WO2007043095A1 - 記憶装置、および記憶装置の制御方法 - Google Patents
記憶装置、および記憶装置の制御方法 Download PDFInfo
- Publication number
- WO2007043095A1 WO2007043095A1 PCT/JP2005/018085 JP2005018085W WO2007043095A1 WO 2007043095 A1 WO2007043095 A1 WO 2007043095A1 JP 2005018085 W JP2005018085 W JP 2005018085W WO 2007043095 A1 WO2007043095 A1 WO 2007043095A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- voltage
- boosted
- storage device
- boosted voltage
- bias line
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C5/00—Details of stores covered by group G11C11/00
- G11C5/14—Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
- G11C5/145—Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
Definitions
- the present invention relates to a memory cell array and a memory device having a function of switching a bias voltage supplied to a control circuit (hereinafter referred to as a memory cell array) for driving the memory cell array, and a method for controlling the memory device
- a control circuit hereinafter referred to as a memory cell array
- the present invention relates to a storage device in which one of the bias voltages is supplied by a DC-DC converter unit, and a method for controlling the storage device.
- the memory circuit disclosed in Patent Document 1 is boosted from the power supply VCC, and the boosted voltage required for the rewrite operation and the erase operation is boost circuit 200 as shown in FIG. To the memory cell array.
- the boost circuit 200 includes an inductor element 210, a switching transistor Tl, a diode Dl, and a capacitor C2, and is a so-called step-up DC-DC converter circuit.
- a periodic control signal periodically turns on the switching transistor T1.
- a current flows from the power source VCC to the ground potential via the inductor element 210 and the switching transistor T1.
- the inductor element 210 stores energy.
- the switching transistor T1 When the switching transistor T1 becomes non-conductive, the drain terminal voltage of the switching transistor T1 rises and energy is transferred to the capacitor C2 via the diode D1. As a result, the terminal voltage of the capacitor C2 is boosted from the power supply VCC, and the boosted voltage is supplied from the output terminal Output.
- the diode D1 is formed by connecting the gate terminal and the drain terminal of an NMOS transistor as shown in the figure.
- the drain terminal of the NMOS transistor functions as an anode terminal in the diode
- the source terminal of the NMOS transistor functions as a force sword terminal in the diode.
- the drain terminal is connected to the inductor element 210
- the source terminal is connected to the output terminal Output
- the direction from the inductor element 210 to the output terminal Output is connected in the forward direction.
- Switching transistor T When 1 is on, diode D1 is reverse-biased to prevent the boosted voltage at the output terminal Output from flowing backwards.
- the energy released from the inductor element 210 increases the voltage at the drain terminal of the switching transistor T1 and the NMOS transistor, the diode D1 is forward biased, and the voltage boosted to the output terminal Output Is output.
- Patent Document 1 US Pat. No. 6,744669 B2
- the timing at which the access operation is performed is an arbitrary timing after the power is turned on.
- the access operation starts, the boosted bias voltage is supplied without delay. Therefore, the DC-DC converter must be operated after the power is turned on. Even in the standby state where the boosted bias voltage is not required, the DC-DC converter unit operates, and power consumption cannot be reduced, which is a problem.
- the DC-DC converter unit is suspended in the standby state, it is possible to reduce power consumption.
- the DC-DC converter is restarted in response to an access operation start command, the DC-DC converter becomes in a steady state due to charging of the capacitor C2, etc., and a predetermined voltage value is set. It may take a considerable amount of time to output. The time from the start command of the access operation to the supply of the bias voltage is limited, and it may be a problem that high-speed access operation cannot be realized.
- the secondary voltage with a large charge amount can be quickly increased to a predetermined voltage using the capacitor C2 etc. Need to control down.
- the present invention has been made in view of the above-described background art.
- the bias voltage supplied to a memory cell array or the like is set between a boosted voltage boosted with respect to an external voltage and a non-boosted voltage that is not boosted.
- Storage device capable of reducing power consumption by controlling the operation of the DC-DC converter unit and shortening the startup time of the DC-DC converter unit, and a control method for the storage device The purpose is to provide. It is another object of the present invention to provide a storage device and a control method for the storage device that can make a high-speed transition to the corrected desired secondary voltage when correcting the secondary side voltage.
- a storage device that can effectively use the charge of each secondary-side voltage with a large charge amount, such as capacitor C2, to eliminate the waste of power consumption and power consumption. It is another object of the present invention to provide a storage device control method.
- a memory device of the present invention made to achieve the above object includes a memory cell array and the like, an internal noise line for supplying a bias voltage to the memory cell array and the like, and an output line connected to the internal bias line.
- a DC-DC converter section for supplying a boosted voltage obtained by boosting an external voltage, and a non-boosted voltage supply section for supplying a non-boosted voltage equal to or lower than the external voltage, with an output line connected to the internal bias line.
- the DC-DC converter component memory cell array and the like are not boosted below the external voltage during the period in which the boosted voltage obtained by boosting the external voltage is supplied to the internal bias line that supplies the bias voltage to the memory cell array.
- the non-boosted voltage supply unit that supplies the voltage is put into a dormant state, and the DC-DC converter unit is put into a dormant state while the non-boosted voltage supply unit supplies the non-boosted voltage to the internal bias line.
- the storage device control method of the present invention includes a boosted voltage obtained by boosting an external voltage and an external voltage.
- a step of pausing the generation of the non-boosted voltage and a step of pausing the generation of the boosted voltage when the internal bias line is maintained at the non-boosted voltage is a boosted voltage obtained by boosting an external voltage and an external voltage.
- the non-boosted voltage is supplied to the internal bias line after securing a sufficient power supply capability using the DC-DC converter unit.
- the DC-DC converter unit can be kept in a dormant state or the generation of the boost voltage can be kept in a dormant state.
- the non-boosted voltage supply unit may be before the DC-DC comparator unit is started or after Z and after the internal bias line reaches the boosted voltage, A voltage supply operation is performed to supply power in advance to the internal bias line.
- the non-boosted voltage is supplied in advance to the internal bias line before the internal bias line reaches the boosted voltage. It has a step.
- the non-boosted voltage supply unit discharges the internal bias line after the DC-DC converter unit is started and after the DC-DC converter unit is stopped. .
- the internal bias line is discharged from a boosted voltage to a non-boosted voltage after the DC-DC converter unit is stopped.
- the non-boosted voltage supply unit is an internal bias at the time of mode transition after the start-up of the DC-DC converter unit and correcting the secondary side voltage downward. It is characterized by discharging the wire.
- the method further comprises the step of discharging the internal bias line from the boosted voltage to the downward corrected boost voltage at the time of mode transition for correcting the secondary side voltage downward.
- a line switch element for connecting the secondary terminals of each of the plurality of DC-DC converter units is provided.
- the storage device control method of the present invention is characterized in that the residual charge on each secondary side is moved in accordance with active Z deactivation control of a plurality of DC-DC converters.
- the non-boosted voltage supply unit performs the voltage supply operation or the non-boosted voltage is supplied.
- the internal bias line is pre-fed.
- the time until the internal noise line reaches the boost voltage is shortened by starting the DC-DC converter.
- the start time of various operations can be increased.
- each secondary side voltage with a large amount of charge can be effectively used by the capacitor C2 etc.
- waste of power consumption can be eliminated.
- the noise voltage supplied to the memory cell array or the like is selected between the boosted voltage boosted with respect to the external voltage and the non-boosted voltage!
- the DC-DC converter unit can be stopped to reduce power consumption, and the internal bias line can be turned off when starting the DC-DC converter unit.
- FIG. 1 is a circuit block diagram illustrating a first embodiment.
- FIG. 2 Bias conditions for each operation state for explaining the first embodiment.
- FIG. 3 shows a synchronous rectifier 14 and a P-channel transistor S234 for explaining the first embodiment.
- FIG. 5 is a circuit block diagram illustrating a second embodiment.
- FIG. 7 is a circuit block diagram illustrating a third embodiment.
- FIG. 8 Bias conditions for each operation state for explaining the third embodiment.
- Tl T2 switch element (N-channel transistor)
- FIG 1 to 4 are diagrams for explaining the first embodiment.
- the power supply voltage VCC is supplied as the bias voltage to the internal bias line that supplies the bias voltage to the memory cell array, etc. That's right.
- FIG. 1 shows a circuit block diagram.
- the capacitive element C21 is connected to the primary side voltage
- the capacitive element C22 is connected to the secondary side voltage
- the synchronous rectifying element and the switching transistor S1 are connected from the primary side via the inductor element L1.
- the amplifier A12 receives the feedback voltage V03 to which the power supply voltage VCC, which is a noise voltage output from the DC-DC converter unit 1, is fed back, and the set voltage VRF2.
- the difference voltage of feedback voltage V03 from set voltage VRF2 is output as amplified voltage VFB2.
- the set voltage VRF2 is a reference voltage indicating that the power supply voltage VCC is about 1.7 V
- the feedback voltage V03 is an adjustment voltage obtained by adjusting the power supply voltage VCC by resistance voltage division
- the voltage VFB2 is the power supply voltage VCC. 1. Output reverses around 7V.
- start-up control unit 11 starts operating at about 0.9V, which is the external voltage when the circuit starts, and boost operation starts.
- Start-up control unit 11 stops when power supply voltage VCC is about 1.7V.
- the normal control unit 12 that operates at the boosted voltage that is the secondary side voltage starts the boosting operation.
- a feedback voltage V01 obtained by feeding back a power supply voltage VCC, which is a bias voltage output from the DC-DC converter unit 1, and a set voltage VRF1 are input to the amplifier All.
- the difference voltage of feedback voltage V01 from set voltage VRF 1 is output as amplified voltage VFB1.
- the set voltage VRF1 is a reference voltage where the power supply voltage VCC is approximately 3.OV
- the feedback voltage V01 is an adjustment voltage obtained by adjusting the power supply voltage VCC by dividing the resistance
- the voltage VFB 1 is the power supply voltage. The output is inverted when VCC is around 3.OV.
- the controller 10 controls active Z inactivation by the output of a logic circuit to which a power down control signal PD and a deep power down control signal DPD, which will be described later, are input. And a boost operation is performed.
- the non-boosted voltage supply unit 2 has a knock bias controlled by the switch SW. 2.
- the P-channel transistor S234 connected between the external voltage Vint and the power supply voltage VCC, and the power supply voltage VCC N-channel transistor S5 connected to ground voltage.
- Deep power-down control signal that controls the secondary side voltage to less than the external voltage.
- Various control signals for the command control circuit 13 and the amplifier A13 that is activated by DPD and connected between the external voltage Vint and the ground voltage.
- a P-channel transistor T41 connected between and connected between the output of the amplifier A13 and the ground voltage.
- the back bias of the P channel transistor T41 is controlled similarly to the P channel transistor S234.
- the amplifier A13 receives the feedback voltage VO4 to which the output power supply voltage VCC is fed back and the set voltage VRF3.
- the set voltage VRF3 is a reference voltage indicating a power supply voltage VCC (about 0.5 V) at which the subthreshold current consumed by the memory cell array or the like is minimized during deep power down.
- the difference voltage of feedback voltage V04 from set voltage VRF3 is amplified and output as voltage VFB3, which is input to the gate of P-channel transistor S234.
- the feedback voltage V04 is an adjustment voltage obtained by adjusting the power supply voltage VCC by resistance division.
- the power supply voltage VCC is stepped down from the external voltage Vint by the amplifier A13 and the P-channel transistor S234 so that it becomes about 0.5V at the time of deep power down.
- the N-channel transistor T40 charges and discharges the power supply voltage VCC when the memory system is cold started, powered down, and in mode transition.
- a power-on reset signal POR activates the N-channel transistor T40 for a predetermined time, thereby turning on the P-channel transistor S234.
- the internal bias line is charged before the threshold voltage point of the start control unit 11 and the diode operating at about 0.9 V, which is the circuit operation start point.
- the normal control unit 12 is operated early. By operating the normal control unit 12 that determines the characteristics of the original step-up capability of the DC-DC converter at an early stage, the secondary side voltage can be determined at a predetermined voltage early.
- the N-channel transistor T40 conducts the P-channel transistor S234 during the period by the power-down signal PD.
- the command transition detection signal DBC-1 is a one-shot pulse signal generated by the command control circuit 13 at the time of mode transition from deep power down mode to idle mode or power down mode.
- the P-channel transistor S234 is turned on to restore the external voltage Vint ⁇ power supply voltage VCC from the external voltage Vint> power supply voltage VCC state.
- the secondary side voltage can be determined to a predetermined voltage early, including assisting the DC-DC converter unit 1.
- the end of the predetermined time is determined by the inversion of the voltage VFB2, and the command transition detection signal DBC-1 is deactivated by the logic gate 131.
- the normal control unit 12 starts the boost operation and stops the conduction activity of the P-channel transistor S234 of the non-boosted voltage supply unit, thereby preventing a reverse current.
