WO2006134834A1 - 液状硬化性組成物、硬化膜及び帯電防止用積層体 - Google Patents
液状硬化性組成物、硬化膜及び帯電防止用積層体 Download PDFInfo
- Publication number
- WO2006134834A1 WO2006134834A1 PCT/JP2006/311599 JP2006311599W WO2006134834A1 WO 2006134834 A1 WO2006134834 A1 WO 2006134834A1 JP 2006311599 W JP2006311599 W JP 2006311599W WO 2006134834 A1 WO2006134834 A1 WO 2006134834A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- meth
- compound represented
- particles
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
Definitions
- the present invention relates to a liquid curable composition, a cured film thereof, and an antistatic laminate. More specifically, it has excellent curability and various substrates such as plastics (polycarbonate, polymethylmetatalylate, polystyrene, polyester, polyolefin, epoxy resin, melamine resin, triacetyl cell mouthwater resin, ABS, etc. Coatings with excellent antistatic properties, hardness, scratch resistance, and transparency on the surfaces of resin, AS resin, norbornene resin, etc., metal, wood, paper, glass, ceramics, slate, etc.
- the present invention relates to an antistatic laminate comprising a liquid curable composition capable of forming (A) and a cured film layer obtained by curing the composition.
- a radiation-curable composition has been used on the surface of the equipment to provide a scratch-resistant and adhesive coating (hard coat) and an antistatic function.
- a coating film antistatic film
- a multilayer structure (antireflection film) of a low refractive index layer and a high refractive index layer is formed on the surface of the optical article.
- optical articles such as plastic lenses are required to prevent dust from being attached due to static electricity, and to improve the reduction in transmittance due to reflection. Therefore, prevention of dust adhesion due to static electricity and prevention of reflection on the screen has been demanded.
- Patent Document 1 a composition containing a sulfonic acid and a phosphoric acid monomer as an ion conductive component
- Patent Document 2 a composition containing a chain metal powder
- Patent Document 3 a composition mainly composed of a copolymer of methyl methacrylate and polyether acrylate
- Patent Document 3 a conductive material containing a pigment coated with a conductive polymer.
- Optical disk material (Patent Document 5), Silane coupler containing coating composition (Patent Document 4), trifunctional acrylic ester, monofunctional ethylenically unsaturated group-containing compound, photopolymerization initiator, and conductive powder
- Conductive paint containing hydrolyzate of antimony-doped tin oxide particles and tetraalkoxysilane, photosensitizer, and organic solvent dispersed in (Patent Document 6), and polymerizable unsaturated group in the molecule
- Liquid curable resin composition containing a reaction product of an alkoxysilane and metal oxide particles, a trifunctional acrylic compound, and a radiation polymerization initiator
- primary particles A conductive oxide fine powder having a diameter of ⁇ m or less, an easily dispersible low boiling solvent of the conductive oxide fine powder, a hardly dispersible low boiling solvent of the conductive oxide fine powder, and a binder resin Examples thereof include a coating material for forming a transparent conductive film (Pa
- These display panels are required to have scratch resistance that is often wiped with gauze impregnated with ethanol or the like in order to remove attached fingerprints, dust, and the like. There is also a demand for contamination resistance that can easily wipe off attached fingerprints and dust.
- the antireflection film is provided on the liquid crystal unit in a state of being bonded to a polarizing plate.
- the base material for example, triacetyl cellulose is used, but in the antireflection film using such a base material, in order to increase the adhesion when bonded to the polarizing plate, In general, it is necessary to carry out the quenching with an aqueous alkaline solution. Therefore, in applications of liquid crystal display panels, there is a demand for an antireflection film excellent in alkali resistance, particularly in durability.
- a fluorine-based resin coating containing a hydroxyl group-containing fluoropolymer is known (for example, Patent Documents 9 to 11).
- a hydroxyl group-containing coating is used to cure the coating film. It is necessary to heat and crosslink the fluoropolymer and a curing agent such as melamine resin under an acid catalyst. Depending on the heating conditions, the curing time becomes excessively long, and the types of substrates that can be used are limited. There was a problem of being.
- the obtained coating film had excellent weather resistance, but was poor in scratch resistance and durability!
- an isocyanate group-containing unsaturated compound having at least one isocyanate group and at least one addition-polymerizable unsaturated group, and a hydroxyl group-containing fluorine-containing weight There has been proposed a coating composition containing an unsaturated group-containing fluorinated vinyl polymer obtained by reacting a polymer with an isocyanate group at a ratio of the number of isocyanate groups to the number of Z hydroxyl groups of 0.01 to 1.0. (For example, Patent Document 12).
- a coating composition containing such a polymer can be cured at a low temperature in a short time, but a curing agent such as melamine resin is further used to react the remaining hydroxyl groups. Needed to be cured. Furthermore, the coating film obtained in the above publication has a problem that it is sufficient in terms of coatability and scratch resistance.
- Patent Document 1 Japanese Patent Application Laid-Open No. 47-34539
- Patent Document 2 JP-A-55-78070
- Patent Document 3 JP-A-60-60166
- Patent Document 4 Japanese Patent Laid-Open No. 2-194071
- Patent Document 5 Japanese Patent Laid-Open No. 4-172634
- Patent Document 6 JP-A-6-2644009
- Patent Document 7 Japanese Unexamined Patent Publication No. 2000-143924
- Patent Document 8 Japanese Patent Laid-Open No. 2001-131485
- Patent Document 9 Japanese Patent Laid-Open No. 57-34107
- Patent Document 10 Japanese Patent Application Laid-Open No. 59-189108
- Patent Document 11 Japanese Patent Laid-Open No. 60-67518
- Patent Document 12 JP-A 61-296073
- Patent Document 1 uses an ion conductive material, but its performance fluctuates due to drying when the antistatic performance is not sufficient. Since the composition described in Patent Document 2 disperses a chain-like metal powder having a large particle size, transparency is lowered. Since the composition described in Patent Document 3 contains a large amount of a non-curable dispersant, the strength of the cured film decreases. Since the material described in Patent Document 5 contains high-concentration chargeable inorganic particles, transparency is lowered. The paint described in Patent Document 6 has insufficient long-term storage stability. Patent Document 7 does not disclose any method for producing a composition having antistatic performance. When a transparent conductive film is formed by applying and drying the paint described in Patent Document 8, the organic matrix having a binder compounding power is not provided with a cross-linked structure, so that the organic solvent resistance is not sufficient.
- the present invention has been made in view of the above-described problems, and is a coating film excellent in curability and excellent in antistatic property, hardness, scratch resistance, and transparency on the surface of various base materials. It is an object of the present invention to provide a liquid curable composition capable of forming a coating) and a cured film thereof.
- the present invention can also exhibit sufficient antistatic performance even when the amount of the conductive particles is small, is excellent in curability, and has antistatic properties on the surface of various substrates.
- the present inventor has found that a tin-containing indium oxide particle having a specific particle size, a compound having two or more polymerizable unsaturated groups in the molecule, and photopolymerization initiation
- a composition containing an agent and a solvent the antistatic performance is exhibited even when the amount of the conductive particles is small compared to the conventional one, and the transparency is not impaired! /, And a cured film can be obtained.
- the present invention has been completed by finding out what can be done.
- the inventor has also found that the above object can be achieved by a laminate having a cured film layer obtained by curing the composition, and has completed the present invention.
- this cured film layer is combined with a low refractive index film obtained by curing a specific ethylenically unsaturated group-containing fluoropolymer and a curable resin composition containing silica particles, thereby providing an antireflection laminate.
- the present invention was completed by finding that the abrasion resistance and contamination resistance of the body were improved.
- the present invention provides the following liquid curable composition, cured film, method for producing the cured film, laminate, and method for producing the laminate.
- A Particles mainly composed of tin-containing indium oxide (ITO) having a primary particle size of 20 nm or less and a secondary particle size of 50 nm or less
- the component (A) is tin-containing indium oxide (ITO) surface-treated with a surface treatment agent. 3.
- X represents NH, 0 (oxygen atom) or S (ion atom), and Y represents O or S.
- a cured film obtained by curing the liquid curable composition according to any one of 1 to 4 above.
- a method for producing a cured film which comprises a step of irradiating the liquid curable composition according to any one of 1 to 4 above with radiation to cure the composition.
- a laminate comprising: a cured film layer obtained by curing the liquid curable composition according to any one of 1 to 4 above.
- the laminated body is an antireflection film in which at least an antistatic layer and a low refractive index layer are laminated on a base material in this order in the order of V and side force,
- the low refractive index layer is
- R 11 represents a fluorine atom, a fluoroalkyl group or a group represented by —OR ”(R represents an alkyl group or a fluoroalkyl group)]
- R 13 is a hydrogen atom or a methyl group
- R 14 is an alkyl group,-(CH) —OR 15
- R 15 represents an alkyl group or a glycidyl group, c represents a number of 0 or 1), a carboxyl group or an alkoxycarbo group] [Chemical 3]
- R 16 represents a hydrogen atom or a methyl group
- R 17 represents a hydrogen atom or a hydroxyalkyl group
- V represents a number of 0 or 1
- the hydroxyl group-containing fluoropolymer is further added to the following structural units (d) derived from an azo group-containing polysiloxane compound with respect to a total of 100 mole parts of the structural units (a) to (c).
- R 18 and R 19 may be the same or different and each represents a hydrogen atom, an alkyl group, a halogenialkyl group or an aryl group]
- X each independently represents an alkoxy group having 1 to 4 carbon atoms, a halogeno group, an isocyanate group, an alkyloxycarbon group having 2 to 4 carbon atoms, or an alkylamino group having 1 to 4 carbon atoms.
- R 29 Is an alkenyl group having 2 to 8 carbon atoms, an talyloxyalkyl group having 4 to 8 carbon atoms, or A methacryloxyalkyl group having 5 to 8 carbon atoms, j represents an integer of 1 to 3; X in formula (22) and X in formula (23) may be the same or different.
- X each independently represents an alkoxy group having 1 to 4 carbon atoms, a halogeno group, an isocyanate group, an alkyloxycarbon group having 2 to 4 carbon atoms, or an alkylamino group having 1 to 4 carbon atoms.
- R 29 Is an alkenyl group having 2 to 8 carbon atoms, an attaryloxyalkyl group having 4 to 8 carbon atoms, or a methacryloxyalkyl group having 5 to 8 carbon atoms
- j is an integer of 1 to 3.
- R 3 is 1 carbon number -12 fluorine-substituted alkyl group
- k represents an integer of 1 to 3.
- X in formula (22), X in formula (23) and X in formula (24) may be the same or different. May be.
- the hydrolysis And Z or a hydrolysis-condensation product have a reactant power of 67 to 99 mol% of the key compound represented by the formula (22) and 33 to 1 mol% of the key compound represented by the formula (23).
- liquid curing that can form a coating film (coating) having excellent curability and excellent antistatic properties, hardness, scratch resistance, and transparency on the surface of various substrates.
- Composition and a cured film thereof can be provided.
- liquid curable composition of the present invention a cured film having both antistatic properties and transparency requirements can be obtained.
- an antistatic laminate having a cured film obtained by curing the liquid curable composition.
- the laminate of the present invention is an optical component having an antistatic function, particularly an antistatic device. It is useful as an antireflection film having a function.
- FIG. 1 is a schematic diagram showing a basic configuration of a laminate according to the present invention.
- FIG. 2A is a schematic view showing a first form of an antireflection film with an antistatic function of the present invention.
- FIG. 2B is a schematic diagram showing another form of the first form of the antireflection film with an antistatic function of the present invention.
- FIG. 2C is a schematic view showing a second embodiment of the antireflection film with an antistatic function of the present invention.
- FIG. 2D is a schematic diagram showing another form of the second form of the antireflection film with an antistatic function of the present invention.
- FIG. 2E is a schematic view showing a third embodiment of the antireflection film with an antistatic function of the present invention.
- FIG. 2F is a schematic view showing another form of the third form of the antireflection film with an antistatic function of the present invention.
- FIG. 3 is an electron micrograph of a cross section of the cured film of the present invention showing a typical state in which ITO particles of component (A) are unevenly distributed on the substrate side.
- the laminate of the present invention has at least a substrate and a cured film layer obtained by curing a liquid curable composition containing the following components (A) to (D).
- A Particles mainly composed of tin-containing indium oxide (ITO) having a primary particle size of 20 nm or less and a secondary particle size of 50 nm or less
- the antireflection film which is a preferred embodiment of the laminate of the present invention, is such that the antistatic layer and the low refractive index layer comprising at least the cured film layer are close to the base material on the base material.
- the side force is also an antireflection film laminated in this order, and the low refractive index layer is a cured product of a curable resin composition containing the following components (G) and (H).
- the laminate 1 of the present invention has a base film 10 and a cured film layer 12 formed by curing the liquid curable composition.
- the laminate of the present invention only needs to have at least the substrate 10 and the cured film layer 12. Depending on the, various layers may be provided. The layer provided according to the purpose will be described later.
- the laminate 1 of the present invention has the cured film layer 12 having excellent scratch resistance and adhesion, it is particularly useful as a hard coat.
- the laminate 1 of the present invention has an antistatic laminate by disposing a cured film layer 12 having an excellent antistatic function on a substrate of various shapes such as a film, a plate, or a lens. Useful as a body.
- an antireflection film having an antistatic function for various display panels such as a CRT, a liquid crystal display panel, a plasma display panel, an electret luminescence display panel (hereinafter referred to as “antireflection film”)
- an antireflection film with an antistatic function such as a plastic lens, a polarizing film, and a solar battery panel.
- the cured film layer provided on the substrate of the laminate of the present invention comprises the following liquid curable composition (hereinafter, simply “composition” or “antistatic layer forming composition”). It is obtained by curing, and the laminate can be given a function as a conductive film and a function as Z or a hard coat.
- composition liquid curable composition
- antistatic layer forming composition antistatic layer forming composition
- liquid curable composition used in the present invention will be specifically described.
- Component (A) used in the present invention is tin-containing indium oxide (hereinafter, also simply referred to as “ITO”) particles.
- the component ( ⁇ ) is an essential component for imparting conductivity (antistatic property) to the cured film obtained by curing the composition of the present invention.
- the primary particle size of the soot particles is 20 nm or less, and the secondary particle size is 50 nm or less.
- the primary particle size of the ITO particles is preferably 15 nm or less, and the secondary particle size is preferably 40 ⁇ . m or less.
- the primary particle size of the ITO particles of component (A) is a value measured with a transmission electron microscope when the shape is spherical, regardless of the presence or absence of the surface treatment described later, and the shape is needle-like.
- the value obtained as the number average particle size by observing the short axis with a transmission electron microscope is a value measured with a transmission electron microscope.
- the secondary particle size of the soot particles of the component ( ⁇ ) is a value obtained by a dynamic light scattering type particle size distribution measuring device regardless of the presence or absence of surface treatment described later.
- soot powders of soot particles include a trade name: soot powder manufactured by Fuji Chemical Co., Ltd.
- the soot particles used as the component ( ⁇ ) can be used in a state of being dispersed in a powder or a solvent. However, since uniform dispersibility is easily obtained, it is preferable to use in a state of being dispersed in a solvent. Yes.
- soot particles used as the component (soot) are dispersed in a solvent
- the soot particles used as the component (soot) may be soot particles surface-treated with a surface treatment agent or the like in order to improve dispersibility in a solvent.
- examples of the surface treatment agent include alkoxysilane compounds, tetrabutoxysilane, tetrabutoxyzirconium, tetraisopropoxyaluminum, and the like. These can be used alone or in combination of two or more.
- alkoxysilane compound examples include a group of compounds having an unsaturated double bond in the molecule, such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, and burtrimethoxysilane.
- ⁇ -methacryloxypropyltrimethoxysilane ⁇ -acryloxypropyltrimethoxysilane
- burtrimethoxysilane ⁇ -glycidoxypropyltriethoxysilane
- ⁇ -glycidoxypropyltrimethoxysilane and other compounds having an epoxy group in the molecule, ⁇ -aminopropyltriethoxysilane, y-amaminopropyltrimethoxysilane, etc.
- Compound group having an amino group in the molecule compound group having a mercapto group in the molecule such as ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, Alkyl silanes such as phenyltrimethoxysilane Etc. can be mentioned.
- Surface treatment ⁇ Preferable in terms of dispersion stability of particles.
- a reactive surface treatment agent having a functional group that is copolymerized or cross-linked with an organic resin is also preferable.
- a surface treatment agent include a compound group having an unsaturated double bond in the molecule, two or more polymerizable unsaturated groups, a group represented by the following formula (1), and a silanol group or hydrolysis.
- a compound having a group that forms a silanol group is preferred.
- X represents NH, 0 (oxygen atom) or S (ion atom), and Y represents O or S.
- Examples thereof include alkoxysilane compounds having an unsaturated group.
- a compound represented by the following formula (2) can be exemplified.
- R 1 is a methyl group
- R 2 is an alkyl group having 1 to 6 carbon atoms
- R 3 is a hydrogen atom or a methyl group
- m is 1 or 2
- n is an integer of 1 to 5
- X is 1 to 5 carbon atoms 6 divalent alkylene group
- Y is a chain, cyclic or branched divalent hydrocarbon group having 3 to 14 carbon atoms
- Z is an (n + 1) valent chain, cyclic or branched Is a divalent hydrocarbon group having 2 to 14 carbon atoms. In Z, It may contain a single bond.
- the compound represented by the formula (2) can be produced by reacting mercaptoalkoxysilanes, diisocyanates, and hydroxyl group-containing polyfunctional (meth) acrylates.
- an intermediate bonded with a thiourethane bond by reaction of mercaptoalkoxysilanes and diisocyanates is prepared, and then the remaining isocyanate is reacted with a hydroxyl group-containing polyfunctional (meth) acrylate.
- a method for producing a product bonded with a urethane bond can be mentioned.
- an intermediate bonded with a urethane bond is first produced by a reaction between a diisocyanate and a hydroxyl group-containing polyfunctional (meth) acrylate, and then the remaining isocyanate is reacted with a mercaptoalkoxysilane. Even if the same product is obtained, the addition reaction between the mercaptoalkoxysilanes and the (meth) acrylic group occurs simultaneously, so that the purity is lowered and a gel-like product may be formed.
- Examples of mercaptoalkoxysilanes used in the production of the compound represented by formula (2) include ⁇ -mercaptopropyltrimethoxysilane, ⁇ -mercaptopropyltriethoxysilane, ⁇ -mercaptopropyltributoxysilane, ⁇ -mercaptopropyldimethylmethoxysilane, ⁇ -mercaptopropylmethyldimethoxysilane and the like can be mentioned. Of these, ⁇ -mercaptopropyltrimethoxysilane and ⁇ -mercaptopropylmethyldimethoxysilane are preferable.
- Examples of commercially available mercaptoalkoxysilanes include trade name: SH6062 manufactured by Toray Dow Co., Ltd.
- the diisocyanates include, for example, 1,4-butylene diisocyanate, 1,6 monohexylene diisocyanate, isophorone diisocyanate, hydrogenated xylylene diisocyanate, hydrogenated bisphenolate.
- 2,4-toluene diisocyanate, isophorone diisocyanate, and hydrogenated xylylene diisocyanate are preferable.
- polyisocyanate compounds include, for example, product names manufactured by Mitsui Nisso Urethane Co., Ltd .: TDI—80Z20, TDI—100, MDI—CR100, MDI—CR300, MDI—PH, NDI, manufactured by Nippon Polyurethane Industry Co., Ltd. Trade name: Coronate T, Millionate ⁇ , Millionone MR, HDI, Takeda Pharmaceutical Co., Ltd. Product name: Takenate 600, etc.
- Examples of the hydroxyl group-containing polyfunctional (meth) atalylates include, for example, trimethylolpropandi (meth) atalylate, tris (2-hydroxyethyl) isocyanurate di (meth) atalylate, pentaerythritol. Examples thereof include tri (meth) acrylate and dipentaerythritol penta (meth) acrylate. Of these, tris (2-hydroxyethyl) isocyanurate di (meth) acrylate, pentaerythritol tri (meth) acrylate, and dipentaerythritol penta (meth) acrylate are preferred. These form two or more polymerizable unsaturated groups in the compound represented by the formula (2).
- These mercaptoalkoxysilanes, diisocyanates, and hydroxyl group-containing polyfunctional (meth) acrylates may be used alone or in combination of two or more.
- the compounding ratio of mercaptoalkoxysilanes, di-socyanates, and hydroxyl group-containing polyfunctional (meth) acrylates is mercaptoalkoxysilanes.
- the molar specific force S of the diisocyanates with respect to is preferably 0.8 to 1.5, more preferably 1.0 to 1.2. When this molar ratio is less than 0.8, the storage stability of the composition may be lowered, and when it exceeds 1.5, the dispersibility may be lowered.
- the molar ratio of the hydroxyl group-containing (meth) acrylates to the diisocyanates is preferably from 1.0 to 1.5, more preferably from 1.0 to 1.2. If this mono ktt force is less than S1.0, gelation may occur, and if it exceeds 1.5, the antistatic property may deteriorate.
- the compound represented by formula (2) is usually preferably produced in dry air in order to prevent anaerobic polymerization of acrylic groups and to prevent hydrolysis of alkoxysilanes.
- the reaction temperature is preferably 0 ° C to 100 ° C, more preferably 20 ° C to 80 ° C.
- a known catalyst may be added in the urethane reaction for the purpose of shortening the production time.
- the catalyst include dibutyltin dilaurate, dioctyltin dilaurate, dibutyltin di (2-ethylhexanoate), and octyltin triacetate.
- the amount of the catalyst added is from 0.01 to 1% by weight based on the total amount with the diisocyanates.
- thermal polymerization inhibitor for the purpose of preventing thermal polymerization of the compound represented by the formula (2), a thermal polymerization inhibitor is added during the production. It may be added.
- the thermal polymerization inhibitor include P-methoxyphenol and hydrated quinone.
- the addition amount of the thermal polymerization inhibitor is preferably 0.01% by weight to 1% by weight with respect to the total of the hydroxyl group-containing polyfunctional (meth) acrylates.
- the compound represented by formula (2) can also be produced in a solvent.
- a solvent for example, a solvent having a boiling point of 200 ° C. or lower that does not react with mercaptoalkoxysilanes, diisocyanates, and hydroxyl group-containing polyfunctional (meth) acrylates can be appropriately selected.
- Specific examples of such solvents include ketones such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, esters such as ethyl acetate, butyl acetate and amyl acetate, and hydrocarbons such as toluene and xylene. Can be mentioned.
- the surface-treated ITO particles can be produced by hydrolyzing the surface treatment agent in the presence of the ITO particles.
- the preferred manufacturing method is (A) IT
- water is added to a mixture of O particles, a surface treatment agent, and an organic solvent, followed by hydrolysis.
- the alkoxy group is temporarily converted into a silanol group (Si—OH) by hydrolysis of the surface treatment agent, and this silanol group reacts with the metal hydroxide (M—OH) on the ITO particles. Then, it is presumed that the surface treatment agent is fixed on the ITO particles by forming a metalloxane bond (M—O—Si).
- the compounding amount of the surface treatment agent is preferably 0.1 to 50 parts by weight, more preferably 1 to 35 parts by weight with respect to 100 parts by weight of the (A) ITO particles. If the surface treatment agent is less than 0.1 part by weight, the cured film may have insufficient wear resistance, and if it exceeds 50 parts by weight, the antistatic performance may be insufficient.
- the amount of water is preferably 0.5 to 1.5 equivalents relative to the total alkoxy equivalent in the surface treatment agent, and 0.5 to 5 with respect to 100 parts by weight of the surface treatment agent. It is preferable to add 0 part by weight.
- the water used is preferably ion exchange water or distilled water.
- the hydrolysis reaction can be carried out in the presence of an organic solvent by heating and stirring at a temperature of 0 ° C to the boiling point of the component, usually 30 to 100 ° C, for 1 to 24 hours.
- an organic solvent when (A) ITO particles dispersed in an organic solvent in advance are used, it can be carried out as they are, but an organic solvent may be added separately.
- an acid or a base may be added as a catalyst in order to promote the reaction during the hydrolysis.
- acids include inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, methanesulfonic acid, toluene sulfonic acid, phthalic acid, malic acid, tartaric acid, malonic acid, formic acid, oxalic acid, methacrylic acid, acrylic acid,
- organic acids such as itaconic acid, and ammonium salts such as tetramethylammonium hydrochloride and tetrabutylammonium hydrochloride.
- Examples of the base include amines such as aqueous ammonia, triethylamine, tributylamine, and triethanolamine.
- a preferable catalyst is an acid, and an organic acid is more preferable. The amount of these catalysts added is preferably 0.001 to 1 part by weight, more preferably 0.01 to 0.1 part by weight, based on 100 parts by weight of the alkoxysilane compound.
- Examples of the dehydrating agent are organic carboxylic acid orthoesters and ketals. Specifically, for example, orthoformate methyl ester, orthoformate ethyl ester, orthoacetic acid methyl ester, orthoacetic acid ethyl ester, etc., acetone dimethyl ketal, jetyl ketone dimethyl ketal, Examples include cetophenone dimethyl ketal, cyclohexanone dimethyl ketal, cyclohexanone jetyl ketal, and benzophenone dimethyl ketal. Among them, preferred are organic carboxylic acid orthoesters, and more preferred are orthoformate methyl ester and orthoformate ethyl ester.
- These dehydrating agents can be added in an amount of not less than 10 moles and not more than 10 moles, preferably not less than 3 moles and not more than the amount of water contained in the composition. If it is less than the equivalent mole, the storage stability may not be sufficiently improved. These dehydrating agents are preferably added after the preparation of the composition. This promotes the storage stability of the composition and the formation of chemical bonds between the silanol groups in the hydrolyzate of the surface treatment agent and (A) ITO particles.
- the surface treatment agent is mediated by a siloxy group (Si—O—). It is presumed that (A) it is fixed on the surface of ITO particles by chemical bonding.
- the (A) ITO particles surface-treated with a reactive surface treatment agent are particularly referred to as reactive particles (RA).
- the blending amount of component (A) is not particularly limited, but is preferably 5 to 40% by weight, more preferably 7 to 35% by weight in 100% by weight of the total solid content of the composition of the present invention. The same applies when component (A) is surface treated. If the blending amount is less than 5% by weight, the antistatic property may be inferior, and if it exceeds 40 parts by weight, the film forming property of the coating film may be inferior.
- the blending amount of component (A) refers to the blending amount as a solid content, and does not include a dispersion medium.
- Component (B) used in the present invention is a compound having two or more polymerizable unsaturated groups in the molecule.
- the cured film obtained by curing the composition of the present invention has film-forming properties and transparency. It is an ingredient to be given.
- a cured product having excellent scratch resistance and organic solvent resistance can be obtained.
- component (B) include (meth) acrylic esters and vinyl compounds.
- (Meth) acrylic esters include trimethylol propane tri (meth) acrylate, ditrimethylol propane tetra (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipenta Erythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, glycerin tri (meth) acrylate, tris (2-hydroxyethyl) isocyanurate tri (meth) acrylate, ethylene phthalate (meta ) Atalylate, 1,3-Butanedioldi (meth) atarylate, 1,4-Butanedioldi (meth) atalylate, 1,6-Hexanedioldi (meth) atalylate, Neopentylglycoldi (meth) Atalylate, diethyleneda
- vinyl compounds include dibutene benzene, ethylene glycol dibutyl ether, diethylene glycol divinino ether, triethylene glycol divinino etherate and the like.
- These (B) components may be used individually by 1 type, and may use 2 or
- the amount of component) is preferably 55 to 94% by weight, more preferably 60 to 92% by weight, based on 100% by weight of the total solid content of the composition of the present invention. If the blending amount of component (B) is less than 55% by weight, the resulting cured product may have poor transparency, and if it exceeds 94% by weight, the antistatic property may be inferior.
- Component is a photopolymerization initiator and is added to increase the curing rate when the composition of the present invention is cured by irradiation with radiation.
- radiation means visible light, ultraviolet light, far ultraviolet light, X-rays, electron beams, ⁇ rays, j8 rays, ⁇ rays, and the like.
- the blending amount of component (C) is preferably 0.1 to 15% by weight, more preferably 0.5 to LO weight, based on 100% by weight of the total solid content of the composition of the present invention. %.
- Component (C) can be used alone or in combination of two or more.
- Examples of the component (C) include 1-hydroxycyclohexyl phenol ketone, 2,2 dimethoxy-2-phenylacetophenone, xanthone, fluorenone, benzaldehyde, fluorene, anthraquinone, triphenylamine, carbazole , 3-methylacetophenone, 4-clobenbenzophenone, 4,4'-dimethoxybenzophenone, 4,4'-diaminobenzophenone, Michler's ketone, benzoin propyl ether, benzoin ether, benzil dimethyl ketal, 1 Mono (4 isopropyl phenol) 2 hydroxy 2 methyl Propane 1-one, 2-Hydroxy-1-2-Methyl-1-Fane Propane 1-one, Thioxanthone, Jetylthioxanthone, 2-Isopropylthixanthone, 2-Chlorothioxanthone, 2-Methyl-11 )
- Component (D) used in the present invention is a solvent, and is a component for adjusting the fluidity of the composition of the present invention.
- the solvent as the component (D) in the composition of the present invention has a concentration of the total solid content of the composition of 0.
- the amount of the solvent added is preferably within the range of 33.3 to 19,900 parts by weight when the total solid content of the composition of the present invention is 100 parts by weight.
- the reason for this is that (D) when the amount of the solvent added is less than 33.3 parts by weight, the viscosity of the composition may increase and the coatability may decrease, whereas when the amount exceeds 19,900 parts by weight. In other words, the resulting cured product is too thin and may not exhibit sufficient hardness.
- the type of the solvent is not particularly limited, but usually a solvent having a boiling point of 200 ° C or lower at normal pressure is preferred. Specifically, water, alcohols, ketones, ethers, esters, hydrocarbons, amides and the like are used. These can be used alone or in combination of two or more.
- Examples of alcohols include methanol, ethanol, isopropyl alcohol, isobutanol, n-butanol, tert-butanol, ethoxyethanol, butoxhetano monoole, diethyleneglycolenomonoethinoreethenole, benzenoreanoreconole, Examples include phenolic alcohol.
- Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
- Examples of ethers include dibutyl ether, propylene glycol monoethyl ether acetate, propylene glycol monomethyl ether (PGME), and the like.
- Esters include, for example, ethyl acetate, butyl acetate, ethyl lactate, methyl acetate And ethyl acetate.
- hydrocarbons include toluene and xylene.
- amides include N, N dimethylformamide, N, N dimethylacetamide, N-methylpyrrolidone and the like.
- the dispersion medium is different from the dispersion medium that may be used as the solvent of component (D) as it is. It is possible to use only a solvent, or a combination of a dispersion medium and another solvent can be used as a solvent for component (D)!
- component (E) in the composition of the present invention, as a component other than components (A) to (D), other compounds having a polymerizable unsaturated group (component (E)) can be blended as necessary.
- the component is a compound having one polymerizable unsaturated group in the molecule.
