Nothing Special   »   [go: up one dir, main page]

WO2007040219A1 - Nanoarray dna chip - Google Patents

Nanoarray dna chip Download PDF

Info

Publication number
WO2007040219A1
WO2007040219A1 PCT/JP2006/319765 JP2006319765W WO2007040219A1 WO 2007040219 A1 WO2007040219 A1 WO 2007040219A1 JP 2006319765 W JP2006319765 W JP 2006319765W WO 2007040219 A1 WO2007040219 A1 WO 2007040219A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
nanoarray
substrate
dna chip
nanoparticles
Prior art date
Application number
PCT/JP2006/319765
Other languages
French (fr)
Japanese (ja)
Inventor
Seiichi Iwamatsu
Original Assignee
Intellectual Property Bank Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intellectual Property Bank Corp. filed Critical Intellectual Property Bank Corp.
Priority to JP2007538764A priority Critical patent/JPWO2007040219A1/en
Publication of WO2007040219A1 publication Critical patent/WO2007040219A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips

Definitions

  • the present invention relates to a DNA chip structure necessary for analyzing base sequence information of a DNA strand.
  • a DNA chip has a DNA fixing end 104 formed of a functional group on the surface of a substrate 101 having a sliding glass force as shown in FIG. 7, and a DNA strand 103 is fixed on the DNA fixing end 104. It is customary to establish a microarray DNA chip by establishing a forest.
  • Patent Document 1 US6376166 "Apparatus and Method for The Analysis of Numeric Acids Hybridization on High Density NA Chips J Vladimir Poponin.
  • Patent Document 1 such as a high-speed DNA base sequence analysis method by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA bases. It cannot be applied to sequence analysis.
  • the present invention has been made in view of the above circumstances, and is mainly applied to a high-speed DNA base sequence analysis method by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA base sequence analysis methods.
  • the purpose is to provide a nanoarray DNA chip structure that can be used.
  • a DNA strand is extended and fixed in at least one narrow groove in a narrow groove formed on the substrate surface as a nanoarray DNA chip. Take the means to arrange and arrange.
  • a DNA strand is extended into at least one narrow groove in a narrow groove formed on the surface of a thin film on a substrate as a nanoarray DNA chip. And then take a means of fixing and arranging and arranging.
  • nanoparticles are fixed to the ends of the DNA strands, and means for bonding the nanoparticles to a pad portion formed on the substrate is taken.
  • the nanoparticle in the nanoarray DNA chip according to claim 3 takes a means consisting of any one of gold nanoparticles, glass nanoparticles, and synthetic resin nanoparticles.
  • the pad portion in the nanoarray DNA chip according to claim 3 takes a means consisting of either a gold thin film or a synthetic resin thin film.
  • the substrate of the nanoarray DNA chip described in claims 1 to 5 is a disk-shaped disk, and the fine grooves formed on the disk surface are concentric or spiral.
  • the substrate of the nanoarray DNA chip according to claims 1 to 5 is a cylindrical micro cylinder, and the fine grooves formed on the surface of the micro cylinder take a concentric or spiral shape.
  • the substrate of the nanoarray DNA chip according to claim 7 is a single substrate of a cylindrical microcylinder, and the fine grooves formed on the surface of the microcylinder are concentric or spiral.
  • the narrow groove according to claims 1 and 2 takes a measure as a V-shaped cross-sectional structure formed from the surface of a silicon single crystal substrate or a silicon single crystal film having a (111) crystal plane orientation.
  • the arrangement and sequence of DNA strands are improved, and DNA base sequence analysis methods mainly by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope, and other scanning DNAs.
  • the DNA base sequence analysis by the base sequence analysis method can be performed at high speed and with high accuracy, and the DNA base sequence analysis by the multi-probe can be performed at high speed and with high accuracy.
  • FIG. 1 is a schematic diagram of a main part of a nanoarray DNA chip according to the present invention.
  • FIG. 2 is a schematic view of the main part of a nanoarray DNA chip according to the present invention.
  • FIG. 3 is a schematic diagram of the main part of a nanoarray DNA chip according to the present invention.
  • FIG. 4 is a schematic view of the main part of a disk-shaped nanoarray DNA chip according to the present invention.
  • FIG. 5 is a schematic view of the main part of a microcylinder nanoarray DNA chip according to the present invention.
  • FIG. 6 is a schematic cross-sectional view of the main part of a microarray DNA chip in the prior art.
  • FIG. 7 is a cross-sectional view of a V-shaped fine groove formed on a surface of a silicon single crystal substrate and a single crystal film according to the present invention.
  • FIG. 1 is a schematic diagram of a main part showing an example of a nanoarray DNA chip according to the present invention.
  • the nanoarray DNA chip has a structure in which the ends of the DNA strand 103 extended in the narrow groove 102 in which the surface force of the substrate 101 is also formed are fixed at the DNA fixing end 104, and are arranged and arranged in a line.
  • the substrate 101 of the nanoarray DNA chip may be a slide glass, an engineering plastic plate typified by an acrylic resin board, a silicone resin board, or a polycarbonate resin board, and preferably a quartz plate having a low thermal expansion coefficient. It consists of a silicon substrate.
  • the narrow grooves 102 formed from the surface of the substrate 101 of the nanoarray DNA chip are linear or spiral or have a depth of about 1 nm to 2 nm in diameter of the DNA strand and a width of about 2 nm in diameter of the DNA strand.
  • Concentric circular shape, DNA strand fragments and single molecule macro DNA strands (average length: 5cm), X-ray exposure (resolution: 0.5nm) and ion beam exposure
  • the resist film is etched by ion etching, plasma etching, or chemical etching. It is formed by removing.
  • DNA fixed end 1034 To place and arrange the single-stranded or double-stranded DNA strand 103 extending in the narrow groove 102 formed on the surface of the nanoarray DNA chip substrate 101 and to fix it, the entire DNA strand 103 Can be adsorbed, or the chemically modified end of DNA strand 103 (DNA fixed end 104) can be fixed with a functional group.
  • the inner surface of the narrow groove 102 is made hydrophobic to adsorb the entire DNA strand 103 into the narrow groove 102, or the inside of the narrow groove 102 is hydrophilic.
  • the DNA strand 103 can be fixed in the narrow groove 102 by adsorbing a divalent cation in the narrow groove 102.
  • FIG. 2 is a schematic diagram of a main part showing another example of the nanoarray DNA chip according to the present invention
  • (a) is a schematic plan view
  • (b) is a schematic cross-sectional view in the X direction including a DNA strand
