Nothing Special   »   [go: up one dir, main page]

WO2006137358A1 - 均一型高分散金属触媒及びその製造方法 - Google Patents

均一型高分散金属触媒及びその製造方法 Download PDF

Info

Publication number
WO2006137358A1
WO2006137358A1 PCT/JP2006/312237 JP2006312237W WO2006137358A1 WO 2006137358 A1 WO2006137358 A1 WO 2006137358A1 JP 2006312237 W JP2006312237 W JP 2006312237W WO 2006137358 A1 WO2006137358 A1 WO 2006137358A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal
sulfur
highly dispersed
carrier
Prior art date
Application number
PCT/JP2006/312237
Other languages
English (en)
French (fr)
Inventor
Yoshimi Okada
Toshiji Makabe
Masashi Saito
Hiroaki Nishijima
Original Assignee
Chiyoda Corporation
Nishijima, Takako
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiyoda Corporation, Nishijima, Takako filed Critical Chiyoda Corporation
Priority to EP06766901.0A priority Critical patent/EP1894626B1/en
Priority to US13/940,053 priority patent/USRE46145E1/en
Priority to US11/922,462 priority patent/US7985706B2/en
Priority to JP2007522272A priority patent/JP4142733B2/ja
Publication of WO2006137358A1 publication Critical patent/WO2006137358A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/053Sulfates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/464Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J27/045Platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/367Formation of an aromatic six-membered ring from an existing six-membered ring, e.g. dehydrogenation of ethylcyclohexane to ethylbenzene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/397Egg shell like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • B01J35/399Distribution of the active metal ingredient homogeneously throughout the support particle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a metal catalyst used for applications such as chemical production, hydrogen production, and environmental purification such as exhaust gas, and in particular, sulfur or a sulfur compound is substantially present throughout the entire cross section of the catalyst support.
  • Uniform high-dispersion metal catalyst that is present in a uniformly dispersed state and is supported in a state where the catalyst metal is dispersed substantially in accordance with the distribution of the sulfur or sulfur compound over the entire cross section of the catalyst support.
  • Metal catalysts in which various catalyst metals are supported on a catalyst support made of a metal oxide include, for example, hydrogenated aromatics such as methylcyclohexane, cyclohexane, decalin, and the like.
  • hydrogenated aromatics such as methylcyclohexane, cyclohexane, decalin, and the like.
  • the dehydrogenation reaction of various compounds the hydrogenation reaction that is the reverse reaction of the dehydrogenation reaction, the production of chemicals and fuels by reforming reaction, the automobile exhaust gas etc. It is used in many fields such as environmental purification.
  • These metal catalysts are generally prepared by preparing a porous catalyst support having a metal oxide strength such as alumina or silica, and platinum chloride is supported on the obtained porous catalyst support. Impregnated with a solution of a catalytic metal compound such as an aqueous solution of an acid solution, an aqueous solution of platinum chloride or an organic platinum compound such as acetylylacetonatoplatinum, and then dried in a bath to dry the catalyst metal compound. After that, for example, it is calcined under conditions of 350 to 800 ° C. and 0.5 to 24 hours, and if necessary, the obtained catalyst metal compound-supported calcined product is, for example, 250 to 800 ° C. and 0.5 to 0.5 to Manufactured by hydrogen reduction for 24 hours.
  • a catalytic metal compound such as an aqueous solution of an acid solution, an aqueous solution of platinum chloride or an organic platinum compound such as acetylylacetonatoplatinum
  • the metal catalyst produced by such a method supports, for example, platinum, which is one of the representative active metal species as a catalyst metal, on an alumina support most widely used as a catalyst support, for example.
  • platinum which is one of the representative active metal species as a catalyst metal
  • an alumina support most widely used as a catalyst support, for example.
  • the adsorption force of the platinum compound on this alumina carrier is strong, so the platinum compound is adsorbed on the outer shell of the alumina carrier before diffusing into the alumina carrier.
  • It is known to be a so-called egg shell type metal catalyst in which the catalyst metal is supported only on the outer periphery and no catalyst metal is supported inside the carrier Catalyst Society Kanto Area Project. (See 14th (2003) "Kitaarisis School Text" pages 35-44 and 15th (2004) "Katalysis School Text” pages 35-44).
  • Non-Patent Document 1 Catalysis Society of Japan, Kanto District Business Committee, 14th (2003) “Kyatalysis School Textbook” pp. 35-44
  • Non-Patent Document 2 The 15th (2004) “Kitaarisys School Text” sponsored by the Kanto Regional Business Committee, Catalysis Society of Japan, pages 35-44
  • Non-Patent Document 3 (Catalyst Society, Catalysis Course No. 5, Catalyst Design pages 134-141)
  • the present inventors have unexpectedly studied that a catalyst carrier such as alumina or silica is supported in a state in which a catalyst metal such as platinum is uniformly dispersed therein by an impregnation method. What is important is that the catalyst support is preliminarily substantially uniform over the entire cross section of the support. By dispersing and presenting sulfur or a sulfur compound, the catalyst metal is supported approximately in accordance with the distribution of the sulfur or sulfur compound, and as a result, the catalyst metal is supported over the entire cross section of the catalyst support. Thus, the present inventors have found that it is possible to easily obtain a uniform type highly dispersed metal catalyst that is supported in a substantially uniformly dispersed state.
  • an object of the present invention is to carry a catalyst metal on a catalyst carrier in a substantially uniformly dispersed state over the entire cross section of the carrier, and has excellent performance in catalytic activity, selectivity, life, and the like.
  • the object is to provide a homogeneous highly dispersed metal catalyst.
  • Another object of the present invention is to use a method for producing and using a homogeneous highly dispersed metal catalyst having excellent performance in terms of catalyst activity, selectivity, life and the like, and production thereof. It is to provide a sulfur-containing porous metal oxide.
  • the present invention provides a metal catalyst in which a catalytic metal having catalytic activity is supported on a catalyst carrier made of a metal oxide!
  • the catalyst carrier is dispersed over the entire carrier cross section.
  • the sulfur-containing catalyst carrier contains sulfur or a sulfur compound, and the catalyst metal is dispersed over the entire cross section of the sulfur-containing catalyst carrier substantially in accordance with the distribution of the sulfur or sulfur compound. It is a uniform and highly dispersed metal catalyst supported on the surface.
  • the present invention prepares a sulfur-containing catalyst carrier in which sulfur or a sulfur compound is dispersed over the entire cross section of the carrier, and impregnates the obtained sulfur-containing catalyst carrier with an aqueous solution of a catalyst metal compound.
  • the uniform type means a state in which catalyst metal particles are supported substantially uniformly over the entire cross section of the catalyst carrier.
  • the dispersion means a highly dispersed state where the particle diameter of the supported metal is sufficiently small. That is, the uniform highly dispersed metal catalyst of the present invention has a high dispersion degree of the metal, which will be described later, while maintaining a highly dispersed state in which the particle diameter of the supported metal is sufficiently small, It means a uniform type highly dispersed metal catalyst supported substantially uniformly over the entire cross section.
  • the metal oxide used as the catalyst support is, for example, aluminum (Al), silicon (Si), zirconium (Zr), magnesium (Mg), calcium (Ca), titanium (Ti ), Vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt. ), Nickel (Ni), copper (Cu), zinc (Zn), gallium (Ga), yttrium (Y), niobium (Nb), molybdenum. ), Tandasten (W), lanthanum (La), and cerium (Ce) forces, which are also selected from metal oxides containing one or more metals, preferably alumina, silica, titanium Nino, Zircoyu, and Ceria.
  • the catalyst support is alumina, as disclosed in, for example, Japanese Patent Publication No. 6-72,005, the slurry of aluminum hydroxide and aluminum produced by neutralization of the aluminum salt is filtered and washed. It is better to use a porous ⁇ -alumina support obtained by dehydrating and drying the obtained alumina hydrogel, followed by firing at 400 to 800 ° C for about 1 to 6 hours. More preferably, the pH value of the alumina hydrogel is The alumina hydrogel dissolution pH region and the boehmite gel precipitation pH region are alternately changed and at least one of the pH region forces is added with an alumina hydrogel-forming substance when the pH is changed to the other pH region.
  • a porous ⁇ -alumina support obtained through a pH swing process for growing hydrogel crystals is preferred.
  • the porous ⁇ -alumina support obtained through this pH swing process has excellent uniformity of pore distribution, and there is little variation in physical properties even with the alumina support pellets after molding. It is excellent in that the properties are stable.
  • the sulfur or sulfur compound to be dispersed and contained in advance in such a catalyst carrier has elemental sulfur and is contained in the catalyst carrier at the time of preparation of the catalyst carrier or after preparation of the catalyst carrier.
  • elemental sulfur there is no particular limitation as long as it can be contained in a uniformly dispersed state, and examples thereof include sulfur-containing compounds such as sulfur crystal powder and sulfates such as sulfuric acid and ammonium sulfate. From the viewpoint of easy sulfur dispersion, sulfur compounds that are soluble in water or organic solvents are preferred. Examples of such sulfur compounds include sulfuric acid and ammonium sulfate.
  • the amount of sulfur contained in the carrier is preferably 0.15 wt% or more and 5 wt% or less as the sulfur (S) content, more preferably 0.15 wt% or more and 3.0 wt% or less. 0.15% by weight not yet At full sulfur content, the effect is low in the degree to which the metal is evenly supported throughout the center of the catalyst. If the sulfur content exceeds 5% by weight, sulfur is likely to aggregate locally. The problem that the metal is not dispersed and supported on the local portion is likely to occur. From these, the most preferable range of sulfur content for the effect of uniformly dispersing and supporting the metal is 0.15 to 3.0% by weight.
  • the present invention there is provided a method for preparing a sulfur-containing catalyst support containing the above-mentioned sulfur or sulfur compound.
  • the sulfur or sulfur compound is dispersed in a state where it is dispersed over the entire support cross section.
  • A Sulfur powder is kneaded into a metal hydroxide gel that is a precursor of the metal oxide obtained during preparation of the catalyst support, formed into a predetermined shape, dried, and fired
  • B Prepare a metal hydroxide gel that is a precursor of a metal oxide containing a sulfur component using metal sulfate and Z or sulfuric acid during the preparation of the catalyst support
  • C a method of preparing by drying and calcining after forming
  • C forming a metal hydroxide gel that becomes a precursor of the metal oxide into a predetermined shape when preparing the catalyst carrier, and then drying to dry metal hydroxide This dry metal oxide is a sulfur compound solution.
  • a method of preparing by impregnating and calcining D: Forming a metal hydroxide gel, which becomes a precursor of the metal oxide during the preparation of the catalyst carrier, into a predetermined shape and then drying it to dry metal hydroxide
  • E A method in which a dry metal hydroxide is impregnated with a sulfur compound solution and then calcined.
  • E A metal hydroxide gel that is a precursor of a metal oxide is formed into a predetermined shape and then dried. Then, a dried metal hydroxide gel is obtained, and then the dried metal hydroxide gel is calcined to obtain a calcined metal oxide.
  • the calcined metal oxide includes, for example, an aqueous solution of sulfuric acid and ammonium sulfate. Examples thereof include a method in which a sulfur compound solution such as an aqueous solution is impregnated and then fired again to prepare.
  • the firing temperature is usually 100 ° C or higher and 1000 ° C or lower, preferably 350 ° C or higher and 800 ° C or lower.
  • the time is 0.5 hours or more and 48 hours or less, preferably 1 hour or more and 24 hours or less. If the calcination temperature is lower than 350 ° C, the conversion of hydroxide to oxide may not be performed sufficiently! / On the contrary, if the calcination temperature is higher than 800 ° C, the surface area after calcination is significantly reduced.
  • the catalyst metal supported on the above-mentioned sulfur-containing catalyst carrier is not particularly limited, but preferably platinum (Pt), rhodium (Pd), iridium (Ir), rhodium (Rh) , Ruthenium (R U ), nickel (Ni), copper (Cu) and zinc (Zn), one or more metals, more preferably platinum.
  • the amount of the catalyst metal supported for example, when the catalyst carrier is the porous ⁇ -alumina carrier and the catalyst metal is platinum, 0.05 wt% or more and 5.0 wt% or less, preferably 0. 1 wt% or more and 3.0 wt% or less.
  • the amount of platinum supported is less than 0.05% by weight, there is a problem that the activity is low. On the other hand, if the amount of platinum supported exceeds 5.0% by weight, the particle size of platinum becomes large, and the selectivity is lowered and sintering is performed. The problem that it is easy to deteriorate easily arises.
  • the catalyst prepared as described above may be formed as a general pellet during the molding process, or may be fixed to a support in various forms such as a hard cam or a plate. It can also be used. That is, it may be fixed to the support in the process of preparing the sulfur-containing catalyst carrier described above, or the catalyst powder after supporting the catalyst metal may be fixed.
  • fixing by a binder generally used for fixing an oxide catalyst to a honeycomb, a plate, or the like, or a method by firing or sintering is applied. can do.
  • the catalyst metal is a homogeneous type, in other words, whether or not the catalyst metal is distributed substantially uniformly over the entire cross section of the support is determined by the EPMA (Electr on probe micro analyzer). ) Can be confirmed by quantitatively observing the concentration distribution of the catalytic metal element in the cross section of the catalyst.
  • EPMA quantifies the concentration of specific elements in the electron beam irradiated area by detecting fluorescent X-rays specific to the elements generated by irradiating the sample with an electron beam.
  • the position of the electron beam irradiation is moved, and the distribution state of a specific element in the entire sample cross section is color-coded according to the range of its detection intensity, along with a surface analysis that shows the distribution state of the entire cross section, and the sample cross section is linear It is possible to perform a line analysis that displays the detected intensity at the crossing measurement position as a relative value in a graph.
  • the catalytic metal is detected only in the outer shell of the cross section, and the detection intensity at the measurement location inside the outer shell is very small compared to the outer shell portion.
  • the concentration of catalytic metal in the core is about 1Z2 or less.
  • the metal is supported at a high concentration not only in the outer shell but also in the central portion of the support cross section.
  • the catalytic metal can be uniformly dispersed from the outer shell to the central portion of the cross section of the support within a range of preferably ⁇ 50%, more preferably ⁇ 30%, and still more preferably ⁇ 15%.
  • the catalyst metal is highly dispersed, in other words, whether or not the metal particle diameter is sufficiently small and highly dispersed, is measured by the following CO pulse adsorption method. It can be quantitatively grasped by the degree of genus dispersion (%).
  • the dispersity of the metal is supported relative to the total number of metal atoms supported! It is defined as the ratio of the number of metal atoms present on the outer surface of the metal particles. For example, when 100 metal particles of atomic energy are carried and 40 metal atoms are present on the outer surface, the metal dispersion is 40%.
  • Measurement of metal dispersion is usually performed by the CO pulse adsorption method, and the number of metal atoms present on the outer surface is determined from the number of adsorbed CO molecules. If this result and the shape of the metal particles are assumed to be a cube, a regular octahedron, or the like, the metal particle diameter can be estimated based on that assumption.
  • the degree of dispersion of the catalyst metal according to the present invention is 40% or more, more preferably 60 or more and 80% or less.
  • the average size of metal particles corresponding to a dispersity of 60% or more is 10A or less, and about 70A for a dispersity of 70%.
  • the significance of reducing the size of the supported metal particles by improving the metal dispersibility in this way is mainly the following two points. First, as the degree of dispersion of the metal increases, the percentage of atoms present on the outer surface of the metal particles increases, which increases the surface area of the active metal and improves the activity.
  • the number of platinum atoms that form a planar portion is small, and it is considered that components such as reaction raw materials are difficult to planarly adsorb on the metal.
  • components such as reaction raw materials are difficult to planarly adsorb on the metal.
  • dehydrogenation of hydrogenated aromatics is performed using a platinum-supported alumina catalyst highly dispersed in a size of 10 A or less, considering the molecular size, these aromatic molecules are planar.
  • the surface of the noble metal surface adsorbed is considered to be extremely few. Therefore, it is presumed that these decomposition reactions can be suppressed because the adsorption of a plurality of aromatic carbon atoms is extremely small.
