WO2006118168A1 - 光学フィルム、偏光板及び液晶表示装置 - Google Patents
光学フィルム、偏光板及び液晶表示装置 Download PDFInfo
- Publication number
- WO2006118168A1 WO2006118168A1 PCT/JP2006/308800 JP2006308800W WO2006118168A1 WO 2006118168 A1 WO2006118168 A1 WO 2006118168A1 JP 2006308800 W JP2006308800 W JP 2006308800W WO 2006118168 A1 WO2006118168 A1 WO 2006118168A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- film
- acid
- fine particles
- acicular
- polarizing plate
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B5/00—Optical elements other than lenses
- G02B5/30—Polarising elements
- G02B5/3025—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
- G02B5/3033—Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C41/00—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
- B29C41/24—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
- B29C41/28—Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on an endless belt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C55/00—Shaping by stretching, e.g. drawing through a die; Apparatus therefor
- B29C55/02—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
- B29C55/04—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
- B29C55/06—Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique parallel with the direction of feed
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133528—Polarisers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2001/00—Use of cellulose, modified cellulose or cellulose derivatives, e.g. viscose, as moulding material
- B29K2001/08—Cellulose derivatives
- B29K2001/12—Cellulose acetate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2995/00—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
- B29K2995/0018—Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular optical properties, e.g. fluorescent or phosphorescent
- B29K2995/0034—Polarising
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
- G02F1/134309—Electrodes characterised by their geometrical arrangement
- G02F1/134363—Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/50—Protective arrangements
Definitions
- the present invention relates to an optical film having birefringence that can be used as a retardation film, and a polarizing plate and a liquid crystal display device using the optical film.
- WO2002Z059192 proposes to contain 1% by volume to 99% by volume of a metal oxide having an average particle size of 1 nm to 400 nm in order to obtain a cell succinate film having a large surface hardness.
- the fine particles added here were spherical or amorphous.
- a needle-like particle produces a phase difference and is effective immediately.
- the film has poor cutting properties (slitting properties). Breaking sometimes occurred.
- the particle size is 500 nm or less, the interaction between the resin and the surface of the particle increases, and the film physical properties change depending on the addition of the particle.
- the cutting performance tends to deteriorate soon.
- acicular particles major diameter: 500 ⁇ ! ⁇ 100nm, acicular ratio of 2 or more
- the cutting ability was easily deteriorated due to the influence of the orientation of the particles, the direction of cutting, and the orientation of the resin itself.
- Patent document 1 International publication 01Z025364 pamphlet
- Patent Document 2 JP 2004-109355 A
- an object of the present invention is to provide an optical film with reduced haze and retardation variation and stability of phase difference with respect to visibility, viewing angle, and environmental change in an optical film with controlled birefringence.
- An object is to provide an excellent polarizing plate and a liquid crystal display device.
- the purpose of the present invention is to provide a liquid crystal display device that improves the problem of breaking easily during slitting, improves the dispersion of the phase difference, and improves the luminance unevenness and light leakage.
- One aspect of the present invention for achieving the above object of the present invention is a polymer obtained by polymerizing a polyester, a polyhydric alcohol ester, a polycarboxylic acid ester and an ethylenically unsaturated monomer.
- An optical film It is in.
- one of the embodiments of the present invention for achieving the above object of the present invention is a needle having an average particle diameter of 10 to 500 nm and an acicular ratio defined below of 2 to LOO.
- the absolute value of the absolute value of the angle between each needle-like fine particle and the needle-like fine particle is within 30 °, and the average inter-particle distance D of the needle-like fine particle in the film and the standard deviation Ds of the inter-particle distance DsZD An optical finem characterized in that is less than or equal to 1.5.
- Needle ratio absolute maximum length Z diagonal width.
- FIG. 1 is a diagram showing the azimuth angle of acicular fine particles.
- FIG. 2 is a diagram showing an angle formed by each acicular fine particle with respect to the direction of the average azimuth angle.
- FIG. 3 is a diagram showing the distance between the center of gravity of each acicular particle.
- FIG. 4 is a diagram schematically showing a dope preparation step, a casting step and a drying step of the solution casting film forming method according to the present invention.
- FIG. 5 is a diagram schematically showing an apparatus for measuring absolute filtration accuracy.
- FIG. 6 (a) and (b) are diagrams showing examples of dies in which a plurality of nozzles are arranged in the width direction.
- FIG. 7] (a) and (b) are diagrams showing an example of a die that is arranged in a direction that is not parallel to the direction of movement of the casting support of the liquid supply unit and the liquid discharge unit in the die. is there.
- FIG. 8 (a) and (b) are views showing an example of a die in which grooves are provided in a direction not parallel to the moving direction of the casting support inside the die.
- FIG. 9 is a diagram showing an example of a method using a slanted gravure roll.
- FIG. 10 (a), (b), (c) and (d) are diagrams showing an example of a method using an alignment belt.
- FIG. 11 An example of a die having a long slit length for generating laminar flow.
- FIG. 12 is a diagram showing an example of a method of performing substantial stretching while casting a dope by conveying a belt.
- FIG. 13 is a schematic view showing an example of a tenter process used in the present invention.
- FIG. 14 is a diagram for explaining a stretching angle in a stretching process.
- FIG. 15 is a schematic view showing a configuration of an IPS liquid crystal display device preferable for the present invention.
- FIG. 16 is a schematic diagram showing the direction of the absorption axis Z transmission axis of the optical film, polarizer, and liquid crystal cell of the IPS liquid crystal display device preferable for the present invention.
- Nz , nx (a) — nz (a)) Z, nx (a-ny (a))
- the stretching direction of the resin is 3 ⁇ 4y
- the refractive index in the stretching direction is ny (a)
- the refractive index in the direction perpendicular to y in the film plane is nx (a)
- the refractive index in the thickness direction of the film is nz (a) and d represent the film thickness ( nm ), respectively.
- Needle ratio absolute maximum length Z diagonal width
- the diagonal width represents the shortest distance between two straight lines when the image of the particles projected by two straight lines parallel to the absolute maximum length is sandwiched, and the absolute maximum length is the long side of the acicular particles. Represents the maximum length in the direction.
- the needle-shaped fine particles are characterized in that the surface thereof has been subjected to a hydrophobic treatment ( 1) to (3) V, the optical film according to any one of the deviations.
- the acicular fine particles have an average azimuth angle direction that is perpendicular or parallel to the film forming direction of the film, and an angle formed between the average azimuth angle direction and each acicular fine particle.
- the absolute value H of the absolute value is within 30 °
- the DsZD obtained from the average inter-particle distance D of the acicular fine particles in the film and the standard deviation Ds of the distance between the acicular fine particles is 1.5 or less.
- a polarizing plate comprising the optical film according to any one of (1) to (6) on at least one surface.
- a horizontal electrolysis switching mode type liquid crystal display device wherein the polarizing plate described in (7) is at least one polarizing plate sandwiching a liquid crystal cell in the transverse electrolysis switching mode.
- the polarizing electrode protective film other than one of the polarizing plate protective films disposed on the liquid crystal cell side of the polarizing plate has the following optical value, wherein the transverse electrolysis switching according to (9) Mode type liquid crystal display device.
- Ro (b) and Rth (b) are defined below.
- the refractive index in the slow axis direction in the plane of optical film B is nx (b)
- the refractive index in the direction perpendicular to the slow axis in the plane is ny (b)
- the refractive index in the thickness direction of the film is Rate nz (b), d is fill Represents the thickness ( nm ) of the film.
- the average value H of the absolute value of the angle between the direction of the needle and each acicular fine particle is within 30 °, and from the average inter-particle distance D of the acicular fine particle in the film and the standard deviation Ds of the inter-particle distance.
- An optical film characterized in that the required DsZD is 1.5 or less.
- Needle ratio absolute maximum length Z diagonal width
- the diagonal width is the shortest distance between two straight lines when the image of the particle projected by two straight lines parallel to the absolute maximum length is sandwiched.
- the retardation value Ro represented by the following formula (i) is 105 nm ⁇ Ro ⁇ 350 nm, and Nz represented by the following formula (ii) is 0.
- Nz i, nx (a — nz (a)) / (nx (a) — ny (a)
- the refractive index in the slow axis direction in the film is nx (a)
- the refractive index in the direction perpendicular to the slow axis is ny (a)
- the refractive index in the film thickness direction is nz (a)
- d Represents the film thickness (nm).
- a polarizing plate having the optical film according to (11) or (12) on at least one surface.
- a liquid crystal display device comprising the polarizing plate according to (13) on at least one surface of a liquid crystal cell.
- One polarizing plate sandwiching a liquid crystal cell in a transverse electric field switching mode is the polarizing plate described in (15) above, and a polarizing plate protective film disposed on the liquid crystal display cell side of the other polarizing plate
- Optical film—force (defined as B) Retardation values represented by the following formulas (iv) and (V) Ro (b) and Rth (b) are one 15 nm ⁇ Ro (b) ⁇ 15 nm and one 15 nm ⁇ Rth (b)
- Equation (v) Rth (b) ⁇ (nx (b) + ny (b)) / 2-nz (b) ⁇ X d (where the refractive index in the slow axis direction in the plane of optical film B is nx (b), the refractive index in the direction perpendicular to the slow axis is ny (b), the refractive index in the thickness direction of the film is nz (b), and d is the thickness (nm) of the film.
