構造部を形成する。 The convex structure part of the present invention is formed.
[0169] 〈インクジェット方式による凸構造部の形成の例〉 <Example of formation of convex structure portion by ink jet method>
次 、で、本発明に用いられるインクジェット方式よる凸構造部の形成の例につ 、て 説明する。  Next, an example of forming the convex structure portion by the ink jet method used in the present invention will be described.
[0170] 図 8は、本発明に用いられるインクジェット方法に用いることのできるインクジェットへ ッドの一例を示す断面図である。 [0171] 図 8 (a)はインクジェットヘッドの断面図であり、図 8 (b)は図 8 (a)の A— A線矢視拡 大図である。図中、 11は基板、 12は圧電素子、 13は流路板、 13aはインク流路、 13 bは壁部、 14は共通液室構成部材、 14aは共通液室、 15はインク供給パイプ、 16は ノズルプレート、 16aはノズル、 17は駆動用回路プリント板(PCB)、 18はリード部、 1 9は駆動電極、 20は溝、 21は保護板、 22は流体抵抗、 23、 24は電極、 25は上部隔 壁、 26はヒータ、 27はヒータ電源、 28は伝熱部材、 30はインクジェットヘッドである。 FIG. 8 is a cross-sectional view showing an example of an inkjet head that can be used in the inkjet method used in the present invention. [0171] Fig. 8 (a) is a cross-sectional view of the inkjet head, and Fig. 8 (b) is an enlarged view taken along line AA in Fig. 8 (a). In the figure, 11 is a substrate, 12 is a piezoelectric element, 13 is a flow path plate, 13a is an ink flow path, 13b is a wall, 14 is a common liquid chamber component, 14a is a common liquid chamber, 15 is an ink supply pipe, 16 is the nozzle plate, 16a is the nozzle, 17 is the drive circuit printed board (PCB), 18 is the lead, 19 is the drive electrode, 20 is the groove, 21 is the protective plate, 22 is the fluid resistance, 23 and 24 are the electrodes 25 is an upper partition wall, 26 is a heater, 27 is a heater power supply, 28 is a heat transfer member, and 30 is an inkjet head.
[0172] 集積ィ匕されたインクジェットヘッド 30において、電極 23、 24を有する積層された圧 電素子 12は、流路 13aに対応して、該流路 13a方向に溝加工が施され、溝 20と駆動 圧電素子 12bと非駆動圧電素子 12aに区分される。溝 20には充填剤が封入されて いる。溝加工が施された圧電素子 12には、上部隔壁 25を介して流路板 13が接合さ れる。すなわち、前記上部隔壁 25は、非駆動圧電素子 12aと隣接する流路を隔てる 壁部 13bとで支持される。駆動圧電素子 12bの幅は流路 13aの幅よりも僅かに狭く、 駆動用回路プリント板 (PCB)上の駆動回路により選択された駆動圧電素子 12bはパ ルス状信号電圧を印加すると、該駆動圧電素子 12bは厚み方向に変化し、上部隔 壁 25を介して流路 13aの容積が変化し、その結果ノズルプレート 16のノズル 16aより インク液滴を吐出する。  [0172] In the integrated inkjet head 30, the laminated piezoelectric element 12 having the electrodes 23, 24 is subjected to groove processing in the direction of the flow path 13a corresponding to the flow path 13a. And drive piezoelectric element 12b and non-drive piezoelectric element 12a. The groove 20 is filled with a filler. The flow path plate 13 is joined to the piezoelectric element 12 that has been subjected to the groove processing via the upper partition wall 25. That is, the upper partition wall 25 is supported by the non-driving piezoelectric element 12a and the wall portion 13b separating the adjacent flow path. The width of the driving piezoelectric element 12b is slightly narrower than the width of the flow path 13a, and the driving piezoelectric element 12b selected by the driving circuit on the driving circuit printed board (PCB) is driven when a pulse signal voltage is applied. The piezoelectric element 12b changes in the thickness direction, and the volume of the flow path 13a changes via the upper partition 25. As a result, ink droplets are ejected from the nozzles 16a of the nozzle plate 16.
[0173] 流路板 13上には、伝熱部材 28を介してヒータ 26がそれぞれ接着されている。伝熱 部材 28はノズル面にまわり込んで設けられている。伝熱部材 28は、ヒータ 26からの 熱を効率良く流路板 13に伝え、かつ、ヒータ 26からの熱をノズル面近傍に運びノズ ル面近傍の空気を温めることを目的としており、したがって、熱伝導率の良い材料が 用いられる。例えば、アルミニウム、鉄、ニッケル、銅、ステンレス等の金属、あるいは 、 SiC、 BeO、 A1N等のセラミックス等が好ましい材料として挙げられる。  [0173] Heaters 26 are bonded to the flow path plate 13 via heat transfer members 28, respectively. The heat transfer member 28 is provided around the nozzle surface. The heat transfer member 28 is intended to efficiently transfer the heat from the heater 26 to the flow path plate 13 and to carry the heat from the heater 26 to the vicinity of the nozzle surface to warm the air near the nozzle surface. A material with good thermal conductivity is used. For example, preferred materials include metals such as aluminum, iron, nickel, copper, and stainless steel, and ceramics such as SiC, BeO, and A1N.
[0174] 圧電素子を駆動すると、流路の長手方向に垂直な方向に変位し、流路の容積が変 化し、その容積変化によりノズルからインク液滴となって噴射する。圧電素子には常 時流路容積が縮小するように保持する信号を与え、選択された流路に対して流路容 積を増大する向きに変位させた後、再び流路の容積が縮小する変位を与えるパルス 信号を印加することにより、流路と対応するノズルよりインク力 Sインク液滴となって噴射 する。 [0175] 図 9は、本発明で用いることのできるインクジェットヘッド部、ノズルプレートの一例を 示す概略図である。 [0174] When the piezoelectric element is driven, the piezoelectric element is displaced in a direction perpendicular to the longitudinal direction of the flow path, and the volume of the flow path is changed. Displacement in which the volume of the flow path is reduced again after giving a signal for holding the flow volume to the piezoelectric element so that the flow volume is increased with respect to the selected flow path. By applying the pulse signal that gives the ink, the ink force S is ejected from the nozzle corresponding to the flow path. FIG. 9 is a schematic view showing an example of an inkjet head unit and a nozzle plate that can be used in the present invention.
[0176] 図 9において、図 9の(a)はヘッド部の断面図、図 9の(b)はノズルプレートの平面図 である。図中、 10は基材フィルム、 31はインク液滴、 32はノズル、 29は活性光線照 射部である。ノズル 32より噴射したインク液滴 31は基材フィルム 10方向に飛翔して 付着する。基材フィルム 10上に着弾したインク液滴は、その上流部に配置されている 活性光線照射部より、活性光線を直ちに照射され、硬化する。なお、 35は基材フィル ム 10を保持するバックロールである。  In FIG. 9, (a) of FIG. 9 is a cross-sectional view of the head portion, and (b) of FIG. 9 is a plan view of the nozzle plate. In the figure, 10 is a substrate film, 31 is an ink droplet, 32 is a nozzle, and 29 is an actinic ray irradiation part. The ink droplets 31 ejected from the nozzle 32 fly in the direction of the substrate film 10 and adhere. The ink droplets that have landed on the base film 10 are immediately irradiated with actinic rays from an actinic ray irradiating unit disposed upstream thereof and cured. Reference numeral 35 denotes a back roll for holding the substrate film 10.
[0177] 本発明においては、図 9の(b)に記載のように、インクジェットヘッド部のノズルは、 千鳥状に配置することが好ましぐまた、基材フィルム 10の搬送方向に並列に多段に 設けることが好ましい。また、インク吐出の際にインクジェットヘッド部に微細な振動を 与え、インク滴がランダムに透明基材上に着弾するようにすることが好ましい。これに よって、干渉縞の発生を抑制することができる。微細な振動は、高周波電圧、音波、 超音波などによって与えることができる力 特にこれらに限定されない。  In the present invention, as shown in FIG. 9 (b), the nozzles of the inkjet head part are preferably arranged in a zigzag pattern, and are arranged in multiple stages in parallel in the transport direction of the base film 10. It is preferable to provide it. In addition, it is preferable to apply fine vibrations to the ink jet head portion during ink ejection so that ink droplets randomly land on the transparent substrate. Thereby, generation of interference fringes can be suppressed. The fine vibration is a force that can be applied by a high-frequency voltage, a sound wave, an ultrasonic wave, or the like, but is not limited to these.
[0178] 本発明に用いられる凸構造部の形成方法は、多ノズルカゝらインク小液滴を吐出して 形成するインクジェット方式を用いることが好ましい。図 10に、本発明で好ましく用い ることのできるインクジェット方式の一例を示す。  [0178] The convex structure forming method used in the present invention is preferably an ink jet method in which a small nozzle droplet is ejected from a multi-nozzle cover. FIG. 10 shows an example of an ink jet system that can be preferably used in the present invention.
[0179] 図 10において、図 10の(a)は、インクジェットヘッド 30を基材フィルム 10の幅手方 向に配置し、基材フィルム 10を搬送しながらその表面に凸構造部を形成する方法( ラインヘッド方式)であり、図 10の(b)はインクジェットヘッド 30が副走査方向に移動 しながらその表面に凸構造部を形成する方法 (フラットヘッド方式)であり、図 10の c) はインクジェットヘッド 30力 基材フィルム 10上の幅手方向を走査しながらその表面 に凸構造部を形成する方法 (キヤプスタン方式)であり、 V、ずれの方式も用いることが できるが、本発明においては、生産性の観点力もラインヘッド方式が好ましい。なお、 図 10の(a)〜(c)に記載の 29は、インクとして後述の活性光線硬化型榭脂を用いる 場合に使用する活性光線照射部である。  In FIG. 10, (a) in FIG. 10 is a method in which the inkjet head 30 is arranged in the width direction of the base film 10 and a convex structure is formed on the surface of the base film 10 while being transported. (Line head method), (b) in FIG. 10 is a method of forming a convex structure on the surface of the inkjet head 30 while moving in the sub-scanning direction (flat head method), and c) in FIG. Ink jet head 30 force A method of forming a convex structure portion on the surface of the base film 10 while scanning the width direction on the base film 10 (capstan method). V, displacement method can also be used, but in the present invention In view of productivity, the line head method is preferable. Note that reference numeral 29 in FIGS. 10A to 10C denotes an actinic ray irradiating unit used when an actinic ray curable resin described later is used as the ink.
[0180] また、本発明においては、図 10の(a)、(b)、 (c)の基材フィルムの搬送方向の下流 側に、別の活性光線照射部を設けてもよい。 [0181] 本発明において、微細な凸構造を形成するため、インク液滴としては 0. 1〜: LOOpl が好ましぐ 0. l〜50plがより好ましぐ 0. 1〜: LOplが特に好ましい。上記条件でイン ク液滴を出射することにより、ドットの長径が 1〜30 m、ドットの高さが 0. 5〜: LO /z m である微細な凸構造を得ることができる。 [0180] In the present invention, another actinic ray irradiation unit may be provided on the downstream side in the conveyance direction of the base film in (a), (b), and (c) of FIG. [0181] In the present invention, in order to form a fine convex structure, 0.1 to: LOOpl is preferable as an ink droplet, 0.1 to 50pl is more preferable, and 0.1 to LOLO is particularly preferable. . By ejecting ink droplets under the above conditions, it is possible to obtain a fine convex structure in which the major axis of the dot is 1 to 30 m and the height of the dot is 0.5 to LO / zm.
[0182] また、インク液滴の粘度は、 25°Cにおいて 0. l〜20mPa' sであることが好ましぐ 更に好ましくは 0. 5〜: LOmPa' sである。  [0182] The viscosity of the ink droplet is preferably 0.1 to 20 mPa's at 25 ° C, more preferably 0.5 to LOmPa's.
[0183] 透明榭脂層は、上記凸構造部の項で詳細に説明した活性光線硬化型榭脂、光重 合開始剤、光反応開始剤、光増感剤、熱硬化性樹脂、熱可塑性樹脂、紫外線吸収 剤、微粒子、溶媒等を適宜用いてインキ組成物を調製し、更に任意の塗布方法によ り凸構造部の上に塗布を行う。  [0183] The transparent resin layer is composed of an actinic ray curable resin, a photopolymerization initiator, a photoinitiator, a photosensitizer, a thermosetting resin, and a thermoplastic as described in detail in the above-mentioned convex structure section. An ink composition is prepared by appropriately using a resin, an ultraviolet absorber, fine particles, a solvent, and the like, and further coated on the convex structure portion by an arbitrary coating method.
[0184] 透明榭脂層の塗布方法は特に限定されるものではないが、前記インキ組成物をグ ラビアコ■ ~" ' ~"、ディップコ^ ~"タ' ~"、 リノく■ ~"スコ■ ~" ' ~"、ワイヤ1 ~"ノ 1 ~"コ1 ~"タ' ~"、ダイコ 一ター、インクジェット法、フレキソ印刷法等公知の方法で塗設することが好ましい。 [0184] The method of applying the transparent resin layer is not particularly limited, but the ink composition may be made of grabiaco ■ ~ "'~", Dipco ^ ~ "Ta'~", renoku ■ ~ "sco ■ It is preferable to coat by a known method such as ~ "'~", wire 1 "" no- 1 "" co 1 "" ta "~, die coater, ink jet method, flexographic printing method.
[0185] 次いで、図 11に本発明に好ましく用いられるフレキソ印刷による凸構造部の形成、 引き続いて行われるダイコーターを用いた塗布法による透明榭脂層の形成の一例を 示す。 Next, FIG. 11 shows an example of the formation of a convex structure portion by flexographic printing preferably used in the present invention and the formation of a transparent resin layer by a coating method using a die coater that is subsequently performed.
[0186] 図 11において、ロール 501より繰り出された基材フィルム 502は搬送されて、フレキ ソ印刷部 Aにおいてフレキソ印刷によりパターン状の凸構造部が塗設される。ここで はインキ供給タンク 508からインキ液がァ-ロックスロール 510へ供給され、フレキソ 印刷部であるパターン構造を有する榭脂版 509にインキが転移される。転移印刷し たインキは、活性光線硬化型榭脂を用いている場合には、フレキソ印刷部である榭 脂版 509の後に配置されている活性光線照射部 506Aで、活性光線、例えば紫外 線等を照射して硬化させる。また、インキが熱硬化性榭脂を用いている場合には、乾 燥ゾーン 505A、例えば、ヒートプレートにより加熱、硬化される。また、バックロール 5 04Aをヒートロールとして加熱する方法も好まし!/、。  In FIG. 11, the base film 502 fed out from the roll 501 is conveyed, and the flexographic printing part A is coated with a pattern-like convex structure part by flexographic printing. Here, the ink liquid is supplied from the ink supply tank 508 to the arrox roll 510, and the ink is transferred to the resin plate 509 having a pattern structure which is a flexographic printing section. When the actinic ray curable resin is used for the transfer-printed ink, the actinic ray irradiation unit 506A disposed after the resin plate 509, which is a flexographic printing unit, uses actinic light, such as ultraviolet rays. Irradiate to cure. When the ink uses thermosetting resin, it is heated and cured by a drying zone 505A, for example, a heat plate. Also preferred is the method of heating the back roll 5 04A as a heat roll!
[0187] フレキソ印刷部 Aにお 、て、活性光線照射部 506Aの照射光力 榭脂版 509のイン キに直接影響を与えないように、活性光線照射部 506Aと榭脂版 509とを適度な間 隔で配置する、或いは活性光線照射部 506Aと榭脂版 509との間に、遮光壁等を設 置することが好ましい。また、乾燥ゾーン 505Aの熱が、榭脂版 509のインキに直接 影響を与えないように、榭脂版 509を断熱カバーで被覆する、或いは図で示すように 、乾燥ゾーン 505Aの乾燥風が遮断されるような仕切りを設置することが好ましい。 [0187] In the flexographic printing part A, the actinic light irradiation part 506A and the stencil plate 509 should be moderately attached so as not to directly affect the ink of the actinic light irradiation part 506A. Install a light-shielding wall between the actinic ray irradiation unit 506A and the resin plate 509. It is preferable to place them. Also, in order to prevent the heat of the drying zone 505A from directly affecting the ink of the resin plate 509, the resin plate 509 is covered with a heat insulating cover, or the drying air in the drying zone 505A is blocked as shown in the figure. It is preferable to install such a partition.
[0188] 転移印刷したインキにより形成されたパターンが維持できる程度に硬化処理を行つ た基材フィルム 502は、乾燥ゾーン 505Aで不要な有機溶媒等を蒸発させて硬化を 完了させる。 [0188] The base film 502 that has been cured to such an extent that the pattern formed by the transfer-printed ink can be maintained, completes curing by evaporating unnecessary organic solvent and the like in the drying zone 505A.
[0189] 次 、で、透明榭脂層塗布部 Bにお 、て、コーター 503より供給されるハードコート層 用組成物が凸構造部を含む全面に塗布され、凸構造部非形成部との間で凹凸構造 が形成される。透明榭脂層が活性光線硬化型榭脂を含有する場合は、活性光線照 射部 506B及び 506Cにより活性光線が照射される。また、乾燥ゾーン 505Bにより乾 燥 '固化される。  [0189] Next, in the transparent resin layer coating part B, the composition for the hard coat layer supplied from the coater 503 is applied to the entire surface including the convex structure part, and the convex structure part non-formed part is formed. An uneven structure is formed between them. When the transparent resin layer contains actinic ray curable resin, actinic rays are irradiated by the actinic ray irradiation sections 506B and 506C. Further, it is dried and solidified by the drying zone 505B.
[0190] 活性光線照射部 506A、 B、 Cの部分では、 20〜120°Cに温度制御されたバック口 ール 504A、 B、 C上の基材フィルム 502に活性光線を照射することが好ましい。  [0190] In the actinic ray irradiation sections 506A, B, and C, it is preferable to irradiate the base films 502 on the back holes 504A, B, and C that are temperature-controlled at 20 to 120 ° C. .
[0191] 本発明で、フレキソ印刷によるパターン状の凸構造部を形成する方法は、基材フィ ルムを l〜500mZmin、好ましくは 10〜300mZminで移送しながら形成すること が好ましい。  [0191] In the present invention, the method for forming a pattern-like convex structure portion by flexographic printing is preferably performed while the substrate film is transferred at 1 to 500 mZmin, preferably 10 to 300 mZmin.
[0192] インキを転移印刷させる際の基材フィルムは帯電に斑がないことが好ましぐ直前で 徐電することが好ましく、或いは均一に帯電させてもょ 、。  [0192] The base film used for transfer printing of the ink is preferably subjected to slow charging immediately before it is preferable that there is no unevenness in charging, or it may be uniformly charged.
[0193] また、インキを転移印刷させて形成したパターンをヘイズ、透過鮮明度などの防眩 性を測定し、所定の値であることを確認し、ずれや変動が確認された場合、その結果 をフィードバックしてインキの調整ゃ榭脂版の交換を行うことが好ましい。 [0193] Further, the anti-glare property such as haze and transmission sharpness was measured for the pattern formed by transfer printing of the ink, and it was confirmed that it was a predetermined value. It is preferable to adjust the ink by feeding back and replace the resin plate.
[0194] 《基材フィルム》 [0194] <Base film>
本発明に用いられる基材フィルムとしては、製造が容易であること、活性光線硬化 型榭脂層との接着性が良好である、光学的に等方性である、光学的に透明であるこ と等が好ま 、要件として挙げられる。  The substrate film used in the present invention is easy to manufacture, has good adhesion to the actinic ray curable resin layer, is optically isotropic, and is optically transparent. Etc. are preferred and listed as requirements.
[0195] 本発明でいう透明とは、可視光の透過率 60%以上であることをさし、好ましくは 80[0195] The term "transparent" as used in the present invention means a visible light transmittance of 60% or more, preferably 80
%以上であり、特に好ましくは 90%以上である。 % Or more, particularly preferably 90% or more.
[0196] 上記の性質を有していれば特に限定はないが、例えば、セルロースジアセテートフ イノレム、セルローストリアセテートフイノレム、セルロースアセテートプロピオネートフィノレ ム、セルロースアセテートブチレートフイノレム等のセルロースエステノレ系フイノレム、ポリ エステル系フィルム、ポリカーボネート系フィルム、ポリアリレート系フィルム、ポリスル ホン(ポリエーテルスルホンも含む)系フィルム、ポリエチレンテレフタレート、ポリェチ レンナフタレート等のポリエステルフィルム、ポリエチレンフィルム、ポリプロピレンフィ ルム、セロファン、ポリ塩化ビ-リデンフィルム、ポリビュルアルコールフィルム、ェチレ ンビュルアルコールフィルム、シンジォタクティックポリスチレン系フィルム,ポリカーボ ネートフィルム、ノルボルネン系榭脂フィルム、ポリメチルペンテンフィルム、ポリエー テルケトンフィルム、ポリエーテルケトンイミドフィルム、ポリアミドフィルム、フッ素榭脂 フィルム、ナイロンフィルム、ポリメチルメタタリレートフィルム、アクリルフィルムまたは ガラス板等を挙げることができる。中でも、ポリカーボネート系フィルム、ポリエステノレ 系フィルム、ノルボルネン系榭脂フィルム、及びセルロースエステル系フィルムが好ま しい。 [0196] There is no particular limitation as long as it has the above-mentioned properties. Cellulose esterores such as Inolem, Cellulose Triacetate Finolem, Cellulose Acetate Propionate Finolem, Cellulose Acetate Butyrate Finolem, Polyester Film, Polycarbonate Film, Polyarylate Film, Polysulfone (Polyether) (Including sulfone) film, polyester film such as polyethylene terephthalate and polyethylene naphthalate, polyethylene film, polypropylene film, cellophane, polyvinylidene chloride film, polybutyl alcohol film, polyethylene alcohol film, syndiotactic polystyrene Film, polycarbonate film, norbornene resin film, polymethylpentene film, polyester Ether ketone film, polyether ketone imide film, a polyamide film include fluorine 榭脂 film, nylon film, polymethyl methacrylate Tari acetate film, acrylic film or a glass plate or the like. Of these, polycarbonate film, polyester film, norbornene resin film, and cellulose ester film are preferable.
[0197] また本発明で好ましく用いられるノルボルネン系榭脂フィルムとは、ノルボルネン構 造を有する非晶性ポリオレフインフィルムで、例えば三井石油化学 (株)製の APOや 日本ゼオン (株)製のゼォネックス、 JSR (株)製の ARTON等がある。  [0197] The norbornene-based resin film preferably used in the present invention is an amorphous polyolefin film having a norbornene structure, for example, APO manufactured by Mitsui Petrochemical Co., Ltd., ZEONEX manufactured by Nippon Zeon Co., Ltd., There is ARTON etc. made by JSR Corporation.
[0198] 本発明においては、中でも特にセルロースエステル系フィルムを用いることが好まし い。セノレロースエステノレとしては、セノレロースアセテート、セノレロースアセテートブチレ ート、セルロースアセテートプロピオネートが好ましぐ中でもセルロースアセテートブ チレート、セノレロースアセテートフタレート、セルロースアセテートプロピオネートが好 ましく用いられる。市販のセルロースエステルフィルムとしては、例えば、コ-カミノル タタック KC8UX、 KC4UX, KC5UX, KC8UCR3, KC8UCR4、 KC8UCR5、 KC8UY、 KC4UY、 KC12UR、 KC4FR (コ-力ミノルタォプト(株)製)等が、製造 上、コスト面、透明性、接着性等の観点力 好ましく用いられる。これらのフィルムは、 溶融流延製膜で製造されたフィルムであっても、溶液流延製膜で製造されたフィルム であってもよい。  In the present invention, it is particularly preferable to use a cellulose ester film. As senorelose esterolate, cellulose acetate butyrate, sennellose acetate phthalate, and cellulose acetate propionate are preferred, although senorelose acetate, senololose acetate butyrate, and cellulose acetate propionate are preferred. . As commercially available cellulose ester films, for example, Co-Camino Nortack KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4FR (manufactured by Co-Power Minoltopto Co., Ltd.) View power such as surface, transparency, and adhesiveness is preferably used. These films may be films produced by melt casting film formation or films produced by solution casting film formation.
[0199] 《防眩性反射防止フィルム》  [0199] 《Anti-glare anti-reflection film》
本発明は前記凸構造部、及び透明榭脂層を有する防眩性フィルムの微細凹凸構 造を有する面に、下記低屈折率層を設け防眩性反射防止フィルムとすることが好まし い。 The present invention provides a fine concavo-convex structure of an antiglare film having the convex structure portion and a transparent resin layer. It is preferable to provide an antiglare antireflection film by providing the following low refractive index layer on the surface having a structure.
[0200] 特に、本発明においては、低屈折率層は、外殻層を有し内部が多孔質または空洞 となって!/ヽる中空シリカ系微粒子を含有する低屈折率層塗布液をコーティングするこ とが好ましい。  [0200] In particular, in the present invention, the low refractive index layer is coated with a low refractive index layer coating solution containing hollow silica-based fine particles that have an outer shell layer and are porous or hollow inside! It is preferable to do this.
[0201] 〈低屈折率層〉 [0201] <Low refractive index layer>
本発明に係る低屈折率層の屈折率は、支持体である基材フィルムの屈折率より低 く、 23°C、波長 550nmSlJ定で、 1. 30〜: L 45の範囲であること力 子まし!/、。  The refractive index of the low refractive index layer according to the present invention is lower than the refractive index of the substrate film as the support, and is 23 ° C., wavelength 550 nm SlJ constant, and 1.30 to: L 45 Better!/,.
[0202] 低屈折率層の膜厚は、 5nm〜0. 5 μ mであることが好ましぐ 10nm〜0. 3 μ mで あることがさらに好ましぐ 30ηπ!〜 0. 2 mであることが最も好ましい。 [0202] The film thickness of the low refractive index layer is preferably 5 nm to 0.5 μm, more preferably 10 nm to 0.3 μm, and 30 ηπ! Most preferred is ~ 0.2 m.