  • the particle size of a platinum-supported alumina catalyst that is usually commercially available is about 20 to 30A, and the metal dispersity is often about 20 to 40%. It is said that it is relatively difficult to carry with a high degree of dispersion. Further, a highly dispersed catalyst of 10 A or less is desired from the viewpoint of effective utilization of platinum resources as well as from the viewpoint of high activation of the catalyst, but until now it has such a high degree of dispersion. It was hard to prepare a metal catalyst.
  • the porous metal oxide in which sulfur or a sulfur compound is present has the pore size controlled as uniformly as possible so that the pore distribution is sharp.
  • the sulfur-containing porous metal oxide has a surface area of 150 m 2 / g or more, a pore volume of 0.4 cm 3 / g or more, an average pore diameter of 40 to 300 A, and an average pore diameter of the total pore volume. Porous metal oxides in which the proportion of 30 A pores is 60% or more are preferred.
  • the porous metal oxides whose pore distribution is sharply controlled have a uniform pore size throughout the powder and compact.
  • the degree of dispersion of the noble metals after firing is different depending on the pH value of the impregnating aqueous solution.
  • the optimum range of ⁇ is 1.0 to 5.0, preferably 1.8 to 3.0.
  • the pH value of the impregnating solution is lower than 1.0, the degree of dispersion of the precious metals after loading is low.
  • the pH value is higher than 5.0, the degree of dispersion is lowered.
  • the pore is controlled.
  • the degree of dispersion of the metal is high.
  • the degree of dispersion is further improved by adjusting the pH value of the aqueous solution when impregnated with platinum to an optimum value.
  • the platinum-supported alumina catalyst thus prepared becomes an egg shell type in which platinum is supported only on the outer shell portion of the cross section. For example, platinum is supported using alumina.
  • the ⁇ value of the impregnating aqueous solution is not required to be present, as in the present invention, without the presence of sulfur or a sulfur compound.
  • the dispersion degree of platinum of the egg shell type platinum supported alumina catalyst prepared by adjusting and impregnating to an optimum value has a high degree of dispersion of 60 to 80%.
  • a process such as masking the residual acid sites with an alkali metal is required in order to use it in reactions where the decomposition reaction or the like is to be suppressed to a high degree. .
  • the use of an alumina support with a controlled pore distribution and a platinum aqueous solution with an optimized rho value, sulfur or the entire cross-section of the alumina support with a controlled pore distribution is used.
  • a homogeneous high-dispersion platinum-supported alumina catalyst in which platinum was supported at a high dispersibility of 60 to 80% over the entire cross section of the catalyst. It is possible for the first time.
  • the significance of the homogeneous type is not only suitable for applying to a system in which diffusion resistance in the catalyst is preferably given to the reaction as described above, but also the metal particles are dispersed throughout the interior of the support. This suggests that the metal particles are not easily agglomerated due to sintering because of the distance between the metal particles, and the deterioration of activity due to sintering is difficult to occur.
  • noble metal particles such as platinum are bimetalized with a second metal component such as rhenium or tin to break a continuous arrangement of atoms having decomposition activity such as platinum.
  • a second metal component such as rhenium or tin to break a continuous arrangement of atoms having decomposition activity such as platinum.
  • the present invention can provide a metal catalyst that does not require the acid sites to be masked with an alkali metal.
  • the masking of acid sites by alkali metal is preferably impregnated and supported again according to the amount of acid points remaining after impregnating and supporting an active metal such as a noble metal.
  • re-impregnation and drying 'calcination process adds cost to the industrial production of the catalyst, so if the catalyst does not require masking with alkali metal, the cost Can be reduced.
  • the process of incorporating the sulfur compound into the support can take various forms as described above. For example, a range suitable for an alumina support by using a sulfur compound in the process of producing an alumina support.
  • the sulfur compound is a generally inexpensive compound, the sulfur component was included without substantially affecting the production cost of the alumina support. It is possible to produce a carrier. Therefore, the manufacturing cost of the catalyst is comprehensively low compared with the case where masking with an alkali metal is performed.
  • the catalyst metal when a catalyst metal is supported on a catalyst carrier, the catalyst metal may be obtained by impregnating the catalyst carrier with the above-described catalyst metal solution, drying and calcining at a predetermined temperature.
  • the solution of the above compound include various complex compounds such as chlorides, bromides, ammonium salts, carbonyl compounds, amines, ammine complexes, and acetylacetonate complexes of catalytic metals.
  • the catalyst metal is platinum, chloroplatinic acid, acetylacetonatoplatinum, platinic acid ammonium salt, bromoplatinic acid, disodium platinum, platinum tetrachloride hydrate, carbonyl platinum dichloride And platinum compounds such as chloride and dinitrodiammine platinate.
  • a solution of the above platinum compound in the porous ⁇ -alumina carrier After drying under the conditions of preferably 50 ° C to 200 ° C, 0.5 hours to 48 hours, preferably 350 ° C to 600 ° C, 0.5 hours to 48 hours, More preferably, it is baked at a temperature of 350 ° C. or higher and 450 ° C. or lower for 0.5 hour or longer and 5 hours or shorter, and then in a hydrogen gas atmosphere, 350 ° C. or higher and 600 ° C. or lower.
  • the hydrogen reduction treatment is performed under reducing conditions of 5 hours to 48 hours, preferably 350 ° C to 550 ° C and 3 hours to 24 hours. If the temperature during hydrogen reduction is less than 350 ° C, there is a problem that platinum is not sufficiently reduced.On the other hand, if the temperature exceeds 600 ° C, platinum particles are sinterd during reduction and the metal dispersion is lowered. The problem arises.
  • the catalyst metal is supported over the entire support cross-section not only on the surface of the catalyst support, so that the supported amount of the catalyst metal is increased and the dispersion degree is maintained.
  • the catalyst metal platinum is supported on the porous y-alumina support of the catalyst support, the amount of platinum supported is about 2% by weight, which is 50% or more.
  • a cyclohexane, methylcyclohexane, dimethylcyclohexane or the like as a hydrogen reservoir used in a hydrogen supply system or the like by the chemical nanoride method.
  • aromatics it is suitably used as a dehydrogenation catalyst for aromatics, bicyclic hydrogenated aromatics such as tetralin, decalin, and methyldecalin, and tricyclic hydrogenated aromatics such as tetradecahydroanthracene. .
  • the sulfur-containing porous metal oxide containing sulfur or a sulfur compound as a carrier of the uniform highly dispersed metal catalyst of the present invention in a substantially uniformly dispersed state over the entire cross section of the carrier is a catalyst. It can be effectively used as an adsorbent as well as a carrier. Due to the presence of sulfur throughout the entire support, it is possible to rapidly advance the adsorption to the inside of the adsorbent when adsorbing metal ions, etc., so it is also useful as an adsorbent used for collecting metal ions, etc. It is.
  • the homogeneous high-dispersion metal catalyst of the present invention is supported on the catalyst carrier in a state where the catalyst metal is dispersed over the entire cross section of the carrier. In terms of performance, life, etc.!
  • the catalyst carrier is In addition, it is possible to easily produce a uniform and highly dispersed metal catalyst supported in a state in which the catalyst metal is dispersed over the entire support cross section.
  • FIG. 1 is a diagram showing an egg shell type and a uniform type of support state according to the classification according to the metal support state observed in the catalyst cross section of the metal supported catalyst.
  • FIG. 2 is a diagram showing a pore distribution measured by a mercury intrusion method of carrier A according to a comparative example of the present invention.
  • FIG. 3 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 1) using the carrier A according to Comparative Example 1 of the present invention. is there.
  • FIG. 4 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 2) using the carrier B according to Example 1 of the present invention.
  • FIG. 5 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 3) using the carrier C according to Example 1 of the present invention. is there.
  • FIG. 6 is a view showing a pore distribution measured by a mercury intrusion method of carrier D according to Example 2 of the present invention.
  • FIG. 7 shows a 0.6 wt% platinum-supported alumina catalyst using the carrier D according to Example 2 of the present invention.
  • FIG. 8 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 5) using carrier E according to Example 3 of the present invention.
  • FIG. 9 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 6) using the carrier F according to Example 3 of the present invention. is there.
  • FIG. 10 is a distribution measurement diagram of sulfur element and platinum element by EPMA of a 0.6 wt% platinum-supported alumina catalyst (catalyst No. 7) using the carrier G according to Example 3 of the present invention.
  • FIG. 11 shows 0.6 wt% rhodium-supported alumina prepared using the carrier A containing no sulfur according to the comparative example of the present invention and the carrier D containing sulfur according to Example 2. It is a distribution measurement diagram of sulfur element and platinum element by EPMA of the catalyst (catalyst No. 8).
  • the egg shell type refers to a state in which the metal species supported in one cross section of the formed catalyst is dispersed and supported only on the outer shell portion of the cross section.
  • the uniform type means a state in which metal species are dispersed over the entire cross section and the metal species are supported throughout the inside of the catalyst molded body.
  • 3900 cc of an aqueous solution of aluminum nitrate with a concentration of 2.67 mol / liter was prepared, and 3900 cc of an aqueous 14% ammonia solution was prepared.
  • the obtained slurry of aluminum hydroxide and aluminum hydroxide was filtered to recover the cake, and then the cake was re-dispersed in 20 liters of pure water and filtered again three times to obtain a washing gel. It was.
  • the moisture of the washed cake was adjusted by air drying, then formed into a rod shape with a diameter of 1.6 mm with an extruder, dried (120 ° C, 3 hours), pulverized to a length of about lcm, and placed in a pine furnace. And calcining (500 ° C., 3 hours) to obtain an alumina support A containing no sulfur.
  • the alumina support A thus obtained has a BET surface area of 275 m 2 / g, a pore volume of 0.665 cm 3 / g by mercury intrusion method, and an average pore diameter of 8.9 nm. It has a sharp distribution of pores concentrated near the pore size. 7 ⁇ : The volume occupied by pores having a pore size of LOnm was 80% or more of the total pore volume.
  • Figure 2 shows the pore distribution of carrier A.
  • alumina carrier A As in the preparation of alumina carrier A, the pH swing operation was performed three times, and washing was performed in the same manner to obtain a washing gel. To this gel, sulfur powder was added so as to be 0.5% by weight based on the weight of alumina after firing, and kneaded uniformly. Thereafter, molding, drying and firing were carried out in the same manner as in the case of Carrier A to obtain alumina carrier B containing sulfur powder. In addition, when sulfur powder is added to the washing gel, it is not kneaded with the cake. After adding the sulfur powder while stirring the highly concentrated slurry in which the cake is dispersed in pure water. Filtration was performed to obtain alumina carrier C containing sulfur powder prepared in the same manner as gel force carrier B in which this cake was sufficiently kneaded by a kneader.
  • the sulfur powder is not sufficiently dispersed, so there is a localized portion where the sulfur powder is concentrated, and such a portion contains platinum. Is not dispersed, it can be seen that if the sulfur concentration is too high, it is not preferable for the dispersion of platinum.
  • 3900 cc of an aqueous aluminum sulfate solution with a concentration of 0.9 mol / liter was prepared, and 3900 cc of an aqueous 14% ammonia solution was prepared.
  • the moisture of the washed cake was adjusted by air drying, it was formed into a rod with a diameter of 1.6 mm with an extruder, dried (120 ° C, 3 hours), pulverized to a length of about lcm, and placed in a pine furnace. And calcining (500 ° C., 3 hours) to obtain an alumina support D containing a sulfur content. At this time, the sulfur content remaining on the carrier D was about 0.5%.
  • the alumina support D thus obtained has a BET surface area of 300 m 2 / g, a pore volume by mercury intrusion method of 0.46 cm 3 / g, an average pore diameter of 5.6 nm, and most of the pores have an average fine diameter. It has a sharp pore distribution concentrated near the pore diameter, and the volume occupied by pores having a pore diameter of 4 to 6 nm was 80% or more of the total pore volume.
  • Figure 6 shows the pore distribution of carrier D.
  • Fig. 7 shows the results of quantifying the existing concentrations of sulfur element and platinum element on the cross section of the catalyst using surface analysis and line analysis using EPMA!
  • Sulfur content after calcining ammonium sulfate aqueous solution with a concentration of 0.38 mol / liter on carrier A containing no sulfur content is 0.1 wt%, 0.5 wt%, 1.2 wt%, respectively. After removing the solvent with an evaporator, drying (120 ° C, 3 hours), calcining (500 ° C, 3 hours), alumina carrier containing sulfur content E (0.1 wt%), F (0.5 wt%) and G (1.2 wt%) were obtained.
  • the dispersion degree of platinum of the catalysts No. 1 to No. 7 prepared in the above Comparative Examples and Examples 1 to 3 was measured by a CO pulse adsorption method.
  • the CO pulse adsorption method is described below.
  • CO is injected into the sample in a pulsed manner with respect to the catalyst, CO is adsorbed on the surface of the supported metal at the beginning of introduction, and the amount of CO that elutes is small. Most of the injected CO will be eluted.
  • the CO pulse adsorption method is a method for calculating the metal surface area, dispersion rate, and particle diameter from the adsorption amount and the supported metal content. A specific calculation method will be described below.
  • V (Vt / W) X ⁇ 273 / (273 + t) ⁇ (ml / g-cat)... (1)
  • the number of moles of adsorbed gas per gram of sample K is
  • the supported metal particle is a cube with the length of one side being D (m), there are 5 effective surfaces among the 6 surfaces of the particle.
  • Effective area of one particle S 5D 2 (m 2 )... (6)
  • n is the number of supported metal particles per sample lg
  • Vc Weight of supported metal per lg of sample (g / g) Specific gravity of Z-supported metal (g / cm 3 )
  • FIG. 11 shows the results of quantifying the concentration of sulfur and platinum elements on the cross section of the catalyst using surface analysis and line analysis using EPMA.
  • Catalyst No. 3 (Example 1), Catalyst No. 4 (Example 2), Catalyst No. 6 (Example 3), With respect to Catalyst No. 7 (Example 3) and Catalyst No. l (Comparative Example), a dehydrogenation test of methylcyclohexane (MCH) was conducted.
  • the center of the catalyst layer is located at the center in the length direction of a stainless steel reaction tube with an inner diameter of 12.6 mm x 300 mm and a 1 / 8-inch thermocouple protection tube at the center of the reaction tube cross section.
  • each of the above catalysts lOcc was filled, and lmm ⁇ spherical ⁇ -alumina beads lOcc were filled as a preheating layer on the upper side of the catalyst.
  • MCH methylcyclohexane
  • An amount equivalent to LHSV 2.
  • O (20cc / hr) is supplied to the reactor by a liquid pump for HPLC (HPLC), and the flow rate of hydrogen is directly added to the total amount of MCH and hydrogen gas. The amount of hydrogen gas was adjusted to 5 mol%.
  • the center temperature of the catalyst layer is 320
  • the reaction test was conducted by adjusting the output of the electric furnace so that the temperature became ° C.
  • a gas-liquid separator is provided at the outlet of the reaction tube to separate a liquid product such as toluene and a gas such as hydrogen gas generated by the dehydrogenation reaction, and to collect the recovered liquid product and gas. Each was analyzed by gas chromatography.
  • Catalyst No. 3 (Example 1) and Catalyst No. prepared in the above Comparative Example and Examples 1 to 3 were used.
  • the dehydrogenation catalyst of the present invention exhibits very high selectivity without masking acid sites using an alkali metal such as potassium, and is effective for side reactions. Therefore, it can be seen that the concentration of methane produced is much lower than that of a catalyst prepared from an alumina support that does not contain sulfur. In addition, stable performance has been maintained for 300 hours, Since no deterioration of the catalyst performance is observed, hydrogen can be generated stably over a long period of time with good selectivity.
  • the homogeneous highly dispersed metal catalyst of the present invention is supported on the catalyst carrier in a state where the catalyst metal is substantially uniformly dispersed throughout the carrier, so that the amount of catalyst metal supported is increased, and the catalyst activity and selectivity are increased.
  • it can be used as a dehydrogenation catalyst for hydrogen storage used in chemical hydride method hydrogen supply systems, etc., and for environmental purification of chemical products, hydrogen production, exhaust gas, etc. It is preferably used for such applications.
  • a homogeneous highly dispersed metal catalyst can be easily produced industrially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Nanotechnology (AREA)