- optical film with controlled birefringence in an optical film with controlled birefringence, optical film with reduced haze and retardation variation, and stability of retardation with respect to visibility, viewing angle, and environmental change are achieved.
- An excellent polarizing plate and a liquid crystal display device can be provided.
- the optical film of the present invention is preferably a needle having an average particle diameter (major axis) of 10 to 500 nm and an acicular ratio (also referred to as aspect ratio) defined by the formula (1) of 2 to: L00
- the average absolute value H of the angle between the direction of the uniform azimuth and each acicular fine particle is within 30 °, and the average inter-particle distance D and inter-particle distance of the acicular fine particle in the film
- the cellulose ester film is characterized in that DsZD obtained from the quasi-deviation is 1.5 or less.
- the absolute maximum length means the longest diameter of the acicular fine particles observed by an electron micrograph and is also called the long diameter.
- the diagonal width is the distance between the two straight lines when the projected image of the particle is sandwiched by two straight lines parallel to the major axis.
- Needle ratio absolute maximum length Z diagonal width
- the diagonal width represents the shortest distance between two straight lines when the image of a particle projected by two straight lines parallel to the absolute maximum length is sandwiched, and the absolute maximum length is a needle shape. It represents the maximum length in the long side direction of fine particles.
- a means for orienting the acicular fine particles for example, a method of stretching at a high magnification of 2 times or more is conceivable, but in order to suppress an increase in haze, polyester, polyhydric alcohol ester, polyhydric carboxylic acid are preferably used.
- the cellulose ester film containing at least one additive selected from a polymer obtained by polymerizing an acid ester and an ethylenically unsaturated monomer makes the orientation of the acicular birefringent fine particles to be thin.
- a liquid crystal display device using a polarizing plate using this is a horizontal electric field switching mode liquid crystal display device with excellent contrast and high visibility without any spots with high contrast even on a large screen.
- a liquid crystal display device using a polarizing plate using this is a horizontal electric field switching mode liquid crystal display device with excellent contrast and high visibility without any spots with high contrast even on a large screen.
- high-contrast display is possible on every corner of a large screen, and flatness deterioration due to environmental fluctuations of cellulose ester film stretched at a high draw ratio of 2 times or more is prevented by the heat of the backlight and environmental fluctuations.
- a stable phase difference could be obtained.
- the average particle size is 10-500nm, And it is characterized by containing the acicular fine particle whose acicular ratio defined by the said Formula (1) is 2-: LOO, Preferably it contains in the range of 1-30 mass%.
- the content of the acicular fine particles is appropriately adjusted according to the target retardation, but if the content is less than 1%, sufficient effects cannot be obtained, and if it exceeds 30% by mass, the film becomes brittle. It is not preferable.
- the acicular fine particles according to the present invention are not particularly limited as long as they are acicular, and are preferably acicular fine particles having birefringence!
- birefringent fine particles birefringent fine particles described in WO01Z0253643 or JP-A-2004-109355 can be used.
- various carbonates such as calcium carbonate, strontium carbonate, magnesium carbonate, manganese carbonate, cobalt carbonate, zinc carbonate, barium carbonate, etc.
- various oxides typified by titanium oxide, MgSO-5Mg (OH) ⁇ 3
- Birefringent whisker such as ⁇ 0, 6CaO-6SiO ⁇ ⁇ 0, 9A1 ⁇ ⁇ 2 ⁇
- tetragonal, hexagonal and rhombohedral crystals are preferably uniaxial birefringent crystals, orthorhombic, monoclinic and triclinic crystals. These may be single crystals or polycrystals.
- polystyrene or acrylic resin rod-like or short fiber-like particles are preferably used.
- it may be a short fiber-like particle produced by finely cutting ultrafine fibers with polystyrene or acrylic resin. It is preferable that these fibers are stretched during the manufacturing process because they easily develop birefringence. In addition, it is preferable that the rosin contained in these particles is cross-linked.
- the present invention is not limited to these, and various types can be used as long as the above-described requirements such as size, shape, and needle ratio are satisfied.
- birefringent fine particles preferably have an average major axis (absolute maximum length) of 10 to 500 nm, and the acicular ratio defined by the above formula (1) is preferably 2 or more. 2 to: L00 is preferred and 3 to 30 is more preferred.
- the acicular ratio is obtained from the absolute maximum length and the diagonal width of the fine particles according to the above equation (1). This can be determined by the image data force obtained by electron microscopic observation of fine particles or fine particles contained in the film.
- the birefringence of the birefringent fine particles is defined as follows.
- the refractive index for light polarized in the major axis direction of the birefringent fine particle is npr, and the average refractive index for light polarized in the direction perpendicular to the major axis direction is nvt.
- the birefringence ⁇ of the birefringent fine particles is defined by the following formula (2).
- the absolute value of the birefringence of the birefringent fine particles used in the present invention is not particularly limited. A force of 0.01-0.3 is preferred. More preferably.
- Birefringent crystals having positive birefringence include MgSO ⁇ 5Mg (OH) ⁇ 3H 0, 6C
- birefringent crystal exhibiting properties examples include calcium carbonate and strontium carbonate.
- acicular crystals it means a material whose refractive index in the long direction of the crystal is smaller than the refractive index in the perpendicular direction.
- the carbonate fine particles can be produced by a uniform precipitation method or a carbon dioxide compounding method.
- it can be produced by the methods described in JP-A-3-88714, JP-B-55-51852, JP-A-59-223225, and the like.
- the strontium carbonate crystal can be obtained by bringing strontium ions dissolved in water into contact with carbonate ions.
- Carbonate ions can be obtained by adding carbon dioxide gas to a solution containing a strontium compound by a method such as publishing carbon dioxide, or by adding a substance that generates carbonate ions to react or decompose.
- strontium carbonate crystal fine particles can be produced by a method described in JP-A-2004-35347, and strontium carbonate fine particles obtained by this method can be preferably used as birefringent fine particles.
- the substance that generates carbon dioxide include urea
- strontium carbonate fine particles can be obtained by reacting carbon dioxide ions and strontium ions generated together with urea hydrolase.
- the temperature As much as possible. It is preferable to react. Cooling below the freezing point is preferable because fine crystal particles can be obtained.
- an organic solvent such as ethylene glycol as a freezing point depressing substance. It is preferable to add so that the freezing point is below 5 ° C below freezing point. This makes it possible to obtain fine particles of strontium carbonate having an average particle size in the major axis direction of 500 nm or less.
- Strontium carbonate is a biaxial birefringent crystal.
- the strontium carbonate crystal particles are in a needle-like (rod-like) form, they can be statistically oriented in a predetermined direction by applying a stress in a state of being dispersed in a viscous medium.
- the needle-shaped fine particles according to the present invention preferably have a hydrophobized surface.
- the surface hydrophobizing treatment method applicable to the present invention is not particularly limited, and it is preferable that the surface is treated with, for example, a silane coupling agent, a titanate coupling agent, stearic acid or the like.
- Hydrophobization treatment of the surface of the acicular fine particles according to the present invention is performed by spraying a hydrophobizing agent solution dissolved with alcohol or the like onto a dispersion of acicular fine particles by stirring or the like, or vaporizing hydrophobicity. It can be performed by a conventionally known method such as a dry process in which a hydrophobizing agent is contacted and adhered, or a wet process in which needle-shaped fine particles are dispersed in a solution and a hydrophobizing agent is dropped and adhered in the solution. .
- hydrophobizing agent known compounds can be used, and specific examples are listed below. These compounds may be used in combination.
- titanate coupling agents include tetraptino retitanate, tetraoctino retitanate, isopropyl triisostearoyl titanate, and isopropyl tridecyl benzene. N-sulfonyl titanate and bis (dioctylpyrophosphate) oxyacetate titanate.
- silane coupling agent examples include ⁇ - (2aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl) aminopropylmethyldimethoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
- silicone oil examples include dimethyl silicone oil, methylphenol silicone oil, amino-modified silicone oil, and the like.
- hydrophobizing agents are preferably applied in an amount of 1 to 40% by mass with respect to the acicular fine particles for coating S, more preferably 3 to 30% by mass.
- the following compounds can also be used as the hydrophobizing agent.
- Examples of compounds that can be used in the present invention include fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, and succinic acids.
- saturated fatty acids such as caproic acid, strong prillic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, behenic acid; sorbic acid, elaidic acid, oleic acid, linoleic acid, linolenic acid Unsaturated fatty acids such as carboxylic acids; Alicyclic forces such as naphthenic acid having a cyclopentane ring or cyclohexane ring; Rubonic acids; Aromatic carboxylic acids such as naphthenic carboxylic acids such as naphthoic acid and naphthalic acid; Examples include succinic acid such as acid, pimaric acid, levopimaric acid, neoabietic acid, parastrinic acid, dehydroabietic acid, isopimaric
- metal salts of fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, and succinic acids !, and amine salts include, for example, potassium laurate, potassium myristate, palmitic acid , Saturated fatty acid salts such as barium stearate, calcium, aluminum, zinc, magnesium, etc., unsaturated fatty acid salts such as potassium oleate, sodium, potassium diethanolamine salt, lead naphthenate, lead cyclohexylbutyrate, etc.