[0203] 本発明に用いられる低屈折率層形成用組成物は、(a)下記一般式(2)で表される 有機珪素化合物もしくはその加水分解物或いはその重縮合物及び、(b)外殻層を有 し、内部が多孔質または空洞である中空シリカ系微粒子が組成物を構成することが 好ましい。 [0203] The composition for forming a low refractive index layer used in the present invention comprises (a) an organosilicon compound represented by the following general formula (2) or a hydrolyzate thereof or a polycondensate thereof; It is preferable that hollow silica-based fine particles having a shell layer and having a porous or hollow interior constitute the composition.
[0204] 一般式(2) Si (OR) [0204] General formula (2) Si (OR)
4  Four
(式中、 Rはアルキル基であり、好ましくは炭素数 1〜4のアルキル基である。 ) 他に溶剤、必要に応じて、シランカップリング剤、硬化剤等を添加してもよい。  (In the formula, R is an alkyl group, preferably an alkyl group having 1 to 4 carbon atoms.) In addition, a solvent, and if necessary, a silane coupling agent, a curing agent and the like may be added.
[0205] 〔中空シリカ系微粒子〕  [Hollow silica-based fine particles]
まず、前記 (b)で表される外殻層を有し、内部が多孔質または空洞である中空シリ 力系微粒子について説明する。  First, the hollow silica fine particles having the outer shell layer represented by the above (b) and having a porous or hollow inside will be described.
[0206] 中空シリカ系微粒子は、 (I)多孔質粒子と該多孔質粒子表面に設けられた被覆層 と力 なる複合粒子、または (II)内部に空洞を有し、かつ内容物が溶媒、気体または 多孔質物質で充填された空洞粒子である。尚、低屈折率層には (I)複合粒子または (II)空洞粒子の!/、ずれかが含まれて!/、ればよぐまた双方が含まれて!/、てもよ!/、。  [0206] The hollow silica-based fine particle comprises (I) a porous particle and a composite particle that works with the coating layer provided on the surface of the porous particle, or (II) a cavity inside, and the content is a solvent, Cavity particles filled with gas or porous material. In addition, the low refractive index layer includes (I) composite particles or (II) hollow particles! /, Misalignment! /, If necessary, both are included! /, Even! / ,.
[0207] 尚、空洞粒子は内部に空洞を有する粒子であり、空洞は粒子壁で囲まれて 、る。  [0207] The hollow particles are particles having cavities inside, and the cavities are surrounded by particle walls.
空洞内には、調製時に使用した溶媒、気体または多孔質物質等の内容物で充填さ れている。このような中空微粒子の平均粒子径が 5〜300nm、好ましくは 10〜200n mの範囲にあることが望ましい。使用される中空微粒子は、形成される透明被膜の厚 さに応じて適宜選択され、形成される低屈折率層等の透明被膜の膜厚の 2Z3〜1The cavity is filled with contents such as a solvent, a gas, or a porous material used at the time of preparation. It is desirable that the average particle size of such hollow fine particles is in the range of 5 to 300 nm, preferably 10 to 200 nm. The hollow fine particles used are the thickness of the transparent film to be formed. Depending on the thickness, the thickness of the transparent coating such as a low refractive index layer to be formed is 2Z3 to 1
ZlOの範囲にあることが望ましい。これらの中空微粒子は、低屈折率層の形成のた め、適当な媒体に分散した状態で使用することが好ましい。分散媒としては、水、ァ ルコール(例えば、メタノール、エタノール、イソプロピルアルコール)及びケトン(例え ば、メチルェチルケトン、メチルイソブチルケトン)、ケトンアルコール(例えばジァセト ンアルコール)が好まし 、。 It is desirable to be in the range of ZlO. These hollow fine particles are preferably used in a state of being dispersed in an appropriate medium in order to form a low refractive index layer. As the dispersion medium, water, alcohol (for example, methanol, ethanol, isopropyl alcohol), ketone (for example, methyl ethyl ketone, methyl isobutyl ketone), and ketone alcohol (for example, diaceton alcohol) are preferable.
[0208] 複合粒子の被覆層の厚さまたは空洞粒子の粒子壁の厚さは、 l〜20nm、好ましく は 2〜15nmの範囲にあることが望ましい。複合粒子の場合、被覆層の厚さが lnm未 満の場合は、粒子を完全に被覆することが出来ないことがあり、後述する塗布液成分 である重合度の低いケィ酸モノマー、オリゴマー等が容易に複合粒子の内部に内部 に進入して内部の多孔性が減少し、低屈折率の効果が十分得られないことがある。 また、被覆層の厚さが 20nmを越えると、前記ケィ酸モノマー、オリゴマーが内部に進 入することはないが、複合粒子の多孔性 (細孔容積)が低下し低屈折率の効果が十 分得られなくなることがある。また空洞粒子の場合、粒子壁の厚さが lnm未満の場合 は、粒子形状を維持出来ないことがあり、また厚さが 20nmを越えても、低屈折率の 効果が十分に現れな 、ことがある。  [0208] The thickness of the coating layer of the composite particles or the thickness of the particle walls of the hollow particles is desirably in the range of 1 to 20 nm, preferably 2 to 15 nm. In the case of composite particles, if the coating layer thickness is less than lnm, the particles may not be completely covered. The composite particles may easily enter the interior of the composite particle and the internal porosity may be reduced, and the low refractive index effect may not be sufficiently obtained. In addition, when the thickness of the coating layer exceeds 20 nm, the above-mentioned carboxylic acid monomer and oligomer do not enter the inside, but the porosity (pore volume) of the composite particles is lowered and the effect of low refractive index is sufficient. May not be obtained. In the case of hollow particles, if the particle wall thickness is less than 1 nm, the particle shape may not be maintained, and even if the thickness exceeds 20 nm, the effect of low refractive index is not sufficiently exhibited. There is.
[0209] 複合粒子の被覆層または空洞粒子の粒子壁は、シリカを主成分とすることが好まし い。また、シリカ以外の成分が含まれていてもよぐ具体的には、 Al O、 B O、 TiO  [0209] The coating layer of the composite particles or the particle wall of the hollow particles preferably contains silica as a main component. In addition, specific components other than silica may be included. Al O, B 2 O, TiO
2 3 2 3 2 2 3 2 3 2
、 ZrO、 SnO、 CeO、 P O、 Sb O、 MoO、 ZnO、 WO等が挙げられる。複合粒ZrO, SnO, CeO, PO, SbO, MoO, ZnO, WO and the like. Composite grain
2 2 2 2 3 2 3 3 2 3 2 2 2 2 3 2 3 3 2 3
子を構成する多孔質粒子としては、シリカからなるもの、シリカとシリカ以外の無機化 合物とからなるもの、 CaF、 NaF、 NaAlF、 MgF等からなるものが挙げられる。この  Examples of the porous particles constituting the core include those made of silica, those made of silica and inorganic compounds other than silica, and those made of CaF, NaF, NaAlF, MgF, and the like. this
2 6  2 6
うち特にシリカとシリカ以外の無機化合物との複合酸ィ匕物力 なる多孔質粒子が好適 である。シリカ以外の無機化合物としては、 Al O、 B O、 TiO、 ZrO、 SnO、 CeO  Of these, porous particles having a complex acidity of silica and an inorganic compound other than silica are particularly preferable. Inorganic compounds other than silica include Al 2 O, B 2 O, TiO, ZrO, SnO, and CeO.
2 3 2 3 2 2 2 2 2 3 2 3 2 2 2 2
、 P O、 Sb O、 MoO、 ZnO、 WO等との 1種または 2種以上を挙げることが出来る, PO, SbO, MoO, ZnO, WO, etc.
2 3 2 3 3 2 3 2 3 2 3 3 2 3
。このような多孔質粒子では、シリカを SiOで表し、シリカ以外の無機化合物を酸ィ匕  . In such porous particles, silica is represented by SiO, and inorganic compounds other than silica are oxidized.
2  2
物換算(MO )で表したときのモル比 MO /SiO力 0. 0001〜: L 0、好ましくは 0  Molar ratio expressed in terms of product (MO) MO / SiO force 0.0001 ~: L 0, preferably 0
X X 2  X X 2
. 001〜0. 3の範囲にあることが望ましい。多孔質粒子のモル比 MO /SiOが 0. 0  It is desirable to be in the range of 001 to 0.3. The molar ratio of porous particles MO / SiO is 0.0.
X 2  X 2
001未満のものは得ることが困難であり、得られたとしても細孔容積が小さぐ屈折率 の低い粒子が得られない。また、多孔質粒子のモル比 MO /SiO力 1. 0を越える Refractive index is difficult to obtain less than 001, and even if obtained, the pore volume is small Low particle size cannot be obtained. Also, the molar ratio of porous particles MO / SiO force exceeds 1.0
X 2  X 2
と、シリカの比率が少なくなるので、細孔容積が大きくなり、さらに屈折率が低いもの を得ることが難し 、ことがある。  If the ratio of silica is reduced, the pore volume is increased, and it may be difficult to obtain a material having a lower refractive index.
[0210] このような多孔質粒子の細孔容積は、 0. 1〜1. 5mlZg、好ましくは 0. 2〜1. 5ml Zgの範囲であることが望ましい。細孔容積が 0. lmlZg未満では、十分に屈折率の 低下した粒子が得られず、 1. 5mlZgを越えると微粒子の強度が低下し、得られる被 膜の強度が低下することがある。  [0210] The pore volume of such porous particles is desirably in the range of 0.1 to 1.5 ml Zg, preferably 0.2 to 1.5 ml Zg. If the pore volume is less than 0.1 mlZg, particles having a sufficiently low refractive index cannot be obtained, and if it exceeds 1.5 mlZg, the strength of the fine particles may be lowered, and the strength of the resulting film may be lowered.
[0211] 尚、このような多孔質粒子の細孔容積は水銀圧入法によって求めることができる。ま た、空洞粒子の内容物としては、粒子調製時に使用した溶媒、気体、多孔質物質等 が挙げられる。溶媒中には空洞粒子調製する際に使用される粒子前駆体の未反応 物、使用した触媒等が含まれていてもよい。また多孔質物質としては、前記多孔質粒 子で例表した化合物力 なるものが挙げられる。これらの内容物は、単一の成分から なるものであってもよ 、が、複数成分の混合物であってもよ 、。  [0211] The pore volume of such porous particles can be determined by mercury porosimetry. Examples of the contents of the hollow particles include the solvent, gas, and porous material used at the time of particle preparation. The solvent may contain unreacted particle precursors used in preparing the hollow particles, the catalyst used, and the like. In addition, examples of the porous material include compounds having the compound power exemplified by the porous particles. These contents may consist of a single component or a mixture of multiple components.
[0212] このような中空微粒子の製造方法としては、例えば特開平 7— 133105号公報の段 落番号 [0010]〜[0033]に開示された複合酸化物コロイド粒子の調製方法が好適 に採用される。  [0212] As a method for producing such hollow fine particles, for example, the method for preparing composite oxide colloidal particles disclosed in Step Nos. [0010] to [0033] of JP-A-7-133105 is preferably employed. The
[0213] (有機珪素化合物)  [0213] (Organic silicon compound)
前記一般式 (2)で表される有機珪素化合物は、式中、 Rは炭素数 1〜4のアルキル 基を表す。  In the organic silicon compound represented by the general formula (2), R represents an alkyl group having 1 to 4 carbon atoms.
[0214] 具体的には、テトラメトキシシラン、テトラエトキシシラン、テトライソプロボキシシラン 等が好ましく用いられる。  [0214] Specifically, tetramethoxysilane, tetraethoxysilane, tetraisopropoxysilane and the like are preferably used.
[0215] 低屈折率層への添加方法としては、これらのテトラアルコキシシラン、純水、及びァ ルコールの混合溶液に触媒としての少量のアルカリまたは酸を添加した溶液を、前 記中空シリカ系微粒子の分散液に加え、テトラアルコキシシランを加水分解して生成 したケィ酸重合物を中空シリカ系微粒子の表面に沈着させる。このとき、テトラアルコ キシシラン、アルコール、触媒を同時に分散液中に添加してもよい。アルカリ触媒とし ては、アンモニア、アルカリ金属の水酸ィ匕物、アミン類を用いることができる。また、酸 触媒としては、各種の無機酸と有機酸を用いることができる。 [0216] また、本発明では低屈折率層に、下記一般式 (3)で表されるフッ素置換アルキル 基含有シランィ匕合物を含有させることもできる。 [0215] As a method for adding to the low refractive index layer, a solution obtained by adding a small amount of alkali or acid as a catalyst to a mixed solution of these tetraalkoxysilane, pure water, and alcohol is used. In addition to this dispersion, the carboxylic acid polymer produced by hydrolyzing tetraalkoxysilane is deposited on the surface of the hollow silica fine particles. At this time, tetraalkoxysilane, alcohol, and catalyst may be simultaneously added to the dispersion. As the alkali catalyst, ammonia, alkali metal hydroxide or amines can be used. As the acid catalyst, various inorganic acids and organic acids can be used. [0216] In the present invention, the low refractive index layer may contain a fluorine-substituted alkyl group-containing silane compound represented by the following general formula (3).
[0217] [化 1] 一般式 (3) [0217] [Chemical formula 1] General formula (3)
R2 R4 R 2 R 4
R1-Si-Rf-Si-R6 R 1 -Si-Rf-Si-R 6
R3 R5 R 3 R 5
[0218] 前記一般式 (3)で表されるフッ素置換アルキル基含有シランィ匕合物にっ 、て説明 する。 [0218] The fluorine-substituted alkyl group-containing silane compound represented by the general formula (3) will be described.
[0219] 式中、 1^〜1^は炭素数1〜16、好ましくは 1〜4のアルキル基、炭素数 1〜6、好ま しくは 1〜4のハロゲン化アルキル基、炭素数 6〜12、好ましくは 6〜10のァリール基 、炭素数 7〜14、好ましくは 7〜 12のアルキルァリール基、ァリールアルキル基、炭 素数 2〜8、好ましくは 2〜6のァルケ-ル基、または炭素数 1〜6、好ましくは 1〜3の アルコキシ基、水素原子またはハロゲン原子を示す。  [0219] In the formula, 1 ^ to 1 ^ are alkyl groups having 1 to 16 carbon atoms, preferably 1 to 4 carbon atoms, 1 to 6 carbon atoms, preferably 1 to 4 halogenated alkyl groups, 6 to 12 carbon atoms. Preferably 6 to 10 aryl groups, 7 to 14 carbon atoms, preferably 7 to 12 alkyl aryl groups, aryl alkyl groups, 2 to 8 carbon atoms, preferably 2 to 6 alkyl groups, or An alkoxy group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, a hydrogen atom or a halogen atom.
[0220] Rfは—(C H F )—を表し、 aは 1〜12の整数、 b + cは 2aであり、 bは 0〜24の整数 a c  [0220] Rf represents — (C H F) —, a is an integer from 1 to 12, b + c is 2a, b is an integer from 0 to 24 a c
、 cは 0〜24の整数を示す。このような Rfとしては、フルォロアルキレン基とアルキレン 基とを有する基が好ましい。具体的に、このような含フッ素シリコーン系化合物として は、(MeO) SiC H C F C H Si (MeO)、 (MeO) SiC H C F C H Si (MeO)、 (  C represents an integer of 0 to 24. Such Rf is preferably a group having a fluoroalkylene group and an alkylene group. Specifically, such fluorine-containing silicone compounds include (MeO) SiC H C F C H Si (MeO), (MeO) SiC H C F C H Si (MeO), (
3 2 4 2 4 2 4 3 3 2 4 4 8 2 4 3 3 2 4 2 4 2 4 3 3 2 4 4 8 2 4 3
MeO) SiC H C F C H Si (MeO)、 (H C O) SiC H C F C H Si (OC H )、(MeO) SiC H C F C H Si (MeO), (H C O) SiC H C F C H Si (OC H), (
3 2 4 6 12 2 4 3 5 2 3 2 4 4 8 2 4 2 5 33 2 4 6 12 2 4 3 5 2 3 2 4 4 8 2 4 2 5 3
H C O) SiC H C F C H Si(OC H )で表されるメトキシジシラン化合物等が挙げMethoxydisilane compounds represented by H C O) SiC H C F C H Si (OC H)
5 2 3 2 4 6 12 2 4 2 5 3 5 2 3 2 4 6 12 2 4 2 5 3
られる。  It is done.
[0221] ノインダーとして、フッ素置換アルキル基含有シランィ匕合物を含んで!/、ると、形成さ れる透明被膜自体が疎水性を有して ヽるので、透明被膜が充分緻密化しておらず、 多孔質であったり、またクラックゃボイドを有している場合であっても、水分や酸'アル カリ等の薬品による透明被膜への進入が抑制される。さらには、基板表面や下層で ある導電層中に含まれる金属等の微粒子と水分や酸'アルカリ等の薬品とが反応す ることもない。このため、このような透明被膜は、優れた耐薬品性を有している。 [0222] また、バインダーとして、フッ素置換アルキル基含有シランィ匕合物を含んで 、ると、 このような疎水性のみならず、滑り性がよく(接触抵抗が低く)、このためスクラッチ強 度に優れた透明被膜を得ることができる。さらに、バインダーが、このような構成単位 を有するフッ素置換アルキル基含有シランィ匕合物を含んでいると、下層に導電層が 形成されている場合には、バインダーの収縮率が、導電層と同等か近いものであるた め導電層と密着性に優れた透明被膜を形成することができる。さらに、透明被膜を加 熱処理する際に、収縮率の違いから、導電層が剥離して、透明導電性層に電気的接 触のない部分が生じることもない。このため、膜全体として充分な導電性を維持できる [0221] As the noinder, if the fluorine-substituted alkyl group-containing silane compound is included! /, Since the formed transparent film itself has hydrophobicity, the transparent film is not sufficiently densified. Even if it is porous or has cracks or voids, entry into the transparent film by water or chemicals such as acid or alkali is suppressed. Furthermore, fine particles such as metals contained in the conductive layer, which is the substrate surface or the lower layer, do not react with chemicals such as moisture or acid or alkali. For this reason, such a transparent film has excellent chemical resistance. [0222] When a fluorine-substituted alkyl group-containing silane compound is included as a binder, not only the hydrophobicity but also the slipperiness is good (the contact resistance is low), and thus the scratch strength is increased. An excellent transparent film can be obtained. Furthermore, when the binder contains a fluorine-substituted alkyl group-containing silane compound having such a structural unit, when the conductive layer is formed in the lower layer, the shrinkage of the binder is equivalent to that of the conductive layer. Since these are close to each other, a transparent film having excellent adhesion to the conductive layer can be formed. Furthermore, when the transparent film is heat-treated, the conductive layer does not peel off due to the difference in shrinkage rate, and a portion having no electrical contact with the transparent conductive layer does not occur. For this reason, sufficient conductivity can be maintained for the entire film.
[0223] フッ素置換アルキル基含有シランィ匕合物と、前記外殻層を有し、内部が多孔質また は空洞である中空シリカ系微粒子とを含む透明被膜は、スクラッチ強度が高い上に、 消しゴム強度または爪強度で評価される膜強度が高ぐ鉛筆硬度も高ぐ強度の上で 優れた透明被膜を形成することができる。 [0223] A transparent coating comprising a fluorine-substituted alkyl group-containing silane compound and the hollow silica fine particles having the outer shell layer and being porous or hollow inside has a high scratch strength and an eraser. An excellent transparent film can be formed on the basis of high pencil hardness and high film strength evaluated by strength or nail strength.
[0224] 本発明に係る低屈折率層にはシランカップリング剤を含有してもよ!/ヽ。シランカップ リング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリメトキシ エトキシシラン、メチルトリァセトキシシラン、メチルトリブトキシシラン、ェチルトリメトキ シシラン、ェチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン 、ビニルトリァセトキシシラン、ビニルトリメトキシエトキシシラン、フエニルトリメトキシシラ ン、フエニルトリエトキシシラン、フエニルトリァセトキシシラン、 γ—クロ口プロピルトリメ トキシシラン、 γ—クロ口プロピルトリエトキシシラン、 Ί—クロ口プロピルトリァセトキシ シラン、 3, 3, 3—トリフルォロプロピルトリメトキシシラン、 γ—グリシジルォキシプロピ ルトリメトキシシラン、 y—グリシジルォキシプロピルトリエトキシシラン、 γ— ( j8—ダリ シジノレ才キシエトキシ)プロピノレトリメトキシシラン、 j8 (3, 4—ェポシシシクロへキシ ル)ェチルトリメトキシシラン、 一(3, 4—エポキシシクロへキシル)ェチルトリェトキ シシラン、 γ—アタリロイルォキシプロピルトリメトキシシラン、 γ—メタクリロイルォキシ プロピルトリメトキシシラン、 γ—ァミノプロピルトリメトキシシラン、 γ—ァミノプロビルト リエトキシシラン、 Ί—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプロビルト リエトキシシラン、 Ν- |8 - (アミノエチノレ) yーァミノプロピルトリメトキシシラン及び β—シァノエチルトリエトキシシランが挙げられる。 [0224] The low refractive index layer according to the present invention may contain a silane coupling agent! Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, methyltrimethoxyethoxysilane, methyltriacetoxysilane, methyltributoxysilane, etyltrimethoxysilane, etyltriethoxysilane, vinyltrimethoxysilane, vinyltrimethoxysilane. Ethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, phenyltriacetoxysilane, γ-chloropropyltrimethoxysilane, γ-chloropropylpropyltriethoxy Silane, Ί—Clopropropyltriacetoxysilane , 3, 3, 3-trifluoropropyltrimethoxysilane, γ-glycidyloxypropyltrimethoxysilane, y-glycidyloxypropyl Triethoxysilane, γ- (j8-Darishizinolexoxyethoxy) propinoretrimethoxysilane, j8 (3,4-epoxycyclohexyl) ethyltrimethoxysilane, mono (3,4-epoxycyclohexyl) ethyltrioxysilane , Γ-Ataryloxypropyltrimethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyl triethoxysilane, Ί -mercaptopropyltrimethoxysilane, γ-mercaptopro Built triethoxysilane, Ν- | 8-(aminoethynole) y-aminopropyltrimethoxysilane and β-Cyanoethyltriethoxysilane can be mentioned.
[0225] また、珪素に対して 2置換のアルキル基を持つシランカップリング剤の例として、ジメ チノレジメトキシシラン、フエニノレメチノレジメトキシシラン、ジメチノレジェトキシシラン、フ ェニノレメチノレジェトキシシラン、 Ίーグリシジノレ才キシプロピノレメチノレジェトキシシラン ルフエ二ルジェトキシシラン、 γ クロ口プロピルメチルジェトキシシラン、ジメチルジ ァセトキシシラン、 γ—アタリロイルォキシプロピルメチルジメトキシシラン、 γ—アタリ ロイルォキシプロピルメチルジェトキシシラン、 γ—メタクリロイルォキシプロピルメチ ルジメトキシシラン、 γ—メタクリロイルォキシプロピルメチルジェトキシシラン、 γ—メ ルカプトプロピルメチルジメトキシシラン、 γ メルカプトプロピルメチルジェトキシシラ ン、 γ—ァミノプロピルメチルジメトキシシラン、 γ—ァミノプロピルメチルジェトキシシ ラン、メチルビ-ルジメトキシシラン及びメチルビ-ルジェトキシシランが挙げられる。 [0225] Examples of silane coupling agents having a disubstituted alkyl group with respect to silicon include dimethylenoresimethoxymethoxysilane, pheninolemethinoresimethoxymethoxysilane, dimethylenolegetoxysilane, pheninolemethinolegetoxy. Silane, グ リ -Glycidinore xyloxypropenolemethino lesoxy silane Lufenyl dioxy silane, γ-chloropropyl methoxy silane, dimethyl diacetoxy silane, γ-Atalo yloxy propyl methyl dimethoxy silane, γ-Atari oxy oxypropyl methyl Getoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-methacryloyloxypropylmethyljetoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ mercaptopropylmethyljetoxy Run-, .gamma. § amino propyl methyl dimethoxy silane, .gamma. § amino propyl methyl jet Kishishi run, Mechirubi - dimethoxysilane and Mechirubi - Rougier butoxy silane.
[0226] これらのうち、分子内に二重結合を有するビニルトリメトキシシラン、ビニルトリェトキ シシラン、ビニルトリァセトキシシラン、ビニルトリメトキシエトキシシラン、 γ—アタリロイ ルォキシプロピルトリメトキシシラン及び γ—メタクリロイルォキシプロピルトリメトキシシ ラン、珪素に対して 2置換のアルキル基を持つものとして γ—アタリロイルォキシプロ ピルメチルジメトキシシラン、 γ アタリロイルォキシプロピルメチルジェトキシシラン、 口ピルメチルジェトキシシラン、メチルビ二ルジメトキシシラン及びメチルビ二ルジェト キシシランが好ましぐ y—アタリロイルォキシプロピルトリメトキシシラン及び γ—メタ クリロイルォキシプロピルトリメトキシシラン、 Ί—アタリロイルォキシプロピルメチルジメ トキシシラン、 γ—アタリロイルォキシプロピルメチルジェトキシシラン、 γ—メタクリロ ィルォキシプロピルメチルジメトキシシラン及び γ—メタクリロイルォキシプロピルメチ ルジェトキシシランが特に好まし 、。 [0226] Among these, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyltrimethoxyethoxysilane, γ-atarylloyoxypropyltrimethoxysilane and γ-methacryloyloxy having a double bond in the molecule. Propyltrimethoxysilane, which has a disubstituted alkyl group with respect to silicon, γ-Ataryloxypropyl propylmethyldimethoxysilane, γ Ataryloxypropylmethyl jetoxysilane, oral pyrmethylmethoxysilane, methylbiphenyl two dimethoxysilane and Mechirubi two Rujeto Kishishiran is preferred instrument y- Atari Roy Ruo trimethoxysilane and γ- methacryloyloxy Ruo trimethoxysilane, Ί - Atari Roy Ruo carboxypropyl methyl dimethacrylate Toki Silane, .gamma. Atari Roy Ruo carboxypropyl methyl jet silane, .gamma. methacrylonitrile I Ruo propyl methyl dimethoxy silane and .gamma.-methacryloyloxy Ruo propyl methylol Rougier butoxy silane is particularly preferred.