- the command transition detection signal DBC-2 is a one-shot pulse signal generated by the command control circuit 13 during mode transition from idle mode to power-down mode or deep power-down mode. By activating the transistor T40, the P-channel transistor S234 is turned on and discharged from the external voltage Vint ⁇ power supply voltage VCC state to the external voltage Vint ⁇ power supply voltage VCC.
- the end of the predetermined time may be determined by a signal according to the voltage VF B2 to prevent a reverse current.
- the P-channel transistor T41 stops the P-channel transistor S234 when idle except for power-down or deep power-down.
- the P-channel transistor T41 prevents leakage current from the power supply voltage VCC to the ground voltage when the N-channel transistor T40 is deactivated and activated.
- VFB2 Controlled by VFB2, connected to either external voltage Vint or power supply voltage VCC.
- This back gate is basically connected to the power supply voltage VCC.
- the power supply voltage VCC switches to the external voltage Vint when it is about 1.7v.
- the forward bias of the PN junction can be prevented.
- the back gate can be connected to either the external voltage Vint or the power supply voltage VCC during power down. is there.
- the command transition detection signal DBC-3 is a one-shot pulse signal generated by the command control circuit 13 at the time of mode transition to the deep power down mode, and the N-channel transistor S5 is turned on for a predetermined time.
- the external voltage Vint ⁇ supply voltage VCC is discharged to the external voltage Vint> supply voltage VCC.
- the command transition detection signal DBC-1 it may be possible to prevent reverse current by determining the start and end of the predetermined time with a signal in accordance with the voltage VFB2.
- FIG. 2 summarizes the bias conditions for each operation state. It is assumed that 1.8V is supplied to the external voltage Vint.
- the DC-DC converter unit 1 In the idle state Idle in the normal operation state (including both the access operation state to the memory cell array and its standby state), the DC-DC converter unit 1 is in the operation state (ON), and the non-boosted voltage supply unit 2 Is in a dormant state (OFF). Power supply voltage VCC is boosted 3. OV is supplied from the DC-DC converter.
- the DC-DC converter unit 1 In the power-down state PD, the DC-DC converter unit 1 is in a dormant state (OFF), and the non-boosted voltage supply unit 2 is in an operating state (ON).
- the external voltage Vint is supplied to the power supply voltage VCC from the non-boosted voltage supply unit.
- Deep power-down state In the DPD, the DC-DC converter unit 1 is in a dormant state (OFF), and the non-boosted voltage supply unit 2 is in an operating state (ON).
- the non-boosted voltage supply unit supplies 0.5 V to 1.0 V, which is lower than the external voltage Vint, to the power supply voltage VCC.
- current consumption In the idle state Idle in the standby state, the current consumption is 2 mA, which is mainly consumed in the DC-DC converter section in the no-load state.
- the current consumption is reduced to 100 A, which is mainly consumed by the memory cell array
- the deep power-down state DPD the subthreshold current consumed by the memory cell array is reduced to 1 A, which is the minimum.
- the idle state Idle in the access operation state is in a loaded state
- the current consumption of the DC-DC converter section is 10 to 30 mA.
- the idle state is a state in which an access request to the memory cell array is waited for. The fastest access operation is activated in response to the access request.
- the power-down state PD and the deep power-down state DPD are low-consumption current states in which the current consumption is reduced without considering the access request.
- the DC-DC converter unit 1 stops the boosting operation. Then, the P-channel transistor S234 is turned on by a one-shot pulse operation using the command transition detection signal DBC-2, causing the power supply voltage VCC to reach the external voltage Vint of 1.8V from 3.OV. Thereafter, the P-channel transistor S234 is turned on by the power-down signal PD, and the power supply voltage VCC is maintained at 1.8 V which is the external voltage Vint.
- Idle state Idle force Deep power-down state
- the DC-DC converter unit 1 stops the boosting operation.
- the P-channel transistor S234 is turned on by a one-shot pulse operation using the command transition detection signal DBC-2, causing the power supply voltage VCC to reach from 1.OV to 1.8V, which is the external voltage Vint.
- the N-channel transistor S5 is turned on by a one-shot pulse operation using the command transition detection signal DBC-3, and the power supply voltage VCC reaches the external voltage Vint> power supply voltage VCC (for example, 0.5V).
- the conduction is controlled by the amplifier A13 so that the power supply voltage VCC of the P-channel transistor S234 is kept at 0.5V.
- Power-down state PD power Deep power-down state When shifting to the DPD, first, the N-channel transistor T40 is deactivated and the P-channel transistor S234 is deactivated. After that, the N-channel transistor S5 is turned on by a single shift pulse operation by the command transition detection signal DBC—3, and the power supply voltage VCC is set to the external voltage Vint> power supply voltage VCC ( For example, reach 0.5V). Thereafter, the conduction of the P-channel transistor S 234 is controlled by the amplifier A13 so as to keep the power supply voltage VCC stepped down to 0.5V.
- Deep power-down state DPD force Power-down state At the time of transition to PD, first, the P-channel transistor S234 is turned on by a one-shot pulse operation by the command transition detection signal DBC—1, and the power supply voltage VCC is reduced to 0.5V. It reaches the external voltage Vint of 1.8V. Thereafter, the P-channel transistor S234 is turned on by the power-down signal PD, and this voltage is maintained.
- the N-channel transistor T40 is deactivated and the P-channel transistor S234 is deactivated. After that, the DC-DC converter unit 1 starts boosting operation, and the power supply voltage VCC is maintained at 3. OV.
- the sub-threshold current consumed in the memory cell array or the like becomes the minimum, for example, a voltage of about 0.5V, and the power supply voltage from the P-channel transistor S234.
- VCC the minimum current consumption of the memory system can be realized along with the reduction of the current consumption due to the stop of the DC-DC converter section 1.
- the power supply voltage VCC can be rapidly shifted to a predetermined voltage. Furthermore, noise can be reduced by devising the discharge order.
- FIG. 3 shows specific examples of the synchronous rectifying element 14 and the P-channel transistors S234 and T41.
- the synchronous rectifying element 14 provided in the step-up DC-DC converter unit 1 needs to be composed of a P-channel transistor.
- DC During the operation of DC converter section 1, It is desirable to connect the voltage to the power supply voltage VCC, which is a boosted voltage (in the case of connection (ii) together with P-channel transistors S234 and T41).
- VCC power supply voltage
- the low power mode which is the power-down state PD and the deep power-down state DPD
- the DC-DC converter unit 1 stops. In this case, the well voltage is connected to the external voltage Vint so that the PN junction is not forward-biased (in the case of connection (i) together with P-channel transistors S234 and T41).
- connection (i) the high level voltage applied to the gate of the N-channel transistor T 1 is also applied via the level shifter 17 as the charge pump 15 force. A voltage obtained by adding the threshold voltage Vthn of the N-channel transistor T1 to the external voltage Vint is given.
- connection (ii) the high level voltage applied to the gate of the N-channel transistor T 2 is also applied through the level shifter 17 as the charge pump 15 force.
- the power supply voltage VCC is obtained by adding the threshold voltage Vthn of the N-channel transistor T2.
- the switching control of the N-channel transistors Tl and ⁇ 2 is performed by the synchronous rectification back bias switching control unit 16 in accordance with the deep power down control signal DPD.
- the synchronous rectifier element When the synchronous rectifier element is composed of a single channel transistor, its gate must be boosted. Since the frequency of the synchronous rectification control signal is high and the gate capacity is large, the power consumption increases. On the other hand, in the synchronous rectifier 14 shown in FIG. 3, since a high-channel transistor is used, the knock gate can be controlled only when the deep power is down instead of boosting the gate. Thus, it is not necessary to operate the charge pump 15 having a large capacity corresponding to the frequency of the synchronous rectification control signal.
- the gate of the channel control is provided with a channel transistor Tl, ⁇ 2 for controlling the gate.
- a channel transistor Tl, ⁇ 2 for controlling the gate.
- the gate capacitance of the N-channel transistors Tl and ⁇ 2 is smaller than the pell-channel transistor of the synchronous rectifier, the current consumption during driving can be suppressed.
- the present invention is not limited to the power supply voltage VCC.
- the boosted voltage VPP for biasing the nonvolatile memory cells can be supplied.
- the program mode, erase mode, and read mode which are normal operating states such as the access operating state
- the DC-DC converter unit 1 is in the operating state (ON)
- the non-boosted voltage supply unit 2 is in the inactive state (OFF) .
- the boosted voltage VPP is supplied with 4.0 V to 7.0 V corresponding to each mode.
- the DC-DC converter unit 1 In the first idle state Idlel, the DC-DC converter unit 1 is in a dormant state (OFF), and the non-boosted voltage supply unit 2 is in an operating state (ON).
- the boosted voltage VPP is supplied with an external voltage Vint of 1.8V.
- the DC-DC converter unit 1 In the second idle state Idle2, the DC-DC converter unit 1 is in a dormant state (OFF), and the non-boosted voltage supply unit 2 is also in a dormant state (OF F).
- the command transition detection signal DBC-3 is changed to turn on the N-channel transistor S5, so that 0V is supplied to the boost voltage VPP.
- an example of current consumption in each operation state is shown.
- the current consumption is 10 to 30 mA. This is the current consumption of the DC-DC converter section in the loaded state corresponding to the program mode, erase mode, and read mode.
- the subthreshold current consumed by the circuit connected to the boosted voltage VPP is reduced to 5 A, and further in the second idle state Idle2, it is reduced to 0 A.
- the first idle state Idlel is a state between the access operations of the program mode, the erase mode, and the read mode, which are the normal operation states of the access operation state. is there.
- the boost voltage VPP that biases the memory cell at the time of programming, erasing, and reading is supplied to the internal bias line. It is.
- FIG. 5 shows a circuit block diagram.
- DC the circuit block diagram of the first embodiment
- a voltage setting unit 21 that switches the boosted voltage output from the DC converter unit 1 to a predetermined voltage value for each operation mode is provided.
- the voltage output from the DC—DC converter unit 1 is set by the command control circuit 13.
- the command control circuit 13 waits for access to the memory cell array, and a mode signal indicating each of the read mode, the verify read mode, the program mode, and the erase mode indicating the access operation state of the memory cell array, which are memory operation modes.
- An idle mode signal indicating the status is output.
- the voltage setting unit 21 includes resistance elements Rl, R2, and R20 to R23 that divide the boosted voltage VPP output to the internal bias line.
- the boost voltage VPP is input to one end of the resistor element R1.
- the other end of the resistance element R1 is connected to one end of the resistance element R2.
- the switch transistor T20 and the resistor element R20 to the switch transistor T23 and the resistor element R23 are respectively connected in series.
- Outputs of logic gates 120 to 123 to which mode signals are input are connected to the switch transistors T20 to T23.
- Each of the resistance elements R20 to R23 has a different resistance value, and is added to the resistance element R2 according to the conduction control of the switch transistors T20 to T23 to divide the boost voltage VPP between the resistance elements R1. Press.
- the feed knock voltage V01 from which the connecting point force between the resistance elements R1 and R2 is also output becomes a voltage with a voltage division ratio according to the switch transistors ⁇ 20 to ⁇ 23 that are conducted.
- the voltage VFB1 obtained by amplifying the difference voltage of feedback voltage V01 from the set voltage VRF1 is gradually adjusted to a lower voltage value. Is done.
- the set voltage of boosted voltage VPP is determined by logic gates I20 to I23.
- logic gate 120 sets boosted voltage VPP to 4.OV in idle mode and read mode
- logic gate 121 sets boosted voltage VPP to 4.5V in verify read mode.
- the boost voltage VPP can be set to 7.OV in the program mode
- the boost voltage VPP can be set to 7.5V in the erase mode by the logic gate 123.
- the boost voltage VPP in the idle mode indicating the access waiting state is set to the minimum set value (for example, 4V to 7.5V) among a plurality of boost voltages VPP (for example, 4V to 7.5V) set for each operation mode indicating the access operation state. For example, by using 4V), the current consumption of the DC-DC converter unit 1 can be minimized.
- the external access is not delayed.
- the highest reading speed can be obtained.
- a voltage setting unit can be connected to the set voltage VRF1 side.
- FIG. 6 shows an example of the voltage value supplied as the boosted voltage VPP in each operation state according to the second embodiment. It is assumed that 1.8V is supplied to the external voltage Vint.
- the DC-DC converter unit 1 In the idle mode ID and read mode RD, the DC-DC converter unit 1 is in an operating state (ON), and the non-boosted voltage supply unit 2 is in a dormant state (OFF). 4.0V is supplied to the boost voltage VPP.
- the DC-DC comparator unit 1 In the program mode PG and erase mode ER, the DC-DC comparator unit 1 is in the operating state (ON), and the non-boosted voltage supply unit 2 is in the inactive state (OFF).
- program mode PG 7.0V is supplied to boosted voltage VPP, and 7.5V is supplied to boosted voltage VPP in erase mode ER.
- the DC-DC converter unit 1 In the verify read mode VR, the DC-DC converter unit 1 is in an operating state (ON), and the non-boosted voltage supply unit 2 is in a dormant state (OFF).
- the boosted voltage VPP is supplied with 4.5V.