- examples include alicyclic carboxylates and aromatic carboxylates such as sodium benzoate and sodium salicylate.
- the above-described fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, and succinic acid may be added to lithium, sodium, potassium, rubidium, beryllium, Magnesium, Calcium, Strontium, Norium, Zinc, Aluminum, Lead, Cobalt, A compound having an amino group is mixed and reacted to form a fatty acid, alicyclic carboxylic acid, aromatic carboxylic acid, succinic acid metal salt or amine A salt may be appropriately prepared.
- calcium stearate is preferably used in the surface treatment of the acicular fine particles according to the present invention.
- esters of fatty acids, alicyclic carboxylic acids, aromatic carboxylic acids, and succinic acids include, for example, strength ethyl propyl ester, butyl, diisopropyl adipate, ethyl caprylate, allylic caprylate, ethyl, butyl.
- Examples of the aliphatic, alicyclic, and aromatic sulfonic acids include sulfonic acids such as sulfosuccinic acid, dioctylsulfonic acid, and tetradecenesulfonic acid, lauryl, myristyl, palmitic acid, stearin, olein, cetyl, and the like.
- Noble phenyl ether nitric acid linear (C10, C12, C14) aromatic sulfonic acid such as alkylbenzene sulfonic acid, branched alkylbenzene sulfonic acid, naphthalene sulfonic acid, dodecylbenzene sulfonic acid, etc.
- aromatic sulfonic acid such as alkylbenzene sulfonic acid, branched alkylbenzene sulfonic acid, naphthalene sulfonic acid, dodecylbenzene sulfonic acid, etc.
- Use of Le benzenesulfonic acid for surface treatment
- Examples of the aliphatic, alicyclic, and aromatic sulfonic acid metal salts and ammine salts include the above-mentioned aliphatic, alicyclic, and aromatic sulfonic acid sodium salts and ammine salts.
- an aliphatic, alicyclic or aromatic sulfonic acid is added to lithium, sodium, potassium, rubidium, beryllium, magnesium, calcium, strontium, barium, zinc, aluminum
- Aliphatic, alicyclic, and aromatic sulfonic acid metal salts and amine salts may be suitably formed by mixing and reacting compounds having lead, cobalt, and amino groups.
- use of sodium dodecyl benzenesulfonate is preferred.
- the compounding amount of the above compound is preferably 0.1 to 10 parts by mass with respect to 100 parts by mass of acicular fine particles, and particularly preferably 0.5 to 5 parts by mass. .
- a conventional treatment method such as a dry method using a Henschel mixer or the like, or a wet solvent method in which the solvent is removed after treatment in a solvent
- Solvents used in the solvent method are not particularly limited, but aromatics such as toluene and xylene, aliphatics such as hexane and heptane, alcohols such as ethanol, isopropanol, and butanol, ethers such as cetyl sorb butyl and butyl cecum solv , Esters such as ethyl acetate and butyl acetate, ketones such as acetone and methyl ethyl ketone, methylene chloride These can be used alone or in combination as a solvent.
- the temperature of the reaction solution was lowered to 5 ° C and kept at 5 ° C by circulating an ethylene glycol antifreeze (Thomas Scientific Instruments Co., Ltd., Nibrine) in a water bath with a cooler. Subsequently, 1.50 g of digestive enzyme Urease was added to the reaction solution. After the digestive enzyme was added, crystals started to precipitate in the reaction solution and became cloudy. The reaction was continued for 12 hours while maintaining the temperature of the reaction solution at 5 ° C.
- ultrasonic waves were irradiated by a water bath with an ultrasonic irradiation function (manufactured by Honda Electronics Co., Ltd., ultrasonic cleaner W-113MK- ⁇ ).
- an ultrasonic irradiation function manufactured by Honda Electronics Co., Ltd., ultrasonic cleaner W-113MK- ⁇ .
- an ethylene glycol antifreeze (Thomas Science Co., Ltd.) sold in a water bath using a cooler (Tomas Scientific Instruments Co., Ltd., closed tank type handy cooler TRL—C13). Equipment Corporation, Nybrine) was circulated.
- a silane coupling solution was prepared separately from the suspension. Acetic acid was added to 40 g of water to a pH of about 5.3, and a silane coupling agent (3-dalicydoxypropyltrimethoxysilane) was further added and stirred for about 3 hours.
- the amount of the silane coupling agent was 30% by mass with respect to strontium carbonate.
- the prepared silane coupling solution was added to the suspension, and surface treatment was performed while stirring with a stirring motor for 24 hours.
- the suspension can be suction filtered through a 0.1 ⁇ m pore size filter paper, and the product can be washed by stirring in 500 ml of acetone for 24 hours and filtered again.
- the product was dried in a vacuum dryer. The obtained crystals were observed with an electron microscope to obtain strontium carbonate crystals having an average length of 200 nm or less.
- the acicular fine particles are dispersed in the fine particle dispersion together with an organic solvent and a resin for dispersing acicular fine particles described later.
- a cellulose ester film having a stable retardation can be obtained and can be preferably used as an optical compensation film.
- the acicular fine particles contained in the optical film of the present invention have an average azimuth angle that is orthogonal or parallel to the film forming direction of the film, and the direction of the average azimuth angle and each acicular fine particle.
- the average absolute value of the angle H is within 30 °, and is obtained from the average inter-particle distance D of the acicular fine particles in the film and the standard deviation Ds of the distance between the acicular fine particles.
- the DsZD is preferably 1.5 or less.
- the evaluation of the orientation state and the dispersion state of the acicular fine particles in the film can be obtained using image data obtained by observing the fine particles in the film with an electron microscope.
- the azimuth angle and the needle ratio are determined for each needle-like fine particle.
- the needle ratio can be obtained by the above equation (1).
- the absolute maximum length corresponds to the length (major axis) of the long axis of the acicular particles.
- Particles with an acicular ratio of less than 2 such as foreign matter or broken particles are noises, so the calculation power of the average direction angle and average interparticle distance is excluded, and each particle with an acicular ratio of 2 or more is obtained. I will.
- the azimuth angle as used in the present invention refers to an angle formed between the direction of the absolute maximum length of the acicular particles and the reference axis.
- the reference axis can be set to an arbitrarily set force, for example, the width direction of the film. Obtain the azimuth angle of each acicular fine particle, and the average value was taken as the average azimuth angle
- the direction of the obtained average azimuth angle is set as a new reference axis, and for each needle-like particle, the angle difference between the azimuth angle of the particle and the average azimuth angle direction is obtained, and the absolute value of the angle difference is determined.
- the average of the values was obtained. This is the [average value H of the absolute value of the angle between the direction of the average azimuth and the azimuth of each acicular fine particle]. H is within 30 degrees.
- the produced film was photographed with a transmission electron microscope at a magnification of 20,000 times, and the image was read in 300 dpi monochrome 256 gradation using the Canon CanoScan FB 636U scanner. .
- the loaded image is the image processing software Win ROOF ver3.60 (Mitani Corporation) installed on Endeavor Pro720 L (CPU; Athlon-1 GHz, memory; 512MB), a personal computer made by Epson Direct ).
- the average azimuth angle is within ⁇ 5 ° with respect to the film forming direction, it is said to be parallel to the longitudinal direction. Similarly, when it is within ⁇ 5 ° with respect to the direction perpendicular to the film forming direction (the width direction), if it is perpendicular to the film forming direction, Guess.
- the average azimuth angle is in the direction of ⁇ 3 ° with respect to the film forming direction or the width direction of the film, more preferably in the direction of ⁇ 1 °, particularly preferably. It is in the direction of ⁇ 0.5 °.
- the average value H of the absolute value of the angle formed by the direction of the average azimuth angle and the azimuth angle of each acicular fine particle is within 30 °.
- FIG. 2 illustrates H.
- bl, b2, b3 ' ⁇ ⁇ ' bn are the angles formed by the average azimuth of the direction of the absolute maximum length (major axis direction) of each needle-shaped fine particle. The average of absolute values is obtained.
- measurement is performed for 1000 or more particles.
- H is within 30 °, more preferably 2 to 26 °, more preferably 2 to 19 °, and most preferably 2 to 11 °.
- the coordinates of the center of gravity of each acicular particle are obtained from the image data.
- the direction of the average azimuth obtained by the above-described method is set as the X-axis direction of the coordinates.
- the X-axis coordinate data of the center of gravity of each acicular particle are arranged in order from the smallest, and the difference between adjacent data is obtained. This is the interparticle distance in the X-axis direction.
- the Y-axis coordinate data of the center of gravity of each acicular particle are arranged in order from the smallest, and the difference between adjacent data is obtained. This is the distance between particles in the Y-axis direction.
- data of 1 particle is obtained.
- the data of the distance between the particles in the X axis direction and the distance between the particles in the axial direction are collected to obtain an average value, and the average interparticle distance D is set as the standard deviation Ds, and the DsZD value is obtained.
- This value represents the dispersion state of the acicular particles in the film. The smaller the standard deviation is, the more the distance between particles is kept constant and the particles are uniformly dispersed.