[0227] 2種類以上のカップリング剤を併用してもよい。上記に示されるシランカップリング剤 に加えて、他のシランカップリング剤を用いてもよい。他のシランカップリング剤には、 オルトケィ酸のアルキルエステル(例えば、オルトケィ酸メチル、オルトケィ酸ェチル、 オルトケィ酸 η プロピル、オルトケィ酸 i プロピル、オルトケィ酸 n—ブチル、オルト ケィ酸 sec—ブチル、オルトケィ酸 tーブチル)及びその加水分解物が挙げられる。 [0227] Two or more coupling agents may be used in combination. In addition to the silane coupling agents shown above, other silane coupling agents may be used. Other silane coupling agents include alkyl esters of orthokeys (eg, methyl orthokeate, ethyl orthokete, η-propyl orthokeate, i-propyl orthokeate, n-butyl orthokeate, ortho (Sec-butyl cate, t-butyl orthokeate) and hydrolysates thereof.
[0228] 低屈折率層のその他のバインダーとして用いられるポリマーとしては、例えば、ポリ ビュルアルコール、ポリオキシエチレン、ポリメチルメタタリレート、ポリメチルアタリレー ト、ジァセチノレセノレロース、トリァセチノレセノレロース、ニトロセノレロース、ポリエステノレ、 アルキド榭脂が挙げられる。 [0228] Examples of the polymer used as the other binder in the low refractive index layer include polybutyl alcohol, polyoxyethylene, polymethyl methacrylate, polymethyl acrylate, dicetinoresenololose, triacetinol. Examples include senorelose, nitrosenololose, polyesterol and alkyd rosin.
[0229] 低屈折率層は、全体で 5〜80質量%のバインダーを含むことが好まし 、。バインダ 一は、中空シリカ微粒子を接着し、空隙を含む低屈折率層の構造を維持する機能を 有する。バインダーの使用量は、空隙を充填することなく低屈折率層の強度を維持で きるように調整する。 [0229] The low refractive index layer preferably contains 5 to 80 mass% of the binder as a whole. The binder 1 has a function of adhering the hollow silica fine particles and maintaining the structure of the low refractive index layer including voids. The amount of the binder used is adjusted so that the strength of the low refractive index layer can be maintained without filling the voids.
[0230] (溶媒) [0230] (Solvent)
本発明に係る低屈折率層は有機溶媒を含有することが好ま ヽ。具体的な有機溶 媒の例としては、アルコール(例、メタノール、エタノール、イソプロパノール、ブタノー ル、ベンジルアルコール)、ケトン(例、アセトン、メチルェチルケトン、メチルイソブチ ルケトン、シクロへキサノン)、エステル(例、酢酸メチル、酢酸ェチル、酢酸プロピル、 酢酸プチル、蟻酸メチル、蟻酸ェチル、蟻酸プロピル、蟻酸プチル)、脂肪族炭化水 素(例、へキサン、シクロへキサン)、ハロゲンィ匕炭化水素(例、メチレンクロライド、クロ 口ホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トルエン、キシレン)、アミド (例、ジメチルホルムアミド、ジメチルァセトアミド、 n—メチルピロリドン)、エーテル(例 、ジェチルエーテル、ジォキサン、テトラハイド口フラン)、エーテルアルコール(例、 1 The low refractive index layer according to the present invention preferably contains an organic solvent. Specific examples of organic solvents include alcohols (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), esters (eg, Methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, propyl formate), aliphatic hydrocarbons (eg, hexane, cyclohexane), halogenated hydrocarbons (eg, methylene) Chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetamide, n-methylpyrrolidone), ethers (eg, jetyl ether) , Dioxane, tetrahydric furan), ether alcohol (For example, 1
—メトキシ一 2—プロパノール)が挙げられる。中でも、トルエン、キシレン、メチルェチ ルケトン、メチルイソブチルケトン、シクロへキサノン及びブタノールが特に好ましい。 -Methoxy-1-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable.
[0231] 有機溶媒の含有量は、低屈折率層塗布組成物中の固形分濃度の 1〜4質量%で あることが好ましい。有機溶媒は塗布ムラを防止して均一膜厚とするために 1質量% 以上が好ましぐ 4質量%を超えると乾燥負荷が大きくなり、乾燥装置の大型化、長時 間ィ匕となり好ましくない。  [0231] The content of the organic solvent is preferably 1 to 4% by mass of the solid content concentration in the low refractive index layer coating composition. 1% by weight or more is preferred to prevent uniform coating and prevent uniform coating of organic solvents. If it exceeds 4% by weight, the drying load increases, which is not preferable because it increases the size of the drying equipment and increases the time. .
[0232] 〈高屈折率層〉  [0232] <High refractive index layer>
本発明では、反射防止性を更に高める為に、前記低屈折率層の下層に下記高屈 折率層を複数層設けることができる。 [0233] 本発明に好ましい高屈折率層は、(c)平均粒子径が 10〜200nmである金属酸ィ匕 物微粒子、(d)金属化合物、(e)活性光線硬化型榭脂を含有することが好ましい。 In the present invention, in order to further improve the antireflection property, a plurality of the following high refractive index layers can be provided below the low refractive index layer. [0233] A high refractive index layer preferable for the present invention contains (c) metal oxide fine particles having an average particle diameter of 10 to 200 nm, (d) a metal compound, and (e) an actinic ray curable resin. It is preferable.
[0234] (金属酸化物微粒子)  [0234] (Metal oxide fine particles)
本発明の高屈折率層には金属酸ィ匕物微粒子が含有されることが好ましい。金属酸 化物微粒子の種類は特に限定されるものではなぐ Ti、 Zr、 Sn、 Sb、 Cu、 Fe、 Mn、 Pb、 Cd、 As、 Cr、 Hg、 Zn、 Al、 Mg、 Si、 P及び S力 選択される少なくとも一種の元 素を有する金属酸ィ匕物を用いることが出来、これらの金属酸化物微粒子は Al、 In、 S n、 Sb、 Nb、ハロゲン元素、 Taなどの微量の原子をドープしてあつても良い。また、こ れらの混合物でもよい。本発明においては、中でも酸ィ匕ジルコニウム、酸化アンチモ ン、酸化錫、酸化亜鉛、酸化インジウム—スズ (ITO)、アンチモンドープ酸化スズ (A TO)、及びアンチモン酸亜鉛カゝら選ばれる少なくとも 1種の金属酸ィ匕物微粒子を主 成分として用いることが好ましく、特に好ましくは酸化インジウム一スズ (ITO)である。  The high refractive index layer of the present invention preferably contains metal oxide fine particles. Types of metal oxide fine particles are not particularly limited Ti, Zr, Sn, Sb, Cu, Fe, Mn, Pb, Cd, As, Cr, Hg, Zn, Al, Mg, Si, P, and S force Metal oxides having at least one element selected can be used, and these metal oxide fine particles are doped with a small amount of atoms such as Al, In, Sn, Sb, Nb, halogen elements, Ta, etc. You can do it. A mixture of these may also be used. In the present invention, at least one selected from among zirconium oxide, antimony oxide, tin oxide, zinc oxide, indium-tin oxide (ITO), antimony-doped tin oxide (ATO), and zinc antimonate. The metal oxide fine particles are preferably used as the main component, and indium tin oxide (ITO) is particularly preferable.
[0235] これら金属酸化物微粒子の一次粒子の平均粒子径は 10nm〜200nmの範囲であ り、 10〜150nmであることが特に好ましい。金属酸化物微粒子の平均粒子径は、走 查電子顕微鏡 (SEM)等による電子顕微鏡写真から計測してもよ 1ヽし、動的光散乱 法や静的光散乱法等を利用する粒度分布計等によって計測してもよ 、。粒径が小さ 過ぎると凝集しやすくなり、分散性が劣化する。粒径が大き過ぎるとヘイズが著しく上 昇し好ましくない。金属酸化物微粒子の形状は、米粒状、球形状、立方体状、紡錘 形状、針状或 ヽは不定形状であることが好まし 、。  [0235] The average particle diameter of the primary particles of the metal oxide fine particles is in the range of 10 nm to 200 nm, and particularly preferably 10 to 150 nm. The average particle size of metal oxide fine particles can be measured from electron micrographs using a scanning electron microscope (SEM), etc., and a particle size distribution meter that uses dynamic light scattering or static light scattering. You can also measure by If the particle size is too small, aggregation tends to occur and the dispersibility deteriorates. If the particle size is too large, the haze is remarkably increased. The shape of the metal oxide fine particles is preferably a rice granular shape, a spherical shape, a cubic shape, a spindle shape, a needle shape, or an irregular shape.
[0236] 高屈折率層の屈折率は、具体的には、支持体である基材フィルムの屈折率より高く 、 23°C、波長 550nm測定で、 1. 50-1. 90の範囲であることが好ましい。高屈折率 層の屈折率を調整する手段は、金属酸化物微粒子の種類、添加量が支配的である 為、金属酸化物微粒子の屈折率は 1. 80-2. 60であることが好ましぐ 1. 85-2. 50であることが更に好ましい。  [0236] The refractive index of the high refractive index layer is specifically higher than the refractive index of the substrate film as the support, and is in the range of 1.50-1.90 at 23 ° C and wavelength of 550 nm. It is preferable. The means for adjusting the refractive index of the high refractive index layer is dominated by the type and amount of metal oxide fine particles, so the refractive index of the metal oxide fine particles is preferably 1.80-2.60. 1. 85-2.50 is more preferable.
[0237] 金属酸化物微粒子は有機化合物により表面処理してもよい。金属酸化物微粒子の 表面を有機化合物で表面修飾することによって、有機溶媒中での分散安定性が向 上し、分散粒径の制御が容易になるとともに、経時での凝集、沈降を抑える事もでき る。このため、好ましい有機化合物での表面修飾量は金属酸ィ匕物粒子に対して 0. 1 質量%〜5質量%、より好ましくは 0. 5質量%〜3質量%である。表面処理に用いる 有機化合物の例には、ポリオール、アルカノールァミン、ステアリン酸、シランカツプリ ング剤及びチタネートカップリング剤が含まれる。この中でも後述するシランカップリン グ剤が好ま 、。二種以上の表面処理を組み合わせてもよ 、。 [0237] The metal oxide fine particles may be surface-treated with an organic compound. By modifying the surface of the metal oxide fine particles with an organic compound, the dispersion stability in an organic solvent is improved, the dispersion particle size can be easily controlled, and aggregation and sedimentation over time can be suppressed. it can. For this reason, the amount of surface modification with a preferable organic compound is 0.1% with respect to metal oxide particles. It is 0.5 mass%-5 mass%, More preferably, it is 0.5 mass%-3 mass%. Examples of organic compounds used for the surface treatment include polyols, alkanolamines, stearic acid, silane coupling agents and titanate coupling agents. Of these, the silane coupling agents described below are preferred. You can combine two or more surface treatments.
[0238] 前記金属酸化物微粒子を含有する高屈折率層の厚さは 5ηπ!〜 1 μ mであることが 好ましぐ 10nm〜0. 2 mであることが更に好ましぐ 30nm〜0. 1 mであることが 最も好ましい。 [0238] The thickness of the high refractive index layer containing the metal oxide fine particles is 5ηπ! It is preferable that it is ˜1 μm, and it is more preferable that it is 10 nm to 0.2 m, and it is most preferable that it is 30 nm to 0.1 m.
[0239] 使用する金属酸化物微粒子と後述する活性光線硬化型榭脂等のバインダーとの 比は、金属酸化物微粒子の種類、粒子サイズなどにより異なるが体積比で前者 1〖こ 対して後者 2から前者 2に対して後者 1程度が好ましい。  [0239] The ratio of the metal oxide fine particles to be used and a binder such as actinic ray curable resin to be described later varies depending on the kind of metal oxide fine particles, the particle size, etc., but the volume ratio of the former 1% versus the latter 2 Therefore, the latter 1 is preferable to the former 2.
[0240] 本発明にお 、て用いられる金属酸化物微粒子の使用量は高屈折率層中に 5質量 %〜85質量%が好ましぐ 10質量%〜80質量%であることがより好ましぐ 20-75 質量%が最も好ましい。使用量が少ないと所望の屈折率や本発明の効果が得られ ず、多過ぎると膜強度の劣化などが発生する。  In the present invention, the amount of the metal oxide fine particles used in the present invention is preferably 5% by mass to 85% by mass in the high refractive index layer, more preferably 10% by mass to 80% by mass. 20-75% by weight is most preferred. If the amount used is small, the desired refractive index and the effect of the present invention cannot be obtained, and if it is too large, the film strength deteriorates.
[0241] 上記金属酸化物微粒子は、媒体に分散した分散体の状態で、高屈折率層を形成 するための塗布液に供される。金属酸化物粒子の分散媒体としては、沸点が 60〜1 70°Cの液体を用いることが好ましい。分散溶媒の具体例としては、水、アルコール( 例、メタノール、エタノール、イソプロパノール、ブタノール、ベンジルアルコール)、ケ トン(例、アセトン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン)、 ケトンアルコール(例、ジアセトンアルコール)、エステル(例、酢酸メチル、酢酸ェチ ル、酢酸プロピル、酢酸ブチル、蟻酸メチル、蟻酸ェチル、蟻酸プロピル、蟻酸ブチ ル)、脂肪族炭化水素 (例、へキサン、シクロへキサン)、ハロゲンィ匕炭化水素 (例、メ チレンクロライド、クロ口ホルム、四塩化炭素)、芳香族炭化水素(例、ベンゼン、トル ェン、キシレン)、アミド(例、ジメチルホルムアミド、ジメチルァセトアミド、 n—メチルビ 口リドン)、エーテル(例、ジェチルエーテル、ジォキサン、テトラハイド口フラン)、エー テルアルコール(例、 1—メトキシ— 2—プロパノール)が挙げられる。中でも、トルエン 、キシレン、メチルェチルケトン、メチルイソブチルケトン、シクロへキサノン及びブタノ ールが特に好ましい。 [0242] また金属酸ィ匕物微粒子は、分散機を用いて媒体中に分散することができる。分散 機の例としては、サンドグラインダーミル (例、ピン付きビーズミル)、高速インペラーミ ル、ぺッブルミル、ローラーミル、アトライター及びコロイドミルが挙げられる。サンドグ ラインダーミル及び高速インペラ一ミルが特に好ましい。また、予備分散処理を実施 してもよい。予備分散処理に用いる分散機の例としては、ボールミル、三本ロールミ ル、ニーダー及びエタストルーダーが挙げられる。 [0241] The metal oxide fine particles are supplied to a coating solution for forming a high refractive index layer in a dispersion state dispersed in a medium. As a dispersion medium for metal oxide particles, it is preferable to use a liquid having a boiling point of 60 to 170 ° C. Specific examples of the dispersion solvent include water, alcohol (eg, methanol, ethanol, isopropanol, butanol, benzyl alcohol), ketone (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone), ketone alcohol ( E.g., diacetone alcohol), esters (e.g., methyl acetate, ethyl acetate, propyl acetate, butyl acetate, methyl formate, ethyl formate, propyl formate, butyrate formate), aliphatic hydrocarbons (e.g., hexane, cyclohexane) Hexane), halogenated hydrocarbons (eg, methyl chloride, chloroform, carbon tetrachloride), aromatic hydrocarbons (eg, benzene, toluene, xylene), amides (eg, dimethylformamide, dimethylacetate) Amide, n-methylbiphenyl), ether (eg, jetyl ether, dioxane) , Tetrahydride furan) and ether alcohol (eg, 1-methoxy-2-propanol). Of these, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone and butanol are particularly preferable. [0242] The metal oxide fine particles can be dispersed in the medium using a disperser. Examples of the dispersing machine include a sand grinder mill (eg, a bead mill with a pin), a high-speed impeller mill, a pebble mill, a roller mill, an attritor, and a colloid mill. A sand grinder mill and a high-speed impeller mill are particularly preferred. In addition, preliminary dispersion processing may be performed. Examples of the disperser used for the preliminary dispersion treatment include a ball mill, a three-roll mill, a kneader, and an etastruder.
[0243] 本発明では、更にコア Zシェル構造を有する金属酸化物微粒子を含有させてもよ い。シェルはコアの周りに 1層形成させてもよいし、耐光性を更に向上させるために複 数層形成させてもよい。コアは、シェルにより完全に被覆されていることが好ましい。 [0243] In the present invention, metal oxide fine particles having a core Z shell structure may be further contained. One shell may be formed around the core, or a plurality of layers may be formed in order to further improve the light resistance. The core is preferably completely covered by the shell.
[0244] コアは酸化チタン (ルチル型、アナターゼ型、アモルファス型等)、酸化ジルコニウム 、酸化亜鈴、酸ィ匕セリウム、スズをドープした酸化インジウム、アンチモンをドープした 酸化スズ等を用いることができる力 ルチル型の酸ィ匕チタンを主成分としてもよ 、。  [0244] The core can use titanium oxide (rutile type, anatase type, amorphous type, etc.), zirconium oxide, dumbbell, cerium oxide, indium oxide doped with tin, tin oxide doped with antimony, etc. The main component is rutile titanium oxide.
[0245] シェルは酸化チタン以外の無機化合物を主成分とし、金属の酸化物または硫化物 力も形成することが好ましい。例えば、二酸ィ匕珪素(シリカ)、酸ィ匕アルミニウム (アルミ ナ)酸化ジルコニウム、酸化亜鈴、酸化スズ、酸化アンチモン、酸化インジウム、酸ィ匕 鉄、硫ィ匕亜鉛等を主成分とした無機化合物が用いられる。この内アルミナ、シリカ、ジ ルコユア(酸ィ匕ジルコニウム)であることが好ましい。また、これらの混合物でもよい。  [0245] The shell preferably contains an inorganic compound other than titanium oxide as a main component and also forms a metal oxide or sulfide force. For example, inorganic materials mainly composed of silicon dioxide (silica), aluminum oxide (alumina), zirconium oxide, dumbbell, tin oxide, antimony oxide, indium oxide, iron oxide, zinc oxide zinc, etc. A compound is used. Of these, alumina, silica and zirconium (acid zirconium) are preferable. A mixture of these may also be used.
[0246] コアに対するシェルの被覆量は、平均の被覆量で 2〜50質量%である。好ましくは 3〜40質量%、更に好ましくは 4〜25質量%である。シェルの被覆量が多いと微粒 子の屈折率が低下し、被覆量が少な過ぎると耐光性が劣化する。二種以上の金属酸 化物微粒子を併用してもょ 、。  [0246] The coating amount of the shell with respect to the core is 2 to 50% by mass in average coating amount. Preferably it is 3-40 mass%, More preferably, it is 4-25 mass%. When the coating amount of the shell is large, the refractive index of the fine particles is lowered, and when the coating amount is too small, the light resistance is deteriorated. Use two or more metal oxide fine particles in combination.
[0247] コアとなる酸ィ匕チタンは、液相法または気相法で作製されたものを使用できる。また 、シェルをコアの周りに形成させる手法としては、例えば、米国特許第 3, 410, 708 号、特公昭 58— 47061号、米国特許第 2, 885, 366号、同第 3, 437, 502号、英 国特許第 1, 134, 249号、米国特許第 3, 383, 231号、英国特許第 2, 629, 953 号、同第 1, 365, 999号に記載されている方法等を用いることができる。  [0247] As the core of titanium oxide, a core produced by a liquid phase method or a gas phase method can be used. Examples of methods for forming the shell around the core include, for example, U.S. Pat. No. 3,410,708, JP-B 58-47061, U.S. Pat. No. 2,885,366, and 3,437,502. No. 1, British Patent No. 1,134,249, U.S. Pat.No. 3,383,231, British Patent No. 2,629,953, No. 1,365,999, etc. be able to.
[0248] (金属化合物)  [0248] (Metal compound)
本発明に用いられる金属化合物は下記一般式 (4)で表される化合物またはそのキ レートイ匕合物を用いることができる。 The metal compound used in the present invention is a compound represented by the following general formula (4) or a key thereof. A rate-i compound can be used.
[0249] 一般式(4) A MB  [0249] General formula (4) A MB
式中、 Μは金属原子、 Αは加水分解可能な官能基または加水分解可能な官能基 を有する炭化水素基、 Bは金属原子 Mに共有結合またはイオン結合した原子団を表 す。 Xは金属原子 Mの原子価、 nは 2以上で X以下の整数を表す。  In the formula, Μ represents a metal atom, Α represents a hydrolyzable functional group or a hydrocarbon group having a hydrolyzable functional group, and B represents an atomic group covalently or ionically bonded to the metal atom M. X represents the valence of the metal atom M, and n represents an integer of 2 or more and X or less.
[0250] 加水分解可能な官能基 Aとしては、例えば、アルコキシル基、クロル原子等のハロ ゲン、エステル基、アミド基等が挙げられる。上記式 (4)に属する金属化合物には、 金属原子に直接結合したアルコキシル基を 2個以上有するアルコキシド、または、そ のキレートイ匕合物が含まれる。好ましい金属化合物としては、チタンアルコキシド、ジ ルコ -ゥムアルコキシドまたはそれらのキレートイ匕合物を挙げることができる。チタンァ ルコキシドは反応速度が速くて屈折率が高ぐ取り扱いも容易であるが、光触媒作用 があるため大量に添加すると耐光性が劣化する。ジルコニウムアルコキシドは屈折率 が高いが白濁し易いため、塗布する際の露点管理等に注意しなければならない。ま た、チタンアルコキシドは紫外線硬化榭脂、金属アルコキシドの反応を促進する効果 があるため、少量添加するだけでも塗膜の物理的特性を向上させることができる。 [0250] Examples of the hydrolyzable functional group A include an alkoxyl group, a halogen such as a chloro atom, an ester group, an amide group, and the like. The metal compound belonging to the above formula (4) includes an alkoxide having two or more alkoxyl groups bonded directly to a metal atom, or a chelate compound thereof. Preferable metal compounds include titanium alkoxides, zinc alkoxides, and chelate compounds thereof. Titanium alkoxide has a high reaction rate and a high refractive index and is easy to handle. However, since it has a photocatalytic action, its light resistance deteriorates when added in large quantities. Zirconium alkoxide has a high refractive index but tends to become cloudy, so care must be taken in dew point management during coating. In addition, titanium alkoxide has the effect of accelerating the reaction of UV-cured resin and metal alkoxide, so that the physical properties of the coating film can be improved by adding a small amount.
[0251] チタンアルコキシドとしては、例えば、テトラメトキシチタン、テトラエトキシチタン、テト ラー iso—プロポキシチタン、テトラー n—プロポキシチタン、テトラー n—ブトキシチタ ン、テトラ— sec—ブトキシチタン、テトラ— tert—ブトキシチタン等が挙げられる。  [0251] Examples of the titanium alkoxide include tetramethoxy titanium, tetraethoxy titanium, tetra-iso-propoxy titanium, tetra-n-propoxy titanium, tetra-n-butoxy titanium, tetra-sec-butoxy titanium, tetra-tert-butoxy titanium. Etc.
[0252] ジルコニウムアルコキシドとしては、例えば、テトラメトキシジルコニウム、テトラエトキ シジノレコ-ゥム、テトラー iso—プロポキシジルコニウム、テトラー n—プロポキシジルコ ユウム、テトラー n—ブトキシジルコニウム、テトラー sec—ブトキシジルコニウム、テトラ —tert—ブトキシジルコニウム等が挙げられる。  Zirconium alkoxides include, for example, tetramethoxyzirconium, tetraethoxyzinorecordium, tetra-iso-propoxyzirconium, tetra-n-propoxyzirconium, tetra-n-butoxyzirconium, tetra-sec-butoxyzirconium, tetra-tert-butoxy Zirconium etc. are mentioned.
[0253] 遊離の金属化合物に配位させてキレート化合物を形成するのに好ましいキレート化 剤としては、ジエタノールァミン、トリエタノールァミン等のアルカノールァミン類、ェチ レングリコール、ジエチレングリコール、プロピレングリコール等のグリコール類、ァセ チルアセトン、ァセト酢酸ェチル等であって分子量 1万以下のものを挙げることができ る。これらのキレート化剤を用いることにより、水分の混入等に対しても安定で、塗膜 の補強効果にも優れるキレート化合物を形成できる。 [0254] 金属化合物の添加量は、高屈折率層に含まれる該金属化合物由来の金属酸化物 の含有量が 0. 3〜5質量%であるように調整することが好ましい。 0. 3質量%未満で は耐擦傷性が不足し、 5質量%を超えると耐光性が劣化する傾向がある。 [0253] Preferred chelating agents for forming a chelate compound by coordination with a free metal compound include alkanolamines such as diethanolamine and triethanolamine, ethylene glycol, diethylene glycol, and propylene glycol. And glycols such as acetylacetone, acetylacetoacetate and the like having a molecular weight of 10,000 or less. By using these chelating agents, it is possible to form a chelate compound which is stable against moisture mixing and is excellent in the effect of reinforcing the coating film. [0254] The addition amount of the metal compound is preferably adjusted so that the content of the metal oxide derived from the metal compound contained in the high refractive index layer is 0.3 to 5% by mass. When the amount is less than 3% by mass, the scratch resistance is insufficient. When the amount exceeds 5% by mass, the light resistance tends to deteriorate.
[0255] (活性光線硬化型榭脂)  [0255] (Actinic ray curable resin)
活性光線硬化型榭脂は金属酸化物微粒子のバインダーとして塗膜の成膜性や物 理的特性の向上のために添加される。活性光線硬化型榭脂としては、紫外線や電子 線のような活性光線の照射により直接、または光重合開始剤の作用を受けて間接的 に重合反応を生じる官能基を 2個以上有するモノマーまたはオリゴマーを用いること ができる。官能基としては (メタ)アタリロイルォキシ基等のような不飽和二重結合を有 する基、エポキシ基、シラノール基等が挙げられる。中でも不飽和二重結合を 2個以 上有するラジカル重合性のモノマーやオリゴマーを好ましく用いることができる。必要 に応じて光重合開始剤を組み合わせてもよ ヽ。このような活性光線硬化型榭脂として は、例えば多官能アタリレートイ匕合物等が挙げられ、ペンタエリスリトール多官能ァク リレート、ジペンタエリスリトール多官能アタリレート、ペンタエリスリトール多官能メタク リレート、及びジペンタエリスリトール多官能メタタリレートよりなる群力も選ばれる化合 物であることが好ましい。ここで、多官能アタリレートイ匕合物とは、分子中に 2個以上の アタリロイルォキシ基及び Zまたはメタクロィルォキシ基を有する化合物である。  Actinic ray curable resin is added as a binder for metal oxide fine particles in order to improve the film formability and physical properties of the coating film. Actinic ray curable resin is a monomer or oligomer having two or more functional groups that undergo polymerization reaction directly by irradiation of actinic rays such as ultraviolet rays or electron beams or indirectly by the action of a photopolymerization initiator. Can be used. Examples of the functional group include a group having an unsaturated double bond such as a (meth) ataryloxy group, an epoxy group, and a silanol group. Of these, radically polymerizable monomers and oligomers having two or more unsaturated double bonds can be preferably used. A photopolymerization initiator may be combined as necessary. Examples of such actinic ray curable resin include polyfunctional attareito toy compounds, pentaerythritol polyfunctional acrylate, dipentaerythritol polyfunctional acrylate, pentaerythritol polyfunctional methacrylate, and It is preferable that the compound is selected from the group power consisting of dipentaerythritol polyfunctional metatalylate. Here, the polyfunctional ate relato toy compound is a compound having two or more allyloyloxy groups and Z or methacryloxy groups in the molecule.