- Power-down state In PD the DC-DC converter unit 1 is in the dormant state (OFF), and the non-boosted voltage supply unit 2 is in the operating state (ON).
- O The boost voltage VPP is the external voltage Vint 1. 8V Is supplied.
- Deep power down state In the DPD the DC-DC converter 1 is in the dormant state (OFF) and is not boosted.
- Supply unit 2 is in operation (ON).
- the boosted voltage VPP is supplied with 0.5V to 1.OV which is lower than the external voltage Vint.
- current consumption in each operating state is shown.
- current consumption is 2mA ⁇ : LOmA.
- the idle mode ID that is waiting for access consumes 2 mA mainly in the DC-DC converter section that is in the no-load state.
- 10 mA is consumed in the DC-DC converter section under load.
- the DC-DC converter section with a load is 20 to 30mA current consumption.
- the DC-DC converter section with load is 12mA.
- the sub-threshold current consumed by the circuit connected to the boost voltage VPP is reduced to 5 ⁇ ⁇ , and in the deep power-down state DPD, it is consumed in the circuit connected to the boost voltage VPP.
- the subthreshold current is reduced to 1 ⁇ , which minimizes the subthreshold current.
- the supply control method of the boosted voltage VPP in the program mode or erase mode in the second embodiment is controlled continuously with the verify read mode. Specifically, at the time of mode transition between the program mode or erase mode and the verify read mode, the DC / DC converter unit is activated and the voltage setting unit is continuously switched between the command control output signals PG or ER and VR. As a result, the output of the boost voltage VPP switches between the program voltage 7. OV or erase voltage 7.5 V and the verify read voltage 4.5 V continuously. This continuous control is maintained until all the verifications are completed, and after the completion, the minimum set value or the set value in the read mode is controlled.
- the output of the DC-DC converter is adjusted downward (for example, program voltage 7.
- the non-boosted voltage supply unit connected to the internal bias line is set for a predetermined time. May be activated simultaneously.
- the P-channel transistor S234 of the non-boosted voltage supply unit is set to a set voltage change value (for example, program voltage 7. OV to verify read voltage 4.5 V) by the voltage setting unit in the DC-DC converter unit.
- the S234 is activated for a predetermined time until the internal bias line is discharged to the primary voltage.
- the voltage of the internal bias line can reach the predetermined voltage after the mode transition in a short time, including the large charge amount of the capacitive element C2 connected to the internal bias line.
- the other actions and effects of the DC-DC converter section and the non-boosted voltage supply section are the same as the actions and effects in the first embodiment (FIG. 1), and thus the description thereof is omitted here.
- the memory cell array when the memory cell array is composed of a non-volatile memory, the memory cell array is biased by 2 at the time of programming, erasing, reading, and verify reading.
- system boost voltages VPP1 and VPP2 are provided and bias is supplied to either one.
- the read voltage or verify eye read voltage for external access is the second system
- the program voltage or erase voltage with a higher boost voltage than the second system is the first system.
- FIG. 7 shows a circuit block diagram.
- Two DC-DC converter units (1) 3 and DC-DC converter unit (2) 4 that boost external voltage Vint are provided.
- Boosted voltages VPP1 and VPP2 are applied to each of the two internal bias lines.
- the internal bias lines supplied with boosted voltages VPP1 and VPP2 S are provided with capacitive elements C21 and C22, a non-boosted voltage supply unit (1) 5, and a non-boosted voltage supply unit (2) 6. Since the operation and effect of the DC-DC converter unit and the non-boosted voltage supply unit are the same as the operation and effect in the first embodiment (FIG. 1), description thereof is omitted here.
- the DC-DC converter part (1) 3 and the DC-DC converter part (2) 4 may be configured to share the force inductor elements described as being provided separately. it can.
- a line switch unit S8 that connects two internal bias lines.
- the line-to-line switch part is composed of, for example, a P-channel transistor.
- the bias setting of the back gate of the line-to-line switch unit S8 is controlled to a reverse bias.
- the line switch S8 is N It can also be a channel transistor.
- FIG. 8 summarizes the bias conditions in each operation mode. It is assumed that 1.8V is supplied to the external voltage Vint. Idle mode ID and read mode In RD, DC-DC converter (2) 4 and non-boosted voltage supply (1) 5 are in operation (ON), DC-DC converter (1) 3 and non-boosted voltage The supply unit (2) 6 is in a dormant state (OFF). The boosted voltages VPP1 and VPP2 are supplied with 0.5VZ1.8V and 4.0V, respectively. In program mode PG and erase mode ER, the DC-DC converter section (1) 3 and the non-boosted voltage supply section (2) 6 are in operation (ON), and the DC-DC converter section (2) 4 and non- The boosted voltage supply unit (1) 5 is in a quiescent state (OFF).
- the boosted voltages VPP1 and VPP2 are supplied with 7.0V, 0.5V / 1.8V, respectively.
- the DC-DC converter unit (2) 4 and non-boosted voltage supply unit (1) 5 are in the operating state (ON), and the DC-DC converter unit (1) 3 and non-boosted voltage
- the supply unit (2) 6 is in a dormant state (OFF).
- the boosted voltages VPP1 and VPP2 are supplied with 0.5VZ1.8V and 4.0V, respectively.
- the non-boosted voltage supply units (1) 5, (2) 6 are in the operating state (ON), and the DC-DC converter units (1) 3, (2) 4 are in the dormant state (OFF). Both boosted voltages VPP1 and VPP2 are supplied with 1.8V.
- the non-boosted voltage supply units (1) 5, (2) 6 are in the operating state (ON), and the DC-DC converter units (1) 3, (2) 4 are in the dormant state ( OFF).
- the boosted voltages VPP1 and VPP2 are supplied with 0.5V.
- the line switch unit for a predetermined time in a state where both the first system and the second system are activated.
- the second system DC-DC converter (2) 4 The DC-DC converter section (1) 3 of the first system is kept active until the boosted voltage VPP2 reaches around the predetermined voltage.
- the charge power of the capacitive element C21 of the first system assists the DC-DC converter part (2) 4 of the second system, and the DC-DC converter part (1) 3 of the first system that continues to operate
- the boosted voltage VPP2 reaches the vicinity of the predetermined voltage at high speed by both the DC-DC converter section (2) 4 of the second system. This is because the current drive capability of a continuously operating DC-DC converter is much higher than the current drive capability of a DC-DC converter that starts operation.