  • (c) is a DNA strand. It is a schematic cross-sectional view in the Y direction.
  • narrow grooves 102 are formed in a thin film 201 formed on the surface of a substrate 101, and the ends of DNA strands 103 extended into the narrow grooves 102 are fixed by DNA fixing ends 104.
  • the structure is arranged and arranged linearly.
  • the substrate 101 of the nanoarray DNA chip is preferably made of a quartz plate or a silicon substrate, in addition to a glass slide, an engineering plastic plate such as an acrylic resin plate, a silicone resin plate or a polycarbonate plate.
  • Nano-array DNA chip substrate 101 The material for the thin film 201 on the surface 101 is an engineering plastic material such as acrylic resin, silicone resin, polyimide resin or fluorine resin, rubber-based resin. Silicon oxide (quartz), silicon and other ceramic materials are metal materials and carbon materials. In particular, when forming the thin film 201 shown in the figure by the exposure technique, a photosensitive acrylic resin, silicone resin, polyimide resin or fluorine resin, rubber-based resin is used.
  • the thickness of the nanoarray DNA chip The narrow groove 102 formed in the thin film 201 having a thickness of about 1 to 2 nm has a width of about 2 nm in the diameter of the DNA strand and has a predetermined shape such as a linear shape, a spiral shape or a concentric shape X-ray exposure method (resolution: ⁇ 0.5nm), ion beam exposure method (resolution: 0.5nm) and imprint method (solution) Image power: 2 nm).
  • Nanoarray DNA chip substrate 101 To place and arrange single-stranded or double-stranded DNA strands 103 in narrow grooves 102 formed in thin film 201 on surface 101, and to fix and insert DNA strand 103, The entire strand 103 can be adsorbed, or the chemically modified end of the DNA strand 103 (DNA fixed end 104) can be fixed with a functional group.
  • the inner surface of the narrow groove 102 is made hydrophobic to adsorb the entire DNA strand 103 into the narrow groove 102, or the inside of the narrow groove 102 is hydrophilic.
  • the DNA strand 103 can be fixed in the narrow groove 102 by adsorbing a divalent cation in the narrow groove 102.
  • FIG. 3 is a schematic diagram of the main part showing another example of the nanoarray DNA chip according to the present invention, ( a ) is a schematic plan view, and (b) is a schematic cross-sectional view in the X direction including a DNA strand. It is.
  • nanoparticles 302 are immobilized on the DNA fixed ends 104 of the ends of the DNA strands 103 arranged and arranged in the narrow grooves 102 on the surface of the substrate 101, and the nanoparticles 302 are formed on the substrate 101. Bonded to the pad portion 301.
  • the nanoparticle (B) 302 has a nano-sized particle force including gold nanoparticles, glass nanoparticles, and synthetic resin nanoparticles having a diameter of about lOnm.
  • the pad portion 301 is made of a thin film including a gold thin film or a synthetic resin thin film having a shape of a thickness of lnm or more and an area of about lOnm square or more.
  • the bonding process is performed by pressing the probe tip of the cantilever against the nanoparticle on the pad portion 301 and pressing, thermocompression bonding, or ultrasonic bonding.
  • the compatibility between the pad part 301 material and the nanoparticle 302 material is the most reliable and reliable bonding with the combination of gold nanoparticle and gold thin film pad.
  • the combination of glass nanoparticles and gold thin film pads is extremely difficult to bond.
  • the combination of synthetic resin nanoparticles and synthetic resin pads can be bonded fairly reliably.
  • the combination of glass nanoparticles and synthetic resin pad can be bonded with a certain degree of certainty.
  • FIG. 4 is a schematic diagram of the main part of a disk-shaped nanoarray DNA chip showing an application example according to the present invention, where (a) is a schematic plan view and (b) is a schematic cross-sectional view.
  • the DNA strand 401 in the narrow groove in which the DNA strand 103 is arranged and arranged in 102 is fixed at the DNA fixing end 104.
  • the DNA strand 103 may be a force suitable for a single molecule macro DNA strand. If the length of the DNA strand is different, the DNA fixing end 104 is connected to a single DNA strand. It can be fixed to both ends.
  • FIG. 5 is a schematic diagram of a main part of a microcylinder-shaped nanoarray DNA chip showing another application example according to the present invention, ( a ) is a schematic external view, and (b) is a schematic cross-sectional view. is there. [0046] That is, in a micro-cylinder substrate (including a base) 101 of a cylindrical or columnar shape, the inside of a narrow groove in which DNA strands 103 are arranged and arranged in narrow grooves 102 formed concentrically or spirally on the surface of DN. A strand 501 is immobilized at the DNA anchoring end 104.
  • the DNA strand 103 may be a force suitable for a single-molecule macro DNA strand. If the length of the DNA strand is different, the DNA fixing end 104 is connected to a single DNA strand. It can be fixed to both ends.
  • FIG. 7 shows another embodiment of the present invention, in which a V-shaped fine groove 601 is formed from the surface of a substrate 101 made of silicon single crystal, and a DNA strand 103 is arranged in the V-shaped fine groove 601.
  • A Cross-sectional view of V-shaped fine groove -1 and 601 are formed from the surface of the silicon single crystal thin film 201 formed on the surface of the substrate 101, and the DNA strand 103 is arranged in the V-shaped fine groove 601.
  • the V-shaped fine groove 601 is formed of a (111) crystal plane orientation silicon single crystal substrate or a silicon single crystal thin film 201 having a surface force formed on the substrate surface by various exposure methods, followed by a KOH aqueous solution or the like.
  • V-shaped narrow groove 601 having a V-shaped cross-sectional structure is formed by anisotropic chemical etching using, and after removing the resist film, DNA strand 103 in the bottom direction in the V-shaped narrow groove 601 is dropped and arranged.
  • the narrow groove structure is not limited to the V-shaped cross-sectional structure, and may be other cross-sectional structures such as a U-shape and a semicircular shape.
  • the V-shaped cross-sectional structure may be applied to other nanoarray DNA chips. Needless to say.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Immunology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

It is intended to provide a nanoarray DNA chip structure which is applicable mainly to a high-speed DNA base sequence analysis method with the use of surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA base sequence analysis methods. A nanoarray DNA chip using a means which comprises extending single molecular DNA chains in individual microchannels formed on the surface of a baseboard or a substrate, immobilizing the DNA chains therein and then arranging and aligning the same.