- component (E) examples include, for example, N-bulupyrrolidone, N-vinylcaprolactam-containing burata-containing ratata, isobornyl (meth) acrylate, boryl (meth) acrylate, tricyclodehydrate. Containing alicyclic structures such as force (meth) acrylate, dicyclopental (meth) acrylate, dicyclopentale (meth) acrylate, cyclohexyl (meth) acrylate, etc.
- (meth) acrylate benzyl (Meth) Atalylate, 4-Butylcyclohexyl (Meth) Atalylate, Ataliloylmorpholine, Bulimidazole, Bulpyridine, 2-Hydroxychetyl (Meth) Atalylate, 2-Hydroxypropyl (Meth) Atalylate, 2-Hydroxybutyl (Meth) acrylate, methyl (meth) acrylate, ethyl (meth) acrylate, Propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, amyl (meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, pentyl (meth) Atalylate, isoamyl (meth) atarylate, hexyl (meth) atarylate, heptyl (
- R 4 represents a hydrogen atom or a methyl group
- R 5 represents an alkylene group having 2 to 6 carbon atoms, preferably 2 to 4 carbon atoms
- R 6 represents a hydrogen atom or 1 to 12 carbon atoms, preferably 1 to 9 alkyl group
- Ph represents a fullerene group
- p represents a number of 0 to 12, preferably 1 to 8.
- E Commercially available components (E) include: ALONIX M-101, M-102, M-111, M-113, M-114, M-117 (above, manufactured by Toa Gosei Co., Ltd.); LA, STA, IBXA, 2 — MTA, # 192, # 193 (Osaka Organic Chemical Co., Ltd.); 3 ⁇ 4: Esters AMP—10G, A MP—20G, AMP—60G (above, Shin-Nakamura Chemical Co., Ltd.); Light Atylate L—A, S—A, IB—XA, PO—A, PO—200A NP-4EA, NP-8EA (manufactured by Kyoeisha Chemical Co., Ltd.); FA-511, FA-512A, FA-513A (manufactured by Hitachi Chemical Co., Ltd.).
- the liquid curable composition is obtained by reacting non-conductive particles or non-conductive particles with an alkoxysilane compound in an organic solvent within a range that does not cause problems such as separation and gelling. You can use the resulting particles together!
- the antistatic function that is, the surface resistance when a cured film is maintained while maintaining a value of 10 13 ⁇ or lower, Abrasion resistance can be improved.
- non-conductive particles specifically, silicon oxide, acid aluminum, acid Oxide particles such as zirconium oxide, titanium oxide, cerium oxide, etc., or oxides containing two or more elements selected from group forces consisting of silicon, aluminum, zirconium, titanium, and cerium Particles can be mentioned.
- the primary particle diameter of the non-conductive particles is preferably 0.1 m or less, more preferably 0.001 to 0.05 ⁇ m, as a value obtained by observation with a transmission electron microscope. It is. If it exceeds 0.1 m, sedimentation may occur in the composition or the smoothness of the coating film may be lowered.
- the non-conductive particles and the alkoxysilane compound may be hydrolyzed in an organic solvent and then mixed. This treatment improves the dispersion stability of the nonconductive particles.
- the hydrolysis treatment of the non-conductive particles and the alkoxysilane compound in an organic solvent can be performed in the same manner as the method for treating the oxide particles as the component (A) described above.
- non-conductive particles include, for example, acid silica particles (for example, silica particles), colloidal silica, manufactured by Nissan Chemical Industries, Ltd., trade names: methanol silica sol, IPA- ST, MEK—ST, NBA-ST, XBA—ST, DMAC—ST, ST—UP, ST—OUP ⁇ ST—20, ST—40, ST—C, ST—N, ST—0, ST—50, ST—OL can be listed.
- powder silica is manufactured by Nippon Aerosil Co., Ltd. Product name: Aerosil 130, Aerosil 300, Aerosil 380, Aerosil TT600, Aerosil 0X50, Asahi Glass Co., Ltd.
- the blending ratio of the non-conductive particles is preferably 0.1 to 35% by weight, more preferably 1 to 30% by weight in 100% by weight of the total solid content of the composition of the present invention. [0078] 7. Additives
- an antioxidant an ultraviolet absorber, a photostabilizer, a thermal polymerization inhibitor, a leveling agent, a surfactant, a lubricant and the like are blended as necessary. can do.
- Anti-oxidation agent manufactured by Chino Specialty Chemicals Co., Ltd. Trade name: Ilganox 1010, 1035, 1076, 1222, etc.
- Ultraviolet absorbers manufactured by Ciba Specialty Chemicals Co., Ltd.
- Product name Tinuvin P234, 320 , 326, 327, 328, 213, 329, manufactured by Sipro Kasei Co., Ltd.
- Product name Seasorb 102, 103, 501, 202, 712, etc.
- the viscosity of the composition of the present invention thus obtained is usually 1 to 20, 0 OOmPa's, preferably 1 to 1, OOOmPa's at 25 ° C.
- the solid content excluding the solvent (D) of the composition of the present invention is preferably in the range of 0.5 to 75% by weight. If the solid content is less than 0.5% by weight, the resulting cured product may be too thin and may not exhibit sufficient hardness. If it exceeds 75% by weight, the viscosity of the composition will increase. As a result, applicability may decrease.
- the liquid curable composition of the present invention comprises the above components (A) to (D) and, if necessary, the above-mentioned compounds having other polymerizable unsaturated groups, non-conductive particles, and other additives. In addition, it is obtained by mixing.
- the cured film layer of the laminate of the present invention can be obtained by coating the antistatic layer-forming composition described above on the substrate, drying it, and then irradiating it with radiation to cure the composition. .
- the surface resistance of the obtained cured film layer is 1 X 10 13 ⁇ or less, sufficient antistatic performance can be exhibited, usually 1 to 10 12 ⁇ or less, preferably 1 to 10 1 () ⁇ In the following, it is more preferably 1 to 10 8 ⁇ . If the surface resistance exceeds 1 ⁇ 10 12 ⁇ well, the antistatic performance is sufficient and the dust is not easily attached or the attached dust cannot be removed easily. There is a case.
- the surface resistance of the laminate (antireflection film with an antistatic function) of the present invention when a low refractive index layer or the like described later is formed on a cured film layer having a surface resistance value in the above range is usually normal. 1 ⁇ 10 13 ⁇ / mouth or less, preferably ⁇ ⁇ ⁇ ⁇ ⁇ / mouth or less, more preferably 1 ⁇ 10 8 ⁇ / mouth or less.
- the method for applying the composition for forming an antistatic layer is not particularly limited! /, But for example, a known method such as roll coating, spray coating, flow coating, diving, screen printing, ink jet printing or the like is applied. be able to.
- the radiation source used for curing the composition for forming an antistatic layer is not particularly limited as long as it can be cured in a short time after the composition is applied.
- Examples of the visible ray source include direct sunlight, lamps, fluorescent lamps, and lasers.
- Examples of the ultraviolet ray source include mercury lamps, halide lamps, and lasers, and electron beam source.
- a method using a thermoelectron generated from a commercially available tungsten filament a cold cathode method in which a metal is generated through a high voltage pulse, and a collision between an ionized gaseous molecule and a metal electrode 2
- Examples include secondary electron systems that use secondary electrons.
- Examples of the source of ⁇ rays, j8 rays, and ⁇ rays include fission materials such as 6 ° Co.
- fission materials such as 6 ° Co.
- vacuum tubes that collide accelerated electrons with the anode can be used. .
- These radiations may be irradiated alone or in combination of two or more kinds. Alternatively, one or more kinds of radiation may be irradiated for a certain period.
- the thickness of the cured film layer is preferably 0.05-30 ⁇ m! /.
- the thickness is relatively thick, preferably 2 to 15 m.
- 0.05 to L0 m is preferable.
- the total light transmittance is preferably 85% or more.
- Base materials used in the laminate of the present invention are metal, ceramics, glass, plastic, wood
- the material, slate, etc. are not particularly limited and may be appropriately selected depending on the purpose of use.However, as a material capable of exhibiting high productivity and industrial utility such as radiation curability, for example, a film or a fiber-like substrate. Preferably applied. Particularly preferred materials are plastic film and plastic plate.
- plastics include polycarbonate, polymethyl methacrylate, polystyrene Z polymethyl methacrylate copolymer, polystyrene, polyester, polyolefin, triacetyl cellulose resin, and diethylene glycol diaryl. Examples include carbonate (CR-39), ABS resin, AS resin, polyamide, epoxy resin, melamine resin, cyclized polyolefin resin (for example, norbornene-based resin).
- the base material to be used is preferably a base material such as polyester or polyethylene terephthalate (PET) in which the surface to which the composition for forming an antistatic layer is applied is subjected to an easy adhesion treatment.
- Examples of such easy adhesion treatment include corona discharge treatment and easy adhesion layer coating treatment.
- a preferred example of a commercially available base material subjected to easy adhesion treatment is polyester film A4300 (manufactured by Toyobo Co., Ltd.).
- the thickness of the substrate should be appropriately set according to the purpose and is not particularly limited.
- a method of forming a low refractive index layer or a multilayer structure of a low refractive index layer and a high refractive index layer is formed on a base material or a hard-coated base material. It is known that the method to do is effective.
- FIG. 2A shows a first embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
- the antireflection film 2 with an antistatic function is formed by forming an antistatic layer 12 which is a cured film layer obtained by curing the liquid curable composition on a base material 10, and further thereon.
- a low refractive index layer 18 is formed.
- the antistatic layer 12 has both an antistatic function and a function as a hard coat layer.
- the refractive index of the antistatic layer 12 needs to be higher than the refractive index of the low refractive index layer 18.
- the antistatic layer 12 of the antireflection film 2 of the present invention can also function as a hard coat layer, but a hard coat layer can also be provided separately.
- the hard coat layer n is provided between the antistatic layer 12 and the low refractive index layer 18.
- the refractive index of the hard coat layer 11 must be higher than the refractive index of the low refractive index layer 18.
- FIG. 2D shows a second embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
- the antireflection film 2 with an antistatic function is obtained by forming an antistatic layer 12 which is a cured film layer obtained by curing the liquid curable composition on a base material 10, and further thereon.
- the high refractive index layer 16 and the low refractive index layer 18 are formed in this order.
- the antistatic layer 12 may have both an antistatic function, a function as a coating, and a function as a medium refractive index layer.
- the refractive index of the antistatic layer 12 is lower than the refractive index of the high refractive index layer 16. It must be higher than the refractive index.
- a mode in which a hard coat layer is separately provided is also possible as in the first mode.
- the hard coat layer 11 can be provided between the antistatic layer 12 and the high refractive index layer 16. These configurations are shown in Figure 2F.
- FIG. 2G shows a third embodiment in which the laminate of the present invention is used as an antireflection film with an antistatic function.
- the antireflection film 2 with an antistatic function is obtained by forming an antistatic layer 12 which is a cured film layer obtained by curing the liquid curable composition on a base material 10, and further thereon.
- the middle refractive index layer 14, the high refractive index layer 16, and the low refractive index layer 18 are formed in this order.
- the antistatic layer 12 has both an antistatic function and a function as a hard coat.
- the third embodiment it is also possible to provide a hard coat layer separately as in the first embodiment.
- the hard coat layer 11 can be provided between the antistatic layer 12 and the medium refractive index layer 14. These forms are shown in FIG.
- the layers other than the antistatic layer and the substrate provided in the first to third embodiments of the antireflection film with an antistatic function will be described.
- the low refractive index layer is a layer having a thickness of 0.05 to 0.20 m and a refractive index of 1.30 to L45.
- the refractive index in the present invention means a refractive index of 589 nm at 25 ° C.
- the material used for the low refractive index layer is not particularly limited as long as the desired properties are obtained.
- a curable composition containing an fluorinated polymer, an acrylic monomer, and a fluorinated acrylic monomer. And cured products such as epoxy group-containing compounds and fluorine-containing epoxy group-containing compounds.
- silica fine particles and the like can be blended.
- a low refractive index layer is formed using a curable resin composition containing components (E) and (F) described later.
- the high refractive index layer has a thickness in the range of 0.05 to 0.20 m and a refractive index in the range of 1.55 to 2.20.
- high refractive index inorganic particles such as metal oxide particles can be mixed.
- metal oxide particles include antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, oxide-zinc (ZnO) particles, antimony-containing ZnO, and Al-containing Z ⁇ . Particles ZrO particles, TiO particles, silica-coated TiO particles, Al 2 O 3 / ZrO-coated TiO particles,
- Examples include CeO particles.
- antimony-containing tin oxide (ATO) particles are preferred.
- ITO indium oxide
- PTO phosphorus-containing tin oxide
- A1-containing ZnO particles Al 2 O 3 / ZrO-coated TiO particles.
- metal oxide particles are one kind alone or
- the high refractive index layer can have a function of a hard coat layer.
- the refractive index is 1.50 ⁇ : L 90 Therefore, a layer having a refractive index higher than that of the low refractive index layer and lower than that of the high refractive index layer is referred to as a middle refractive index layer.
- the refractive index of the middle refractive index layer is preferably 1.50 to L80, more preferably 1.50 to L75.
- the middle refractive index layer has a thickness in the range of 0.05 to 0.20 / zm.
- high refractive index inorganic particles such as metal oxide particles can be combined.
- metal oxide particles include antimony-containing tin oxide (ATO) particles, tin-containing indium oxide (ITO) particles, ZnO particles, antimony-containing ZnO, A1-containing ZnO particles, ZrO particles, TiO Particles, silica-coated TiO particles, Al 2 O 3 / ZrO-coated TiO particles, CeO particles
- antimony-containing tin oxide (ATO) particles tin-containing indium oxide (ITO) particles, phosphorus-containing tin oxide (PTO) particles, A1-containing ZnO particles, ZrO particles
- metal oxide particles can be used singly or in combination of two or more.
- the reflectance can be lowered by combining the low refractive index layer and the high refractive index layer, and the reflectance can be reduced by combining the low refractive index layer, the high refractive index layer, and the middle refractive index layer. Can be reduced and the glare can be reduced.
- hard coat layer examples include SiO, epoxy resin, acrylic resin, melamine
- silica particles may be blended with these rosins.
- the hard coat layer has the effect of increasing the mechanical strength of the laminate.
- the thickness of the hard coat layer is
- the refractive index of the coated layer is usually in the range of 1.45 to 1.70, preferably 1.45 to L60.
- the material of the substrate when the laminate of the present invention is used as an antireflection film must be transparent.
- resin AS resin, polyamide, epoxy resin, melamine resin and cyclized polyolefin resin (for example, norbornene-based resin).
- the base subjected to the easy adhesion treatment is used.
- Material is preferred. Examples of such easy adhesion treatment include corona discharge treatment and easy adhesion layer coating treatment.
- a preferred example of a commercially available base material subjected to easy adhesion treatment is polyester film A4300 (manufactured by Toyobo Co., Ltd.).
- Polyester film A4300 (manufactured by Toyobo Co., Ltd.) subjected to easy adhesion treatment is coated with the liquid curable composition of the present invention and cured to form the ITO particles of component (A).
- Fig. 3 shows an electron micrograph of a cured film cross section showing a typical state of uneven distribution on the material side. In FIG. 3, the lower part is the substrate side, the upper part is the air side, and it can be seen that the ITO particles are unevenly distributed on the substrate side.
- the thickness of the substrate is not particularly limited, but is usually in the range of 30 to 300 ⁇ m, preferably 50 to 200 ⁇ m.
- the laminate of the present invention has scratches on, for example, plastic optical components, touch panels, film-type liquid crystal elements, plastic casings, plastic containers, flooring materials for building interior materials, wall materials, artificial stones, etc. It can be suitably used as a hard coating material for preventing (scratching) and preventing contamination; an adhesive for various base materials, a sealing material; a binder material for printing ink, and the like.
- the film thickness of the low, medium and high refractive index layers is usually 60 to 150 nm
- the film thickness of the hard coat layer is usually 1 to 20 111
- the film thickness of the antistatic layer is usually 0.05 to 30 / ⁇ ⁇ . It is.
- the layer can be produced by a known method such as coating and curing, vapor deposition, or sputtering.
- the low refractive index layer formed in the laminate of the present invention comprises (G) a curable polymer containing an ethylenically unsaturated group and (i) a curable resin composition containing silica particles (hereinafter referred to as “low refractive index”).
- the cured product is preferably composed of a composition for forming a rate layer “t”.
- the ethylenically unsaturated group-containing fluoropolymer (G) used for the composition for forming a low refractive index layer is composed of a compound containing one isocyanate group and at least one ethylenically unsaturated group, and a hydroxyl group-containing polymer. It can be obtained by reacting with a fluoropolymer.
- the compound containing one isocyanate group and at least one ethylenically unsaturated group contains one isocyanate group and at least one ethylenically unsaturated group in the molecule. If it is a compound, it is not particularly limited.
- gelling may occur when reacting with a hydroxyl group-containing fluoropolymer.
- a curable rosin composition to be described later can be hardened more easily, and therefore a compound having a (meth) atallyloyl group is more preferable.
- examples of such a compound include 2- (meth) atalylooxychetyl isocyanate and 2- (meth) atalylooxypropylisocyanate alone or in combination of two or more.
- diisocyanates examples include 2,4-tolylene diisocyanate, isophorone diisocyanate, xylylene diisocyanate, methylene bis (4-cyclohexenoylisocyanate), 1,3-bis (isocyanate) Methyl) cyclohexane is preferred.
- hydroxyl group-containing (meth) acrylate 2-hydroxyethyl (meth) acrylate and pentaerythritol tri (meth) acrylate are preferable.
- hydroxyl group-containing polyfunctional (meth) atalylate examples include, for example, Osaka Organic Chemical Co., Ltd., trade name HEA, Nippon Kayaku Co., Ltd., trade name KAYARAD DPHA, PET-30, Toagosei ( Product name Alonics M-215, M-233, M-305, M-400, etc. can be obtained.
- the hydroxyl group-containing fluoropolymer preferably comprises the following structural units (a), (b) and (c).
- R 11 represents a fluorine atom, a fluoroalkyl group or a group represented by —OR ”(R represents an alkyl group or a fluoroalkyl group)]
- R 13 is a hydrogen atom or a methyl group
- R 14 is an alkyl group,-(CH) —OR 15
- R 15 represents an alkyl group or a glycidyl group, c represents a number of 0 or 1), a carboxyl group or an alkoxycarbo group
- R 16 represents a hydrogen atom or a methyl group
- R 17 represents a hydrogen atom or a hydroxyalkyl group
- V represents a number of 0 or 1
- the fluoroalkyl group of R 11 and R 12 includes a trifluoromethyl group, a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a no-fluorine hexyl group. And a fluoroalkyl group having 1 to 6 carbon atoms such as perfluorocyclohexyl group.
- the alkyl group for R 12 include alkyl groups having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group, and a cyclohexyl group.
- the structural unit (a) can be introduced by using a fluorine-containing vinyl monomer as a polymerization component.
- a fluorine-containing butyl monomer is not particularly limited as long as it is a compound having at least one polymerizable unsaturated double bond and at least one fluorine atom. Examples of this include fluoroolefins such as tetrafluoroethylene, hexafluoropropylene, 3, 3, 3-trifluoropropylene; alkyl perfluoro oral ether or alkoxyalkyl perfluorobule.
- Perfluoro (alkyl vinyl ether) such as perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether), perfluoro (butyl vinyl ether), perfluoro (isobutyl vinyl ether), etc .
- Perfluoro (alkoxyalkyl butyl ether) s such as propoxypropyl butyl ether may be used alone or in combination of two or more.
- hexafluoropropylene and perfluoro (alkyl buulete) ) Or perfluoro (alkoxyalkyl butyl ether) is more preferred, and it is further preferred to use a combination of these! /.
- the content of the structural unit (a), the sum of the structural units (a) ⁇ (c) is 100 mol%, 20 to 70 mole 0/0. This is because if the content is less than 20 mole 0/0, which is characteristic of the optically fluorine-containing material where the application is intended, it may be a case where the expression of the low refractive index becomes difficult, whereas This is because if the content exceeds 70 mol%, the solubility of the hydroxyl group-containing fluorine-containing polymer in an organic solvent, transparency, or adhesion to a substrate may be lowered.
- the content of the structural unit (a) is more preferably 25 to 65 mol%, and further preferably 30 to 60 mol%! /.
- examples of the alkyl group of R 13 or R 14 include alkyl groups having 1 to 12 carbon atoms such as a methyl group, an ethyl group, a propyl group, a hexyl group, a cyclohexyl group, and a lauryl group.
- examples of the alkoxycarbonyl group represented by R 15 include a methoxycarbonyl group and an ethoxycarbonyl group.
- the structural unit (b) can be introduced by using the above-mentioned butyl monomer having a substituent as a polymerization component.
- bur monomers include methyl vinyl ethereol, ethino levinino le ethere, n- propino levinino ethere, isopropino levinino ether, n-butyl vinyl ether, isobutyl vinyl ether, tert -Butyl vinyl etherenole, n-pentinolevinoreethenole, n-hexenolevinoreethenore, n-year-old cubinorebi-noreethenore, n-dodecinolevinorethenore, 2-ethinorehexinolevinoreteol, cyclohexyl vinyl ether Alkyl butyl ethers or cycloalkyl alkyl ethers such as: ethino levin
- the content of the structural unit (b) is 10 to 70 mol% when the total of the structural units (a) to (c) is 100 mol%.
- the reason for this is that when the content is less than 10 mol%, the solubility of the hydroxyl group-containing fluoropolymer in the organic solvent may be reduced. On the other hand, the content exceeds 70 mol%. This is because the optical properties such as transparency and low reflectivity of the hydroxyl group-containing fluoropolymer may be deteriorated.
- the content of the structural unit (b) is more preferably 20 to 60 mol%, and even more preferably 30 to 60 mol%! /.
- the structural unit (c) can be introduced by using a hydroxyl group-containing vinyl monomer as a polymerization component.
- hydroxyl-containing butyl monomers include 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 2-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 3-hydroxybutyl vinyl ether, 5-hydroxypentyl.
- Hydroxyl-containing butyl ethers such as vinyl ether, 6-hydroxyhexyl vinyl ether, etc.
- hydroxyl-containing butyl ethers such as 2-hydroxyethyl allyl ether, 4-hydroxybutyl allyl ether, glycerol monoallyl ether, allyl alcohol, etc. Can be mentioned.
- hydroxyl group-containing vinyl monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, and force prolatatone ( (Meth) acrylate, polypropylene glycol (meth) atrelate, etc. can be used.
- the content of the structural unit (c) is preferably 5 to 70 mol% when the total of the structural units (a) to (c) is 100 mol%. This is because when the content is less than 5 mol%, the solubility of the hydroxyl group-containing fluoropolymer in an organic solvent may decrease. On the other hand, if the content exceeds 70 mol%, the optical properties such as transparency and low reflectivity of the hydroxyl group-containing fluoropolymer may be deteriorated.
- the content of the structural unit (c) is more preferably 5 to 40 mol%, and even more preferably 5 to 30 mol%.
- the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (d).
- R 18 and R 19 may be the same or different and each represents a hydrogen atom, an alkyl group, a halogenialkyl group or an aryl group]
- the alkyl group represented by R 18 or R 19 is an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, or a propyl group.
- the halogenoalkyl group is a trifluoromethyl group, C1-C4 fluoroalkyl group, such as perfluoroethyl group, perfluoropropyl group, perfluorobutyl group, etc.
- aryl groups include a phenyl group, a benzyl group, and a naphthyl group. It is done.
- the structural unit (d) can be introduced by using an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (14).
- an azo group-containing polysiloxane compound having a polysiloxane segment represented by the formula (14).
- Examples of such an azo group-containing polysiloxane compound include compounds represented by the following formula (15).
- alkyl group or cyan R 24 to R 27 represent a hydrogen atom or an alkyl group which may be the same or different, d and e are numbers 1 to 6, s and t are numbers 0 to 6, and y is A number from 1 to 200, z represents a number from 1 to 20. [0131] When the compound represented by the formula (15) is used, the structural unit (d) is included in the hydroxyl group-containing fluoropolymer as a part of the structural unit (e).
- R 2 to R 23 , R 24 to R 27 , d, e, s, t, and y are the same as those in the above formula (15).
- the alkyl group represented by R 2 to R 23 is a C 1 to C group such as a methyl group, an ethyl group, a propyl group, a hexyl group, or a cyclohexyl group.
- 12 alkyl groups, and R 24 to R 27 alkyl groups include methyl groups, ethyl groups, propyl groups, etc.
- a compound represented by the following formula (17) is particularly preferable.
- the content of the structural unit (d) is preferably 0.1 to 10 mole parts with respect to 100 mole parts in total of the structural units (a) to (c).
- the reason for this is that when the content is less than 0.1 mol part, the surface slipperiness of the coated film after curing may be lowered, and the scratch resistance of the coated film may be lowered.
- the ratio exceeds 10 parts by mole the transparency of the hydroxyl group-containing fluoropolymer is inferior, and when used as a coating material, repelling and the like may easily occur during coating.
- the content of the structural unit (d) is more preferably 0.1 to 5 mol parts, and even more preferably 0.1 to 3 mol parts.
- it is desirable that the content of the structural unit (e) is determined so that the content of the structural unit (d) contained therein falls within the above range.
- the hydroxyl group-containing fluoropolymer preferably further comprises the following structural unit (f).
- the group having an emulsifying action of R 25 has both a hydrophobic group and a hydrophilic group, and the hydrophilic group has a polyether structure such as polyethylene oxide and polypropylene oxide. Some groups are preferred.
- Examples of such an emulsifying group include a group represented by the following formula (19).
- the structural unit (f) can be introduced by using a reactive emulsifier as a polymerization component.
- reactive emulsifiers include compounds represented by the following formula (20).
- the content of the structural unit (f) is preferably 0.1 to 5 mol parts with respect to a total of 100 mol parts of the structural units (a) to (c).
- the reason for this is that when the content is 0.1 mol part or more, the solubility of the hydroxyl group-containing fluoropolymer in the solvent is improved. This is because the tackiness of the resin composition does not increase excessively, handling becomes easy, and moisture resistance does not decrease even when used as a coating material.
- the content of the structural unit (f) is more preferably 0.1 to 3 mol parts, and even more preferably 0.2 to 3 mol parts.
- the hydroxyl group-containing fluoropolymer preferably has a polystyrene equivalent number average molecular weight of 5,000 to 500,000 as measured by gel permeation chromatography using tetrahydrofuran as a solvent.
- the reason for this is that when the number average molecular weight is less than 5,000, the mechanical strength of the hydroxyl group-containing fluoropolymer may be reduced.
- the number average molecular weight exceeds 500,000, it will be described later. This is because the viscosity of the curable resin composition becomes high and thin film coating may be difficult.
- the hydroxyl group-containing fluoropolymer has a polystyrene-reduced number average molecular weight of preferably 10,000 to 300,000, more preferably 10,000 to 100,000.
- the ethylenically unsaturated group-containing fluorine-containing polymer is obtained by reacting the above-described compound containing one isocyanate group and at least one ethylenically unsaturated group with a hydroxyl group-containing fluorine-containing polymer. Obtained.
- a compound containing one isocyanate group and at least one ethylenically unsaturated group, and a hydroxyl group-containing fluoropolymer are an isocyanate group Z It is preferable to carry out the reaction at a hydroxyl group molar ratio of 1.1 to 1.9. The reason for this is that if the molar ratio is less than 1.1, the scratch resistance and durability may be reduced. On the other hand, if the molar ratio exceeds 1.9, the coating film of the curable resin composition may be used. This is because the scratch resistance after immersion in an aqueous alkali solution may be reduced.
- the molar ratio of the isocyanate group Z hydroxyl group is preferably 1.1 to 1.5, more preferably 1.2 to 1.5.
- the addition amount of the component (G) in the curable resin composition is not particularly limited, but is usually 1 to 95% by weight based on the total amount of the composition other than the organic solvent. The reason for this is that when the addition amount is less than 1% by weight, the refractive index of the cured coating film of the curable resin composition increases, and a sufficient antireflection effect may not be obtained. If the added amount exceeds 95% by weight, the scratch resistance of the cured coating film of the curable resin composition cannot be obtained! This is because there are cases.
- the addition amount of the component (G) is more preferably 2 to 90% by weight, and further preferably 3 to 85% by weight.
- particles containing silica as a main component can be blended, and the scratch resistance of the cured product of the composition for forming a low refractive index layer, particularly steel wool resistance. Can be improved.
- particles having silica as a main component particles having silica having a number average particle diameter of 1 to lOOnm as a main component are preferable.
- the particle size is measured with a transmission electron microscope.
- the particle size of the component (H) is preferably 5 to 80 nm, more preferably 10 to 60 nm.
- known particles can be used, and the shape is not particularly limited.
- colloidal silica As long as it is spherical, it is not limited to ordinary colloidal silica, and may be hollow particles, porous particles, core-shell type particles, or the like. Further, it is not limited to a spherical shape, and may be an amorphous particle. Colloidal silica having a solid content of 10 to 40% by weight is preferred.
- the dispersion medium is water! /
- an organic solvent is preferred.
- the organic solvent include alcohols such as methanol, isopropyl alcohol, ethylene glycolate, butanol, ethylene glycol monopolypropyl ether; methyl ethyl ketone, methyl isobutyl ketone, etc. Ketones; Aromatic hydrocarbons such as toluene and xylene; Amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate, and ⁇ -butalate ratatones; Tetrahydrofuran, 1,4 dioxane, etc. In particular, alcohols and ketones are preferred. These organic solvents can be used alone or in admixture of two or more as a dispersion medium.
- Examples of commercially available silica-based particles include colloidal silica manufactured by Nissan Chemical Industries, Ltd.
- Product names: methanol silica sol, IPA-ST, MEK-ST, MEK-S T-S, ⁇ — ST— L, IPA— ZL, NBA— ST, XBA— ST, DMAC— ST, ST— UP ⁇ ST— OUP ⁇ ST— 20, ST— 40, ST— C, ST— N, ST— 0, ST-50, ST-OL, etc. can be mentioned.
- the surface of the colloidal silica subjected to surface treatment such as chemical modification can be used.
- it contains a hydrolyzable silicon compound having one or more alkyl groups in the molecule or a hydrolyzate thereof.
- hydrolyzable silicon compounds include trimethylmethoxysilane, tryptylmethoxysilane, dimethyldimethoxysilane, dibutinoresimethoxysilane, methyltrimethoxysilane, butinoretrimethoxysilane, octyltrimethoxysilane, dodecyltrimethoxy.
- it has one or more reactive groups in the molecule.
- Use hydrolyzable key compounds Also.
- Molecular hydrolyzable Kei-containing compound having one or more reactive groups in the as having ⁇ group as the reactive group In example embodiment, urea propyltrimethoxysilane, Nyu-
- a thiocyanate group such as 3-thiocyanatepropyltrimethoxysilane, which has an epoxy group (3-glycidoxypropyl) trimethoxysilane, 2- (3,4-epoxyhexoxyl) ethyltrimethoxysilane, and the like having a thiol group such as 3-mercaptopropyltrimethoxysilane Can be mentioned.