[0256] 多官能アタリレートイ匕合物のモノマーとしては、例えばエチレングリコールジアタリレ ート、ジエチレングリコールジアタリレート、 1, 6—へキサンジオールジアタリレート、ネ ォペンチルグリコールジアタリレート、トリメチロールプロパントリアタリレート、トリメチロ ールェタントリアタリレート、テトラメチロールメタントリアタリレート、テトラメチロールメタ ンテトラアタリレート、ペンタグリセロールトリアタリレート、ペンタエリスリトールジアタリ レート、ペンタエリスリトールトリアタリレート、ペンタエリスリトールテトラアタリレート、グ リセリントリアタリレート、ジペンタエリスリトールトリアタリレート、ジペンタエリスリトール テトラアタリレート、ジペンタエリスリトールペンタアタリレート、ジペンタエリスリトールへ キサアタリレート、トリス(アタリロイルォキシェチル)イソシァヌレート、エチレングリコー ルジメタタリレート、ジエチレングリコールジメタタリレート、 1, 6—へキサンジオールジ メタタリレート、ネオペンチルグリコールジメタタリレート、トリメチロールプロパントリメタ タリレート、トリメチロールェタントリメタクリレート、テトラメチロールメタントリメタタリレー ト、テトラメチロールメタンテトラメタタリレート、ペンタグリセロールトリメタタリレート、ぺ ンタエリスリトールジメタタリレート、ペンタエリスリトールトリメタタリレート、ペンタエリスリ トールテトラメタタリレート、グリセリントリメタタリレート、ジペンタエリスリトールトリメタタリ レート、ジペンタエリスリトールテトラメタタリレート、ジペンタエリスリトールペンタメタクリ レート、ジペンタエリスリトールへキサメタタリレートが好ましく挙げられる。これらの化 合物は、それぞれ単独または 2種以上を混合して用いられる。また、上記モノマーの[0256] Examples of the monomer of the polyfunctional talarito toy compound include ethylene glycol ditalylate, diethylene glycol ditalylate, 1,6-hexanediol ditalylate, neopentylglycol ditalylate, and triglyceride. Methylolpropane tritalylate, trimethylolethane tritalylate, tetramethylol methane tritalylate, tetramethylol methane tetratalylate, pentaglycerol tritalylate, pentaerythritol diatalate, pentaerythritol tritalylate, pentaerythritol tetra Atalylate, Glycerin triatalylate, Dipentaerythritol triatalylate, Dipentaerythritol Tetraatalylate, Dipentaerythritol Pentaatalylate , Dipentaerythritol hexaoxatalylate, tris (atallyloyloxetyl) isocyanurate, ethylene glycol dimetatalylate, diethylene glycol dimetatalylate, 1,6-hexanediol dimetatalylate, neopentyl glycol dimetatalylate, tri Methylolpropane trimeta Tallylate, trimethylol ethane trimethacrylate, tetramethylol methane trimethalate, tetramethylol methane tetramethalate, pentaglycerol trimetatalylate, pentaerythritol dimetatalylate, pentaerythritol trimetatalylate, pentaerythritol tetrametatalylate Glycerol trimethacrylate, dipentaerythritol trimethacrylate, dipentaerythritol tetramethacrylate, dipentaerythritol pentamethacrylate, and dipentaerythritol hexamethacrylate. These compounds may be used alone or in combination of two or more. In addition, the above monomer
2量体、 3量体等のオリゴマーであってもよい。 It may be an oligomer such as a dimer or trimer.
[0257] 活性光線硬化型榭脂の添加量は、高屈折率組成物では固形分中の 50質量%未 満であることが好ましい。 [0257] The addition amount of the actinic ray curable resin is preferably less than 50% by mass in the solid content of the high refractive index composition.
[0258] 本発明に係る活性光線硬化型榭脂の硬化促進のために、光重合開始剤と分子中 に重合可能な不飽和結合を 2個以上有するアクリル系化合物とを質量比で 3: 7〜1:[0258] In order to accelerate the curing of the actinic radiation curable resin according to the present invention, the photopolymerization initiator and the acrylic compound having two or more polymerizable unsaturated bonds in the molecule were used in a mass ratio of 3: 7. ~ 1:
9含有することが好ましい。 It is preferable to contain 9.
[0259] 光重合開始剤としては、具体的には、ァセトフエノン、ベンゾフエノン、ヒドロキシベン ゾフエノン、ミヒラーケトン、 a アミ口キシムエステル、チォキサントン等及びこれらの 誘導体を挙げることができる。 Specific examples of the photopolymerization initiator include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, a amioxime ester, thixanthone, and derivatives thereof.
[0260] (溶媒) [0260] (Solvent)
本発明の高屈折率層をコーティングする際に用いられる有機溶媒としては、例えば 、アルコール類(例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブ タノール、イソブタノール、セカンダリーブタノール、ターシャリーブタノール、ペンタノ ール、へキサノール、シクロへキサノール、ベンジルアルコール等)、多価アルコール 類(例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリ エチレングリコーノレ、プロピレングリコール、ジプロピレングリコール、ポリプロピレング リコール、ブチレングリコール、へキサンジオール、ペンタンジオール、グリセリン、へ キサントリオール、チォジグリコール等)、多価アルコールエーテル類 (例えば、ェチ レングリコーノレモノメチノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ェチレ ングリコーノレモノブチノレエーテノレ、ジエチレングリコーノレモノメチノレエーテノレ、ジェチ レングリコーノレモノメチノレエーテノレ、ジエチレングリコーノレモノブチノレエーテノレ、プロ ピレングリコーノレモノメチノレエーテル、プロピレングリコーノレモノブチノレエーテル、ェ チレングリコーノレモノメチノレエーテノレアセテート、トリエチレングリコーノレモノメチノレエ 一テル、トリエチレングリコーノレモノェチノレエーテル、エチレングリコーノレモノフエ二ノレ エーテル、プロピレングリコールモノフエ-ルエーテル等)、アミン類(例えば、ェタノ ールァミン、ジエタノールァミン、トリエタノールァミン、 N—メチルジェタノールァミン、 N—ェチルジェタノールァミン、モルホリン、 N—ェチルモルホリン、エチレンジァミン 、ジエチレンジァミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンィ ミン、ペンタメチルジェチレントリァミン、テトラメチルプロピレンジァミン等)、アミド類( 例えば、ホルムアミド、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド等) 、複素環類(例えば、 2—ピロリドン、 N—メチル—2—ピロリドン、シクロへキシルピロリ ドン、 2—ォキサゾリドン、 1, 3—ジメチル— 2—イミダゾリジノン等)、スルホキシド類( 例えば、ジメチルスルホキシド等)、スルホン類 (例えば、スルホラン等)、尿素、ァセト 二トリル、アセトン等が挙げられるが、特に、アルコール類、多価アルコール類、多価 アルコールエーテル類が好まし 、。 Examples of the organic solvent used for coating the high refractive index layer of the present invention include alcohols (for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, secondary butanol, tertiary butanol, and pentaanol). , Hexanol, cyclohexanol, benzyl alcohol, etc.), polyhydric alcohols (eg, ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol glycol, propylene glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexane) Diol, pentanediol, glycerin, hexanetriol, thiodiglycol, etc.), polyhydric alcohol ethers (for example, ethylenic glycolanol monomer) Chinoleatenore, ethyleneglycolenomonochinenoatenore, ethyleneglycolenoremonobutinoreethenore, diethyleneglycololemonomethinoreatenore, jetylene glycolenoremonomethinoreatenore, diethyleneglycolenoremonobutinoreatenore, Professional Pyreneglycolole monomethinoreether, propyleneglycololemonobutinoreether, ethyleneglycololemonomethinoreateolate, triethyleneglycolenomonomethinoreether, triethyleneglycolenomonomethinoreether, ethyleneglycol Nomonophenyl ether, propylene glycol monophenol ether, etc.), amines (eg ethanolamine, diethanolamine, triethanolamine, N-methyljetanolamine, N-ethyljetanolamine, Morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethyleneimine, pentamethyljetylenetriamine, tetramethylpropylenediamine, etc. ), Amides (eg, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.), heterocyclics (eg, 2-pyrrolidone, N-methyl-2-pyrrolidone, cyclohexylpyrrolidone, 2-oxazolidone, 1,3-dimethyl-2-imidazolidinone, etc.), sulfoxides (eg, dimethyl sulfoxide, etc.), sulfones (eg, sulfolane, etc.), urea, acetonitryl, acetone, etc. In particular, alcohols, polyhydric alcohols, and polyhydric alcohol ethers are preferred.
[0261] (防汚層)  [0261] (Anti-fouling layer)
本発明の防眩性フィルムもしくは防眩性反射防止フィルムは、最表層に防汚層が 設けられて 、ることが好ま U、。  The antiglare film or antiglare antireflection film of the present invention is preferably provided with an antifouling layer on the outermost layer.
[0262] 本発明に好ましい防汚層は、フッ素含有シランィ匕合物を防汚層形成用組成物に含 有することが好ましく、フルォロアルキル基またはフルォロアルキルエーテル基を有 するシラン化合物溶液をコーティングして作製する。特に、フッ素含有シラン化合物 がシラザンもしくはアルコキシシランであることが好ま U、。 [0262] The antifouling layer preferable for the present invention preferably contains a fluorine-containing silane compound in the antifouling layer forming composition, and is coated with a silane compound solution having a fluoroalkyl group or a fluoroalkyl ether group. To make. In particular, it is preferred that the fluorine-containing silane compound is silazane or alkoxysilane.
[0263] また、前記フルォロアルキル基またはフルォロアルキルエーテル基を有するシラン ィ匕合物のなかでも、シラン化合物中のフルォロアルキル基力 Si原子 1つに対し、 1 つ以下の割合で Si原子と結合されており、残りは加水分解性基もしくはシロキサン結 合基であるシランィ匕合物が好ま U、。 [0263] In addition, among the silane compounds having the fluoroalkyl group or the fluoroalkyl ether group, one Si atom is bonded to Si atoms at a ratio of 1 or less with respect to one Si atom having a fluoroalkyl group in the silane compound. The remainder is preferably a silane compound which is a hydrolyzable group or a siloxane linking group.
[0264] ここで 、う加水分解性の基としては、例えばアルコキシ基等の基であり、加水分解 によりヒドロキシル基となり、それにより前記シランィ匕合物は重縮合物を形成する。 Here, the hydrolyzable group is a group such as an alkoxy group, for example, and becomes a hydroxyl group by hydrolysis, whereby the silanic compound forms a polycondensate.
[0265] 例えば、上記シラン化合物は水と (必要なら酸触媒の存在下)、副生するアルコー ルを留去しながら、通常、室温〜 100°Cの範囲で反応させる。これによりアルコキシ シランは (部分的に)加水分解し、一部縮合反応が起こり、ヒドロキシル基を有する加 水分解物として得ることができる。加水分解、縮合の程度は、反応させる水の量により 適宜調節することができるが、本発明においては、防汚処理に用いるシラン化合物 溶液に積極的には水を添加せず、調製後、主として乾燥時に、空気中の水分等によ り加水分解反応を起こさせるため溶液の固形分濃度を薄く希釈して用いることが好ま しい。 [0265] For example, the above silane compound is a by-product alcohol with water (in the presence of an acid catalyst if necessary). In general, the reaction is carried out in the range of room temperature to 100 ° C. while distilling off the solvent. As a result, the alkoxysilane is (partially) hydrolyzed to cause a partial condensation reaction, and can be obtained as a hydrolyzate having a hydroxyl group. The degree of hydrolysis and condensation can be appropriately adjusted depending on the amount of water to be reacted. However, in the present invention, water is not actively added to the silane compound solution used for the antifouling treatment, and after the preparation, It is preferred to dilute the solid content of the solution thinly to cause a hydrolysis reaction with moisture in the air during drying.
[0266] 好ましくは、防汚層形成用組成物にお 、て、前記フルォロアルキル基を有するシラ ン化合物は下記一般式(5)で表され、かつ該シランィ匕合物の濃度を 0. 01〜5質量 %に希釈した溶液として用いて、防汚処理することである。  [0266] Preferably, in the composition for forming an antifouling layer, the silane compound having a fluoroalkyl group is represented by the following general formula (5), and the concentration of the silane compound is 0.01 to It is to be used as a solution diluted to 5% by mass and subjected to antifouling treatment.
[0267] 一般式(5) CF (CF ) (CH ) — Si—(ORa)  [0267] Formula (5) CF (CF) (CH) — Si— (ORa)
3 2 m 2 n 3  3 2 m 2 n 3
ここにおいて、 mは 1〜10の整数。 nは 0〜10の整数。 Raは同一もしくは異なるアル キル基を表す。  Here, m is an integer of 1-10. n is an integer from 0 to 10. Ra represents the same or different alkyl group.
[0268] 前記一般式 (5)で表される化合物中、 Raは炭素原子数 3つ以下であり炭素と水素 のみ力もなるアルキル基、例えば、メチル、ェチル、イソプロピル等の基が好ましい。  [0268] In the compound represented by the general formula (5), Ra is preferably an alkyl group having 3 or less carbon atoms and capable of acting only on carbon and hydrogen, for example, a group such as methyl, ethyl, and isopropyl.
[0269] これら本発明にお 、て好ましく用いられるフルォロアルキル基またはフルォロアル キルエーテル基を有するシラン化合物としては、 CF (CH ) Si (OCH )、 CF (CH  [0269] Examples of the silane compound having a fluoroalkyl group or a fluoroalkyl ether group preferably used in the present invention include CF (CH) Si (OCH), CF (CH
3 2 2 3 3 3 2 3 2 2 3 3 3 2
) Si (OC H )、 CF (CH ) Si (OC H ) 、 CF (CH ) Si(OC H ) 、 CF (CF ) (C) Si (OC H), CF (CH) Si (OC H), CF (CH) Si (OC H), CF (CF) (C
2 2 5 3 3 2 2 3 7 3 3 2 2 4 9 3 3 2 52 2 5 3 3 2 2 3 7 3 3 2 2 4 9 3 3 2 5
H ) Si (OCH )、 CF (CF ) (CH ) Si(OC H )、 CF (CF ) (CH ) Si(OC H )H) Si (OCH), CF (CF) (CH) Si (OC H), CF (CF) (CH) Si (OC H)
2 2 3 3 3 2 5 2 2 2 5 3 3 2 5 2 2 3 7 32 2 3 3 3 2 5 2 2 2 5 3 3 2 5 2 2 3 7 3
、 CF (CF ) (CH ) Si(OCH ) 、 CF (CF ) (CH ) Si (OC H )、 CF (CF ) (C, CF (CF) (CH) Si (OCH), CF (CF) (CH) Si (OC H), CF (CF) (C
3 2 7 2 2 3 3 3 2 7 2 2 2 5 3 3 2 73 2 7 2 2 3 3 3 2 7 2 2 2 5 3 3 2 7
H ) Si (OC H ) 、 CF (CF ) (CH ) Si (OCH ) (OC H )、 CF (CF ) (CH ) SiH) Si (OC H), CF (CF) (CH) Si (OCH) (OC H), CF (CF) (CH) Si
2 2 3 7 3 3 2 7 2 2 3 3 7 2 3 2 7 2 22 2 3 7 3 3 2 7 2 2 3 3 7 2 3 2 7 2 2
(OCH ) OC H、 CF (CF ) (CH ) SiCH (OCH )、 CF (CF ) (CH ) SiCH ((OCH) OC H, CF (CF) (CH) SiCH (OCH), CF (CF) (CH) SiCH (
3 2 3 7 3 2 7 2 2 3 3 2 3 2 7 2 2 33 2 3 7 3 2 7 2 2 3 3 2 3 2 7 2 2 3
OC H ) 、 CF (CF ) (CH ) SiCH (OC H ) 、(CF ) CF (CF ) (CH ) Si (OCOC H), CF (CF) (CH) SiCH (OC H), (CF) CF (CF) (CH) Si (OC
2 5 2 3 2 7 2 2 3 3 7 2 3 2 2 8 2 2 2 5 2 3 2 7 2 2 3 3 7 2 3 2 2 8 2 2
H ) 、 C F CONH (CH ) Si(OC H ) 、 C F SO NH (CH ) Si(OC H ) 、 C F H), C F CONH (CH) Si (OC H), C F SO NH (CH) Si (OC H), C F
3 3 7 15 2 3 2 5 3 8 17 2 2 3 2 5 3 8 173 3 7 15 2 3 2 5 3 8 17 2 2 3 2 5 3 8 17
(CH ) OCONH (CH ) Si (OCH )、 CF (CF ) (CH ) Si(CH ) (OCH ) 、 CF(CH) OCONH (CH) Si (OCH), CF (CF) (CH) Si (CH) (OCH), CF
2 2 2 3 3 3 3 2 7 2 2 3 3 2 32 2 2 3 3 3 3 2 7 2 2 3 3 2 3
(CF ) (CH ) Si(CH ) (OC H ) 、 CF (CF ) (CH ) Si (CH ) (OC H ) 、 CF ((CF) (CH) Si (CH) (OC H), CF (CF) (CH) Si (CH) (OC H), CF (
2 7 2 2 3 2 5 2 3 2 7 2 2 3 3 7 2 32 7 2 2 3 2 5 2 3 2 7 2 2 3 3 7 2 3
CF ) (CH ) Si(C H ) (OCH ) 、 CF (CF ) (CH ) Si (C H ) (OC H )、 CF (CCF) (CH) Si (C H) (OCH), CF (CF) (CH) Si (C H) (OC H), CF (C
2 7 2 2 2 5 3 2 3 2 7 2 2 2 5 3 7 2 32 7 2 2 2 5 3 2 3 2 7 2 2 2 5 3 7 2 3
H ) Si (CH ) (OCH ) 、 CF (CH ) Si(CH ) (OC H )、 CF (CH ) Si(CH ) (OH) Si (CH) (OCH), CF (CH) Si (CH) (OC H), CF (CH) Si (CH) (O
2 2 3 3 2 3 2 2 3 2 5 2 3 2 2 3 C H )、 CF (CF ) (CH ) Si (CH ) (OCH )、 CF (CF ) (CH ) Si(CH ) (OC2 2 3 3 2 3 2 2 3 2 5 2 3 2 2 3 CH), CF (CF) (CH) Si (CH) (OCH), CF (CF) (CH) Si (CH) (OC
3 7 2 3 2 5 2 2 3 3 2 3 2 5 2 2 3 33 7 2 3 2 5 2 2 3 3 2 3 2 5 2 2 3 3
H )、CF (CF ) 0 (CF ) (CH ) Si (OC H )、 C F CH O (CH ) Si (OC H )H), CF (CF) 0 (CF) (CH) Si (OC H), C F CH O (CH) Si (OC H)
7 2 3 2 2 2 3 2 2 3 7 7 15 2 2 3 2 5 3、7 2 3 2 2 2 3 2 2 3 7 7 15 2 2 3 2 5 3,
C F SO O (CH ) Si (OC H )、 C F (CH ) OCHO (CH ) Si (OCH )などが挙C F SO O (CH) Si (OC H), C F (CH) OCHO (CH) Si (OCH), etc.
8 17 2 2 3 2 5 3 8 17 2 2 2 3 3 3 げられるが、この限りでない。 8 17 2 2 3 2 5 3 8 17 2 2 2 3 3 3
[0270] 上記フッ素系シランィ匕合物としては、例えば信越ィ匕学工業株式会社製 KP801M、 X— 24— 9146、ジーィ一東芝シリコーン株式会ネ ±XC98— A5382、 XC98— B247 2、ダイキン工業 (株)ォプツール DSX、株式会社フロロテクノロジー製 FG5010など が挙げられ、表面処理のための化合物としては、パーフルォロアルキルシラザン、ノ 一フルォロアルキルシラン、もしくはパーフルォロポリエーテル基含有シランィ匕合物、 特にパーフルォロアルキルトリアルコキシシラン、パーフルォロポリエーテルトリアルコ キシシラン、パーフルォロポリエーテルジトリアルコキシシランが挙げられる。  [0270] Examples of the fluorine-based silane compounds include KP801M, X-24-9146, Shinichi Shingaku Kogyo Co., Ltd. Optool DSX, FG5010 manufactured by Fluoro Technology Co., Ltd., etc., and as a compound for surface treatment, perfluoroalkylsilazane, monofluoroalkylsilane, or perfluoropolyether group-containing silane Examples of the compound include perfluoroalkyl trialkoxysilane, perfluoropolyether trialkoxysilane, and perfluoropolyether ditrialkoxysilane.
[0271] これらのシランィ匕合物を用いる際には、フッ素を含まない有機溶媒で 0. 01〜10質 量%、好ましくは 0. 03〜5質量%、更に好ましくは 0. 05〜2質量%に希釈された状 態で用いることが好ましい。  [0271] When these silanic compounds are used, they are 0.01 to 10% by mass, preferably 0.03 to 5% by mass, more preferably 0.05 to 2% by mass in an organic solvent not containing fluorine. It is preferably used in a state diluted to%.
[0272] 本発明にお ヽて、前記シラン化合物溶液を調製するためにフッ素を含まな!/、有機 溶媒が好ましく用いられるが、以下のものが挙げられる。  [0272] In the present invention, fluorine-free organic solvents are preferably used for preparing the silane compound solution. Examples thereof include the following.
[0273] 本発明に用いられる防汚層用の塗布組成物の溶媒としては、プロピレングリコール モノ(C 1〜C4)アルキルエーテル及び Zまたはプロピレングリコールモノ(C 1〜C4) アルキルエーテルエステル、プロピレングリコールモノ(C1〜C4)アルキルエーテル としては具体的にはプロピレングリコールモノメチルエーテル(PGME)、プロピレング リコーノレモノェチノレエーテノレ、プロピレングリコーノレモノー n—プロピノレエーテノレ、プロ ピレンダリコールモノイソプロピルエーテル、プロピレングリコールモノブチルエーテル など。又、プロピレングリコールモノ(C1〜C4)アルキルエーテルエステルとしては特 にプロピレングリコールモノアルキルエーテルアセテート、具体的にはプロピレングリ コーノレモノメチノレエーテノレアセテート、プロピレングリコーノレモノェチノレエーテノレァセ テートなどが挙げられる。プロピレングリコールモノ(C1〜C4)アルキルエーテル及び /またはプロピレングリコールモノ(C1〜C4)アルキルエーテルエステルなど、メタノ ール、エタノール、プロパノール、 n—ブタノール、 2—ブタノール、 tーブタノール、シ クロへキサノールなどのアルコール類、メチルェチルケトン、メチルイソブチルケトン、 アセトンなどのケトン類、酢酸ェチル、酢酸メチル、乳酸ェチル、酢酸イソプロピル、 酢酸ァミル、酪酸ェチルなどのエステル類、ベンゼン、トルエン、キシレン等の炭化水 素類、ジォキサン、 N, N—ジメチルホルムアミドその他の溶媒などが挙げられる。或 いは、これらの溶媒が、適宜混合されて用いられる。混合される溶媒としては、特にこ れらに限定されるものではない。 [0273] Solvents for the coating composition for the antifouling layer used in the present invention include propylene glycol mono (C1-C4) alkyl ether and Z or propylene glycol mono (C1-C4) alkyl ether ester, propylene glycol Specific examples of mono (C1 to C4) alkyl ethers include propylene glycol monomethyl ether (PGME), propylene glycol monomethenoleatenore, propylene glycolenolemono-n-propinoreethenole, propylene alcohol monoisopropyl Ether, propylene glycol monobutyl ether, etc. In addition, propylene glycol mono (C1 to C4) alkyl ether esters are particularly propylene glycol monoalkyl ether acetates, specifically propylene glycol monomono methinoate etherate, propylene glycol monomethenoate etherate acetate. Tate etc. are mentioned. Propylene glycol mono (C1-C4) alkyl ether and / or propylene glycol mono (C1-C4) alkyl ether ester, such as methanol, ethanol, propanol, n -butanol, 2-butanol, t-butanol, Alcohols such as clohexanol, ketones such as methyl ethyl ketone, methyl isobutyl ketone, acetone, esters such as ethyl acetate, methyl acetate, ethyl lactate, isopropyl acetate, amyl acetate, ethyl butyrate, benzene, toluene, xylene And hydrocarbons such as dioxane, N, N-dimethylformamide and other solvents. Alternatively, these solvents are used by being appropriately mixed. The solvent to be mixed is not particularly limited to these.
[0274] 特に好まし!/、溶媒としては、エタノール、イソプロピルアルコール、プロピレングリコ ール、プロピレングリコールモノメチルエーテルカゝら選ばれる 1種類以上の有機溶媒 である。 [0274] Particularly preferred! /, As the solvent, one or more organic solvents selected from ethanol, isopropyl alcohol, propylene glycol, and propylene glycol monomethyl ether carbonate.