Abstract

 触媒担体にその担体全体に亘って触媒金属が略均一に分散した状態で担持され、触媒活性や選択性、寿命等において優れた性能を有する均一型高分散金属触媒及びその製造方法を提供する。  金属酸化物からなる触媒担体に触媒活性を有する触媒金属を担持させた金属触媒において、上記触媒担体がその担体全体に亘って略均一に分布する硫黄又は硫黄化合物を含有する硫黄含有触媒担体であり、この硫黄含有触媒担体には、上記硫黄又は硫黄化合物の分布に略々応じて、触媒金属が担体全体に亘って略均一に分散して担持されている均一型高分散金属触媒である。

Description

明 細 書
均一型高分散金属触媒及びその製造方法
技術分野
[0001] この発明は、化学品製造、水素製造、排気ガス等の環境浄ィヒ等の用途に用いられ る金属触媒に係り、特に触媒担体の断面全体に亘つて硫黄又は硫黄化合物が略々 均一に分散して存在すると共に、触媒担体の断面全体に亘り上記硫黄又は硫黄ィ匕 合物の分布に略々一致して触媒金属が分散した状態で担持されている均一型高分 散金属触媒及びその製造方法、その使用方法並びにその製造に用いる硫黄含有多 孔質金属酸化物に関する。
背景技術
[0002] 金属酸化物からなる触媒担体に種々の触媒金属を担持させた金属触媒は、例え ば、メチルシクロへキサン、シクロへキサン、デカリン等の水素化芳香族類を対応する 芳香族類と水素とに脱水素する脱水素反応を始めとして、様々な化合物の脱水素反 応及び脱水素反応の逆反応である水素化反応、改質反応等による化学品や燃料の 製造、自動車排ガスを始めとする環境浄ィ匕等、極めて多くの分野で用いられている。
[0003] そして、これらの金属触媒は、一般に、アルミナやシリカ等の金属酸ィ匕物力 なる多 孔性触媒担体を調製し、得られた多孔性触媒担体に例えば白金を担持する場合は 塩化白金酸水溶液、塩化白金アンモ-ゥム水溶液、ァセチルァセトナト白金等の有 機白金化合物の溶液等の触媒金属化合物の溶液を含浸させ、次!ヽで乾燥させて触 媒金属化合物担持乾燥物とした後、例えば 350〜800°C及び 0. 5〜24時間の条件 で焼成し、更に必要に応じて、得られた触媒金属化合物担持焼成物を例えば 250〜 800°C及び 0. 5〜24時間の条件で水素還元することにより製造されている。
[0004] し力しながら、このような方法で製造された金属触媒は、例えば触媒担体として最も 広く用いられているアルミナ担体に触媒金属として代表的な活性金属種の 1つである 白金を担持させた白金担持アルミナ触媒を例にしてみると、このアルミナ担体に対す る白金化合物の吸着力が強いため、白金化合物がアルミナ担体の内部に拡散する 前にアルミナ担体の外殻部に吸着されてそのまま固定され、断面形状でみた場合に その外周部のみに触媒金属が担持されて担体内部には触媒金属が担持されていな い、いわゆるエッグシェル (egg shell)型の金属触媒となることが知られている(触媒学 会関東地区事業委員会主催の第 14回 (2003年)「キヤタリシススクールテキスト」第 35 〜44頁及び同第 15回 (2004年)「キヤタリシススクールテキスト」第 35〜44頁参照)。
[0005] 触媒を供する反応において触媒粒子内の拡散抵抗が大きな場合は反応が触媒粒 子の外殻周辺で優先的に起こるため、このような反応ではエッグシェル型の触媒の 方が有利である。し力しながら、触媒粒子の外殻のみに一定量の活性金属を担持す ることは、活性金属粒子の密度が高くなるために、活性金属粒子の分散度を十分に 実現できな!/ヽ場合やシンタリングやコーキングによる触媒劣化が起きやす!ヽ等の場 合が考えられる。従って、拡散抵抗が影響しない反応においては担体の有する表面 積を十分に活用することにより、これらの影響を緩和する触媒設計が有利であると考 えられる。
[0006] しかしながら、白金等の活性金属を触媒粒子内部にまで均一に分散担持すること は容易ではなぐこれまでに担体への吸着力が強 、競争吸着剤を併用する方法等 が利用されている (触媒学会編触媒講座第 5卷触媒設計第 134〜141頁)。しかしな がら、この方法においても完全に均一に活性金属が分散した触媒を調製することは 比較的に困難であり、触媒粒子の中心部に向かって担持金属の濃度勾配が生じる 等の場合がある。
非特許文献 1 :触媒学会関東地区事業委員会主催の第 14回 (2003年)「キヤタリシスス クールテキスト」第 35〜44頁
非特許文献 2 :触媒学会関東地区事業委員会主催の第 15回 (2004年)「キヤタリシスス クールテキスト」第 35〜44頁
非特許文献 3: (触媒学会編触媒講座第 5卷触媒設計第 134〜141頁)
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明者らは、アルミナやシリカ等の触媒担体に含浸法によってその内部 にまで白金等の触媒金属を均一に分散させた状態で担持させることについて鋭意検 討した結果、意外なことには、触媒担体に予めその担体断面全体に亘つて略均一に 硫黄又は硫黄ィ匕合物を分散して存在させておくことにより、この硫黄又は硫黄ィ匕合 物の分布に略々一致して触媒金属が担持され、結果として触媒金属が触媒担体の 断面全体に亘つて略々均一に分散して担持された均一型高分散金属触媒を容易に 得ることができることを見出し、本発明を完成した。
[0008] 従って、本発明の目的は、触媒担体にその担体断面全体に亘つて触媒金属が略 々均一に分散した状態で担持され、触媒活性や選択性、寿命等において優れた性 能を有する均一型高分散金属触媒を提供することにある。
[0009] また、本発明の他の目的は、このように触媒活性や選択性、寿命等にぉ ヽて優れ た性能を有する均一型高分散金属触媒の製造方法、使用方法及びその製造に用い る硫黄含有多孔質金属酸化物を提供することにある。
課題を解決するための手段
[0010] すなわち、本発明は、金属酸化物からなる触媒担体に触媒活性を有する触媒金属 を担持させた金属触媒にお!、て、上記触媒担体がその担体断面全体に亘つて分散 して存在する硫黄又は硫黄化合物を含有する硫黄含有触媒担体であり、この硫黄含 有触媒担体には、上記硫黄又は硫黄化合物の分布に略々一致して、触媒金属が担 体断面全体に亘つて分散して担持されている均一型高分散金属触媒である。
[0011] また、本発明は、担体断面全体に亘つて硫黄又は硫黄化合物が分散して存在する 硫黄含有触媒担体を調製し、得られた硫黄含有触媒担体に触媒金属化合物の水溶 液を含浸させて乾燥し、そのまま水素雰囲気にて還元する力 又は、乾燥して得られ た触媒金属化合物担持乾燥物を焼成し、次!ヽで得られた触媒金属担持焼成物を水 素で還元することを特徴とする均一型高分散金属触媒の製造方法である。
[0012] ここで、本発明の均一型高分散金属触媒において、均一型とは、触媒金属の粒子 が触媒担体の断面全体に亘つて略々均一に担持されている状態をいい、また、高分 散とは、担持された金属の粒子径が十分に小さぐ高度に分散している状態を意味 する。即ち、本発明の均一型高分散金属触媒は、後述する金属の分散度の数値が 高ぐ担持された金属の粒子径が十分に小さい高分散状態を維持したまま、金属粒 子が触媒担体の断面全体に亘つて略々均一に担持された均一型の高分散金属触 媒を意味するものである。 [0013] 本発明において、触媒担体として用いられる金属酸化物については、例えばアルミ -ゥム (Al)、珪素 (Si)、ジルコニウム (Zr)、マグネシウム (Mg)、カルシウム (Ca)、チタン (Ti )、バナジウム (V)、クロム (Cr)、マンガン (Mn)、鉄 (Fe)、コバルト 。)、ニッケル (Ni)、銅( Cu)、亜鉛 (Zn)、ガリウム (Ga)、イットリウム (Y)、ニオブ (Nb)、モリブデンお。)、タンダステ ン (W)、ランタン (La)、及びセリウム (Ce)力も選ばれた 1種又は 2種以上の金属を含む 金属酸ィ匕物を挙げることができ、好ましくはアルミナ、シリカ、チタ二了、ジルコユア、 及びセリア等を挙げることができる。
[0014] そして、上記触媒担体がアルミナである場合には、例えば特公平 6-72,005号公報 に開示されているように、アルミニウム塩の中和により生成した水酸ィ匕アルミニウムの スラリーを濾過洗浄し、得られたアルミナヒドロゲルを脱水乾燥した後、 400〜800°C で 1〜6時間程度焼成することにより得られる多孔性 γ -アルミナ担体であるのがよぐ より好ましくはアルミナヒドロゲルの pH値をアルミナヒドロゲル溶解 pH領域とベーマイ トゲル沈殿 pH領域との間で交互に変動させると共に少なくともいずれか一方の pH領 域力 他方の pH領域への pH変動に際してアルミナヒドロゲル形成物質を添カ卩して アルミナヒドロゲルの結晶を成長させる pHスイング工程を経て得られた多孔性 γ -ァ ルミナ担体であるのがよい。この pHスイング工程を経て得られた多孔性 γ -アルミナ 担体は、細孔分布の均一性に優れ成形後のアルミナ担体ペレットにお ヽても物理性 状のばらつきが少なぐ個々のペレット毎の物理性状が安定しているという点で優れ ている。
[0015] そして、このような触媒担体に予め分散させて含有せしめる硫黄又は硫黄化合物と しては、硫黄元素を有し、かつ、触媒担体の調製時にあるいは触媒担体の調製後に 、この触媒担体中に均一に分散した状態で含有させることができるものであれば特に 制限はないが、例えば、硫黄の結晶粉末や、硫酸、硫酸アンモニゥム等の硫酸塩等 の硫黄含有化合物を挙げることができ、担体上に硫黄が分散しやすい観点から水又 は有機溶媒に溶解性がある硫黄化合物が好ましぐそのような硫黄化合物として硫酸 、硫酸アンモ-ゥム等を挙げることができる。
[0016] 担体に含有せしめる硫黄の量は、硫黄 (S)分として 0. 15重量%以上 5重量%以下が 好ましぐ更に好ましくは 0. 15重量%以上 3. 0重量%以下が好ましい。 0. 15重量 %未 満の硫黄含有量では、金属が触媒の中心部に亘つてまで均一に担持される度合い において効果が低ぐ硫黄含有量が 5重量 %を超えると局部的に硫黄が凝集し易ぐ そのような局部には金属が分散して担持されないという問題点が生じ易くなる。これら より、金属を均一に分散担持する効果において最も好適な硫黄含有量の範囲は 0. 15〜3. 0重量%カ好まし!/ヽ。
[0017] 本発明にお 、て、上記硫黄又は硫黄化合物を含有する硫黄含有触媒担体を調製 する方法につ!、ては、それが担体断面全体に亘つて分散した状態で硫黄又は硫黄 化合物を含有させることができればよぐ例えば、 A:触媒担体の調製時に得られた 金属酸化物の前駆体となる金属水酸化物ゲルに硫黄粉末を混練し、所定の形状に 成形した後、乾燥し焼成して調製する方法、 B:触媒担体の調製時に金属硫酸塩及 び Z又は硫酸を用いて硫黄分を含有する金属酸化物の前駆体となる金属水酸化物 ゲルを調製し、所定の形状に成形した後、乾燥し焼成して調製する方法、 C:触媒担 体の調製時に金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成形し 、次いで乾燥して乾燥金属水酸ィ匕物ゲルとし、この乾燥金属酸化物に硫黄化合物溶 液を含浸させた後に焼成して調製する方法、 D:触媒担体の調製時に金属酸化物の 前駆体となる金属水酸化物ゲルを所定の形状に成形し、次 ヽで乾燥して乾燥金属 水酸化物とし、この乾燥金属水酸化物に硫黄化合物溶液を含浸させた後に焼成して 調製する方法、 E:金属酸化物の前駆体となる金属水酸化物ゲルを所定の形状に成 形し、次いで乾燥して乾燥金属水酸ィ匕物ゲルとし、次いでこの乾燥金属水酸化物ゲ ルを焼成して得られた焼成金属酸化物とし、この焼成金属酸化物に例えば硫酸水溶 液、硫酸アンモ-ゥム水溶液等の硫黄ィ匕合物溶液を含浸させた後に再び焼成して 調製する方法、等を例示することができる。