- this value is 1.5 or less.
- it is 0.7-1.5, More preferably, it is 0.7-1.3, Most preferably, it is 1.0 or less.
- the average of the center-of-gravity distance of each particle is calculated by calculating the distance between the center of gravity of each acicular particle on the XY plane, as shown in Fig. 3. Calculate using everything.
- the force described using the six particle models Distance between particles projected on the X axis, D1 to D5, each adjacent particle projected on the Y axis
- the average value D ave (Dl to D10) of the distances D6 to D10 is defined as the average interparticle distance. Actually, this is done for 1000 or more particles, and the average value D is calculated. In addition, the standard deviation (Ds) is obtained for the distance between the particle centroids.
- a film is stretched to TD or MD during film production (casting), or a dope flow is created during casting, and this is followed by this flow. It is possible to take a method of orienting the particles. Further, the orientation of particles can be promoted by an electric field or a magnetic field, and according to these methods, cutting properties (slitting properties) can be improved even when needle-like particles are added.
- a method for producing a cellulose ester film containing these acicular fine particles By preparing in advance a fine particle dispersion containing at least acicular and birefringent fine particles and a fine particle-dispersing resin, and then mixing the fine particle dispersion and cellulose ester with a solvent. Using the prepared dope, it can be obtained by a method for producing a cellulose ester film by casting a solution.
- the fine particles of needle-like fine particles having birefringence have a weight average molecular weight of 3,000 to 200,000. More preferably, the weight average molecular weight is 3,000 to 90,000. Yes.
- the resin for dispersing needle-shaped fine particles having birefringence is a homopolymer or copolymer having an ethylenically unsaturated monomer unit, an acrylic acid or methacrylic acid ester homopolymer or copolymer, It is preferably at least one selected from methacrylic acid methyl ester homopolymer or copolymer, cellulose ester, cellulose ether polyurethane resin, polycarbonate resin, polyester resin, epoxy resin and ketone resin.
- the cellulose ester preferably has a total acyl substitution degree of 2.0 to 2.8.
- the concentration of the dispersing resin is preferably 0.1 to 10% by mass.
- the concentration of fine particles is preferably 0.2 to L0% by mass.
- the viscosity of the fine particle dispersion in the range of 10 to 500 mPa's.
- the present inventors prefer the followings for the fats, and also the weight average molecular weight.
- the dispersion state of the fine particle dispersion can be remarkably improved by using a wide range of coagulants. It has been found that it is possible to form a dope that is more soluble and less prone to lumping.
- weight average molecular weight more preferably 5,000-50,000, and even more Those of 10,000-30,000 are preferred.
- the resin there is no particular limitation on the resin, and conventionally known resins can be widely used, but the following resins can be used more suitably.
- Examples of the resin preferably used in the fine particle dispersion according to the present invention include a homopolymer or a copolymer having an ethylenically unsaturated monomer unit, and more preferably.
- a homopolymer or copolymer of acrylic acid or methacrylic acid ester such as an alkyl ester copolymer.
- acrylic acid or methacrylic acid ester is excellent in transparency and compatibility, and is an acrylic acid ester or methacrylic acid ester unit.
- Homopolymers or copolymers having, in particular, acrylic acid or methacrylic Homopolymers or copolymers having acid methyl units are preferred.
- polymethyl methacrylate is preferable.
- An alicyclic alkyl ester of acrylic acid or methacrylic acid such as polyacrylic acid or polymethacrylic acid cyclohexane is preferred because it has advantages such as high heat resistance, low hygroscopicity and low birefringence.
- the resin include cellulose acetate, cellulose acetate propionate, cellulose acetate butyrate and the like having a acyl group substitution degree of 1.8 to 2.80; Alkyl group substitution degree 2.0 to 2.80 cellulose ether resin, such as methylenoatenore, senorelose ethinoreatenore, cellulose propyl ether; polyamide resin of polymer of alkylene dicarboxylic acid and diamine; Polymer of alkylene dicarboxylic acid and diol, Polymer of alkylene diol and dicarboxylic acid, Polymer of cyclohexane dicarboxylic acid and diol, Polymer of cyclohexane diol and dicarboxylic acid, Aromatic dicarboxylic acid and Polyester resin such as polymer with diol; polyvinyl acetate, vinyl acetate Polyvinyl acetate resin such as coalescence; polyvinylacetal resin such as polyviny
- epoxy resin a compound having two or more epoxy groups in one molecule formed a resin by ring-opening reaction. Therefore, the following epoxy resin can be mentioned, and typical commercial products include Araldide EPN1179 and Araldide AER260 (manufactured by Asahi Chino Co., Ltd.). It should be noted that LARAL DIDE EPN 1179 has a weight average molecular weight of about 405. n represents the degree of polymerization.
- the ketone resin is obtained by polymerizing vinyl ketones, and examples thereof include the following ketone resins.
- Typical commercial products include Hilac 110 and Hilac 110H ( Hitachi Chemical Co., Ltd.).
- n represents the degree of polymerization.
- the present inventors have further devised a dispersion method as described below, so that they are outside the above weight average molecular weight range (less than 3,000, more than 90,000). In any case, it was found that the fine particle dispersibility can be improved and a fine particle dispersion can be formed with almost no aggregation.
- the above-mentioned coffin can be used without any limitation on the weight average molecular weight, but the smaller the weight average molecular weight, the easier it is to use and the weight average molecular weight is preferably in the range of about 300,40,000. 000 force is more preferable, 5,000,000 force is more preferable! / Weight
- the fine particle dispersion or dope used in the present invention preferably contains a dispersant.
- the addition amount of the dispersant is 0.002 2 mass 0/0 to cellulose ester is more preferably good Mashigu 0.01 1 wt%.
- a polymer dispersant is particularly preferably used, and a non-one polymer dispersant, a char-on polymer dispersant, and a cationic polymer dispersant are appropriately selected.
- a polymer dispersant that adsorbs to the solid fine particles is used.
- the polymer dispersant forms an adsorption layer on the surface of the solid fine particles, and the powerful adsorption layer exerts repulsive force between the solid fine particles. This prevents the solid fine particles from aggregating.
- the polymer used as a polymer dispersing agent to disperse the fine particles includes a homopolymer composed of a single monomer, a random copolymer composed of a plurality of monomers, etc.
- Each molecule contains both a part that interacts and adsorbs with solid particles and a part that dissolves and spreads from the surface of solid particles into the liquid.
- polymer dispersants having a complicated structure have been devised, and specifically, comb polymers in which two powerful functions are shared are known as good polymer dispersants.
- these polymer dispersants are preferably contained in the dope or fine particle dispersion.
- Examples of the polymer dispersant include a polymer dispersant described in general formula (I) or general formula ( ⁇ ) in JP-A-2001-162934, a polymer dispersant described in JP-A-2004-97955, A mixture of an anionic polymer dispersant described in paragraph Nos. [0024] to [0027] of JP-A-2001-260265, a polyoxypropylene fatty acid alcohol compound described in JP-A-8-337560, and JP-A-9 — Polyoxypropylene fatty acid isopropanolamide mixture described in No.
- polyethylene glycol, polypropylene glycol, polybutyl methyl ether, polyacetic acid butyl, polybulol alcohol, poly N-vinylpyrrolidone, poly (2-methyl-2-oxazoline), poly (2-ethyl-2-oxazoline) and Examples include macromers containing these polymer components.
- the content of the dispersant is preferably 0.0001 to 1% by mass in the dope or fine particle dispersion.
- acicular fine particle dispersion containing acicular fine particles, a solvent, and a resin for dispersing acicular fine particles is prepared, and this is mixed with a dope prepared by dissolving cellulose ester in a solvent.
- a method for producing a cellulose ester film comprising: combining, casting on a support, and then drying.
- the needle-shaped fine particle dispersion is prepared by preparing a dispersion of needle-shaped fine particles and a solvent, and adding a needle-shaped fine particle-dispersing resin to the dispersion and then re-dispersing it. It is a dispersion liquid, The manufacturing method of the cellulose-ester film as described in (a) characterized by the above-mentioned.
- the needle-shaped fine particle-dispersed resin contained in the needle-shaped fine particle dispersion has a weight average molecular weight of 3,000 to 200,000.
- (e) A homopolymer or copolymer in which the needle-shaped fine particle-dispersed resin contained in the dispersion of needle-shaped fine particles has an ethylenically unsaturated monomer unit, acrylic acid or methacrylate ester alone Polymer or copolymer, methyl methacrylate homopolymer or copolymer, cellulose ester, cellulose ether polyurethane resin, polycarbonate resin, polyester resin, epoxy resin and ketone resin.
- the method for producing a cellulose ester film according to any one of (a) to (d), wherein
- the solvent contained in the dispersion of needle-shaped fine particles contains at least one solvent selected from the group consisting of methylene chloride, methyl acetate, ethanol, methanol, and acetone.
- A The manufacturing method of the cellulose-ester film of-(e) description.