[0275] これらの溶媒中には、メタノール、エタノール、イソプロピルアルコールのような常圧 における沸点が 100°C未満のもの(低沸点溶媒)と、プロピレングリコールモノメチル エーテル、 n—ブチルアルコールのような沸点が 100°C以上のもの(高沸点溶媒)を 併用することが好ましぐ特に沸点が 60〜98°Cのものと、 100〜160°Cのものを併用 することが好ましい。併用する場合の低沸点溶媒と高沸点溶媒の比率は、低沸点溶 媒は組成物中、 98. 0質量%以上であり、高沸点溶媒が 0. 5〜2質量%であることが 好ましい。  [0275] Among these solvents, those having a boiling point of less than 100 ° C (low-boiling solvent) such as methanol, ethanol and isopropyl alcohol, and boiling points such as propylene glycol monomethyl ether and n-butyl alcohol It is preferable to use a solvent having a boiling point of 100 ° C. or higher (high boiling solvent). It is particularly preferable to use a solvent having a boiling point of 60 to 98 ° C. and that having a boiling point of 100 to 160 ° C. When used in combination, the ratio of the low-boiling point solvent to the high-boiling point solvent is preferably 98.0% by mass or more in the composition of the low-boiling solvent and 0.5-2% by mass of the high-boiling solvent.
[0276] 本発明に用いられる防汚層形成用組成物においては、酸を添加して pHを 5. 0以 下に調整し用いることが好ましい。酸は前記シラン化合物の加水分解を促し、重縮合 反応の触媒として作用するので、基材表面にシラン化合物の重縮合膜の形成を容易 にし、防汚性を高めることができる。 pHは 1. 5〜5. 0の範囲が良ぐ 1. 5以下では溶 液の酸性が強過ぎて、容器や配管をいためる恐れがあり、 5以上では反応が進行し にくい。好ましくは pH2. 0〜4. 0の範囲である。  [0276] In the composition for forming an antifouling layer used in the present invention, it is preferable to adjust the pH to 5.0 or less by adding an acid. Since the acid promotes hydrolysis of the silane compound and acts as a catalyst for the polycondensation reaction, the polycondensation film of the silane compound can be easily formed on the surface of the base material, and the antifouling property can be enhanced. The pH is good in the range of 1.5 to 5.0. Below 1.5, the acidity of the solution is too strong, and there is a risk of damaging the container and piping. Above 5 the reaction is difficult to proceed. The pH is preferably in the range of 2.0 to 4.0.
[0277] 本発明においては、防汚処理に用いるシランィ匕合物溶液に積極的には水を添カロ せず、調製後、主として乾燥時に、空気中の水分等により加水分解反応を起こさせる ことが好ましい。その為に溶液の固形分濃度を希釈したところで用いる。処理液に水 を添加し過ぎると、その分ポットライフが短くなる。  [0277] In the present invention, the silanic compound solution used for the antifouling treatment is not actively added with water, and after the preparation, a hydrolysis reaction is caused mainly by moisture in the air at the time of drying. Is preferred. Therefore, it is used when the solid content concentration of the solution is diluted. If too much water is added to the treatment solution, the pot life will be shortened accordingly.
[0278] 本発明にお ヽては硫酸、塩酸、硝酸、次亜塩素酸、ホウ酸、フッ酸、好ましくは塩酸 、硝酸等の無機酸のほか、スルホ基 (スルホン酸基ともいう)またはカルボキシル基を 有する有機酸、例えば、酢酸、ポリアクリル酸、ベンゼンスルホン酸、パラトルエンスル ホン酸、メチルスルホン酸等が用いられる。有機酸は 1分子内に水酸基とカルボキシ ル基を有する化合物であればいっそう好ましぐ例えば、クェン酸または酒石酸等の ヒドロキシジカルボン酸が用いられる。また、有機酸は水溶性の酸であることが更に好 ましぐ例えば上記クェン酸や酒石酸の他に、レブリン酸、ギ酸、プロピオン酸、リンゴ 酸、コノヽク酸、メチルコハク酸、フマル酸、ォキサ口酢酸、ピルビン酸、 2—ォキソグル タル酸、グリコール酸、 D—グリセリン酸、 D—ダルコン酸、マロン酸、マレイン酸、シュ ゥ酸、イソクェン酸、乳酸等が好ましく用いられる。また、安息香酸、ヒドロキシ安息香 酸、アトロバ酸等も適宜用いることができる。 [0278] In the present invention, sulfuric acid, hydrochloric acid, nitric acid, hypochlorous acid, boric acid, hydrofluoric acid, preferably inorganic acids such as hydrochloric acid and nitric acid, as well as sulfo groups (also referred to as sulfonic acid groups) or carboxyl groups. Group Organic acids such as acetic acid, polyacrylic acid, benzenesulfonic acid, p-toluenesulfonic acid, methylsulfonic acid and the like are used. The organic acid is more preferably a compound having a hydroxyl group and a carboxyl group in one molecule, for example, hydroxydicarboxylic acid such as citrate or tartaric acid. Further, the organic acid is more preferably a water-soluble acid. For example, in addition to the above citrate and tartaric acid, levulinic acid, formic acid, propionic acid, malic acid, succinic acid, methyl succinic acid, fumaric acid, oxalic acid. Oral acetic acid, pyruvic acid, 2-oxoglutaric acid, glycolic acid, D-glyceric acid, D-darconic acid, malonic acid, maleic acid, oxalic acid, isochenic acid, lactic acid and the like are preferably used. Also, benzoic acid, hydroxybenzoic acid, atorvaic acid and the like can be used as appropriate.
[0279] 添加量は、前記シランィ匕合物の部分加水分解物 100質量部に対して 0. 1質量部 〜10質量部、好ましくは 0. 2質量部〜 5質量部がよい。また、水の添加量について は部分加水分解物が理論上 100%加水分解し得る量以上であればよぐ 100%〜3 00%相当量、好ましくは 100%〜200%相当量を添加するのがよ!/、。  [0279] The addition amount is 0.1 parts by mass to 10 parts by mass, preferably 0.2 parts by mass to 5 parts by mass with respect to 100 parts by mass of the partial hydrolyzate of the silane compound. As for the amount of water added, an amount equivalent to 100% to 300%, preferably 100% to 200%, should be added as long as the partial hydrolyzate is theoretically capable of 100% hydrolysis. Gayo! /.
[0280] フッ素含有のシラン化合物を用いることによって、防汚層の低屈折率化及び撥水- 撥油性付与の点で好ましいのみでなぐ耐傷性が高ぐまたフィルム同士のブロッキ ングに特に優れるという効果がある。  [0280] By using a fluorine-containing silane compound, it is preferable only in terms of lowering the refractive index of the antifouling layer and imparting water repellency and oil repellency, and it is particularly excellent in blocking between films. effective.
[0281] (反射防止層の形成)  [0281] (Formation of antireflection layer)
本発明では反射防止層を設ける方法は特に限定されないが、塗布により形成する ことが好ましい。  In the present invention, the method for providing the antireflection layer is not particularly limited, but it is preferably formed by coating.
[0282] 本発明にお 、て、基材フィルム上に凸構造部及び透明榭脂層により凹凸構造を形 成し、上記の高屈折率層組成物、低屈折率層組成物を用いて順次コーティングする 工程により反射防止層を製造することが好ましい。また、前記防汚層をコーティング することも好まし ヽ。  [0282] In the present invention, a concavo-convex structure is formed on a base film by a convex structure portion and a transparent resin layer, and the above-described high refractive index layer composition and low refractive index layer composition are used in sequence. It is preferable to produce an antireflection layer by the coating step. It is also preferable to coat the antifouling layer.
[0283] 好ましい防眩性反射防止フィルムの構成を下記に示すが、これらに限定されるもの ではない。ここで本発明の防眩層とは、本発明に係る凸構造部及び透明榭脂層から なる層を意味する。  [0283] Preferred antiglare antireflection films are shown below, but are not limited thereto. Here, the antiglare layer of the present invention means a layer comprising the convex structure portion and the transparent resin layer according to the present invention.
[0284] 基材フィルム Z本発明の防眩層 Z低屈折率層  [0284] Base film Z Antiglare layer of the present invention Z Low refractive index layer
基材フィルム Z本発明の防眩層 Z高屈折率層 Z低屈折率層 基材フィルム z帯電防止層 z本発明の防眩層 z低屈折率層 基材フィルム z帯電防止層 Z本発明の防眩層 Z高屈折率層 Z低屈折率層 基材フィルム z本発明の防眩層 Z低屈折率層 Z防汚層 Base film Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Base film z Antistatic layer z Antiglare layer of the present invention z Low refractive index layer Base film z Antistatic layer Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Base film z of the present invention Antiglare layer Z Low refractive index layer Z Antifouling layer
基材フィルム z本発明の防眩層 Z高屈折率層 Z低屈折率層 Z防汚層  Base film z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Z Antifouling layer
基材フィルム z帯電防止層 Z本発明の防眩層 Z低屈折率層 Z防汚層  Base film z Antistatic layer Z Antiglare layer of the present invention Z Low refractive index layer Z Antifouling layer
基材フィルム z帯電防止層 Z本発明の防眩層 Z高屈折率層 Z低屈折率層 Z防 汚層  Base film z Antistatic layer Z Antiglare layer of the present invention Z High refractive index layer Z Low refractive index layer Z Antifouling layer
本発明では、上記本発明の防眩層を形成した後本発明の防眩層の表面に表面処 理行い、該表面処理を行った本発明の防眩層表面に本発明に係る低屈折率層 (及 び高屈折率層)を形成することが好ましい。また、防汚層を設ける前に該低屈折率層 に表面処理を行うことも好ま 、。  In the present invention, after the antiglare layer of the present invention is formed, the surface of the antiglare layer of the present invention is subjected to surface treatment, and the surface treatment of the antiglare layer of the present invention is applied to the low refractive index according to the present invention. It is preferable to form a layer (and a high refractive index layer). It is also preferable to subject the low refractive index layer to a surface treatment before providing the antifouling layer.
表面処理は、洗浄法、アルカリ処理法、フレームプラズマ処理法、高周波放電プラ ズマ法、電子ビーム法、イオンビーム法、スパッタリング法、酸処理、コロナ処理法、 大気圧グロ一放電プラズマ法等が挙げられ、好ましくはアルカリ処理法、コロナ処理 法であり、特に好ましくはアルカリ処理法を用いることができる。コロナ処理とは、大気 圧下、電極間に lkV以上の高電圧を印加し、放電することで行う処理のことであり、 春日電機 (株)や (株)トーョー電機などで市販されて 、る装置を用いて行うことができ る。コロナ放電処理の強度は、電極間距離、単位面積当たりの出力、ジェネレーター の周波数に依存する。コロナ処理装置の一方の電極 (A電極)は、市販のものを用い ることができるが、材質はアルミニウム、ステンレスなど力も選択ができる。もう一方は プラスチックフィルムを抱かせるための電極(B電極)であり、コロナ処理が、安定かつ 均一に実施されるように、前記 A電極に対して一定の距離に設置されるロール電極 である。これも通常巿販されているものを用いることが出来、材質は、アルミニウム、ス テンレス、及びそれらの金属で出来たロールに、セラミックス、シリコン、 EPTゴム、ハ ィパロンゴムなどがライニングされて 、るロールが好ましく用いられる。本発明に用い られるコロナ処理に用いる周波数は、 20kHz以上 100kHz以下の周波数であり、 30 kHz〜60kHzの周波数が好まし!/、。周波数が低下するとコロナ処理の均一性が劣 化し、コロナ処理のムラが発生する。また、周波数が大きくなると、高出力のコロナ処 理を行う場合には、特に問題ないが、低出力のコロナ処理を実施する場合には、安 定した処理を行うことが難しくなり、結果として、処理ムラが発生する。コロナ処理の出 力は、 l〜5wmin. Zm2であるが、 2〜4wmin. Zm2の出力が好ましい。電極とフ イルムとの距離は、 5mm以上 50mm以下であるが、好ましくは、 10mm以上 35mm 以下である。間隙が開いてくると、一定の出力を維持するためにより高電圧が必要に なり、ムラが発生し易くなる。また、間隙が狭くなり過ぎると、印加する電圧が低くなり 過ぎ、ムラが発生し易くなる。更にまた、フィルムを搬送して連続処理する際に電極に フィルムが接触し傷が発生する。 Examples of the surface treatment include cleaning methods, alkali treatment methods, flame plasma treatment methods, high-frequency discharge plasma methods, electron beam methods, ion beam methods, sputtering methods, acid treatments, corona treatment methods, and atmospheric pressure glow discharge plasma methods. The alkali treatment method and the corona treatment method are preferred, and the alkali treatment method can be used particularly preferably. Corona treatment is a treatment performed by applying a high voltage of lkV or more between electrodes under atmospheric pressure and discharging it, and is a device that is commercially available from Kasuga Electric Co., Ltd., Toyo Electric Co., Ltd., etc. Can be used. The intensity of the corona discharge treatment depends on the distance between the electrodes, the output per unit area, and the generator frequency. One of the electrodes of the corona treatment device (A electrode) can be a commercially available one, but the material can be selected from aluminum or stainless steel. The other is an electrode (B electrode) for holding the plastic film, and is a roll electrode installed at a certain distance from the A electrode so that the corona treatment is performed stably and uniformly. This can also be a commercially available material, and the material is a roll made of aluminum, stainless steel, or a metal thereof, and ceramic, silicon, EPT rubber, hyperon rubber, etc. are lined. Is preferably used. The frequency used for the corona treatment used in the present invention is a frequency of 20 kHz or more and 100 kHz or less, and a frequency of 30 kHz to 60 kHz is preferable! When the frequency is lowered, the uniformity of the corona treatment is deteriorated and unevenness of the corona treatment occurs. Also, as the frequency increases, a high-power corona treatment There is no particular problem when performing processing, but when performing low-output corona processing, it becomes difficult to perform stable processing, resulting in processing unevenness. The output of the corona treatment is 1 to 5 wmin. Zm 2 , but an output of 2 to 4 wmin. Zm 2 is preferable. The distance between the electrode and the film is 5 mm or more and 50 mm or less, and preferably 10 mm or more and 35 mm or less. When the gap opens, a higher voltage is required to maintain a constant output, and unevenness is likely to occur. If the gap is too narrow, the applied voltage becomes too low and unevenness is likely to occur. Furthermore, when the film is transported and continuously processed, the film comes into contact with the electrodes and scratches are generated.
[0286] アルカリ処理方法としては、ハードコート層を塗設したフィルムをアルカリ水溶液に 浸す方法であれば特に限定されな 、。  [0286] The alkali treatment method is not particularly limited as long as it is a method in which a film provided with a hard coat layer is immersed in an alkaline aqueous solution.
[0287] アルカリ水溶液としては、水酸化ナトリウム水溶液、水酸ィ匕カリウム水溶液、アンモニ ァ水溶液等が使用可能であり、中でも水酸ィ匕ナトリウム水溶液が好ましい。  [0287] As the alkaline aqueous solution, an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous ammonia solution, or the like can be used, and among them, an aqueous sodium hydroxide solution is preferable.
[0288] アルカリ水溶液のアルカリ濃度、例えば水酸ィ匕ナトリウム濃度は 0. 1〜25質量%が 好ましく、 0. 5〜15質量0 /0がより好ましい。 [0288] The alkali concentration of the alkali aqueous solution, for example Mizusani匕sodium concentration is preferably 0.1 to 25 mass%, 0.5 to 15 weight 0/0 is more preferable.
[0289] アルカリ処理温度は通常 10〜80°C、好ましく 20〜60°Cである。  [0289] The alkali treatment temperature is usually 10 to 80 ° C, preferably 20 to 60 ° C.
[0290] アルカリ処理時間は 5秒〜 5分、好ましくは 30秒〜 3分である。アルカリ処理後のフ イルムは酸性水で中和した後、十分に水洗 、を行うことが好ま 、。  [0290] The alkali treatment time is 5 seconds to 5 minutes, preferably 30 seconds to 3 minutes. It is preferable to neutralize the alkali-treated film with acid water and then wash it thoroughly with water.
[0291] 反射防止層の各層は、凹凸構造部及び透明榭脂層上に、ディップコート法、エア 一ナイフコート法、カーテンコート法、ローラーコート法、ワイヤーバーコート法、グラビ ァコート法、マイクログラビアコート法やエタストルージョンコート法を用いて、塗布によ り形成することができる。塗布に際しては、基材フィルムが、幅が 1. 4〜4mでロール 状に巻き取られた状態力も繰り出して、上記塗布を行い、乾燥,硬化処理した後、口 ール状に巻き取られることが好ま 、。  [0291] Each layer of the antireflection layer is formed on the concavo-convex structure portion and the transparent resin layer by the dip coating method, the air knife coating method, the curtain coating method, the roller coating method, the wire bar coating method, the gravure coating method, and the micro gravure method. It can be formed by coating using a coating method or an etching coating method. When coating, the substrate film should be rolled up in the form of a roll after applying the above-mentioned coating, drying and curing treatment, with the state force being rolled up in a width of 1.4 to 4 m. Preferred.
[0292] 更に、本発明の防眩性フィルムを用いた防眩性反射防止フィルムは、基材フィルム 上に前記反射防止層を積層した後、ロール状に巻き取った状態で 50〜150°C、 1〜 [0292] Further, the antiglare antireflection film using the antiglare film of the present invention is obtained by laminating the antireflection layer on a base film and then winding it in a roll shape at 50 to 150 ° C. 1 ~
30日の範囲で加熱処理を行う製造方法によって製造することができる。加熱処理の 期間は、設定される温度によって適宜決定すればよぐ例えば、 50°Cであれば、好ま しくは 3日間以上 30日未満の期間、 150°Cであれば 1〜3日の範囲が好ましい。通常 は、卷外部、卷中央部、巻き芯部の加熱処理効果が偏らないように、比較的低温に 設定することが好ましぐ 50〜80°C付近で 3〜7日間程度行うことが好ましい。 It can manufacture by the manufacturing method which heat-processes in the range for 30 days. The duration of the heat treatment may be determined appropriately according to the set temperature.For example, if it is 50 ° C, it is preferably 3 days or more and less than 30 days, and if it is 150 ° C, it is in the range of 1 to 3 days. Is preferred. Normal It is preferable to set it at a relatively low temperature for about 3 to 7 days at around 50 to 80 ° C so that the heat treatment effect on the outside of the heel, the center of the heel, and the core portion is not biased.
[0293] 加熱処理を安定して行うためには、温湿度が調整可能な場所で行うことが必要であ り、塵のな 、クリーンルーム等の加熱処理室で行うことが好まし 、。 [0293] In order to stably perform the heat treatment, it is necessary to perform in a place where the temperature and humidity can be adjusted, and it is preferable to perform in a heat treatment chamber such as a clean room without dust.
[0294] 上記反射防止層や防汚層等の機能性薄膜がコーティングされた防眩性フィルムを ロール状に巻き取る際の、巻きコアとしては、円筒上のコアであれは、どのような材質 のものであってもよいが、好ましくは中空プラスチックコアであり、プラスチック材料とし ては加熱処理温度に耐える耐熱性プラスチックであればどのようなものであっても良 ぐ例えばフエノール榭脂、キシレン榭脂、メラミン榭脂、ポリエステル榭脂、エポキシ 榭脂などの樹脂が挙げられる。またガラス繊維などの充填材により強化した熱硬化性 榭脂が好ましい。 [0294] When winding the antiglare film coated with a functional thin film such as the antireflection layer or the antifouling layer in a roll shape, any material can be used as the winding core, whether it is a cylindrical core. However, it is preferably a hollow plastic core, and the plastic material may be any heat-resistant plastic that can withstand the heat treatment temperature. For example, phenol resin, xylene resin. Examples thereof include resins such as fat, melamine resin, polyester resin, and epoxy resin. A thermosetting resin reinforced with a filler such as glass fiber is preferred.
[0295] これらの巻きコアへの巻き数は、 100巻き以上であることが好ましぐ 500巻き以上 であることが更に好ましぐ巻き厚は 5cm以上であることが好ましい。  [0295] The winding number of these winding cores is preferably 100 windings or more, and more preferably 500 windings or more. The winding thickness is more preferably 5 cm or more.
[0296] このようにして長巻の基材フィルム上に機能性薄膜がコーティングされ、プラスチッ クコアに巻き取られたロールを、巻き取った状態で前記加熱処理を行うとき、該ロー ルを回転させることが好ましぐ回転は、 1分間に 1回転以下の速度が好まぐ連続で も良く断続的な回転であっても良い。又、加熱期間中に該ロールの巻き替えを 1回以 上行うことが好ましい。  [0296] When the functional film is coated on the long base film in this manner and the roll wound around the plastic core is wound and the heat treatment is performed, the roll is rotated. The preferred rotation may be continuous or intermittent rotation where a speed of less than one rotation per minute is preferred. In addition, it is preferable that the roll is rewinded once or more during the heating period.
[0297] コアに巻き取られた長巻の防眩性フィルムロールを加熱処理中に回転させる為加 熱処理室に専用の回転台を設けることが好ましい。  [0297] In order to rotate the long antiglare film roll wound around the core during the heat treatment, it is preferable to provide a dedicated turntable in the heat treatment chamber.
[0298] 回転は、断続の場合は停止している時間を 10時間以内とすることが好ましぐ停止 位置は、円周方向に均一となる様にすることが好ましぐ停止時間は 10分以内とする ことがより好ましい。最も好ましくは、連続回転である。 [0298] In the case of intermittent rotation, it is preferable that the stop time is within 10 hours. It is preferable that the stop position is uniform in the circumferential direction. The stop time is preferably 10 minutes. It is more preferable to be within the range. Most preferred is continuous rotation.
[0299] 連続回転での回転速度は、 1回転に要する時間は好ましくは 10時間以下とすること であり、早いと装置的に負担となるため実質的には、 15分から 2時間の範囲が好まし い。 [0299] The rotation speed for continuous rotation is preferably set to 10 hours or less for one rotation, and if it is fast, it will be a burden on the apparatus, so a range of 15 minutes to 2 hours is preferable. Good.
[0300] 尚、回転機能を有する専用の台車の場合には、移動や保管中にも光学フィルム口 ールを回転させることが出来て好ましぐこの場合、保管期間が長い場合に生じるブ ラックバンド対策として回転が有効に機能する。 [0300] In the case of a dedicated carriage having a rotation function, it is preferable that the optical film tool can be rotated during movement and storage. In this case, this occurs when the storage period is long. Rotation functions effectively as a measure against rack band.
[0301] (偏光板)  [0301] (Polarizing plate)
偏光板は一般的な方法で作製することができる。本発明の防眩性フィルム、防眩性 反射防止フィルムの裏面側をアルカリ鹼化処理し、沃素溶液中に浸漬延伸して作製 した偏光膜の少なくとも一方の面に、完全酸ィ匕型ポリビニルアルコール水溶液を用い て貼り合わせることが好ましい。もう一方の面には該フィルムを用いても、別の偏光板 保護フィルムを用いてもよい。市販のセルロースエステルフィルム(例えば、コユカミノ ノレタタック KC8UX、 KC4UX, KC5UX, KC8UCR3, KC8UCR4、 KC8UCR5 、 KC8UY、 KC4UY、 KC12UR、 KC4FR、以上コ-カミノルタォプト(株)製)も好 ましく用いられる。本発明の防眩性フィルム、防眩性反射防止フィルムに対して、もう 一方の面に用いられる偏光板保護フィルムは面内リタ一デーシヨン Roが 590nmで、 30〜300nm、 Rtが 70〜400nmの位相差を有していることが好ましい。これらは例 えば、特開 2002- 71957、特願 2002— 155395記載の方法で作製することができ る。或いは更にディスコチック液晶などの液晶化合物を配向させて形成した光学異方 層を有して ヽる光学補償フィルムを兼ねる偏光板保護フィルムを用いることが好まし い。例えば、特開 2003— 98348記載の方法で光学異方性層を形成することができ る。本発明の防眩性フィルム、防眩性反射防止フィルムと組み合わせて使用すること によって、平面性に優れ、安定した視野角拡大効果を有する偏光板を得ることができ る。  The polarizing plate can be produced by a general method. Anti-glare film and anti-glare film of the present invention The back side of the anti-glare antireflection film is subjected to alkali hatching treatment, and is immersed and stretched in an iodine solution. It is preferable to bond together using an aqueous solution. The film may be used on the other surface, or another polarizing plate protective film may be used. Commercially available cellulose ester films (for example, Coyukamino Noretak KC8UX, KC4UX, KC5UX, KC8UCR3, KC8UCR4, KC8UCR5, KC8UY, KC4UY, KC12UR, KC4FR, or more, made by Co-Camino Nortop Co., Ltd.) are also preferred. In contrast to the antiglare film and the antiglare antireflection film of the present invention, the polarizing plate protective film used on the other surface has an in-plane retardation Ro of 590 nm, 30 to 300 nm, and Rt of 70 to 400 nm. It preferably has a phase difference. These can be produced, for example, by the methods described in JP-A-2002-71957 and Japanese Patent Application No. 2002-155395. Alternatively, it is preferable to use a polarizing plate protective film that also serves as an optical compensation film having an optically anisotropic layer formed by aligning a liquid crystal compound such as a discotic liquid crystal. For example, the optically anisotropic layer can be formed by the method described in JP-A-2003-98348. By using in combination with the antiglare film and the antiglare antireflection film of the present invention, a polarizing plate having excellent flatness and a stable viewing angle widening effect can be obtained.