- a preferred compound is 3-mercaptopropyltrimethoxysilane.
- the silica particles used in the present invention preferably have an ethylenically unsaturated group (hereinafter referred to as “reactive silica particles”).
- the method for producing reactive silica particles is not particularly limited.
- the reactive silica particles can be obtained by reacting the silica particles having a number average particle size of 10 to LOONm and a reactive surface treatment agent. .
- examples of the surface treating agent include alkoxysilane compounds, tetrabutoxysilane, tetrabutoxyzirconium, tetraisopropoxyaluminum, and the like. These can be used alone or in combination of two or more.
- Specific examples of the surface treatment agent include compounds having an unsaturated double bond in the molecule such as y-methacryloxypropyltrimethoxysilane, ⁇ -acryloxypropyltrimethoxysilane, vinyltrimethoxysilane, Examples include compounds represented by the following general formula (21).
- R. I a methyl group
- R is an alkyl group having 1 to 6 carbon atoms, is a hydrogen atom or a methyl group, a is 1 or 2, b is an integer of 1 to 5, and A is a divalent alkylene group having 1 to 6 carbon atoms , B is a chain, cyclic or branched divalent hydrocarbon group having 3 to 14 carbon atoms, Z is a (b + 1) valent chain number, cyclic or branched carbon number 2 to 14 This is a divalent hydrocarbon group. Z may contain an ether bond.
- silica particles have an ethylenically unsaturated group, they can be co-crosslinked with a UV curable acrylic monomer, and scratch resistance is improved. [0154] (3) Preferred embodiment (porous silica particles)
- porous silica particles are preferred.
- the first porous silica particles (HI) are obtained by hydrolysis and Z or hydrolysis condensation of a key compound represented by the following formula (22) and a key compound represented by the following formula (23). . That is, it is obtained by hydrolyzing and Z or hydrolytically condensing the silicon compound represented by the formula (22), and subjecting the keen compound represented by the formula (23) to hydrohydrolysis and Z or hydrolytic condensation. It is done.
- the key compound represented by the formula (22) and the key compound represented by the formula (23) may be mixed and subjected to hydrolysis and Z or hydrolytic condensation at the same time.
- the second porous silica particles (H2) are a key compound represented by the following formula (22), a key compound represented by the following formula (23), and a key compound represented by the following formula (24). Obtained by hydrolysis of Z and Z or hydrolytic condensation. That is, hydrolysis and Z or hydrolysis condensation of the key compound represented by the formula (22), and hydrolysis and Z or hydrolysis condensation of the key compound represented by the formula (23), and It is obtained by hydrolyzing and Z or hydrolytically condensing the silicon compound represented by the formula (24).
- the key compound represented by the formula (22), the key compound represented by the formula (23), and the key compound represented by the formula (24) are mixed and simultaneously hydrolyzed and Z or hydrolyzed.
- the key compound represented by formula (22) is hydrolyzed and Z or hydrolyzed, and then the key compound represented by formula (23) and formula (24) are used.
- hydrolysis and Z or hydrolysis condensation may be carried out by adding the above-mentioned key compound.
- each X independently represents an alkoxy group having 1 to 4 carbon atoms, a halogeno group, an isocyanate group, a carboxyl group, or an alkyloxy group having 2 to 4 carbon atoms. Carbo Or an alkylamino group having 1 to 4 carbon atoms, preferably an alkoxy group or a halogeno group, and more preferably an alkoxy group.
- Xs may be the same or different.
- Examples of the compound represented by the formula (22) include tetramethoxysilane, tetraethoxysilane, tetrabutoxysilane, and tetrachlorosilane.
- R 29 is an alkyl group having 2 to 8 carbon atoms, an allyloxyalkyl group having 4 to 8 carbon atoms or a methacryloxyalkyl group having 5 to 8 carbon atoms, preferably These are a bur group, an aryl group, an attaryloxychetyl group, an attaryloxypropyl group, an attaryloxybutyl group, a methacryloxycetyl group, a methacryloxypropyl group, and a methacryloxybutyl group.
- j is an integer of 1-3, Preferably it is 1-2.
- Examples of the compound represented by the formula (23) include vinyltrimethoxysilane, butyltrioxysilane, vinyltrichlorosilane, talyloxypropyltrimethoxysilane, methacryloxypropyltrimethoxysilane, and the like.
- the porous silica particles can contain an ethylenically unsaturated group.
- the scratch resistance of the antireflection film of the present invention having a cured film obtained by curing the curable composition is improved.
- R 3 is a fluorine-substituted alkyl group having 1 to 12 carbon atoms, preferably a fluorine-substituted alkyl group having 3 to 12 carbon atoms, more preferably fluorine having 3 to 10 carbon atoms. Substituted alkyl group.
- k is an integer of 1 to 3, preferably 1 to 2.
- Examples of the compound represented by the formula (24) include 3, 3, 3-trifluoropropyltrimethoxysilane, 2-perfluorohexylmethyltrimethoxysilane, and 2-perfluorohexoxysilyltrimethoxy.
- the porous silica particles can contain a fluorine-containing alkyl group.
- the stain resistance of the cured film obtained by curing the curable composition can be improved.
- Two or more kinds of the key compound represented by the formula (22), the key compound represented by the formula (23), and the key compound represented by the formula (24) may be used.
- the total of the key compound represented by the formula (22), the key compound represented by the formula (23) and the key compound represented by (24) is 100.
- the key compound represented by the formula (22), the key compound represented by the formula Z (23), and the key compound represented by the formula Z (2 4) are preferably 60 to 9871. It is hydrolyzed and / or hydrolyzed and condensed at a ratio of ⁇ 301 to 20 (mol%), preferably 65 to 962 to 202 to 15 (mol%).
- the first and second porous silica particles (HI) and (H2) used in the present invention have an average particle size force of ⁇ 50 nm, preferably 5 to 45 nm, more preferably 5 to 40 nm.
- the average particle diameter is a number average particle diameter, and is measured with a transmission electron microscope image.
- the term “porous” means that the specific surface area is 50 to: L000m 2 Zg, preferably 50 to 800 m 2 Zg, and more preferably 100 to 800 m 2 / g. The specific surface area is measured by the BET method.
- the average particle size is within the above range, scattering of the obtained coating film in the visible light region can be suppressed. Moreover, due to being porous, the density is lowered and the refractive index of the film containing such porous silica particles is lowered.
- porous silica particles (H) are obtained by the production method described below.
- the first or second porous silica particles (HI) and (H2) are at least one selected from water, alcohols having 1 to 3 carbon atoms, basic compounds, and acid amides, diols, and semi-ethers of diols.
- the key compound represented by the above formula (22) and the key compound represented by the formula (23), or the key compound represented by the above formula (22), the formula (23 ) And the compound represented by formula (24) are hydrolyzed and Z Or it can manufacture by hydrolytic condensation.
- amine compounds are used, and specific examples include pyridine, pyrrole, piperazine, pyrrolidine, piperidine, picoline, monoethanolamine, diethylanolamine, dimethylmonoethanol.
- ammonia, ethanolamine, hydroxy-tetramethylamine or the like is used.
- the acid amide, diol or diol half-ether is preferably compatible with water and alcohol.
- N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, etc. are used, preferably N, N-dimethylformamide, N, N-dimethylacetamide is used.
- the diol for example, ethylene glycol, propylene glycol, 1,2-butanediol and the like are used, and preferably ethylene glycol and propylene glycol are used.
- ethylene glycol monomethyl ether or propylene glycol monomethyl ether is used as the half ether of the diol.
- porous silica particles used in the present invention can be made porous by the coexistence of acid amide, diol or diol half ether during synthesis.
- the total concentration of the key compound of formula (22) and the key compound of formula (23) or the key compound of formulas (22) to (24) in the reaction solution is usually 0 in terms of complete hydrolysis condensate. 5 to 10% by weight, preferably 1 to 8% by weight.
- “in terms of complete hydrolyzed condensate” is a theoretical value calculated assuming that the key compound was completely hydrolyzed and condensed. This corresponds to the weight of X in the compound and the compound of (23) or the compounds of formulas (22) to (24) when X is substituted with 2 moles of oxygen atoms.
- the compound of formula (22) and the compound of formula (23), or the compound of formula (22), the compound of formula (23) and the compound of formula (24) are mixed simultaneously.
- Hydrolysis and Z or hydrolytic condensation may also be used. Water, alcohols having 1 to 3 carbon atoms, basic compounds, and acid amides, diols and diols and diol semi-ether forces are present.
- the key compound represented by the formula (22) is hydrolyzed and subjected to Z or hydrolytic condensation, and then the key compound represented by the formula (23) or the formula (23), respectively.
- hydrolysis and Z or hydrolysis condensation may be carried out by adding a key compound and a key compound represented by the formula (24).
- the reaction temperature for hydrolysis and Z or hydrolysis-condensation can be arbitrarily determined in consideration of the boiling point and reaction time of the alcohol and acidamide to be used.
- the reaction time is defined by the formula (22), the compound represented by formula (23), the type of formula (24), the reaction rate, the type and amount of base, etc.
- the optimum value varies depending on the value, and is not limited.
- the porous silica particles become organic.
- a dispersion liquid dispersed in a solvent can be obtained.
- the dispersion medium is water! /
- organic solvents are preferred.
- organic solvents include alcohols such as methanol, isopropyl alcohol, ethylene glycolol, butanol, ethylene glycol monopolypropyl ether; ketones such as methyl ethyl ketone and methyl isobutyl ketone; aromatic carbonization such as toluene and xylene.
- Hydrogens Amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; Esters such as ethyl acetate, butyl acetate, and ⁇ -butalate Rataton; Organic solvents such as ethers such as tetrahydrofuran and 1,4 dioxane Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination as a dispersion medium.
- Amides such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone
- Esters such as ethyl acetate, butyl acetate, and ⁇ -butalate Rataton
- Organic solvents such as ethers such as tetrahydrofuran and 1,4 dioxane Of these, alcohols and ketones are preferred. These organic solvents can be used alone or in combination as a dispersion medium.
- the compounding amount of the porous silica particles (H) in the resin composition is usually 5 to 99% by weight, preferably 10 to 98% by weight, based on the total amount of the composition other than the organic solvent. More preferred is -97% by weight. If it is less than 5% by weight, the hardness of the cured film may be insufficient. If it exceeds 99% by weight, sufficient film strength may not be obtained.
- the amount of particles means a solid content, and when the particles are used in the form of a solvent dispersion, the amount of particles does not include the amount of solvent.
- the following components can be added to the composition for a low refractive index layer used in the present invention, if necessary.
- the polyfunctional (meth) attareito toy compound containing at least two or more (meth) attaroyl groups and Z or at least one or more (meth) alkyls It is also possible to add a fluorine-containing (meth) attareito toy compound containing a acryloyl group.
- the compound is not particularly limited as long as it is a compound containing at least two (meth) atallyloyl groups in the molecule.
- examples include neopentyl glycol di (meth) acrylate, trimethylol propane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol ethane tri (meth) acrylate, penta erythritol tetra (Meth) acrylate, dipentaerythritol tetra (meth) acrylate, alkyl-modified dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, alkyl-modified dipenta erythritol penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, force prolatatatone modified dipentaery
- neopentyl glycol di (meth) acrylate dipentaerythritol hexa (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate and force prolatatatone.
- Modified dipentaerythritol hexa (meth) acrylate is particularly preferred.
- the compound is not particularly limited as long as it is a fluorine-containing (meth) ataretoy compound containing at least one or more (meth) atalyloyl groups.
- fluorine-containing (meth) ataretoy compound containing at least one or more (meth) atalyloyl groups.
- examples thereof include perfluorooctyl cetyl (meth) acrylate, octafluoropentyl (meth) acrylate, trifluoroethyl (meth) acrylate, and the like. These can be used alone or in combination of two or more.
- the amount of component (I) to be added is not particularly limited, but is usually 0 to 90% by weight based on the total amount of the composition other than the organic solvent. The reason for this is that when the addition amount exceeds 90% by weight, the refractive index of the cured coating film of the curable resin composition becomes high, and a sufficient antireflection effect may not be obtained.
- the amount of component (I) added is more preferably 80% by weight or less, and further preferably 60% by weight or less.
- a compound that generates active species by irradiation of active energy rays or heat can also be added.
- a compound that generates active species upon irradiation with active energy rays or heat is used to cure the curable resin composition.
- photopolymerization initiators examples include photoradical generators that generate radicals as active species.
- the active energy ray is defined as an energy ray capable of decomposing a compound that generates active species to generate active species.
- an active energy ray Light energy rays such as visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, j8 rays, ⁇ rays and the like can be mentioned.
- ultraviolet rays from the viewpoint of having a certain energy level, a high curing speed, and a relatively inexpensive irradiation apparatus, and a small size.
- photo radical generators include, for example, acetophenone, acetophenone benzil ketal, anthraquinone, 1- (4-isopropylphenol) 2 hydroxy-1-methylpropanone 1-on, carbazole, xanthone, 4-clobenbenzophenone.
- photopolymerization initiators 2, 2 dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropane-1-one, 1-hydroxycyclohexyl phenyl ketone, 2, 4, 6 Trimethyl benzoyl diphosphine phosphine oxide, 2-methyl- 1 1 [4 1 (methylthio) phenol] 1 2 Morpholinopropane 1 1-one, 2 (dimethylamino) 1 1 [4 (morpholol) phenol 1] -butanone and the like are more preferable, 1-hydroxycyclohexylphenylketone, 2-methyl-1-one [4 (methylthio) phenol] 2 morpholinopropane 1-o 2— (Dimethylamino) — 1— [4- (Morpholol) phenol] —2 Phenylmethyl )-1-butanone and the like.
- the addition amount of the photopolymerization initiator is not particularly limited, but is preferably 0.01 to 20% by weight based on the total amount of the composition other than the organic solvent. This is because when the amount added is less than 0.01% by weight, the curing reaction becomes insufficient, and the scratch resistance and the scratch resistance after immersion in an alkaline aqueous solution may be lowered. On the other hand, when the addition amount of the photopolymerization initiator exceeds 20% by weight, the refractive index of the cured film increases and the antireflection effect may be lowered.
- the photopolymerization initiator it is more preferable to add the photopolymerization initiator to 0.05 to 15% by weight with respect to the total amount of the composition other than the organic solvent. It is more preferable to do this.
- thermal polymerization initiator examples include a thermal radical generator that generates a radical as the active species.
- thermal radical generators examples include benzoyl peroxide, tert-butyloxybenzoate, azobisisobutyoxy-tolyl, acetylyl peroxide, lauryl peroxide, tert-butyl peracetate, tamil peroxide, tert-butyl peroxide, tert-butyl hydride Oral peroxide, 2,2, -azobis (2,4-dimethylvale-tolyl), 2,2, -azobis (4-methoxy-2,4-dimethylvale-tolyl), etc., alone or in combination of two or more Can be mentioned.
- the addition amount of the thermal polymerization initiator is not particularly limited, but is preferably 0.01 to 20% by weight based on the total amount of the composition other than the organic solvent. The reason for this is that if the amount of added calories is less than 0.01% by weight, the curing reaction becomes insufficient, and the scratch resistance and the scratch resistance after immersion in an alkaline aqueous solution may decrease. On the other hand, if the amount of addition of the photopolymerization initiator exceeds S20% by weight, the refractive index of the cured film increases and the antireflection effect may decrease. For this reason, it is more preferable to add the thermal polymerization initiator to 0.05 to 15% by weight with respect to the total amount of the composition other than the organic solvent. It is more preferable that the value be within the range.
- an organic solvent it is preferable to add an organic solvent to the curable resin composition.
- an organic solvent an alcohol solvent having 1 to 8 carbon atoms, a ketone system having 3 to 10 carbon atoms, or an ester solvent having 3 to carbon atoms: L0 can be preferably used.
- Ethyl ketone, methyl amyl ketone, methanol, ethanol, tert-butanol, isopropanol, propylene glycolanol monomethylol ether, propylene glycol norethyl ether, propylene glycol monopropyl ether, etc. are particularly preferred and can be mentioned as examples. .
- These organic solvents can be used alone or in combination of two or more.
- the addition amount of the organic solvent is not particularly limited, but is preferably 100 to 100,000 parts by weight with respect to 100 parts by weight of the composition other than the organic solvent.
- the reason for this is that when the addition amount is less than 100 parts by weight, it may be difficult to adjust the viscosity of the curable resin composition.
- the addition amount exceeds 100,000 parts by weight the curable resin composition is difficult to adjust. This is because the storage stability of the composition may be decreased, or the viscosity may be excessively decreased to make handling difficult.
- a photosensitizer In the curable resin composition, a photosensitizer, a polymerization inhibitor, a polymerization initiation assistant, a leveling agent, a wettability improver, a surfactant, an acceptable agent are used as long as the objects and effects of the present invention are not impaired.
- Additives such as plasticizers, ultraviolet absorbers, antioxidants, antistatic agents, silane coupling agents, inorganic fillers other than the component (H), pigments, dyes and the like can also be contained.
- the curable resin composition used in the present invention comprises the (G) ethylenically unsaturated group-containing fluoropolymer and the (H) component, or, if necessary, the (I) component, the ⁇ component, ( Ii) It can be prepared by adding an organic solvent and an additive, respectively, and mixing at room temperature or under heating conditions. Specifically, mixers, aders, ball mills, triple rolls, etc. It can be prepared using a mixer. However, when mixing under heating conditions
- the temperature is not higher than the decomposition start temperature of the thermal polymerization initiator.
- the exposure dose is within the range of 0.01 to 10 j / cm 2 .
- the value is preferred.
- the exposure amount it is more preferable to set the exposure amount to a value in the range of 0.1 to 5 jZcm 2 , and it is more preferable to set the exposure value to a value in the range of 0.3 to 3 jZcm 2 .
- composition for forming a low refractive index layer is cured by heating, it is preferably heated at a temperature in the range of 30 to 200 ° C for 0.5 to 180 minutes. By heating in this way, an antireflection film having excellent scratch resistance can be obtained more efficiently without damaging the substrate and the like.
- tin-containing indium oxide dispersion In a container shielded from ultraviolet rays, tin-containing indium oxide dispersion (Fuji Chemical Co., Ltd. Houtform NID-20, dispersion solvent isopropyl alcohol, tin-containing indium oxide 20% by weight, average primary particle size 13nm
- ITO particles—1 50 parts
- dipentaerythritol hexaatalylate (trade name KAYA, manufactured by Nippon Gyaku Co., Ltd.) RAD DPHA
- B-l dipentaerythritol hexaatalylate
- each composition of Examples 2-3 and Comparative Examples 1-3 shown in Table 1 was obtained.
- the blending amount of ITO particles and dispersant represents only the solid content in the added dispersion, and the dispersion medium is included in the blending amount of the solvent.
- Examples 1-3 and Comparative Examples 1-3 on a polyester film A4 300 made by Toyobo Co., Ltd., film thickness 188 111
- a wire bar coater Each of the compositions was applied and dried in an oven at 80 ° C. for 3 minutes to form a coating film.
- the coating film was cured with ultraviolet light under a light irradiation condition of UZcm 2 using a metal nitride lamp in the atmosphere to form a cured film (hard coat layer) having a thickness of 3 ⁇ m.
- the total cured light transmittance, haze, and surface resistance of the obtained cured film were evaluated according to the following criteria. The results obtained are shown in Table 1.
- the total light transmittance (%) and haze (%) of the cured film were measured using a color haze meter (manufactured by Suga Test Instruments Co., Ltd.) according to JIS K7105.
- the pencil hardness of the cured film was evaluated according to JIS K5600-5-4, and the film cured on a glass substrate was evaluated. (3) Surface resistance
- ITO particles 1: Fuji Chemical Co., Ltd., Nutform NID-20 (—Next particle size: 13 nm, Secondary particle size: 25 nm IPA dispersion)
- Dispersant 1 Dispersant contained in Fuji Chemical Co., Ltd.
- Utoform NID-20 ITO particles 2 Pastoran made by Mitsui Mining Co., Ltd. (Primary particle size: 30nm, Secondary particle size: 15Onm water dispersion)
- Dispersant 2 Dispersant contained in Pastoran (ITO particle-2) manufactured by Mitsui Mining & Smelting Co., Ltd.
- ITO particles-3 Nanotec (primary particle size: 25nm, secondary particle size: 80 ⁇ m EtOH dispersion) manufactured by Shi Kasei Co., Ltd.
- Dispersant 3 Dispersant included in Nanotech manufactured by Shi Kasei Co., Ltd.
- ITO particle-4 Pastoran manufactured by Mitsui Mining Co., Ltd. (Primary particle size: 30nm, Secondary particle size: 30Onm MeOH dispersion)
- Dispersant 4 Dispersant contained in Pastoran (ITO particles—4) manufactured by Mitsui Mining Co., Ltd.
- Comparative Examples 1 and 3 are of the order of 10 7 ⁇ , and the surface resistance is very small, but the haze is large and the transparency is poor.
- Comparative Example 2 on the contrary, the haze is relatively low, but the surface resistance is as large as 10 14 ⁇ , and the antistatic property is inferior.
- the surface resistance is Both are in the order of ⁇ ⁇ , and the haze is 0.1% or 0.2%, which satisfies the requirements of both antistatic properties and transparency. Power.
- this yarn composition contains a total of 773 parts of the compounds represented by the following formula (25) and the following formula (26), and 220 parts of pentaerythritol tetraatalylate which has not participated in the reaction. Are mixed.
- this composition contains 75 parts of the compound (B-1) represented by the following formula (27) and 37 parts of pentaerythritol tetraatalylate which is not involved in the reaction.
- Production Example 3 Production of reactive silica particle sol bonded with an organic compound having a polymerizable unsaturated group
- Silica particle sol (Methyl ethyl ketone silica sol, MEK-ST — L, Nissan Chemical Industries, Ltd., number average particle size 0.05 ⁇ m, silica concentration 30%) 143 g (43 g as silica particles), Production Example 1 2.8 g of the solution containing the specific organic compound (Aa) produced in 1), 0 lg of distilled water and 0. Olg of p-hydroquinone monomethyl ether were mixed and heated and stirred at 65 ° C. Four hours later, orthoformate methyl ester 1.Og was added, and the mixture was further heated for 1 hour to obtain a reactive silica particle sol having a solid content of 31%.
- Hexafluoropropylene 86. Og was then added and heating was started.
- the pressure when the temperature in the autoclave reached 60 ° C was 2.9 X 10 5 Pa.
- the reaction was continued with stirring at 70 ° C. for 20 hours.
- the pressure dropped to 2.
- OX 10 5 Pa the autoclave was cooled with water to stop the reaction. After reaching room temperature, the unreacted monomer was released and the autoclave was released to obtain a polymer solution having a solid content concentration of 30.0%.
- the obtained polymer solution was poured into methanol to precipitate a polymer, which was then washed with methanol and vacuum dried at 50 ° C. to obtain 220 g of a hydroxyl group-containing fluoropolymer.
- a 1-liter separable flask equipped with a magnetic stirrer, a glass cooling tube, and a thermometer was charged with 70.0 g of the hydroxyl group-containing fluoropolymer obtained in Production Example 4, and 2, 6-di-t as a polymerization inhibitor.
- Olg and MIBK520g were charged and stirred at 20 ° C. until the hydroxyl group-containing fluoropolymer dissolved in MIBK and the solution became clear and uniform.
- porous silica particle 1 powder sample 10 g was placed in an aluminum dish and dried on a hot plate at 150 ° C. for 1 hour to obtain a porous silica particle 1 powder sample.
- the BET specific surface area of the obtained porous silica particle powder was measured using AUTOSORB-1 manufactured by Quantachrome Instruments, the specific surface area was 200 m 2 Zg.
- Example 4 56 g of MIBK solution of the ethylenically unsaturated group-containing fluoropolymer obtained in Production Example 5 (8.5 g as an ethylenically unsaturated group-containing fluoropolymer) and the porous silica obtained in Production Example 7 1750 g of the particle dispersion (87.5 g as porous silica particles), 2-methyl-1 [4 (methylthio) phenol] 2 morpholinopropane 1-on 4 g, MIBK 700 g as a photopolymerization initiator were attached with a stirrer. The mixture was placed in a glass separable flask and stirred at 23 ° C. for 1 hour to obtain a composition 2 for forming a low refractive index layer. When the solid content was determined in the same manner as in Example 1, it was 4% by weight. [0206] Example 4
- Example 1 The liquid curable composition obtained in Example 1 was applied to a polyester film A4300 (made by Toyobo Co., Ltd., film thickness 188 ⁇ m) subjected to surface easy adhesion treatment using a wire bar coater # 20. And dried in an oven at 80 ° C for 3 minutes. Subsequently, the coating film was UV-cured under a light irradiation condition of UZcm 2 using a methanolide lamp in the atmosphere to produce a film having an antistatic hard coat layer. When the film thickness of the antistatic hard coat layer was measured with a stylus type surface shape measuring instrument, it was 3 m.
- the composition 1 for forming a low refractive index layer obtained in Production Example 6 was applied using a wire bar coater # 3, and the conditions of 80 ° C for 1 minute in an oven were applied. And dried. Next, using a metal nitride lamp under a nitrogen atmosphere, the coating film was UV-cured under the light irradiation conditions of UZcm 2 to form a low refractive index layer, thereby producing an antireflection laminate 1. Reflectance power of the obtained antireflection laminate 1 The film thickness of the low refractive index layer was calculated.
- An antireflection laminate 2 was prepared in the same manner as in Example 4 except that the low refractive index layer forming composition 2 obtained in Production Example 8 was used instead of the low refractive index layer forming composition 1. .
- the film thickness of the low refractive index layer was calculated in the same manner as in Example 1, it was 0 .: Lm.
- An antireflection laminate 3 was produced in the same manner as in Example 4 except that the liquid curable composition obtained in Example 3 was used instead of the liquid curable composition obtained in Example 1.
- the film thickness of the low refractive index layer was calculated in the same manner as in Example 4, it was 0 .: Lm.
- An antireflection laminate 4 was prepared in the same manner as in Example 6 except that the low refractive index layer forming composition 2 obtained in Production Example 8 was used instead of the low refractive index layer forming composition 1. [0210] Comparative Example 4
- Example 6 except that the liquid curable composition obtained in Comparative Example 2 was applied on the base material using a wire bar coater # 40 instead of the liquid resin composition obtained in Example 1.
- a wire bar coater # 40 instead of the liquid resin composition obtained in Example 1.
- an antireflection laminate 5 was produced.
- the film thickness of the low refractive index layer was calculated in the same manner as in Example 4, it was 0.1 m.
- An antireflection laminate 6 was prepared in the same manner as in Comparative Example 4 except that the low refractive index layer forming composition 2 obtained in Production Example 8 was used instead of the low refractive index layer forming composition 1. .
- the film thickness of the low refractive index layer was calculated in the same manner as in Example 4, it was 0 .: Lm.
- the total light transmittance (%) and haze (%) of the cured film were measured according to JIS K7105 using a color haze meter (manufactured by Suga Test Instruments Co., Ltd.). Table 2 shows the results obtained.
- the surface resistance ( ⁇ / mouth) of the cured film was measured using a high resistance meter (Agilent Technologies Corp. Agilent 4339B) and a resiliency cell 16008B (Agilent Technology Co., Ltd.) The measurement was performed under an applied voltage of 100V. The results obtained are shown in Table 2.
- the reflectance of the resulting anti-reflection laminate was measured with a spectral reflectance measuring device (instant multi-photometering system, MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.).
- the absolute reflectance was measured in the wavelength range of 400 to 800 nm. And evaluated.
- Table 2 shows the reflectance at a wavelength of 550 nm.
- the cloth rubbing resistance test of the antireflection laminate was carried out by the following method.
- a non-woven fabric B EMCOT S-2, manufactured by Asahi Kasei Kogyo Co., Ltd.
- a Gakushin type friction fastness tester AB-301, manufactured by Tester Sangyo Co., Ltd.
- Table 2 shows the results obtained.
- the ethanol resistance test of the cured film was performed by the following method. That is, a non-woven fabric soaked with ethanol (BEMCOT S-2, manufactured by Asahi Kasei Kogyo Co., Ltd.) is attached to a Gakushin type friction fastness tester (AB-301, manufactured by Tester Sangyo Co., Ltd.), and the surface of the cured film was repeatedly rubbed 20 times under the condition of a load of 500 g, and the presence or absence of scratches on the surface of the cured film was visually confirmed according to the following criteria. Table 2 shows the results obtained.
- Examples 4 to 7 using particles (ITO particles 1) containing tin-containing indium oxide (ITO) as a main component are high in total light transmittance, low in haze, low in surface resistance, scratch resistance, and chemical resistance. It can be seen that it is excellent in quality.
- a liquid curing that is excellent in curability and can form a coating film (film) excellent in antistatic properties, hardness, scratch resistance, and transparency on the surface of various substrates.
- Composition, cured film and antistatic laminate can be provided.
- the cured film of the present invention has excellent scratch resistance and adhesion, it is useful as a hard coat. Further, since it has an excellent antistatic function, it is useful as an antistatic film by being disposed on a substrate of various shapes such as a film, a plate, or a lens.
- Examples of the application of the cured film of the present invention include, for example, touch panel protective films, transfer foils, optical disk hard coats, automotive window films, antistatic protective films for lenses, cosmetic containers, and the like.
- Examples thereof include use as an anti-reflection film for antistatics for various display panels and the like, and use as an anti-reflection film for anti-statics such as plastic lenses, polarizing films and solar battery panels.
- an antistatic laminate having an excellent curability and having a cured film having excellent antistatic properties, hardness, scratch resistance, and transparency on the surface of various substrates. it can.
- the laminate of the present invention mainly includes, for example, a protective film for touch panels, a transfer foil, a hard coat for optical disks, a window film for automobiles, an antistatic protective film for lenses, and a surface protective film for high-design containers such as cosmetic containers.
- Anti-static function for various display panels such as CRT, liquid crystal display panel, plasma display panel, electo-luminescence display panel, etc. as a hard coat for the purpose of preventing product surface scratches and electrostatic dust.
- As an attached antireflection film it can be used as an antireflection film with an antistatic function for plastic lenses, polarizing films, solar battery panels and the like.