Description

明 細 書  Specification
ナノアレイ DNAチップ  Nanoarray DNA chip
技術分野  Technical field
[0001] 本発明は、 DNA鎖の塩基配列情報を解析する際に必要な DNAチップ構造に関 する。  [0001] The present invention relates to a DNA chip structure necessary for analyzing base sequence information of a DNA strand.
背景技術  Background art
[0002] 従来、 DNAチップは図 7に示す如ぐスライドガラス力も成る基板 101の表面に官 能基カゝら成る DNA固定端 104を形成し、該 DNA固定端 104上に DNA鎖 103を固 定して林立させてマイクロアレイ DNAチップを構成しているのが通例である。  Conventionally, a DNA chip has a DNA fixing end 104 formed of a functional group on the surface of a substrate 101 having a sliding glass force as shown in FIG. 7, and a DNA strand 103 is fixed on the DNA fixing end 104. It is customary to establish a microarray DNA chip by establishing a forest.
[0003] 特許文献 1 :US6376166「Apparatus and Method for The Analysis of Numeric Acid s Hybridization on High Density NA Chips J Vladimir Poponin.  [0003] Patent Document 1: US6376166 "Apparatus and Method for The Analysis of Numeric Acids Hybridization on High Density NA Chips J Vladimir Poponin.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、上記従来のマイクロアレイ DNAチップは、 [特許文献 1]に示されて 、る如き 、近接場光学顕微鏡による表面増強ラマン散乱分光による高速 DNA塩基配列解析 法やその他の走査型 DNA塩基配列解析法に適用する事は出来ない。  [0004] However, the conventional microarray DNA chip described above is disclosed in [Patent Document 1], such as a high-speed DNA base sequence analysis method by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA bases. It cannot be applied to sequence analysis.
[0005] すなわち、近接場光学顕微鏡による表面増強ラマン散乱分光による高速 DNA塩 基配列解析法や、その他の走査型 DNA塩基配列解析法では、基板表面に添って 形成された単一分子マクロ DNA鎖や DNA鎖断片を配置或いは配列された DNAチ ップを要する。  [0005] That is, in the high-speed DNA base sequence analysis method by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA base sequence analysis methods, a single molecule macro DNA strand formed along the substrate surface is used. Or a DNA chip in which DNA strand fragments are arranged or arranged.
[0006] 本発明は、上記事情に鑑みなされたもので、主として近接場光学顕微鏡による表 面増強ラマン散乱分光による高速 DNA塩基配列解析法や、その他の走査型 DNA 塩基配列解析法に適用する事が出来るナノアレイ DNAチップ構造を提供することを 目的とするものである。  The present invention has been made in view of the above circumstances, and is mainly applied to a high-speed DNA base sequence analysis method by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope and other scanning DNA base sequence analysis methods. The purpose is to provide a nanoarray DNA chip structure that can be used.
課題を解決するための手段  Means for solving the problem
[0007] 上記課題を解決し、上記目的を達成するために、ナノアレイ DNAチップとして基板 表面に形成された細溝内に、少なくとも 1本の細溝内に DNA鎖を伸張して固定ィ匕し て配置及び配列する手段を取る。 [0007] In order to solve the above-mentioned problems and achieve the above-mentioned object, a DNA strand is extended and fixed in at least one narrow groove in a narrow groove formed on the substrate surface as a nanoarray DNA chip. Take the means to arrange and arrange.
[0008] 又、上記課題を解決し、上記目的を達成するために、ナノアレイ DNAチップとして 基板上の薄膜表面に形成された細溝内に、少なくとも 1本の細溝内に DNA鎖を伸 張して固定化して配置及び配列する手段を取る。  [0008] In order to solve the above problems and achieve the above object, a DNA strand is extended into at least one narrow groove in a narrow groove formed on the surface of a thin film on a substrate as a nanoarray DNA chip. And then take a means of fixing and arranging and arranging.
[0009] 請求項 1及び 2記載のナノアレイ DNAチップに於ける DNA鎖の末端にはナノ粒子 が固定化され、該ナノ粒子が基板上に形成したパッド部にボンディングする手段を取 る。 [0009] In the nanoarray DNA chip according to claims 1 and 2, nanoparticles are fixed to the ends of the DNA strands, and means for bonding the nanoparticles to a pad portion formed on the substrate is taken.
[0010] 請求項 3記載のナノアレイ DNAチップに於けるナノ粒子は、金製ナノ粒子、ガラス 製ナノ粒子、合成樹脂製ナノ粒子の何れかから成る手段を取る。  [0010] The nanoparticle in the nanoarray DNA chip according to claim 3 takes a means consisting of any one of gold nanoparticles, glass nanoparticles, and synthetic resin nanoparticles.
[0011] 請求項 3記載のナノアレイ DNAチップに於けるパッド部は金薄膜、合成樹脂薄膜 の何れかから成る手段を取る。 [0011] The pad portion in the nanoarray DNA chip according to claim 3 takes a means consisting of either a gold thin film or a synthetic resin thin film.
[0012] 請求項 1から 5に記載されたナノアレイ DNAチップの基板は、円盤状のディスクで あり、ディスク表面に形成された細溝は同心円状或いは螺旋状である手段を取る。 [0012] The substrate of the nanoarray DNA chip described in claims 1 to 5 is a disk-shaped disk, and the fine grooves formed on the disk surface are concentric or spiral.
[0013] 請求項 1から 5に記載されたナノアレイ DNAチップの基板は、円筒状のマイクロシリ ンダ一であり、マイクロシリンダー表面に形成された細溝は同心円状或いは螺旋状で ある手段を取る。 [0013] The substrate of the nanoarray DNA chip according to claims 1 to 5 is a cylindrical micro cylinder, and the fine grooves formed on the surface of the micro cylinder take a concentric or spiral shape.
[0014] 請求項 7に記載されたナノアレイ DNAチップの基板は、円柱状のマイクロシリンダ 一基体であり、マイクロシリンダー表面に形成された細溝は同心円状或いは螺旋状 である手段を取る。  [0014] The substrate of the nanoarray DNA chip according to claim 7 is a single substrate of a cylindrical microcylinder, and the fine grooves formed on the surface of the microcylinder are concentric or spiral.
[0015] 請求項 1及び 2記載の細溝は、(111)結晶面方位のシリコン単結晶基板又はシリコ ン単結晶膜の表面から形成された V型断面構造とするで手段を取る。  [0015] The narrow groove according to claims 1 and 2 takes a measure as a V-shaped cross-sectional structure formed from the surface of a silicon single crystal substrate or a silicon single crystal film having a (111) crystal plane orientation.
発明の効果  The invention's effect
[0016] 本発明により、 DNA鎖 (含む RNA)の配置及び配列が高精度化され、主として近 接場光学顕微鏡による表面増強ラマン散乱分光による DNA塩基配列解析法や、そ の他の走査型 DNA塩基配列解析法による DNAの塩基配列解析を高速且つ高精 度に行う事が出来ると共に、取分けマルチプローブによる DNA塩基配列解析を高速 且つ高精度に行う事が出来る効果が有る。  [0016] According to the present invention, the arrangement and sequence of DNA strands (including RNA) are improved, and DNA base sequence analysis methods mainly by surface-enhanced Raman scattering spectroscopy using a near-field optical microscope, and other scanning DNAs. The DNA base sequence analysis by the base sequence analysis method can be performed at high speed and with high accuracy, and the DNA base sequence analysis by the multi-probe can be performed at high speed and with high accuracy.