- a sufficient power supply capability is ensured by using the DC-DC converter unit during the supply period of the boost voltage to the internal bias line.
- the DC-DC converter section can be maintained in a resting state during the period in which the non-boosted voltage is supplied to the internal bias line. It is possible to prevent the power consumption by the DC-DC converter section or the power consumption associated with the generation operation of the boost voltage during the period when the boost voltage supply is unnecessary, and the power consumption can be reduced.
- the non-boosted voltage supply unit performs voltage supply operation and the internal bias line is pre-fed during the process of supplying the boosted voltage to the internal bias line. Therefore, the time until the internal bias line reaches the boosted voltage is shortened by starting the DC-DC converter unit, including the assistance of the DC-DC converter unit, and the speed of the access operation can be increased. it can.
- the last form with which this invention is mounted is various.
- a DC-DC converter unit, a non-boosted voltage supply unit and its control unit, a command control circuit, a memory cell array, etc. are all mounted on one silicon barrier.
- the DC-DC converter unit is mounted on one silicon butter, and the non-boosted voltage supply unit and its control unit, command control circuit, memory cell array, etc. are mounted on another silicon butter and mounted in one package.
- the DC-DC converter unit is mounted on the package with a single silicon barrier, and the non-boosted voltage supply unit and its control unit, command control circuit, memory
- a re-cell array, etc. is mounted in a package with a separate silicon barrier, and both packages are mounted on a system board.
- the memory cell array and the like refer to an active circuit and a passive circuit that operate as a memory function, including a memory cell array and a logic circuit, a driving circuit, a differential amplifier, a decoder, and the like for accessing the memory cell widely.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
- Dram (AREA)
Abstract
メモリセルアレイに供給されるバイアス電圧を、外部電圧に対して昇圧された昇圧電圧と昇圧されない非昇圧電圧との間で選択して供給するに当たり、DC-DCコンバータ部が、メモリセルアレイにバイアス電圧を供給する内部バイアス線に、外部電圧を昇圧した昇圧電圧を供給する期間には、外部電圧以下の非昇圧電圧を供給する非昇圧電圧供給部を休止状態とし、非昇圧電圧供給部が、内部バイアス線に非昇圧電圧を供給する期間には、DC-DCコンバータ部を休止状態とする。内部バイアス線への昇圧電圧の供給期間には、DC-DCコンバータ部を使用して充分な電力供給能力を確保した上で、内部バイアス線に非昇圧電圧を供給する期間には、DC-DCコンバータ部を休止状態に維持することができる。昇圧電圧の供給が不要な期間に、DC-DCコンバータ部による消費電力の低減を図ることができる。
Description
明 細 書
記憶装置、および記憶装置の制御方法
技術分野
[0001] 本発明は、メモリセルアレイとメモリセルアレイを駆動するための制御回路(以下、メ モリセルアレイ等)に供給されるバイアス電圧の切り替え機能を有する記憶装置、お よび記憶装置の制御方法に関するものであり、特に、バイアス電圧の一つが DC— D Cコンバータ部により供給される記憶装置、および記憶装置の制御方法に関するもの である。
背景技術
[0002] 特許文献 1に開示されているメモリ回路は、電源 VCCから昇圧され、書き換え動作 や消去動作において必要とされる昇圧電圧が、特許文献 1の図 2に示すように、ブー スト回路 200よりメモリセルアレイに供給される。ブースト回路 200は、インダクタ素子 210、スイッチングトランジスタ Tl、ダイオード Dl、キャパシタ C2を備えており、いわ ゆる昇圧型の DC— DCコンバータ回路である。周期的な制御信号がスイッチングトラ ンジスタ T1を周期的に導通させる。スイッチングトランジスタ T1の導通状態では、電 源 VCCから、インダクタ素子 210およびスイッチングトランジスタ T1を介して接地電 位に電流が流れる。これによりインダクタ素子 210はエネルギーを蓄積する。スィッチ ングトランジスタ T1が非導通状態になると、スイッチングトランジスタ T1のドレイン端 子電圧が上昇し、ダイオード D1を介してキャパシタ C2にエネルギーが移送される。 これによりキャパシタ C2の端子電圧が電源 VCCより昇圧され、出力端子 Outputか ら昇圧電圧が供給される。
[0003] ここで、ダイオード D1は、図示されているように、 NMOSトランジスタのゲート端子と ドレイン端子とが結線されて構成されて 、る。 NMOSトランジスタのドレイン端子は、 ダイオードにおけるアノード端子として機能し、 NMOSトランジスタのソース端子は、 ダイオードにおける力ソード端子として機能する。ドレイン端子はインダクタ素子 210 に接続されソース端子は出力端子 Outputに接続され、インダクタ素子 210から出力 端子 Outputに向カゝぅ方向を順方向として接続されている。スイッチングトランジスタ T
1の導通時には、ダイオード D1は逆バイアスされ、出力端子 Outputの昇圧電圧が 逆流することが防止される。スイッチングトランジスタ T1の非導通時には、インダクタ 素子 210から放出されるエネルギーによりスイッチングトランジスタ T1および NMOS トランジスタのドレイン端子の電圧が上昇し、ダイオード D1が順方向にバイアスされて 、出力端子 Outputに昇圧された電圧が出力される。
[0004] 特許文献 1 :米国特許第 6744669 B2号公報
発明の開示
発明が解決しょうとする課題
[0005] メモリセルアレイへのアクセス動作であるデータ読出し動作やデータ書き換え動作 にお 、て、外部電圧に比して高電圧のバイアス電圧をメモリセルアレイに印加する必 要がある場合、特許文献 1に開示されている昇圧型の DC— DCコンバータを動作さ せる必要がある。
[0006] この場合、アクセス動作が行なわれるタイミングは、電源投入後の任意のタイミング である。アクセス動作の起動に伴い、遅滞なく昇圧されたバイアス電圧が供給される ために、電源投入後は、 DC— DCコンバータ部を動作させておく必要がある。昇圧さ れたバイアス電圧が不要であるスタンバイ状態においても DC— DCコンバータ部が 動作することとなり、消費電力の低減を図ることができず問題である。
[0007] また、スタンバイ状態において DC— DCコンバータ部を休止させれば、消費電力の 低減を図ることが可能ではある。し力しながら、アクセス動作の起動指令に伴い DC— DCコンバータ部を再起動する場合、キャパシタ C2等への充電などにより、 DC -DC コンバータ部の動作が定常状態となり予め定められた電圧値を出力するまでには、 相当の時間を要する場合がある。アクセス動作の起動指令からバイアス電圧の供給 までの時間が制約となり高速なアクセス動作を実現できない場合も考えられ問題であ る。
また、 DC— DCコンバータの活性時力 休止時、キャパシタ C2等で電荷量の大き な 2次側電圧を所定の電圧へ高速に制御する必要がある。
また同様に、 DC— DCコンバータの活性時に 2次側電圧を下方修正するモード遷 移時の場合、キャパシタ C2等で電荷量の大きな 2次側電圧を所定の電圧へ高速に
下方制御する必要がある。
更に、 2次側電圧の所望の電圧毎または 2次側電圧の適用場所毎にそれぞれの D C DCコンバータを備える場合、前述の高速なアクセス動作の問題と更なる消費電 力の低減が必要である。
課題を解決するための手段
[0008] 本発明は前記背景技術に鑑みなされたものであり、メモリセルアレイ等に供給され るバイアス電圧を、外部電圧に対して昇圧された昇圧電圧と昇圧されな ヽ非昇圧電 圧との間で選択して供給するに当たり、 DC— DCコンバータ部の動作制御により消 費電力の低減を図ると共に、 DC— DCコンバータ部の起動時間の短縮を図ることが できる記憶装置、及び記憶装置の制御方法を提供することを目的とする。また、 2次 側電圧の修正にあたり、修正された所望の 2次側電圧へ高速に遷移することができる 記憶装置、及び記憶装置の制御方法を提供することを目的とする。更に、複数の DC — DCコンバータを備える場合、キャパシタ C2等で電荷量の大きなそれぞれの 2次側 電圧の電荷を有効に利用して高速化と消費電力の無駄をなくすことができる記憶装 置、及び記憶装置の制御方法を提供することを目的とする。
[0009] 前記目的を達成するためになされた本発明の記憶装置は、メモリセルアレイ等と、メ モリセルアレイ等にバイアス電圧を供給する内部ノ ィァス線と、出力線が内部バイァ ス線に接続され、外部電圧を昇圧した昇圧電圧を供給する DC— DCコンバータ部と 、出力線が内部バイアス線に接続され、外部電圧以下の非昇圧電圧を供給する非 昇圧電圧供給部とを備え、内部バイアス線が昇圧電圧に維持される期間には、非昇 圧電圧供給部は電圧供給動作を休止し、内部バイアス線が非昇圧電圧に維持され る期間には、 DC— DCコンバータ部は電圧供給動作を休止することを特徴とする。
[0010] 本発明の記憶装置では、 DC— DCコンバータ部力 メモリセルアレイ等にバイアス 電圧を供給する内部バイアス線に、外部電圧を昇圧した昇圧電圧を供給する期間に は、外部電圧以下の非昇圧電圧を供給する非昇圧電圧供給部を休止状態とし、非 昇圧電圧供給部が、内部バイアス線に非昇圧電圧を供給する期間には、 DC -DC コンバータ部を休止状態とする。
[0011] また、本発明の記憶装置の制御方法は、外部電圧を昇圧した昇圧電圧と外部電圧
以下の非昇圧電圧との何れか一方のバイアス電圧を、メモリセルアレイ等の内部バイ ァス線に供給する記憶装置の制御方法であって、内部バイアス線が昇圧電圧に維 持される場合に、非昇圧電圧の生成を休止するステップと、内部バイアス線が非昇圧 電圧に維持される場合に、昇圧電圧の生成を休止するステップとを有することを特徴 とする。
[0012] 本発明の記憶装置の制御方法では、メモリセルアレイ等の内部バイアス線力 外部 電圧を昇圧した昇圧電圧に維持される場合には、外部電圧以下の非昇圧電圧の生 成は休止され、非昇圧電圧に維持される場合には、昇圧電圧の生成は休止される。
[0013] これにより、内部ノィァス線への昇圧電圧の供給期間には、 DC— DCコンバータ部 を使用して充分な電力供給能力を確保した上で、内部バイアス線に非昇圧電圧を供 給する期間には、 DC— DCコンバータ部を休止状態に、または昇圧電圧の生成を休 止状態に維持することができる。内部バイアス線への昇圧電圧の供給が不要な期間 に、 DC— DCコンバータ部による電力消費、または昇圧電圧の生成動作に伴う電力 消費を防止することができ、消費電力の低減を図ることができる。
[0014] また、前記本発明の記憶装置において、非昇圧電圧供給部は、 DC— DCコンパ一 タ部の起動以前または Zおよび起動以後であって、内部バイアス線が昇圧電圧に至 る前、電圧供給動作を行い内部バイアス線に先行給電することを特徴とする。
[0015] また、前記本発明の記憶装置の制御方法において、内部バイアス線に昇圧電圧を 給電するにあたり、内部バイアス線が昇圧電圧に至る前に、内部バイアス線に非昇 圧電圧を先行給電するステップを有することを特徴とする。
また、前記本発明の記憶装置において、非昇圧電圧供給部は、 DC— DCコンパ一 タ部の起動以後であって DC— DCコンバータ部の停止後に、内部バイアス線を放電 することを特徴とする。
また、前記本発明の記憶装置の制御方法において、 DC— DCコンバータ部の停止 後に内部バイアス線を昇圧電圧から非昇圧電圧へ放電するステップを有することを 特徴とする。
また、前記本発明の記憶装置において、非昇圧電圧供給部は、 DC— DCコンパ ータ部の起動以後であって 2次側電圧を下方修正するモード遷移時、内部バイアス
線を放電することを特徴とする。
また、前記本発明の記憶装置の制御方法において、 2次側電圧を下方修正するモ ード遷移時、内部バイアス線を昇圧電圧から下方修正昇圧電圧へ放電するステップ を有することを特徴とする。
また、 本発明の記憶装置において、複数の DC— DCコンバータ部のそれぞれの 2次側端子間を接続する線間スィッチ素子を設けることを特徴とする。
また、本発明の記憶装置の制御方法において、複数の DC— DCコンバータの活性 Z非活性制御に応じてそれぞれの 2次側の残留電荷を移動させることを特徴とする。
[0016] これにより、 DC— DCコンバータ部の起動に応じて、内部バイアス線が昇圧電圧に 給電される過程において、非昇圧電圧供給部が電圧供給動作を行ない、または非 昇圧電圧が供給されて、内部バイアス線が先行給電される。 DC— DCコンバータ部 の起動により内部ノ ィァス線が昇圧電圧に至るまでの時間が短縮される。メモリセル アレイ等に昇圧電圧を給電する必要のあるアクセス動作の起動指令に伴い DC— D Cコンバータ部が起動する場合、起動指令から昇圧電圧の給電完了によるアクセス 動作の可能状態までの時間が短縮され、アクセス動作の高速ィ匕を図ることができる。 また、 DC— DCコンバータ部の停止後または Zおよび動作中に、内部バイアス線を 放電することにより、キャパシタ C2等で電荷量の大きな 2次側電圧を所定の電圧に 至るまでの時間が短縮され、諸動作の開始時間を高速にできる。