- the laminate of the present invention can prevent scratches (scratches) on, for example, plastic optical parts, touch panels, film-type liquid crystal elements, plastic housings, plastic containers, flooring materials as building interior materials, wall materials, artificial stones, etc. It can be suitably used as a hard coating material for preventing contamination, an adhesive for various substrates, a sealing material, a binder material for printing ink, and the like.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Laminated Bodies (AREA)
- Polymerisation Methods In General (AREA)
Abstract
少なくとも、基材と、下記成分(A)~(D)を含有する液状硬化性組成物を硬化させてなる硬化膜層と、を有する積層体。
[液状硬化性組成物]
(A)一次粒径が20nm以下であり、かつ二次粒径が50nm以下である錫含有酸化インジウム(ITO)を主成分とする粒子
(B)分子内に2以上の重合性不飽和基を有する化合物
(C)光重合開始剤
(D)溶剤
Description
明 細 書
液状硬化性組成物、硬化膜及び帯電防止用積層体
技術分野
[0001] 本発明は、液状硬化性組成物、その硬化膜及び帯電防止用積層体に関する。さら に詳しくは、硬化性に優れ、かつ、各種基材、例えば、プラスチック (ポリカーボネート 、ポリメチルメタタリレート、ポリスチレン、ポリエステル、ポリオレフイン、エポキシ榭脂、 メラミン榭脂、トリァセチルセル口一ス榭脂、 ABS榭脂、 AS榭脂、ノルボルネン系榭 脂等)、金属、木材、紙、ガラス、セラミックス、スレート等の表面に、帯電防止性、硬 度、耐擦傷性及び透明性に優れた塗膜 (被膜)を形成し得る液状硬化性組成物、そ れを硬化させてなる硬化膜層を含む帯電防止用積層体に関する。
背景技術
[0002] 従来、情報通信機器の性能確保と安全対策の面から、機器の表面に、放射線硬化 性組成物を用いて、耐擦傷性、密着性を有する塗膜 (ハードコート)や帯電防止機能 を有する塗膜 (帯電防止膜)を形成することが行われて!/ヽる。
また、光学物品に反射防止機能を付与するために、光学物品の表面に、低屈折率 層と高屈折率層との多層構造 (反射防止膜)を形成することが行われている。
近年、情報通信機器の発達と汎用化は目覚しいものがあり、ハードコート、帯電防 止膜、反射防止膜等のさらなる性能向上及び生産性の向上が要請されるに至ってい る。
[0003] 特に、光学物品、例えば、プラスチックレンズにぉ 、ては、静電気による塵埃の付 着の防止と、反射による透過率の低下の改善が要求されており、また、表示パネルに おいても、静電気による塵埃の付着の防止と、画面での映り込みの防止が要求され るようになってきている。
これらの要求に対して、生産性が高ぐ常温で硬化できることに注目し、放射線硬 化性の材料が種々提案されて!ヽる。
[0004] このような技術としては、例えば、イオン伝導性の成分として、スルホン酸及びリン酸 モノマーを含有する組成物 (特許文献 1)、連鎖状の金属粉を含有する組成物 (特許
文献 2)、酸化錫粒子、多官能アタリレート、及びメチルメタタリレートとポリエーテルァ タリレートとの共重合物を主成分とする組成物(特許文献 3)、導電性ポリマーで被覆 した顔料を含有する導電塗料組成物(特許文献 4)、 3官能アクリル酸エステル、単官 能性エチレン性不飽和基含有化合物、光重合開始剤、及び導電性粉末を含有する 光ディスク用材料 (特許文献 5)、シランカップラーで分散させたアンチモンドープされ た酸化錫粒子とテトラアルコキシシランとの加水分解物、光増感剤、及び有機溶媒を 含有する導電性塗料 (特許文献 6)、分子中に重合性不飽和基を含有するアルコキ シシランと金属酸化物粒子との反応生成物、 3官能性アクリル化合物、及び放射線 重合開始剤を含有する液状硬化性榭脂組成物 (特許文献 7)、一次粒子径が ΙΟΟη m以下の導電性酸化物微粉末、該導電性酸化物微粉末の易分散性低沸点溶剤、 該導電性酸化物微粉末の難分散性低沸点溶剤、及びバインダー榭脂を含有する透 明導電性膜形成用塗料 (特許文献 8)等を挙げることができる。
[0005] さらに、液晶表示パネル、冷陰極線管パネル、プラズマディスプレー等の各種表示 パネルにおいて、外光の映りを防止し、画質を向上させるために、低屈折率性、耐擦 傷性、塗工性及び耐汚染性に優れた硬化物からなる低屈折率層を含む反射防止膜 が求められている。
これら表示パネルにおいては、付着した指紋、埃等を除去するため表面をエタノー ル等を含侵したガーゼで拭くことが多ぐ耐擦傷性が求められている。また、付着した 指紋、埃等が容易に拭き取れる耐汚染性も求められて ヽる。
特に、液晶表示パネルにおいては、反射防止膜は、偏光板と貼り合わせた状態で 液晶ユニット上に設けられている。また、基材としては、例えば、トリァセチルセルロー ス等が用いられているが、このような基材を用いた反射防止膜では、偏光板と貼り合 わせる際の密着性を増すために、通常、アルカリ水溶液でケンィ匕を行う必要がある。 従って、液晶表示パネルの用途においては、耐久性において、特に、耐アルカリ性 に優れた反射防止膜が求められている。
[0006] 反射防止膜の低屈折率層用材料として、例えば、水酸基含有含フッ素重合体を含 むフッ素榭脂系塗料が知られている(例えば、特許文献 9〜11)。
しかし、このようなフッ素榭脂系塗料では、塗膜を硬化させるために、水酸基含有含
フッ素重合体と、メラミン榭脂等の硬化剤とを、酸触媒下、加熱して架橋させる必要が あり、加熱条件によっては、硬化時間が過度に長くなり、使用できる基材の種類が限 定されてしまうという問題があった。
また、得られた塗膜についても、耐候性には優れているものの、耐擦傷性や耐久性 に乏し!/、と!/、う問題があった。
[0007] そこで、上記の問題点を解決するため、少なくとも 1個のイソシァネート基と少なくと も 1個の付加重合性不飽和基とを有するイソシァネート基含有不飽和化合物と水酸 基含有含フッ素重合体とを、イソシァネート基の数 Z水酸基の数の比が 0. 01〜1. 0 の割合で反応させて得られる不飽和基含有含フッ素ビニル重合体を含む塗料用組 成物が提案されている (例えば、特許文献 12)。
[0008] しかし、上記公報では、不飽和基含有含フッ素ビュル重合体を調製する際に、水 酸基含有含フッ素重合体の全ての水酸基を反応させるのに十分な量のイソシァネー ト基含有不飽和化合物を用いず、積極的に当該重合体中に未反応の水酸基を残存 させるものであった。
このため、このような重合体を含む塗料用組成物は、低温、短時間での硬化を可能 とするものの、残存した水酸基を反応させるために、メラミン榭脂等の硬化剤をさら〖こ 用いて硬化させる必要があった。さらに、上記公報で得られた塗膜は、塗工性、耐擦 傷性にっ ヽても十分とは 、えな ヽと 、う課題があった。
[0009] 特許文献 1 :特開昭 47— 34539号公報
特許文献 2:特開昭 55 - 78070号公報
特許文献 3 :特開昭 60— 60166号公報
特許文献 4:特開平 2— 194071号公報
特許文献 5 :特開平 4— 172634号公報
特許文献 6:特開平 6 - 264009号公報
特許文献 7:特開 2000— 143924号公報
特許文献 8 :特開 2001— 131485号公報
特許文献 9:特開昭 57— 34107号公報
特許文献 10 :特開昭 59— 189108号公報
特許文献 11:特開昭 60— 67518号公報
特許文献 12:特開昭 61 - 296073号公報
[0010] しカゝしながら、このような従来の技術は、それぞれ一定の効果を発揮するものの、近 年における、ハードコート、帯電防止膜、反射防止膜としての全ての機能を十全に具 備することが要請される硬化膜としては、必ずしも十分に満足し得るものではなかつ た。
[0011] 例えば、上述の先行技術文献にあるような従来の技術には、下記のような問題があ つた。特許文献 1に記載された組成物は、イオン伝導性物質を用いているが帯電防 止性能が十分ではなぐ乾燥により性能が変動する。特許文献 2に記載された組成 物は、粒径の大きい連鎖状の金属粉体を分散させるため透明性が低下する。特許文 献 3に記載された組成物は、非硬化性の分散剤を多量に含むため、硬化膜の強度 が低下する。特許文献 5に記載された材料は、高濃度の帯電性無機粒子を配合する ため、透明性が低下する。特許文献 6に記載された塗料は、長期保存安定性が十分 ではない。特許文献 7には、帯電防止性能を有する組成物の製造方法について何ら の開示がない。特許文献 8に記載された塗料を塗布、乾燥して透明導電性膜を形成 した場合、バインダーの配合物力もなる有機マトリックスに架橋構造を設けていない ため、有機溶剤耐性が十分とは言えない。
[0012] 帯電防止性能を高めるために導電性粒子の配合量を多くすることは容易に想到し 得るが、その場合、硬化膜による可視光吸収の増加により透明性が低下するとともに 、紫外線透過性の低下により硬化性が低下したり、基材との密着性、塗布液のレペリ ング性が損なわれるという問題を避けることができな力つた。一方、導電性粒子の配 合量を少なくすると、充分な帯電防止性能が発現しな 、。
発明の開示
[0013] 本発明は、上述の問題に鑑みなされたもので、硬化性に優れ、かつ、各種基材の 表面に、帯電防止性、硬度、耐擦傷性、及び透明性に優れた塗膜 (被膜)を形成し 得る液状硬化性組成物及びその硬化膜を提供することを目的とする。
[0014] 本発明は、また、導電性粒子の配合量が少なくても、充分な帯電防止性能を発現 することができ、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、及び
耐擦傷性に優れ、透明性と表面抵抗値を両立させた塗膜 (被膜)を形成し得る液状 硬化性組成物を硬化させてなる硬化膜層を有する帯電防止用積層体、特に帯電防 止機能を有する反射防止膜積層体を提供することを目的とする。
本発明は、さらに、耐擦傷性及び耐汚染性に優れた反射防止積層体を提供するこ とを目的とする。
[0015] 本発明者は、上述の課題を解決するべく鋭意研究した結果、特定の粒径を有する 錫含有酸化インジウム粒子、分子内に 2以上の重合性不飽和基を有する化合物、光 重合開始剤、及び溶剤を含有した組成物とすることにより、導電性粒子の配合量が 従来に比べて少なくても帯電防止性能を発現し、かつ透明性を損なわな!/、硬化膜を 得ることができることを見出し、本発明を完成させた。
[0016] 本発明者は、また、この組成物を硬化させてなる硬化膜層を有する積層体により、 上記目的を達成することができることを見出し、本発明を完成させた。
さらに、この硬化膜層を、特定のエチレン性不飽和基含有含フッ素重合体とシリカ 粒子を含む硬化性榭脂組成物を硬化させて得られる低屈折率膜を組み合わせるこ とにより、反射防止積層体の耐擦傷性及び耐汚染性が改善されることを見出し、本発 明を完成させた。
[0017] 即ち、本発明は、以下の液状硬化性組成物、硬化膜、硬化膜の製造方法、積層体 及び積層体の製造方法を提供するものである。
1.下記成分 (A)、(B)、 (C)及び (D) :
(A)一次粒径が 20nm以下であり、かつ二次粒径が 50nm以下である錫含有酸ィ匕 インジウム (ITO)を主成分とする粒子
(B)分子内に 2以上の重合性不飽和基を有する化合物
(C)光重合開始剤
(D)溶剤
を含有する液状硬化性組成物。
2.前記成分 (A)の含有量力 全固形成分中 5〜40重量%である上記 1に記載の液 状硬化性組成物。
3.前記成分 (A)が、表面処理剤により表面処理された錫含有酸化インジウム (ITO)
を主成分とする粒子である上記 1又は 2に記載の液状硬化性組成物。
4.前記表面処理剤が、 2以上の重合性不飽和基、下記式(1)に示す基、及びシラノ ール基又は加水分解によってシラノール基を生成する基を有する化合物である上記 3に記載の液状硬化性組成物。
X— C (=Y)— NH— (1)
[式中、 Xは、 NH、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示す。 ]
5.上記 1〜4の 、ずれかに記載の液状硬化性組成物を硬化してなる硬化膜。
6.表面抵抗値が 1 X 1013ΩΖ口以下である上記 5に記載の硬化膜。
7.上記 1〜4のいずれかに記載の液状硬化性組成物に放射線を照射して、該組成 物を硬化せしめる工程を有する硬化膜の製造方法。
8.少なくとも、基材と、
上記 1〜4いずれかに記載の液状硬化性組成物を硬化させてなる硬化膜層と、 を有する積層体。
9.帯電防止機能を有する光学用部品である上記 8に記載の積層体。
10.反射防止膜である上記 9に記載の積層体。
11.表面抵抗値が I X 1013 Ω Ζ口以下である上記 8〜: LOのいずれかに記載の積層 体。
12.前記積層体が、基材上に、少なくとも帯電防止層及び低屈折率層が、基材に近 V、側力 この順に積層されて 、る反射防止膜であって、
前記硬化膜層が、帯電防止層である上記 10又は 11に記載の積層体。
13.前記帯電防止層の屈折率が、前記低屈折率層の屈折率より高い上記 12に記 載の積層体。
14.さらに、基材上に、ハードコート層が形成されている上記 8〜13のいずれかに記 載の積層体。
15.前記低屈折率層が、
下記成分 (G)及び (Η) :
(G) l個のイソシァネート基と少なくとも 1個のエチレン性不飽和基とを含有するィ匕
合物と、
水酸基含有含フッ素重合体と、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体、
(H)シリカを主成分とする粒子、
を含む硬化性榭脂組成物の硬化物である上記 12〜14のいずれか 1項に記載の積 層体。
16.前記水酸基含有含フッ素重合体が、下記構造単位 (a)〜(c)の合計を 100モル %としたときに、(&) 20〜70モル%、 (1)) 10〜70モル%及び(。)5〜70モル%を含 んでなり、かつ、
ゲルパーミエーシヨンクロマトグラフィーで測定したポリスチレン換算数平均分子量 が 5, 000〜500, 000である上記 15に記載の積層体。
(a)下記式(11)で表される構造単位
(b)下記式( 12)で表される構造単位
(c)下記式(13)で表される構造単位
[化 1]
[式中、 R11はフッ素原子、フルォロアルキル基又は— OR"で表される基 (R はァ ルキル基又はフルォロアルキル基を示す)を示す]
[化 2]
H R13
C C— (12)
H R14
[式中、 R13は水素原子又はメチル基を、 R14はアルキル基、 -(CH )—OR15若しく
2 c
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[化 3]
H R16
― C―†― (13)
H (CH2)vOR17
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
17.前記水酸基含有含フッ素重合体が、上記構造単位 (a)〜(c)の合計 100モル部 に対して、さらに、ァゾ基含有ポリシロキサンィ匕合物に由来する下記構造単位 (d) 0. 1〜 10モル部を含む上記 15又は 16に記載の積層体。
(d)下記一般式(14)で表される構造単位
[化 4]
R18 Si 0 (14)
R19
[式中、 R18及び R19は、同一でも異なっていてもよぐ水素原子、アルキル基、ハロ ゲンィヒアルキル基又はァリール基を示す]
18.前記成分 (H)が、表面にエチレン性不飽和基を有するシリカ粒子である上記 15 〜 17のいずれか〖こ記載の積層体。
19.前記成分 (H)が、
下記式(22)で表されるケィ素化合物及び下記式(23)で表されるケィ素化合物の 加水分解物及び Z又は加水分解縮合物からなり、平均粒径が 5〜50nmである多孔 質シリカ粒子 (HI)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は
炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。尚、式(22)の X及 び式(23)の Xは、同一であっても異なっていてもよい。 )
である上記 15〜18のいずれかに記載の積層体。
20.前記成分 (H)が、
下記式(22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び 下記式(24)で表されるケィ素化合物の加水分解物及び Z又は加水分解縮合物か らなり、平均粒径が 5〜50nmである多孔質シリカ粒子 (H2)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
R30 SiX · · · (24)
k 4-k
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。 R3は炭素数 1〜1 2のフッ素置換アルキル基、 kは 1〜3の整数を示す。尚、式(22)の X、式(23)の X 及び式(24)の Xは、同一であっても異なっていてもよい。 )
である上記 15〜18のいずれかに記載の積層体。
21.前記多孔質シリカ粒子 (HI)が、前記式 (22)で表されるケィ素化合物及び前記 式(23)で表されるケィ素化合物の合計を 100モル%としたとき、前記加水分解物及 び Z又は加水分解縮合物が、式(22)で表されるケィ素化合物 67〜99モル%及び 式(23)で表されるケィ素化合物 33〜1モル%の反応物力もなる、上記 19に記載の 積層体。
22.前記多孔質シリカ粒子 (H2)力 前記式(22)で表されるケィ素化合物、前記式 ( 23)で表されるケィ素化合物及び前記式(24)で表されるケィ素化合物の合計を 100 モル%としたとき、前記加水分解物及び Z又は加水分解縮合物が、式(22)で表さ れるケィ素化合物 60〜98モル%、式(23)で表されるケィ素化合物 1〜30モル%及 び式(24)で表されるケィ素化合物 1〜20モル%の反応物力もなる、上記 20に記載 の積層体。
23.基材上に、上記 1〜4いずれかに記載の液状硬化性組成物を塗布し、放射線を 照射することによって、該組成物を硬化して得られる硬化膜層を形成する工程を含 む積層体の製造方法。
[0018] 本発明によれば、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、 耐擦傷性、及び透明性に優れた塗膜 (被膜)を形成し得る液状硬化性組成物及びそ の硬化膜を提供することができる。
本発明の液状硬化性組成物によれば、帯電防止性及び透明性の要求を両立した 硬化膜が得られる。
[0019] 本発明によれば、前記液状硬化性組成物を硬化させてなる硬化膜を有する帯電防 止用積層体を提供することができる。
従来、錫含有酸化インジウム (ITO)を用いて十分な導電性を得るには高価な錫含 有酸化インジウム (ITO)粒子を高含有量 (通常 60重量%程度)で配合する必要があ つたが、本発明によれば、錫含有酸化インジウム (ITO)粒子の含有量が低くても、充 分な導電性を発現させることができ、帯電防止性能に優れた硬化膜を有する帯電防 止用積層体を得ることができる。
また、本発明によれば、微細な錫含有酸化インジウム (ITO)粒子を用いることにより
、その含有量を低く抑えても、硬化膜の充分な表面抵抗値と透明性とを両立させるこ とができ、本発明の積層体は、帯電防止機能を有する光学用部品、特に帯電防止機 能を有する反射防止膜として有用である。
さらに、特定の構成を有する低屈折率層を形成することにより、耐擦傷性及び耐汚 染性に優れた反射防止積層体を得ることができる。
図面の簡単な説明
[0020] [図 1]本発明の積層体の基本的構成を示す模式図である。
[図 2A]本発明の帯電防止機能付き反射防止膜の第一の形態を示す模式図である。
[図 2B]本発明の帯電防止機能付き反射防止膜の第一の形態の別の形態を示す模 式図である。
[図 2C]本発明の帯電防止機能付き反射防止膜の第二の形態を示す模式図である。
[図 2D]本発明の帯電防止機能付き反射防止膜の第二の形態の別の形態を示す模
式図である。
[図 2E]本発明の帯電防止機能付き反射防止膜の第三の形態を示す模式図である。
[図 2F]本発明の帯電防止機能付き反射防止膜の第三の形態の別の形態を示す模 式図である。
[図 3]成分 (A)の ITO粒子が基材側に偏在化した典型的な状態を示す、本発明の硬 化膜断面の電子顕微鏡写真である。
発明を実施するための最良の形態
[0021] 以下、本発明の実施の形態を具体的に説明する。
本発明の積層体は、少なくとも、基材と、下記成分 (A)〜(D)を含有する液状硬化 性組成物を硬化させてなる硬化膜層とを有することを特徴とする。
[液状硬化性組成物]
(A)一次粒径が 20nm以下であり、かつ二次粒径が 50nm以下である錫含有酸ィ匕 インジウム (ITO)を主成分とする粒子
(B)分子内に 2以上の重合性不飽和基を有する化合物
(C)光重合開始剤
(D)溶剤
[0022] また、本発明の積層体の好ましい態様'用途である反射防止膜は、基材上に、少な くとも上記硬化膜層からなる帯電防止層及び低屈折率層が、基材に近い側力もこの 順に積層されている反射防止膜であり、前記低屈折率層が、下記成分 (G)及び (H) を含む硬化性榭脂組成物の硬化物であることを特徴とする。
(G) l個のイソシァネート基と少なくとも 1個のエチレン性不飽和基とを含有する化合 物と、水酸基含有含フッ素重合体と、を反応させて得られるエチレン性不飽和基含 有含フッ素重合体
(H)シリカ粒子
[0023] I.積層体
本発明の積層体の最も基本的な構成を図 1に示す。本発明の積層体 1は、基材 10 及び前記液状硬化性組成物を硬化させてなる硬化膜層 12を有する。
本発明の積層体は、少なくとも基材 10及び硬化膜層 12を有していればよぐ目的
に応じて種々の層を設けてもよい。目的に応じて設けられる層については、後述する
[0024] 本発明の積層体 1は、優れた耐擦傷性、密着性を有する硬化膜層 12を有している ため、特にハードコートとして有用である。
また、本発明の積層体 1は、フィルム状、板状、又はレンズ等の各種形状の基材上 に優れた帯電防止機能を有する硬化膜層 12が配設されていることにより帯電防止用 積層体として有用である。
[0025] 本発明の積層体の適用例としては、例えば、 CRT,液晶表示パネル、プラズマ表 示パネル、エレクト口ルミネッセンス表示パネル等の各種表示パネル用の帯電防止機 能を有する反射防止膜 (以下、「帯電防止機能付き反射防止膜」ともいう)としての利 用、プラスチックレンズ、偏光フィルム、太陽電池パネル等の帯電防止機能付き反射 防止膜としての利用等を挙げることができる。
[0026] (1)硬化膜層
本発明の積層体の基材上に設けられる硬化膜層は、下記液状硬化性組成物(以 下、単に「組成物」又は「帯電防止層形成用組成物」 t ヽぅことがある)を硬化させて得 られ、積層体に導電性膜としての機能及び Z又はハードコートとしての機能を付与す ることがでさる。
以下、本発明で用いる液状硬化性組成物(帯電防止層形成用組成物)について具 体的に説明する。
1.成分 (A)
本発明に用いられる成分 (A)は、錫含有酸化インジウム(以下、単に「ITO」というこ ともある)粒子である。成分 (Α)は、本発明の組成物を硬化させて得られる硬化膜に 導電性 (帯電防止性)を付与するために必須の成分である。また、 ΙΤΟ粒子の一次粒 径は 20nm以下であり、かつ二次粒径は 50nm以下である。 ITO粒子の粒径を上記 のように設定することにより、導電性 (帯電防止性)を確保すると同時に硬化膜の透明 性をも維持することが可能となる。 ITO粒子の一次粒径及び二次粒径がそれぞれ 20 nm及び 50nmを超えると、得られる硬化膜の透明性が損なわれるおそれがある。
ITO粒子の一次粒径は、好ましくは 15nm以下であり、二次粒径は、好ましくは 40η
m以下である。
[0027] 成分 (A)の ITO粒子の一次粒径は、後述する表面処理の有無にかかわらず、その 形状が球状である場合、透過型電子顕微鏡で測定した値であり、形状が針状のよう に細長 ヽ場合には短軸を透過型電子顕微鏡で観察し、数平均の粒径として求めた 値である。
成分 (Α)の ΙΤΟ粒子の二次粒径は、後述する表面処理の有無にかかわらず、動的 光散乱式粒径分布測定装置によって求めた値である。
[0028] このような ΙΤΟ粒子の粉体としての市販品としては、例えば、富士化学 (株)製 商 品名:ΙΤΟ粉末等を挙げることができる。
[0029] 成分 (Α)として用いられる ΙΤΟ粒子は、粉体又は溶媒に分散した状態で用いること ができるが、均一分散性が得易いことから、溶媒中に分散した状態で用いることが好 ましい。
[0030] 成分 (Α)として用いられる ΙΤΟ粒子を溶媒に分散した市販品としては、例えば、富 士化学 (株)製 商品名:ハウトフオーム NID— 20等を挙げることができる。
[0031] 成分 (Α)として用いられる ΙΤΟ粒子は、溶剤への分散性を向上させるために、表面 処理剤等で表面処理された ΙΤΟ粒子であってもよ 、。
ここで、表面処理剤としては、例えば、アルコキシシランィ匕合物、テトラブトキシシチ タン、テトラブトキシジルコニウム、テトライソプロポキシアルミニウム等を挙げることが できる。これらは、 1種単独で、又は 2種以上を組み合わせて用いることができる。
[0032] アルコキシシラン化合物の具体例としては、 γ—メタクリロキシプロピルトリメトキシシ ラン、 γ—アタリロキシプロピルトリメトキシシラン、ビュルトリメトキシシラン等の分子内 に不飽和二重結合を有する化合物群、 γ—グリシドキシプロピルトリエトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン等の分子内にエポキシ基を有する化合物 群、 γ—ァミノプロピルトリエトキシシラン、 y—ァミノプロピルトリメトキシシラン等の分 子内にアミノ基を有する化合物群、 γ—メルカプトプロピルトリメトキシシラン、 γ—メ ルカプトプロピルトリエトキシシラン等の分子内にメルカプト基を有する化合物群、メチ ルトリメトキシシラン、メチルトリエトキシシラン、フエニルトリメトキシシラン等のアルキル シラン類等を挙げることができる。これらの表面処理剤の中では、 γ —メルカプトプロ
ピルトリメトキシシラン、 γ—グリシドキシプロピルトリメトキシシラン、メチルトリメトキシシ ラン、メチルトリエトキシシラン、フエ-ルトリメトキシシラン等力 表面処理された ΙΤΟ 粒子の分散安定性の点で好まし 、。
[0033] また、表面処理剤としては、有機樹脂と共重合又は架橋反応する官能基を有するも の(反応性表面処理剤)も好ましい。このような表面処理剤としては、上述した分子内 に不飽和二重結合を有する化合物群や、 2以上の重合性不飽和基、下記式(1)に 示す基、及びシラノール基又は加水分解によってシラノール基を生成する基を有す る化合物が好ましい。
X— C (=Y)— ΝΗ— (1)
[式中、 Xは、 NH、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示す。 ]
[0034] 上記式(1)に示す基は、好ましくは、ウレタン結合 [ O C ( = 0)— NH 、 一 O — C ( = S)— NH 及びチォウレタン結合 [― S— C ( = 0)— NH ]からなる群から 選択される少なくとも 1種類の基である。
[0035] このような表面処理剤としては、例えば、分子内にウレタン結合 [ 0— C ( = 0) N H ]及び Z又はチォウレタン結合 [ S— C ( = O) NH ]並びに 2以上の重合性 不飽和基を有するアルコキシシランィ匕合物を挙げることができる。具体的には、下記 式 (2)に示すィ匕合物を挙げることができる。
[化 5]
Ri
( 2 )
式中、 R1はメチル基、 R2は炭素数 1〜6のアルキル基、 R3は水素原子又はメチル基 、 mは 1又は 2、 nは 1〜5の整数、 Xは炭素数 1〜6の 2価のアルキレン基、 Yは鎖状、 環状、分岐状いずれかの炭素数 3〜14の 2価の炭化水素基、 Zは (n+ 1)価の鎖状 、環状、分岐状いずれかの炭素数 2〜 14の 2価の炭化水素基である。 Z内には、ェ
一テル結合を含んでもょ ヽ。
[0036] 式(2)に示す化合物は、メルカプトアルコキシシラン類、ジイソシァネート類及び水 酸基含有多官能 (メタ)アタリレート類を反応させて製造することができる。
好ましい製造方法としては、例えば、メルカプトアルコキシシラン類とジイソシァネー ト類との反応によりチォウレタン結合で結合した中間体を製造後、残存するイソシァ ネートと水酸基含有多官能 (メタ)アタリレート類との反応によりウレタン結合で結合し た生成物とする方法を挙げることができる。
[0037] 尚、ジイソシァネート類と水酸基含有多官能 (メタ)アタリレート類との反応により初め にウレタン結合で結合した中間体を製造後、残存するイソシァネートとメルカプトアル コキシシラン類とを反応させることによつても同一生成物は得られる力 メルカプトァ ルコキシシラン類と (メタ)アクリル基との付加反応が併発するため、その純度が低くな り、また、ゲル状物を形成することがあり好ましくない。
[0038] 式(2)に示すィ匕合物の製造に用いるメルカプトアルコキシシラン類としては、例えば 、 γ—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプロピルトリエトキシシラン 、 γ—メルカプトプロピルトリブトキシシラン、 γ—メルカプトプロピルジメチルメトキシ シラン、 γ—メルカプトプロピルメチルジメトキシシラン等を挙げることができる。中でも 、 γ—メルカプトプロピルトリメトキシシラン、 γ—メルカプトプロピルメチルジメトキシシ ランが好ましい。
[0039] メルカプトアルコキシシラン類の巿販品としては、例えば、東レダウ'コーユング (株) 製 商品名: SH6062を挙げることができる。
[0040] また、ジイソシァネート類としては、例えば、 1, 4ーブチレンジイソシァネート、 1, 6 一へキシレンジイソシァネート、イソホロンジイソシァネート、水添キシリレンジイソシァ ネート、水添ビスフエノーノレ Αジイソシァネート、 2, 4ートノレェンジイソシァネート、 2, 6 —トルエンジイソシァネート等を挙げることができる。中でも、 2, 4—トルエンジィソシ ァネート、イソホロンジイソシァネート、水添キシリレンジイソシァネートが好ましい。
[0041] ポリイソシァネートイ匕合物の市販品としては、例えば、三井日曹ウレタン (株)製 商 品名: TDI— 80Z20、 TDI— 100、 MDI— CR100、 MDI— CR300、 MDI— PH、 NDI、 日本ポリウレタン工業 (株)製 商品名:コロネ—ト T、ミリォネート ΜΤ、ミリォネ
ート MR、 HDI、武田薬品工業 (株)製 商品名:タケネート 600等を挙げることができ る。