[0302] 偏光板の主たる構成要素である偏光膜とは、一定方向の偏波面の光だけを通す素 子であり、現在知られている代表的な偏光膜は、ポリビニルアルコール系偏光フィル ムで、これはポリビュルアルコール系フィルムにヨウ素を染色させたものと二色性染料 を染色させたものがある。偏光膜は、ポリビニルアルコール水溶液を製膜し、これを一 軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で 耐久性処理を行ったものが用いられている。該偏光膜の面上に、本発明の防眩性フ イルム、防眩性反射防止フィルムの片面を貼り合わせて偏光板を形成する。好ましく は完全酸ィ匕ポリビュルアルコール等を主成分とする水系の接着剤によって貼り合わ せる。 [0303] (表示装置) [0302] A polarizing film, which is a main component of a polarizing plate, is an element that passes only light having a polarization plane in a certain direction. A typical polarizing film that is currently known is a polyvinyl alcohol polarizing film. There are two types: polybutalolic film dyed with iodine and dichroic dye. As the polarizing film, a polyvinyl alcohol aqueous solution is formed and dyed by uniaxially stretching or dyed, or uniaxially stretched after dyeing, and then preferably subjected to a durability treatment with a boron compound. On the surface of the polarizing film, one side of the antiglare film and the antiglare antireflection film of the present invention is bonded to form a polarizing plate. Preferably, they are bonded together with a water-based adhesive whose main component is complete acid polybutyl alcohol or the like. [0303] (Display device)
本発明の偏光板を表示装置に組み込むことによって、種々の視認性に優れた本発 明の表示装置を作製することができる。本発明の防眩性フィルム、防眩性反射防止 フィルムは反射型、透過型、半透過型 LCD或いは TN型、 STN型、 OCB型、 HAN 型、 VA型(PVA型、 MVA型)、 IPS型等の各種駆動方式の LCDで好ましく用いら れる。また、本発明の防眩性フィルム、防眩性反射防止フィルムは平面性に優れ、プ ラズマディスプレイ、フィールドェミッションディスプレイ、有機 ELディスプレイ、無機 E Lディスプレイ、電子ペーパー等の各種表示装置にも好ましく用いられる。特に画面 力 S30型以上、特に 30型〜 54型の大画面の表示装置では、画面周辺部での白抜け などもなぐその効果が長期間維持され、 MVA型液晶表示装置、 IPS型液晶表示装 置では顕著な効果が認められる。特に、本発明の目的である色むら、ぎらつきや波 打ちムラが少なぐ長時間の鑑賞でも目が疲れないという効果があった。  By incorporating the polarizing plate of the present invention into a display device, various display devices of the present invention with excellent visibility can be manufactured. Anti-glare film and anti-glare anti-reflection film of the present invention are reflective type, transmissive type, transflective type LCD or TN type, STN type, OCB type, HAN type, VA type (PVA type, MVA type), IPS type It is preferably used in LCDs with various drive systems. Further, the antiglare film and the antiglare antireflection film of the present invention have excellent flatness, and are preferably used for various display devices such as a plasma display, a field emission display, an organic EL display, an inorganic EL display, and electronic paper. It is done. Especially for large screen display devices of S30 type or higher, especially 30 to 54 type, the effect of eliminating white spots at the periphery of the screen is maintained for a long period of time. MVA liquid crystal display devices, IPS liquid crystal display devices A remarkable effect is observed in the setting. In particular, the effect of the present invention was that the eyes did not get tired even during long-time appreciation with less color unevenness, glare and wavy unevenness.
実施例  Example
[0304] 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。  [0304] Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
[0305] 実施例 1 [0305] Example 1
〔セルロースエステルフィルム 1の作製〕  (Production of cellulose ester film 1)
以下のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセ ルロースエステル溶液 (ドープ)を調製し、溶液流延製膜法にてセルロースエステル フィルム 1を作製した。  A cellulose ester solution (dope) was prepared using the following cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent, and cellulose ester film 1 was prepared by a solution casting film forming method.
[0306] セルロースエステル(セルローストリアセテート、ァセチル基置換度 2. 9、 Mn= 160 000, Mw/Mn= l. 8) 100kg  [0306] Cellulose ester (cellulose triacetate, acetyl substitution degree of 2.9, Mn = 160 000, Mw / Mn = l. 8) 100 kg
可塑剤(トリメチロールプロパントリべンゾエート) 5kg  Plasticizer (Trimethylolpropane tribenzoate) 5kg
可塑剤(ェチルフタリルェチルダリコレート) 5kg  Plasticizer (Ethylphthalyl Ethyl Dalicolate) 5kg
紫外線吸収剤(チヌビン 109、チバスペシャルティーケミカルズ (株)製)  UV absorber (Tinubin 109, manufactured by Ciba Specialty Chemicals Co., Ltd.)
1. Okg  1. Okg
紫外線吸収剤(チヌビン 171、チバスペシャルティーケミカルズ (株)製)  UV absorber (Chinbin 171; manufactured by Ciba Specialty Chemicals Co., Ltd.)
1. Okg 微粒子(ァエロジル R972V、日本ァエロジル (株)製) 0. 3kg 1. Okg Fine particles (Aerosil R972V, Nippon Aerosil Co., Ltd.) 0.3 kg
溶媒 (酢酸メチル) 440kg  Solvent (methyl acetate) 440kg
溶媒 (エタノール) 110kg  Solvent (ethanol) 110kg
上記のセルロースエステル、可塑剤、紫外線吸収剤、微粒子及び溶媒を用いてセ ルロースエステル溶液 (ドープ)を調製した。  A cellulose ester solution (dope) was prepared using the above cellulose ester, plasticizer, ultraviolet absorber, fine particles and solvent.
[0307] 次に、 33°Cに温度調整したセルロースエステル溶液を、ダイに送液して、ダイスリツ トからステンレスベルト上に均一に流延した。ステンレスベルトの流延部は裏面から 3 7°Cの温水で加熱した。流延後、金属支持体上のドープ膜 (ステンレスベルトに流延 以降はウェブという)に 44°Cの温風をあてて乾燥させ、剥離の残留溶媒量が 120質 量%で剥離し、剥離の際の張力をかけて 1. 1倍の縦延伸倍率となるように延伸し、次 いで、残留溶媒量が 35質量%から 10質量%となる間にテンターでウェブ端部を把持 し、幅手方向に 1. 1倍の延伸倍率となるように延伸した。延伸後、その幅を維持した まま数秒間保持した後、幅方向の張力を緩和させた後、幅保持を解放し、更に 125 °Cに設定された第 3乾燥ゾーンで 20分間搬送させて、乾燥を行い、幅 1. 5m、膜厚 80 μ m、長さ 3000mのセルロースエステルフィルム 1を作製した。  [0307] Next, the cellulose ester solution whose temperature was adjusted to 33 ° C was fed to a die and uniformly cast from a die slit onto a stainless steel belt. The cast part of the stainless belt was heated from the back with hot water of 37 ° C. After casting, the dope film on the metal support (casted on a stainless steel belt, hereinafter referred to as the web) is dried by applying hot air of 44 ° C, and the residual solvent in the peeling is peeled off at 120% by weight. Applying the tension during stretching, the film was stretched to a longitudinal stretching ratio of 1 ×, and then the web edge was gripped with a tenter while the residual solvent amount was from 35% to 10% by weight. In the hand direction, the film was stretched so as to have a draw ratio of 1.1 times. After stretching, hold for several seconds while maintaining its width, relax the tension in the width direction, release the width holding, and further convey it for 20 minutes in the third drying zone set at 125 ° C, Drying was performed to produce a cellulose ester film 1 having a width of 1.5 m, a film thickness of 80 μm, and a length of 3000 m.
[0308] 〔微粒子添カ卩による防眩性フィルム 1の作製〕  [Preparation of anti-glare film 1 with fine particle-added powder]
上記セルロースエステルフィルム 1の表面(B面側;流延製膜法にお!、て用いられる ステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記のハードコート 層用塗布液 1を孔径 20 μ mのポリプロピレン製フィルターで濾過してハードコート層 塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、 90°Cで乾燥の後 、紫外線ランプを用い照射部の照度が 0. lWZcm2で、照射量を 0. ljZcm2として 塗布層を硬化させ、厚さ 5 mの防眩性ノヽードコート層を形成し防眩性フィルム 1を 作製した。形成した凹凸について WYKO社製光学干渉式表面粗さ測定機を用いて 平均表面粗さ (Ra)の測定を行った結果、 0. 55 mであった。 On the surface of the cellulose ester film 1 (B side; surface in contact with the support mirror surface such as a stainless steel band used in the casting film forming method; support side), the following coating liquid for hard coat layer 1 is filtered through a polypropylene filter with a pore size of 20 μm to prepare a hard coat layer coating solution, which is applied using a micro gravure coater, dried at 90 ° C, and then irradiated with an ultraviolet lamp. Was 0.1 lWZcm 2 and the irradiation amount was 0.1 ljZcm 2 , the coating layer was cured to form an antiglare node coat layer having a thickness of 5 m, and antiglare film 1 was produced. As a result of measuring the average surface roughness (Ra) of the formed irregularities using an optical interference type surface roughness measuring machine manufactured by WYKO, it was 0.55 m.
[0309] また、凸部の平均中心間距離は 77 mであった。  [0309] The average distance between the centers of the convex portions was 77 m.
[0310] ハードコート層用塗布液 1より、合成シリカ微粒子を除いた塗布液を別途作製し、前 述と同様な塗布 ·硬化条件で作製した膜をアッベの屈折計で測定した所、屈折率は 1. 517であった。 [0311] (ハードコート層塗布液 1) [0310] A coating solution excluding synthetic silica fine particles was prepared separately from the coating solution 1 for hard coat layer, and the film prepared under the same coating and curing conditions as described above was measured with an Abbe refractometer. Was 1.517. [0311] (Hardcoat layer coating solution 1)
下記材料を攪拌、混合し、ハードコート層塗布液 1とした。  The following materials were stirred and mixed to obtain hard coat layer coating solution 1.
[0312] アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 200質量部 [0312] Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 200 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
25質量部  25 parts by mass
プロピレングリコールモノメチルエーテル 110質量部 酢酸ェチル 110質量部  110 parts by mass of propylene glycol monomethyl ether 110 parts by mass of ethyl acetate
合成シリカ微粒子 平均粒子径 1. 40質量部 界面活性剤 (シリコーン系界面活性剤; FZ2207 (日本ュ-カー製) 10質量%プロ ピレンダリコールモノメチルエーテル溶液) 固形分で 0. 6質量部  Synthetic silica fine particles Average particle size 1. 40 parts by mass Surfactant (Silicone surfactant; FZ2207 (manufactured by Nippon Car) 10% by mass propylene glycol monomethyl ether solution)
〔エンボスカ卩ェによる防眩フィルム 2の作製〕  [Preparation of antiglare film 2 by embossing]
上記セルロースエステルフィルム 1の作製において、テンターによる延伸処理後、铸 型を設けたロール(凹凸形成後、凸部高さ 1 /ζ πι、凸部大きさ (長辺)10 m、凸部間 距離 50 μ mになるような微細凹凸構造を刻印したもの)とバックロール力も構成され る凹凸形成部で溶媒を含むフィルムを挟んでフィルムの B面 (ステンレスバンド支持 体に接していた側を B面とし、その反対側を A面とする。 M則に铸型を設けた熱ロール を押し当てて、 A面側にはバックロールを配置し、両ロール間を通すことによって B面 側に凹凸を形成した以外は同様にして、エンボス加工したセルロースエステルフィル ム 2を作製した。尚、凹凸形成部近傍には、除電ワイヤーを設置してフィルムの帯電 を抑制した。  In the production of the cellulose ester film 1, a roll provided with a ridge after stretching with a tenter (after forming the irregularities, the height of the convex part 1 / ζ πι, the size of the convex part (long side) 10 m, the distance between the convex parts B side of the film (the side that was in contact with the stainless steel band support is the B side) with the film containing the solvent sandwiched between the concave and convex part where the back roll force is also configured) The opposite side is the A side, and a hot roll with a saddle shape is pressed against the M rule, a back roll is placed on the A side, and the unevenness is formed on the B side by passing between both rolls. An embossed cellulose ester film 2 was produced in the same manner except that the film was formed, and a static elimination wire was installed in the vicinity of the concavo-convex forming part to suppress charging of the film.
[0313] 上記エンボス加工したセルロースエステルフィルム 2の表面(B面側;流延製膜法に おいて用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下 記のハードコート層用塗布液 2を孔径 20 μ mのポリプロピレン製フィルターで濾過し てハードコート層塗布液を調製し、これをマイクログラビアコーターを用いて塗布し、 9 0°Cで乾燥の後、紫外線ランプを用い照射部の照度が 0. lWZcm2で、照射量を 0. UZcm2として塗布層を硬化させ、厚さ 5 mの防眩性ハードコート層を形成し防眩 性フィルム 2を作製した。 [0314] 形成された凹凸について WYKO社製光学干渉式表面粗さ測定機を用いて平均 表面粗さ (Ra)の測定を行った結果、 0. 82 mであった。また、凸部の平均中心間 距離は 65 μ mであった。 [0313] On the surface of the above-mentioned embossed cellulose ester film 2 (B surface side; surface in contact with a mirror surface of a support such as a stainless steel band used in the casting film forming method; support side), the following hardware The coating layer coating solution 2 is filtered through a polypropylene filter having a pore size of 20 μm to prepare a hard coating layer coating solution, which is applied using a micro gravure coater, dried at 90 ° C, and then an ultraviolet lamp. The coating layer was cured with an illuminance of 0.1 lWZcm 2 and an irradiation amount of 0.UZcm 2 to form an antiglare hard coat layer having a thickness of 5 m, thereby producing an antiglare film 2. [0314] As a result of measuring the average surface roughness (Ra) of the formed unevenness using an optical interference surface roughness measuring machine manufactured by WYKO, it was 0.82 m. The average center distance of the protrusions was 65 μm.
[0315] ハードコート層用塗布液 2を、別途前述と同様な塗布'硬化条件で作成した膜をァ ッベの屈折計で測定した所、屈折率は 1. 521であった。 [0315] A film prepared by separately applying the coating solution 2 for hard coat layer under the same coating and curing conditions as described above was measured with an Abbe refractometer, and the refractive index was 1.521.
[0316] (ハードコート層塗布液 2) [0316] (Hardcoat layer coating solution 2)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 60質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 60 parts by mass
トリメチロールプロパントリアタリレート 40質量部  40 parts by mass of trimethylolpropane tritalylate
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
4質量部  4 parts by mass
酢酸ェチル 50質量部  50 parts by mass of ethyl acetate
プロピレングリコールモノメチルエーテル 50質量部 シリコンィ匕合物 0. 5質量部  Propylene glycol monomethyl ether 50 parts by weight Silicone compound 0.5 parts by weight
(BYK- 307 (ビックケミージャパン社製) )  (BYK- 307 (by Big Chemie Japan))
〔フレキソ印刷法による凸構造部を有する防眩性フィルム 3〜16の作製〕 上記作製したセルロースエステルフィルム 1の表面 (A面側;流延製膜法において 用いられるステンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記凸構 造部用インキ液 1〜6を孔径 20 μ mのポリプロピレン製フィルターで濾過して調製し、 図 11の製造装置によりフレキソ印刷で凸構造部を形成した。フレキソ印刷の印刷パ ターンはァグファゲバルト社のクリスタル 'ラスタ一'スクリーニング法を用い、 2400〜 4000dpi (2. 54cm当たりのドット数)、 1〜10%濃度のパターンを用いた。  [Preparation of Antiglare Films 3 to 16 with Convex Structures by Flexographic Printing Method] Surface of the above prepared cellulose ester film 1 (A surface side; on a mirror surface of a support such as a stainless steel band used in the casting film forming method) On the contact surface (support side), prepare the following convex structure part ink liquids 1 to 6 by filtering them with a polypropylene filter with a pore size of 20 μm, and flexographically print the convex structure part using the manufacturing device shown in FIG. Formed. The flexographic printing pattern used was a crystal “raster one” screening method from Agfa Gebalt, with a pattern of 2400-4000 dpi (2.5 dots per 54 cm) and 1-10% density.
[0317] 凸構造部を形成後、乾燥ゾーン 505Aにて 90°Cで乾燥の後、紫外線ランプ 506A を用い、紫外線の照度が 0. lWZcm2で、照射量が 0. ljZcm2で硬化させた。また 、ァ-ロックスロールからの塗布液供給量を制御して、凸構造部の平均高さを制御し た。 [0317] After forming the convex structure, it was dried at 90 ° C in the drying zone 505A, and then cured using an ultraviolet lamp 506A at an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation dose of 0.1 ljZcm 2 . In addition, the average height of the convex structure was controlled by controlling the amount of coating liquid supplied from the Arox roll.
[0318] (シームレス榭脂版の仕様)  [0318] (Seamless resin version)
感光性榭脂版: 2—ヒドロキシェチルアタリレート 98部とブタンジオールジァクリレー ト 1部を反応して得られたコアとメタアクリル酸 20部と N—ブチルアタリレート 80部を反 応させて得られたコアシェル型ミクロゲル(コア Zシェル =2Zl) 71g、トリメチロール プロパンエトキシトリアタリレート 25g、 2, 2—ジメトキシ一 2—フエニルァセトフエノン 4 gを混合して得られた感光性榭脂組成物を厚み 2mmのポリエステルフィルムの上に 塗布したのち、波長 360nmの紫外線〖こより、 lOOOnj/cmの露光を行いレーザー 彫刻用印刷原版を得た。次いで下記レーザー彫刻条件で微細凹凸構造を彫刻し、 図 3のように榭脂版ロールに真空引きしながら装着し、全体を 120°C20分間加熱を 行ったところ継ぎ目が見えなくなりシームレス榭脂版になった。 Photosensitive rosin plate: 98 parts of 2-hydroxyethyl acrylate and butanediol dialkylate A core-shell type microgel (core Z shell = 2Zl) obtained by reacting a core obtained by reacting 1 part with 20 parts of methacrylic acid and 80 parts of N-butyl acrylate. Trimethylol propane ethoxytri A photosensitive resin composition obtained by mixing 25 g of attalylate and 4 g of 2,2-dimethoxy-2-phenylacetophenone was applied onto a polyester film having a thickness of 2 mm, and then an ultraviolet ray having a wavelength of 360 nm. From this, lOOOnj / cm was exposed to obtain a printing master for laser engraving. Next, engrave the fine relief structure under the following laser engraving conditions, and attach it to the resin plate roll while vacuuming as shown in Fig. 3. When the whole is heated at 120 ° C for 20 minutes, the joints disappear and a seamless resin plate is obtained. became.
[0319] 榭脂版径は 500mm、榭脂版のゴム硬度は 50とした。ゴム硬度 ίお IS K 6253に 記載の方法に準じてデュロメータで測定した。  [0319] The resin plate diameter was 500 mm, and the rubber hardness of the resin plate was 50. Rubber hardness Measured with a durometer according to the method described in ί. IS K 6253.
[0320] こうして作製された凸構造部の上に、下記透明榭脂層用インキ液 1〜3を、減圧押 出し法によって膜厚を変化させて塗布し、表 3、表 4記載の防眩性フィルム 3〜16を 作製した。  [0320] On the convex structure thus prepared, the following ink solution for transparent resin layer 1 to 3 was applied while changing the film thickness by the reduced pressure extrusion method, and antiglare described in Tables 3 and 4 was applied. Films 3 to 16 were produced.
[0321] 〔インクジェット法による凸構造部を有する防眩性フィルム 17〜31の作製〕  [0321] [Preparation of anti-glare film 17-31 having convex structure by inkjet method]
セルロースエステルフィルム 1の表面(B面側;流延製膜法にお!、て用いられるステ ンレスバンド等の支持体鏡面に接した面;支持体側)上に、下記凸構造部用インキ液 4〜6をインクジェット方式によりインク液滴として 2〜16plで出射し、乾燥後 0. 2秒後 に活性光線照射部より紫外線の照度が 0. lWZcm2で、照射量が 0. ljZcm2で硬 化させ、凸構造部を形成した。 On the surface of the cellulose ester film 1 (B side; surface in contact with the support mirror surface of the stainless steel band used in the casting film forming method; support side) 6 is ejected as ink droplets by ink jet method at 2 to 16 pl, and after 0.2 seconds after drying, it is hardened with a UV light illuminance of 0.1 lWZcm 2 and a dose of 0.1 ljZcm 2 A convex structure was formed.
[0322] インクジェット出射装置は、ラインヘッド方式(図 10の(a) )を使用し、ノズル径が 3.  [0322] The inkjet ejection device uses the line head method (Fig. 10 (a)) and the nozzle diameter is 3.
5 μ mのノズルを 256個有するインクジェットヘッドを 10基を準備した。インクジェット ヘッドは図 9に記載の構成のものを使用した。インク供給系は、インク供給タンク、フィ ルター、ピエゾ型のインクジェットヘッド及び配管から構成されており、インク供給タン クからインクジェットヘッド部までは、断熱及び加温 (40°C)し、出射温度は 40°C、駆 動周波数は 20kHzで行った。尚、防眩性フィルム 17、 18、 29については、静電方 式インクジェットを用いて、インク液滴を lpl以下として凸構造部を作製した。  Ten inkjet heads with 256 nozzles of 5 μm were prepared. The ink jet head having the configuration shown in FIG. 9 was used. The ink supply system consists of an ink supply tank, a filter, a piezo-type inkjet head, and piping. The ink supply tank to the inkjet head section is insulated and heated (40 ° C), and the emission temperature is The driving frequency was 40 ° C and the driving frequency was 20kHz. For anti-glare films 17, 18, and 29, convex structures were prepared using electrostatic ink jetting with ink droplets of lpl or less.
[0323] こうして作製された凸構造部の上に、下記透明榭脂層用インキ液 1〜3を、減圧押 出し法によって膜厚を変化させて塗布し、表 3、表 4記載の防眩性フィルム 17〜30を 作製した。防眩性フィルム 31は、防眩性フィルム 20に対して透明榭脂層を塗設しな かった。 [0323] On the convex structure thus prepared, the following ink solution for transparent resin layer 1 to 3 was applied while changing the film thickness by the reduced pressure extrusion method, and antiglare described in Tables 3 and 4 was applied. Sex film 17-30 Produced. The antiglare film 31 was not coated with a transparent resin layer on the antiglare film 20.
[0324] (凸構造部用インキ液 1)  [0324] (Ink liquid for convex structure 1)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 70質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 70 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
4質量部  4 parts by mass
酢酸ェチル 50質量部  50 parts by mass of ethyl acetate
プロピレングリコールモノメチルエーテル 50質量部 シリコンィ匕合物(BYK— 307 (ビックケミージャパン社製)) 0. 2質量部 上記組成物を混合撹拌し、凸構造部用インキ液 1を調製した。  Propylene glycol monomethyl ether 50 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.2 part by mass The above composition was mixed and stirred to prepare ink liquid 1 for convex structure.
[0325] 凸構造部用インキ液 1を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が[0325] After applying and drying Ink Liquid 1 for the convex structure, the UV illuminance is 0.1 lWZcm 2 and the irradiation dose is
0. ljZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 50. A film prepared by curing with ljZcm 2 was measured with an Abbe refractometer, and the refractive index was 1.5.
22であった。 It was 22.
[0326] (凸構造部用インキ液 2) [0326] (Ink liquid for convex structure 2)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート Acrylic monomer; KAYARAD DPHA (Dipentaerythritol Hexaatalylate
、 日本化薬製) 100質量部 , Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
ITO分散粒子 (平均粒子径 65nm) 70質量部  ITO dispersed particles (average particle size 65nm) 70 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
10質量部  10 parts by mass
シリコンィ匕合物(BYK— 307 (ビックケミージャパン社製)) 0. 2質量部 プロピレングリコールモノメチルエーテル 100質量部 酢酸ェチル 100質量部  Silicone compound (BYK- 307 (by Big Chemie Japan)) 0.2 parts by mass Propylene glycol monomethyl ether 100 parts by mass Ethyl acetate 100 parts by mass
上記組成物を混合撹拌し、凸構造部用インキ液 2を調製した。  The above composition was mixed and stirred to prepare an ink liquid 2 for convex structures.
[0327] 凸構造部用インキ液 2を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が 0. ljZcm2で硬化させて作成した膜をアッベの屈折計で測定した所、屈折率は 1. 5 56であった。 [0327] After the ink layer 2 for the convex structure was applied and dried, the film prepared by curing with an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation amount of 0.1 ljZcm 2 was measured with an Abbe refractometer, Refractive index is 1.5 56.
[0328] (凸構造部用インキ液 3) [0328] (Ink liquid for convex structure 3)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 100質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 50質量部  50 parts by mass of trimethylolpropane tritalylate
酸ィ匕チタン微粒子分散物 (酸ィ匕チタン微粒子濃度 20質量%、分散溶媒イソプロ パノール、粒径 35nm) 50質量部  Oxidized titanium fine particle dispersion (Oxidized titanium fine particle concentration 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 50 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
10質量部  10 parts by mass
プロピレングリコールモノメチルエーテル 100質量部 メチルェチルケトン 100質量部  Propylene glycol monomethyl ether 100 parts by weight Methyl ethyl ketone 100 parts by weight
界面活性剤(ポリジメチルシロキサン; KF96 (信越化学製) ) 0. 2質量部 上記組成物を混合撹拌し、凸構造部用インキ液 3を調製した。  Surfactant (polydimethylsiloxane; KF96 (manufactured by Shin-Etsu Chemical Co., Ltd.)) 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 3 for convex structures.
[0329] 凸構造部用インキ液 3を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が[0329] After applying and drying Ink Liquid 3 for the convex structure, the UV illuminance is 0.1 lWZcm 2 and the irradiation amount is
0. ljZcm2で硬化させて作成した膜をアッベの屈折計で測定した所、屈折率は 1. 50. When the film made by curing with ljZcm 2 was measured with Abbe's refractometer, the refractive index was 1.5.
73であった。 73.
[0330] (凸構造部用インキ液 4) [0330] (Ink liquid for convex structure 4)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート Acrylic monomer; KAYARAD DPHA (Dipentaerythritol Hexaatalylate
、 日本化薬製) 70質量部 , Nippon Kayaku) 70 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
4質量部  4 parts by mass
酢酸ェチル 150質量部  150 parts by mass of ethyl acetate
プロピレングリコールモノメチルエーテル 150質量部 シリコンィ匕合物(BYK— 307 (ビックケミージャパン社製)) 0. 2質量部 上記組成物を混合撹拌し、凸構造部用インキ液 4を調製した。  Propylene glycol monomethyl ether 150 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 4 for convex structure parts.
[0331] 凸構造部用インキ液 4を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が 0. ljZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 5 22であった。 [0331] The film prepared by applying and drying the ink liquid 4 for the convex structure part after curing with an ultraviolet ray illuminance of 0.1 lWZcm 2 and an irradiation amount of 0.1 ljZcm 2 was measured with an Abbe refractometer, Refractive index is 1.5 It was 22.
[0332] (凸構造部用インキ液 5) [0332] (Ink liquid for convex structure 5)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 100質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
ITO分散粒子 (平均粒子径 65nm) 50質量部  ITO dispersed particles (average particle size 65nm) 50 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
10質量部  10 parts by mass
シリコンィ匕合物(BYK— 307 (ビックケミージャパン社製)) 0. 2質量部 プロピレングリコールモノメチルエーテル 300質量部 酢酸ェチル 300質量部  Silicone compound (BYK- 307 (manufactured by Big Chemie Japan)) 0.2 parts by mass Propylene glycol monomethyl ether 300 parts by mass Ethyl acetate 300 parts by mass
上記組成物を混合撹拌し、凸構造部用インキ液 5を調製した。  The above composition was mixed and stirred to prepare an ink liquid 5 for convex structures.