更に、複数の DC— DCコンバータの活性 Z非活性制御に応じてそれぞれの 2次側 の残留電荷を移動させることにより、キャパシタ C2等で電荷量の大きなそれぞれの 2 次側電圧を有効に利用して消費電力の無駄をなくすことができる。
発明の効果
[0017] 本発明によれば、アクセス動作に応じて、メモリセルアレイ等に供給されるノ ィァス 電圧が、外部電圧に対して昇圧された昇圧電圧と昇圧されな!/ヽ非昇圧電圧とで選択 して供給される場合、非昇圧電圧が供給される期間において DC— DCコンバータ部 を休止して消費電力の低減を図ることができると共に、 DC— DCコンバータ部の起動 の際、内部バイアス線を先行給電することにより、昇圧電圧の供給までの時間短縮を 図ることができる。
図面の簡単な説明
[図 1]第 1実施形態を説明する回路ブロック図
[図 2]第 1実施形態を説明する各動作状態ごとのバイアス条件
[図 3]第 1実施形態を説明する同期整流素子 14、および Pチャネルトランジスタ S234
、 T41の具体例図
[図 4]第 1実施形態を説明するその他の各動作状態ごとのバイアス条件
[図 5]第 2実施形態を説明する回路ブロック図
[図 6]第 2実施形態を説明する各動作状態ごとのバイアス条件
[図 7]第 3実施形態を説明する回路ブロック図
[図 8]第 3実施形態を説明する各動作状態ごとのバイアス条件
符号の説明
1 DC— DCコンノ ータ咅
2 非昇圧電圧供給部
3 DC— DCコンバータ部(1)
4 DC— DCコンバータ部(2)
5 非昇圧電圧供給部(1)
6 非昇圧電圧供給部 (2)
10 DC— DCコンバータ部のコントローラ
11 起動制御部
12 通常制御部
13 コマンド制御回路
14 同期整流素子
15 チャージポンプ
16 同期整流バックバイアス切り替え制御部
17 レべノレシフタ
S8 線間スィッチ部
L1 インダクタ素子
Cl、 C2、 C21、 C22 容量素子
Vint 1次側電圧
VCC 2次側電圧
VPP、 VPP1、 VPP2 昇圧電圧
Al l、 A12、 A13 増幅器
V01、 V02、 V03、 V04 フィードバック電圧
VRF1、 VRF2、 VRF3
VFB1、 VFB2、 VFB3 差電圧が増幅された電圧
SW スィッチ
Tl、 T2 スィッチ素子(Nチャネルトランジスタ)
T20〜T23 スィッチトランジスタ
S234、 T41 Pチャネルトランジスタ
S5、 T40 Nチャネルトランジスタ
PD パワーダウン制御信号
DPD ディープパワーダウン制御信号
POR パワーオンリセット信号
DBC— 1、 DBC— 2、 DBC- 3コマンド遷移検出信号
I20〜I23、 130〜132 論理ゲート
ID アイドルモード信号
RD 読出しモード信号
VR ベリファイ読出しモード信号
PG プログラムモード信号
ER ィレーズモード信号
R1〜R6、 R20〜R23 抵抗素子
発明を実施するための最良の形態
[0020] 以下、本発明の記憶装置、および記憶装置の制御方法について具体化した実施 形態を図 1乃至図 8に基づき図面を参照しつつ詳細に説明する。
[0021] 図 1乃至図 4は第 1実施形態を説明する図である。メモリセルアレイ等にバイアス電 圧を供給する内部バイアス線に、バイアス電圧として電源電圧 VCCが供給される場
合である。
[0022] 図 1に回路ブロック図を示す。 DC— DCコンバータ部 1のコントローラ 10は、 1次側 電圧である外部電圧 (Vint= l. 8V)で動作する起動制御部 11と、 2次側電圧であ る昇圧電圧(これは、メモリセルアレイ等への電源電圧 VCC = 3. OVでもある)で動 作する通常制御部 12とを有する。また、 1次側電圧には容量素子 C21、 2次側電圧 には容量素子 C22が接続され、 1次側からインダクタ素子 L1を介して同期整流素子 とスイッチングトランジスタ S1が接続される。増幅器 A12には、 DC— DCコンバータ 部 1から出力されるノ ィァス電圧である電源電圧 VCCがフィードバックされたフィード バック電圧 V03と設定電圧 VRF2とが入力される。設定電圧 VRF2からのフィードバ ック電圧 V03の差電圧が増幅された電圧 VFB2として出力される。ここで、設定電圧 VRF2は電源電圧 VCCが約 1. 7Vを示す基準電圧であり、フィードバック電圧 V03 は、電源電圧 VCCを抵抗分圧により調整した調整電圧であり、電圧 VFB2は電源電 圧 VCCが 1. 7V付近で出力が反転する。メモリシステムのコールドスタート時、外部 電圧が回路動作開始点である約 0. 9Vで起動制御部 11が動作して昇圧動作を開始 し、電源電圧 VCCが約 1. 7Vで起動制御部 11が停止すると共に 2次側電圧である 昇圧電圧で動作する通常制御部 12が昇圧動作を開始する。増幅器 Al lには、 DC - DCコンバータ部 1から出力されるバイアス電圧である電源電圧 VCCがフィードバ ックされたフィードバック電圧 V01と設定電圧 VRF1とが入力される。設定電圧 VRF 1からのフィードバック電圧 V01の差電圧が増幅された電圧 VFB1として出力される。 ここで、設定電圧 VRF1は電源電圧 VCCが約 3. OVを示す基準電圧であり、フィー ドバック電圧 V01は、電源電圧 VCCを抵抗分圧により調整した調整電圧であり、電 圧 VFB 1は電源電圧 VCCが 3. OV付近で出力が反転する。
尚、前記コントローラ 10は、後述するパワーダウン制御信号 PDとディープパワーダ ゥン制御信号 DPDが入力される論理回路の出力によって活性 Z非活性の制御がお こなわれ、活性時には同期整流動作を行い、昇圧動作を行う。
[0023] 非昇圧電圧供給部 2は、ノックバイアスがスィッチ SW. 2により制御されており、外 部電圧 Vintと電源電圧 VCCとの間に接続された Pチャネルトランジスタ S234と、電 源電圧 VCCと接地電圧との間に接続された Nチャネルトランジスタ S5とから構成され
る。
[0024] 非昇圧電圧供給部 2を制御するために以下の構成を備えて ヽる。 2次側電圧を外 部電圧未満に制御するディープパワーダウン制御信号 DPDにより活性制御され外 部電圧 Vintと接地電圧との間に接続された増幅器 A13と、コマンド制御回路 13の種 々の制御信号が論理合成された、増幅器 A13の出力と接地電圧との間に接続され との間に接続された Pチャネルトランジスタ T41とを備えている。 Pチャネルトランジス タ T41は、 Pチャネルトランジスタ S234と同様に、バックバイアスが制御される。増幅 器 A13には、出力される電源電圧 VCCがフィードバックされたフィードバック電圧 VO 4と設定電圧 VRF3とが入力される。設定電圧 VRF3は、ディープパワーダウン時に メモリセルアレイ等で消費するサブシユレッショルド電流が最小になる電源電圧 VCC (約 0. 5V)を示す基準電圧である。設定電圧 VRF3からのフィードバック電圧 V04の 差電圧が増幅され、電圧 VFB3として出力され、 Pチャネルトランジスタ S234のゲー トに入力される。ここでフィードバック電圧 V04は電源電圧 VCCを抵抗分圧により調 整した調整電圧である。電源電圧 VCCは、ディープパワーダウン時に約 0. 5Vとなる ように増幅器 A13と Pチャネルトランジスタ S234によって外部電圧 Vintから降圧され る。 Nチャネルトランジスタ T40は、メモリシステムのコールドスタート時とパワーダウン 時とモード遷移時に電源電圧 VCCを充放電する。
[0025] メモリシステムのコールドスタート時を検出して 1ショットパルスを出力するパワーォ ンリセット信号 PORにより、 Nチャネルトランジスタ T40が所定時間活性ィ匕して、 Pチヤ ネルトランジスタ S234を導通させることにより、電源電圧 VCCが供給される内部バイ ァス線を充電することで、回路動作開始点である約 0. 9Vで動作する起動制御部 11 やダイオードの閾値電圧点よりも先に内部バイアス線を充電するとともに、起動制御 部 11と平行して内部バイアス線を充電することで、通常制御部 12を早期に動作させ る。 DC - DCコンバータの本来の昇圧能力の特性を決定する通常制御部 12を早期 に動作させることで、 2次側電圧を早期に所定電圧へ確定することができる。
[0026] 2次側電圧を外部電圧に制御するパワーダウン期間中は、パワーダウン信号 PDに より、 Nチャネルトランジスタ T40がその期間中 Pチャネルトランジスタ S234を導通さ
せ、電源電圧 VCCを外部電圧 Vintと同電位にする。コマンド遷移検出信号 DBC— 1は、ディープパワーダウンモードからアイドルモードもしくはパワーダウンモードへ移 行するモード遷移時に、コマンド制御回路 13により生成される 1ショットパルスの信号 であり、所定時間、 Nチャネルトランジスタ T40を活性させることで、 Pチャネルトランジ スタ S234を導通させて、外部電圧 Vint >電源電圧 VCCの状態から、外部電圧 Vin t≤電源電圧 VCCへ復帰充電させる。アイドルモードへ復帰する場合には、 DC-DC コンバータ部 1をアシストすることを含めて、 2次側電圧を早期に所定電圧へ確定する ことができる。
[0027] 更に、前記所定時間の終了を決定するのは、電圧 VFB2の反転であり、コマンド遷 移検出信号 DBC— 1を論理ゲート 131で非活性とする。通常制御部 12が昇圧動作 を開始するとともに非昇圧電圧供給部の Pチャネルトランジスタ S234の導通活性を 停止することで、逆流な電流を防止する。コマンド遷移検出信号 DBC— 2は、アイド ルモードからパワーダウンモードもしくはディープパワーダウンモードへ移行するモー ド遷移時に、コマンド制御回路 13により生成される 1ショットパルスの信号であり、所 定時間、 Nチャネルトランジスタ T40を活性させることで、 Pチャネルトランジスタ S234 を導通させて、外部電圧 Vint<電源電圧 VCCの状態から、外部電圧 Vint≥電源 電圧 VCCへ復帰放電させる。尚、コマンド遷移検出信号 DBC— 1同様に、電圧 VF B2に準じた信号で所定時間の終了を決定して逆流な電流を防止してもよい。
[0028] Pチャネルトランジスタ T41は、パワーダウンまたはディープパワーダウンを除くアイ ドル時に、 Pチャネルトランジスタ S234を停止する。 Pチャネルトランジスタ T41は、 N チャネルトランジスタ T40が非活性になって力 活性することで、電源電圧 VCCから 接地電圧へのリーク電流を防止する。
VFB2によって制御され、外部電圧 Vintと電源電圧 VCCとのどちらかに接続される 。このバックゲートは基本的に電源電圧 VCCに接続される力 外部電圧 Vint>電源 電圧 VCCの状態となるディープパワーダウン時、電源電圧 VCCが約 1. 7v付近で外 部電圧 Vintへ切り換えることで、 PN接合の順バイアスを防止できる。また、パワーダ ゥン時にバックゲートを外部電圧 Vintと電源電圧 VCCとの何れに接続するも可能で
ある。
[0030] コマンド遷移検出信号 DBC— 3は、ディープパワーダウンモードへ移行するモード 遷移時にコマンド制御回路 13により生成される 1ショットパルスの信号であり、所定時 間、 Nチャネルトランジスタ S5を導通させて、外部電圧 Vint≤電源電圧 VCCの状態 から、外部電圧 Vint >電源電圧 VCCへ放電させる。コマンド遷移検出信号 DBC— 3はコマンド遷移検出信号 DBC— 2による外部電圧 Vint =電源電圧 VCCへ復帰放 電させた後に生成されることが望ましぐ電源電圧 VCCをー且、外部電圧 Vintへ放 電し、その後接地電圧へ放電させることで、電源のノイズを低減させる。尚、コマンド 遷移検出信号 DBC— 1と同様に、電圧 VFB2に準じた信号で所定時間の開始と終 了を決定して逆流な電流を防止してもよ 、。
[0031] 図 2により、各動作状態ごとのバイアス条件を整理する。外部電圧 Vintに 1. 8Vが 供給されるとして説明する。通常動作状態 (それは、メモリセルアレイへのアクセス動 作状態とその待ち受け状態の両方を含む)におけるアイドル状態 Idleでは、 DC— D Cコンバータ部 1は動作状態にあり(ON)、非昇圧電圧供給部 2は休止状態にある( OFF)。電源電圧 VCCには昇圧電圧である 3. OVが DC— DCコンバータ部から供 給される。パワーダウン状態 PDでは、 DC— DCコンバータ部 1は休止状態にあり(O FF)、非昇圧電圧供給部 2は動作状態にある(ON)。電源電圧 VCCには外部電圧 Vintである 1. 8Vが非昇圧電圧供給部から供給される。ディープパワーダウン状態 DPDでは、 DC— DCコンバータ部 1は休止状態にあり(OFF)、非昇圧電圧供給部 2は動作状態にある(ON)。電源電圧 VCCには外部電圧 Vintより低電圧である 0. 5 V乃至 1. 0Vが非昇圧電圧供給部から供給される。また、参考までに各動作状態に おける消費電流の一例を示している。前記待ち受け状態なアイドル状態 Idleでは、 2 mAの電流消費であり主に無負荷状態な DC— DCコンバータ部で消費する。パワー ダウン状態 PDでは、主にメモリセルアレイ等で消費する 100 Aに低減され、更に、 ディープパワーダウン状態 DPDでは、メモリセルアレイ等で消費するサブシユレッショ ルド電流が最小になる 1 Aに低減される。尚、前記アクセス動作状態なアイドル状 態 Idleでは有負荷状態なので DC— DCコンバータ部の消費電流は、 10〜30mAで ある。
[0032] ここで、アイドル状態とは、メモリセルアレイに対するアクセス要求を待って 、る状態 である。アクセス要求に応じて最速なアクセス動作が活性ィ匕される。これに対して、パ ヮーダウン状態 PDおよびディープパワーダウン状態 DPDとは、アクセス要求を念頭 に置かず電流消費を低減した低消費電流状態を!、う。
[0033] モード遷移時である各動作状態間の移行シーケンスを以下に説明する。電源投入 後のコールドスタート時には、先ず、 Pチャネルトランジスタ S234が導通し、内部バイ ァス線に供給される電源電圧 VCCを外部電圧 Vintから充電する。次に、電源電圧 VCCが DC— DCコンバータ部 1の動作点に達すると、 DC DCコンバータ部 1によ り、電源電圧 VCCが定常時の電圧 (例えば、 3. OV)まで到達する。この状態がアイ ドル状態 Idleである。
[0034] アイドル状態 Idleからパワーダウン状態 PDへの移行時には、先ず、 DC— DCコン バータ部 1が昇圧動作を停止する。そして、 Pチャネルトランジスタ S234がコマンド遷 移検出信号 DBC— 2による 1ショットパルス動作により導通して、電源電圧 VCCを 3. OVから外部電圧 Vintである 1. 8Vまで到達させる。その後、パワーダウン信号 PDに より Pチャネルトランジスタ S234が導通し、電源電圧 VCCを外部電圧 Vintである 1. 8Vに維持する。
[0035] アイドル状態 Idle力 ディープパワーダウン状態 DPDへの移行時には、先ず、 DC — DCコンバータ部 1が昇圧動作を停止する。そして、 Pチャネルトランジスタ S234が コマンド遷移検出信号 DBC— 2による 1ショットパルス動作により導通して、電源電圧 VCCを 3. OVから外部電圧 Vintである 1. 8Vまで到達させる。その後、 Nチャネルト ランジスタ S5がコマンド遷移検出信号 DBC— 3による 1ショットパルス動作により導通 して、電源電圧 VCCを外部電圧 Vint>電源電圧 VCC (例えば、 0. 5V)まで到達さ せる。その後、増幅器 A13により Pチャネルトランジスタ S234力 電源電圧 VCCを 0 . 5Vに降圧維持するように導通制御される。