[0018] また、この硫黄含有触媒担体を調製する際の焼成条件については、通常その焼成 温度が 100°C以上 1000°C以下、好ましくは 350°C以上 800°C以下であって、その 焼成時間が 0. 5時間以上 48時間以下、好ましくは 1時間以上 24時間以下である。 焼成温度が 350°Cより低 ヽと水酸化物から酸化物への転化が十分に行われな!/、場 合があり、反対に、 800°Cより高くなると焼成後の表面積が著しく低下する場合がある [0019] 本発明において、上記の硫黄含有触媒担体に担持させる触媒金属については、 特に制限はないが、好ましくは白金 (Pt)、ノ《ラジウム (Pd)、イリジウム (Ir)、ロジウム (Rh) 、ルテニウム (RU)、ニッケル (Ni)、銅(Cu)及び亜鉛 (Zn)から選ばれた 1種又は 2種以 上の金属であり、より好ましくは白金である。また、触媒金属の担持量については、例 えば触媒担体が上記多孔性 γ -アルミナ担体であって触媒金属が白金である場合、 0. 05重量%以上 5. 0重量%以下、好ましくは 0. 1重量%以上 3. 0重量%以下である。 この白金の担持量が 0. 05重量 %より少ないと活性が低いという問題があり、反対に、 5. 0重量 %より多くなると白金の粒子径が大きくなり、選択性が低下すると共にシンタ リングし易くて劣化し易いという問題が生じる。
[0020] 上記のように調製される触媒は、その成形過程にぉ 、て一般的なペレットとして成 形されてもよぐあるいはハ-カムやプレート等の種々の形態の支持体に固定して利 用することもできる。即ち、上記に示した硫黄含有触媒担体の調製過程で支持体に 固定されても良いし、触媒金属を担持した後の触媒粉末を固定してもよい。これらの 支持体への硫黄含有触媒担体または触媒の固定は、ハニカムやプレート等への酸 化物触媒の固定に一般的に用いられているバインダーによる固定や、焼成または焼 結等による方法等を適用することができる。
[0021] 本発明において、触媒金属が均一型であるかどうか、言い換えれば、触媒金属が 担体の断面全体に亘つて略々均一に分散しているかどうかは、触媒を EPMA(Electr on probe micro analyzer)によって、触媒断面における触媒金属元素の濃度分布を定 量的に観察することで確認することができる。 EPMAは、サンプルに電子線を照射す ることによって発生する元素に特有の蛍光 X線を検出することによって電子線照射部 分の特定元素の濃度をその検出強度力も定量するものである。通常は、電子線を照 射する位置を移動させてサンプル断面全体の特定元素の分布状態をその検出強度 の範囲によって色分けして断面全体の分布状態を示す面分析と共に、サンプル断面 を直線的に横断する測定位置での検出強度を相対値としてグラフ表示する線分析が 可能である。
[0022] そして、エッグシェル型の触媒の断面では、断面の外殻にのみ触媒金属が検出さ れ、外殻より内側の測定箇所における検出強度は非常に小さぐ外殻部分比べて中 心部分の触媒金属濃度は 1Z2程度以下となる。これに対して、本発明の均一型高 分散金属触媒では、外殻のみならず担体断面の中心部分にまで金属が高い濃度で 担持されており、外殻部分に対する中心部分の金属濃度は、その検出強度において 、好ましくは ± 50%、より好ましくは ± 30%、更に好ましくは ± 15%の範囲で担体断面 の外殻から中心部分にまで触媒金属を均一に分散させることができる。
[0023] また、触媒金属が高分散であるかどうか、言 、換えれば、金属粒子径が十分に小さ く高分散であるかどうかについては、次のような COパルス吸着法により測定される金 属の分散度 (%)によって定量的に把握することができる。ここで、金属の分散度は、 担持されて ヽる金属原子の全体数に対して、担持されて!ヽる金属粒子の外表面に存 在して 、る金属原子数の割合をもって定義される。例えば 100個の原子力もなる金 属粒子が担持されており、このうちの 40個の金属原子が外表面に存在している場合 には、その金属分散度は 40%となる。金属分散度の測定は、通常、 COパルス吸着法 によって測定され、外表面に存在する金属原子数を吸着した CO分子の数から求め る方法によって実施される。この結果と金属粒子の形状を立方体や正八面体等の形 状に仮定すると、その仮定に基づく金属粒子径を推算することができる。
[0024] すなわち、本発明による触媒金属の分散度は、 40%以上、更に好ましくは 60以上 8 0%以下である。 60%以上の分散度に相当する金属粒子の平均サイズは 10A以下で あり、 70%の分散度では 7A程度となる。このように金属の分散度を向上させて担持さ れている金属粒子のサイズを小さくすることの意義は、主として次の 2点である。最初 に、金属の分散度が向上するにつれて、金属粒子の外表面に存在する原子の割合 が増えることによって、活性金属の表面積が増大して活性が向上することが挙げられ る。次に、小さな貴金属粒子のクラスターでは、平面部分を形成する白金原子の数は 少ないことから、反応原料等の成分が金属上に平面吸着しづらいことが考えられる。 例えば、 10 A以下のサイズに高度に分散した白金担持アルミナ触媒を用いて水素 化芳香族類の脱水素反応を行う場合、その分子サイズを考慮すると、これらの芳香 族類の分子が平面的に吸着してしまう貴金属表面の平面は著しく少ないものと考え られる。従って、芳香族類の炭素原子が複数吸着することが著しく少ないためにこれ らの分解反応を抑制することができるものと推定される。 [0025] 白金を例にした場合、通常に市販されている白金担持アルミナ触媒の粒子サイズ は 20〜30A程度であり、その金属分散度は 20〜40%程度であることが多ぐ 20 A 以下の高い分散度で担持することは比較的に困難と言われている。更に 10 A以下 の高分散な触媒は、触媒の高活性化の観点からばかりでなぐ白金資源の有効利用 の観点からも望まれて 、たが、これまではそのような高 、分散度を有する金属触媒を 調製することができな力つた。
[0026] 本発明において、硫黄又は硫黄ィ匕合物を存在させる多孔質金属酸ィ匕物はその細 孔分布がシャープになるように細孔のサイズをできるだけ均一に制御したものが好ま しい。具体的には、硫黄含有多孔性金属酸化物が表面積 150m2/g以上、細孔容積 0. 4cm3/g以上、平均細孔径 40〜300A、及び全細孔容積に対して平均細孔径士 30 Aの細孔が占める割合が 60%以上である多孔性金属酸ィ匕物が好ましい。このよう に細孔のサイズが揃えられた結果、その細孔分布がシャープに制御された多孔性金 属酸ィ匕物はその粉末及び成形体の全体に亘つて、細孔のサイズが均一であり、硫黄 を分散担持して存在させる工程、及び金属を硫黄の分布に一致して全体に亘つて分 散担持する工程において有利となる。
[0027] また、白金やパラジウム等の貴金属類をアルミナ担体に含浸担持する場合におい て、焼成担持後の貴金属類の分散度は含浸水溶液の pH値によって異なる。本発明 において、その最適な ρΗ値の範囲は、 1. 0〜5. 0、好ましくは 1. 8〜3. 0の範囲で ある。含浸溶液の pH値が 1. 0より低い場合には、担持後の貴金属類の分散度が低 ぐ pH値が 5. 0より高い場合も分散度は低下する。このことは、含浸時の pH値により アルミナ担体への金属化合物分子の吸着力が異なり、焼成時にシンタリングして粒 子成長する際に大きな影響を与えていると推定される。
[0028] 上記のように細孔のサイズが揃えられた結果、その細孔分布がシャープに制御され た多孔性金属酸ィ匕物を担体として用いた場合、細孔が制御されて 、な 、金属酸ィ匕 物を担体に用いた場合に比べて、金属の分散度は高くなる。更に、白金を含浸する ときの水溶液の pH値を最適な値に調整して含浸することにより、分散度はより向上す る。し力しながら、このように調製した白金担持アルミナ触媒はその断面の外殻部分 のみに白金が担持されたエッグシェル型となる。例えば、アルミナを用いて白金を担 持する場合、本発明のように硫黄又は硫黄ィ匕合物を存在させなくても、細孔分布が シャープに制御された多孔性 γ —アルミナを担体に用い、かつ、含浸水溶液の ρΗ 値を最適な値に調整して含浸することにより調製されたエッグシェル型白金担持アル ミナ触媒の白金の分散度は 60〜80%の高い分散度を有する。し力しながら、触媒の 内部にアルミナの酸点が残留するため、分解反応等を高度に抑制したい反応に用い るためには、残留酸点をアルカリ金属でマスキングする等の処理が必要となる。
[0029] 本発明は、細孔分布が制御されたアルミナ担体と ρΗ値を最適化した白金水溶液を 用いることにカ卩えて、細孔分布が制御されたアルミナ担体の断面全体に亘つて硫黄 又は硫黄化合物を分散して存在させておくことによって、触媒の断面全体に亘つて 白金が 60〜80%の高い分散度を維持して担持された均一型の高分散白金担持アル ミナ触媒の調製を初めて可能にするものである。均一型であることの意義は、前述し たように触媒内での拡散抵抗を与えた方が反応にとって好ましい系に適用する場合 に適する他、金属粒子が担体内部全般に亘つて分散していることから、金属粒子間 に距離があるためにシンタリングによる金属粒子の凝集が起こり難ぐシンタリングに よる活性劣化が生じ難 ヽ点が考えられる。
[0030] 一般的に、改質触媒や脱水素触媒では、白金等の貴金属粒子をレニウムやスズ等 の第 2金属成分でバイメタル化して白金等の分解活性を有する原子の連続的な配列 を断つことによって、原料や生成物の炭素原子の平面的な吸着を阻害して分解反応 を抑制することが行われるが、本発明に係る触媒系は貴金属粒子が高分散状態で 粒子径が十分に小さいため、バイメタルィ匕を行わなくとも白金粒子上で起こる分解反 応を抑制することが可能と考えられる。
[0031] し力しながら、アルミナを担体とした触媒を利用する場合は、白金粒子上で起こる分 解反応を抑制しただけでは十分ではなぐアルミナ上の酸点で起こる分解反応の抑 制も必要となる。従って、これらの酸点をカリウムやリチウム等のアルカリ金属を用いて マスキングすることでアルミナ表面での分解反応を抑制することが行われることが多 い。し力しながら、本発明による硫黄又は硫黄ィ匕合物を含有させたアルミナ担体を利 用した触媒では、アルカリ金属による酸点のマスキングを実施しな 、場合でもそれと 同等以上の分解反応抑制効果があることが判明した。詳細なメカニズムは現時点で は不明であるが、硫黄元素がアルミナと共に複合酸化物を形成し、アルミナ単独の場 合に残留する酸点を異なる構造に変化させて 、るものと考えられる。硫黄元素がァ ルミナと複合酸化物を形成した場合の形態は一般的に硫酸根形態であることが考え られる。硫酸根はそれ自体が酸性質であり、その存在によって酸点の数、即ち酸量 は増加していることが考えられる力 これらの酸点が比較的に低い反応温度では分 解反応を進行させな ヽものと推定される。
[0032] これらより、本発明は酸点をアルカリ金属でマスキングする必要がない金属触媒を 提供することができる。アルカリ金属による酸点のマスキングは、通常、貴金属等の活 性金属を含浸担持した後に残留する酸点の量に応じて、改めて含浸担持することが 触媒の性能上好ましい。し力しながら、再度に亘る含浸 ·乾燥 '焼成の工程は触媒を 工業的に製造する場合のコストを高価にすることから、アルカリ金属によるマスキング が必要のない触媒の場合は、その分のコストを低減することが可能となる。硫黄化合 物を担体に含有せしめる工程は、前述のように様々な形態が可能であり、例えば、ァ ルミナ担体を製造する工程において硫黄ィ匕合物を利用することでアルミナ担体に好 適な範囲の硫黄ィ匕合物を含有せしめることが可能であり、硫黄ィ匕合物が一般的に安 価な化合物であることからアルミナ担体の製造コストにほとんど影響を与えることなく 硫黄分を含有させた担体を製造することが可能である。従って、触媒の製造コストは アルカリ金属によるマスキングを実施する場合と比較して、総合的に安価となる。