- a method of adjusting the content of acicular fine particles contained in the dope has birefringence
- a cellulose ester solution containing a cellulose ester and an organic solvent, acicular fine particles having a birefringence having a high acicular ratio, a resin for dispersing the fine particles, an organic solvent, and preferably,
- a dope comprising a mixture of a fine particle dispersion containing at least one additive selected from polymer power obtained by polymerizing polyester, polyhydric alcohol ester, polyhydric carboxylic acid ester and ethylenically unsaturated monomer; ⁇ ⁇
- a solution casting film is formed and a cell mouth ester film is formed.
- the polymer strength obtained by polymerizing polyester, polyhydric alcohol ester, polycarboxylic acid ester and ethylenically unsaturated monomer together with the acicular fine particles according to the present invention contains at least one selected additive. These additives are preferably contained in the range of 1 to 30% by mass, and more preferably in the range of 5 to 30% by mass. By setting the content within the above range, the compatibility with the cellulose ester is improved and the acicular fine particles are easily discarded.
- the polyester compound is not particularly limited, and a polyester compound having an aromatic ring or a cycloalkyl ring in the molecule can be used.
- the dibasic acid that is one component of the polyester is preferably an aliphatic dibasic acid, an alicyclic dibasic acid, or an aromatic dibasic acid.
- aliphatic dibasic acid malon Aromatic dibasic acids such as acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedicarboxylic acid, dodecanedicarboxylic acid, etc. include phthalic acid, terephthalic acid, isophthalic acid Acid, 1, 4 xylidene dicarboxylic acid, etc.
- Examples of the basic acid include 1,3-cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4-cyclohexanediacetic acid, and the like.
- aliphatic dicarboxylic acid those having a carbon atom number of ⁇ 12, alicyclic dibasic acids and aromatic dicarboxylic acids are preferred, and at least one selected from these forces is used. That is, two or more dibasic acids may be used in combination.
- Examples of the other constituent component glycol include ethylene glycol, diethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1, 4-butylene glycol, 1,5-pentanediol, 1,6-hexanehexane, 1,4-cyclohexanediol, 1,5-pentyleneglycone, 1,4-cyclohexanedimethanol, diethylene glycol, triethyleneglycol
- Polyesters that are difficult to crystallize are preferred.
- Polycondensation of polyester is performed by a conventional method.
- a hot melt condensation method by a direct reaction of the above dibasic acid and dallicol, the above dibasic acid or an alkyl ester thereof, for example, a polyester ester reaction or transesterification of a methyl ester of a dibasic acid and a glycol ! / Is a force that can be easily synthesized by any method of dehalogenation and hydrogenation of acid chlorides of these acids and glycols.
- a polyester having a weight-average molecular weight that is not so large is preferably directly reacted. Polyester having a high distribution on the low molecular weight side is very compatible with cellulose ester.
- a cellulose ester film having a low moisture permeability and a high transparency can be obtained.
- a conventional method can be used as a method for adjusting the molecular weight without particular limitation.
- the amount of these monovalent compounds can be controlled by a method of blocking the molecular ends with a monovalent acid or monovalent alcohol.
- 1 Valuate acids are preferred for polymer stability.
- acetic acid, propionic acid, butyric acid, pivalic acid, benzoic acid, and the like can be raised, but during the polycondensation reaction, they do not distill out of the system, but stop and stop such monovalents outside the reaction system.
- the weight average molecular weight can also be adjusted by measuring the timing of stopping the reaction according to the amount of water distilled off during the reaction. In addition, it can be adjusted by biasing the number of moles of glycol or dibasic acid to be charged, or can be adjusted by controlling the reaction temperature.
- polyester ethers are also included in the polyester used in the present invention.
- the polyester ether useful in the present invention is obtained by reacting the above polyester or the above dibasic acid or an alkyl ester thereof with a compound having an OH group at both ends of the ether unit by a polyestery reaction or
- a polyester ether can be obtained by a hot melt condensation method by a transesterification reaction or a reaction method by etherifying a polyester having a terminal OH group.
- the ether unit is not particularly limited.
- HO (RO) nRO H (where R is an alkylene group, arylene group, aralkylene group, bifunctional alicyclic group, etc., which may be mixed together, and n is 1 to 100), such as diethylene glycol, triethylene glycol, tetraethylene dallicol, polyethylene glycol, polypropylene glycolate, polybutylene glycolate, polyphenylene glycol, polycyclohexylene glycol, etc. You may use it in combination.
- the method for adjusting the molecular weight of the polymer can be used without particular limitation, and can be performed in the same manner as in the case of polyester.
- Polyester ethers suitable for the present invention can be obtained from commercially available products. Examples include Hytrel copolyesters manufactured by Dupont, Galflex polymers manufactured by GAF, and “Ade force sizer RS series manufactured by Asahi Denka Kogyo Co., Ltd.”.
- polyester compound contained in the polyester film of the present invention a compound represented by the following general formula (I) is particularly preferred.
- B is a benzene monocarboxylic acid residue
- G is an alkylene glycol residue having 2 to 12 carbon atoms, an aryl glycol residue having 6 to 12 carbon atoms, or an alkyl group having 4 to 12 carbon atoms.
- a xylalkylene glycol residue, A represents an alkylene dicarboxylic acid residue having 4 to 12 carbon atoms or an aryl dicarboxylic acid residue having 6 to 12 carbon atoms
- n represents an integer of 1 or more.
- Examples of the benzene monocarboxylic acid component of the polyester compound used in the present invention include benzoic acid, paratertiarybutylbenzoic acid, orthotoluic acid, metatoluic acid, p-toluic acid, dimethylbenzoic acid, ethylbenzoic acid, There are normal propyl benzoic acid, amino benzoic acid, acetooxy benzoic acid and the like, and these can be used as one kind or a mixture of two or more kinds, respectively.
- the alkylene glycol component having 2 to 12 carbon atoms represented by G includes ethylene glycol, 1,2 propylene glycol, 1,3 propylene glycol,
- an oxyalkylene glycol having 4 to 12 carbon atoms represented by G examples include diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, and tripropylene glycol. These glycols can be used as one kind or a mixture of two or more kinds.
- the arylene glycol component having 6 to 12 carbon atoms represented by G includes, for example, hydroquinone, resorcin, bisphenol A, bisphenol F, bisphenol and the like. Can be used as a mixture of one or more.
- examples of the alkylene dicarboxylic acid component having 4 to 12 carbon atoms represented by A include succinic acid, maleic acid, fumaric acid, glutaric acid, adipic acid, azelaic acid, There are sebacic acid, dodecanedicarboxylic acid, etc., and these are used as one kind or a mixture of two or more kinds, respectively.
- Examples of arylene dicarboxylic acid components having 6 to 12 carbon atoms include phthalic acid, terephthalic acid, 1,5 naphthalene dicarboxylic acid, and 1,4 naphthalene dicarboxylic acid.
- the number average molecular weight of the ester compound used in the present invention is preferably in the range of 300 to 20000, more preferably 500 to 1500.
- the acid value is preferably 0.5 mg KO HZg or less, the hydroxyl value is 25 mg KOHZg or less, more preferably the acid value is 0.3 mg KOH / g or less, and the hydroxyl value is 15 mg KOHZg or less.
- the acid value of the ester compound in the present invention refers to the number of milligrams of potassium hydroxide required to neutralize the acid contained in the sample lg.
- the acid value and the hydroxyl value are measured in accordance with JIS K 0070.
- a reactor is charged with 820 parts (5 moles) of phthalic acid, 608 parts (8 moles) of 1,2 propylene glycol, 610 parts (5 moles) of benzoic acid, and 0.30 parts of tetraisopropyl titanate as a catalyst. While stirring in an air stream, attach a reflux condenser to return excess monohydric alcohol, and continue heating at 130-250 ° C until the acid value is 2 or less. did. Next, the distillate was removed at 200 to 230 ° C. under a reduced pressure of 50 to 400 Pa or less, and then filtered to obtain a polyester compound having the following properties.
- polyester compound Specific compounds of the polyester compound are shown below, but the present invention is not limited thereto.
- the content of the polyester compound according to the present invention is preferably 1 to 20% by mass in the cellulose ester film, and particularly preferably 3 to L: 1% by mass.
- the polyhydric alcohol ester-based compound is a compound composed of a dihydric or higher aliphatic polyhydric alcohol and a monostrength sulfonic acid ester, and preferably has an aromatic ring or a cycloalkyl ring in the molecule.
- a divalent to 20-valent aliphatic polyhydric alcohol ester is preferred.
- the polyhydric alcohol preferably used in the present invention is represented by the following general formula (B).
- R is an n-valent organic group.
- n is a positive integer greater than or equal to 2, OH
- the group represents alcoholic and Z or phenolic hydroxyl groups.
- Examples of preferable polyhydric alcohols include, for example, the following.
- the present invention is not limited to these.
- Examples include triol, pinacol, sorbitol, trimethylol bread, trimethylolethane, and xylitol.
- the monocarboxylic acid used in the polyhydric alcohol ester according to the present invention known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic monocarboxylic acid and the like without particular limitation can be used. . Use of alicyclic monocarboxylic acid and aromatic monocarboxylic acid is preferred because it improves moisture permeability and retention.
- Examples of preferable monocarboxylic acids include the following strengths. The present invention is not limited thereto.
- aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. More preferably, the carbon number is 1-20. Particularly preferred is L0.