[0333] 凸構造部用インキ液 5、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が 0[0333] Ink liquid 5 for convex structure, after coating and drying, UV illumination is 0.1 lWZcm 2 and irradiation dose is 0
. UZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 55A film made by curing with UZcm 2 was measured with an Abbe refractometer. The refractive index was 1.55.
6であった。 It was 6.
[0334] (凸構造部用インキ液 6) [0334] (Ink liquid for convex structure 6)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート Acrylic monomer; KAYARAD DPHA (Dipentaerythritol Hexaatalylate
、 日本化薬製) 100質量部 , Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
酸ィ匕チタン微粒子分散物 (酸ィ匕チタン微粒子濃度 20質量%、分散溶媒イソプロ パノール、粒径 35nm) 70質量部  Oxidized titanium fine particle dispersion (Oxidized titanium fine particle concentration 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 70 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
10質量部  10 parts by mass
プロピレングリコールモノメチルエーテル 150質量部 メチノレエチノレケトン 150質量咅  150 parts by mass of propylene glycol monomethyl ether 150 parts by weight of methinoreethino ketone
界面活性剤(ポリジメチルシロキサン; KF96 (信越化学製) ) 0. 2質量部 上記組成物を混合撹拌し、凸構造部用インキ液 6を調製した。  Surfactant (polydimethylsiloxane; KF96 (manufactured by Shin-Etsu Chemical Co., Ltd.)) 0.2 part by mass The above composition was mixed and stirred to prepare an ink liquid 6 for convex structures.
[0335] 凸構造部用インキ液 6を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射量が 0. lj/cm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 5 73であった。 [0335] After applying and drying Ink Liquid 6 for the convex structure, the UV illuminance is 0.1 lWZcm 2 and the irradiation amount is When a film prepared by curing at 0. lj / cm 2 was measured with an Abbe refractometer, the refractive index was 1.573.
[0336] (透明榭脂層用インキ液 1) [0336] (Ink liquid for transparent resin layer 1)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 60質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 60 parts by mass
トリメチロールプロパントリアタリレート 40質量部  40 parts by mass of trimethylolpropane tritalylate
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
4質量部  4 parts by mass
酢酸ェチル 50質量部  50 parts by mass of ethyl acetate
プロピレングリコールモノメチルエーテル 50質量部 シリコンィ匕合物(BYK— 307 (ビックケミージャパン社製)) 0. 5質量部 上記組成物を混合撹拌し、透明榭脂層用インキ液 1を調製した。  Propylene glycol monomethyl ether 50 parts by mass Silicone compound (BYK-307 (manufactured by Big Chemie Japan)) 0.5 part by mass The above composition was mixed and stirred to prepare ink solution 1 for a transparent resin layer.
[0337] 透明榭脂層用インキ液 1を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射 量が 0. ljZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は[0337] The film prepared by coating the ink solution 1 for the transparent resin layer with an ultraviolet ray illuminance of 0.1 lWZcm 2 and an irradiation dose of 0.1 ljZcm 2 after coating and drying was measured with an Abbe refractometer. The refractive index is
1. 522であった。 1. 522.
[0338] (透明榭脂層用インキ液 2) [0338] (Ink liquid for transparent resin layer 2)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート Acrylic monomer; KAYARAD DPHA (Dipentaerythritol Hexaatalylate
、 日本化薬製) 100質量部 , Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
ITO分散粒子 (平均粒子径 65nm) 70質量部  ITO dispersed particles (average particle size 65nm) 70 parts by mass
界面活性剤 (シリコーン系界面活性剤; FZ2207 (日本ュ-カー製))  Surfactant (Silicone surfactant; FZ2207 (manufactured by Nippon Car))
0. 5質量部  0.5 parts by mass
プロピレングリコールモノメチルエーテル 50質量部 メチノレエチノレケ卜ン 500質量咅  50 parts by mass of propylene glycol monomethyl ether 500 parts by mass
インキ液の粘度は 40°C、東京計器社製の B型粘度計 BLを用い測定した結果、 3P  The viscosity of the ink liquid was 40 ° C, and measured using a B-type viscometer BL manufactured by Tokyo Keiki Co., Ltd.
[0339] 上記組成物を混合撹拌し、透明榭脂層用インキ液 2を調整した。 [0339] The above composition was mixed and stirred to prepare Ink Liquid 2 for the transparent resin layer.
[0340] 透明榭脂層用インキ液 2を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射 量が 0. lj/cm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 556であった。 [0340] Ink liquid 2 for transparent resin layer was applied, dried and irradiated with UV illumination of 0.1 lWZcm 2 When a film prepared by curing at an amount of 0.1 lj / cm 2 was measured with an Abbe refractometer, the refractive index was 1.556.
[0341] (透明榭脂層用インキ液 3) [0341] (Ink liquid for transparent resin layer 3)
アクリルモノマー; KAYARAD DPHA (ジペンタエリスリトールへキサアタリレート 、 日本化薬製) 100質量部  Acrylic monomer; KAYARAD DPHA (dipentaerythritol hexaatalylate, Nippon Kayaku) 100 parts by mass
トリメチロールプロパントリアタリレート 30質量部  30 parts by mass of trimethylolpropane tritalylate
酸ィ匕珪素微粒子分散物 (酸ィヒ珪素微粒子濃度 20質量%、分散溶媒イソプロパノ ール、粒径 35nm) 100質量部  Dispersion of silicon oxide fine particles (concentration of silicon oxide fine particles 20% by mass, dispersion solvent isopropanol, particle size 35 nm) 100 parts by mass
光重合開始剤 (ィルガキュア 184 (チバスペシャルティケミカルズ (株)製))  Photopolymerization initiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
10質量部  10 parts by mass
界面活性剤 (シリコーン系界面活性剤; FZ2207 (日本ュ-カー製))  Surfactant (Silicone surfactant; FZ2207 (manufactured by Nippon Car))
0. 5質量部  0.5 parts by mass
上記組成物を混合撹拌し、透明榭脂層用インキ液 3を調製した。  The above composition was mixed and stirred to prepare an ink liquid 3 for a transparent resin layer.
[0342] 透明榭脂層用インキ液 3を、塗布乾燥後'紫外線の照度が 0. lWZcm2で、照射 量が 0. ljZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、屈折率は 1. 471であった。 [0342] The film prepared by applying the ink solution 3 for the transparent resin layer after being dried and cured with an ultraviolet illuminance of 0.1 lWZcm 2 and an irradiation dose of 0.1 ljZcm 2 was measured with an Abbe refractometer. The refractive index was 1.471.
[0343] 《測定、評価》 [0343] << Measurement, Evaluation >>
(凸構造部径、凸構造部高さ、凸構造部個数、 Ra、 Smの測定)  (Measurement of convex structure diameter, convex structure height, number of convex structures, Ra, Sm)
凸構造部径、凸構造部高さ、凸構造部個数 (lmm2当たり)は、透明榭脂層を塗布 する前のフィルム試料を用いて、 WYKO社製光学干渉式表面粗さ測定機を用いて 、 ¾4000 μ m2( $aH (55 ^ m X 75 ^ m)について 2次元的に測定し、凸部を底部 側より等高線のごとく色分けして表示し、フィルム面を基準とした凸部高さ及び凸構 造部の長径である凸部径を測定した。また、凸構造部個数は得られた凸構造部の個 数を lmm2あたりに換算して求めた。これらの測定は、基材フィルムの該当箇所の任 意の 10点を測定してその平均値として求めた。 The convex structure part diameter, convex structure part height, and number of convex structure parts (per lmm 2 ) were measured using an optical interference type surface roughness measuring machine manufactured by WYKO using the film sample before applying the transparent resin layer. ¾4000 μm 2 ($ aH (55 ^ m X 75 ^ m) was measured two-dimensionally, and the convex part was color-coded and displayed as a contour line from the bottom side, and the convex part height relative to the film surface was displayed. The length of the convex part, which is the major axis of the convex structure part, was measured, and the number of convex structure parts was obtained by converting the number of convex structure parts obtained per lmm 2 . Ten arbitrary points of the relevant part of the material film were measured and obtained as an average value.
[0344] 表面粗さ (Ra)、平均中心間距離 (Sm)は、透明榭脂層を形成した後の試料を用い て、 WYKO社製光学干渉式表面粗さ測定機を用いて、 JIS B0601の測定方法に より測定した。 [0345] (防眩効果) [0344] The surface roughness (Ra) and the average center-to-center distance (Sm) were measured using JIS B0601 using an optical interference surface roughness measuring machine manufactured by WYKO, using the sample after forming the transparent resin layer. It was measured by the measurement method. [0345] (Anti-glare effect)
窓のあるオフィスにて、各フィルムを机の上に広げ、天井の蛍光灯照明及び外光の フィルムへの写り込みを下記のように評価した。  In an office with a window, each film was spread on a desk, and fluorescent lighting on the ceiling and reflection of external light on the film were evaluated as follows.
[0346] 5:蛍光灯の輪郭、及び外光がぼけて写り込みが全く気にならない  [0346] 5: The outline of the fluorescent lamp and the outside light are blurred and I don't mind the reflection at all.
4 :5と 3の中間  4: Between 5 and 3
3:蛍光灯の輪郭、及び外光の写り込みが僅かに認められる  3: Fluorescent light outline and slight reflection of outside light are recognized
2: 3と 1の中間  2: halfway between 3 and 1
1:蛍光灯の輪郭、及び外光が分かり写り込みが気になる  1: The outline of the fluorescent lamp and the external light are understood and the reflection is anxious
(ぎらつき)  (Glare)
作製したフィルムにつ 、て、目視にてぎらつきを判定した。  The produced film was visually checked for glare.
[0347] 5:ぎらつきが全く分からない [0347] 5: I don't know any glare
4:ぎらつきが極僅かに分かる  4: Very little glare
3:ややぎらつきが分かる  3: I understand a slight glare
2: 3と 1の中間  2: halfway between 3 and 1
1:ぎらつきがかなり気になる  1: I am very worried about glare
(白濁)  (Cloudy)
作製したフィルムにつ 、て、目視にて白濁を判定した。  The produced film was visually judged for white turbidity.
[0348] 5:白濁が全く気にならない [0348] 5: I don't care about cloudiness at all
4 :5と 3の中間  4: Between 5 and 3
3:白濁がやや気になる  3: I feel a little cloudy
2: 3と 1の中間  2: halfway between 3 and 1
1:白濁が力なり気になる  1: I'm worried about the cloudiness
以上の測定、評価結果を下記表 3、表 4に示す。  The above measurement and evaluation results are shown in Table 3 and Table 4 below.
[0349] [表 3]
Figure imgf000076_0001
[0349] [Table 3]
Figure imgf000076_0001
※ 1 : ΡΈスクリー二ング濃度パタ一ン * 1 ΡΈ Screening concentration pattern
Figure imgf000077_0002
Figure imgf000077_0002
Figure imgf000077_0001
表 3、表 4より、微粒子添カ卩による微細凹凸構造を付与した防眩性フィルム 1は、微 粒子の分散性のばらつきの為力、ぎらつきが劣り、白濁も見られた。エンボス加工に より微細凹凸構造を付与した防眩性フィルム 2は防眩効果、ぎらつきがやや劣ってお り白濁も見られた。また、防眩性フィルム 2の先頭と後尾で微細凹凸構造の高さ、大き さが異なっており、铸型を観察すると铸型の一部に溶けたフィルムによる目詰まりを起 こしていた。 [0352] それに対し、本発明の防眩性フィルム 3〜28は、防眩効果、ぎらつきに優れ、白濁 も気にならないレベルであった。また、防眩性フィルムの先頭と後尾の微細凹凸構造 の高さ、大きさが揃っており、高い均一性、生産安定性を有していることが分力つた。
Figure imgf000077_0001
From Tables 3 and 4, the antiglare film 1 imparted with a fine concavo-convex structure by means of fine particle-added powder was inferior in power, glare, and white turbidity due to dispersion of fine particle dispersibility. The anti-glare film 2 with a fine uneven structure by embossing was slightly inferior in anti-glare effect and glare, and cloudy. In addition, the height and size of the fine concavo-convex structure differed between the head and tail of the antiglare film 2, and clogging due to the film dissolved in a part of the saddle was observed when the saddle was observed. [0352] On the other hand, the antiglare films 3 to 28 of the present invention were excellent in antiglare effect and glare, and were not at the level of white turbidity. In addition, the height and size of the fine concavo-convex structure at the front and rear of the anti-glare film are uniform, and it has been found that it has high uniformity and production stability.
[0353] また、凹凸部を透明榭脂層で被覆しな力つた防眩性フィルム 31に対して、凹凸部 を透明榭脂層で被覆した防眩性フィルム 20は、防眩性向上の効果が明らかである。  [0353] In contrast to the anti-glare film 31 in which the uneven portion is covered with the transparent resin layer, the anti-glare film 20 in which the uneven portion is covered with the transparent resin layer is effective in improving the anti-glare property. Is clear.
[0354] 実施例 2  [0354] Example 2
次 、で、実施例 1で作製した防眩性フィルム 1〜30のハードコート層または透明榭 脂層表面に下記表面処理を行った。  Next, the following surface treatment was performed on the surface of the hard coat layer or the transparent resin layer of the antiglare film 1 to 30 produced in Example 1.
[0355] 〈表面処理〉 [0355] <Surface treatment>
アルカリ処理:各防眩性フィルムを、 50°Cに加熱した 1. 5molZl— NaOH水溶液 に 2分間浸漬しアルカリ処理を行い、水洗後、 0. 5質量%—H SO水溶液に室温で  Alkali treatment: Each anti-glare film was immersed in 1.5molZl-NaOH aqueous solution heated to 50 ° C for 2 minutes for alkali treatment, washed with water, and then washed with 0.5 mass% -HSO aqueous solution at room temperature.
2 4  twenty four
30秒間浸潰し中和させ、水洗、乾燥を行った。  It was pulverized for 30 seconds to neutralize, washed with water and dried.
[0356] 〔防眩性反射防止フィルムの作製〕  [Preparation of antiglare antireflection film]
次いで、防眩性フィルム 1〜30のハードコート層または透明榭脂層上に下記低屈 折率層を塗設した。  Next, the following low refractive index layer was applied on the hard coat layer or transparent resin layer of the antiglare films 1 to 30.
[0357] (反射防止層の作製:低屈折率層)  [0357] (Preparation of antireflection layer: low refractive index layer)
下記の低屈折率層塗布組成物 1を押出しコーターで塗布し、 100°Cで 1分間乾燥 させた後、紫外線を 0. UZcm2照射して硬化させ、更に 120°Cで 5分間熱硬化させ 、厚さ 95nmとなるように低屈折率層を設け、防眩性反射防止フィルム 1〜30を作製 した。尚、この低屈折率層の屈折率は 1. 37であった。 The following low refractive index layer coating composition 1 is applied by an extrusion coater, dried at 100 ° C for 1 minute, cured by UV irradiation at 0. UZcm 2 and further cured at 120 ° C for 5 minutes. Then, a low refractive index layer was provided so as to have a thickness of 95 nm, and antiglare antireflection films 1 to 30 were produced. The refractive index of this low refractive index layer was 1.37.
[0358] また作製した防眩性反射防止フィルムにつ!/、て、分光光度計(日本分光 (株)製)を 用いて、 380〜780nmの波長領域において、入射角 5° における分光反射率を測 定した。反射防止性能は広 、波長領域にぉ 、て反射率が小さ 、ほど良好であるた め、測定結果力も 450〜650nmにおける最低反射率を求めた。測定は、観察側の 裏面を粗面化処理した後、黒色のスプレーを用いて光吸収処理を行い、フィルム裏 面での光の反射を防止して、反射率の測定を行った。測定の結果、上記防眩性反射 防止フィルムはいずれも反射率で 0. 7〜1. 2の間に反射率を有し良好な結果を示し [0359] (低屈折率層塗布組成物 1の調製) [0358] The anti-glare anti-reflection film produced! /, Using a spectrophotometer (manufactured by JASCO Corporation), spectral reflectance at an incident angle of 5 ° in the wavelength region of 380 to 780 nm Was measured. Since the antireflection performance is wide and the reflectance is smaller in the wavelength region, the lower the reflectance in the range of 450 to 650 nm, the measurement result power was determined. In the measurement, the back side on the observation side was roughened, and then light absorption treatment was performed using a black spray to prevent reflection of light on the back side of the film, and the reflectance was measured. As a result of the measurement, all of the above antiglare antireflection films have a reflectance of 0.7 to 1.2 and show good results. [0359] (Preparation of low refractive index layer coating composition 1)
〈テトラエトキシシラン加水分解物 Aの調製〉  <Preparation of tetraethoxysilane hydrolyzate A>
テトラエトキシシラン 289gとエタノール 553gを混和し、これに 0. 15%酢酸水溶液 1 57gを添加し、 25°Cのウォーターノ ス中で 30時間攪拌することで加水分解物 Aを調 製した。  Hydrolyzate A was prepared by mixing 289 g of tetraethoxysilane and 553 g of ethanol, adding 157 g of a 0.15% acetic acid aqueous solution, and stirring in water nose at 25 ° C. for 30 hours.
[0360] テトラエトキシシラン加水分解物 A 110質量部  [0360] Tetraethoxysilane hydrolyzate A 110 parts by mass
中空シリカ系微粒子(下記 P— 2)分散液 30質量部 Hollow silica fine particles (P-2 below) 30 parts by mass of dispersion
KBM503 (シランカップリング剤、信越化学 (株)製) 4質量部 直鎖ジメチルシリコーン—EOブロックコポリマー(FZ— 2207、 日本ュ-カー(株) 製)の 10%プロピレングリコールモノメチルエーテル液 3質量部 KBM503 (Silane coupling agent, manufactured by Shin-Etsu Chemical Co., Ltd.) 4 parts by mass 3% by mass of 10% propylene glycol monomethyl ether solution of linear dimethyl silicone-EO block copolymer (FZ-2207, manufactured by Nippon Car Co., Ltd.)
プロピレングリコールモノメチルエーテル 400質量部 イソプロピルアルコール 400質量部  Propylene glycol monomethyl ether 400 parts by mass Isopropyl alcohol 400 parts by mass
〈中空シリカ系微粒子 P 2分散液の調製〉  <Preparation of hollow silica fine particle P2 dispersion>
平均粒径 5nm、 SiO濃度 20質量%のシリカゾル 100gと純水 1900gの混合物を 8  A mixture of 100 g of silica sol with an average particle size of 5 nm and SiO concentration of 20 mass% and 1900 g of pure water 8
2  2
0°Cに加温した。この反応母液の pHは 10. 5であり、同母液に SiOとして 0. 98質量  Warmed to 0 ° C. The pH of this reaction mother liquor is 10.5, and 0.98 mass as SiO in the mother liquor.
2  2
%のケィ酸ナトリウム水溶液 9000gと Al Oとして 1. 02質量%のアルミン酸ナトリウム  9000 g of 1% sodium silicate aqueous solution and 1.02 mass% sodium aluminate as Al O
2 3  twenty three
水溶液 9000gとを同時に添加した。その間、反応液の温度を 80°Cに保持した。反応 液の pHは添加直後、 12. 5に上昇し、その後、ほとんど変化しな力つた。添加終了後 、反応液を室温まで冷却し、限外濾過膜で洗浄して固形分濃度 20質量%の SiO ·  9000 g of aqueous solution was added simultaneously. Meanwhile, the temperature of the reaction solution was kept at 80 ° C. The pH of the reaction solution rose to 12.5 immediately after the addition, and after that, almost unchanged. After completion of the addition, the reaction solution is cooled to room temperature, washed with an ultrafiltration membrane, and a solid content concentration of 20 mass% SiO ·
2 2
Al O核粒子分散液を調製した。(工程 (a) ) An Al 2 O core particle dispersion was prepared. (Process (a))
2 3  twenty three
この核粒子分散液 500gに純水 1700gをカ卩えて 98°Cに加温し、この温度を保持し ながら、ケィ酸ナトリウム水溶液を陽イオン交換樹脂で脱アルカリして得られたケィ酸 液 (SiO濃度 3. 5質量%) 3000gを添加して第 1シリカ被覆層を形成した核粒子の 1700 g of pure water was added to 500 g of this core particle dispersion and heated to 98 ° C, and while maintaining this temperature, a sodium silicate aqueous solution obtained by dealkalizing with a cation exchange resin ( (SiO concentration: 3.5% by mass) of core particles with the addition of 3000 g to form the first silica coating layer
2 2
分散液を得た。(工程 (b) )  A dispersion was obtained. (Process (b))
次いで、限外濾過膜で洗浄して固形分濃度 13質量%になった第 1シリカ被覆層を 形成した核粒子分散液 500gに純水 1125gを加え、さらに濃塩酸(35. 5%)を滴下 して pHl. 0とし、脱アルミニウム処理を行った。次いで、 pH3の塩酸水溶液 10Lと純 水 5Lを加えながら限外濾過膜で溶解したアルミニウム塩を分離し、第 1シリカ被覆層 を形成した核粒子の構成成分の一部を除去した SiO ·Α1 Ο多孔質粒子の分散液 Next, 1125 g of pure water was added to 500 g of the core particle dispersion formed with the first silica coating layer having a solid content concentration of 13% by washing with an ultrafiltration membrane, and further concentrated hydrochloric acid (35.5%) was added dropwise. The pH was adjusted to 0.1 and dealumination was performed. Next, the aluminum salt dissolved in the ultrafiltration membrane is separated while adding 10 L of pH 3 hydrochloric acid aqueous solution and 5 L of pure water, and the first silica coating layer is separated. SiO · Α1 ΟPorous particle dispersion with some of the constituents of the core particles forming
2 2 3  2 2 3
を調製した (工程 (c) )。上記多孔質粒子分散液 1500gと、純水 500g、エタノール 1, 750g及び 28%アンモニア水 626gとの混合液を 35°Cに加温した後、ェチルシリケ一 HSiO 28質量%) 104gを添加し、第 1シリカ被覆層を形成した多孔質粒子の表面 Was prepared (step (c)). A mixture of 1500 g of the above porous particle dispersion, 500 g of pure water, 1,750 g of ethanol, and 626 g of 28% ammonia water was heated to 35 ° C., and then 104 g of ethylsilique HSiO (28 mass%) was added. 1Surface of porous particles with silica coating
2 2
をェチルシリケートの加水分解重縮合物で被覆して第 2シリカ被覆層を形成した。次 V、で、限外濾過膜を用いて溶媒をエタノールに置換した固形分濃度 20質量%の中 空シリカ系微粒子 (P— 2)分散液を調製した。  Was coated with a hydrolyzed polycondensate of ethyl silicate to form a second silica coating layer. Next, in V, a silica-based silica fine particle (P-2) dispersion with a solid concentration of 20% by mass was prepared by replacing the solvent with ethanol using an ultrafiltration membrane.
[0361] この中空シリカ系微粒子の第 1シリカ被覆層の厚さは 3nm、平均粒径は 47nm、 M Ox/SiO (モル比)は 0. 0017、屈折率は 1. 28であった。ここで、平均粒径は動的 [0361] The thickness of the first silica coating layer of the hollow silica-based fine particles was 3 nm, the average particle size was 47 nm, M Ox / SiO 2 (molar ratio) was 0.0041, and the refractive index was 1.28. Where the average particle size is dynamic
2  2
光散乱法により測定した。  It was measured by a light scattering method.
[0362] 〔偏光板の作製〕  [Preparation of polarizing plate]
次 、で、各防眩性反射防止フィルム 1〜30を用いて偏光板を作製した。  Next, polarizing plates were prepared using each of the antiglare and antireflection films 1 to 30.
[0363] 厚さ、 120 mのポリビュルアルコールフィルムを、一軸延伸(温度 110°C、延伸倍 率 5倍)した。これをヨウ素 0. 075g、ヨウィ匕カリウム 5g、水 100gからなる水溶液に 60 秒間浸漬し、次いでヨウ化カリウム 6g、ホウ酸 7. 5g、水 100gからなる 68°Cの水溶液 に浸漬した。これを水洗、乾燥し偏光膜を得た。  [0363] A 120 m thick polybulal alcohol film was uniaxially stretched (temperature: 110 ° C, stretch ratio: 5 times). This was immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium yowi and 100 g of water for 60 seconds, and then immersed in an aqueous solution of 68 ° C. consisting of 6 g of potassium iodide, 7.5 g of boric acid and 100 g of water. This was washed with water and dried to obtain a polarizing film.
[0364] 次いで、下記工程 1〜5に従って偏光膜と前記防眩性反射防止フィルム 1〜30、裏 面側のセルロースエステルフィルム コ-カミノルタタック KC8UCR5 (コ-力ミノルタ ォプト (株)製)を貼り合わせて偏光板を作製した。裏面側の偏光板保護フィルムは位 相差を有するセルロースエステルフィルムであり、リタ一デーシヨン値は Ro=43nm、 Rt= 132nmであった。  [0364] Next, according to the following steps 1 to 5, the polarizing film and the antiglare antireflection film 1 to 30, the cellulose ester film on the back side, Co-Camino Nortack KC8UCR5 (manufactured by Co-force Minolopt Co., Ltd.) The polarizing plate was produced by bonding. The polarizing plate protective film on the back side was a cellulose ester film having a phase difference, and the retardation values were Ro = 43 nm and Rt = 132 nm.
[0365] 工程 1: 50°Cの 1モル ZLの水酸ィ匕ナトリウム溶液に 60秒間浸漬し、次いで水洗し 乾燥して、偏光膜と貼合する側を鹼化した防眩性反射防止フィルム、セルロースエス テルフィルムを得た。  [0365] Step 1: An antiglare antireflection film in which the side to be bonded to the polarizing film is hatched by dipping in a 1 mol ZL sodium hydroxide solution at 50 ° C for 60 seconds, then washing with water and drying. A cellulose ester film was obtained.
[0366] 工程 2:前記偏光膜を固形分 2質量%のポリビュルアルコール接着剤槽中に 1〜2 秒浸潰した。  [0366] Step 2: The polarizing film was immersed in a polybulal alcohol adhesive tank having a solid content of 2% by mass for 1 to 2 seconds.