[0042] また、水酸基含有多官能 (メタ)アタリレート類としては、例えば、トリメチロールプロ パンジ (メタ)アタリレート、トリス(2—ヒドロキシェチル)イソシァヌレートジ (メタ)アタリ レート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリトールペンタ(メタ) アタリレート等を挙げることができる。このうち、トリス(2—ヒドロキシェチル)イソシァヌ レートジ (メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレート、ジペンタエリスリ トールペンタ (メタ)アタリレートが好ましい。これらは、式(2)に示す化合物中の 2以上 の重合性不飽和基を形成する。
[0043] これらのメルカプトアルコキシシラン類、ジイソシァネート類、水酸基含有多官能 (メ タ)アタリレート類は、 1種単独で、又は 2種以上を組み合わせて用いることができる。
[0044] 式(2)に示すィ匕合物を製造する場合の好まし!/、メルカプトアルコキシシラン類、ジィ ソシァネート類、水酸基含有多官能 (メタ)アタリレート類の配合割合は、メルカプトァ ルコキシシラン類に対するジイソシァネート類のモル比力 S、好ましくは、 0. 8〜1. 5、 さらに好ましくは、 1. 0〜1. 2である。このモル比が 0. 8未満であると、組成物の保存 安定性が低下することがあり、 1. 5を超えると、分散性が低下することがある。
また、ジイソシァネート類に対する水酸基含有 (メタ)アタリレート類のモル比力 好 ましく ίま、 1. 0〜1. 5、さらに好ましく ίま、 1. 0〜1. 2である。このモノ ktt力 S1. 0未満 であると、ゲルィ匕することがあり、 1. 5を超えると、帯電防止性が低下することがある。
[0045] 式(2)に示すィ匕合物の製造は、通常、アクリル基の嫌気性重合を防止し、アルコキ シシランの加水分解を防止するため、乾燥空気中で行うことが好ましい。また、反応 温度は 0°Cから 100°Cが好ましぐさらに好ましくは、 20°Cから 80°Cである。
[0046] 式 (2)に示す化合物の製造時には、製造時間を短縮することを目的にウレタン反応 で公知の触媒を添加してもよい。触媒としては、ジブチル錫ジラウレート、ジォクチル 錫ジラウレート、ジブチル錫ジ(2—ェチルへキサノエ一ト)、ォクチル錫トリアセテート を挙げることができる。触媒の添加量は、ジイソシァネート類との合計に対して、 0. 0 1重量%〜1重量%である。
[0047] また、式 (2)に示す化合物の熱重合を防止する目的で、製造時に熱重合禁止剤を
添加してもよい。熱重合禁止剤としては、例えば、 P—メトキシフエノール、ハイド口キノ ン等を挙げることができる。熱重合禁止剤の添加量は、水酸基含有多官能 (メタ)ァク リレート類との合計に対して、好ましくは、 0. 01重量%〜1重量%である。
[0048] 式(2)に示すィ匕合物の製造は、溶媒中で行うこともできる。溶媒としては、例えば、 メルカプトアルコキシシラン類、ジイソシァネート類、水酸基含有多官能 (メタ)アタリレ ート類と反応せず、沸点が 200°C以下の溶媒の中から適宜選択することができる。 このような溶媒の具体例としては、メチルェチルケトン、メチルイソブチルケトン、シク 口へキサノン等のケトン類、酢酸ェチル、酢酸ブチル、酢酸アミル等のエステル類、ト ルェン、キシレン等の炭化水素類を挙げることができる。
[0049] 本発明では、(A) ITO粒子の存在下、上記の表面処理剤を加水分解することによ り、表面処理された ITO粒子を製造することができる。好ましい製造方法は、(A) IT
O粒子、表面処理剤、及び有機溶媒の混合物に水を加え、加水分解する手順で調 製する方法である。
この製造方法では、表面処理剤の加水分解により、アルコキシ基が、一且シラノー ル基(Si— OH)に変換され、このシラノール基が ITO粒子上の金属水酸化物(M— OH)と反応し、メタロキサン結合 (M— O— Si)を形成することにより、表面処理剤が I TO粒子上に固定されると推定される。
[0050] 表面処理剤の配合量は、(A) ITO粒子 100重量部に対して、好ましくは、 0. 1〜5 0重量部、さらに好ましくは、 1〜35重量部である。表面処理剤が 0. 1重量部未満で あると、硬化膜の耐摩耗性が十分でないことがあり、 50重量部を超えると帯電防止性 能が不足することがある。
[0051] 水の配合量は、表面処理剤中の全アルコキシ当量に対して、好ましくは、 0. 5〜1 . 5当量であり、表面処理剤 100重量部に対して、 0. 5〜5. 0重量部添加することが 好ましい。用いる水は、イオン交換水又は蒸留水が好ましい。
[0052] 加水分解反応は、有機溶媒の存在下、 0°C〜成分の沸点以下の温度、通常、 30 〜100°Cで、 1時間から 24時間加熱攪拌することにより行うことができる。有機溶媒と しては、予め有機溶媒に分散した (A) ITO粒子を用いる場合はそのままで行うことが できるが、別途有機溶媒を添加してもよい。
[0053] 尚、加水分解を行う際、反応を促進するため、触媒として、酸又は塩基を添加しても よい。
酸としては、例えば、塩酸、硝酸、硫酸、リン酸等の無機酸、メタンスルホン酸、トル エンスルホン酸、フタル酸、リンゴ酸、酒石酸、マロン酸、蟻酸、蓚酸、メタクリル酸、ァ クリル酸、ィタコン酸等の有機酸や、テトラメチルアンモ -ゥム塩酸塩、テトラブチルァ ンモ -ゥム塩酸塩等のアンモ-ゥム塩を挙げることができる。
塩基としては、例えば、アンモニア水、トリェチルァミン、トリブチルァミン、トリェタノ ールァミン等のアミン類を挙げることができる力 好ましい触媒は、酸であり、より好ま しくは有機酸である。これら触媒の添加量はアルコキシシランィ匕合物 100重量部に対 して、好ましくは、 0. 001重量部〜 1重量部、より好ましくは 0. 01重量部〜 0. 1重量 部である。
[0054] 尚、加水分解反応の終了時に脱水剤を添加することにより、(A) ITO粒子上への 表面処理剤の加水分解物の固定をより効果的に行うことができる。
脱水剤としては、有機カルボン酸オルトエステル及びケタールであり、具体的には、 例えば、オルト蟻酸メチルエステル、オルト蟻酸ェチルエステル、オルト酢酸メチルェ ステル、オルト酢酸ェチルエステル等及びアセトンジメチルケタール、ジェチルケトン ジメチルケタール、ァセトフエノンジメチルケタール、シクロへキサノンジメチルケター ル、シクロへキサノンジェチルケタール、ベンゾフエノンジメチルケタール等を挙げる ことができる。中でも、好ましくは有機カルボン酸オルトエステル類であり、さらに好ま しくはオルト蟻酸メチルエステル、オルト蟻酸ェチルエステルである。
[0055] これらの脱水剤は、組成物中に含まれる水分量と当モル以上 10倍モル以下、好ま しくは当モル以上 3モル以下カ卩えることができる。当モル未満であると、保存安定性 向上が十分でないことがある。また、これら脱水剤は、組成物の調製後加えることが 好ましい。これにより、組成物の保存安定性及び表面処理剤の加水分解物中のシラ ノール基と (A) ITO粒子との化学結合形成が促進される。
[0056] このような表面処理剤で表面処理された (A) ITO粒子は、溶剤中で極めて良好な 分散性を有することから、表面処理剤は、シロキシ基 (Si— O—)を介した化学結合に より、(A) ITO粒子の表面に固定されていると推定される。
尚、本発明では、反応性表面処理剤で表面処理された (A) ITO粒子を、特に反応 性粒子 (RA)と称する。
[0057] 成分 (A)の配合量は特に制限されないが、本発明の組成物の固形分全量 100重 量%中、好ましくは 5〜40重量%、より好ましくは 7〜35重量%である。成分 (A)が表 面処理されている場合も同じである。配合量が 5重量%未満では、帯電防止性が劣 る場合があり、 40重量部を超えると、塗膜の製膜性が劣る場合がある。ここで、成分( A)の配合量は、その固形分としての配合量をいい、分散媒を含まない。
[0058] 2.成分 (B)
本発明に用いられる成分 (B)は、分子内に 2以上の重合性不飽和基を有する化合 物であり、本発明の組成物を硬化して得られる硬化膜に成膜性、透明性を付与する 成分である。このような成分 (B)を用いることにより、優れた耐擦傷性、有機溶剤耐性 を有する硬化物が得られる。
[0059] 成分 (B)の具体例としては、例えば、(メタ)アクリルエステル類、ビニル化合物類を 挙げることができる。
(メタ)アクリルエステル類としては、トリメチロールプロパントリ(メタ)アタリレート、ジト リメチロールプロパンテトラ(メタ)アタリレート、ペンタエリスリトールトリ(メタ)アタリレー ト、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールペンタ (メタ)ァ タリレート、ジペンタエリスリトールへキサ(メタ)アタリレート、グリセリントリ(メタ)アタリレ ート、トリス(2—ヒドロキシェチル)イソシァヌレートトリ(メタ)アタリレート、エチレンダリ コールジ (メタ)アタリレート、 1, 3—ブタンジオールジ (メタ)アタリレート、 1, 4—ブタ ンジオールジ (メタ)アタリレート、 1, 6—へキサンジオールジ (メタ)アタリレート、ネオ ペンチルグリコールジ (メタ)アタリレート、ジエチレンダルコールジ (メタ)アタリレート、 トリエチレンダルコールジ (メタ)アタリレート、ジプロピレンダルコールジ (メタ)アタリレ ート、ビス(2—ヒドロキシェチル)イソシァヌレートジ (メタ)アタリレート、トリシクロデカ ンジィルジメタノールジ (メタ)アタリレート、及びこれらの化合物を製造する際の出発 アルコール類のエチレンォキシド又はプロピレンォキシド付カ卩物のポリ(メタ)アタリレ ート類、分子内に 2以上の (メタ)アタリロイル基を有するオリゴエステル (メタ)アタリレ ート類、オリゴエーテル (メタ)アタリレート類、オリゴウレタン (メタ)アタリレート類、及び
オリゴエポキシ (メタ)アタリレート類等を挙げることができる。
ビニル化合物類としては、ジビュルベンゼン、エチレングリコールジビュルエーテル 、ジエチレングリコールジビニノレエーテル、トリエチレングリコールジビニノレエーテノレ 等を挙げることができる。中でも、ジペンタエリスリトールへキサ (メタ)アタリレート、ジ ペンタエリスリトールペンタ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレ ート、ペンタエリスリトールトリ(メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリ レート、ジトリメチロールプロパンテトラ(メタ)アタリレート、トリス(2—ヒドロキシェチル) イソシァヌレートトリ(メタ)アタリレート、ビス(2—ヒドロキシェチル)イソシァヌレートジ( メタ)アタリレート、トリシクロデカンジィルジメタノールジ (メタ)アタリレートが好まし!/、。 これら(B)成分は、 1種単独で使用してもよいし、 2種以上を併用してもよい。
[0060] 成分 )の配合量は、本発明の組成物の固形分全量 100重量%中、好ましくは 55 〜94重量%、より好ましくは 60〜92重量%である。成分(B)の配合量が 55重量% 未満では、得られる硬化物の透明性が劣る場合があり、 94重量%を超えると、帯電 防止性が劣る場合がある。
[0061] 3.成分 (C)
成分 )は、光重合開始剤であり、本発明の組成物に放射線を照射して硬化させ る際に、硬化速度を高めるために添加する。
尚、本発明において、放射線とは、可視光線、紫外線、遠紫外線、 X線、電子線、 α線、 j8線、 γ線等を意味する。
[0062] 成分 (C)の配合量は、本発明の組成物の固形分全量 100重量%に対して、好まし くは 0. 1〜15重量%、より好ましくは 0. 5〜: LO重量%である。成分 (C)は、 1種単独 で、又は 2種以上を組み合わせて用いることができる。
[0063] 成分(C)としては、例えば、 1—ヒドロキシシクロへキシルフエ-ルケトン、 2, 2 ジメ トキシ一 2—フエ-ルァセトフエノン、キサントン、フルォレノン、ベンズアルデヒド、フル オレン、アントラキノン、トリフエニルァミン、カルバゾール、 3—メチルァセトフエノン、 4 クロ口べンゾフエノン、 4, 4'ージメトキシベンゾフエノン、 4, 4'ージァミノべンゾフエ ノン、ミヒラーケトン、ベンゾインプロピルエーテル、ベンゾインェチルエーテル、ベン ジルジメチルケタール、 1一(4 イソプロピルフエ-ル) 2 ヒドロキシ 2 メチル
プロパン一 1—オン、 2—ヒドロキシ一 2—メチルー 1—フエ-ルプロパン一 1—オン、 チォキサントン、ジェチルチオキサントン、 2—イソプロピルチォキサントン、 2—クロ口 チォキサントン、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルホリノ—プロ パン 1 オン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、ビス (2, 6 ジメトキシベンゾィル)一2, 4, 4 トリメチルペンチルホスフィンォキシド等を 挙げることができる。
[0064] 4.成分 (D)
本発明に用いられる成分 (D)は溶剤であり、本発明の組成物の流動性を調節する ための成分である。
[0065] 本発明の組成物中の成分 (D)である溶剤は、組成物の固形分全量の濃度が、 0.
5〜75重量%となるように添加することが好ましい。即ち、(D)溶剤の添加量としては 、本発明の組成物の固形分全量を 100重量部としたときに、 33. 3〜19, 900重量 部の範囲内であることが好ましい。この理由は、(D)溶剤の添加量が 33. 3重量部未 満となると、組成物の粘度が増カロして塗布性が低下する場合があり、一方、 19, 900 重量部を超えると、得られる硬化物の膜厚が薄過ぎて、十分な硬度が発現しない場 合がある力 である。
[0066] 溶剤の種類は、特に限定されるものではないが、通常、常圧での沸点が 200°C以 下の溶剤が好ましい。具体的には、水、アルコール類、ケトン類、エーテル類、エステ ル類、炭化水素類、アミド類等が用いられる。これらは、 1種単独で、又は 2種以上を 組み合わせて用いることができる。
[0067] アルコール類としては、例えば、メタノール、エタノール、イソプロピルアルコール、ィ ソブタノール、 n—ブタノール、 tert—ブタノール、エトキシエタノール、ブトキシェタノ 一ノレ、ジエチレングリコーノレモノエチノレエーテノレ、ベンジノレアノレコーノレ、フエネチノレア ルコール等を挙げることができる。ケトン類としては、例えば、アセトン、メチルェチル ケトン、メチルイソブチルケトン、シクロへキサノン等を挙げることができる。エーテル類 としては、例えば、ジブチルエーテル、プロピレングリコールモノェチルエーテルァセ テート、プロピレングリコールモノメチルエーテル(PGME)等を挙げることができる。 エステル類としては、例えば、酢酸ェチル、酢酸ブチル、乳酸ェチル、ァセト酢酸メチ
ル、ァセト酢酸ェチル等を挙げることができる。炭化水素類としては、例えば、トルェ ン、キシレン等を挙げることができる。アミド類としては、例えば、 N, N ジメチルホル ムアミド、 N, N ジメチルァセトアミド、 N—メチルピロリドン等を挙げることができる。
[0068] 尚、成分 (A)の ITO粒子が分散媒に分散した状態の分散液である場合、その分散 媒を、成分 (D)の溶剤としてそのまま用いてもよぐ分散媒とは別の溶剤のみを用い てもよ 、し、さらに分散媒と別の溶剤とを併せて成分 (D)の溶剤として用いてもよ!、。
[0069] 5.その他の重合性不飽和基を有する化合物
本発明の組成物には、成分 (A)〜成分 (D)以外の成分として、その他の重合性不 飽和基を有する化合物 (成分 (E) )を必要に応じて配合することができる。ここで、成 分 )とは、分子内に重合性不飽和基を 1つ有する化合物である。
成分 (E)の具体例としては、例えば、 N—ビュルピロリドン、 N ビニルカプロラクタ ム等のビュル基含有ラタタム、イソボル-ル (メタ)アタリレート、ボル-ル (メタ)アタリレ ート、トリシクロデ力-ル (メタ)アタリレート、ジシクロペンタ-ル (メタ)アタリレート、ジシ クロペンテ-ル (メタ)アタリレート、シクロへキシル (メタ)アタリレート等の脂環式構造 含有 (メタ)アタリレート、ベンジル (メタ)アタリレート、 4ーブチルシクロへキシル (メタ) アタリレート、アタリロイルモルホリン、ビュルイミダゾール、ビュルピリジン、 2—ヒドロキ シェチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)アタリレート、 2—ヒドロキシ ブチル (メタ)アタリレート、メチル (メタ)アタリレート、ェチル (メタ)アタリレート、プロピ ル (メタ)アタリレート、イソプロピル (メタ)アタリレート、ブチル (メタ)アタリレート、ァミル (メタ)アタリレート、イソブチル (メタ)アタリレート、 t—ブチル (メタ)アタリレート、ペンチ ル (メタ)アタリレート、イソアミル (メタ)アタリレート、へキシル (メタ)アタリレート、ヘプ チル (メタ)アタリレート、ォクチル (メタ)アタリレート、イソオタチル (メタ)アタリレート、 2 ェチルへキシル (メタ)アタリレート、ノ-ル (メタ)アタリレート、デシル (メタ)アタリレ ート、イソデシル (メタ)アタリレート、ゥンデシル (メタ)アタリレート、ドデシル (メタ)ァク リレート、ラウリル (メタ)アタリレート、ステアリル (メタ)アタリレート、イソステアリル (メタ) アタリレート、テトラヒドロフルフリル (メタ)アタリレート、ブトキシェチル (メタ)アタリレー ト、エトキシジエチレングリコール (メタ)アタリレート、ベンジル (メタ)アタリレート、フエ ノキシェチル (メタ)アタリレート、ポリエチレングリコールモノ(メタ)アタリレート、ポリプ
ロピレングリコールモノ(メタ)アタリレート、メトキシエチレングリコール(メタ)アタリレー ト、エトキシェチル (メタ)アタリレート、メトキシポリエチレングリコール (メタ)アタリレート 、メトキシポリプロピレングリコール (メタ)アタリレート、ジアセトン (メタ)アクリルアミド、 イソブトキシメチル (メタ)アクリルアミド、 N, N—ジメチル (メタ)アクリルアミド、 t—オタ チル (メタ)アクリルアミド、ジメチルアミノエチル (メタ)アタリレート、ジェチルアミノエチ ル (メタ)アタリレート、 7—ァミノ一 3, 7—ジメチルォクチル (メタ)アタリレート、 N, N— ジェチル (メタ)アクリルアミド、 N, N—ジメチルァミノプロピル (メタ)アクリルアミド、ヒド 口キシブチノレビニノレエーテノレ、ラウリノレビニノレエーテノレ、セチノレビニノレエーテノレ、 2- ェチルへキシルビニルエーテル、下記式(3)で表される化合物等が挙げられる。
CH -C (R4) -COO (R50) -Ph-R6 式(3)
2 P
(式中、 R4は水素原子又はメチル基を示し、 R5は炭素数 2〜6、好ましくは 2〜4のァ ルキレン基を示し、 R6は水素原子又は炭素数 1〜12、好ましくは 1〜9のアルキル基 を示し、 Phはフヱ-レン基を示し、 pは 0〜12、好ましくは 1〜8の数を示す。 )
[0070] 成分(E)の市販品としては、ァロニックス M— 101、 M— 102、 M— 111、 M— 11 3、 M— 114、 M— 117 (以上、東亜合成(株)製);ビスコート LA、 STA、 IBXA、 2 — MTA、 # 192、 # 193 (大阪有機化学(株)製);?¾: エステル AMP— 10G、 A MP— 20G、 AMP— 60G (以上、新中村化学工業 (株)製);ライトアタリレート L— A、 S— A、 IB— XA、 PO— A、 PO— 200A、 NP— 4EA、 NP— 8EA (以上、共栄社 化学 (株)製); FA—511、 FA—512A、 FA—513A (以上、日立化成工業 (株)製) 等が挙げられる。
[0071] 6.非導電性粒子
本発明では、液状硬化性組成物が分離、ゲルィ匕等の不具合を起こさない範囲で、 非導電性粒子、又は非導電性粒子とアルコキシシランィ匕合物とを有機溶媒中で反応 させて得られる粒子を併用してもよ!、。
[0072] 非導電性粒子を成分 (A)である ITO粒子と併用することにより、帯電防止機能、即 ち、硬化膜としたときの表面抵抗として 1013ΩΖ口以下の値を維持しながら、耐擦傷 性を向上させることができる。
[0073] このような非導電性粒子としては、具体的には、酸化ケィ素、酸ィ匕アルミニウム、酸
化ジルコニウム、酸ィ匕チタニウム、酸ィ匕セリウム等の酸ィ匕物粒子、又はケィ素、アルミ ユウム、ジルコニウム、チタニウム、及びセリウムよりなる群力も選ばれる 2種類以上の 元素を含む酸ィ匕物粒子を挙げることができる。
[0074] 非導電性粒子の一次粒径は、透過型電子顕微鏡観察によって求めた値として、好 ましくは、 0. 1 m以下であり、さらに好ましくは、 0. 001〜0. 05 μ mである。 0. 1 mを超えると、組成物中で沈降が発生したり、塗膜の平滑性が低下することがある。
[0075] 非導電性粒子を本発明の組成物に配合する場合、非導電性粒子とアルコキシシラ ン化合物とを有機溶媒中で加水分解した後混合してもよい。この処理により、非導電 性粒子の分散安定性が良好になる。非導電性粒子とアルコキシシランィ匕合物との有 機溶媒中での加水分解処理は、前述の成分 (A)である酸化物粒子の処理方法と同 様にすることができる。
[0076] 非導電性粒子の市販品として、例えば、酸ィ匕ケィ素粒子 (例えば、シリカ粒子)とし ては、コロイダルシリカとして、 日産化学工業 (株)製 商品名:メタノールシリカゾル、 I PA— ST、 MEK— ST、 NBA -ST, XBA— ST、 DMAC— ST、 ST— UP、 ST— OUPゝ ST— 20、 ST— 40、 ST— C、 ST— N、 ST— 0、 ST— 50、 ST— OL等を挙 げることができる。また粉体シリカとしては、 日本ァエロジル (株)製 商品名:ァエロジ ル 130、ァエロジル 300、ァエロジル 380、ァエロジル TT600、ァエロジル 0X50、 旭硝子(株)製
H32, H51, H52, H121, H122, 日 本シリカ工業 (株)製 商品名: E220A、 E220、富士シリシァ (株)製 商品名: SYL YSIA470, 日本板硝子 (株)製 商品名: SGフレーク等を挙げることができる。
また、酸ィ匕アルミニウム (アルミナ)の水分散品としては、 日産化学工業 (株)製 商 品名:アルミナゾル 100、 一 200、 一 520 ;酸化ジルコニウムの分散品としては、住 友大阪セメント (株)製(トルエン、メチルェチルケトン分散のジルコユアゾル);酸化セ リウム水分散液としては、多木化学 (株)製 商品名:ニードラール;アルミナ、酸ィ匕ジ ルコ-ゥム、酸ィ匕チタニウム、等の粉末及び溶剤分散品としては、シーアィ化成 (株) 製 商品名:ナノテック等を挙げることができる。
[0077] 非導電性粒子の配合割合は、本発明の組成物の固形分全量 100重量%中、好ま しくは 0. 1〜35重量%、より好ましくは 1〜30重量%である。
[0078] 7.添カロ剤
本発明の組成物には、その他の添加剤として、酸化防止剤、紫外線吸収剤、光安 定剤、熱重合禁止剤、レべリング剤、界面活性剤、滑材等を必要に応じて配合するこ とができる。酸ィ匕防止剤としては、チノ スペシャルティケミカルズ (株)製 商品名:ィ ルガノックス 1010、 1035、 1076、 1222等、紫外線吸収剤としては、チバスペシャル ティケミカルズ (株)製 商品名:チヌビン P234, 320、 326, 327, 328, 213、 329 、シプロ化成 (株)製 商品名:シーソーブ 102、 103、 501、 202、 712等、光安定剤 としては、チバスペシャルティケミカルズ (株)製 商品名:チヌビン 292、 144、 622L D、三共 (株)製 商品名:サノ—ル LS770、LS440、住友ィ匕学工業 (株)製 商品名 :スミソープ TM— 061等を挙げることができる。
[0079] このようにして得られた本発明の組成物の粘度は、通常 25°Cにおいて、 1〜20, 0 OOmPa' sであり、好ましくは 1〜1, OOOmPa' sである。
[0080] 前述の通り、本発明の組成物の溶剤 (D)を除く固形分含量は、 0. 5〜75重量%の 範囲内であることが好ましい。固形分含量が 0. 5重量%未満であると、得られる硬化 物の膜厚が薄過ぎて、十分な硬度が発現しない場合があり、 75重量%を超えると組 成物の粘度が増力 tlして塗布性が低下する場合がある。
[0081] 8.帯電防止層形成用組成物の調製方法
本発明の液状硬化性組成物は、上記成分 (A)〜(D)、及び必要に応じて、上記そ の他の重合性不飽和基を有する化合物、非導電性粒子、その他の添加剤を加えて 混合することにより得られる。
[0082] 9.硬化膜層の形成方法
本発明の積層体の硬化膜層は、上述の帯電防止層形成用組成物を上記基材に塗 布、乾燥した後に、放射線を照射して、組成物を硬化させることにより得ることができ る。
得られた硬化膜層の表面抵抗は、 1 X 1013ΩΖ口以下であれば十分な帯電防止 性能を発揮でき、通常は 1 Χ 1012ΩΖ口以下、好ましくは 1 Χ 101()ΩΖ口以下、より 好ましくは 1 Χ 108ΩΖ口以下である。表面抵抗が 1 Χ 1012ΩΖ口を超えると、帯電 防止性能が十分でなぐ埃が付着し易くなつたり、付着した埃を容易に除去できない
場合がある。
尚、上記範囲の表面抵抗値を有する硬化膜層の上に、後述する低屈折率層等を 形成した場合の本発明の積層体 (帯電防止機能付き反射防止膜)の表面抵抗は、通 常 1 Χ 1013 Ω /口以下、好ましくは Ι Χ ΙΟ^ Ω /口以下、より好ましくは 1 Χ 108 Ω / 口以下である。
[0083] 帯電防止層形成用組成物の塗布方法としては特に制限はな!/、が、例えば、ロール コート、スプレーコート、フローコート、ディビング、スクリーン印刷、インクジェット印刷 等の公知の方法を適用することができる。
[0084] 帯電防止層形成用組成物の硬化に用いる放射線の線源としては、組成物を塗布 後、短時間で硬化させ得るものである限り特に制限はない。
可視光線の線源としては、例えば、直射日光、ランプ、蛍光灯、レーザー等を、また 、紫外線の線源としては、例えば、水銀ランプ、ハライドランプ、レーザー等を、また、 電子線の線源としては、例えば、市販されているタングステンフィラメントから発生する 熱電子を利用する方式、金属に高電圧パルスを通じて発生させる冷陰極方式及びィ オン化したガス状分子と金属電極との衝突により発生する 2次電子を利用する 2次電 子方式等を挙げることができる。
α線、 j8線及び γ線の線源としては、例えば、 6°Co等の核分裂物質を挙げることが でき、 γ線については、加速電子を陽極へ衝突させる真空管等を利用することがで きる。これら放射線は、 1種単独で、又は 2種以上を同時に照射してもよぐまた、 1種 以上の放射線を、一定期間をおいて照射してもよい。
[0085] 硬化膜層の膜厚は、 0. 05-30 μ mであることが好まし!/、。タツチパネル、 CRT等 の最表面での耐擦傷性を重視する用途では比較的厚ぐ好ましくは 2〜 15 mであ る。一方、光学フィルムの帯電防止膜として用いる場合、好ましくは 0. 05〜: L0 m である。
また、光学フィルムへ用いる場合、透明性が必要であり、全光線透過率が 85%以 上であることが好ましい。
[0086] (2)基材
本発明の積層体に用いられる基材は、金属、セラミックス、ガラス、プラスチック、木
材、スレート等特に制限はなぐ使用目的に応じて適宜選択すればよいが、放射線 硬化性という生産性の高い、工業的有用性を発揮できる材料として、例えば、フィル ム、ファイバー状の基材に好ましく適用される。特に好ましい材料は、プラスチックフィ ルム、プラスチック板である。そのようなプラスチックとしては、例えば、ポリカーボネー ト、ポリメチルメタタリレート、ポリスチレン Zポリメチルメタタリレート共重合体、ポリスチ レン、ポリエステル、ポリオレフイン、トリァセチルセルロース榭脂、ジエチレングリコー ルのジァリルカーボネート(CR— 39)、 ABS榭脂、 AS榭脂、ポリアミド、エポキシ榭 脂、メラミン榭脂、環化ポリオレフイン榭脂 (例えば、ノルボルネン系榭脂)等を挙げる ことができる。
[0087] 尚、成分 (A)の錫含有酸化インジウム (ITO)粒子が基材側に偏在し、より高い導電 性 (耐電防止性)が得られることから、帯電防止層形成用組成物を塗布する基材は、 帯電防止層形成用組成物が塗布される表面に易接着処理を施したポリエステル、ポ リエチレンテレフタレート(PET)等の基材が好ま 、。
このような易接着処理としては、コロナ放電処理、易接着層塗布処理等の処理が挙 げられる。
好まし ヽ易接着処理された市販の基材としては、ポリエステルフィルム A4300 (東 洋紡績 (株)製)等が挙げられる。
[0088] 基材の厚さは、目的に応じて適宜設定すべきであり特に限定されないが、通常 30
〜5000 μ m、好まし <ίま 50〜2000 μ mの範囲である。
[0089] II.帯電防止機能付き反射防止膜
次に、本発明の積層体を、帯電防止機能を有する反射防止膜として用いる場合の 各層の構成を、図 2A〜図 21を参照しながら説明する。
光学物品に反射防止機能を付与する場合、基材、又はハードコート処理された基 材等に、低屈折率層を形成する方法、又は低屈折率層と高屈折率層との多層構造 を形成する方法が有効であることが知られて ヽる。
本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第一の形態 を図 2Aに示す。帯電防止機能付き反射防止膜 2は、基材 10の上に、前記液状硬化 性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成し、さらにその上に
低屈折率層 18を形成してなる。第一の形態では、帯電防止層 12は、帯電防止機能 、ハードコート層としての機能を併せ持つている。第一の形態では、帯電防止層 12の 屈折率が、低屈折率層 18の屈折率より高いことが必要である。
[0090] 別の形態として、本発明の反射防止膜 2の帯電防止層 12は、ハードコート層として の機能も果たすことができるが、別途、ハードコート層を設けることもできる。この場合 、ハードコート層 nは、帯電防止層 12と低屈折率層 18との間に設けられる。この場 合、ハードコート層 11の屈折率は、低屈折率層 18の屈折率より高くなければならな い。これらの態様を図 2Cに示す。
[0091] 本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第二の形態 を図 2Dに示す。第二の形態では、帯電防止機能付き反射防止膜 2は、基材 10の上 に、前記液状硬化性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成 し、さらにその上に高屈折率層 16及び低屈折率層 18をこの順に形成してなる。第二 の形態では、帯電防止層 12は、帯電防止機能及びノ、ードコートとしての機能、さらに は中屈折率層としての機能を併せ持つこともある。第二の形態において、帯電防止 層 12が中屈折率層としての機能を有するためには、帯電防止層 12の屈折率が、高 屈折率層 16の屈折率より低ぐ低屈折率層 18の屈折率よりも高いことが必要である。
[0092] 第二の形態でも、第一の形態と同様に、別途、ハードコート層を設ける形態も可能 である。ハードコート層 11は、帯電防止層 12と高屈折率層 16との間に設けることが できる。これらの形態を図 2Fに示す。
[0093] 本発明の積層体を帯電防止機能付き反射防止膜として用いる場合の第三の形態 を図 2Gに示す。第三の形態では、帯電防止機能付き反射防止膜 2は、基材 10の上 に、前記液状硬化性組成物を硬化させてなる硬化膜層である帯電防止層 12を形成 し、さらにその上に中屈折率層 14、高屈折率層 16及び低屈折率層 18をこの順に形 成してなる。第三の形態では、帯電防止層 12は、帯電防止機能及びハードコートと しての機能を併せ持って 、る。