[0033] 本発明にお ヽて、触媒担体に触媒金属を担持させる場合、上記の触媒担体に上 記の触媒金属の溶液を含浸させ、乾燥したのち所定の温度で焼成すればよぐ触媒 金属の化合物の溶液としては、触媒金属の塩化物、臭化物、アンモニゥム塩、カルボ 二ルイ匕合物、ァミン及びアンミン錯体ゃァセチルァセトナト錯体等の各種の錯体ィ匕合 物等を挙げることができ、例えば触媒金属が白金である場合、塩化白金酸、ァセチ ルァセトナト白金、白金酸アンモ-ゥム塩、臭化白金酸、二塩ィ匕白金、四塩化白金水 和物、二塩化カルボニル白金二塩化物、ジニトロジァミン白金酸塩等の白金化合物 が挙げられる。
[0034] 例えば、触媒担体が上記の多孔性 γ -アルミナ担体であって触媒金属が白金であ る脱水素触媒を調製する場合、多孔性 γ -アルミナ担体に上記の白金化合物の溶液 を含浸させ、好ましくは 50°C以上 200°C以下、 0. 5時間以上 48時間以下の条件で 乾燥した後、好ましくは 350°C以上 600°C以下、 0. 5時間以上 48時間以下、より好 ましくは 350°C以上 450°C以下の温度で 0. 5時間以上 5時間以下の条件で焼成し、 次いで、水素ガスの雰囲気下に、 350°C以上 600°C以下及び 0. 5時間以上 48時間 以下、好ましくは 350°C以上 550°C以下及び 3時間以上 24時間以下の還元条件で 水素還元処理を行う。この水素還元時の温度が 350°C未満であると十分に白金が還 元されないという問題があり、反対に、 600°Cを超えると還元時に白金粒子がシンタリ ングして金属分散度が低下するという問題が生じる。
[0035] 本発明の均一型高分散金属触媒は、触媒担体の表面だけでなぐ担体断面全体 に亘つて触媒金属が担持され、それだけ触媒金属の担持量を高! ヽ分散度を維持し たまま増加させることが可能なため、触媒活性が向上し、例えば触媒担体の多孔性 y -アルミナ担体に触媒金属の白金を担持させた場合、白金担持量 2重量 %程度まで 50%以上と 、う高 、分散度で担持させることができ、例えばケミカルノヽイドライド法によ る水素供給システム等で用いられる水素貯蔵体としてのシクロへキサン、メチルシクロ へキサン、ジメチルシクロへキサン等の単環式水素化芳香族類や、テトラリン、デカリ ン、メチルデカリン等の 2環式水素化芳香族類や、テトラデカヒドロアントラセン等の 3 環式水素化芳香族類等の脱水素触媒として好適に用いられる。
[0036] また、本発明の均一型高分散金属触媒の担体となる硫黄又は硫黄化合物をその 担体断面全体に亘つて略々均一に分散した状態で含有する硫黄含有多孔質金属 酸化物は、触媒担体の用途のみではなぐ吸着剤等としても有効に利用することがで きる。担体全体に亘つて硫黄が存在することによって、金属イオン等の吸着において 、吸着剤の内部にまで迅速に吸着を進行させることが可能なため、金属イオンの回 収等に用いる吸着剤としても有用である。
発明の効果
[0037] 本発明の均一型高分散金属触媒は、触媒担体にその担体断面全体に亘つて触媒 金属が分散した状態で担持されるので、それだけ触媒金属の担持量が増加し、触媒 活性や選択性、寿命等にお!、てより優れた性能を発揮する。
また、本発明の均一型高分散金属触媒の製造方法によれば、このように触媒担体 にその担体断面全体に亘つて触媒金属が分散した状態で担持された均一型高分散 金属触媒を容易に製造することができる。
図面の簡単な説明
[0038] [図 1]図 1は、金属担持触媒の触媒断面にて観察される金属の担持状態による分類 にお 、て、エッグシェル型と均一型の担持状態を示した図である。
[図 2]図 2は、本発明の比較例に係る担体 Aの水銀圧入法により測定した細孔分布を 示す図である。
[0039] [図 3]図 3は、本発明の比較例 1に係る担体 Aを用いた 0.6wt%白金担持アルミナ触媒 ( 触媒 No.l)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[図 4]図 4は、本発明の実施例 1に係る担体 Bを用いた 0.6wt%白金担持アルミナ触媒( 触媒 No.2)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[0040] [図 5]図 5は、本発明の実施例 1に係る担体 Cを用いた 0.6wt%白金担持アルミナ触媒( 触媒 No.3)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[図 6]図 6は、本発明の実施例 2に係る担体 Dの水銀圧入法により測定した細孔分布 を示す図である。
[0041] [図 7]図 7は、本発明の実施例 2に係る担体 Dを用いた 0.6wt%白金担持アルミナ触媒
(触媒 No.4)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[図 8]図 8は、本発明の実施例 3に係る担体 Eを用いた 0.6wt%白金担持アルミナ触媒( 触媒 No.5)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[0042] [図 9]図 9は、本発明の実施例 3に係る担体 Fを用いた 0.6wt%白金担持アルミナ触媒( 触媒 No.6)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[図 10]図 10は、本発明の実施例 3に係る担体 Gを用いた 0.6wt%白金担持アルミナ触 媒 (触媒 No.7)の EPMAによる硫黄元素及び白金元素の分布測定図である。
[0043] [図 11]図 11は、本発明の比較例に係る硫黄分を含まない担体 A、及び実施例 2に係 る硫黄分を含む担体 Dを用いて調製した 0.6wt%ロジウム担持アルミナ触媒 (触媒 No.8 )の EPMAによる硫黄元素及び白金元素の分布測定図である。
発明を実施するための最良の形態
[0044] 先ず、図 1を用いて、本発明でいうエッグシェル型と均一型の金属担持状態を説明 する。エッグシェル型とは、成形された触媒の 1つの断面において担持される金属種 が断面の外殻部分にのみ分散担持されている状態を指す。また、均一型は断面全 体に亘つて金属種が分散し、触媒の成形体の内部全般にわたって金属種が担持さ れている状態をいう。
以下、実施例及び比較例に基づいて、本発明の好適な実施の形態を具体的に説 明する。
[0045] 〔比較例〕
濃度 2. 67mol/リットルの硝酸アルミニウム水溶液を 3900cc調製すると共に、 14%ァ ンモユア水溶液を 3900cc用意した。 30リットルのホーロー容器に純水 20リットルを入 れ、撹拌しながら 70°Cに加温した。撹拌を続けながら、硝酸アルミニウム水溶液 130 Occを投入して 5分間撹拌 (pH=2.0)したのちにアンモニア水溶液 1300ccを投入して 5 分間撹拌 (pH=7.4)する pHスイング操作を 4回行った。得られた水酸ィ匕アルミニウムの スラリー水溶液を濾過してケーキを回収し、次 、でこのケーキを純水 20リットルに再 分散させて再び濾過する洗浄操作を 3回行 ヽ、洗浄ゲルを得た。
[0046] 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径 1. 6mmの棒状に 成形し、乾燥(120°C、 3時間)後、長さ約 lcm程度に粉砕し、マツフル炉にて焼成 (50 0°C、 3時間)して硫黄分を含まないアルミナ担体 Aを得た。
[0047] このようにして得たアルミナ担体 Aは BET表面積 275m2/g、水銀圧入法による細孔 容積 0. 65cm3/g、平均細孔径 8. 9nmであり、ほとんどの細孔が平均細孔径付近に 集中したシャープな細孔分布を有しており、 7〜: LOnmの細孔径を有する細孔が占め る容積は全細孔容積の 80%以上であった。担体 Aの細孔分布を図 2に示す。
[0048] このようにして調製したアルミナ担体 Aに pH = 2. 0に調製した塩化白金酸水溶液 を用いて焼成後の白金担持量が 0. 6重量%となるように含浸させた後、エバポレータ 一にて水分を除去し、乾燥(120°C、 3時間)、焼成 (400°C、 3時間)した後に、流通式 水素還元装置に充填して水素気流下に 450°C、 15時間の条件で水素還元し、 0.6wt %白金担持アルミナ触媒 No.1を得た。
[0049] 得られた触媒 No.1につ 、て、 EPMA (Electron probe micro analyzer;日本電子社 製 JXA-8900R)を用いて触媒断面上の硫黄元素及び白金元素の存在濃度を面分析 及び線分析により定量した結果を図 3に示す。
この図 3に示す結果から明らかなように、硫黄分を含有しない担体を用いて調製し た触媒では、白金元素が断面の外殻部に分散担持されていることがわ力る。
[0050] 〔実施例 1〕
アルミナ担体 Aの調製と同様に pHスイング操作を 3回行 ヽ、同様に洗浄を行って洗 浄ゲルを得た。このゲルに焼成後のアルミナ重量基準で 0. 5重量%となるように硫黄 粉末を添加して均一に混練した。その後は担体 Aの場合と同様に成形 ·乾燥 ·焼成を 行い、硫黄粉末を含むアルミナ担体 Bを得た。また、洗浄ゲルに硫黄粉末を添加す る際に、ケーキに対して混練するのではなぐケーキを純水に分散した高濃度のスラ リー状態のゲルに対して撹拌しながら硫黄粉末を添加した後に濾過を行い、このケ 一キを混練器によって十分の混練したゲル力 担体 Bと同様に調製した硫黄粉末を 含むアルミナ担体 Cを得た。
[0051] このようにして調製したアルミナ担体 B及び Cに pH = 2. 0に調製した塩化白金酸水 溶液を用いて焼成後の白金担持量が 0. 6重量%となるように含浸させた後、エバポレ 一ターにて水分を除去し、乾燥(120°C、 3時間)、焼成 (400°C、 3時間)した後に、流 通式水素還元装置に充填して水素気流下に 450°C、 15時間の条件で水素還元し、 0.6wt%白金担持アルミナ触媒 No.2及び No.3を得た。
[0052] 得られた触媒 No.2及び No.3について、 EPMAを用いて触媒断面上の硫黄元素及 び白金元素の存在濃度を面分析及び線分析により定量した結果を図 4 (触媒 No.2) 及び図 5 (触媒 No.3)に示す。図 4 (触媒 No.2)に示す結果から明らかなように、硫黄 が適度に分散した部分に白金の元素が略均一に分散しており、硫黄粉末を混練した アルミナ担体においても外殻部分だけでなく触媒断面の内部にわたって白金元素を 分散できることがわかる。し力しながら、ケーキに対して直接混練した担体では、硫黄 の粉末が十分に分散しづらいことから、硫黄粉末が集中して存在する部分が局部的 に存在し、このような部分には白金が分散していないことから、硫黄の濃度が高過ぎ る場合は白金の分散に好ましくないことがわかる。
[0053] 一方、図 5 (触媒 No.3)に示す結果力も明らかなように、高濃度のスラリー状態のケ ーキに対して添加した硫黄の粉末は十分に分散しており、このような担体から調製し た触媒 No.3においては、硫黄元素と白金元素とは共に担体全体に亘つて略均一に 分散し、白金元素の分布パターンは硫黄元素の分布パターンと略一致して 、ること が分かる。
[0054] 〔実施例 2〕
濃度 0. 9mol/リットルの硫酸アルミニウム水溶液を 3900cc調製すると共に、 14%ァ ンモユア水溶液を 3900cc用意した。 10リットルのホーロー容器に純水 7リットルを入 れ、撹拌しながら 70°Cに加温した。撹拌を続けながら、硫酸アルミニウム水溶液 400 ccを投入して 5分間撹拌 (pH=2.0)したのちにアンモニア水溶液 300ccを投入して 5分 間撹拌 (pH=7.4)する pHスイング操作を 3回行った。得られた水酸ィ匕アルミニウムのス ラリー水溶液を濾過してケーキを回収し、次 、でこのケーキを純水 7リットルに再分散 させて再び濾過する洗浄操作を2回行!、、洗浄ゲルを得た。
[0055] 洗浄ケーキを風乾により水分を調整した後に押出成形機で直径 1. 6mmの棒状に 成形し、乾燥(120°C、 3時間)後、長さ約 lcm程度に粉砕し、マツフル炉にて焼成 (50 0°C、 3時間)して硫黄分を含むアルミナ担体 Dを得た。このとき、担体 Dに残留してい る硫黄分は約 0. 5%であった。