[0036] パワーダウン状態 PD力 ディープパワーダウン状態 DPDへの移行時には、先ず、 Nチャネルトランジスタ T40を非活性にして Pチャネルトランジスタ S234を非活性に する。その後、 Nチャネルトランジスタ S5がコマンド遷移検出信号 DBC— 3による 1シ ヨットパルス動作により導通して、電源電圧 VCCを外部電圧 Vint>電源電圧 VCC (
例えば、 0. 5V)まで到達させる。その後、増幅器 A13により Pチャネルトランジスタ S 234が、電源電圧 VCCを 0. 5Vに降圧維持するように導通制御される。
[0037] ディープパワーダウン状態 DPD力 パワーダウン状態 PDへの移行時には、先ず、 Pチャネルトランジスタ S234がコマンド遷移検出信号 DBC—1による 1ショットパルス 動作により導通して、電源電圧 VCCを 0. 5Vカゝら外部電圧 Vintである 1. 8Vまで到 達させる。その後、パワーダウン信号 PDにより Pチャネルトランジスタ S234が導通し、 この電圧を維持する。
[0038] パワーダウン状態 PDからアイドル状態 Idleへの移行時には、 Nチャネルトランジス タ T40を非活性にして Pチャネルトランジスタ S234を非活性にする。その後、 DC— DCコンバータ部 1が昇圧動作を開始し、電源電圧 VCCが 3. OVに維持される。
[0039] ディープパワーダウン状態 DPDからアイドル状態 Idleへの移行時には、増幅器 A1 3が非活性になると共にコマンド遷移検出信号 DBC—1により Pチャネルトランジスタ S234が 1ショットパルス動作により導通して、電源電圧 VCCを 0. 5Vから外部電圧 V intである 1. 8Vまで到達させる。この期間中、 DC— DCコンバータ部 1が動作点に 達すると、 DC— DCコンバータ部 1が昇圧動作を開始し、電源電圧 VCCが 3. OVま で到達して維持される。
[0040] 第 1実施形態によれば、ディープパワーダウン時に、メモリセルアレイ等で消費する サブシユレッショルド電流が最小になる、例えば 0. 5V程度の電圧で、 Pチャネルトラ ンジスタ S234〖こより、電源電圧 VCCを生成制御することで、 DC- DCコンバータ部 1 の停止による消費電流削減とあわせて、メモリシステムの最小消費電流が実現できる 。また、コールドスタート時やモード遷移時に、 DC- DCコンバータ部 1のアシストを含 めて、電源電圧 VCCを所定電圧へ高速遷移させることができる。更に、放電順序を 工夫することでノイズも縮小できる。
[0041] 図 3には、同期整流素子 14、および Pチャネルトランジスタ S234、 T41の具体例を 示す。
[0042] 昇圧型の DC— DCコンバータ部 1に備えられる同期整流素子 14は、 Pチャネルトラ ンジスタで構成する必要がある。 DC— DCコンバータ部 1の動作期間には、ゥエル電
圧は、昇圧電圧である電源電圧 VCCに接続することが望ましい(Pチャネルトランジ スタ S234、 T41とあわせ、接続 (ii)の場合)。これに対して、パワーダウン状態 PDお よびディープパワーダウン状態 DPDであるローパワーモード時には、 DC— DCコン バータ部 1が停止する。この場合には、 PN接合が順方向にバイアスされないように、 ゥエル電圧を外部電圧 Vintに接続する(Pチャネルトランジスタ S234、 T41とあわせ 、接続 (i)の場合)。
[0043] 同期整流素子を構成する Pチャネルトランジスタの電流駆動能力は非常に大きぐ ゥエルの寄生容量も大きい。しかしながら、切り替え時に、電源電圧 VCCが外部電圧 Vintと同電圧に移行してから切り替えが行なわれれば、ゥエル電位の切り替えに伴 い必要となる電流は大きくはならない。このため、ゥエル電圧の切り替えを行うスイツ チ素子 T1と T2のトランジスタサイズは、同期整流素子のサイズに関わらず、大きなサ ィズは必要とされない。
[0044] 接続(i)の場合には、 Nチャネルトランジスタ T1のゲートに印加されるハイレベル電 圧は、チャージポンプ 15力もレベルシフタ 17を介して印加される。外部電圧 Vintに Nチャネルトランジスタ T1の閾値電圧 Vthnをカ卩えた電圧が与えられる。
[0045] 接続(ii)の場合には、 Nチャネルトランジスタ T2のゲートに印加されるハイレベル電 圧は、チャージポンプ 15力もレベルシフタ 17を介して印加される。電源電圧 VCCに Nチャネルトランジスタ T2の閾値電圧 Vthnをカ卩えた電圧が与えられる。
[0046] Nチャネルトランジスタ Tl、 Τ2の切り替え制御は、ディープパワーダウン制御信号 DPDに応じて、同期整流バックバイアス切り替え制御部 16により行なわれる。
[0047] 同期整流素子を Νチャネルトランジスタで構成するとそのゲートを昇圧しなければな らない。同期整流制御信号の周波数が高くゲート容量も大きなことから、消費電力が 増大してしまう。これに対して、図 3に示す同期整流素子 14では、 Ρチャネルトランジ スタを使用しているので、ゲートを昇圧することに代えて、ノックゲートをディープパヮ 一ダウン時にのみ制御することができる。これにより、同期整流制御信号の周波数に 対応した能力の大きなチャージポンプ 15を動作させる必要はない。
[0048] また、同期整流素子の Ρチャネルトランジスタのゥエルをチャージポンプにより昇圧 することに代えて、ゥエル制御用の Νチャネルトランジスタ Tl、 Τ2を備え、そのゲート
を昇圧して、ゥエル電圧を外部電圧 Vintまたは電源電圧 VCCに充電する。同期整 流素子の pチャネルトランジスタのゥエル容量に比して、 Nチャネルトランジスタ Tl、 Τ 2、のゲート容量が小さいので、駆動時の消費電流を押えることができる。
[0049] 第 1実施形態にお 、てメモリセルアレイ等に電源電圧 VCCよりも更に高い内部電 源電圧をワード線やビット線ゃゥエル電圧に使用する場合、電源電圧 VCCが接続さ れる図示されないチャージポンプ回路などによって電源電圧 VCCから更に内部昇圧 した昇圧電圧 VPPを生成する。
第 1実施形態では、 DC— DCコンバータ部 1からメモリセルアレイ等へ電源電圧 VC Cが供給される場合を例に説明したが、電源電圧 VCCに限定されるものではない。 例えば、図 4に示すように、メモリセルアレイが不揮発性メモリで構成されるとして、不 揮発メモリセルをバイアスする昇圧電圧 VPPに供給することもできる。アクセス動作状 態な通常動作状態である、プログラムモード、ィレーズモード、読出しモードにおいて は、 DC— DCコンバータ部 1は動作状態にあり(ON)、非昇圧電圧供給部 2は休止 状態にある(OFF)。昇圧電圧 VPPにはそれぞれのモードに対応して 4. 0V〜7. 0 Vが供給される。第 1のアイドル状態 Idlelでは、 DC— DCコンバータ部 1は休止状態 にあり(OFF)、非昇圧電圧供給部 2は動作状態にある(ON)。昇圧電圧 VPPには外 部電圧 Vintである 1. 8Vが供給される。第 2のアイドル状態 Idle2では、 DC— DCコ ンバータ部 1は休止状態にあり(OFF)、非昇圧電圧供給部 2も休止状態にある(OF F)。第 2のアイドル状態 Idle2期間中、コマンド遷移検出信号 DBC— 3が変更され N チャネルトランジスタ S5を導通させることにより、昇圧電圧 VPPへは 0Vが供給される 。また、参考までに各動作状態における消費電流の一例を示している。アクセス動作 状態な通常動作状態では、 10〜30mAの電流消費でありプログラムモード、ィレー ズモード、読出しモードに対応した有負荷状態な DC— DCコンバータ部の消費電流 である。第 1のアイドル状態 Idlelでは、昇圧電圧 VPPに接続される回路で消費する サブシユレッショルド電流が 5 Aに低減され、更に、第 2のアイドル状態 Idle2では、 0 Aに低減される。
[0050] ここで、第 1のアイドル状態 Idlelとは、アクセス動作状態な通常動作状態である、プ ログラムモード、ィレーズモード、読出しモードの各々アクセス動作に挟まれた状態で
ある。
[0051] 第 2実施形態では、メモリセルアレイが不揮発性メモリで構成される場合に、内部バ ィァス線に、プログラム時、ィレーズ時、読出し時にメモリセルをバイアスする昇圧電 圧 VPPが供給される場合である。
[0052] 図 5に回路ブロック図を示す。第 1実施形態の回路ブロック図(図 1)に加えて、 DC
DCコンバータ部 1が出力する昇圧電圧を、動作モードごとに所定電圧値に切り替 える電圧設定部 21を備えている。
[0053] DC— DCコンバータ部 1から出力される電圧はコマンド制御回路 13により設定され る。コマンド制御回路 13は、メモリの動作モードである、メモリセルアレイへのアクセス 動作状態を示す読出しモード、ベリファイ読出しモード、プログラムモード、ィレーズ モードの各々の状態を示すモード信号と、メモリセルアレイへのアクセス待ち受け状 態を示すアイドルモード信号を出力する。アイドルモードではアイドルモード信号 ID、 読出しモードでは読出しモード信号 RD、ベリファイ読出しモードではべリファイ読出 しモード信号 VR、プログラムモードではプログラムモード信号 PG、ィレーズモードで はィレーズモード信号 ERである。
[0054] 電圧設定部 21は、内部バイアス線に出力される昇圧電圧 VPPを分圧する抵抗素 子 Rl、 R2、および R20〜R23を備えている。抵抗素子 R1の一端には昇圧電圧 VP Pが入力される。抵抗素子 R1の他端は抵抗素子 R2の一端に接続される。抵抗素子 R2の他端と接地電圧との間には、スィッチトランジスタ T20および抵抗素子 R20〜ス イッチトランジスタ T23および抵抗素子 R23が、各々直列接続されている。スィッチト ランジスタ T20〜T23には、モード信号が入力された論理ゲート 120〜123の出力が 接続されている。
[0055] 抵抗素子 R20〜R23は各々異なる抵抗値を有しており、スィッチトランジスタ T20 〜T23の導通制御に応じて、抵抗素子 R2に加算され抵抗素子 R1との間で昇圧電 圧 VPPを分圧する。これにより、抵抗素子 R1と R2との接続点力も出力されるフィード ノ ック電圧 V01は、導通するスィッチトランジスタ Τ20〜Τ23に応じた分圧比の電圧 となる。抵抗素子 R20〜R23の抵抗値が大きくなるに応じて、設定電圧 VRF1からの フィードバック電圧 V01の差電圧が増幅された電圧 VFB1が順次低い電圧値に調整
される。
[0056] 昇圧電圧 VPPの設定電圧は論理ゲート I20〜I23で決定される。例えば、論理ゲ ート 120により、アイドルモードおよび読み出しモードでは昇圧電圧 VPPを 4. OVに設 定し、論理ゲート 121により、ベリファイリードモードでは昇圧電圧 VPPを 4. 5Vに設 定し、論理ゲート 122により、プログラムモードでは昇圧電圧 VPPを 7. OVに設定し、 論理ゲート 123により、ィレーズモードでは昇圧電圧 VPPを 7. 5Vに設定することが できる。前記アクセス待ち受け状態を示すアイドルモードでの昇圧電圧 VPPを、前記 アクセス動作状態を示す動作モード毎に設定される複数の昇圧電圧 VPP (例えば、 4V〜7. 5V)のうち、最小の設定値(例えば、 4V)にすることにより、 DC— DCコンパ ータ部 1の消費電流を最小とすることができる。
[0057] また、前記アイドルモードでの昇圧電圧 VPPを、複数の前記動作モードの中で読 出しモードでの設定値 (例えば、 4. 5V)に設定することにより、外部アクセスを遅らせ ることなく最高の読出し速度とすることができる。
また、図示されてはいないが、設定電圧 VRF1側に電圧設定部を接続することもで きる。
[0058] 第 2実施形態により、各動作状態において、昇圧電圧 VPPとして供給される電圧値 の例を、図 6に示す。外部電圧 Vintに 1. 8Vが供給されるとして説明する。アイドル モード IDおよび読出しモード RDでは、 DC— DCコンバータ部 1は動作状態にあり( ON)、非昇圧電圧供給部 2は休止状態にある(OFF)。昇圧電圧 VPPには 4. 0Vが 供給される。プログラムモード PGおよびィレーズモード ERでは、 DC— DCコンパ一 タ部 1は動作状態にあり(ON)、非昇圧電圧供給部 2は休止状態にある (OFF)。プ ログラムモード PGでは昇圧電圧 VPPには 7. 0Vが供給され、ィレーズモード ERでは 昇圧電圧 VPPには 7. 5Vが供給される。ベリファイリードモード VRでは、 DC— DCコ ンバータ部 1は動作状態にあり(ON)、非昇圧電圧供給部 2は休止状態にある (OFF )。昇圧電圧 VPPには 4. 5Vが供給される。パワーダウン状態 PDでは、 DC— DCコ ンバータ部 1は休止状態にあり(OFF)、非昇圧電圧供給部 2は動作状態にある(ON ) o昇圧電圧 VPPには外部電圧 Vintである 1. 8Vが供給される。ディープパワーダウ ン状態 DPDでは、 DC— DCコンバータ部 1は休止状態にあり(OFF)、非昇圧電圧
供給部 2は動作状態にある(ON)。昇圧電圧 VPPには外部電圧 Vintより低電圧であ る 0. 5V乃至 1. OVが供給される。また、参考までに各動作状態における消費電流 の一例を示している。アイドルモード IDおよび読出しモード RDでは、 2mA〜: LOmA の電流消費である。詳細には、アクセス待ち受け状態なアイドルモード IDでは主に無 負荷状態な DC— DCコンバータ部で 2mAを消費する。アクセス動作状態な読出し モード RDでは、有負荷状態な DC— DCコンバータ部で 10mAを消費する。
プログラムモード PGおよびィレーズモード ERでは、有負荷状態な DC— DCコンパ ータ部で 20〜30mAの電流消費である。ベリファイリードモード VRでは、有負荷状 態な DC - DCコンバータ部で 12mAの電流消費である。パワーダウン状態 PDでは 、昇圧電圧 VPPに接続される回路で消費するサブシユレッショルド電流が 5 μ Αに低 減され、更に、ディープパワーダウン状態 DPDでは、昇圧電圧 VPPに接続される回 路で消費するサブシユレッショルド電流が最小になる 1 μ Αに低減される。
尚、第 2実施形態でのプログラムモード時またはィレーズモード時の昇圧電圧 VPP の供給制御方法は、ベリファイ読出しモードと連続して制御される。詳細には、プログ ラムモードまたはィレーズモードとベリファイ読出しモード間のモード遷移時に、 DC DCコンバータ部を活性ィ匕しつつ前記電圧設定部を前記コマンド制御の出力信号 PGまたは ERと VRを連続的に切り換えることによって、昇圧電圧 VPPの出力がプロ グラム電圧 7. OVまたはィレーズ電圧 7. 5Vとべリファイリード電圧 4. 5Vを連続的に 切り換える。この連続制御は、すべてのベリファイが完了するまで維持され、完了後 は前記最小の設定値または読出しモードでの設定値に制御される。ここで DC— DC コンバータの出力が下方修正(例えば、プログラム電圧 7. OVからべリファイリード電 圧 4. 5V)されるモード遷移時に、内部バイアス線に接続された非昇圧電圧供給部を 所定時間だけ同時に活性させても良い。具体的には、非昇圧電圧供給部の Pチヤネ ルトランジスタ S234を DC— DCコンバータ部内の前記電圧設定部による設定電圧 変更値 (例えば、プログラム電圧 7. OVからべリファイリード電圧 4. 5V)となるまでの 所定時間だけ S234を活性ィ匕して内部バイアス線の電荷を 1次側電圧へ放電する。 これ〖こより、内部バイアス線に接続された容量素子 C2の大きな電荷量を含めて、内 部バイアス線の電圧をモード遷移後の所定電圧へ短時間に達することができる。