[0094] 第三の形態でも、第一の形態と同様に、別途、ハードコート層を設けることも可能で ある。ハードコート層 11は、帯電防止層 12と中屈折率層 14との間に設けることができ る。これらの形態を図 21に示す。
[0095] 上記帯電防止機能付き反射防止膜の第一から第三の形態において設けられる、 帯電防止層以外の層及び基材について説明する。
(2)低屈折率層
低屈折率層は、その厚さが 0. 05〜0. 20 mの範囲内で、屈折率が 1. 30〜: L 4 5の層である。なお、本発明における屈折率とは、 25°Cにおける 589nmの屈折率を いう。
低屈折率層に使用される材料としては、目的とする特性が得られれば特に限定さ れるものではないが、例えば、含フッ素重合体を含有する硬化性組成物、アクリルモ ノマー、含フッ素アクリルモノマー、エポキシ基含有化合物、含フッ素エポキシ基含有 化合物等の硬化物を挙げることがでる。また、低屈折率層の強度を上げるために、シ リカ微粒子等を配合することもできる。
本発明の積層体を反射防止膜として用いる好ましい態様では、後述する成分 (E) 及び (F)を含有する硬化性榭脂組成物を用いて低屈折率層を形成する。
[0096] (3)高屈折率層
高屈折率層は、その厚さが 0. 05〜0. 20 mの範囲内で、屈折率が 1. 55〜2. 2 0の範囲内である。
高屈折率層を形成するために高屈折率の無機粒子、例えば金属酸ィ匕物粒子を配 合することができる。
[0097] 金属酸ィ匕物粒子の具体例としては、アンチモン含有酸化錫 (ATO)粒子、錫含有 酸化インジウム (ITO)粒子、酸ィ匕亜鉛 (ZnO)粒子、アンチモン含有 ZnO、 Al含有 Z ηθ粒子 ZrO粒子、 TiO粒子、シリカ被覆 TiO粒子、 Al O /ZrO被覆 TiO粒子、
2 2 2 2 3 2 2
CeO粒子等を挙げることができる。好ましくは、アンチモン含有酸化錫 (ATO)粒子
2
、錫含有酸化インジウム (ITO)粒子、リン含有酸化錫 (PTO)粒子、 A1含有 ZnO粒 子、 Al O /ZrO被覆 TiO粒子である。これらの金属酸化物粒子は、一種単独又は
2 3 2 2
二種以上の組み合わせで使用することができる。
また、高屈折率層にハードコート層の機能を持たせることもできる。
[0098] (4)中屈折率層
3種以上の屈折率を有する層を組み合わせる場合に、屈折率が 1. 50〜: L 90であ
つて、低屈折率層より高ぐ高屈折率層より低い屈折率を有する層を中屈折率層と表 す。中屈折率層の屈折率は、好ましくは、 1. 50〜: L 80、より好ましくは、 1. 50〜: L 75である。中屈折率層は、その厚さが 0. 05〜0. 20 /z mの範囲内である。
中屈折率層を形成するために、高屈折率の無機粒子、例えば金属酸化物粒子を 酉己合することができる。
[0099] 金属酸ィ匕物粒子の具体例としては、アンチモン含有酸化錫 (ATO)粒子、錫含有 酸化インジウム(ITO)粒子、 ZnO粒子、アンチモン含有 ZnO、 A1含有 ZnO粒子、 Zr O粒子、 TiO粒子、シリカ被覆 TiO粒子、 Al O /ZrO被覆 TiO粒子、 CeO粒子
2 2 2 2 3 2 2 2 等を挙げることができる。好ましくは、アンチモン含有酸化錫 (ATO)粒子、錫含有酸 化インジウム(ITO)粒子、リン含有酸化錫(PTO)粒子、 A1含有 ZnO粒子、 ZrO粒
2 子である。これらの金属酸化物粒子は、一種単独又は二種以上の組み合わせで使 用することができる。
[0100] 低屈折率層と高屈折率層を組み合わせることにより反射率を低くすることができ、さ らに、低屈折率層、高屈折率層、中屈折率層を組み合わせることにより、反射率を低 くすることができるとともに色目(ギラツキ)を減らすことができる。
[0101] (5)ハードコート層
ハードコート層の具体例としては、 SiO、エポキシ系榭脂、アクリル系榭脂、メラミン
2
系榭脂等の材料力も構成するのが好ましい。また、これらの榭脂にシリカ粒子を配合 してちよい。
ハードコート層は積層体の機械的強度を高める効果がある。ハードコート層の厚さ は、
通常 0. 5〜50 μ m、好ましくは 1〜30 μ mの範囲である。又はドコート層の屈折率は 、通常 1. 45 〜1. 70、好ましくは 1. 45〜: L 60の範囲である。
[0102] (6)反射防止膜として用いる場合の基材
本発明の積層体を反射防止膜として用いる場合の基材の材料は、透明であること が必要であり、例えば、ポリカーボネート、ポリメチノレメタタリレート、ポリスチレン Zポリ メチルメタタリレート共重合体、ポリスチレン、ポリエステル、ポリオレフイン、トリァセチ ルセルロース榭脂、ジエチレングリコールのジァリルカーボネート(CR— 39)、 ABS
榭脂、 AS榭脂、ポリアミド、エポキシ榭脂、メラミン榭脂、環化ポリオレフイン榭脂 (例 えば、ノルボルネン系榭脂)等を挙げることができる。
尚、前述したように、成分 (A)の錫含有酸化インジウム (ITO)粒子が基材側に偏在 し、より高い導電性 (耐電防止性)が得られることから、易接着処理を施した基材が好 ましい。このような易接着処理としては、コロナ放電処理、易接着層塗布処理等の処 理が挙げられる。
好まし ヽ易接着処理された市販の基材としては、ポリエステルフィルム A4300 (東 洋紡績 (株)製)等が挙げられる。
[0103] 易接着処理されたポリエステルフィルム A4300 (東洋紡績 (株)製)基材上に本発 明の液状硬化性組成物を塗布し、硬化させることにより、成分 (A)の ITO粒子が基材 側に偏在化した典型的な状態を示す硬化膜断面の電子顕微鏡写真を図 3に示す。 図 3において、下部は基材側であり、上部は空気側であり、基材側に ITO粒子が偏 在している様子がわかる。
[0104] 基材の厚さは、特に限定されないが、通常 30〜300 μ m、好ましくは 50〜200 μ mの範囲である。
[0105] (7)その他の層
本発明の積層体の製造において、他の要求、例えば、ノングレア効果、光の選択 吸収効果、耐候性、耐久性、転写性等の機能をさらに付与するために、例えば、 1 μ m以上の光散乱性の粒子を含有する層を加えること、染料を含有する層を加えること 、紫外線吸収剤を含有する層を加えること、接着層を加えること、接着層と剥離層を 加えること等が可能であり、さらに、これらの機能付与成分を本発明で用いる帯電防 止層形成用組成物及び Z又は低屈折率層形成用組成物の 1成分として加えることも 可能である。
[0106] 本発明の積層体は、例えば、プラスチック光学部品、タツチパネル、フィルム型液晶 素子、プラスチック筐体、プラスチック容器、建築内装材としての床材、壁材、人工大 理石等の傷付き (擦傷)防止や汚染防止のためのハードコーティング材;各種基材の 接着剤、シ一リング材;印刷インクのバインダー材等として好適に用いることができる。
[0107] これらの層は一層のみ形成してもよぐまた、異なる層を二層以上形成してもよい。
また、低、中、高屈折率層の膜厚は、それぞれ通常 60〜150nm、ハードコート層 の膜厚は通常1〜20 111、帯電防止層の膜厚は通常 0. 05〜30 /ζ πιである。
本発明では、層の製造方法は、公知の塗布と硬化、蒸着、スパッタリング等の方法 により製造できる。
[0108] III.低屈折率層
本発明の積層体を反射防止膜として用いるためには、少なくとも、上記硬化膜層の 上に低屈折率層を形成する必要がある。本発明の積層体に形成される低屈折率層 は、 (G)エチレン性不飽和基含有含フッ素重合体及び (Η)シリカ粒子を含有する硬 化性榭脂組成物 (以下、「低屈折率層形成用組成物」 t ヽぅことがある)からなる硬化 物であることが好ましい。
以下、成分 (G)及び (H)について説明する。
[0109] 1.成分 (G)
低屈折率層形成用組成物に用いるエチレン性不飽和基含有含フッ素重合体 (G) は、 1個のイソシァネート基と少なくとも 1個のエチレン性不飽和基とを含有する化合 物と、水酸基含有含フッ素重合体とを、反応させて得られる。
[0110] (1) 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合 物
1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基とを含有する化合物 としては、分子内に、 1個のイソシァネート基と、少なくとも 1個のエチレン性不飽和基 を含有して 、る化合物であれば特に制限されるものではな 、。
尚、イソシァネート基を 2個以上含有すると、水酸基含有含フッ素重合体と反応させ る際にゲルィ匕を起こす可能性がある。
また、上記エチレン性不飽和基として、後述する硬化性榭脂組成物をより容易に硬 ィ匕させることができることから、(メタ)アタリロイル基を有する化合物がより好ま 、。 このような化合物としては、 2— (メタ)アタリロイルォキシェチルイソシァネート、 2- ( メタ)アタリロイルォキシプロピルイソシァネートの一種単独又は二種以上の組み合わ せが挙げられる。
[0111] 尚、このような化合物は、ジイソシァネート及び水酸基含有 (メタ)アタリレートを反応
させて合成することちでさる。
ジイソシァネートの例としては、 2,4—トリレンジイソシァネート、イソホロンジイソシァ ネート、キシリレンジイソシァネート、メチレンビス(4ーシクロへキシノレイソシァネアート ) , 1 , 3—ビス (イソシァネートメチル)シクロへキサンが好ましい。
[0112] 水酸基含有 (メタ)アタリレートの例としては、 2—ヒドロキシェチル (メタ)アタリレート 、ペンタエリスリトールトリ(メタ)アタリレートが好ましい。
尚、水酸基含有多官能 (メタ)アタリレートの市販品としては、例えば、大阪有機化 学 (株)製 商品名 HEA、日本化薬 (株)製 商品名 KAYARAD DPHA、 PET — 30、東亞合成(株)製 商品名 ァロニックス M— 215、 M— 233、 M— 305、 M —400等を入手することができる。
[0113] (2)水酸基含有含フッ素重合体
水酸基含有含フッ素重合体は、好ましくは、下記構造単位 (a)、(b)及び (c)を含ん でなる。
(a)下記式(11)で表される構造単位。
(b)下記式( 12)で表される構造単位。
(c)下記式(13)で表される構造単位。
[0114] [化 6]
F R
C— — C
F F
[式中、 R11はフッ素原子、フルォロアルキル基又は— OR"で表される基 (R はァ ルキル基又はフルォロアルキル基を示す)を示す]
[0115] [化 7]
H R13 —— C,― C—— (12) H R 4
[式中、 R13は水素原子又はメチル基を、 R14はアルキル基、 - (CH ) —OR15若しく
2
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[化 8]
H R16
H {CH2)vOR17
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
[0117] (i)構造単位 (a)
上記式(11)において、 R11及び R12のフルォロアルキル基としては、トリフルォロメチ ル基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基、ノ 一フルォ口へキシル基、パーフルォロシクロへキシル基等の炭素数 1〜6のフルォロ アルキル基が挙げられる。また、 R12のアルキル基としては、メチル基、ェチル基、プ 口ピル基、ブチル基、へキシル基、シクロへキシル基等の炭素数 1〜6のアルキル基 が挙げられる。
[0118] 構造単位 (a)は、含フッ素ビニル単量体を重合成分として用いることにより導入する ことができる。このような含フッ素ビュル単量体としては、少なくとも 1個の重合性不飽 和二重結合と、少なくとも 1個のフッ素原子とを有する化合物であれば特に制限され るものではない。このような例としてはテトラフルォロエチレン、へキサフルォロプロピ レン、 3, 3, 3—トリフルォロプロピレン等のフルォロレフィン類;アルキルパーフルォ 口ビュルエーテル又はアルコキシアルキルパーフルォロビュルエーテル類;パーフル ォロ(メチルビ-ルエーテル)、パーフルォロ(ェチルビ-ルエーテル)、パーフルォロ (プロピルビニルエーテル)、パーフルォロ(ブチルビニルエーテル)、パーフルォロ( イソブチルビ-ルエーテル)等のパーフルォロ(アルキルビュルエーテル)類;パーフ ルォロ(プロポキシプロピルビュルエーテル)等のパーフルォロ(アルコキシアルキル ビュルエーテル)類の一種単独又は二種以上の組み合わせが挙げられる。
これらの中でも、へキサフルォロプロピレンとパーフルォロ(アルキルビュルエーテ
ル)又はパーフルォロ(アルコキシアルキルビュルエーテル)がより好ましぐこれらを 組み合わせて用いることがさらに好まし!/、。
[0119] 尚、構造単位 (a)の含有率は、上記構成単位 (a)〜(c)の合計を 100モル%とした ときに、 20〜70モル0 /0である。この理由は、含有率が 20モル0 /0未満になると、本願 が意図するところの光学的にフッ素含有材料の特徴である、低屈折率の発現が困難 となる場合があるためであり、一方、含有率が 70モル%を超えると、水酸基含有含フ ッ素重合体の有機溶剤への溶解性、透明性、又は基材への密着性が低下する場合 があるためである。
また、このような理由により、構造単位 (a)の含有率を、 25〜65モル%とするのがよ り好ましく、 30〜60モル%とするのがさらに好まし!/、。
[0120] (ii)構造単位 (b)
式(12)において、 R13又は R14のアルキル基としては、メチル基、ェチル基、プロピ ル基、へキシル基、シクロへキシル基、ラウリル基等の炭素数 1〜12のアルキル基が 挙げられ、 R15のアルコキシカルボ-ル基としては、メトキシカルボ-ル基、エトキシカ ルポニル基等が挙げられる。
[0121] 構造単位 (b)は、上述の置換基を有するビュル単量体を重合成分として用いること により導入することができる。このようなビュル単量体の例としては、メチルビ-ルエー テノレ、ェチノレビニノレエーテノレ、 n—プロピノレビニノレエーテノレ、イソプロピノレビニノレエ一 テル、 n—ブチルビニルエーテル、イソブチルビニルエーテル、 tert—ブチルビニル エーテノレ、 n—ペンチノレビニノレエーテノレ、 n—へキシノレビニノレエーテノレ、 n—才クチ ノレビ-ノレエーテノレ、 n—ドデシノレビ-ノレエーテノレ、 2—ェチノレへキシノレビ-ノレエーテ ル、シクロへキシルビ-ルエーテル等のアルキルビュルエーテルもしくはシクロアル キルビュルエーテル類;ェチルァリルエーテル、ブチルァリルエーテル等のァリルェ 一テル類;酢酸ビュル、プロピオン酸ビュル、酪酸ビュル、ピバリン酸ビュル、力プロ ン酸ビュル、バーサチック酸ビュル、ステアリン酸ビュル等のカルボン酸ビュルエステ ル類;メチル (メタ)アタリレート、ェチル (メタ)アタリレート、 n—ブチル (メタ)アタリレー ト、イソブチル (メタ)アタリレート、 2—メトキシェチル (メタ)アタリレート、 2—エトキシェ チル (メタ)アタリレート、 2- (n—プロボキシ)ェチル (メタ)アタリレート等の (メタ)ァク
リル酸エステル類;(メタ)アクリル酸、クロトン酸、マレイン酸、フマル酸、ィタコン酸等 の不飽和カルボン酸類等の一種単独又は二種以上の組み合わせが挙げられる。
[0122] 尚、構造単位 (b)の含有率は、上記構成単位 (a)〜(c)の合計を 100モル%とした ときに、 10〜70モル%である。この理由は、含有率が 10モル%未満になると、水酸 基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるためであり、一 方、含有率が 70モル%を超えると、水酸基含有含フッ素重合体の透明性、及び低反 射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (b)の含有率を、 20〜60モル%とするのがよ り好ましく、 30〜60モル%とするのがさらに好まし!/、。
[0123] (iii)構造単位 (c)
式(13)において、 R17のヒドロキシアルキル基としては、 2—ヒドロキシェチル基、 2 ーヒドロキシプロピル基、 3—ヒドロキシプロピル基、 4ーヒドロキシブチル基、 3—ヒドロ キシブチル基、 5—ヒドロキシペンチル基、 6—ヒドロキシへキシル基等が挙げられる。
[0124] 構造単位 (c)は、水酸基含有ビニル単量体を重合成分として用いることにより導入 することができる。このような水酸基含有ビュル単量体の例としては、 2—ヒドロキシェ チルビニルエーテル、 3—ヒドロキシプロピルビニルエーテル、 2—ヒドロキシプロピル ビニルエーテル、 4ーヒドロキシブチルビニルエーテル、 3—ヒドロキシブチルビニル エーテル、 5—ヒドロキシペンチルビニルエーテル、 6—ヒドロキシへキシルビニルェ 一テル等の水酸基含有ビュルエーテル類、 2—ヒドロキシェチルァリルエーテル、 4 ーヒドロキシブチルァリルエーテル、グリセロールモノアリルエーテル等の水酸基含有 ァリルエーテル類、ァリルアルコール等が挙げられる。
また、水酸基含有ビニル単量体としては、上記以外にも、 2—ヒドロキシェチル (メタ )アタリレート、 2—ヒドロキシブチル (メタ)アタリレート、 2—ヒドロキシプロピル (メタ)ァ タリレート、力プロラタトン (メタ)アタリレート、ポリプロピレングリコール (メタ)アタリレー ト等を用いることができる。
[0125] 尚、構造単位 (c)の含有率を、上記構成単位 (a)〜(c)の合計を 100モル%とした ときに、 5〜70モル%とすることが好ましい。この理由は、含有率が 5モル%未満にな ると、水酸基含有含フッ素重合体の有機溶剤への溶解性が低下する場合があるため
であり、一方、含有率が 70モル%を超えると、水酸基含有含フッ素重合体の透明性 、及び低反射率性等の光学特性が低下する場合があるためである。
また、このような理由により、構造単位 (c)の含有率を、 5〜40モル%とするのがより 好ましぐ 5〜30モル%とするのがさらに好ましい。
[0126] (iv)構造単位 (d)及び構造単位 (e)
水酸基含有含フッ素重合体は、さらに下記構造単位 (d)を含んで構成することも好 ましい。
[0127] (d)下記式(14)で表される構造単位。
[化 9]
[式中、 R18及び R19は、同一でも異なっていてもよぐ水素原子、アルキル基、ハロ ゲンィヒアルキル基又はァリール基を示す]
[0128] 式(14)において、 R18又は R19のアルキル基としては、メチル基、ェチル基、プロピ ル基等の炭素数 1〜3のアルキル基力 ハロゲンィ匕アルキル基としてはトリフルォロメ チル基、パーフルォロェチル基、パーフルォロプロピル基、パーフルォロブチル基等 の炭素数 1〜4のフルォロアルキル基等力 ァリール基としてはフエ-ル基、ベンジル 基、ナフチル基等がそれぞれ挙げられる。
[0129] 構造単位 (d)は、前記式(14)で表されるポリシロキサンセグメントを有するァゾ基含 有ポリシロキサン化合物を用いることにより導入することができる。このようなァゾ基含 有ポリシロキサン化合物の例としては、下記式(15)で表される化合物が挙げられる。
[0130] [化 10]
は、同一でも異なっていてもよぐ水素原子、アルキル基又はシァノ
基を示し、 R24〜R27は、同一でも異なっていてもよぐ水素原子又はアルキル基を示 し、 d、 eは 1〜6の数、 s、 tは 0〜6の数、 yは 1〜200の数、 zは 1〜20の数を示す。 ] [0131] 式(15)で表される化合物を用いた場合には、構造単位 (d)は、構造単位 (e)の一 部として水酸基含有含フッ素重合体に含まれる。
[0132] (e)下記式(16)で表される構造単位。
[化 11]
R21 R24 R25 R20
― C I— (CH2)eCONH(CH2)s― S Ii— (OS Ii)y(CH2)tNHCO(CH2)d— C I (1 6)
Ft23 R2e R27 R22
[式中、 R2〜R23、 R24〜R27、 d、 e、 s、 t及び yは、上記式(15)と同じである。 ] [0133] 式(15)、 (16)において、 R2〜R23のアルキル基としては、メチル基、ェチル基、プ 口ピル基、へキシル基、シクロへキシル基等の炭素数 1〜12のアルキル基が挙げら れ、 R24〜R27のアルキル基としてはメチル基、ェチル基、プロピル基等の炭素数 1〜
3のアルキル基が挙げられる。
[0134] 本発明において、上記式(15)で表されるァゾ基含有ポリシロキサンィ匕合物としては
、下記式(17)で表される化合物が特に好ましい。
[0135] [化 12]
0 †H3 CH3 CH3 CH3
HO-t— C(CH2)2 C— N=N— C— (CH2)2CONH(CH2)3― Si— (OSi)y(CH2)3NH ~ I ~ H (1 7)
C IHg C IH3 C IH3 C IH3 ノ 2:
[式中、 y及び zは、上記式(15)と同じである。 ]
[0136] 尚、構造単位 (d)の含有率を、上記構成単位 (a)〜(c)の合計 100モル部に対して 、 0. 1〜10モル部とすることが好ましい。この理由は、含有率が 0. 1モル部未満にな ると、硬化後の塗膜の表面滑り性が低下し、塗膜の耐擦傷性が低下する場合がある ためであり、一方、含有率が 10モル部を超えると、水酸基含有含フッ素重合体の透 明性に劣り、コート材として使用する際に、塗布時にハジキ等が発生し易くなる場合 があるためである。
また、このような理由により、構造単位 (d)の含有率を、 0. 1〜5モル部とするのがよ り好ましぐ 0. 1〜3モル部とするのがさらに好ましい。同じ理由により、構造単位 (e) の含有率は、その中に含まれる構造単位 (d)の含有率を上記範囲にするよう決定す ることが望ましい。
[0137] (V)構造単位 (f)
水酸基含有含フッ素重合体は、さらに下記構造単位 (f)を含んで構成することも好 ましい。
[0138] (f)下記式(18)で表される構造単位。
[化 13]
H R25
'C' (18)
H H
[式中、 は乳化作用を有する基を示す]
[0139] 式(18)において、 R25の乳化作用を有する基としては、疎水性基及び親水性基の 双方を有し、かつ、親水性基がポリエチレンオキサイド、ポリプロピレンオキサイド等の ポリエーテル構造である基が好まし 、。
[0140] このような乳化作用を有する基の例としては下記式(19)で表される基が挙げられる
[化 14]
H2g+lCg
9)
[式中、 gは 1〜20の数、 fは 0〜4の数、 uは 3〜50の数を示す]
[0141] 構造単位 (f)は、反応性乳化剤を重合成分として用いることにより導入することがで きる。このような反応性乳化剤としては、下記式(20)で表される化合物が挙げられる
[0142] [化 15]
[式中、 g、 f及び uは、上記式(19)と同様である]
[0143] 尚、上記構成単位 (a)〜(c)の合計 100モル部に対して、構造単位 (f)の含有率を 、 0. 1〜5モル部とすることが好ましい。この理由は、含有率が 0. 1モル部以上にな ると、水酸基含有含フッ素重合体の溶剤への溶解性が向上し、一方、含有率が 5モ ル%以内であれば、硬化性榭脂組成物の粘着性が過度に増加せず、取り扱いが容 易になり、コート材等に用いても耐湿性が低下しな 、ためである。
また、このような理由により、構造単位 (f)の含有率を、 0. 1〜3モル部とするのがよ り好ましぐ 0. 2〜3モル部とするのがさらに好ましい。
[0144] (vi)分子量
水酸基含有含フッ素重合体は、ゲルパーミエーシヨンクロマトグラフィーで、テトラヒ ドロフランを溶剤として測定したポリスチレン換算数平均分子量が 5, 000-500, 00 0であることが好ましい。この理由は、数平均分子量が 5, 000未満になると、水酸基 含有含フッ素重合体の機械的強度が低下する場合があるためであり、一方、数平均 分子量が 500, 000を超えると、後述する硬化性榭脂組成物の粘度が高くなり、薄膜 コーティングが困難となる場合があるためである。
また、このような理由により、水酸基含有含フッ素重合体のポリスチレン換算数平均 分子量を 10, 000〜300, 000とするの力より好ましく、 10, 000〜100, 000とする のがさらに好ましい。
[0145] (3)反応モル比
エチレン性不飽和基含有含フッ素重合体は、上述した、 1個のイソシァネート基と少 なくとも 1個のエチレン性不飽和基とを含有する化合物と、水酸基含有含フッ素重合 体とを、反応させて得られる。 1個のイソシァネート基と少なくとも 1個のエチレン性不 飽和基とを含有する化合物と、水酸基含有含フッ素重合体とは、イソシァネート基 Z
水酸基のモル比が 1. 1〜1. 9の割合で反応させるのが好ましい。この理由は、モル 比が 1. 1未満になると耐擦傷性及び耐久性が低下する場合があるためであり、一方 、モル比が 1. 9を超えると、硬化性榭脂組成物の塗膜のアルカリ水溶液浸漬後の耐 擦傷性が低下する場合があるためである。
また、このような理由により、イソシァネート基 Z水酸基のモル比を、 1. 1〜1. 5とす るのが好ましぐ 1. 2〜1. 5とするのがより好ましい。
[0146] 硬化性榭脂組成物における、(G)成分の添加量については、特に制限されるもの ではないが、有機溶剤以外の組成物全量に対して通常 1〜95重量%である。この理 由は、添加量が 1重量%未満となると、硬化性榭脂組成物の硬化塗膜の屈折率が高 くなり、十分な反射防止効果が得られない場合があるためであり、一方、添加量が 95 重量%を超えると、硬化性榭脂組成物の硬化塗膜の耐擦傷性が得られな!/、場合が あるためである。
また、このような理由力ら、(G)成分の添加量を 2〜90重量%とするのがより好まし く、 3〜85重量%の範囲内の値とするのがさらに好ましい。
[0147] 2.成分 (H)
(1)シリカを主成分とする粒子
本発明で用いる低屈折率層形成用組成物には、シリカを主成分とする粒子を配合 することができ、低屈折率層形成用組成物の硬化物の耐擦傷性、特にスチールウー ル耐性を改善することができる。シリカを主成分とする粒子としては、数平均粒径 1〜 lOOnmのシリカを主成分とする粒子が好ましい。粒径は、透過型電子顕微鏡により 測定する。(H)成分の粒径は、 5〜80nmが好ましぐ 10〜60nmがさらに好ましい。 これらシリカを主成分とする粒子としては、公知のものを使用することができ、また、 その形状も特に限定されない。球状であれば通常のコロイダルシリカに限らず中空粒 子、多孔質粒子、コア'シェル型粒子等であっても構わない。また、球状に限らず、不 定形の粒子であってもよい。固形分が 10〜40重量%のコロイダルシリカが好ましい。
[0148] また、分散媒は、水ある!/、は有機溶媒が好ま U、。有機溶媒としては、メタノール、 イソプロピルアルコール、エチレングリコーノレ、ブタノール、エチレングリコーノレモノプ 口ピルエーテル等のアルコール類;メチルェチルケトン、メチルイソブチルケトン等の
ケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチル ァセトアミド、 N メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 γーブチ 口ラタトン等のエステル類;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等の 有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。 これら有機溶剤は、単独で、又は 2種以上混合して分散媒として使用することができ る。
[0149] シリカを主成分とする粒子の市販品としては、例えば、コロイダルシリカとして、日産 化学工業 (株)製 商品名:メタノールシリカゾル、 IPA—ST、 MEK—ST、 MEK-S T— S、 ΜΕΚ— ST— L、 IPA— ZL、 NBA— ST、 XBA— ST、 DMAC— ST、 ST— UPゝ ST— OUPゝ ST— 20、 ST— 40、 ST— C、 ST— N、 ST— 0、 ST— 50、 ST— OL等を挙げることができる。
[0150] また、コロイダルシリカ表面に化学修飾等の表面処理を行ったものを使用すること ができ、例えば分子中に 1以上のアルキル基を有する加水分解性ケィ素化合物又は その加水分解物を含有するもの等を反応させることができる。このような加水分解性 ケィ素化合物としては、トリメチルメトキシシラン、トリプチルメトキシシラン、ジメチルジ メトキシシラン、ジブチノレジメトキシシラン、メチルトリメトキシシラン、ブチノレトリメトキシ シラン、ォクチルトリメトキシシラン、ドデシルトリメトキシシラン、 1, 1, 1ートリメトキシ一 2, 2, 2 トリメチル一ジシラン、へキサメチル一 1, 3 ジシロキサン、 1, 1, 1ートリメ トキシー 3, 3, 3 トリメチルー 1, 3 ジシロキサン、 α—トリメチルシリル ω—ジメ チルメトキシシリル—ポリジメチルシロキサン、 (X—トリメチルシリル— ω—トリメトキシ シリルーポリジメチルシロキサンへキサメチルー 1, 3 ジシラザン等を挙げることがで きる。また、分子中に 1以上の反応性基を有する加水分解性ケィ素化合物を使用す ることもできる。分子中に 1以上の反応性基を有する加水分解性ケィ素化合物は、例 えば反応性基として ΝΗ基を有するものとして、尿素プロピルトリメトキシシラン、 Ν—
2
(2 アミノエチル) 3—ァミノプロピルトリメトキシシラン等、 ΟΗ基を有するものとして 、ビス(2 ヒドロキシェチル) 3アミノトリプロピルメトキシシラン等、イソシァネート基 を有するものとして 3—イソシァネートプロピルトリメトキシシラン等、チオシァネート基 を有するものとして 3—チオシァネートプロピルトリメトキシシラン等、エポキシ基を有
するものとして(3—グリシドキシプロピル)トリメトキシシラン、 2— (3, 4—エポキシシク 口へキシル)ェチルトリメトキシシラン等、チオール基を有するものとして、 3—メルカプ トプロピルトリメトキシシラン等を挙げることができる。好ましい化合物として、 3—メルカ プトプロピルトリメトキシシランを挙げることができる。
[0151] (2)好ま ヽ態様 (表面にエチレン性不飽和基を有するシリカ粒子)
本発明に用いられるシリカ粒子は、エチレン性不飽和基を有して 、ることが好まし い(以下、「反応性シリカ粒子」という)。反応性シリカ粒子の製造方法は、特に限定さ れるものではないが、例えば、上述の数平均粒径が 10〜: LOOnmのシリカ粒子と、反 応性表面処理剤とを反応させて得ることができる。
[0152] ここで、表面処理剤としては、例えば、アルコキシシランィ匕合物、テトラブトキシシチ タン、テトラブトキシジルコニウム、テトライソプロポキシアルミニウム等を挙げることが できる。これらは、 1種単独で、又は 2種以上を組み合わせて用いることができる。
[0153] 表面処理剤の具体例としては、 y—メタクリロキシプロピルトリメトキシシラン、 γ—ァ クリロキシプロピルトリメトキシシラン、ビニルトリメトキシシラン等の分子内に不飽和二 重結合を有する化合物や、下記一般式 (21)で表される化合物を挙げることができる
[化 16]
式中、 R。はメチル基、 R は炭素数 1〜6のアルキル基、 は水素原子又はメチ ル基、 aは 1又は 2、 bは 1〜5の整数、 Aは炭素数 1〜6の 2価のアルキレン基、 Bは鎖 状、環状、分岐状いずれかの炭素数 3〜14の 2価の炭化水素基、 Zは (b + 1)価の 鎖状、環状、分岐状いずれかの炭素数 2〜 14の 2価の炭化水素基である。 Z内には 、エーテル結合を含んでもよい。