図面の簡単な説明 [0017] [図 1]本発明に係るナノアレイ DNAチップの要部の模式図である。 Brief Description of Drawings FIG. 1 is a schematic diagram of a main part of a nanoarray DNA chip according to the present invention.
[図 2]本発明に係るナノアレイ DNAチップの要部の模式図である。  FIG. 2 is a schematic view of the main part of a nanoarray DNA chip according to the present invention.
[図 3]本発明に係るナノアレイ DNAチップの要部の模式図である。  FIG. 3 is a schematic diagram of the main part of a nanoarray DNA chip according to the present invention.
[図 4]本発明に係るディスク状ナノアレイ DNAチップの要部の模式図である  FIG. 4 is a schematic view of the main part of a disk-shaped nanoarray DNA chip according to the present invention.
[図 5]本発明に係るマイクロシリンダー状ナノアレイ DNAチップの要部の模式図 で ある。  FIG. 5 is a schematic view of the main part of a microcylinder nanoarray DNA chip according to the present invention.
[図 6]従来技術に於けるマイクロアレイ DNAチップの要部の断面模式図。  FIG. 6 is a schematic cross-sectional view of the main part of a microarray DNA chip in the prior art.
[図 7]本発明に係るシリコン単結晶基板及び単結晶膜の表面カゝら形成された V型細 溝の断面図である。  FIG. 7 is a cross-sectional view of a V-shaped fine groove formed on a surface of a silicon single crystal substrate and a single crystal film according to the present invention.
符号の説明  Explanation of symbols
[0018] 101 基板 [0018] 101 substrate
102 細溝  102 narrow groove
103 DNA鎖  103 DNA strand
104 DNA固定端  104 DNA anchor
201 薄膜  201 thin film
301 ノ ッド部  301 node
302 ナノ粒子  302 nanoparticles
401, 501 細溝内 DNA鎖  401, 501 DNA channel in narrow groove
601 V型細溝  601 V-shaped narrow groove
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 以下に、本発明の実施の形態に係るナノアレイ DNAチップに関し、図面に基いて 詳細に説明する。 Hereinafter, the nanoarray DNA chip according to the embodiment of the present invention will be described in detail with reference to the drawings.
[0020] 図 1は、本発明に係るナノアレイ DNAチップの一例を示す要部の模式図であり、 (a [0020] FIG. 1 is a schematic diagram of a main part showing an example of a nanoarray DNA chip according to the present invention.
)は模式平面図、(b)は DNA鎖を含む X方向の模式断面図、(c)は DNA鎖を含む Y 方向の模式断面図である。 ) Is a schematic plan view, (b) is a schematic cross-sectional view in the X direction including the DNA strand, and (c) is a schematic cross-sectional view in the Y direction including the DNA strand.
[0021] 前記ナノアレイ DNAチップは、基板 101の表面力も形成された細溝 102内に伸張 された DNA鎖 103の末端を DNA固定端 104で固定して、線状に配置及び配列し た構造から成る。 [0022] ナノアレイ DNAチップの基板 101としては、スライドガラスや、アクリル榭脂板ゃシリ コーン榭脂板やポリカーボネイト榭脂板を代表とするエンジニアリングプラスチック板 の他、望ましくは低熱膨張率の石英版やシリコン基板から成る。 [0021] The nanoarray DNA chip has a structure in which the ends of the DNA strand 103 extended in the narrow groove 102 in which the surface force of the substrate 101 is also formed are fixed at the DNA fixing end 104, and are arranged and arranged in a line. Become. [0022] The substrate 101 of the nanoarray DNA chip may be a slide glass, an engineering plastic plate typified by an acrylic resin board, a silicone resin board, or a polycarbonate resin board, and preferably a quartz plate having a low thermal expansion coefficient. It consists of a silicon substrate.
[0023] ナノアレイ DNAチップの基板 101の表面から形成された細溝 102は、 DNA鎖の半 径 lnm〜直径 2nm程度の深さと DNA鎖の直径 2nm程度の幅の、直線状或いは螺 旋状或いは同心円状の所定の形状に、 DNA鎖断片や単一分子マクロ DNA鎖(平 均長さ: 5cm)の所定の長さに、 X線露光法 (解像力:く 0. 5nm)やイオンビーム露 光法 (解像力: 0. 5nm)やインプリント法 (解像力: 2nm)により基板表面に図形状レ ジスト膜を形成後にイオンエッチング法或 、はプラズマエッチング法或いは化学エツ チング法によりエッチングしてからレジスト膜を除去して形成される。  [0023] The narrow grooves 102 formed from the surface of the substrate 101 of the nanoarray DNA chip are linear or spiral or have a depth of about 1 nm to 2 nm in diameter of the DNA strand and a width of about 2 nm in diameter of the DNA strand. Concentric circular shape, DNA strand fragments and single molecule macro DNA strands (average length: 5cm), X-ray exposure (resolution: 0.5nm) and ion beam exposure After forming a resist film on the substrate surface by the method (resolution: 0.5 nm) or imprint method (resolution: 2 nm), the resist film is etched by ion etching, plasma etching, or chemical etching. It is formed by removing.
[0024] ナノアレイ DNAチップの基板 101表面に形成された細溝 102内に伸張した 1本鎖 或いは 2本鎖の DNA鎖 103を配置及び配列するには、原子間力顕微鏡のプローブ をマイクロピンセットとする方法や、 DNA鎖の末端にナノ粒子を官能基で固定して光 ピンセットで移動する方法を用いる。  [0024] In order to place and arrange a single-stranded or double-stranded DNA strand 103 extending in a narrow groove 102 formed on the surface of a nanoarray DNA chip substrate 101, an atomic force microscope probe is used as a microtweezer. And a method in which nanoparticles are fixed to the ends of DNA strands with functional groups and moved with optical tweezers.
[0025] ナノアレイ DNAチップの基板 101表面に形成された細溝 102内に伸張した 1本鎖 或いは 2本鎖の DNA鎖 103を配置及び配列するには、原子間力顕微鏡のプローブ をマイクロピンセットとする方法や、 DNA鎖の末端にナノ粒子を官能基で固定して光 ピンセットで移動する方法を用いる。  [0025] In order to place and arrange a single-stranded or double-stranded DNA strand 103 extending in a narrow groove 102 formed on the surface of a nanoarray DNA chip substrate 101, an atomic force microscope probe is used as a microtweezer. And a method in which nanoparticles are fixed to the ends of DNA strands with functional groups and moved with optical tweezers.
[0026] ナノアレイ DNAチップの基板 101表面に形成された細溝 102内に伸張した 1本鎖 或いは 2本鎖の DNA鎖 103を配置及び配列すると共に固定ィ匕するには、 DNA鎖 1 03全体を吸着させたり、 DNA鎖 103の化学修飾した末端 (DNA固定端 104)を官 能基で固定させる事が出来る。  [0026] To place and arrange the single-stranded or double-stranded DNA strand 103 extending in the narrow groove 102 formed on the surface of the nanoarray DNA chip substrate 101 and to fix it, the entire DNA strand 103 Can be adsorbed, or the chemically modified end of DNA strand 103 (DNA fixed end 104) can be fixed with a functional group.