これ以外の、 DC— DCコンバータ部と非昇圧電圧供給部とによる作用'効果は、第 1実施形態(図 1)における作用 ·効果と同様であるので、ここでの説明は省略する。
[0059] 図 7、図 8に示す第 3実施形態では、メモリセルアレイが不揮発性メモリで構成され る場合に、プログラム時、ィレーズ時、読出し時、ベリファイリード時にメモリセルにバ ィァスするにあたり、 2系統の昇圧電圧 VPP1、 VPP2が備えられ、何れか一方にバイ ァスが供給される場合である。一例として、外部アクセスである読出し電圧またはベリ フアイリード電圧を第 2系統、第 2系統に対してより高い昇圧電圧のプログラム電圧ま たはィレ -ズ電圧を第 1系統とする。
[0060] 図 7に回路ブロック図を示す。外部電圧 Vintを昇圧する 2系統の DC— DCコンパ ータ部(1) 3、および DC— DCコンバータ部(2) 4を備え、 2系統の内部バイアス線の 各々に、昇圧電圧 VPP1、 VPP2を供給する。また、昇圧電圧 VPP1、 VPP2力 S供給 される内部バイアス線には、容量素子 C21、 C22、および非昇圧電圧供給部(1) 5、 非昇圧電圧供給部(2) 6が備えられている。 DC— DCコンバータ部と非昇圧電圧供 給部とによる作用 ·効果は、第 1実施形態(図 1)における作用 ·効果と同様であるの で、ここでの説明は省略する。尚、図 7においては、 DC— DCコンバータ部(1) 3、お よび DC— DCコンバータ部(2) 4を個別に備える構成として記載している力 インダク タ素子を共有する構成とすることもできる。
[0061] 更に、第 3実施形態では、 2系統ある内部バイアス線を接続する線間スィッチ部 S8 を備えている。線間スィッチ部は、例えば Pチャネルトランジスタで構成される。 DC— DCコンバータ部による昇圧電圧が供給される系統が切り替わる際、線間スィッチ部 S8を導通することにより、切り替わり動作前に昇圧電圧が供給されていた系統の容 量素子の電荷を、切り替わり後に昇圧電圧を供給する系統に移動させる。これにより 、切り替わり後に昇圧電圧を供給する系統の DC— DCコンバータ部の起動のアシス トを含めて、昇圧電圧が所定値に到達するまでの時間短縮と消費電流の低減を図る ことができる。尚、線間スィッチ部 S8を非導通とする時には、線間スィッチ部 S8のゲ ートが高い昇圧電圧側に設定される。図示されないが実施例 1の Pチャネルトランジ スタ S234同様に、線間スィッチ部 S8のバックゲートであるゥエルのバイアス設定は、 逆バイアスに制御される。 また、図示されてはいないが、線間スィッチ部 S8は Nチヤ
ネルトランジスタとすることもできる。
[0062] 図 8に各動作モードにおけるバイアス条件を整理する。外部電圧 Vintに 1. 8Vが 供給されるとして説明する。アイドルモード IDおよび読出しモード RDでは、 DC— D Cコンバータ部(2) 4および非昇圧電圧供給部(1) 5は動作状態にあり(ON)、 DC— DCコンバータ部(1) 3および非昇圧電圧供給部(2) 6は休止状態にある (OFF)。昇 圧電圧 VPP1、 VPP2は、各々、 0. 5VZ1. 8V、 4. 0Vが供給される。プログラムモ ード PGおよびィレーズモード ERでは、 DC— DCコンバータ部(1) 3および非昇圧電 圧供給部(2) 6は動作状態にあり(ON)、 DC— DCコンバータ部(2) 4および非昇圧 電圧供給部(1) 5は休止状態にある(OFF)。昇圧電圧 VPP1、 VPP2は、各々、 7. 0V、 0. 5V/1. 8Vが供給される。ベリファイリードモード VRでは、 DC— DCコンパ ータ部(2) 4および非昇圧電圧供給部(1) 5は動作状態にあり(ON)、 DC— DCコン バータ部(1) 3および非昇圧電圧供給部(2) 6は休止状態にある(OFF)。昇圧電圧 VPP1、 VPP2は、各々、 0. 5VZ1. 8V、 4. 0Vが供給される。パワーダウン状態 P Dでは、非昇圧電圧供給部(1) 5、 (2) 6は動作状態にあり(ON)、 DC— DCコンパ ータ部(1) 3、(2) 4は休止状態にある(OFF)。昇圧電圧 VPP1、 VPP2は、共に 1. 8Vが供給される。ディープパワーダウン状態 DPDでは、非昇圧電圧供給部(1) 5、 ( 2) 6は動作状態にあり(ON)、 DC— DCコンバータ部(1) 3、(2) 4は休止状態にある (OFF)。昇圧電圧 VPP1、 VPP2は、共〖こ 0. 5Vが供給される。
[0063] 昇圧電圧を供給する内部バイアス線の系統を切り替える際の動作シーケンスを示 す。昇圧電圧 VPP1の供給から、昇圧電圧 VPP2の供給への切り替え時には、 DC — DCコンバータ部(1) 3が停止したのち線間スィッチ部 S8が導通する。容量素子 C 21に蓄積されている電荷が容量素子 C22に移動する。昇圧電圧 VPP2は、電荷の 移動により初期電圧が上昇する。この後、 DC— DCコンバータ部(2) 4が動作を開始 する。昇圧電圧 VPP2の供給から、昇圧電圧 VPP1の供給への切り替え時も同様な 動作により、 DC— DCコンバータ部(1) 3の動作開始前に電荷の移動が行われる。 尚、第 3実施形態の応用例として、第 1系統と第 2系統の両方が活性化した状態で 、線間スィッチ部を所定時間活性ィ匕することも有用である。例えば、プログラムモード 力らベリファイモードへモード遷移する場合、第 2系統の DC— DCコンバータ部(2) 4
が活性し昇圧電圧 VPP2が所定電圧付近へ到達するまで、第 1系統の DC— DCコ ンバータ部(1) 3を活性ィ匕しつづける。これにより、第 1系統の容量素子 C21の電荷 力 第 2系統の DC— DCコンバータ部(2) 4をアシストすると共に、継続動作している 第 1系統の DC— DCコンバータ部(1) 3と、第 2系統の DC— DCコンバータ部(2) 4 の両者によって、昇圧電圧 VPP2が所定電圧付近へ高速に到達する。継続動作して いる DC— DCコンバータの電流駆動能力は、動作開始する DC— DCコンバータの 電流駆動能力よりも、はるかに高いかからである。
[0064] 以上の説明から明らかなように本実施形態によれば、内部バイアス線への昇圧電 圧の供給期間には、 DC— DCコンバータ部を使用して充分な電力供給能力を確保 した上で、内部バイアス線に非昇圧電圧を供給する期間には、 DC— DCコンバータ 部を休止状態に維持することができる。昇圧電圧の供給が不要な期間に、 DC -DC コンバータ部による電力消費、または昇圧電圧の生成動作に伴う電力消費を防止す ることができ、消費電力の低減を図ることができる。
[0065] また、 DC— DCコンバータ部の起動に応じて、内部バイアス線が昇圧電圧に給電 される過程にぉ ヽて、非昇圧電圧供給部が電圧供給動作を行ない内部バイアス線 が先行給電されるので、 DC- DCコンバータ部のアシストを含めて、 DC— DCコンパ ータ部の起動により内部バイアス線が昇圧電圧に至るまでの時間が短縮され、ァクセ ス動作の高速ィ匕を図ることができる。
[0066] 尚、本発明は前記実施形態に限定されるものではなぐ本発明の趣旨を逸脱しな い範囲内で種々の改良、変形が可能であることは言うまでもない。
尚、本発明が搭載される最終形態は、多彩である。例えば、 DC— DCコンバータ部 、非昇圧電圧供給部とその制御部、コマンド制御回路、メモリセルアレイ等のすべて がひとつのシリコンバルタに搭載されたデバイスがある。また、 DC— DCコンバータ部 がひとつのシリコンバルタに搭載され、非昇圧電圧供給部とその制御部、コマンド制 御回路、メモリセルアレイ等が別のシリコンバルタに搭載され、ひとつのパッケージに 搭載されたデバイスがある。更に、 DC— DCコンバータ部がひとつのシリコンバルタ でパッケージに搭載され、非昇圧電圧供給部とその制御部、コマンド制御回路、メモ
リセルアレイ等が別のシリコンバルタでパッケージに搭載され、システム基板上に両 者のパッケージが搭載されたシステムがある。
また、メモリセルアレイ等とは、メモリセルアレイと広くメモリセルをアクセスするため の論理回路や駆動回路や差動増幅器やデコーダなどを含み、メモリ機能として動作 する能動回路と受動回路を示す。
Claims
[1] メモリセルアレイと、
前記メモリセルアレイにバイアス電圧を供給する内部ノィァス線と、
出力線が前記内部バイアス線に接続され、外部電圧を昇圧した昇圧電圧を供給す る DC— DCコンノータ咅と、
出力線が前記内部バイアス線に接続され、前記外部電圧以下の非昇圧電圧を供 給する非昇圧電圧供給部とを備え、
前記内部バイアス線が前記昇圧電圧に維持される期間には、前記非昇圧電圧供 給部は電圧供給動作を休止し、
前記内部バイアス線が前記非昇圧電圧に維持される期間には、前記 DC— DCコン バータ部は電圧供給動作を休止することを特徴とする記憶装置。
[2] 前記非昇圧電圧供給部は、前記 DC— DCコンバータ部の起動以前または Zおよ び起動以後であって、前記内部バイアス線が前記昇圧電圧に至る前、電圧供給動 作を行 ヽ前記内部バイアス線に給電することを特徴とする請求項 1に記載の記憶装 置。
[3] 前記非昇圧電圧供給部は、前記外部電圧が供給される外部電圧線と前記内部バ ィァス線とを接続する第 1スィッチ部を備えることを特徴とする請求項 1に記載の記憶 装置。
[4] 前記第 1スィッチ部は、前記 DC— DCコンバータ部の起動以前または Zおよび起 動以後であって、前記内部バイアス線が前記昇圧電圧に至る前、導通することを特 徴とする請求項 3に記載の記憶装置。
[5] 前記内部バイアス線を前記非昇圧電圧とする際、前記第 1スィッチ部は、前記 DC
DCコンバータ部の電圧供給動作の休止後に導通することを特徴とする請求項 3 に記載の記憶装置。
[6] 前記内部バイアス線に設定される電圧が各々異なる複数の動作モードを有し、 前記第 1スィッチ部は、前記動作モードの遷移時に導通することを特徴とする請求 項 3に記載の記憶装置。
[7] 前記非昇圧電圧供給部は、前記内部バイアス線と接地線とを接続する第 2スィッチ
部を備え、
前記非昇圧電圧を前記外部電圧より低電圧とする場合に、前記第 2スィッチ部は、 前記 DC— DCコンバータ部の電圧供給動作の休止後に導通することを特徴とする 請求項 1に記載の記憶装置。
[8] 前記第 2スィッチ部の導通はパルス駆動であることを特徴とする請求項 7に記載の 記憶装置。
[9] 前記内部バイアス線と接地線とを接続する第 2スィッチ部を更に備え、
前記非昇圧電圧を前記外部電圧より低電圧とする場合に、前記 DC— DCコンパ一 タ部の電圧供給動作の休止後、前記第 1スィッチ部の導通に引き続き、前記第 2スィ ツチ部が導通することを特徴とする請求項 3に記載の記憶装置。
[10] 前記内部ノ ィァス線は前記メモリセルアレイの電源電圧線であり、
前記昇圧電圧は動作状態における電源電圧であり、前記非昇圧電圧はスタンバイ 状態における電源電圧であることを特徴とする請求項 1に記載の記憶装置。
[11] 前記メモリセルアレイは不揮発性メモリセルアレイであり、
前記昇圧電圧は、プログラム動作、消去動作、または読み出し動作のうち少なくとも 何れかの動作状態におけるバイアス電圧であり、前記非昇圧電圧はスタンバイ状態 におけるバイアス電圧であることを特徴とする請求項 1に記載の記憶装置。
[12] 前記 DC— DCコンバータ部は、前記プログラム動作、前記消去動作、または前記 読み出し動作の各々の動作モードに対して、前記昇圧電圧として所定電圧値を設定 する電圧設定部を備えることを特徴とする請求項 11に記載の記憶装置。
[13] 前記読み出し動作はべリファイ読出し動作であり、前記プログラム動作または前記 消去動作と、ベリファイ読出し動作との間での、前記動作モードの遷移においては、 前記 DC— DCコンバータ部が活性状態に維持された上で、前記電圧設定部の前記 所定電圧値を変更する制御が行なわれることを特徴とする請求項 12に記載の記憶 装置。
[14] 前記外部電圧線と前記内部バイアス線とを接続する第 1スィッチ部を備え、前記 動作モード遷移時、第 1スィッチ部が所定時間導通することを特徴とする請求項 13 に記載の記憶装置。
[15] 前記プログラム動作、前記消去動作、または前記読み出し動作の動作間の期間で あって、電源電圧が供給されて 、るアイドル状態にぉ 、て、
前記電圧設定部は、前記プログラム動作、前記消去動作、および前記読み出し動 作における前記所定電圧値のうち、最小電圧値を設定することを特徴とする請求項 1 2に記載の記憶装置。
[16] 前記アイドル状態における前記所定電圧値は、前記読み出し動作における所定電 圧値であることを特徴とする請求項 12に記載の記憶装置。
[17] 前記メモリセルアレイは、各々異なるバイアス電圧が供給される 2以上の内部ノィァ ス線と、
前記内部バイアス線間を接続する線間スィッチ部とを備え、
一の内部バイアス線へのバイアス電圧の供給動作の休止後または供給動作中、他 の内部バイアス線へのバイアス電圧の供給動作開始以前または Zおよび供給動作 開始以後であって、前記他の内部バイアス線が目的となるバイアス電圧に至る前、前 記一の内部バイアス線と前記他の内部バイアス線とを接続する前記線間スィッチ部 を導通することを特徴とする請求項 1に記載の記憶装置。
[18] 外部電圧を昇圧した昇圧電圧と前記外部電圧以下の非昇圧電圧との何れか一方 のバイアス電圧を、メモリセルアレイの内部バイアス線に供給する記憶装置の制御方 法であって、
前記内部バイアス線が前記昇圧電圧に維持される場合に、前記非昇圧電圧の生 成を休止するステップと、
前記内部バイアス線が前記非昇圧電圧に維持される場合に、前記昇圧電圧の生 成を休止するステップとを有することを特徴とする記憶装置の制御方法。
[19] 前記内部バイアス線に前記昇圧電圧を給電するにあたり、前記内部バイアス線が 前記昇圧電圧に至る前に、前記内部バイアス線に前記非昇圧電圧を給電するステツ プを有することを特徴とする請求項 18に記載の記憶装置の制御方法。
[20] 前記内部バイアス線に前記非昇圧電圧を給電するにあたり、前記内部バイアス線 に前記外部電圧が給電されるステップを有することを特徴とする請求項 18に記載の 記憶装置の制御方法。
[21] 前記内部バイアス線に前記非昇圧電圧を給電するにあたり、前記内部バイアス線 に接地電圧が給電されるステップを有することを特徴とする請求項 20に記載の記憶 装置の制御方法。
[22] 前記メモリセルアレイは不揮発性メモリセルアレイであり、
前記昇圧電圧は、プログラム動作、消去動作、または読み出し動作のうち少なくとも 何れかの動作モードにおけるノィァス電圧であって、前記動作モードごとに所定の 電圧値が設定されることを特徴とする請求項 18に記載の記憶装置の制御方法。
[23] 前記読み出し動作はべリファイ読出し動作であり、前記プログラム動作または前記 消去動作と、ベリファイ読出し動作との間での、前記動作モードの遷移においては、 前記昇圧電圧の生成が維持された上で、前記動作モードごとに所定の電圧値が設 定されることを特徴とする請求項 22に記載の記憶装置の制御方法。
[24] 前記動作モード遷移時、前記昇圧電圧に対して、前記所定の電圧値を遷移させる ため、前記外部電圧が所定時間給電されるステップを含むことを特徴とする請求項 2
3に記載の記憶装置の制御方法。
[25] 前記プログラム動作、前記消去動作、または前記読み出し動作の動作間の期間で あって、電源電圧が供給されて 、るアイドル状態にぉ 、て、
前記昇圧電圧は、前記所定の電圧値のうち、最小電圧値に維持されることを特徴と する請求項 22に記載の記憶装置の制御方法。
[26] 前記アイドル状態における前記所定の電圧値は、前記読み出し動作における電圧 値であることを特徴とする請求項 25に記載の記憶装置の制御方法。
[27] 前記メモリセルアレイは、各々異なるバイアス電圧が供給される 2以上の内部ノィァ ス線を備え、