[0056] このようにして得たアルミナ担体 Dは BET表面積 300m2/g、水銀圧入法による細孔 容積 0. 46cm3/g、平均細孔径 5. 6nmであり、ほとんどの細孔が平均細孔径付近に 集中したシャープな細孔分布を有しており、 4〜6nmの細孔径を有する細孔が占める 容積は全細孔容積の 80%以上であった。担体 Dの細孔分布を図 6に示す。
[0057] このようにして調製したアルミナ担体 Dに pH = 2. 0に調製した塩化白金酸水溶液 を用いて焼成後の白金担持量が 0. 6重量%となるように含浸させた後、エバポレータ 一にて水分を除去し、乾燥(120°C、 3時間)、焼成 (400°C、 3時間)した後に、流通式 水素還元装置に充填して水素気流下に 450°C、 15時間の条件で水素還元し、 0.6wt %白金担持アルミナ触媒 No.4を得た。
[0058] 得られた触媒 No.4につ!/、て、 EPMAを用いて触媒断面上の硫黄元素及び白金元 素の存在濃度を面分析及び線分析により定量した結果を図 7に示す。
図 7に示す結果から明らかなように、アルミナ担体の調製工程においてアルミナ源 に硫酸塩を利用して合成した後に過剰の硫酸根を洗浄除去することによって硫黄分 を含有させた担体を用いて調製した触媒中においても硫黄元素と白金元素とは共に 担体全体に亘つて略均一に分散し、白金元素の分布パターンは硫黄元素の分布パ ターンと略一致して 、ることが分かる。
[0059] 〔実施例 3〕
硫黄分を含まな 、担体 Aに濃度 0. 38mol/リットルの硫酸アンモ-ゥム水溶液を焼 成後の硫黄含有量が各々 0. 1重量%、0. 5重量%、 1. 2重量%となるように含浸して、 エバポレーターにて溶媒を除去した後に乾燥(120°C、 3時間)、焼成 (500°C、 3時間) して硫黄分を含むアルミナ担体 E (0.1重量 %)、 F (0.5重量 %)、及び G (1.2重量 %)を得 た。
[0060] このようにして調製したアルミナ担体 E、F及び Gに pH = 2. 0に調製した塩ィ匕白金 酸水溶液を用いて焼成後の白金担持量が 0. 6重量%となるように含浸させた後、ェ バポレーターにて水分を除去し、乾燥(120°C、 3時間)、焼成 (400°C、 3時間)した後 に、流通式水素還元装置に充填して水素気流下に 450°C、 15時間の条件で水素還 元し、 0.6wt%白金担持アルミナ触媒 No.5、 ^.6及び^.7を得た。得られた触媒 No.5、 No.6及び No.7につ!/、て、 EPMAを用いて触媒断面上の硫黄元素及び白金元素の 存在濃度を面分析及び線分析により定量した結果を図 8 (触媒 No.5)、図 9 (触媒 No. 6)及び図 10 (触媒 No.7)に示す。
[0061] 図 8 (触媒 No.5)に示す結果から明らかなように、触媒中において硫黄元素の含有 量が 0. 1重量 %程度では硫黄自体が触媒内に均一に分散することが比較的に困難 であり、硫黄含有量が 0. 1重量 %程度では不十分であることがわかる。このような担体 を用いて白金を担持した場合は、硫黄が存在する比較的に厚い外殻部に白金が分 散し、硫黄が存在しない触媒内部に白金は担持されずにエッグシェル型となる。しか しながら、低い硫黄含有量では均一型の担持を実現することはできないが、逆にこれ を利用して、白金が分散担持されるエッグシェル型の外殻部分の厚さをコントロール することが可會であることがゎカゝる。
[0062] 図 9 (触媒 No.6)に示す結果から明らかなように、触媒中において硫黄元素の含有 量が 0. 5重量 %の場合は硫黄自体が触媒内に均一に分散し、硫黄元素と白金元素 とは共に担体全体に亘つて略均一に分散し、白金元素の分布パターンは硫黄元素 の分布パターンと略一致して 、ることが分かる。
[0063] 図 10 (触媒 No.7)に示す結果から明らかなように、触媒中において硫黄元素の含有 量が 1. 2重量%においても硫黄自体が触媒内に均一に分散し、硫黄元素と白金元素 とは共に担体全体に亘つて略均一に分散し、白金元素の分布パターンは硫黄元素 の分布パターンと略一致して 、ることが分かる。
[0064] 〔実施例 4〕
上記の比較例及び実施例 1〜3にて調製された触媒 No.l〜No.7の白金の分散度 を COパルス吸着法によって測定した。
以下に COパルス吸着法について説明する。触媒に対して COをパルス的に試料に 注入すると、導入初期は COが担持金属表面に吸着され、溶出する COは少ないが、 やがて、ほとんどの担持金属表面に COが吸着し、定常状態になると、注入した COの ほとんどが溶出されるようになる。このとき、定常時に溶出される CO量力も始めの吸 着時の溶出 CO量を差し引き、その差分の和を CO吸着量として求める。 COパルス吸 着法は、この吸着量と担持金属含有量から金属表面積、分散率、粒子径を算出する 方法である。以下に具体的な算出方法を説明する。
[0065] 触媒の試料量 W(g)が測定温度で吸着した COガス量 Vはり、 0°Cにおける触媒 lg 当たりの吸着ガス量 Vを次の(1)式から求めた。
V=(Vt/W) X {273/ (273+t) } (ml/g-cat)… (1)
ここで、試料の金属含有率を C(%;)、担持金属の原子量を Mとすると、試料 lg当たりの 担持金属のモル数 Rは、
R= (C/100) X (1/M) (mol/g-cat)… (2)
試料 1 g当たりの吸着ガス量のモル数 Kは、
K=V/ (22. 4 X 10"3 X 106) (mol/g-cat) · '·(3)
これらより、分散度 Β (担持金属中の有効担持金属の割合)は、
B= (K/R) X 100 (%)… (4)
担持金属触媒の格子定数を a(A)とした時、格子定数面積 a2に対して吸着ガス分子 1 個が吸着するとすれば、金属の比表面積 Sは、
S =試料 lgに吸着したガス分子数 X a2 =KX6.02X1023X (aXlO-10)2--- (5)
でそれぞれ計算される。
[0066] また、担持金属粒子を一辺の長さを D(m)とする立方体と仮定すると、粒子の 6面の うち有効な面は 5面であることから、
粒子 1個の有効面積 S = 5D2 (m2)…(6)
粒子 1個の体積 v=D3 (m3)…(7)
試料 lg当たりの担持金属の粒子数を nとすると
担持金属の比表面積 S=ns=n5D2 (m2)…(8)
担持金属の体積 Vc=nv=Nd3 (m3)…(9)
式(10〜11)及び式(10〜12)より、
S/Vc=5/D .'.D = 5Vc/S (m)…(10)
担持金属の含有率 C(%)、比重を d(g/cm3)とすると、試料 lg当たりの担持金属の体積 Vcは、
Vc=試料 lg当たりの担持金属重量 (g/g)Z担持金属の比重 (g/cm3)
= C/100/d (g/cm3)…(11)
粒子径 =5VcZS
= {5(C/100/d) X10"6}/S (m)
= {5(C/100/d) X 10"6 X 1010}/S (A)
として計算される。
[0067] 上記の比較例及び実施例 1〜3において調製された触媒 No.l〜No.7の COパルス 吸着法による白金の分散度測定の結果を、下記の表 1 (COパルス吸着法による分散 度と粒子径)に示す。
[表 1] 触媒 硫黄分 白金担持量 分散度 粒子径
担体
No. (¾) (w t ¾) (%) (A )
1 A 0 0. 6 69 7. 1
2 B 0. 5 0. 6 46 1 1
3 C 0. 5 0. 6 68 7. 2
4 D 0. 5 0. 6 74 6. 7
5 E 0. 1 0. 6 67 7. 4
6 F 0. 5 0. 6 76 6. 5
7 G 1. 2 0. 6 7 1 6. 9
[0068] 〔実施例 5〕
硫黄分を含まない担体 A、及び硫黄分を含む担体 Dを用いて、六塩化ロジウムアン モ -ゥム水溶液を 50時間含浸した後に、エバポレーターにて溶媒を除去、乾燥(120 。C、 3時間)後、焼成 (400°C、 3時間)して、 0.6wt%ロジウム担持アルミナ触媒を得た。 EPMAを用いて触媒断面上の硫黄元素及び白金元素の存在濃度を面分析及び線 分析により定量した結果を図 11に示す。
[0069] 図 11に示す結果から明らかなように、硫黄分を含まない担体 Aを用いた場合は、口 ジゥム (Rh)が担体断面の外殻部のみに担持されたエッグシェル型となる。一方、硫黄 分を含有する担体 Bから調製した触媒ではエッグシェル型ではあるが外殻部が深く 中心付近までロジウムが分散していることがわかる。これよりアルミナ担体の成形体の 直径を小さくすることで中心部まで略均一に分散したロジウム担持アルミナ触媒を調 製することが可能であることがわかる。
[0070] 〔実施例 6〕
上記各実施例で得られた 0. 6重量%白金担持アルミナ触媒のうち、触媒 No.3(実施 例 1)、触媒 No.4(実施例 2)、触媒 No.6(実施例 3)、触媒 No.7(実施例 3)及び触媒 No.l (比較例)について、メチルシクロへキサン (MCH)の脱水素反応試験を実施した。内径 12. 6mm X 300mmサイズで、反応管断面の中心に外形 1/8インチの熱電対用保 護管を備えたステンレス製反応管の長さ方向の中心に、触媒層の中心が位置するよ うに上記各触媒 lOccを充填し、触媒の上側に予熱層として lmm φの球状 α -アルミ ナビーズ lOccを充填した。水素流通(LHSV=5.0; 50cc/hr)下に触媒層の中心温度 力 S320°Cになるまで昇温した。次 ヽでメチルシクロへキサン(MCH)を高速液体クロマ トグラフィ (HPLC)用送液ポンプ(HPLCポンプ)によって LHSV = 2. O (20cc/hr)に相 当する量を反応器に供給し、直に水素の流量を MCHと水素のガス量の合計量に対 して水素のガス量が 5mol%になるように調節した。反応中は触媒層の中心温度が 320
°Cになるように電気炉の出力を調整して反応試験を行った。
[0071] 反応管の出口には気液分離器を設け、この脱水素反応により生成したトルエン等 の液状生成物と水素ガス等の気体とを分離し、回収された液状生成物と気体とを各 々ガスクロマトグラフィで分析した。
反応開始 2時間後と 300時間後における MCH転ィ匕率 (%)、トルエン選択率 (%)、ト ルェン収率 (%)、及び水素発生量 (cc/h/cc-cat)を求めた。結果を表 2に示す。
[0072] 上記の比較例及び実施例 1〜3にお ヽて調製された触媒 No.3(実施例 1)、触媒 No.
4(実施例 2)、触媒 No.6(実施例 3)、触媒 No.7(実施例 3)及び触媒 No.1(比較例)につ 、 て実施したメチルシクロへキサンの脱水素反応試験の結果を、下記の表 2に示す。
[表 2]
Figure imgf000022_0001
[0073] 表 2に示す結果から明らかなように、本発明の脱水素触媒は、カリウム等のアルカリ 金属を用いて酸点をマスキングしなくても、非常に高い選択性を示し、副反応によつ て生成するメタンの濃度は硫黄分を含まないアルミナ担体から調製した触媒に比べ て、格段に低いことがわかる。また、 300時間に亘つて安定した性能を維持しており、 触媒性能の劣化が観察されないことから、長期に安定して選択性良く水素を発生さ せることができる。
産業上の利用可能性
本発明の均一型高分散金属触媒は、触媒担体にその担体全体に亘つて触媒金属 が略均一に分散した状態で担持されるので、それだけ触媒金属の担持量が増加し、 触媒活性や選択性、寿命等においてより優れた性能を発揮するので、例えばケミカ ルハイドライド法水素供給システム等で用いられる水素貯蔵体の脱水素触媒としての 用途や、化学品製造、水素製造、排気ガス等の環境浄化等の用途に好適に用いら れる。また、本発明の均一型高分散金属触媒の製造方法によれば、このような均一 型高分散金属触媒を工業的に容易に製造することができる。