[0027] 固定操作に於いて、 DNA鎖 103全体を吸着させる場合には、細溝 102内面を疎 水性にして DNA鎖 103全体を細溝 102内に吸着させたり、細溝 102内が親水性の 場合は細溝 102内に 2価カチオンを吸着させる事で、 DNA鎖 103を細溝 102内に 固定させる事も出来る。  In the fixing operation, when the entire DNA strand 103 is adsorbed, the inner surface of the narrow groove 102 is made hydrophobic to adsorb the entire DNA strand 103 into the narrow groove 102, or the inside of the narrow groove 102 is hydrophilic. In this case, the DNA strand 103 can be fixed in the narrow groove 102 by adsorbing a divalent cation in the narrow groove 102.
[0028] 図 2は、本発明に係るナノアレイ DNAチップの他の例を示す要部の模式図であり、  [0028] FIG. 2 is a schematic diagram of a main part showing another example of the nanoarray DNA chip according to the present invention,
(a)は模式平面図、(b)は DNA鎖を含む X方向の模式断面図、(c)は DNA鎖を含 む Y方向の模式断面図である。 (a) is a schematic plan view, (b) is a schematic cross-sectional view in the X direction including a DNA strand, and (c) is a DNA strand. It is a schematic cross-sectional view in the Y direction.
[0029] 前記ナノアレイ DNAチップは、基板 101の表面に形成された薄膜 201に細溝 102 を形成し、該細溝 102内に伸張された DNA鎖 103の末端を DNA固定端 104で固 定して、線状に配置及び配列した構造から成る。 [0029] In the nanoarray DNA chip, narrow grooves 102 are formed in a thin film 201 formed on the surface of a substrate 101, and the ends of DNA strands 103 extended into the narrow grooves 102 are fixed by DNA fixing ends 104. The structure is arranged and arranged linearly.
[0030] ナノアレイ DNAチップの基板 101は、スライドガラスや、アクリル榭脂板ゃシリコー ン榭脂板やポリカーボネイト板を代表とするエンジニアリングプラスチック板の他、望 ましくは石英板やシリコン基板から成る。 The substrate 101 of the nanoarray DNA chip is preferably made of a quartz plate or a silicon substrate, in addition to a glass slide, an engineering plastic plate such as an acrylic resin plate, a silicone resin plate or a polycarbonate plate.
[0031] ナノアレイ DNAチップの基板 101表面の薄膜 201としての材料は、アクリル榭脂ゃ シリコーン榭脂ゃポリイミド榭脂やフッ素榭脂ゃゴム系榭脂を代表とするエンジニアリ ングプラスチック材の他、酸化シリコン (石英)やシリコンやその他のセラミックス材ゃ 金属材ゃ炭素材である。取分け、露光技術で図形状の薄膜 201を形成する場合に は感光性のアクリル榭脂ゃシリコーン榭脂ゃポリイミド榭脂やフッ素榭脂ゃゴム系榭 脂を用いる。 [0031] Nano-array DNA chip substrate 101 The material for the thin film 201 on the surface 101 is an engineering plastic material such as acrylic resin, silicone resin, polyimide resin or fluorine resin, rubber-based resin. Silicon oxide (quartz), silicon and other ceramic materials are metal materials and carbon materials. In particular, when forming the thin film 201 shown in the figure by the exposure technique, a photosensitive acrylic resin, silicone resin, polyimide resin or fluorine resin, rubber-based resin is used.
[0032] ナノアレイ DNAチップの厚さ l〜2nm程度の薄膜 201に形成された細溝 102は、 DNA鎖の直径 2nm程度の幅で直線状或いは螺旋状或いは同心円状の所定の形 状に、 DNA鎖断片や単一分子マクロ DNA鎖(平均長さ 5cm)の所定の長さに、 X線 露光法 (解像力: <0.5nm)やイオンビーム露光法 (解像力: 0.5nm)やインプリント法 (解 像力: 2nm)によって形成される。  [0032] The thickness of the nanoarray DNA chip The narrow groove 102 formed in the thin film 201 having a thickness of about 1 to 2 nm has a width of about 2 nm in the diameter of the DNA strand and has a predetermined shape such as a linear shape, a spiral shape or a concentric shape X-ray exposure method (resolution: <0.5nm), ion beam exposure method (resolution: 0.5nm) and imprint method (solution) Image power: 2 nm).
[0033] ナノアレイ DNAチップの基板 101表面の薄膜 201に形成された細溝 102内に伸張 した 1本鎖或いは 2本鎖の DNA鎖 103を配置及び配列するには、原子間力顕微鏡 のプローブをマイクロピンセットとする方法や、 DNA鎖の末端にナノ粒子を官能基で 固定して光ピンセットで移動する方法を用いる。  [0033] To place and arrange the single-stranded or double-stranded DNA strand 103 in the narrow groove 102 formed in the thin film 201 on the surface of the nanoarray DNA chip substrate 101, an atomic force microscope probe is used. Use micro tweezers or a method in which nanoparticles are fixed to the ends of DNA strands with functional groups and moved with optical tweezers.
[0034] ナノアレイ DNAチップの基板 101表面の薄膜 201に形成された細溝 102内に伸張 した 1本鎖或いは 2本鎖の DN A鎖 103を配置及び配列すると共に固定ィ匕するには、 DNA鎖 103全体を吸着させたり、 DNA鎖 103の化学修飾した末端 (DNA固定端 1 04)を官能基で固定させる事が出来る。  [0034] Nanoarray DNA chip substrate 101 To place and arrange single-stranded or double-stranded DNA strands 103 in narrow grooves 102 formed in thin film 201 on surface 101, and to fix and insert DNA strand 103, The entire strand 103 can be adsorbed, or the chemically modified end of the DNA strand 103 (DNA fixed end 104) can be fixed with a functional group.
[0035] 固定操作に於いて、 DNA鎖 103全体を吸着させる場合には、細溝 102内面を疎 水性にして DNA鎖 103全体を細溝 102内に吸着させたり、細溝 102内が親水性の 場合は細溝 102内に 2価カチオンを吸着させる事で、 DNA鎖 103を細溝 102内に 固定させる事も出来る。 [0035] When the entire DNA strand 103 is adsorbed in the fixing operation, the inner surface of the narrow groove 102 is made hydrophobic to adsorb the entire DNA strand 103 into the narrow groove 102, or the inside of the narrow groove 102 is hydrophilic. of In this case, the DNA strand 103 can be fixed in the narrow groove 102 by adsorbing a divalent cation in the narrow groove 102.
[0036] 図 3は、本発明に係るナノアレイ DNAチップのその他の例を示す要部の模式図で あり、(a)は模式平面図、(b)は DNA鎖を含む X方向の模式断面図である。 [0036] FIG. 3 is a schematic diagram of the main part showing another example of the nanoarray DNA chip according to the present invention, ( a ) is a schematic plan view, and (b) is a schematic cross-sectional view in the X direction including a DNA strand. It is.
[0037] すなわち、基板 101表面の細溝 102内に配置及び配列された DNA鎖 103の末端 の DNA固定端 104にはナノ粒子 302が固定化され、該ナノ粒子 302を基板 101上 に形成されたパッド部 301にボンディングされて成る。 That is, nanoparticles 302 are immobilized on the DNA fixed ends 104 of the ends of the DNA strands 103 arranged and arranged in the narrow grooves 102 on the surface of the substrate 101, and the nanoparticles 302 are formed on the substrate 101. Bonded to the pad portion 301.