[0367] 工程 3:工程 2で偏光膜に付着した過剰の接着剤を軽く拭き除き、これを工程 1で処 理した防眩性反射防止フィルム、セルロースエステルフィルムの上にのせて、更に反 射防止層が外側になるように積層し、配置した。 [0367] Step 3: Lightly wipe off excess adhesive adhering to the polarizing film in Step 2, and place it on the anti-glare antireflection film or cellulose ester film processed in Step 1, and Lamination was done with the anti-reflection layer on the outside.
[0368] 工程 4:工程 3で積層した防眩性反射防止フィルムと偏光膜とセルロースエステルフ イルム試料を圧力 20〜30NZcm2、搬送スピードは約 2mZ分で貼合した。 [0368] Step 4: The antiglare antireflection film, the polarizing film, and the cellulose ester film sample laminated in Step 3 were bonded at a pressure of 20 to 30 NZcm 2 and a conveying speed of about 2 mZ.
[0369] 工程 5: 80°Cの乾燥機中に工程 4で作製した偏光膜とセルロースエステルフィルム と防眩性反射防止フィルム 1〜30とを貼り合わせた試料を 2分間乾燥し、偏光板 1〜 30を作製した。  [0369] Step 5: A sample obtained by bonding the polarizing film, the cellulose ester film, and the antiglare antireflection film 1 to 30 prepared in Step 4 in a dryer at 80 ° C is dried for 2 minutes to obtain a polarizing plate 1 ~ 30 were made.
[0370] 《液晶表示装置の作製》  [0370] <Production of liquid crystal display device>
液晶パネルを以下のようにして作製し、液晶表示装置としての特性を評価した。  A liquid crystal panel was produced as follows, and the characteristics as a liquid crystal display device were evaluated.
[0371] 市販の 32型液晶テレビ (MVA型セル)の予め貼合されて 、た表面の偏光板を剥 がして、上記作製した偏光板 1〜30をそれぞれ液晶セルのガラス面に貼合した。  [0371] A commercially available 32-inch liquid crystal television (MVA cell) was previously bonded, the polarizing plate on the surface was peeled off, and the above-prepared polarizing plates 1 to 30 were each bonded to the glass surface of the liquid crystal cell. did.
[0372] その際、その偏光板の貼合の向きは、位相差を有するセルロースエステルフィルム の面が、液晶セル側となるように、かつ、予め貼合されていた偏光板と同一の方向に 吸収軸が向くように行い、液晶表示装置 1〜30を各々作製した。  [0372] At that time, the direction of bonding of the polarizing plate is such that the surface of the cellulose ester film having a phase difference is on the liquid crystal cell side and in the same direction as the polarizing plate previously bonded. Liquid crystal display devices 1 to 30 were respectively produced so that the absorption axis was directed.
[0373] 《評価》  [0373] << Evaluation >>
得られた液晶表示装置 1〜30を用いて、図 12で示した様な環境で観察し、前記防 眩効果、ぎらつき、及び下記視認性及び動画を表示したときの黒のしまりを各々下記 の基準に従い目視にて評価した。尚、照明は 40W蛍光灯 (松下電器製 FLR40S— EX-D/M) 10本を天井に設置した。また窓力も外光が差し込む状態で評価した。  The obtained liquid crystal display devices 1 to 30 were observed in an environment as shown in FIG. Visual evaluation was made according to the criteria. In addition, 10 40W fluorescent lamps (FLR40S—EX-D / M manufactured by Matsushita Electric) were installed on the ceiling. The window force was also evaluated in the state where external light was inserted.
[0374] (視認性及び動画を表示したときの黒のしまり) [0374] (Visibility and black spots when displaying video)
前述の様に天井力 は蛍光灯による人工照明と窓力 の外光が差し込んでいる環 境下で TV番組の動画像を同ディスプレイに表示し、比較実験を行った。ディスプレ ィ正面から lm離れた位置で動画像を観察し官能評価を行った。  As described above, we performed a comparative experiment by displaying a TV program video on the same display in an environment where artificial light from a fluorescent lamp and external light from window power were inserted. A moving image was observed at a position lm away from the front of the display for sensory evaluation.
[0375] 5 :画面上部の蛍光灯の写り込みが気にならず、画面中央部は外光があっても黒が しまって見え、観察中、観察直後においても疲れず違和感がない [0375] 5: I don't mind the reflection of the fluorescent lamp at the top of the screen, and the center of the screen looks black even when there is external light.
4 : 5と 3の中間  4: Between 5 and 3
3 :画面上部の蛍光灯の写り込みが僅かに認められ、画面中央部は外光があると黒 がややしまりに欠け、観察後やや疲れる  3: Slight reflection of fluorescent light at the top of the screen is recognized, and the center of the screen is slightly tired after observation if there is external light.
2 : 3と 1の中間 1:画面上部の蛍光灯の写り込みが認められ、画面中央部は外光の影響で黒のし まりに欠け、見ていると目が疲れる 2: Between 3 and 1 1: Reflection of fluorescent light at the top of the screen is recognized, and the center of the screen lacks black spots due to external light, and eyes are tired when looking
防眩性反射防止フィルム 液晶表示装置の構成及び上記評価結果を下記表 5に 示す。  Anti-glare antireflection film The composition of the liquid crystal display and the evaluation results are shown in Table 5 below.
[表 5][Table 5]
Figure imgf000082_0001
表 5より、微粒子添カ卩による微細凹凸構造を付与した液晶表示装置 1は、微粒子の 分散性のばらつきの為か防眩効果、ぎらつきの改善が中途であり黒のしまりに劣って いた。エンボス加工により微細凹凸構造を付与した液晶表示装置 2は均一な凹凸構 造の形成に難があり、ぎらつき、黒のしまりに劣っていた。
Figure imgf000082_0001
From Table 5, the liquid crystal display device 1 provided with a fine uneven structure by means of a fine particle additive is Due to dispersion of dispersibility, the antiglare effect and glare improvement were in progress, and the black color was inferior. The liquid crystal display device 2 provided with a fine concavo-convex structure by embossing had difficulty in forming a uniform concavo-convex structure, and was inferior to glare and black solids.
[0378] それに対して、本発明の防眩性反射防止フィルムを用いた液晶表示装置 3〜28は[0378] On the other hand, liquid crystal display devices 3 to 28 using the antiglare and antireflection film of the present invention include:
、防眩効果、ぎらつき、黒のしまりに優れていることが明らかである。 It is clear that it is excellent in antiglare effect, glare and blackness.
[0379] 実施例 3 [0379] Example 3
〔インクジェット法による凸構造部を有する防眩性フィルム 32〜51の作製〕 実施例 1で作成した凸構造部用インキ液 4を、表 6に示される溶媒及び量に変更し た以外は同様の方法で、凸構造部用インキ液 7を作製し、インクジェット方式により表 [Preparation of anti-glare film 32 to 51 having convex structure portion by inkjet method] The same procedure except that ink liquid 4 for convex structure portion prepared in Example 1 was changed to the solvent and amount shown in Table 6. Method to prepare the ink liquid 7 for the convex structure, and display it by the inkjet method.
7に記載の凸構造部を形成した。 The convex structure described in 7 was formed.
[0380] 各溶媒の粘度は、ピスコメイト VM—1G (山一電機 (株)製)を用い、 25°Cにおける 値を測定した。 [0380] The viscosity of each solvent was measured at 25 ° C using Piscomate VM-1G (manufactured by Yamaichi Electronics Co., Ltd.).
[0381] 凸構造部用インキ液 7を基材フィルムに塗布乾燥後 ·紫外線の照度が 0. lW/cm 2で、照射量が 0. UZcm2で硬化させて作製した膜をアッベの屈折計で測定した所、 屈折率は 1. 522であった。 [0381] After applying ink liquid 7 for convex structure to substrate film and drying · Abbe's refractometer is made by curing with UV illumination of 0.1 lW / cm 2 and irradiation dose of 0 UZcm 2 The refractive index was 1.522 as measured by.
[0382] 〔防眩性フィルム 32〜51の作製〕 [0382] [Preparation of antiglare film 32-51]
作製された凸構造部の上に、実施例 1で調製した透明榭脂層用インキ液 1を減圧 押出し法によって塗布し、防眩性フィルム 32〜51を作製した。  On the produced convex structure part, the ink solution 1 for transparent resin layer prepared in Example 1 was applied by a reduced pressure extrusion method to produce antiglare films 32 to 51.
[0383] 〔防眩性フィルムの部分ムラ評価〕 [0383] [Evaluation of partial unevenness of antiglare film]
作製した防眩性フィルムを A4サイズ (297 X 210mm)に切断し、防眩層の形成さ れて 、な 、面に、 1mm厚の黒色アクリル板 (日東榭脂工業 (株)製アクリル榭脂板)を 貼り合わせて裏面の反射をなくし、防眩層の部分ムラを以下の判定基準により目視 にて判定した。比較として、実施例 1で作製した比較の防眩性フィルム 1、 2、本発明 の防眩性フィルム 19を同時に評価した。  The produced anti-glare film was cut into A4 size (297 x 210mm), and the anti-glare layer was formed on the black acrylic board with 1mm thickness on the surface (acrylic resin manufactured by Nitto Seiryo Co., Ltd. The back surface was not reflected and the partial unevenness of the antiglare layer was visually determined according to the following criteria. For comparison, the comparative antiglare films 1 and 2 produced in Example 1 and the antiglare film 19 of the present invention were evaluated simultaneously.
[0384] 5…部分ムラは全くない [0384] 5 ... No partial unevenness
4…部分ムラはほとんどない  4 ... There is almost no partial unevenness
3…部分ムラがかすかに確認できる  3… Partial unevenness can be confirmed faintly
2· ··部分ムラはあるが実用上問題はな!/、 1 · · ·部分ムラが明確に視認できる 2 ··· Partial unevenness but no practical problem! / 1 ···· Partial unevenness is clearly visible
測定結果を表 8に示す。  Table 8 shows the measurement results.
[0385] 〔防眩性反射防止フィルムの作製〕 [Preparation of antiglare antireflection film]
実施例 2記載の方法で、防眩性フィルム 32〜51の透明榭脂層上に低屈折率層を 塗設した。  A low refractive index layer was coated on the transparent resin layer of the antiglare films 32 to 51 by the method described in Example 2.
[0386] 〔微小範囲のぎらつきの評価〕  [0386] [Evaluation of glare in minute range]
得られた防眩性反射防止フィルムを、ガラス基板に接着し、ライトボックス〔コ-力ミノ ルタ(株)製: AD— LUX SLIM A4〕上に固定されたマスクパターン(開口率 25% )上で微小な範囲のギラツキ度合 、を、ルーペ (東海産業 (株)製:ピークズームルー ぺ 10— 20倍)により 20倍に拡大して観察し、以下の基準で評価した。  The obtained antiglare antireflection film was bonded to a glass substrate and fixed on a mask pattern (aperture ratio 25%) on a light box [Co-Power Minolta Co., Ltd .: AD-LUX SLIM A4]. In addition, the degree of glare in a minute range was observed with a magnifier (Tokai Sangyo Co., Ltd .: peak zoom magnifier 10-20 times) and magnified 20 times, and evaluated according to the following criteria.
[0387] 比較として、実施例 2で作製した比較の防眩性反射防止フィルム 1、 2、本発明の防 眩性反射防止フィルム 19を同時に評価した。 [0387] As a comparison, the comparative antiglare antireflection films 1 and 2 produced in Example 2 and the antiglare antireflection film 19 of the present invention were evaluated simultaneously.
[0388] 5· · '微小な範囲のギラツキは全くな!/ヽ [0388] 5 · 'No glare in a minute range! / ヽ
4· · '微小な範囲のギラツキはほとんどな!/ヽ  4 ·· 'The glare of the minute range is almost not! / ヽ
3· · '微小な範囲のギラツキはあるが実用上問題はな!/ヽ  3 ·· 'There is a slight glare, but there is no practical problem! / 問題
2…微小な範囲のギラツキが認められる  2 ... A slight range of glare is observed
1 · · '微小な範囲のギラツキが多数ある  1 · · 'There are many glare in a minute range
測定結果を表 8に示す。  Table 8 shows the measurement results.
[0389] [表 6] [0389] [Table 6]
§3 §3
Figure imgf000085_0001
Figure imgf000085_0001
§ S〕〕918 § S]] 918
Figure imgf000086_0001
Figure imgf000086_0001
※ 1 : FMスクリー二ング濃度パタ一ン * 1: FM screening concentration pattern
防眩性 防眩性フィルムノ防眩性反射防止フィルムの評価 Antiglare Antiglare Film Evaluation of Antiglare Antireflection Film
防眩性  Antiglare
反射防止  Anti-reflective
フィノレム 防眩効果の 微小範 の 備考 フィル'ム 防眩効果 ぎらつき  FINEREM Anti-glare remarks Minor range of notes Anti-glare effect Glare
No . 白濁  No. Cloudiness
部分ムラ ギラツキ  Partial unevenness Glitter
No .  No.
1 1 2 4 1 2 1 比較例 1 1 2 4 1 2 1 Comparative example
2 2 1 3 3 2 2 比較例2 2 1 3 3 2 2 Comparative example
19 19 2 5 5 5 3 本発明19 19 2 5 5 5 3 Present invention
32 32 2 5 o 5 3 本発明32 32 2 5 o 5 3 The present invention
33 33 2 5 5 5 3 本発明33 33 2 5 5 5 3 The present invention
34 34 2 5 5 5 3 本発明34 34 2 5 5 5 3 The present invention
35 35 2 5 5 5 3 本発明35 35 2 5 5 5 3 The present invention
36 36 2 5 5 5 3 本発明36 36 2 5 5 5 3 Present invention
37 37 2 5 5 5 5 本発明37 37 2 5 5 5 5 Present invention
38 38 2 5 5 5 4 本発明38 38 2 5 5 5 4 Present invention
39 39 2 5 5 5 4 本発明39 39 2 5 5 5 4 Present invention
40 40 2 5 5 5 5 本発明40 40 2 5 5 5 5 Present invention
41 41 2 5 5 5 5 本発明41 41 2 5 5 5 5 Present invention
42 42 2 5 5 5 4 本発明42 42 2 5 5 5 4 Present invention
43 43 3 5 5 5 4 本発明43 43 3 5 5 5 4 Present invention
44 44 3 5 5 5 4 本発明44 44 3 5 5 5 4 Present invention
45 45 4 5 5 5 5 本発明45 45 4 5 5 5 5 Present invention
46 46 3 5 5 5 4 本発明46 46 3 5 5 5 4 Present invention
47 47 4 5 5 5 5 本発明47 47 4 5 5 5 5 Present invention
48 48 4 5 5 5 5 本発明48 48 4 5 5 5 5 Present invention
49 49 5 5 5 5 5 本発明49 49 5 5 5 5 5 Present invention
50 50 5 5 5 5 5 本発明50 50 5 5 5 5 5 Present invention
51 51 3 5 5 5 4 本発明 表 8より、本発明の防眩性フィルムは、防眩効果、ぎらつき、白濁に優れた性能を すと共に、微小な範囲でのギラツキ、防眩性の部分ムラも少なぐ製造安定性にも優 れていることが明らかである。 51 51 3 5 5 5 4 Invention From Table 8, the antiglare film of the invention has excellent antiglare effect, glare and white turbidity, as well as glare and antiglare parts in a minute range. It is clear that it is excellent in manufacturing stability with little unevenness.

Claims

請求の範囲 The scope of the claims
[1] 基材フィルム上に、ドットの長径が 1〜30 μ m、ドットの高さが 0. 5〜10 μ mである微 細な凸構造部を lmm2あたり 10〜: LOOOO個有し、更に該凸構造部を被覆するように 透明榭脂層が形成されており、かつ該凸構造部と該透明樹脂層の屈折率が同一で あることを特徴とする防眩性フィルム。 [1] On the base film, 10 to 10 LOOOO fine convex structures with a long diameter of 1 to 30 μm and a dot height of 0.5 to 10 μm per lmm 2 Furthermore, a transparent resin layer is formed so as to cover the convex structure part, and the refractive index of the convex structure part and the transparent resin layer is the same.
[2] 前記透明榭脂層の上に更に、反射防止層または防汚層が形成されたことを特徴とす る請求の範囲第 1項に記載の防眩性フィルム。 [2] The antiglare film according to claim 1, wherein an antireflection layer or an antifouling layer is further formed on the transparent resin layer.
[3] 前記凸構造部、前記透明榭脂層によって構成される防眩層表面の表面粗さ (Ra)が[3] The surface roughness (Ra) of the surface of the antiglare layer constituted by the convex structure portion and the transparent resin layer is
50〜: L000nm、凸部または凹部の平均中心間距離(Sm)力 0〜200 μ mであるこ とを特徴とする請求の範囲第 1項または第 2項に記載の防眩性フィルム。 3. The antiglare film according to claim 1, wherein the antiglare film is 50 to: L000 nm, an average center-to-center distance (Sm) force between convex portions or concave portions of 0 to 200 μm.
[4] 前記凸構造部の高さに対し、前記透明榭脂層の厚み力^〜 5 m厚いことを特徴と する請求の範囲第 1項〜第 3項のいずれか 1項に記載の防眩性フィルム。 [4] The prevention according to any one of claims 1 to 3, wherein the thickness of the transparent resin layer is 5 to 5 m thicker than the height of the convex structure portion. Dazzle film.
[5] 前記凸構造部または前記透明榭脂層が活性光線硬化型榭脂であることを特徴とす る請求の範囲第 1項〜第 4項のいずれか 1項に記載の防眩性フィルム。 [5] The antiglare film according to any one of claims 1 to 4, wherein the convex structure part or the transparent resin layer is an actinic ray curable resin. .
[6] 前記凸構造部または前記透明榭脂層が熱硬化性榭脂であることを特徴とする請求 の範囲第 1項〜第 4項のいずれか 1項に記載の防眩性フィルム。 [6] The antiglare film according to any one of [1] to [4], wherein the convex structure part or the transparent resin layer is a thermosetting resin.
[7] 前記凸構造部が、沸点が 140〜250°C、 25°C測定の粘度が l〜15mPa' sである少 なくとも 1種類の溶媒を 60質量%以上含むインキ組成物カゝら形成されることを特徴と する請求の範囲第 1項〜第 6項のいずれか 1項に記載の防眩性フィルム。 [7] An ink composition containing at least 60% by mass of at least one solvent having a convex structure having a boiling point of 140 to 250 ° C and a viscosity measured at 25 ° C of 1 to 15 mPa's. The antiglare film according to any one of claims 1 to 6, wherein the antiglare film is formed.
[8] 前記溶媒が、下記の一般式(1)で表される化合物であることを特徴とする請求の範 囲第 7項に記載の防眩性フィルム。 [8] The antiglare film according to [7], wherein the solvent is a compound represented by the following general formula (1).
一般式(1) Rl— O— (C H -0) n-R2  Formula (1) Rl— O— (C H -0) n-R2
2x  2x
Rl、 R2:水素原子、ァリール基、炭素数 1〜6のアルキル基、アルコキシアルキル基 、アルキルカルボニル基。炭化水素鎖は直鎖でも分岐していてもよい。但し、 Rl、 R2 の少なくとも一方は水素原子以外の置換基である。  Rl, R2: hydrogen atom, aryl group, alkyl group having 1 to 6 carbon atoms, alkoxyalkyl group, alkylcarbonyl group. The hydrocarbon chain may be linear or branched. However, at least one of Rl and R2 is a substituent other than a hydrogen atom.
n: 1〜3の整数  n: Integer from 1 to 3
x: 2〜4の整数  x: integer from 2 to 4
[9] 請求の範囲第 1項〜第 8項の 、ずれか 1項に記載の防眩性フィルムを用いたことを特 徴とする偏光板。 [9] The antiglare film described in any one of claims 1 to 8 is used. A polarizing plate.
請求の範囲第 1項〜第 8項のいずれか 1項に記載の防眩性フィルム、 9項に記載の偏光板を用いたことを特徴とする表示装置。 A display device comprising the antiglare film according to any one of claims 1 to 8, and the polarizing plate according to claim 9.
PCT/JP2006/320254 2005-10-19 2006-10-11 Glareless film, polarizing plate and display WO2007046275A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007540934A JPWO2007046275A1 (en) 2005-10-19 2006-10-11 Anti-glare film, polarizing plate and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-304219 2005-10-19
JP2005304219 2005-10-19

Publications (1)

Publication Number Publication Date
WO2007046275A1 true WO2007046275A1 (en) 2007-04-26

Family

ID=37962371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/320254 WO2007046275A1 (en) 2005-10-19 2006-10-11 Glareless film, polarizing plate and display

Country Status (2)

Country Link
JP (1) JPWO2007046275A1 (en)
WO (1) WO2007046275A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283042A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
JP2008283041A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
JPWO2009001911A1 (en) 2007-06-28 2010-08-26 ソニー株式会社 OPTICAL FILM, ITS MANUFACTURING METHOD, AND ANTIGLARE POLARIZER AND DISPLAY DEVICE USING THE SAME
US10052861B2 (en) 2014-03-11 2018-08-21 3D Systems, Inc. Inks for 3D printing
TWI695866B (en) * 2015-04-07 2020-06-11 日商日產化學工業股份有限公司 Anti-glare coating curable composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127312A (en) * 1995-10-27 1997-05-16 Tomoegawa Paper Co Ltd Antidazzle material and polarizing film using that
JP2001154006A (en) * 1999-11-29 2001-06-08 Nitto Denko Corp Antidazzle layer and optical member
JP2003026832A (en) * 2001-07-17 2003-01-29 Lintec Corp Glare-proof hard coat film and method for producing the same
JP2003121620A (en) * 2001-10-19 2003-04-23 Konica Corp Antidazzle low reflective film, method for manufacturing the film, polarizing plate and display device
JP2004061853A (en) * 2002-07-29 2004-02-26 Nitto Denko Corp Antidazzle film and display device using the same
JP2004151642A (en) * 2002-11-01 2004-05-27 Konica Minolta Holdings Inc Method for forming nonglare layer, nonglare film and its manufacturing method, and ink jet device for nonglare layer formation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113709A (en) * 1995-10-19 1997-05-02 Dainippon Printing Co Ltd Light diffusion film and display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09127312A (en) * 1995-10-27 1997-05-16 Tomoegawa Paper Co Ltd Antidazzle material and polarizing film using that
JP2001154006A (en) * 1999-11-29 2001-06-08 Nitto Denko Corp Antidazzle layer and optical member
JP2003026832A (en) * 2001-07-17 2003-01-29 Lintec Corp Glare-proof hard coat film and method for producing the same
JP2003121620A (en) * 2001-10-19 2003-04-23 Konica Corp Antidazzle low reflective film, method for manufacturing the film, polarizing plate and display device
JP2004061853A (en) * 2002-07-29 2004-02-26 Nitto Denko Corp Antidazzle film and display device using the same
JP2004151642A (en) * 2002-11-01 2004-05-27 Konica Minolta Holdings Inc Method for forming nonglare layer, nonglare film and its manufacturing method, and ink jet device for nonglare layer formation

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008283042A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
JP2008283041A (en) * 2007-05-11 2008-11-20 Toppan Printing Co Ltd Manufacturing method of light transmissive electromagnetic wave shielding member
JPWO2009001911A1 (en) 2007-06-28 2010-08-26 ソニー株式会社 OPTICAL FILM, ITS MANUFACTURING METHOD, AND ANTIGLARE POLARIZER AND DISPLAY DEVICE USING THE SAME
US10052861B2 (en) 2014-03-11 2018-08-21 3D Systems, Inc. Inks for 3D printing
US11203191B2 (en) 2014-03-11 2021-12-21 3D Systems, Inc. Inks for 3D printing
TWI695866B (en) * 2015-04-07 2020-06-11 日商日產化學工業股份有限公司 Anti-glare coating curable composition

Also Published As

Publication number Publication date
JPWO2007046275A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
JP5298857B2 (en) Method for producing antireflection film
US7771781B2 (en) Anti-glare film, manufacturing method of anti-glare film, anti glaring anti-reflection film, polarizing plate, and display
WO2007034643A1 (en) Process for producing film with rugged pattern
JP5505474B2 (en) Antireflection film, polarizing plate, display device, and production method of antireflection film
JP2007025040A (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP4747769B2 (en) Method for producing uneven pattern film
JP4765670B2 (en) Antiglare film, method for producing antiglare film, antiglare antireflection film, polarizing plate and display device
JP2006293201A (en) Antireflection film, manufacturing method thereof, polarizing plate and liquid crystal display device
JP2008089969A (en) Antireflection film, polarizing plate, and display device
JP2009128393A (en) Antidazzle material
JP2007240707A (en) Method of manufacturing glare-proof antireflection film, glare-proof antireflection film, and image display device
WO2007046275A1 (en) Glareless film, polarizing plate and display
JP2004279491A (en) Method for forming antiglare antireflection layer, antiglare antireflection film and its manufacturing method, display device using the film, and antiglare antireflection processing device
JP2007187971A (en) Antiglare antireflection film, its manufacturing method, polarizing plate and display apparatus
JP2007114563A (en) Antiglare film, polarizing plate and display device
JP2008152199A (en) Antiglare antireflection film, polarizing plate and display apparatus each using the same
JP2006146027A (en) Antiglare antireflection film, polarizing plate and display
JP2007121605A (en) Antiglare film, manufacturing method of antiglare film, antiglare antireflection film, polarizing plate, and display apparatus
JP5017775B2 (en) Antiglare antireflection film, method for producing antiglare antireflection film, polarizing plate and display device using the same
WO2007040023A1 (en) Process for producing film with rugged pattern and production apparatus therefor
JPWO2008050576A1 (en) Antiglare film, method for producing antiglare film, polarizing plate and display device
JP2007086255A (en) Antidazzle antireflection film, method of manufacturing antidazzle antireflection film, polarizing plate and image display apparatus
JP2008185792A (en) Method of manufacturing anti-glare film, anti-glare film, polarizing plate using the same and display device
JP2009204927A (en) Method for manufacturing antiglare optical film, antiglare optical film, polarizing plate, and image display device
JP2008250276A (en) Anti-glare film, manufacturing method thereof, and polarizing plate and display device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007540934

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811561

Country of ref document: EP

Kind code of ref document: A1