- acetic acid is contained, compatibility with cellulose ester increases, so it is also preferable to use a mixture of acetic acid and other monocarboxylic acids.
- aliphatic monocarboxylic acid for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, strength prillic acid, pelargonic acid, strength puric acid, 2-ethyl hexanoic acid, Undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lithium
- saturated fatty acids such as gnoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and rataceric acid
- unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachidic acid.
- Preferred examples of the alicyclic monocarboxylic acid include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
- aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, benzene such as biphenylcarboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
- benzoic acid and toluic acid examples include benzene such as biphenylcarboxylic acid, naphthalene carboxylic acid, and tetralin carboxylic acid.
- An aromatic monocarboxylic acid having two or more rings, or a derivative thereof can be exemplified.
- Benzoic acid is particularly preferable.
- the molecular weight of the polyhydric alcohol ester is not particularly limited, but is preferably 300 to 1500, more preferably 350 to 750. Higher molecular weights are less likely to volatilize, so the lower moisture vapor permeability is preferred, and the smaller one is preferred in terms of compatibility with cellulose esters.
- the carboxylic acid used in the polyhydric alcohol ester may be one kind or a mixture of two or more kinds. Further, all the OH groups in the polyhydric alcohol may be esterified, or a part of the OH groups may be left as they are.
- the polyvalent carboxylic acid ester compound according to the present invention is obtained from an ester of a divalent or higher, preferably a divalent to 20 valent polyvalent carboxylic acid and an alcohol.
- the aliphatic polyvalent carboxylic acid is preferably an aromatic polyvalent carboxylic acid having a valence of 2 to 20, and in the case of an alicyclic polyvalent carboxylic acid, it is preferably a valence of 3 to 20. .
- the polyvalent carboxylic acid used in the present invention is preferably a compound represented by the following general formula (C).
- R is an (m + n) -valent organic group
- m is a positive integer of 2 or more
- n is
- a COOH group represents a carboxyl group
- an OH group represents an alcoholic or phenolic hydroxyl group
- Examples of preferable polyvalent carboxylic acids include, for example, the following strengths. The present invention is not limited to these. Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid, fumaric acid, maleic acid, tetrahydro An aliphatic polyvalent carboxylic acid such as phthalic acid, an oxypolyvalent carboxylic acid such as tartaric acid, tartronic acid, malic acid, and citrate can be preferably used. In particular, the use of oxypolycarboxylic acid is preferred from the standpoint of improving retention.
- Trivalent or higher aromatic polyvalent carboxylic acids such as trimellitic acid, trimesic acid, pyromellitic acid or derivatives thereof, succinic acid, adipic acid, azelaic acid, sebacic acid, oxalic acid,
- the alcohol used in the polyvalent carboxylic acid ester compound according to the present invention is not particularly limited, and known alcohols and phenols can be used.
- an aliphatic saturated alcohol or aliphatic unsaturated alcohol having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. It is particularly preferable that the number of carbon atoms is 1 to 10 which is more preferable.
- alicyclic alcohols such as cyclopentanol and cyclohexanol or derivatives thereof, aromatic alcohols such as benzyl alcohol and cinnamyl alcohol, or derivatives thereof can also be preferably used.
- an oxypolycarboxylic acid is used as the polycarboxylic acid
- an alcoholic or phenolic hydroxyl group of the oxypolycarboxylic acid may be esterified with a monocarboxylic acid.
- preferable monocarboxylic acids include the following: The present invention is not limited to these.
- aliphatic monocarboxylic acid a fatty acid having a straight chain or a side chain having 1 to 32 carbon atoms can be preferably used. It is particularly preferable that the number of carbons is 1 to 20 LO, which is more preferably 1 to 20 carbon atoms.
- Preferred aliphatic monocarboxylic acids include, for example, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, enanthic acid, strength prillic acid, pelargonic acid, strength purine acid, 2-ethyl hexanecarboxylic acid, Undecylic acid, lauric acid, tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, araquinic acid, behe Saturated fatty acids such as acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melissic acid, and rataceric acid, and unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, and arachid
- Examples of preferable alicyclic monocarboxylic acid include cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
- aromatic monocarboxylic acids examples include those in which an alkyl group is introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, and benzene such as biphenylcarboxylic acid, naphthalenecarboxylic acid, and tetralincarboxylic acid.
- An aromatic monocarboxylic acid having two or more rings, or a derivative thereof can be exemplified. Particularly preferred are acetic acid, propionic acid and benzoic acid.
- the molecular weight of the polyvalent carboxylic acid ester compound is not particularly limited, but the molecular weight is preferably in the range of 300-1000, more preferably in the range of 350-750. The larger one is preferable in terms of improving retention, and the smaller one is preferable in terms of compatibility with cellulose ester.
- the alcohols used in the polyvalent carboxylic acid ester of the present invention may be one kind.
- the acid value of the polyvalent carboxylic acid ester compound used in the present invention is preferably 1 mgKOHZg or less, and more preferably 0.2 mgKOHZg or less. It is preferable to set the acid value within the above range because the environmental fluctuation of the retardation is also suppressed.
- the polymer obtained by polymerizing the ethylenically unsaturated monomer according to the present invention is obtained by polymerization of the ethylenically unsaturated monomer and a photopolymerization initiator.
- a polymer obtained by polymerizing the ethylenically unsaturated monomer according to the present invention (hereinafter also referred to as a polymer according to the present invention)
- an acrylic polymer, an talyl polymer having an aromatic ring in the side chain, or An acrylic polymer having a cyclohexyl group in the side chain is included.
- the polymer according to the present invention has a weight average molecular weight of 500 to 10,000. It has good compatibility with cellulose ester and does not cause evaporation or volatilization during film formation. It is preferable from the point.
- acrylic polymers acrylic polymers having aromatic rings in the side chain, or acrylic polymers having cyclohexyl groups in the side chain, preferably from 500 to 5,000, the above strength!
- the cellulose ester film after film formation has excellent transparency and excellent performance as a protective film for polarizing plates with extremely low moisture permeability.
- the polymer according to the present invention has a weight average molecular weight of 500 or more and less than 10,000, the oligomer force is considered to be between the low molecular weight polymers.
- a method using a peroxide polymerization initiator such as cumene peroxide t-butyl hydroperoxide, a method using a polymerization initiator in a larger amount than normal polymerization, a polymerization start
- a method using a chain transfer agent such as a mercapto compound or carbon tetrachloride
- the ethylenically unsaturated monomer units constituting the polymer obtained by polymerizing the ethylenically unsaturated monomer are: as a bull ester, for example, vinyl acetate, butyral propionate, butyrate butyrate, butyrate valerate, and pivalic acid.
- acrylic esters include methyl acrylate, ethyl acrylate, propyl acrylate (in 1), butyl acrylate (nis-t 1), pentyl acrylate ( nis—), Hexyl acrylate (ni 1), heptyl acrylate (ni 1), octyl acrylate (ni 1), nor acrylate (ni 1), myristyl acrylate (ni 1), cyclohexyl acrylate, Acrylic acid (2-ethylhexyl), benzyl acrylate, phenethyl acrylate, acrylic acid
- the polymer composed of the above monomers may be a copolymer or a homopolymer, and is preferably a vinylol esterol homopolymer, a vinylol esterol copolymer, or a vinylol ester and acrylic acid or methacrylic acid ester copolymer.
- the acrylic polymer refers to a homopolymer or copolymer of acrylic acid or methacrylic acid alkyl ester having no monomer unit having an aromatic ring or a cyclohexyl group.
- An acrylic polymer having an aromatic ring in the side chain is an acrylic polymer containing an acrylic acid or methacrylic acid ester monomer unit having an aromatic ring.
- An acrylic polymer having a cyclohexyl group in the side chain is an acrylic polymer containing an acrylic acid or methacrylic acid ester monomer unit having a cyclohexyl group.
- Examples of the acrylate monomer having no aromatic ring and cyclohexyl group include methyl acrylate, ethyl acrylate, propyl acrylate (in-), butyl acrylate (nis-t-), Pentyl acrylate (nis—), hexyl acrylate (ni 1), heptyl acrylate (ni 1), octyl acrylate (ni—), noryl acrylate (ni 1), myristyl acrylate ( ni 1), acrylic acid (2-ethylhexyl), acrylic acid ( ⁇ -force prolatathone), acrylic acid (2-hydroxyethyl), acrylic acid (2 hydroxypropyl), acrylic acid (3 hydroxypropyl), Acrylic acid (4-hydroxybutyl), acrylic acid (2-hydroxybutyl), acrylic acid (2-methoxyethyl), acrylic acid (2-ethoxyethyl), etc.
- Methacrylic acid ester of an acid ester You can list things that
- the attalinole polymer is a homopolymer or copolymer of the above monomers, but it is preferred that the allylic acid methyl ester monomer unit has 30% by mass or more, and the methacrylic acid methyl ester monomer unit strength is 0. It is preferable to have at least mass%. In particular, a homopolymer of methyl acrylate or methyl methacrylate is preferred.