[0038] 前記ナノ粒子 (ビー )302は、直径 lOnm程度の金ナノ粒子やガラスナノ粒子や合 成榭脂ナノ粒子を含むナノサイズの粒子力 成る。 [0038] The nanoparticle (B) 302 has a nano-sized particle force including gold nanoparticles, glass nanoparticles, and synthetic resin nanoparticles having a diameter of about lOnm.
[0039] 前記パッド部 301は、厚さ lnm以上で lOnm平方程度以上の面積の図形状の金薄 膜や合成樹脂薄膜を含む薄膜類から成る。 [0039] The pad portion 301 is made of a thin film including a gold thin film or a synthetic resin thin film having a shape of a thickness of lnm or more and an area of about lOnm square or more.
[0040] 前記ボンディング処理は、カンチレバーのプローブ先端をパッド部 301上のナノ粒 子に押し当て、圧着、熱圧着或いは超音波ボンディングで行われる。 [0040] The bonding process is performed by pressing the probe tip of the cantilever against the nanoparticle on the pad portion 301 and pressing, thermocompression bonding, or ultrasonic bonding.
[0041] 前記パッド部 301材料とナノ粒子 302材料との相性は、金ナノ粒子と金薄膜パッドと の組み合わせが最も確実で信頼性が有るボンディングが出来る。ガラスナノ粒子と金 薄膜パッドとの組み合わせはボンディングが極めて困難である。合成樹脂ナノ粒子と 合成樹脂パッドとの組み合わせはかなり確実にボンディング出来る。ガラスナノ粒子 と合成樹脂パッドとの組み合わせは或る程度の確実性でボンディング出来る。 [0041] The compatibility between the pad part 301 material and the nanoparticle 302 material is the most reliable and reliable bonding with the combination of gold nanoparticle and gold thin film pad. The combination of glass nanoparticles and gold thin film pads is extremely difficult to bond. The combination of synthetic resin nanoparticles and synthetic resin pads can be bonded fairly reliably. The combination of glass nanoparticles and synthetic resin pad can be bonded with a certain degree of certainty.
[0042] 図 4は、本発明に係る一応用例を示す、ディスク状のナノアレイ DNAチップの要部 の模式図であり、(a)は平面模式図、(b)は断面模式図である。 FIG. 4 is a schematic diagram of the main part of a disk-shaped nanoarray DNA chip showing an application example according to the present invention, where (a) is a schematic plan view and (b) is a schematic cross-sectional view.
[0043] すなわち、ディスク状の基板 101表面には同心円状又は螺旋状に形成された細溝That is, a narrow groove formed concentrically or spirally on the surface of the disk-shaped substrate 101.
102内に DNA鎖 103を配置及び配列した細溝内 DNA鎖 401が DNA固定端 104 で固定されている。 The DNA strand 401 in the narrow groove in which the DNA strand 103 is arranged and arranged in 102 is fixed at the DNA fixing end 104.
[0044] 前記 DNA鎖 103は、単一分子マクロ DNA鎖が適してはいる力 DNA鎖断片であ つても良ぐ DNA鎖の長さが異なる場合には DNA固定端 104を一本の DNA鎖の 両末端に固定する事も出来る。  [0044] The DNA strand 103 may be a force suitable for a single molecule macro DNA strand. If the length of the DNA strand is different, the DNA fixing end 104 is connected to a single DNA strand. It can be fixed to both ends.
[0045] 図 5は、本発明に係る他の応用例を示す、マイクロシリンダー状のナノアレイ DNA チップの要部の模式図であり、(a)は外観模式図、(b)は断面模式図である。 [0046] すなわち、円筒状又は円柱状のマイクロシリンダーの基板 (含む基体) 101表面に は同心円状又は螺旋状に形成された細溝 102内に DNA鎖 103を配置及び配列し た細溝内 DN A鎖 501が DNA固定端 104で固定されている。 [0045] FIG. 5 is a schematic diagram of a main part of a microcylinder-shaped nanoarray DNA chip showing another application example according to the present invention, ( a ) is a schematic external view, and (b) is a schematic cross-sectional view. is there. [0046] That is, in a micro-cylinder substrate (including a base) 101 of a cylindrical or columnar shape, the inside of a narrow groove in which DNA strands 103 are arranged and arranged in narrow grooves 102 formed concentrically or spirally on the surface of DN. A strand 501 is immobilized at the DNA anchoring end 104.
[0047] 前記 DNA鎖 103は、単一分子マクロ DNA鎖が適してはいる力 DNA鎖断片であ つても良ぐ DNA鎖の長さが異なる場合には DNA固定端 104を一本の DNA鎖の 両末端に固定する事も出来る。  [0047] The DNA strand 103 may be a force suitable for a single-molecule macro DNA strand. If the length of the DNA strand is different, the DNA fixing end 104 is connected to a single DNA strand. It can be fixed to both ends.
[0048] 図 7は、本発明に係るその他の実施例を示すシリコン単結晶から成る基板 101の表 面から V型細溝 601を形成し、該 V型細溝 601内に DNA鎖 103を配置した (a) V型細 溝断面図— 1、及び基板 101表面に形成されたシリコン単結晶の薄膜 201の表面か ら 601を形成し、該 V型細溝 601内に DNA鎖 103を配置した (b)V型細溝断面図― 2 である。  FIG. 7 shows another embodiment of the present invention, in which a V-shaped fine groove 601 is formed from the surface of a substrate 101 made of silicon single crystal, and a DNA strand 103 is arranged in the V-shaped fine groove 601. (A) Cross-sectional view of V-shaped fine groove -1 and 601 are formed from the surface of the silicon single crystal thin film 201 formed on the surface of the substrate 101, and the DNA strand 103 is arranged in the V-shaped fine groove 601. (b) Cross section of V-shaped narrow groove-2.
[0049] V型細溝 601は、(111)結晶面方位のシリコン単結晶基板又はシリコン単結晶の薄 膜 201の表面力も各種露光法により基板表面に図形状レジスト膜を形成後に、 KOH 水溶液等による異方性ィ匕学エッチングにより V型断面構造の V型細溝 601とし、レジ スト膜を除去後に、該 V型細溝 601内の底部方向 DNA鎖 103を落し込んで配置する  [0049] The V-shaped fine groove 601 is formed of a (111) crystal plane orientation silicon single crystal substrate or a silicon single crystal thin film 201 having a surface force formed on the substrate surface by various exposure methods, followed by a KOH aqueous solution or the like. V-shaped narrow groove 601 having a V-shaped cross-sectional structure is formed by anisotropic chemical etching using, and after removing the resist film, DNA strand 103 in the bottom direction in the V-shaped narrow groove 601 is dropped and arranged.
[0050] 尚、細溝構造は V型断面構造に限らず U型や半円型など他の断面構造であっても 良ぐ V型断面構造を他のナノアレイ DNAチップに適用しても良い事は言うまでも無 い。 [0050] The narrow groove structure is not limited to the V-shaped cross-sectional structure, and may be other cross-sectional structures such as a U-shape and a semicircular shape. The V-shaped cross-sectional structure may be applied to other nanoarray DNA chips. Needless to say.