シリカ粒子がエチレン性不飽和基を有していることにより、 UV硬化系アクリルモノマ 一と共架橋化することができ、耐擦傷性が向上する。
[0154] (3)好ましい態様 (多孔質シリカ粒子)
低屈折率層形成用組成物に用いるシリカ粒子としては、多孔質シリカ粒子が好まし い。
多孔質シリカ粒子として、第一の多孔質シリカ粒子 (HI)又は第二の多孔質シリカ粒 子 (H2)を使用することがより好ま 、。第一の多孔質シリカ粒子 (HI)は下記式 (22 )で表されるケィ素化合物及び下記式 (23)で表されるケィ素化合物の、加水分解及 び Z又は加水分解縮合により得られる。すなわち、式 (22)で表されるケィ素化合物 を加水分解及び Z又は加水分解縮合し、かつ式(23)で表されるケィ素化合物をカロ 水分解及び Z又は加水分解縮合することにより得られる。式 (22)で表されるケィ素 化合物及び式(23)で表されるケィ素化合物は、混合して同時に加水分解及び Z又 は加水分解縮合してもよ!ヽし、式(22)で表されるケィ素化合物を加水分解及び Z又 は加水分解縮合し、ついで、式(23)で表されるケィ素化合物を加えてさらに加水分 解及び Z又は加水分解縮合してもよい。第二の多孔質シリカ粒子 (H2)は、下記式( 22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び下記式(24 )で表されるケィ素化合物の加水分解及び Z又は加水分解縮合により得られる。す なわち、式 (22)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合し、 かつ式(23)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合し、かつ 式 (24)で表されるケィ素化合物を加水分解及び Z又は加水分解縮合することにより 得られる。式(22)で表されるケィ素化合物、式(23)で表されるケィ素化合物及び式 (24)で表されるケィ素化合物は、混合して同時に加水分解及び Z又は加水分解縮 合してもょ ヽし、式(22)で表されるケィ素化合物を加水分解及び Z又は加水分解縮 合し、ついで、式(23)で表されるケィ素化合物及び式(24)で表されるケィ素化合物 を加えてさらに加水分解及び Z又は加水分解縮合してもよい。
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
R30 SiX · · · (24)
k 4-k
[0155] 式(22)、(23)及び(24)中、 Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハ ロゲノ基、イソシァネート基、カルボキシル基、炭素数 2〜4のアルキルォキシカルボ
-ル基又は炭素数 1〜4のアルキルアミノ基であり、好ましくはアルコキシ基、ハロゲノ 基であり、より好ましくはアルコキシ基である。また、式(22)、(23)及び(24)の Xは、 同一でも異なってもよい。
式(22)で表される化合物としては、例えば、テトラメトキシシラン、テトラエトキシシラ ン、テトラブトキシシラン、テトラクロロシラン等を挙げることができる。
[0156] 式(23)中、 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキ ル基又は炭素数 5〜8のメタクリロキシアルキル基であり、好ましくはビュル基、ァリル 基、アタリロキシェチル基、アタリロキシプロピル基、アタリロキシブチル基、メタクリロキ シェチル基、メタクリロキシプロピル基、メタクリロキシブチル基である。
式(23)中、 jは 1〜3の整数であり、好ましくは 1〜2である。
式(23)で表される化合物としては、例えば、ビニルトリメトキシシラン、ビュルトリエト キシシラン、ビニルトリクロロシラン、アタリロキシプロピルトリメトキシシラン、メタクリロキ シプロピルトリメトキシシラン等を挙げることができる。
式(23)で示される化合物を使用することで、多孔質シリカ粒子はエチレン性不飽 和基を含むものとすることができる。エチレン性不飽和基を含むことにより、硬化性組 成物を硬化せしめた硬化膜を有する本発明の反射防止膜の耐擦傷性が向上する。
[0157] 式(24)中、 R3は炭素数 1〜12のフッ素置換アルキル基であり、好ましくは炭素数 3〜 12のフッ素置換アルキル基であり、より好ましくは炭素数 3〜 10のフッ素置換ァ ルキル基である。
式(24)中、 kは 1〜3の整数であり、好ましくは 1〜2である。
式(24)で表される化合物としては、例えば、 3, 3, 3—トリフルォロプロピルトリメトキ シシラン、 2—パーフルォ口へキシルメチルトリメトキシシラン、 2—パーフルォ口へキ シルェチルトリメトキシシラン、 2—パーフルォロォクチルェチルトリメトキシシラン、 2— パーフルォロォクチルェチルトリエトキシシラン、 3, 3—ジ(トリフルォロメチル)—3— フルォロプロピルトリエトキシシラン等を挙げることができる。
式(24)で示される化合物を使用することで、多孔質シリカ粒子は含フッ素アルキル 基を含むものとすることができる。含フッ素アルキル基を含むことにより、硬化性組成 物を硬化せしめた硬化膜の耐汚染性を向上させることができる。
尚、式(22)で表されるケィ素化合物、式(23)で表されるケィ素化合物及び式(24 )で表されるケィ素化合物は、それぞれ、 2種以上用いてもよい。
[0158] 第一の多孔質シリカ粒子 (HI)において、式(22)で表されるケィ素化合物及び式( 23)で表されるケィ素化合物の合計を 100モル%としたとき、式(22)で表されるケィ 素化合物 Z式(23)で表されるケィ素化合物は、好ましくは、 67〜99Zl〜33 (モル %)、より好ましくは 70〜98Z2〜30 (モル0 /0)の割合で加水分解及び Z又は加水分 解縮合される。
第二の多孔質シリカ粒子 (H2)において、式(22)で表されるケィ素化合物、式(23 )で表されるケィ素化合物及び(24)で表されるケィ素化合物の合計を 100モル%と したとき、式 (22)で表されるケィ素化合物 Z式 (23)で表されるケィ素化合物 Z式 (2 4)で表されるケィ素化合物は、好ましくは、 60〜9871〜30 1〜20 (モル%)、ょ り好ましくは65〜96 2〜20 2〜15 (モル%)の割合で加水分解及び,又は加水 分解縮合される。
[0159] 本発明で使用される第一及び第二の多孔質シリカ粒子 (HI)、(H2)は、平均粒径 力 〜 50nmであり、好ましくは 5〜45nmであり、より好ましくは 5〜40nmである。平 均粒径は、数平均粒径であり、透過型電子顕微鏡観察像により測定する。また、「多 孔質」とは、比表面積が 50〜: L000m2Zgであること、好ましくは 50〜800m2Zgで あり、より好ましくは 100〜800m2/gであることを意味する。比表面積は、 BET法に より測定する。
平均粒径が上記範囲内であれば、得られる塗膜の可視光領域での散乱が抑制で きる。また、多孔質ィ匕であることにより、密度が低下し、このような多孔質シリカ粒子を 含む膜の屈折率が低くなる。
[0160] 多孔質シリカ粒子 (H)は、以下に説明する製造方法により得られる。
第一又は第二の多孔質シリカ粒子 (HI)、(H2)は、水、炭素数 1〜3のアルコール 、塩基性化合物、並びに酸アミド、ジオール及びジオールの半エーテルカゝら選ばれ る少なくとも 1種の存在下で、それぞれ、上記式 (22)で表されるケィ素化合物及び式 (23)で表されるケィ素化合物、又は上記式(22)で表されるケィ素化合物、式(23) で表されるケィ素化合物及び式 (24)で表されるケィ素化合物を、加水分解及び Z
又は加水分解縮合して製造できる。
[0161] 塩基性化合物として、例えばアミンィ匕合物が用いられ、具体例として、ピリジン、ピロ ール、ピぺラジン、ピロリジン、ピぺリジン、ピコリン、モノエタノールァミン、ジエタノー ルァミン、ジメチルモノエタノールァミン、モノメチルジェタノールァミン、トリエタノール ァミン、ジァザビシクロオクラン、ジァザビシクロノナン、ジァザビシクロウンデセン、テト ラメチルアンモ -ゥムハイド口オキサイド、テトラエチルアンモ -ゥムハイド口オキサイド 、テトラプロピルアンモ-ゥムハイド口オキサイド、テトラプチルアンモ -ゥムハイドロォ キサイド、アンモニア、メチルァミン、ェチルァミン、プロピルァミン、ブチルァミン、 N, N—ジメチルァミン、 N, N—ジェチルァミン、 N, N—ジプロピルァミン、 N, N—ジブ チルァミン、トリメチルァミン、トリェチルァミン、トリプロピルァミン、トリブチルァミン等 を挙げることができる。好ましくはアンモニア、エタノールァミン、水酸ィ匕テトラメチルァ ミン等が用いられる。
これらの塩基性ィ匕合物は、 1種ある 、は 2種以上を同時に使用してもよ 、。
[0162] 酸アミド、ジオール又はジオールの半エーテルは、水及びアルコールと相溶性を有 することが好ましい。
酸アミドとして、例えば N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリドン等が用いられ、好ましくは N, N—ジメチルホルムアミド、 N, N— ジメチルァセトアミドが用いられる。
[0163] ジオールとして、例えばエチレングリコール、プロピレングリコール、 1, 2—ブタンジ オール等が用いられ、好ましくはエチレングリコール、プロピレングリコールが用いら れる。ジオールの半エーテルとして、例えばエチレングリコールモノメチルエーテル、 プロピレングリコールモノメチルエーテルが用いられる。
本発明で使用される多孔質シリカ粒子は、合成時に酸アミド、ジオール又はジォー ルの半エーテルを共存させることで粒子を多孔質ィ匕することができる。
[0164] 反応液中の式(22)のケィ素化合物及び(23)のケィ素化合物又は式(22)〜(24) のケィ素化合物の合計濃度は、完全加水分解縮合物換算で通常 0. 5〜10重量%、 好ましくは 1〜8重量%である。ここで、「完^ 3ロ水分解縮合物換算」とは、ケィ素化合 物が完全に加水分解縮合したと仮定して計算した理論値であり、式 (22)のケィ素化
合物及び(23)のケィ素化合物又は式(22)〜(24)のケィ素化合物の Xを、 Xの 1Z 2モルの酸素原子に置換した場合の重量に相当する。粒子合成時のケィ素化合物 の濃度を上記範囲にすることで、粒子の粗大化を防ぎ、平均粒径 5〜50nmの粒子 とでさる。
式(22)のケィ素化合物及び式(23)のケィ素化合物、又は式(22)のケィ素化合物 、式 (23)のケィ素化合物及び式 (24)のケィ素化合物は同時に混合して加水分解及 び Z又は加水分解縮合させてもよぐまた、水、炭素数 1〜3のアルコール、塩基性 化合物、並びに酸アミド、ジオール及びジオールの半エーテル力 選ばれる少なくと も 1種の存在下で、式(22)で表されるケィ素化合物を加水分解及び Z又は加水分 解縮合し、ついで、それぞれ、式(23)で表されるケィ素化合物、又は式(23)で表さ れるケィ素化合物及び式(24)で表されるケィ素化合物を加えてさらに加水分解及び Z又は加水分解縮合させてもよ ヽ。
[0165] 加水分解及び Z又は加水分解縮合の反応温度は、使用するアルコール及び酸ァ ミド類の沸点及び反応時間を考慮して任意に決めることができる。反応時間は式(22 )で表されるケィ素化合物、式 (23)で表されるケィ素化合物及び式 (24)で表される ケィ素化合物の種類、反応速度、塩基の種類と量等に依存してその最適値は変化 する性質のものであり、限定されない。
得られた加水分解及び Z又は加水分解縮合反応液に有機溶媒を加え、さらに必 要に応じて不要な成分を蒸留や液液抽出等の方法で除去することにより、多孔質シ リカ粒子が有機溶媒に分散した分散液を得ることができる。
[0166] また、分散媒は、水ある!/、は有機溶媒が好ま U、。有機溶媒としては、メタノール、 イソプロピルアルコール、エチレングリコーノレ、ブタノール、エチレングリコーノレモノプ 口ピルエーテル等のアルコール類;メチルェチルケトン、メチルイソブチルケトン等の ケトン類;トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチル ァセトアミド、 N メチルピロリドン等のアミド類;酢酸ェチル、酢酸ブチル、 γーブチ 口ラタトン等のエステル類;テトラヒドロフラン、 1, 4 ジォキサン等のエーテル類等の 有機溶剤を挙げることができ、これらの中で、アルコール類及びケトン類が好ましい。 これら有機溶剤は、単独で、又は 2種以上混合して分散媒として使用することができ
る。
[0167] 多孔質シリカ粒子 (H)の榭脂組成物中における配合量は、有機溶剤以外の組成 物全量に対して通常 5〜99重量%配合され、 10〜98重量%が好ましぐ 15〜97重 量%がさらに好ましい。 5重量%未満であると、硬化膜としたときの硬度が不十分とな ることがあり、 99重量%を超えると、十分な膜の強度が得られないことがある。尚、粒 子の量は、固形分を意味し、粒子が溶剤分散液の形態で用いられるときは、その配 合量には溶剤の量を含まない。
[0168] (4)任意添加成分
本発明で用いる低屈折率層用組成物には、必要に応じて下記成分を添加すること ができる。
[0169] (I)少なくとも 2個以上の (メタ)アタリロイル基を含有する多官能 (メタ)アタリレートイ匕合 物及び Z又は少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ素 (メタ)ァ クリレートイヒ合物
硬化性榭脂組成物には、必要に応じて、少なくとも 2個以上の (メタ)アタリロイル基 を含有する多官能 (メタ)アタリレートイ匕合物及び Z又は少なくとも 1個以上の (メタ)ァ クリロイル基を含有する含フッ素 (メタ)アタリレートイ匕合物を添加することもできる。
[0170] (1)少なくとも 2個以上の (メタ)アタリロイル基を含有する多官能 (メタ)アタリレートイ匕 合物
この化合物については、分子内に少なくとも 2個以上の (メタ)アタリロイル基を含有 する化合物であれば特に制限されるものではない。このような例としては、ネオペンチ ルグリコールジ(メタ)アタリレート、トリメチロールプロパントリ(メタ)アタリレート、ペンタ エリスリトールトリ(メタ)アタリレート、トリメチロールェタントリ(メタ)アタリレート、ペンタ エリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトールテトラ (メタ)アタリレート、 アルキル変性ジペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリスリトール ペンタ(メタ)アタリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アタリレー ト、ジペンタエリスリトールへキサ (メタ)アタリレート、力プロラタトン変性ジペンタエリス リトールへキサ (メタ)アタリレート、ジトリメチロールプロパンテトラ (メタ)アタリレート、 「 U- 15HAJ (商品名、新中村ィ匕学社製)等の一種単独又は二種以上の組み合わせ
が挙げられる。
尚、これらのうち、ネオペンチルグリコールジ(メタ)アタリレート、ジペンタエリスリトー ルへキサ (メタ)アタリレート、ペンタエリスリトールテトラ (メタ)アタリレート、ジペンタエリ スリトールペンタ(メタ)アタリレート及び力プロラタトン変性ジペンタエリスリトールへキ サ (メタ)アタリレートが特に好まし 、。
[0171] (2)少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ素 (メタ)アタリレートイ匕 合物
この化合物については、少なくとも 1個以上の (メタ)アタリロイル基を含有する含フッ 素 (メタ)アタリレートイ匕合物であれば特に制限されるものではない。このような例として 、パーフルォロォクチルェチル(メタ)アタリレート、ォクタフルォロペンチル(メタ)ァク リレート、トリフルォロェチル (メタ)アタリレート等が挙げられる。これらは、単独で或い は 2種以上組み合わせて使用することができる。
[0172] (I)成分の添加量については、特に制限されるものではないが、有機溶剤以外の組 成物全量に対して通常 0〜90重量%である。この理由は、添加量が 90重量%を超 えると、硬化性榭脂組成物の硬化塗膜の屈折率が高くなり、十分な反射防止効果が 得られな ヽ場合があるためである。
また、このような理由力ら、(I)成分の添加量を 80重量%以下とするのがより好ましく 、 60重量%以下の添カ卩量とするのがさらに好ましい。
[0173] ω活性エネルギー線の照射又は熱により活性種を発生する化合物
本願発明では、活性エネルギー線の照射又は熱により活性種を発生する化合物を 添加することもできる。活性エネルギー線の照射又は熱により活性種を発生する化合 物は、硬化性榭脂組成物を硬化させるために用いられる。
[0174] (1)活性エネルギー線の照射により活性種を発生する化合物
活性エネルギー線の照射により活性種を発生する化合物(以下「光重合開始剤」と いう。)としては、活性種として、ラジカルを発生する光ラジカル発生剤等が挙げられ る。
尚、活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生さ せることのできるエネルギー線と定義される。このような活性エネルギー線としては、
可視光、紫外線、赤外線、 X線、 α線、 j8線、 γ線等の光エネルギー線が挙げられる 。ただし、一定のエネルギーレベルを有し、硬化速度が速ぐしかも照射装置が比較 的安価で、小型な観点から、紫外線を使用することが好ましい。
[0175] (i)種類
光ラジカル発生剤の例としては、例えばァセトフエノン、ァセトフエノンべンジルケタ ール、アントラキノン、 1— (4—イソプロピルフエ-ル) 2 ヒドロキシ一 2—メチルプ 口パン 1 オン、カルバゾール、キサントン、 4 クロ口べンゾフエノン、 4, 4'ージァ ミノべンゾフエノン、 1, 1—ジメトキシデォキシベンゾイン、 3, 3, 一ジメチル一 4—メト キシベンゾフエノン、チ才キサントン、 2, 2—ジメトキシー 2—フエ-ルァセトフエノン、 1— (4—ドデシルフエ-ル) 2—ヒドロキシ一 2—メチルプロパン一 1—オン、 2—メ チルー 1一 〔4一(メチルチオ)フエ-ル〕一 2 モルフォリノプロパン一 1一オン、トリフ ェ-ルァミン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 1ーヒド 口キシシクロへキシルフェニルケトン、 2—ヒドロキシ 2—メチルー 1 フエニルプロ パン 1 オン、フルォレノン、フルオレン、ベンズアルデヒド、ベンゾインェチルエー テル、ベンゾインプロピルエーテル、ベンゾフエノン、ミヒラーケトン、 3—メチルァセト フエノン、 3, 3 ' , 4, 4'ーテトラ(tert ブチルパーォキシカルボ-ル)ベンゾフエノン (BTTB)、 2- (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2—フエ-ル メチル) 1ーブタノン、 4一べンゾィルー 4'ーメチルジフエ-ルサルファイド、ベンジ ル、又は BTTBとキサンテン、チォキサンテン、クマリン、ケトクマリン、その他の色素 増感剤との組み合わせ等を挙げることができる。
[0176] これらの光重合開始剤のうち、 2, 2 ジメトキシ一 2 フエ-ルァセトフエノン、 2 ヒ ドロキシ 2—メチル 1—フエニルプロパン一 1 オン、 1 ヒドロキシシクロへキシ ルフエ二ルケトン、 2, 4, 6 トリメチルベンゾィルジフエ-ルホスフィンオキサイド、 2 ーメチルー 1一 〔4一(メチルチオ)フエ-ル〕一 2 モルフォリノプロパン一 1一オン、 2 (ジメチルァミノ) 1一〔4 (モルフオリ-ル)フエ-ル〕 2 フエ-ルメチル) 1 —ブタノン等が好ましぐさらに好ましくは、 1—ヒドロキシシクロへキシルフェニルケト ン、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1ーォ ン、 2— (ジメチルァミノ)— 1—〔4— (モルフオリ-ル)フエ-ル〕—2 フエ-ルメチル
) - 1—ブタノン等を挙げることができる。
[0177] (ii)添加量
光重合開始剤の添加量は特に制限されるものではな ヽが、有機溶剤以外の組成 物全量に対して 0. 01〜20重量%とするのが好ましい。この理由は、添加量が 0. 01 重量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸漬後の耐 擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量が 20重量 %を超えると、硬化膜の屈折率が増加し反射防止効果が低下する場合があるためで ある。
また、このような理由から、光重合開始剤の添加量を、有機溶剤以外の組成物全量 に対して 0. 05〜15重量%とすることがより好ましぐ 0. 1〜15重量%とすることがさ らに好ましい。
[0178] (2)熱により活性種を発生する化合物
熱により活性種を発生する化合物(以下「熱重合開始剤」という。)としては、活性種 として、ラジカルを発生する熱ラジカル発生剤等が挙げられる。
[0179] (i)種類
熱ラジカル発生剤の例としては、ベンゾィルパーオキサイド、 tert—ブチルーォキシ ベンゾエート、ァゾビスイソブチ口-トリル、ァセチルパーオキサイド、ラウリルパーォキ サイド、 tert—ブチルパーアセテート、タミルパーオキサイド、 tert—ブチルパーォキ サイド、 tert—ブチルハイド口パーオキサイド、 2, 2,ーァゾビス(2, 4—ジメチルバレ 口-トリル)、 2, 2,—ァゾビス(4—メトキシ— 2, 4—ジメチルバレ口-トリル)等の一種 単独又は二種以上の組み合わせを挙げることができる。
[0180] (ii)添加量
熱重合開始剤の添加量についても特に制限されるものではないが、有機溶剤以外 の組成物全量に対して 0. 01〜20重量%とするのが好ましい。この理由は、添カロ量 が 0. 01重量%未満となると、硬化反応が不十分となり耐擦傷性、アルカリ水溶液浸 漬後の耐擦傷性が低下する場合があるためである。一方、光重合開始剤の添加量 力 S20重量%を超えると、硬化膜の屈折率が増加し反射防止効果が低下する場合が あるためである。
また、このような理由から、有機溶剤以外の組成物全量に対して熱重合開始剤の 添加量を 0. 05〜15重量%とするのがより好ましぐ 0. 1〜15重量%の範囲内の値 とするのがさらに好ましい。
[0181] (K)有機溶媒
硬化性榭脂組成物には、さらに有機溶媒を添加することが好ましい。このように有 機溶媒を添加することにより、薄膜の反射防止膜を均一に形成することができる。こ のような有機溶媒としては、炭素数 1〜8のアルコール系、炭素数 3〜10のケトン系、 炭素数 3〜: L0のエステル系の有機溶媒が好ましく使用でき、メチルイソプチルケトン 、メチルェチルケトン、メチルアミルケトン、メタノール、エタノール、 tーブタノール、ィ ソプロパノール、プロピレングリコーノレモノメチノレエーテル、プロピレングリコーノレェチ ルエーテル、プロピレングリコールモノプロピルエーテル等が特に好まし 、例として挙 げられる。これらの有機溶媒は一種単独又は二種以上の組み合わせで使用できる。
[0182] 有機溶媒の添加量についても特に制限されるものではないが、有機溶剤以外の組 成物 100重量部に対し、 100〜100,000重量部とするのが好ましい。この理由は、 添加量が 100重量部未満となると、硬化性榭脂組成物の粘度調整が困難となる場合 があるためであり、一方、添加量が 100,000重量部を超えると、硬化性榭脂組成物 の保存安定性が低下したり、あるいは粘度が低下しすぎて取り扱いが困難となる場合 があるためである。
[0183] 添加剤
硬化性榭脂組成物には、本発明の目的や効果を損なわない範囲において、光増 感剤、重合禁止剤、重合開始助剤、レべリング剤、濡れ性改良剤、界面活性剤、可 塑剤、紫外線吸収剤、酸化防止剤、帯電防止剤、シランカップリング剤、(H)成分以 外の無機充填剤若しくは顔料、染料等の添加剤をさらに含有させることもできる。
[0184] (5)低屈折率層形成用組成物の調製方法
本発明で使用される硬化性榭脂組成物は、上記 (G)エチレン性不飽和基含有含 フッ素重合体及び上記 (H)成分、又は必要に応じて上記 (I)成分、 ω成分、(Κ)有 機溶剤、及び添加剤をそれぞれ添加して、室温又は加熱条件下で混合することによ り調製することができる。具体的には、ミキサ、エーダー、ボールミル、三本ロール等
の混合機を用いて、調製することができる。ただし、加熱条件下で混合する場合には
、熱重合開始剤の分解開始温度以下で行うことが好まし ヽ。
[0185] (6)低屈折率層形成用組成物の硬化方法
低屈折率層形成用組成物の硬化条件にっ 、ても特に制限されるものではな 、が、 例えば活性エネルギー線を用いた場合、露光量を 0. 01〜10j/cm2の範囲内の値 とするのが好ましい。
この理由は、露光量が 0. OljZcm2未満となると、硬化不良が生じる場合があるた めであり、一方、露光量が lOjZcm2を超えると、硬化時間が過度に長くなる場合が あるためである。
また、このような理由により、露光量を 0. l〜5jZcm2の範囲内の値とするのがより 好ましぐ 0. 3〜3jZcm2の範囲内の値とするのがより好ましい。
[0186] また、低屈折率層形成用組成物を、加熱して硬化させる場合には、 30〜200°Cの 範囲内の温度で、 0. 5〜180分間加熱するのが好ましい。このように加熱することに より、基材等を損傷することなぐより効率的に耐擦傷性に優れた反射防止膜を得る ことができる。
また、このような理由から、 50〜180°Cの範囲内の温度で、 1〜120分間加熱する のがより好ましぐ 80〜150°Cの範囲内の温度で、 1〜60分間加熱するのがさらに好 ましい。
[実施例]
[0187] 以下、本発明を実施例によってさらに具体的に説明するが、本発明はこれら実施 例によって何ら限定されるものではない。尚、以下において、部、%は、特に断らない 限り、それぞれ重量部、重量%を示す。
[0188] 実施例 1
(1)液状硬化性組成物の製造
紫外線を遮蔽した容器中にお!、て、錫含有酸化インジウム分散液 (富士化学 (株) 製 ハウトフオーム NID— 20、分散溶媒 イソプロピルアルコール、錫含有酸化イン ジゥム 20重量%、平均一次粒径 13nm、以下、 ITO粒子— 1と称する場合がある。 ) 50部、ジペンタエリスリトールへキサアタリレート(日本ィ匕薬 (株)製 商品名 KAYA
RAD DPHA 以下 B—lと称する場合がある。) 86部、 1—ヒドロキシシクロへキシ ルフエ-ルケトン 2. 5部、 2—メチルー 1一(4 (メチルチオ)フエ-ル)—2-モルフォ リノプロパンー1 オン 1. 5部、イソプロピルアルコール 141. 8部及びプロピレングリ コールモノメチルエーテル 51. 3部、を 50°Cで 2時間攪拌することで均一な溶液の組 成物を得た。この組成物をアルミ皿に 2g秤量後、 170°Cのホットプレート上で 1時間 乾燥、秤量して固形分含量を求めたところ、 30重量%であった。また、この組成物を 磁性るつぼに 2g秤量後、 80°Cのホットプレート上で 30分予備乾燥し、 750°Cのマツ フル炉中で 1時間焼成した後の無機残渣より、固形分中の無機含量を求めたところ、 10重量%であった。
[0189] 実施例 2〜 3、比較例 1〜 3
同様の操作法により、表 1に示す実施例 2〜3、比較例 1〜3の各組成物を得た。 尚、表 1中、 ITO粒子及び分散剤の配合量は添加した分散液中の固形分量のみを 表し、分散媒は溶剤の配合量に含まれる。
[0190] <硬化膜の作製 >
ワイヤーバーコータを用いて、表面易接着処理が施されたポリエステルフィルム A4 300 (東洋紡績 (株)製、膜厚 188 111、)上に、実施例 1〜3及び比較例 1〜3で得ら れた組成物をそれぞれ塗工し、オーブン中、 80°C、 3分間の条件で乾燥し、塗膜を 形成した。次いで、大気中、メタルノヽライドランプを用いて、 UZcm2の光照射条件で 塗膜を紫外線硬化させ、膜厚 3 μ mの硬化膜 (ハードコート層)を形成した。
[0191] <硬化膜の評価 >
得られた硬化膜の全光線透過率、ヘーズ及び表面抵抗を以下の基準で評価した。 得られた結果を表 1に示す。
(1)全光線透過率、ヘーズ
硬化膜の全光線透過率(%)及びヘーズ (%)を、カラーヘーズメーター (スガ試験 機 (株)製)を用いて、 JIS K7105に準拠して測定した。
(2)鉛筆硬度
硬化膜の鉛筆硬度を、 JIS K5600— 5— 4に準拠し、ガラス基板上で硬化させた被 膜を評価した。
(3)表面抵抗
硬化膜の表面抵抗( Ω Z口)を、ハイ'レジスタンス 'メーター(アジレント'テクノロジ 一(株)製 Agilent4339B)、及びレジステイビティ'セル 16008B (アジレント'テクノ ロジー (株)製)を用い、印加電圧 100Vの条件で測定した。
[表 1]
表 1中の略称の内容を下記に示す。
ITO粒子— 1:富士化学 (株)製 ノ、ゥトフォーム NID— 20(—次粒径: 13nm、 二 次粒径: 25nm IPA分散体)
分散剤 1:富士化学 (株)製 ノ、ゥトフォーム NID— 20に含まれる分散剤
ITO粒子 2:三井金属鉱山(株)製 パストラン (一次粒径: 30nm、二次粒径: 15 Onm 水分散体)
分散剤 2 :三井金属鉱山 (株)製 パストラン (ITO粒子— 2)に含まれる分散剤
ITO粒子― 3:シーアィ化成 (株)製 ナノテック(一次粒径: 25nm、二次粒径: 80η m EtOH分散体)
分散剤 3:シーアィ化成 (株)製 ナノテックに含まれる分散剤
ITO粒子ー4 :三井金属鉱山(株)製 パストラン (一次粒径: 30nm、二次粒径: 30 Onm MeOH分散体)
分散剤 4 :三井金属鉱山 (株)製 パストラン (ITO粒子— 4)に含まれる分散剤
PGME:プロピレングリコールモノメチルエーテル
IPA:イソプロパノール
MeOH :メタノール
EtOH :エタノール
[0194] 表 1の結果から、比較例 1及び 3は、 107ΩΖ口オーダーと、表面抵抗は非常に小 さいが、ヘーズが大きぐ透明性が劣っている。比較例 2は、逆にヘーズは比較的低 いが、表面抵抗は 1014ΩΖ口オーダーと大きくなつており、帯電防止性が劣っている これに対し、実施例 1〜3では、表面抵抗はいずれも ΙΟ^ Ω Ζ口オーダーであり、 かつヘーズも 0. 1%又は 0. 2%と低ぐ帯電防止性と透明性の両方の要求を満足す る特性を有して 、ることがわ力る。
[0195] 製造例 1 :特定有機化合物 (Aa)の調製
乾燥空気中、メルカプトプロピルトリメトキシシラン 221部、ジブチル錫ジラウレート 1 部からなる溶液に対し、イソホロンジイソシァネート 222部を攪拌しながら 50°Cで 1時 間かけて滴下後、 70°Cで 3時間加熱攪拌した。これに新中村ィ匕学製 NKエステル A —TMM— 3LM— N (ペンタエリスリトールトリアタリレート 60重量0 /0とペンタエリスリト ールテトラアタリレート 40重量%とからなる。このうち、反応に関与するのは、水酸基 を有するペンタエリスリトールトリアタリレートのみである。 ) 549部を 30°Cで 1時間かけ て滴下後、 60°Cで 10時間加熱攪拌することで重合性不飽和基を有する有機化合物