Claims

請求の範囲
[1] 金属酸化物からなる触媒担体に触媒活性を有する触媒金属を担持させた金属触 媒にお 、て、上記触媒担体がその担体断面全体に亘つて分散して存在する硫黄又 は硫黄化合物を含有する硫黄含有触媒担体であり、この硫黄含有触媒担体には、 触媒金属が担体断面全体に亘つて上記硫黄又は硫黄化合物の分布に略々一致し て分散して担持されて!ヽる均一型高分散金属触媒。
[2] 硫黄含有触媒担体が、アルミニウムお)、珪素 (Si)、チタン (Ti)、ジルコニウムお)、及 びセリウム (Ce)力 選ばれた 1種又は 2種以上の金属を含む金属酸ィ匕物力 なる請 求項 1に記載の均一型高分散金属触媒。
[3] 触媒金属が、白金 (Pt)、ノ《ラジウム (Pd)、イリジウム (Ir)、ロジウム (Rh)、ルテニウム (Ru)
、ニッケル (Ni)、銅(Cu)及び亜鉛 (Zn)から選ばれた 1種又は 2種以上の金属である 請求項 1又は 2に記載の均一型高分散金属触媒。
[4] 触媒金属が白金である請求項 3に記載の均一型高分散金属触媒。
[5] 硫黄又は硫黄化合物が、硫黄 )、硫酸、硫酸塩及び有機硫黄化合物から選ばれ た 1種又は 2種以上である請求項 1〜4のいずれかに記載の均一型高分散金属触媒
[6] 硫黄又は硫黄化合物の含有量が、硫黄元素 (S)として 0. 15〜3. 0重量 %である請 求項 1〜5のいずれかに記載の均一型高分散金属触媒。
[7] 触媒金属の担持量が、触媒金属 (Me)として 0. 1〜3. 0重量 %である請求項 1〜6の いずれかに記載の均一型高分散金属触媒。
[8] 硫黄含有触媒担体が、硫黄含有多孔性 γ —アルミナからなる成形体若しくは粉末 である請求項 1〜7のいずれかに記載の均一型高分散金属触媒。
[9] 硫黄含有多孔性 γ —アルミナ担体が、表面積 150m2/g以上、細孔容積 0. 4cmVg 以上、平均細孔径 40〜300A、及び全細孔容積に対して平均細孔径 ± 30 Aの細 孔が占める割合が 60%以上の多孔性 γ -アルミナ担体である請求項 1〜8のいずれ かに記載の均一型高分散金属触媒。
[10] 触媒金属は、 COパルス吸着法により測定された分散度 40%以上で、硫黄含有触 媒担体に分散している請求項 1〜9のいずれかに記載の均一型高分散金属触媒。
[11] 担体断面全体に亘つて硫黄又は硫黄化合物が分散して存在する硫黄含有触媒担 体を調製し、得られた硫黄含有触媒担体に触媒金属化合物の水溶液を含浸させて 乾燥し、そのまま水素雰囲気にて還元する力、又は、乾燥して得られた触媒金属化 合物担持乾燥物を焼成し、次 ヽで得られた触媒金属担持焼成物を水素で還元する ことを特徴とする均一型高分散金属触媒の製造方法。
[12] 触媒金属化合物が、白金 (Pt)、ノ《ラジウム (Pd)、イリジウム (Ir)、ロジウム (Rh)、ルテ- ゥム (Ru)、ニッケル (Ni)、銅(Cu)及び亜鉛 (Zn)から選ばれた少なくとも 1種の触媒金 属の化合物である請求項 11に記載の均一型高分散金属触媒の製造方法。
[13] 硫黄含有触媒担体に触媒金属化合物の溶液を含浸させる際に、含浸溶液の pH値 を 1. 8〜3. 0の間に調整して行う請求項 12に記載の均一型高分散金属触媒の製造 方法。
[14] 硫黄含有触媒担体は、金属酸化物の前駆体となる金属水酸化物ゲルに硫黄粉末 を混練し、所定の形状に成形した後、乾燥し焼成して調製される請求項 11〜13のい ずれかに記載の均一型高分散金属触媒の製造方法。
[15] 硫黄含有触媒担体は、金属硫酸塩及び Z又は硫酸を用いて金属酸化物の前駆体 となる金属水酸化物ゲルを調製し、所定の形状に成形した後、乾燥し焼成して調製 される請求項 11〜13のいずれかに記載の均一型高分散金属触媒の製造方法。
[16] 硫黄含有触媒担体は、金属酸化物の前駆体となる金属水酸化物ゲルに硫黄化合 物溶液を混合し、次いで、成形及び乾燥後に焼成するか、金属酸化物の前駆体とな る金属水酸化物ゲルを所定の形状に成形し、次 ヽで乾燥して乾燥金属水酸化物とし 、この乾燥金属水酸化物に硫黄化合物溶液を含浸させた後に焼成して調製される 請求項 11〜13のいずれかに記載の均一型高分散金属触媒の製造方法。
[17] 硫黄含有触媒担体は、金属酸化物の前駆体となる金属水酸化物ゲルを所定の形 状に成形し、次いで乾燥して乾燥金属水酸化物とし、次いでこの乾燥金属水酸化物 を焼成して得られた焼成金属酸化物とし、この焼成金属酸化物に硫黄化合物溶液を 含浸させた後に再び焼成して調製される請求項 11〜13のいずれかに記載の均一 型高分散金属触媒の製造方法。
[18] 硫黄化合物溶液が、硫酸水溶液または硫酸アンモニゥム水溶液である請求項 16 又は 17に記載の均一型高分散金属触媒の製造方法。
[19] 硫黄含有触媒担体が、硫黄含有多孔性 γ —アルミナ担体である請求項 11〜18の いずれかに記載の均一型高分散金属触媒の製造方法。
[20] 硫黄含有多孔性 γ —アルミナ担体が、表面積 150m2/g以上、細孔容積 0. 40cm3/ g以上、平均細孔径 40〜300A、及び全細孔容積に対して平均細孔径 ± 30 Aの細 孔が占める割合が 60%以上である請求項 19に記載の均一型高分散金属触媒の製 造方法。
[21] 硫黄含有触媒担体を調製する際の焼成条件が、焼成温度 350〜800°C及び焼成 時間 1. 0〜24時間である請求項 14〜20のいずれかに記載の均一型高分散金属 触媒の製造方法。
[22] 請求項 1〜10のいずれかに記載された均一型高分散金属触媒を用いて水素化芳 香族類を脱水素することを特徴とする水素化芳香族類の脱水素方法。
[23] 水素化芳香族類が、単環芳香族類の水素化物、 2環芳香族類の水素化物、及び 3 環以上の芳香環を有する化合物の水素化物力 選ばれた 1種又は 2種以上の混合 物である請求項 22に記載の水素化芳香族類の脱水素方法。
[24] 請求項 1〜10のいずれかに記載された均一型高分散金属触媒を用いて芳香族類 を水素化することを特徴とする芳香族類の水素化方法。
[25] 芳香族類が、単環芳香族類の水素化物、 2環芳香族類、 3環以上の芳香環を有す る化合物力 選ばれた 1種又は 2種以上の混合物である請求項 24に記載の芳香族 類の水素化方法。
[26] 請求項 14〜18のいずれかに記載の方法によって、アルミニウム (Al)、珪素 (Si)、チ タン (Ti)、ジルコニウム (Zr)、及びセリウム (Ce)力 選ばれた 1種又は 2種以上の金属を 含む金属酸化物からなる多孔質担体に硫黄又は硫黄化合物を担持させて得られた 硫黄含有多孔質金属酸化物。
[27] 金属酸ィ匕物力もなる多孔質担体が、表面積 150m2/g以上、細孔容積 0. 40cm3/g 以上、平均細孔径 40〜300A、及び全細孔容積に対して平均細孔径 ± 30 Aの細 孔が占める割合が 60%以上の多孔性 γ -アルミナ担体である請求項 26に記載の方 法によって製造された硫黄含有多孔質金属酸化物。
PCT/JP2006/312237 2005-06-20 2006-06-19 均一型高分散金属触媒及びその製造方法 WO2006137358A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06766901.0A EP1894626B1 (en) 2005-06-20 2006-06-19 Process for producing a homogeneous, highly dispersed metal catalyst
US13/940,053 USRE46145E1 (en) 2005-06-20 2006-06-19 Uniformly, highly dispersed metal catalyst and process for producing the same
US11/922,462 US7985706B2 (en) 2005-06-20 2006-06-19 Uniformly, highly dispersed metal catalyst and process for producing the same
JP2007522272A JP4142733B2 (ja) 2005-06-20 2006-06-19 均一型高分散金属触媒及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005178804 2005-06-20
JP2005-178804 2005-06-20

Publications (1)

Publication Number Publication Date
WO2006137358A1 true WO2006137358A1 (ja) 2006-12-28

Family

ID=37570386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312237 WO2006137358A1 (ja) 2005-06-20 2006-06-19 均一型高分散金属触媒及びその製造方法

Country Status (4)