一の内部バイアス線へのバイアス電圧の供給動作の休止後、他の内部バイアス線 へのバイアス電圧の供給動作開始以前または Zおよび供給動作開始以後であって 、前記他の内部バイアス線が目的となるバイアス電圧に至る前、前記一の内部バイァ ス線に残存する電荷を前記他の内部バイアス線に移送するステップを有することを特 徴とする請求項 18に記載の記憶装置の制御方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007539720A JPWO2007043095A1 (ja) | 2005-09-30 | 2005-09-30 | 記憶装置、および記憶装置の制御方法 |
PCT/JP2005/018085 WO2007043095A1 (ja) | 2005-09-30 | 2005-09-30 | 記憶装置、および記憶装置の制御方法 |
US11/529,790 US7881142B2 (en) | 2005-09-30 | 2006-09-29 | Storage device and control method thereof |
TW095136177A TWI395227B (zh) | 2005-09-30 | 2006-09-29 | 儲存裝置以及其控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/018085 WO2007043095A1 (ja) | 2005-09-30 | 2005-09-30 | 記憶装置、および記憶装置の制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/529,790 Continuation-In-Part US7881142B2 (en) | 2005-09-30 | 2006-09-29 | Storage device and control method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2007043095A1 true WO2007043095A1 (ja) | 2007-04-19 |
WO2007043095A9 WO2007043095A9 (ja) | 2007-05-31 |
Family
ID=37901742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/018085 WO2007043095A1 (ja) | 2005-09-30 | 2005-09-30 | 記憶装置、および記憶装置の制御方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US7881142B2 (ja) |
JP (1) | JPWO2007043095A1 (ja) |
TW (1) | TWI395227B (ja) |
WO (1) | WO2007043095A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7599231B2 (en) * | 2006-10-11 | 2009-10-06 | Atmel Corporation | Adaptive regulator for idle state in a charge pump circuit of a memory device |
KR101737020B1 (ko) * | 2009-09-09 | 2017-05-29 | 마벨 월드 트레이드 리미티드 | 다중 파워서플라이들 및/또는 다중 저전력 모드들을 갖는 메모리 |
KR101780421B1 (ko) * | 2011-02-28 | 2017-09-21 | 삼성전자주식회사 | 비휘발성 메모리 장치, 그것의 워드라인 전압 발생 방법, 프로그램 방법 및 읽기 방법, 그리고 그것을 포함하는 메모리 시스템 및 전자 장치 |
JP5982510B2 (ja) * | 2015-02-09 | 2016-08-31 | 力晶科技股▲ふん▼有限公司 | 電圧発生回路、レギュレータ回路、半導体記憶装置及び半導体装置 |
KR102291803B1 (ko) * | 2015-04-07 | 2021-08-24 | 삼성전자주식회사 | 불휘발성 메모리 시스템의 동작 방법, 및 그것을 포함하는 사용자 시스템의 동작 방법 |
KR20170006980A (ko) * | 2015-07-10 | 2017-01-18 | 에스케이하이닉스 주식회사 | 파워 온 리셋 회로 및 이를 포함하는 반도체 메모리 장치 |
US10802736B2 (en) | 2017-07-27 | 2020-10-13 | Qualcomm Incorporated | Power down mode for universal flash storage (UFS) |
JP2020149753A (ja) * | 2019-03-15 | 2020-09-17 | 株式会社東芝 | 制御装置、及び磁気ディスク装置 |
TWI708466B (zh) * | 2020-02-20 | 2020-10-21 | 龍華科技大學 | 一種兩級式電源供應器 |
US11335416B1 (en) * | 2020-12-16 | 2022-05-17 | Micron Technology, Inc. | Operational modes for reduced power consumption in a memory system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10106283A (ja) * | 1996-09-30 | 1998-04-24 | Toshiba Corp | 半導体装置 |
JPH10241385A (ja) * | 1997-02-27 | 1998-09-11 | Toshiba Corp | 中間電圧発生回路およびこれを有する半導体集積回路装置 |
JP2001338493A (ja) * | 2000-05-25 | 2001-12-07 | Toshiba Corp | 半導体装置 |
WO2002003389A1 (en) * | 2000-06-30 | 2002-01-10 | Intel Corporation | Inductive charge pump circuit for providing voltages useful for flash memory and other applications |
JP2002373490A (ja) * | 2001-06-15 | 2002-12-26 | Mitsubishi Electric Corp | 半導体記憶装置 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW314623B (en) * | 1994-03-19 | 1997-09-01 | Macronix Int Co Ltd | Improved supplied voltage detecting circuit |
US6209034B1 (en) * | 1994-09-02 | 2001-03-27 | Nec Corporation | Remote keyboard macros activated by hot icons |
US5835420A (en) * | 1997-06-27 | 1998-11-10 | Aplus Flash Technology, Inc. | Node-precise voltage regulation for a MOS memory system |
KR100388179B1 (ko) * | 1999-02-08 | 2003-06-19 | 가부시끼가이샤 도시바 | 불휘발성 반도체 메모리 |
JP3532444B2 (ja) * | 1999-03-30 | 2004-05-31 | シャープ株式会社 | 半導体記憶装置 |
TW466394B (en) * | 2000-01-04 | 2001-12-01 | Via Tech Inc | Terminated circuit module and computer system using the same |
TW527601B (en) * | 2000-01-31 | 2003-04-11 | Fujitsu Ltd | Internal supply voltage generating circuit in a semiconductor memory device and method for controlling the same |
JP2002026254A (ja) * | 2000-07-03 | 2002-01-25 | Hitachi Ltd | 半導体集積回路および不揮発性メモリ |
-
2005
- 2005-09-30 WO PCT/JP2005/018085 patent/WO2007043095A1/ja active Application Filing
- 2005-09-30 JP JP2007539720A patent/JPWO2007043095A1/ja active Pending
-
2006
- 2006-09-29 US US11/529,790 patent/US7881142B2/en active Active
- 2006-09-29 TW TW095136177A patent/TWI395227B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10106283A (ja) * | 1996-09-30 | 1998-04-24 | Toshiba Corp | 半導体装置 |
JPH10241385A (ja) * | 1997-02-27 | 1998-09-11 | Toshiba Corp | 中間電圧発生回路およびこれを有する半導体集積回路装置 |
JP2001338493A (ja) * | 2000-05-25 | 2001-12-07 | Toshiba Corp | 半導体装置 |
WO2002003389A1 (en) * | 2000-06-30 | 2002-01-10 | Intel Corporation | Inductive charge pump circuit for providing voltages useful for flash memory and other applications |
JP2002373490A (ja) * | 2001-06-15 | 2002-12-26 | Mitsubishi Electric Corp | 半導体記憶装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2007043095A9 (ja) | 2007-05-31 |
TW200723290A (en) | 2007-06-16 |
JPWO2007043095A1 (ja) | 2009-04-16 |
US20070076492A1 (en) | 2007-04-05 |
TWI395227B (zh) | 2013-05-01 |
US7881142B2 (en) | 2011-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI395227B (zh) | 儲存裝置以及其控制方法 | |
US6373325B1 (en) | Semiconductor device with a charge pumping circuit | |
KR100471185B1 (ko) | 내부 공급 전압의 파워-업 기울기를 제어하기 위한 내부전압 변환기 구조 | |
US20220130471A1 (en) | Voltage generation circuit which is capable of executing high-speed boost operation | |
US6343044B1 (en) | Super low-power generator system for embedded applications | |
KR100241209B1 (ko) | 반도체집적회로장치 | |
US20020021611A1 (en) | Power supply circuit and semiconductor memory device having the same | |
JP2008079360A (ja) | 昇圧コンバータ及び半導体集積回路 | |
TW200401292A (en) | Semiconductor device | |
US9423814B2 (en) | Apparatus of supplying power while maintaining its output power signal and method therefor | |
KR100309602B1 (ko) | 전위검출회로에서의전력소비를감소시키는반도체장치 | |
US20190318768A1 (en) | Charge pump drive circuit | |
US8390366B2 (en) | Charge pump stage, method for controlling a charge pump stage and memory having a charge pump stage | |
US7492646B2 (en) | Internal voltage generator of semiconductor device | |
US7847624B2 (en) | Internal power supply circuit | |
US7869299B2 (en) | Internal-voltage generating circuit and semiconductor device including the same | |
US20120275226A1 (en) | Nonvolatile semiconductor memory device capable of reducing power consumption | |
JP2002142448A (ja) | 昇圧回路 | |
US11742757B2 (en) | Power supply system | |
JPH09294367A (ja) | 電圧供給回路 | |
US7282956B2 (en) | High voltage switching circuit of nonvolatile memory device | |
US11830557B2 (en) | Memory apparatus | |
JP4435203B2 (ja) | 半導体集積回路装置 | |
US8374007B2 (en) | Supplying power with maintaining its output power signal with the assistance of another power apply and method therefor | |
JPH09312095A (ja) | 半導体集積回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 11529790 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 11529790 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007539720 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05787685 Country of ref document: EP Kind code of ref document: A1 |