Claims

請求の範囲 The scope of the claims
[1] 基板表面に形成された少なくとも 1本の細溝内に DNA鎖を伸張して固定ィ匕して配置 及び配列した事を特徴とするナノアレイ DNAチップ。  [1] A nanoarray DNA chip characterized in that a DNA strand is stretched and fixed and arranged and arranged in at least one narrow groove formed on a substrate surface.
[2] 基板表面上の薄膜表面に形成された細溝内に、少なくとも 1本の細溝内に DNA鎖 を伸張して固定ィ匕して配置及び配列した事を特徴とするナノアレイ DNAチップ。 [2] A nanoarray DNA chip characterized in that a DNA strand is stretched and fixed in a narrow groove formed on the surface of a thin film on a substrate surface and arranged and arranged in at least one narrow groove.
[3] 請求項 1及び 2記載の DNA鎖の末端にはナノ粒子が固定ィ匕され、該ナノ粒子が基 板上に形成したパッド部にボンディングされて成る事を特徴とするナノアレイ DNAチ ップ。 [3] A nanoarray DNA chip characterized in that nanoparticles are fixed to the ends of the DNA strands according to claims 1 and 2, and the nanoparticles are bonded to a pad formed on the substrate. P.
[4] 請求項 3記載のナノ粒子は、金製ナノ粒子、ガラス製ナノ粒子、合成樹脂製ナノ粒子 の何れかから成る事を特徴とするナノアレイ DNAチップ。  [4] A nanoarray DNA chip, wherein the nanoparticles according to claim 3 are composed of any one of gold nanoparticles, glass nanoparticles, and synthetic resin nanoparticles.
[5] 請求項 3記載のパッド部は金薄膜、合成樹脂薄膜の何れかから成る事を特徴とする ナノアレイ DNAチップ。 [5] The nanoarray DNA chip according to claim 3, wherein the pad portion is made of either a gold thin film or a synthetic resin thin film.
[6] 請求項 1から 5に記載された、基板は円盤状のディスクであり、ディスク表面に形成さ れた細溝は同心円状或いは螺旋状である事を特徴とするナノアレイ DNAチップ。 [6] A nanoarray DNA chip according to any one of claims 1 to 5, wherein the substrate is a disk-shaped disk, and the fine grooves formed on the disk surface are concentric or spiral.
[7] 請求項 1から 5に記載された、基板は円筒状のマイクロシリンダーであり、マイクロシリ ンダー表面に形成された細溝は同心円状或 ヽは螺旋状である事を特徴とするナノァ レイ DNAチップ。 [7] The nanoarray according to any one of claims 1 to 5, wherein the substrate is a cylindrical microcylinder, and the narrow grooves formed on the surface of the microcylinder are concentric or spiral. DNA chip.
[8] 請求項 7に記載された、基板は円柱状のマイクロシリンダー基体であり、マイクロシリ ンダー表面に形成された細溝は同心円状或 ヽは螺旋状である事を特徴とするナノァ レイ DNAチップ。  [8] The nanoarray DNA according to claim 7, wherein the substrate is a cylindrical microcylinder substrate, and the fine grooves formed on the surface of the microcylinder are concentric or spiral. Chip.
[9] 請求項 1及び 2記載の細溝は、(111)結晶面方位のシリコン単結晶基板又はシリコン 単結晶膜の表面カゝら形成された V型断面構造である事を特徴とするナノアレイ DNA チップ。  [9] The narrow groove according to claims 1 and 2 is a V-shaped cross-sectional structure formed on a surface of a silicon single crystal substrate or a silicon single crystal film having a (111) crystal plane orientation. DNA chip.
PCT/JP2006/319765 2005-10-04 2006-10-03 Nanoarray dna chip WO2007040219A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007538764A JPWO2007040219A1 (en) 2005-10-04 2006-10-03 Nanoarray DNA chip

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005291064 2005-10-04
JP2005-291064 2005-10-04

Publications (1)

Publication Number Publication Date
WO2007040219A1 true WO2007040219A1 (en) 2007-04-12

Family

ID=37906260

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/319765 WO2007040219A1 (en) 2005-10-04 2006-10-03 Nanoarray dna chip

Country Status (2)