Country Link
US (2) USRE46145E1 (ja)
EP (1) EP1894626B1 (ja)
JP (1) JP4142733B2 (ja)
WO (1) WO2006137358A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011083701A (ja) * 2009-10-15 2011-04-28 Jx Nippon Oil & Energy Corp 水素源不純物に対する抗被毒特性に優れた水添触媒及びその製造方法
JP2012532893A (ja) * 2009-07-16 2012-12-20 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション シネオール
JP2018099679A (ja) * 2016-11-29 2018-06-28 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles C3炭化水素留分のための選択的水素化触媒
JP2019094231A (ja) * 2017-11-22 2019-06-20 テイカ株式会社 酸化アルミニウム粉体及びその製造方法
KR20210003820A (ko) * 2018-04-18 2021-01-12 클라리언트 인터내셔널 리미티드 백금-황-기반 쉘 촉매, 이의 제조, 및 탄화수소의 탈수소화에 있어서의 이의 용도
WO2022219821A1 (ja) * 2021-04-16 2022-10-20 千代田化工建設株式会社 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4853291B2 (ja) * 2007-01-10 2012-01-11 日産自動車株式会社 排気ガス浄化触媒及びその製造方法
EP2142297A1 (de) * 2007-04-24 2010-01-13 Basf Se Mit katalysator-metallkomponenten beladene poröse metallorganische gerüstmaterialien
FR2932101B1 (fr) * 2008-06-06 2011-05-13 Inst Francais Du Petrole Utilisation de supports soufres pour le reformage catalytique.
WO2010026814A1 (ja) 2008-09-02 2010-03-11 日産自動車株式会社 排気ガス浄化用触媒及びその製造方法
TWI413549B (zh) * 2009-03-13 2013-11-01 Ind Tech Res Inst 用於催化放氫反應之觸媒之製造方法
US20100233077A1 (en) * 2009-03-13 2010-09-16 Industrial Technology Research Institute Solid Hydrogen Fuel and Method of Manufacturing and Using the Same
US20100304238A1 (en) * 2009-05-27 2010-12-02 Industrial Technology Research Institute Solid Hydrogen Fuel and Methods of Manufacturing and Using the Same
CN102906013B (zh) * 2010-03-22 2016-05-25 布莱阿姆青年大学 制备孔结构受控的高多孔性稳定金属氧化物的方法
JP5897811B2 (ja) * 2011-03-30 2016-03-30 千代田化工建設株式会社 ハイブリッド型水素製造・発電システム
US9079164B2 (en) 2012-03-26 2015-07-14 Brigham Young University Single reaction synthesis of texturized catalysts
US9114378B2 (en) 2012-03-26 2015-08-25 Brigham Young University Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
EP2689843A1 (en) * 2012-07-26 2014-01-29 Saudi Basic Industries Corporation Alkane dehydrogenation catalyst and process for its preparation
US9289750B2 (en) 2013-03-09 2016-03-22 Brigham Young University Method of making highly porous, stable aluminum oxides doped with silicon
CN106140314B (zh) * 2015-04-15 2018-07-31 中国石油化工股份有限公司 一种加氢催化剂及其应用
CN109789395A (zh) * 2016-08-04 2019-05-21 巴斯夫公司 包含硫化合物的氧化催化剂
FR3059252B1 (fr) * 2016-11-29 2018-11-16 IFP Energies Nouvelles Catalyseur d’hydrogenation selective de coupes c3 de vapocraquage et/ou de craquage catalytique
BR112020026548A2 (pt) 2018-07-27 2021-03-23 Johnson Matthey Public Limited Company Composição catalisadora, artigo catalisador para o tratamento de gás de escape, sistema de tratamento de emissão para tratar um fluxo de um gás de escape de combustão, e, método de tratamento de um gás de escape de um motor de combustão interna
US11745169B1 (en) * 2019-05-17 2023-09-05 Unm Rainforest Innovations Single atom metal doped ceria for CO oxidation and HC hydrogenation/oxidation
CN115485063A (zh) * 2020-04-23 2022-12-16 千代田化工建设株式会社 蛋壳型载铂氧化铝催化剂、其制备方法及其使用方法
CN115485064A (zh) * 2020-04-23 2022-12-16 千代田化工建设株式会社 均匀型载铂氧化铝催化剂、其制备方法及其使用方法
CN112371116A (zh) * 2020-11-26 2021-02-19 中国天辰工程有限公司 一种用于甲基环己烷的长寿命含硫催化剂及其制备方法
EP4324560A1 (en) 2021-04-16 2024-02-21 Chiyoda Corporation Hydrogen station and hydrogen generation method
CN114011431A (zh) * 2021-12-08 2022-02-08 中国天辰工程有限公司 一种用于甲基环己烷的长寿命低铂双金属催化剂及其制备方法
CN114452984B (zh) * 2021-12-30 2022-10-21 浙江微通催化新材料有限公司 Cu/Mg/Fe-LDO负载Pd催化剂的制备方法及其在制备1,4-丁二醇中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177593A (en) * 1974-12-28 1976-07-05 Japan Gasoline Haigasuchuno chitsusosankabutsukangenyoshokubai
JPH05200296A (ja) * 1991-06-28 1993-08-10 Eniricerche Spa 超酸性触媒の製法
JPH0672005B2 (ja) 1985-11-08 1994-09-14 千代田化工建設株式会社 一酸化炭素の吸着分離方法
JP2001070794A (ja) * 1999-09-03 2001-03-21 Japan Energy Corp 白金族金属成分を含有した固体酸触媒
JP2001179105A (ja) * 1999-12-24 2001-07-03 Petroleum Energy Center 軽質炭化水素油を水素化脱硫異性化するための触媒およびその製造方法
JP2001353444A (ja) * 2000-06-13 2001-12-25 Petroleum Energy Center 炭化水素油の水素化脱硫触媒およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252193A (en) * 1975-10-23 1977-04-26 Toyota Motor Corp Catalyst for purifying exhaust gas from cars
US4087476A (en) 1976-01-19 1978-05-02 Uop Inc. Dehydrogenation method
US4562059A (en) * 1984-06-08 1985-12-31 Chiyoda Chemical Engineering & Construction Co., Ltd. Method of preparing alumina
US4721696A (en) 1987-03-11 1988-01-26 Phillips Petroleum Company Silica-modified alumina and process for its preparation
CA2055929A1 (en) * 1990-12-14 1992-06-15 William C. Baird, Jr. Process for reforming at low severities with high activity, high yield tin modified platinum-iridium catalysts
KR100840446B1 (ko) * 2001-03-02 2008-06-20 쟈판에나지 덴시자이료 가부시키가이샤 백금족 금속성분을 함유한 고체산촉매 및 그 제조방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5177593A (en) * 1974-12-28 1976-07-05 Japan Gasoline Haigasuchuno chitsusosankabutsukangenyoshokubai
JPH0672005B2 (ja) 1985-11-08 1994-09-14 千代田化工建設株式会社 一酸化炭素の吸着分離方法
JPH05200296A (ja) * 1991-06-28 1993-08-10 Eniricerche Spa 超酸性触媒の製法
JP2001070794A (ja) * 1999-09-03 2001-03-21 Japan Energy Corp 白金族金属成分を含有した固体酸触媒
JP2001179105A (ja) * 1999-12-24 2001-07-03 Petroleum Energy Center 軽質炭化水素油を水素化脱硫異性化するための触媒およびその製造方法
JP2001353444A (ja) * 2000-06-13 2001-12-25 Petroleum Energy Center 炭化水素油の水素化脱硫触媒およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATALYSIS SCHOOL TEXT, 2003, pages 35 - 44
CATALYSIS SCHOOL TEXT, 2004, pages 35 - 44
CATALYST DESIGN, vol. 5, pages 134 - 141
See also references of EP1894626A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012532893A (ja) * 2009-07-16 2012-12-20 コモンウェルス サイエンティフィック アンド インダストリアル リサーチ オーガニゼイション シネオール
JP2011083701A (ja) * 2009-10-15 2011-04-28 Jx Nippon Oil & Energy Corp 水素源不純物に対する抗被毒特性に優れた水添触媒及びその製造方法
JP2018099679A (ja) * 2016-11-29 2018-06-28 イエフペ エネルジ ヌヴェルIfp Energies Nouvelles C3炭化水素留分のための選択的水素化触媒
JP7097173B2 (ja) 2016-11-29 2022-07-07 イエフペ エネルジ ヌヴェル C3炭化水素留分のための選択的水素化触媒
JP2019094231A (ja) * 2017-11-22 2019-06-20 テイカ株式会社 酸化アルミニウム粉体及びその製造方法
KR20210003820A (ko) * 2018-04-18 2021-01-12 클라리언트 인터내셔널 리미티드 백금-황-기반 쉘 촉매, 이의 제조, 및 탄화수소의 탈수소화에 있어서의 이의 용도
KR102462569B1 (ko) 2018-04-18 2022-11-04 클라리언트 인터내셔널 리미티드 백금-황-기반 쉘 촉매, 이의 제조, 및 탄화수소의 탈수소화에 있어서의 이의 용도
WO2022219821A1 (ja) * 2021-04-16 2022-10-20 千代田化工建設株式会社 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法
JPWO2022219821A1 (ja) * 2021-04-16 2022-10-20
AU2021440561B2 (en) * 2021-04-16 2024-03-07 Chiyoda Corporation Platinum-loaded alumina catalyst, method of producing same, and method of dehydrogenating hydrogenated aromatic using the catalyst
JP7472399B2 (ja) 2021-04-16 2024-04-22 千代田化工建設株式会社 白金担持アルミナ触媒及びその製造方法ならびにその触媒を用いた水素化芳香族類の脱水素方法

Also Published As

Publication number Publication date
JP4142733B2 (ja) 2008-09-03
EP1894626B1 (en) 2019-03-06
US20090105511A1 (en) 2009-04-23
US7985706B2 (en) 2011-07-26
EP1894626A1 (en) 2008-03-05
USRE46145E1 (en) 2016-09-13
JPWO2006137358A1 (ja) 2009-01-15
EP1894626A4 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
WO2006137358A1 (ja) 均一型高分散金属触媒及びその製造方法
Zhang et al. The effect of coordination environment on the activity and selectivity of single-atom catalysts
Liu et al. Silver nanoparticles-decorated-Co3O4 porous sheets as efficient catalysts for the liquid-phase hydrogenation reduction of p-Nitrophenol
Sápi et al. In situ DRIFTS and NAP-XPS exploration of the complexity of CO2 hydrogenation over size-controlled Pt nanoparticles supported on mesoporous NiO
Huang et al. Flexible nickel foam decorated with Pt/NiO nanoflakes with oxygen vacancies for enhanced catalytic formaldehyde oxidation at room temperature
EP2898946B1 (en) Methods for producing hydrogen
Fei et al. A study on the catalytic hydrogenation of N-ethylcarbazole on the mesoporous Pd/MoO3 catalyst
Boaro et al. A comparative study of water gas shift reaction over gold and platinum supported on ZrO2 and CeO2–ZrO2
Restivo et al. Catalytic reduction of bromate over monometallic catalysts on different powder and structured supports
Fu et al. Pt loaded manganese oxide nanoarray-based monolithic catalysts for catalytic oxidation of acetone
Zhao et al. Effect of LDH composition on the catalytic activity of Ru/LDH for the hydrolytic dehydrogenation of ammonia borane
Nikolaev et al. Sites for the selective hydrogenation of ethyne to ethene on supported NiO/Au catalysts
BR112013005598B1 (pt) material à base de sílica, processo para produzir o mesmo, material suportado com um metal nobre, processo para produzir um éster de ácido carboxílico, e, processo para produzir um ácido carboxílico
Khani et al. Synergic effect of heat and light on the catalytic reforming of methanol over Cu/x-TiO2 (x= La, Zn, Sm, Ce) nanocatalysts
KR20100033370A (ko) 탄화수소를 분해하는 촉매
Wang et al. Ruthenium/cobalt binary oxides supported on hollow alumina microspheres as highly efficient catalyst for vinyl chloride oxidation
US20200056295A1 (en) Process for preparation of metal oxides nanocrvstals and their use for water oxidation
Zhang et al. Sulfur-doped porous carbon supported palladium catalyst for high selective o-chloro-nitrobenzene hydrogenation
Zhu et al. Platinum-nickel alloy nanoparticles supported on carbon for 3-pentanone hydrogenation
Vallés et al. Noble-bimetallic supported CMK-3 as a novel catalyst for hydrogenation of tetralin in the presence of sulfur and nitrogen
Miyao et al. Catalytic activity and durability of a mesoporous silica-coated Ni-alumina-based catalyst for selective CO methanation
Simonov et al. Enhanced catalytic activity for hydrogen electrooxidation and CO tolerance of carbon-supported non-stoichiometric palladium carbides
Gobara et al. Various characteristics of Ni and Pt–Al2O3 nanocatalysts prepared by microwave method to be applied in some petrochemical processes
CN114585439B (zh) 适用于烃类转化反应的催化剂、其制备方法和应用
Han et al. Fabrication and catalytic properties of Pd and Ce decorated carbon nanotube-TiO2 composite catalysts for low-temperature CO oxidation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007522272

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13940053

Country of ref document: US

Ref document number: 11922462

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006766901

Country of ref document: EP