- acrylic acid or methacrylic acid ester monomers having an aromatic ring examples include acrylic acid file, methacrylic acid file, acrylic acid (2 or 4-chlorophenol), and methacrylic acid (2 or 4). Black and white), acrylic acid (2 or 3 or 4 ethoxycarbole), methacrylic acid (2 or 3 or 4 ethoxycarbole), acrylic acid (o or m or p tolyl) ), Methacrylic acid (o or m or p tolyl), benzyl acrylate, benzyl methacrylate, phenethyl acrylate, phenethyl methacrylate, acrylic acid (2-naphthyl), etc. benzyl acrylate, methacrylic acid Benzyl, phenyl acrylate, and phenethyl methacrylate can be preferably used.
- the acrylic acid or methacrylate ester monomer unit having an aromatic ring has 20 to 40% by mass, and the acrylic acid or methacrylate methyl ester monomer unit is preferred to have 50 to 80 mass 0/0! /,.
- the polymer preferably has 2 to 20% by mass of acrylic acid or methacrylic acid ester monomer units having a hydroxyl group.
- acrylic acid ester monomers having a cyclohexyl group examples include cyclohexyl acrylate, cyclohexyl methacrylate, acrylic acid (4-methylcyclohexyl), methacrylic acid (4-methylcyclohexyl), and acrylic acid. (4-ethyl cyclohexyl), methacrylic acid (4-ethyl cyclohexyl), and the like can be mentioned. Cyclohexyl acrylate and cyclohexyl methacrylate can be preferably used.
- the acrylic polymer having a cyclohexyl group in the side chain having and 50-80 wt% having 20 to 40 weight 0/0 of acrylic acid or methacrylic acid ester monomer unit having a cyclohexyl group Is preferred.
- the polymer preferably has 2 to 20% by mass of a hydroxyl group-containing acrylic acid or methacrylic acid ester monomer unit.
- Polymers obtained by polymerizing the above ethylenically unsaturated monomers, acrylic polymers, acrylic polymers having an aromatic ring in the side chain, and acryl polymers having a cyclohexyl group in the side chain are all cellulose. Excellent compatibility with esters, no evaporation or volatilization, excellent productivity, good retention as a protective film for polarizing plates, low moisture permeability, and excellent dimensional stability.
- the acrylic acid or methacrylic acid ester monomer having a hydroxyl group is a structural unit of a copolymer, not a homopolymer.
- the acrylic acid or methacrylic acid ester monomer unit having a hydroxyl group is preferably contained in the acrylic polymer in an amount of 2 to 20% by mass.
- a polymer having a hydroxyl group in the side chain can also be preferably used.
- the monomer unit having a hydroxyl group the same force as the above-mentioned monomer, acrylic acid or methacrylic acid ester is preferred.
- the acrylic acid ester or methacrylic acid ester monomer unit having a hydroxyl group in the polymer is preferably contained in the polymer in an amount of 2 to 20% by mass, more preferably 2 to 10% by mass.
- the polymer as described above contains 2 to 20% by mass of the above-mentioned monomer unit having a hydroxyl group, of course, it is excellent in compatibility with cellulose ester, retention and dimensional stability, and low moisture permeability. It is particularly excellent in adhesiveness with a polarizer as a protective film for a polarizing plate that is pressed by force, and has an effect of improving the durability of the polarizing plate.
- At least one terminal of the polymer main chain has a hydroxyl group.
- the method of having a hydroxyl group at the end of the main chain is not particularly limited as long as it has a hydroxyl group at the end of the main chain, but a radical having a hydroxyl group such as azobis (2-hydroxyethyl propylate).
- a method using a polymerization initiator, a method using a chain transfer agent having a hydroxyl group such as 2-mercaptoethanol, and a hydroxyl group A method of using a polymerization terminator, a method of having a hydroxyl group at the terminal by living ion polymerization, a single thiol group and a secondary hydroxyl group as described in JP-A-2000-128911 or 2000-344823. Or a bulk polymerization method using a polymerization catalyst in which the compound and an organometallic compound are used in combination, and the method described in the publication is particularly preferred. Polymers produced by the method related to this publication are commercially available as Act Flow series manufactured by Soken Gakaku Co., Ltd. and can be preferably used.
- the polymer having a hydroxyl group at the terminal and the polymer having a hydroxyl group at Z or a side chain have the effect of significantly improving the compatibility and transparency of the polymer in the present invention.
- the cellulose used as a raw material for the cellulose ester used in the present invention is not particularly limited, and examples thereof include cotton linter, wood pulp, and kenaf. Moreover, the cellulose ester obtained from them can be used individually or in mixture in arbitrary ratios, respectively.
- the acylating agent of the cellulose raw material is an acid anhydride (acetic anhydride, propionic anhydride, butyric anhydride)
- an organic acid such as acetic acid such as methylene chloride
- the reaction is carried out using an organic solvent and a protic catalyst such as sulfuric acid.
- the acylating agent is acid chloride (CH COCl, C H COCl, C H COC1)
- the reaction is carried out using a basic compound such as amine as a catalyst. Specifically, it can be synthesized by the method described in JP 10-45804.
- the acyl group reacts with the hydroxyl group of the cellulose molecule.
- Cellulose molecules consist of many linked glucose units, with 3 hydroxyl groups per glucose unit. The number of substitutions of the acyl group at these three hydroxyl groups is called the degree of substitution.
- cellulose triacetate has acetyl groups attached to all three hydroxyl groups of the glucose unit.
- the cellulose ester that can be used for the cellulose ester film preferably has a total acyl group substitution degree of 2.4 to 2.8.
- the molecular weight of the cellulose ester used in the present invention is a number average molecular weight (Mn) of 50,000 to 200,000.
- Mn number average molecular weight
- the cellulose ester used in the present invention preferably has a weight average molecular weight (Mw) to number average molecular weight (Mn) ratio, MwZMn of 1.4 to 3.0 as described above. More preferably, it is in the range of 1.7 to 2.2.
- the average molecular weight and molecular weight distribution of the cellulose ester can be measured by a known method using high performance liquid chromatography. Using this, the number average molecular weight and the weight average molecular weight can be calculated, and the ratio (MwZMn) can be calculated.
- the cellulose ester used in the present invention is a carboxylic acid ester having about 2 to 22 carbon atoms, and is particularly preferably a lower fatty acid ester of cellulose.
- the lower fatty acid in the lower fatty acid ester of cellulose means a fatty acid having 6 or less carbon atoms.
- Mixed fatty acid esters such as cellulose acetate propionate and cellulose acetate petitate as described in 45804, 8-231761, U.S. Pat. No. 2,319,052 can be used.
- esters of aromatic carboxylic acids and cellulose and cellulose acylate described in JP-A Nos. 2002-179701, 2002-265639 and ⁇ 12002-265638 are also preferable. It is used well.
- the lower fatty acid esters of cellulose that are particularly preferably used are cellulose triacetate and cellulose acetate propionate. These cellulose esters can also be mixed and used.
- Preferred cellulose esters other than cellulose triacetate have an acyl group having 2 to 4 carbon atoms as a substituent, the degree of substitution of the acetyl group is X, and the degree of substitution of the propiol group or the petityl group.
- Y it is a cellulose ester that simultaneously satisfies the following formulas (a) and (b).
- Equation (a) 4. 4 ⁇ X + Y ⁇ 2.8
- the moiety When substituted with an acyl group, the moiety is usually present as a hydroxyl group. These can be synthesized by known methods.
- the degree of substitution of these acyl groups can be measured according to the method prescribed in ASTM-D817-96.
- the degree of degradation can be defined by the value of the weight average molecular weight (Mw) Z number average molecular weight (Mn) that is usually used. That is, in the process of cellulose triacetate vinegar, the weight average molecular weight is an index of the degree of reaction that is too long and does not decompose too much and allows the vinegar to react for sufficient time for acetylation. (Mw) The value of Z number average molecular weight (Mn) can be used.
- a method for producing a cellulose ester is shown below: 100 parts by weight of a cotton-based printer is crushed as a cellulose raw material, 40 parts by weight of acetic acid is added, and pretreatment activation is performed at 36 ° C for 20 minutes. Did. Thereafter, 8 parts by mass of sulfuric acid, 260 parts by mass of acetic anhydride and 350 parts by mass of acetic acid were added, and esterification was performed at 36 ° C for 120 minutes. 11 parts by mass of 24 mass% magnesium acetate aqueous solution After neutralization with saponification, saponification and aging were carried out at 63 ° C. for 35 minutes to obtain acetyl cellulose.
- acetyl cellulose having a degree of acetyl substitution of 2.75. It was.
- This acetylcellulose had Mn of 92,000, Mw of 156,000, and Mw / Mn of 1.7.
- cellulose esters having different degrees of substitution and MwZMn ratios can be synthesized by adjusting the esterification conditions (temperature, time, stirring) and hydrolysis conditions of the cellulose ester.
- the synthesized cellulose ester is preferably purified to remove low molecular weight components or to remove unacetylated components by filtration.
- the cellulose ester is also affected by a trace metal component in the cellulose ester. These are thought to be related to water used in the manufacturing process, but metal ions such as iron, calcium, and magnesium are preferred to contain fewer components that can form insoluble nuclei. Insoluble matter may be formed by salt formation with a polymer degradation product or the like that may be lost, and it is preferable that the amount is small.