Country Link
JP (1) JPWO2007040219A1 (en)
WO (1) WO2007040219A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156114A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Raman detection method and system
WO2012077756A1 (en) * 2010-12-08 2012-06-14 公立大学法人大阪府立大学 Device and method for detecting substance of interest utilizing metal-nanoparticles-accumulated structure
JP2012132875A (en) * 2010-12-24 2012-07-12 Seiko Epson Corp Sensor chip, method for manufacturing sensor chip, and detecting device
JP2014168449A (en) * 2013-03-05 2014-09-18 Nagoya Univ Stretching/immobilizing device of nucleic acid, stretching/immobilizing method of nucleic acid using the device, nucleic acid immobilizing member, and nucleic acid specimen fabricated by using stretching/immobilizing device of nucleic acid
CN111039253A (en) * 2019-11-27 2020-04-21 无锡物联网创新中心有限公司 Groove composite multi-protrusion structure and preparation process thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121096A (en) * 2002-10-02 2004-04-22 National Food Research Institute Method for extension and fixation of dna
JP2005030927A (en) * 2003-07-04 2005-02-03 Kubota Corp Organism-related molecule microarray
JP2005049176A (en) * 2003-07-31 2005-02-24 Japan Science & Technology Agency Method for manufacturing chain molecule stretching and fixing substrate utilizing interaction between molecule and substrate, chain molecule stretching and fixing substrate obtained from the same and usage of the same
JP2005208044A (en) * 2003-12-25 2005-08-04 Nippon Sheet Glass Co Ltd Selectively adhering substrate for bio-related substance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004121096A (en) * 2002-10-02 2004-04-22 National Food Research Institute Method for extension and fixation of dna
JP2005030927A (en) * 2003-07-04 2005-02-03 Kubota Corp Organism-related molecule microarray
JP2005049176A (en) * 2003-07-31 2005-02-24 Japan Science & Technology Agency Method for manufacturing chain molecule stretching and fixing substrate utilizing interaction between molecule and substrate, chain molecule stretching and fixing substrate obtained from the same and usage of the same
JP2005208044A (en) * 2003-12-25 2005-08-04 Nippon Sheet Glass Co Ltd Selectively adhering substrate for bio-related substance

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KLEIN D.C.G. ET AL.: "Ordered stretching of single molecules of deoxyribose nucleic acid between microfabricated polystyrene lines", APPLIED PHYSICS LETTERS, vol. 78, no. 16, 2001, pages 2396 - 2398, XP002266390 *
MATSUMOTO K. ET AL.: "DNA Shincho no Tameno On Chip Laboratory no Kokoromi", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS 1999 NENDO NENJI TAIKAI KOEN RONBUNSHU (I), 1999, pages 423 - 424, XP003011285 *
NAKAO H. ET AL.: "Fixation and observation of stretched DNA molecules on surfaces: Development of new substrates for DNA analyses", 7TH INF. SYMPOSIUM ON ADVANCED PHYSICAL FIELDS, 2001, pages 189 - 192, XP003011287 *
POPE L.H. ET AL.: "Optical tweezers stretching of chromatin", J. MUSCLE RES. CELL MOBILITY, vol. 33, 2002, pages 397 - 407, XP019256113 *
WASHIZU M.: "Bisai Kako Gijutsu o Mochiita DNA no Bunshi Sosa Genri to Oyo", KAGAKU TO SEIBUTSU, vol. 43, no. 10, 1 October 2005 (2005-10-01), pages 688 - 690, XP003011286 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102156114A (en) * 2010-02-12 2011-08-17 财团法人工业技术研究院 Raman detection method and system
WO2012077756A1 (en) * 2010-12-08 2012-06-14 公立大学法人大阪府立大学 Device and method for detecting substance of interest utilizing metal-nanoparticles-accumulated structure
US9797842B2 (en) 2010-12-08 2017-10-24 Osaka Prefecture University Public Corporation Device and method utilizing a metallic nanoparticle assembly structure for detecting a target substance
JP2012132875A (en) * 2010-12-24 2012-07-12 Seiko Epson Corp Sensor chip, method for manufacturing sensor chip, and detecting device
JP2014168449A (en) * 2013-03-05 2014-09-18 Nagoya Univ Stretching/immobilizing device of nucleic acid, stretching/immobilizing method of nucleic acid using the device, nucleic acid immobilizing member, and nucleic acid specimen fabricated by using stretching/immobilizing device of nucleic acid
CN111039253A (en) * 2019-11-27 2020-04-21 无锡物联网创新中心有限公司 Groove composite multi-protrusion structure and preparation process thereof

Also Published As

Publication number Publication date
JPWO2007040219A1 (en) 2009-04-16

Similar Documents

Publication Publication Date Title
EP2019309B1 (en) Nucleic acid analysis device and nucleic acid analyzer using the same
DE60309903T2 (en) DETECTION OF MOLECULAR BINDING BY MONITORING OF FEEDBACK CHECK CONTROLLED STEERING DEFLECTIONS
US9366643B2 (en) Method for producing and aligning nanowires and applications of such a method
JP4584754B2 (en) Nanoprint mold, method for producing the same, nanoprint apparatus using the mold, and nanoprint method
US11480567B2 (en) Enhanced sensitivity and specificity for point-of-care (POC) micro biochip
US20040191700A1 (en) Stamper and transfer apparatus
US20080135826A1 (en) Controlled nanowire in permanent integrated nano-templates and method of fabricating sensor and transducer structures
WO2007040219A1 (en) Nanoarray dna chip
EP2049262A2 (en) Nanonozzle device arrays: their preparation and use for macromolecular analysis
CN108368466B (en) Biomolecule measuring device
US20110063610A1 (en) Design of large area substrate for surface enhanced raman spectroscopy (sers) using glass-drawing technique
WO2010087121A1 (en) Device for analyzing nucleic acids and apparatus for analyzing nucleic acids
US20240027439A1 (en) Method and apparatus for ordered nanoplasmonic sensor formation through microfluidic assembly
CN101516512A (en) Nanonozzle device arrays: their preparation and use for macromolecular analysis
Thompson et al. Polymeric microbead arrays for microfluidic applications
JP5309092B2 (en) Nucleic acid analysis device, nucleic acid analysis device, and method of manufacturing nucleic acid analysis device
KR20050033312A (en) Method for fabricating a nano-biochip using the nanopattern of block copolymers
Li et al. Nanotechnology and microfluidics for biosensing and biophysical property assessment: implications for next‐generation in vitro diagnostics
Wang et al. Research on the atomic force microscopy-based fabrication of nanochannels on silicon oxide surfaces
JP2013150567A (en) Reaction device for nucleic acid analysis, and nucleic acid analyzing device
Chen Patent review of novel nanostructrued devices, nanofabrication methods and applications in nanofluidics and nanomedicine
US20240027395A1 (en) Graphene nanoribbon with nanopore-based signal detection and genetic sequencing technology
JP2003021636A (en) Sensor with changeable surface geometry
JP4674610B2 (en) Analyte measurement method and automatic gene detection apparatus
Hu et al. Micro/nanofabrication of IVD/POCT Biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2007538764

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06811113

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)