(特定有機化合物 (Aa) )を得た。生成物中の残存イソシァネート量を FT— IRで分析 したところ 0.1%以下であり、反応がほぼ定量的に終了したことを示した。生成物の赤 外吸収スペクトルは原料中のメルカプト基に特徴的な 2550cm_ 1の吸収ピーク及び 原料イソシァネートイ匕合物に特徴的な 2260cm_1の吸収ピークが消失し、新たにウレ タン結合及び S (C = O) NH—基に特徴的な 1660cm_1のピーク及びアタリ口キシ基 に特徴的な 1720cm_ 1のピークが観察され、重合性不飽和基としてのアタリ口キシ基 と一 S (C = O) NH—、ウレタン結合を共に有するアタリ口キシ基修飾アルコキシシラ ンが生成していることを示した。以上により、この糸且成物には、下記式(25)及び下記 式(26)で示される化合物が合計で 773部含まれるほか、反応に関与しな力つたペン タエリスリトールテトラアタリレート 220部が混在している。
[0196] [化 17]
(式中、 Acrylは、アタリロイル基を示す。)
[0198] 製造例 2 :多官能アタリレートの調製
攪拌機付きの容器内のイソホロンジイソシァネート 18. 8部と、ジブチル錫ジラウレ ート 0. 2部とからなる溶液に対し、新中村化学製NKェステルA—TMM— 3LM— N (反応に関与するのは、水酸基を有するペンタエリスリトールトリアタリレートのみであ る。) 93部を、 10°C、 1時間の条件で滴下した後、 60°C、 6時間の条件で攪拌し、反 応液とした。
この反応液中の生成物について、製造例 1と同様にして残存イソシァネート量を FT —IRで測定したところ、 0. 1重量%以下であり、反応がほぼ定量的に行われたことを 確認した。また、分子内に、ウレタン結合、及びアタリロイル基 (重合性不飽和基)とを 含むことを確認した。
以上により、この組成物には、下記式(27)で示される化合物(B— 1) 75部が含ま れるほか、反応に関与しなかったペンタエリスリトールテトラアタリレート 37部が混在し ている。
[0199] [化 19]
(式中、 Acrylは、アタリロイル基を示す。)
[0200] 製造例 3:重合性不飽和基を有する有機化合物が結合した反応性シリカ粒子ゾルの 製造
シリカ粒子ゾル (メチルェチルケトンシリカゾル、 日産化学工業 (株)製 MEK— ST — L、数平均粒子径 0. 05 μ m、シリカ濃度 30%) 143g (シリカ粒子として 43g)、製 造例 1で製造した特定有機化合物 (Aa)を含む溶液 2. 8g、蒸留水 0. lg、p—ヒドロ キノンモノメチルエーテル 0. Olgを混合し、 65°Cで加熱攪拌した。 4時間後、オルト 蟻酸メチルエステル 1. Og添加し、さらに 1時間加熱することで、固形分 31%の反応 性シリカ粒子ゾルを得た。
[0201] 製造例 4 :水酸基含有含フッ素重合体の製造
内容積 1. 5Lの電磁攪拌機付きステンレス製オートクレープを窒素ガスで十分置換 した後、酢酸ェチル 465g、パーフルォロ(プロピルビュルエーテル) 138. 5g、ェチ ルビ-ルエーテル 37. 5g、ヒドロキシェチルビ-ルエーテル 46. 0g、ノ-オン性反応 性乳化剤として「アデカリアソープ ER— 30」(旭電化工業株式会社製) 180. 0g、ァ ゾ基含有ポリジメチルシロキサンとして「VPS— 1001」(和光純薬工業株式会社製) 9
. Og及び過酸化ラウロイル 1. 5gをカ卩え、ドライアイス メタノールで 50°Cまで冷却 した後、再度窒素ガスで系内の酸素を除去した。
次いでへキサフルォロプロピレン 86. Ogを加え、昇温を開始した。オートクレーブ 内の温度が 60°Cに達した時点での圧力は 2. 9 X 105Paを示した。その後、 70°Cで 2 0時間攪拌下に反応を継続し、圧力が 2. O X 105Paに低下した時点でオートクレー ブを水冷し、反応を停止させた。室温に達した後、未反応モノマーを放出しオートク レーブを開放し、固形分濃度 30. 0%のポリマー溶液を得た。得られたポリマー溶液 をメタノールに投入しポリマーを析出させた後、メタノールにて洗浄し、 50°Cにて真空 乾燥を行!ヽ 220gの水酸基含有含フッ素重合体を得た。
[0202] 製造例 5:エチレン性不飽和基含有含フッ素重合体の製造
電磁攪拌機、ガラス製冷却管及び温度計を備えた容量 1リットルのセパラブルフラ スコに、製造例 4で得られた水酸基含有含フッ素重合体を 70. 0g、重合禁止剤とし て 2, 6 ジ— t—ブチルメチルフエノール 0. Olg及び MIBK520gを仕込み、 20°C で水酸基含有含フッ素重合体が MIBKに溶解して、溶液が透明、均一になるまで攪 拌を行った。次いで、この系に、 2—メタクリロイルォキシェチルイソシァネート 22gを 添加し、溶液が均一になるまで攪拌した後、ジブチノレチンジラウレート 0. 2gを添加し て反応を開始し、系の温度を 55〜65°Cに保持し 5時間攪拌を継続することにより、ェ チレン性不飽和基含有含フッ素重合体の MIBK溶液を得た。この溶液をアルミ皿に 2g秤量後、 150°Cのホットプレート上で 5分間乾燥、秤量して固形分含量を求めたと ころ、 15. 0%であった。
[0203] 製造例 6 :低屈折率層形成用組成物 1の調製
製造例 3で得られた反応性シリカ粒子ゾル 20g (反応性粒子として 6. 2g)、製造例 5で得られたエチレン性不飽和基含有含フッ素重合体 101. Og (エチレン性不飽和 基含有フッ素重合体として 15. 2g)、ジペンタエリスリトールペンタアタリレート 1. 7g、 2—メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン( C 2) 1. 2g、製造例 2で得られた式 (27)で示される化合物 0. 4g、有機共重合物 含有特殊シリコン (フローレン AC— 901、共栄社化学株式会社) 0. lg、メチルイソブ チルケトン 505. 6gを加え、室温にて 1時間攪拌し、低屈折率層形成用組成物 1を得
た。製造例 1と同様に固形分含量を求めたところ、 4重量%であった。
[0204] 製造例 7 :多孔質シリカ粒子の合成
石英製セパラブルフラスコ中に、テトラエトキシシラン 22. 24g、メタノール 841. 97 g、プロピレングリコール 30. OOgを加え、均一に混合した後、アンモニアの 1%水溶 液 101. OOgを添加した。その後、溶液を攪拌しながら 40°Cで 8時間反応させ、さら にビュルトリメトキシシラン 0. 92g、メタクリロキシプロピルトリメトキシシラン (東レ.ダウ コーユング.シリコーン (株)製 SZ— 6030) 1. 54gを添カ卩し 40°Cで 1時間反応させた 。次いで、 2—パーフルォ口へキシルェチルトリメトキシシラン(GE東芝シリコーン (株 )製 TSL8257) 2. 33gを添加し 40°Cで 1時間反応させた。反応液を室温まで冷却 後、メチノレイソブチノレケ卜ン 1000. 00gとシユウ酸の 0. 1%水溶液 1000. 00gとをカロ え、攪拌、静置した。 2層に分離した上層を取り分け、ロータリーエバポレーターで固 形分濃度 5%となるまで濃縮し、多孔質シリカ粒子溶液を得た。
上記で得られた多孔質シリカ粒子溶液の lgにエタノール 10gを加えて混合後、透 過型電子顕微鏡用カーボングリッド上に 1滴を滴下し、次 、で室温で 24時間乾燥し 、 日本電子社製フィールドェミッション電子顕微衝 EM— 2010Fを用いて観察を行 い、多孔質シリカ粒子の粒径を測定したところ、平均粒径 20nmであった。
多孔質シリカ粒子溶液の 10gをアルミ皿に取り、 150°Cのホットプレート上で 1時間 乾燥し、多孔質シリカ粒子 1の粉末サンプルを得た。得られた多孔質シリカ粒子粉末 の BET比表面積を Quantachrome Instruments社製 AUTOSORB— 1を用い て測定したところ、比表面積は 200m2Zgであった。
[0205] 製造例 8 :低屈折率層形成用組成物 2の調製
製造例 5で得たエチレン性不飽和基含有含フッ素重合体の MIBK溶液を 56g (ェ チレン性不飽和基含有含フッ素重合体として 8. 5g)、製造例 7で得られた多孔質シ リカ粒子分散液を 1750g (多孔質シリカ粒子として 87. 5g)、光重合開始剤として 2— メチルー 1一〔4 (メチルチオ)フエ-ル〕 2 モルフォリノプロパン 1 オン 4g、 MIBK700gを、攪拌機をつけたガラス製セパラブルフラスコに仕込み、 23°Cにて 1 時間攪拌し低屈折率層形成用組成物 2を得た。実施例 1と同様に固形分含量を求め たところ、 4重量%であった。
[0206] 実施例 4
反射防止積層体 1の製造
実施例 1で得られた液状硬化性組成物を、ワイヤーバーコータ # 20を用いて、表 面易接着処理が施されたポリエステルフィルム A4300 (東洋紡績 (株)製、膜厚 188 μ m)上に塗工し、オーブン中、 80°C、 3分間の条件で乾燥した。次いで、大気中、メ タルノヽライドランプを用いて、 UZcm2の光照射条件で塗膜を紫外線硬化させ、帯電 防止ハードコート層を有するフィルムを作製した。帯電防止ハードコート層の膜厚を 触針式表面形状測定器により測定したところ、 3 mであった。この帯電防止ハード コート付フィルム上に、製造例 6で得られた低屈折率層形成用組成物 1を、ワイヤー バーコータ # 3を用いて塗工し、オーブン中、 80°C、 1分間の条件で乾燥した。次い で、窒素雰囲気下で、メタルノヽライドランプを用いて、 UZcm2の光照射条件で塗膜 を紫外線硬化させ、低屈折率層を形成させて反射防止積層体 1を作製した。得られ た反射防止積層体 1の反射率力 低屈折率層の膜厚を算出したところ、 0.: mで めつに。
[0207] 実施例 5
反射防止積層体 2の製造
低屈折率層形成用組成物 1の代わりに製造例 8で得られた低屈折率層形成用組 成物 2を用いたこと以外は実施例 4と同様にして反射防止積層体 2を作製した。実施 例 1と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0208] 実施例 6
反射防止積層体 3の製造
実施例 1で得られた液状硬化性組成物の代わりに実施例 3で得られた液状硬化性 組成物を用いたこと以外は実施例 4と同様にして反射防止積層体 3を作製した。実施 例 4と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0209] 実施例 7
反射防止積層体 4の製造
低屈折率層形成用組成物 1の代わりに製造例 8で得られた低屈折率層形成用組 成物 2を用いたこと以外は実施例 6と同様にして反射防止積層体 4を作製した
[0210] 比較例 4
反射防止積層体 5の製造
実施例 1で得られた液状榭脂組成物の代わりに比較例 2で得られた液状硬化性組 成物を、ワイヤーバーコ一ター # 40を用いて基材上に塗布したこと以外は実施例 4と 同様にして反射防止積層体 5を作製した。実施例 4と同様に低屈折率層の膜厚を算 出したところ、 0. 1 mであった。
[0211] 比較例 5
反射防止積層体 6の製造
低屈折率層形成用組成物 1の代わりに製造例 8で得られた低屈折率層形成用組 成物 2を用いたこと以外は比較例 4と同様にして反射防止積層体 6を作製した。実施 例 4と同様に低屈折率層の膜厚を算出したところ、 0.: L mであった。
[0212] 評価例
実施例 4〜7、比較例 4〜5で得られた反射防止積層体 1〜6につ 、て以下の特性 を評価した。
[0213] (a)全光線透過率及びヘーズ
硬化膜フィルムの全光線透過率(%)及びヘーズ(%)を、カラーヘーズメーター (ス ガ試験機 (株)製)を用いて、 JIS K7105に準拠して測定した。得られた結果を表 2 に示す。
[0214] (c)表面抵抗
硬化膜フィルムの表面抵抗( Ω /口)を、ハイ'レジスタンス 'メーター(アジレント'テ クノロジー(株)製 Agilent4339B)、及びレジステイビティ'セル 16008B (アジレン ト 'テクノロジー (株)製)を用い、印加電圧 100Vの条件で測定した。得られた結果を 表 2に示す。
[0215] (d)反射率
得られた反射防止積層体の反射率を、分光反射率測定装置 (瞬間マルチ測光シス テム、 MCPD— 3000 大塚電子(株)製)〖こより、波長 400〜800nmの範囲で絶対 反射率を測定して評価した。波長 550nmにおける反射率を表 2に示す。
[0216] (e)耐擦傷性テスト 1 (スチールウール耐性)
反射防止積層体のスチールウール耐性テストを次に示す方法で実施した。即ち、ス チールウール(ボンスター No. 0000、日本スチールウール (株)社製)を学振型摩擦 堅牢度試験機 (AB— 301、テスター産業 (株)製)に取りつけ、硬化膜の表面を荷重 500gの条件で 10回繰り返し擦過し、当該硬化膜の表面における傷の発生の有無を 目視で、以下の基準で確認した。得られた結果を表 2に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。
△:硬化膜に細 、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した。
[0217] (f)耐擦傷性テスト 2 (布擦り耐性)
反射防止積層体の布擦り耐性テストを次に示す方法で実施した。即ち、不織布 (B EMCOT S— 2、旭化成工業社製)を学振型摩擦堅牢度試験機 (AB— 301、テス ター産業 (株)製)に取りつけ、硬化膜の表面を荷重 1000gの条件で 20回繰り返し擦 過し、当該硬化膜の表面における傷の発生の有無を目視で、以下の基準で確認し た。得られた結果を表 2に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。
△:硬化膜に細 、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した。
[0218] (g)耐薬品性テスト (エタノール耐性テスト)
硬化膜のエタノール耐性テストを次に示す方法で実施した。即ち、エタノールを染 み込ませた不織布 (BEMCOT S— 2、旭化成工業社製)を学振型摩擦堅牢度試 験機 (AB— 301、テスター産業 (株)製)に取りつけ、硬化膜の表面を荷重 500gの条 件で 20回繰り返し擦過し、当該硬化膜の表面における傷の発生の有無を目視で、 以下の基準で確認した。得られた結果を表 2に示す。
〇:硬化膜の剥離や傷の発生がほとんど認められない。
△:硬化膜に細 、傷が認められる。
X:硬化膜の一部に剥離が生じ、又は硬化膜の表面に筋状の傷が発生した。
[0219] [表 2]
0220
錫含有酸化インジウム (ITO)を主成分とする粒子 (ITO粒子 1)を用いた実施例 4 〜7は、全光線透過率が高ぐヘーズが低ぐ表面抵抗も低ぐかつ耐擦傷性、耐薬 品'性にも優れて ヽることがわかる。
産業上の利用可能性
[0221] 本発明によれば、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、 耐擦傷性、及び透明性に優れた塗膜 (被膜)を形成し得る液状硬化性組成物、硬化 膜及び帯電防止用積層体を提供することができる。
[0222] 本発明の硬化膜は、優れた耐擦傷性、密着性を有するため、ハードコートとして有 用である。また、優れた帯電防止機能を有するため、フィルム状、板状、又はレンズ 等の各種形状の基材に配設されることにより帯電防止膜として有用である。
[0223] 本発明の硬化膜の適用例としては、例えば、タツチパネル用保護膜、転写箔、光デ イスク用ハードコート、自動車用ウィンドフィルム、レンズ用の帯電防止保護膜、化粧 品容器等の高意匠性の容器の表面保護膜等主として製品表面傷防止や静電気に よる塵埃の付着を防止する目的でなされるハードコートとしての利用、また、 CRT,液 晶表示パネル、プラズマ表示パネル、エレクト口ルミネッセンス表示パネル等の各種 表示パネル用の帯電防止用反射防止膜としての利用、プラスチックレンズ、偏光フィ ルム、太陽電池パネル等の帯電防止用反射防止膜としての利用等を挙げることがで きる。
本発明によれば、硬化性に優れ、かつ、各種基材の表面に、帯電防止性、硬度、 耐擦傷性、及び透明性に優れた硬化膜を有する帯電防止用積層体を提供すること ができる。
本発明の積層体は、例えば、タツチパネル用保護膜、転写箔、光ディスク用ハード コート、自動車用ウィンドフィルム、レンズ用の帯電防止保護膜、化粧品容器等の高 意匠性の容器の表面保護膜等主として製品表面傷防止や静電気による塵埃の付着 を防止する目的でなされるハードコートとして、また、 CRT、液晶表示パネル、プラズ マ表示パネル、エレクト口ルミネッセンス表示パネル等の各種表示パネル用の帯電防 止機能付き反射防止膜として、プラスチックレンズ、偏光フィルム、太陽電池パネル 等の帯電防止機能付き反射防止膜として利用することができる。
本発明の積層体は、例えば、プラスチック光学部品、タツチパネル、フィルム型液晶 素子、プラスチック筐体、プラスチック容器、建築内装材としての床材、壁材、人工大 理石等の傷付き (擦傷)防止や汚染防止のためのハードコーティング材;各種基材の 接着剤、シ一リング材;印刷インクのバインダー材等として好適に用いることができる。
Claims
請求の範囲
[1] 下記成分 (A)、 (B)、 (C)及び (D):
(A)一次粒径が 20nm以下であり、かつ二次粒径が 50nm以下である錫含有酸ィ匕 インジウム (ITO)を主成分とする粒子
(B)分子内に 2以上の重合性不飽和基を有する化合物
(C)光重合開始剤
(D)溶剤
を含有する液状硬化性組成物。
[2] 前記成分 (A)の含有量が、全固形成分中 5〜40重量%である請求項 1に記載の 液状硬化性組成物。
[3] 前記成分 (A)が、表面処理剤により表面処理された錫含有酸化インジウム (ITO) を主成分とする粒子である請求項 1又は 2に記載の液状硬化性組成物。
[4] 前記表面処理剤が、 2以上の重合性不飽和基、下記式(1)に示す基、及びシラノ ール基又は加水分解によってシラノール基を生成する基を有する化合物である請求 項 3に記載の液状硬化性組成物。
X— C (=Y)— NH— (1)
[式中、 Xは、 NH、 0 (酸素原子)又は S (ィォゥ原子)を示し、 Yは、 O又は Sを示す。
]
[5] 請求項 1〜4の ヽずれか一項に記載の液状硬化性組成物を硬化してなる硬化膜。
[6] 表面抵抗値が 1 X 1013ΩΖ口以下である請求項 5に記載の硬化膜。
[7] 請求項 1〜4のいずれか一項に記載の液状硬化性組成物に放射線を照射して、該 組成物を硬化せしめる工程を有する硬化膜の製造方法。
[8] 少なくとも、基材と、
請求項 1〜4いずれか 1項に記載の液状硬化性組成物を硬化させてなる硬化膜層 と、
を有する積層体。
[9] 帯電防止機能を有する光学用部品である請求項 8に記載の積層体。
[10] 反射防止膜である請求項 9に記載の積層体。
[11] 表面抵抗値が I X 1013 Ω Ζ口以下である請求項 8〜: LOのいずれか 1項に記載の 積層体。
[12] 前記積層体が、基材上に、少なくとも帯電防止層及び低屈折率層が、基材に近い 側からこの順に積層されている反射防止膜であって、
前記硬化膜層が、帯電防止層である請求項 10又は 11に記載の積層体。
[13] 前記帯電防止層の屈折率が、前記低屈折率層の屈折率より高い請求項 12に記載 の積層体。
[14] さらに、基材上に、ハードコート層が形成されている請求項 8〜13のいずれ力 1項 に記載の積層体。
[15] 前記低屈折率層が、
下記成分 (G)及び (H) :
(G) l個のイソシァネート基と少なくとも 1個のエチレン性不飽和基とを含有するィ匕 合物、並びに、
水酸基含有含フッ素重合体、
を反応させて得られるエチレン性不飽和基含有含フッ素重合体、
(H)シリカを主成分とする粒子、
を含む硬化性榭脂組成物の硬化物である請求項 12〜 14のいずれか 1項に記載の 積層体。
[16] 前記水酸基含有含フッ素重合体が、下記構造単位 (a)〜 (c)の合計を 100モル% としたときに、(&) 20〜70モル%、 (1)) 10〜70モル%及び(。)5〜70モル%を含ん でなり、かつ、
ゲルパーミエーシヨンクロマトグラフィーで測定したポリスチレン換算数平均分子量 が 5, 000〜500, 000である請求項 15に記載の積層体。
(a)下記式(11)で表される構造単位
(b)下記式( 12)で表される構造単位
(c)下記式(13)で表される構造単位
[化 20]
R 11
•C c-
(1 1 )
[式中、 R11はフッ素原子、フルォロアルキル基又は— OR"で表される基 (R はァ ルキル基又はフルォロアルキル基を示す)を示す]
[化 21]
H R13
-C—— C- (12)
H R 14
[式中、 R"は水素原子又はメチル基を、 R14はアルキル基、 -(CH )—OR15若しく
2 c
は OCOR15で表される基 (R15はアルキル基又はグリシジル基を、 cは 0又は 1の数 を示す)、カルボキシル基又はアルコキシカルボ-ル基を示す]
[化 22]
[式中、 R16は水素原子又はメチル基を、 R17は水素原子又はヒドロキシアルキル基 を、 Vは 0又は 1の数を示す]
前記水酸基含有含フッ素重合体が、上記構成単位 (a)〜 (c)の合計 100モル部に 対して、さらに、ァゾ基含有ポリシロキサンィ匕合物に由来する下記構造単位 (d) 0. 1 〜: L0モル部を含む請求項 15又は 16に記載の積層体。
(d)下記一般式(14)で表される構造単位
[化 23]
R18
Si― O {14)
19
[式中、 R18及び R19は、同一でも異なっていてもよぐ水素原子、アルキル基、ハロ ゲンィヒアルキル基又はァリール基を示す]
[18] 前記成分 (H)が、表面にエチレン性不飽和基を有するシリカ粒子である請求項 15
〜 17のいずれか 1項に記載の積層体。
[19] 前記成分 (H)が、
下記式(22)で表されるケィ素化合物及び下記式(23)で表されるケィ素化合物の 加水分解物及び Z又は加水分解縮合物からなり、平均粒径が 5〜50nmである多孔 質シリカ粒子 (HI)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭 素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。尚、式(22)の X及 び式(23)の Xは、同一であっても異なっていてもよい。 )
である請求項 15〜18のいずれか 1項に記載の積層体。
[20] 前記成分 (H)が、
下記式(22)で表されるケィ素化合物、下記式(23)で表されるケィ素化合物及び 下記式(24)で表されるケィ素化合物の加水分解物及び Z又は加水分解縮合物か らなり、平均粒径が 5〜50nmである多孔質シリカ粒子 (H2)
SiX · · · (22)
4
R29 SiX · · · (23)
j 4-j
R30 SiX · · · (24)
k 4-k
(Xはそれぞれ独立に炭素数 1〜4のアルコキシ基、ハロゲノ基、イソシァネート基、炭
素数 2〜4のアルキルォキシカルボ-ル基又は炭素数 1〜4のアルキルアミノ基を示 す。 R29は炭素数 2〜8のァルケ-ル基、炭素数 4〜8のアタリロキシアルキル基又は 炭素数 5〜8のメタクリロキシアルキル基、 jは 1〜3の整数を示す。 R3は炭素数 1〜1 2のフッ素置換アルキル基、 kは 1〜3の整数を示す。尚、式(22)の X、式(23)の X 及び式(24)の Xは、同一であっても異なっていてもよい。 )
である請求項 15〜18のいずれか 1項に記載の積層体。
[21] 前記多孔質シリカ粒子 (HI)が、前記式 (22)で表されるケィ素化合物及び前記式
(23)で表されるケィ素化合物の合計を 100モル%としたとき、前記加水分解物及び Z又は加水分解縮合物が、式(22)で表されるケィ素化合物 67〜99モル%及び式( 23)で表されるケィ素化合物 33〜1モル%の反応物力もなる、請求項 19に記載の積 層体。
[22] 前記多孔質シリカ粒子 (H2)力 前記式(22)で表されるケィ素化合物、前記式(23 )で表されるケィ素化合物及び前記式 (24)で表されるケィ素化合物の合計を 100モ ル%としたとき、前記加水分解物及び Z又は加水分解縮合物が、式(22)で表される ケィ素化合物 60〜98モル%、式(23)で表されるケィ素化合物 1〜30モル%及び式
(24)で表されるケィ素化合物 1〜20モル%の反応物力もなる、請求項 20に記載の 積層体。
[23] 基材上に、請求項 1〜4 ヽずれか 1項に記載の液状硬化性組成物を塗布し、放射 線を照射することによって、該組成物を硬化して得られる硬化膜層を形成する工程を 含む積層体の製造方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005172278A JP2006348069A (ja) | 2005-06-13 | 2005-06-13 | 液状硬化性組成物及びその硬化膜 |
JP2005-172279 | 2005-06-13 | ||
JP2005172279 | 2005-06-13 | ||
JP2005-172278 | 2005-06-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006134834A1 true WO2006134834A1 (ja) | 2006-12-21 |
Family
ID=37532197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/311599 WO2006134834A1 (ja) | 2005-06-13 | 2006-06-09 | 液状硬化性組成物、硬化膜及び帯電防止用積層体 |
Country Status (2)
Country | Link |
---|---|
TW (1) | TW200712113A (ja) |
WO (1) | WO2006134834A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104945977A (zh) * | 2015-06-18 | 2015-09-30 | 成都纳硕科技有限公司 | 一种外墙用水性紫外光低温固化涂料 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115073129A (zh) * | 2022-06-17 | 2022-09-20 | 广东盈浩工艺制品有限公司 | 一种防静电陶瓷及其制备方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09108621A (ja) * | 1995-10-17 | 1997-04-28 | Nippon Kayaku Co Ltd | 紫外線硬化型熱線遮断性樹脂組成物及びそれをコーティングしたフィルム |
JP2003183322A (ja) * | 2001-12-21 | 2003-07-03 | Jsr Corp | エチレン性不飽和基含有含フッ素重合体、並びにそれを用いた硬化性樹脂組成物及び反射防止膜 |
JP2004176006A (ja) * | 2002-11-29 | 2004-06-24 | Sumitomo Seika Chem Co Ltd | 光硬化性組成物 |
JP2004307735A (ja) * | 2003-04-10 | 2004-11-04 | Jsr Corp | 液状硬化性組成物、硬化膜及び帯電防止用積層体 |
-
2006
- 2006-06-09 WO PCT/JP2006/311599 patent/WO2006134834A1/ja active Application Filing
- 2006-06-13 TW TW095120979A patent/TW200712113A/zh unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09108621A (ja) * | 1995-10-17 | 1997-04-28 | Nippon Kayaku Co Ltd | 紫外線硬化型熱線遮断性樹脂組成物及びそれをコーティングしたフィルム |
JP2003183322A (ja) * | 2001-12-21 | 2003-07-03 | Jsr Corp | エチレン性不飽和基含有含フッ素重合体、並びにそれを用いた硬化性樹脂組成物及び反射防止膜 |
JP2004176006A (ja) * | 2002-11-29 | 2004-06-24 | Sumitomo Seika Chem Co Ltd | 光硬化性組成物 |
JP2004307735A (ja) * | 2003-04-10 | 2004-11-04 | Jsr Corp | 液状硬化性組成物、硬化膜及び帯電防止用積層体 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104945977A (zh) * | 2015-06-18 | 2015-09-30 | 成都纳硕科技有限公司 | 一种外墙用水性紫外光低温固化涂料 |
Also Published As
Publication number | Publication date |
---|---|
TW200712113A (en) | 2007-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5092744B2 (ja) | 反射防止積層体 | |
KR100917528B1 (ko) | 경화성 액체 조성물, 경화 필름 및 대전방지성 라미네이트 | |
JP5477299B2 (ja) | マレイミド基で表面修飾した無機酸化物微粒子を含む硬化型組成物 | |
CN109312038B (zh) | 活化能射线固化性树脂组合物、树脂成型品以及树脂成型品的制造方法 | |
KR101268700B1 (ko) | 액상 경화성 조성물, 경화막 및 대전 방지용 적층체 | |
JP2005089536A (ja) | 硬化性樹脂組成物及び反射防止膜 | |
WO2006109496A1 (ja) | 放射線硬化性樹脂組成物及び反射防止膜 | |
JP4144477B2 (ja) | 液状硬化性組成物、硬化膜及び帯電防止用積層体 | |
JP4899545B2 (ja) | 硬化性樹脂組成物及びそれからなる硬化膜 | |
JP4872142B2 (ja) | 帯電防止用硬化性組成物、硬化膜及び帯電防止性反射防止積層体 | |
JP4321319B2 (ja) | 液状硬化性組成物、硬化膜及び帯電防止用積層体 | |
JP2007229999A (ja) | 反射防止積層体 | |
JP2006306008A (ja) | 帯電防止用積層体 | |
JP2007022071A (ja) | 帯電防止用積層体 | |
WO2006134834A1 (ja) | 液状硬化性組成物、硬化膜及び帯電防止用積層体 | |
JPWO2006070707A1 (ja) | 反射防止膜 | |
JP2008137190A (ja) | 反射防止積層体 | |
WO2007004447A1 (ja) | 帯電防止用硬化性組成物、その硬化膜及び帯電防止用積層体 | |
WO2006070710A1 (ja) | 反射防止膜 | |
JP5339320B2 (ja) | 硬化性組成物及び反射防止膜 | |
KR101220567B1 (ko) | 경화성 수지 조성물 및 이를 포함하는 경화막 및 적층체 | |
WO2006051835A1 (ja) | 硬化性樹脂組成物、それからなる硬化膜及び積層体 | |
JP4618018B2 (ja) | 帯電防止用積層体 | |
WO2007000936A1 (ja) | 液状硬化性組成物、硬化膜及び帯電防止用積層体 | |
JP2006348069A (ja) | 液状硬化性組成物及びその硬化膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06757222 Country of ref document: EP Kind code of ref document: A1 |