- the iron (Fe) component is preferably 1 ppm or less.
- the calcium (Ca) component is abundant in groundwater, river water, etc., and if it is too much, it becomes hard water and is also unsuitable as drinking water. Acidic components such as carboxylic acids and sulfonic acids, and many more It forms a complex with the ligand of, ie, a scum (insoluble starch, turbidity) derived from many insoluble calcium.
- the calcium (Ca) component is 60 ppm or less, preferably 0 to 30 ppm.
- the magnesium (Mg) component too much too much results in insoluble matter, so 0 to 70 ppm is preferable, and 0 to 20 ppm is particularly preferable.
- Metal components such as iron (Fe) content, calcium and a) content, and magnesium (Mg) content are pre-treated by microdigest wet cracking equipment (sulfuric acid decomposition) and alkali melting. After that, the analysis is performed using ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer). Therefore, it can be obtained.
- Organic solvents that dissolve cellulose esters and are useful for forming cellulose ester solutions or dopes include chlorinated organic solvents and non-chlorinated organic solvents.
- chlorinated organic solvents include methylene chloride (methylene chloride), which is suitable for dissolving cellulose esters, particularly cellulose triacetate. Due to recent environmental problems, the use of non-chlorine organic solvents is being investigated.
- Non-chlorine organic solvents include, for example, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3 dioxolane, 1,4 dioxane, cyclohexanone, ethinore formate, 2,2,2 trifanolate rotanoreno, 2, 2, 3, 3-Hexafluoro 1-propanol, 1, 3 Difluoro-2 propanol, 1, 1, 1, 3, 3, 3 Hexafnoroleol 2-Methinore 1 2 Prono Norre, 1, 1, 1, 3, 3, 3 Hexafluoro-2-propanol, 2, 2, 3, 3, 3 Pentafluoro-1-propanol, nitroethane and the like.
- a dissolution method at room temperature can be used.
- a dissolution method such as a high-temperature dissolution method, a cooling dissolution method, or a high-pressure dissolution method, It is preferable because it can be reduced.
- methyl acetate, ethyl acetate, and acetone are preferably used. Particularly preferred is methyl acetate.
- an organic solvent having good solubility in the cellulose ester is a good solvent, and a main effect is shown in the dissolution, and an organic solvent used in a large amount is a main (organic) solvent or a main solvent. It is called (organic) solvent.
- the dope according to the present invention preferably contains 1 to 40% by mass of an alcohol having 1 to 4 carbon atoms in addition to the organic solvent. These are gels that after casting the dope onto a metal support, the solvent begins to evaporate and the dope film (web) gels when the proportion of alcohol increases, making the web strong and easy to peel off from the metal support. It is also used as a chlorinated solvent, and when these ratios are low, it also has a role of promoting the dissolution of cellulose esters as non-chlorine organic solvents.
- Examples of the alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec butanol and tert-butyl. Mention may be made of tanol. Of these, ethanol is preferable because it has excellent dope stability, has a relatively low boiling point, and has good drying properties. These organic solvents alone are soluble in cellulose esters and are therefore poor solvents.
- Additives added to the dope include plasticizers, ultraviolet absorbers, antioxidants, dyes, fine particles, and the like.
- additives other than fine particles may be added during the preparation of the cellulose ester solution, or may be added during the preparation of the fine particle dispersion. It is preferable to add a plasticizer, an antioxidant, an ultraviolet absorber and the like that impart heat and moisture resistance to the polarizing plate used in the liquid crystal image display device. The additive will be described below.
- a compound known as a plasticizer is used for the purpose of improving mechanical properties, imparting flexibility, imparting water absorption resistance, reducing water vapor permeability, adjusting retardation, etc.
- phosphate ester carboxylate is preferably used.
- Examples of the phosphoric acid ester include triphenyl phosphate, tricresyl phosphate, and phenyl diphosphate.
- Examples of carboxylic acid esters include phthalic acid esters and citrate esters.
- Examples of phthalic acid esters include dimethyl phthalate, jetyl phosphate, dioctyl phthalate, and jetyl hexyl phthalate. Mention may be made of cetyl cetyl and acetyl butyl thioate. Other examples include butyl oleate, methyl acetyl ricinoleate, dibutyl sebacate, and triacetin.
- Alkylphthalylalkyl glycolates are also preferably used for this purpose. The alkyl in the alkylphthalylalkyl glycolate is an alkyl group having 1 to 8 carbon atoms.
- alkyl phthalyl alkyl glycolates include methyl phthalyl methyl dallicoleate, ethyl phthalyl ethyl dallicolate, propyl phthalyl propyl glycolate, butyl phthalyl butyl dallicolate, octyl phthalyl octyl dallicolate, methyl phthalyl Ethyl dallicolate, ethyl phthalyl methyl dallicolate, ethyl phthalyl propyl glyco Rate, propyl phthalyl ethyl alcoholate, methyl phthalyl propyl glycolate, methyl phthalyl butyl dalicolate, ethyl phthalyl butyl dalicolate, butyl phthalyl methyl glycolate, butyl phthalyl ethyl glycolate, propyl phthalyl Examples include butyl phthalate, butyl phthalyl propyl
- the polyhydric alcohol esters are also preferably used.
- a compound having a vapor pressure at 200 ° C. of 1400 Pa or less is preferable.
- These compounds may be added together with cellulose ester or a solvent during the preparation of the cellulose ester solution, or may be added during or after the solution preparation.
- additives include polyesters and polyester ethers described in JP-A-2002-22956, urethane resins described in JP-A-2003-171499, rosins and rosin derivatives described in JP-A-2002-146044 , Epoxy resin, ketone resin, toluenesulfonamide resin, ester of polyhydric alcohol and carboxylic acid described in JP-A No. 2003-96236, combination of formula (1) described in JP-A No. 2003-165868 And polyester polymers or polyurethane polymers described in JP-A No. 2004-292696. These additives can be contained in a dope or fine particle dispersion.
- the optical film of the present invention can contain an ultraviolet absorber.
- ultraviolet absorbers examples include oxybenzophenone compounds, benzotriazole compounds, salicylic acid ester compounds, benzophenone compounds, cyanoacrylate compounds, nickel complex compounds, triazine compounds, and the like. Can A benzotriazole-based compound with little coloring is preferred.
- an ultraviolet absorber As an ultraviolet absorber, it has an excellent ability to absorb ultraviolet rays with a wavelength of 37 Onm or less from the viewpoint of preventing the deterioration of polarizers and liquid crystals, and absorbs visible light with a wavelength of 400 nm or more from the viewpoint of liquid crystal display properties. Little! /, I like things! / ...
- ultraviolet absorbers useful in the present invention include 2- (2'-hydroxymonomethylphenol) benzotriazole, 2- (2'-hydroxy-3 ', 5'-di-tert- Butylphenol) benzotriazole, 2— (2 ′ —hydroxy—3 ′ —tert—butyl—5′-methylphenol) benzotriazole, 2— (2 ′ —hydroxy—3 ′, 5′—di—tert —Butylphenol) 1-5 Chronobenzozoazole, 2— (2 ′ —Hydroxy 1 3 ′ — (3, “, 5 Q” —Tetrahydrophthalimidomethyl) 5, —Methylphenyl) benzotriazole, 2, 2-Methylenebis (4- (1, 1, 3, 3-tetramethylbutyl) 1- (2H-benzotriazole-2-yl) phenol), 2- (2'-hydroxy 3'-tert-butyl-) 5 'methylphenol) -5 black mouth benzotriazole
- TINUVIN 109 As commercially available products, TINUVIN 109, TINUVIN 171 and TINUVIN 326 (all manufactured by Ciba Specialty Chemicals) can be preferably used.
- a reactive ultraviolet absorber RUVA-93 manufactured by Otsuka Chemical Co., Ltd. can be given as an example.
- benzophenone compounds include 2, 4 dihydroxybenzophenone, 2, 2 '
- the ultraviolet absorber described above preferably used in the present invention is a benzotriazole ultraviolet absorber or benzophenone ultraviolet absorber excellent in the effect of preventing deterioration of a highly transparent polarizing plate or liquid crystal element.
- Benzotriazole-based ultraviolet absorbers are particularly preferably used because they have less unwanted coloration that is preferred by the agent.
- the method of adding the ultraviolet absorber to the dope is a power that can be used without limitation as long as the ultraviolet absorber can be dissolved in the dope.
- the ultraviolet absorber is methylene chloride, acetic acid.
- the method of adding to the dope is preferred. In this case, it is preferable to make the dope solvent composition and the solvent composition of the UV absorber solution as close as possible to each other.
- the content of the ultraviolet absorber is from 0.01 to 5% by weight, in particular from 0.5 to 3% by weight.
- a hindered phenol compound is preferably used.
- 2,6 di-tert-butyl p-cresol, pentaerythrityl-tetrakis [3 (3,5-di-tert-butyl-4-hydroxyphenol) propionate], triethylene glycol Cole-bis [3- (3-t-butyl-5-methyl-4-hydroxyphenol) propionate] is preferred.
- hydrazine-based metal deactivators such as N, N'-bis [3- (3,5-di-tert-butyl 4-hydroxyphenyl) propiol] hydrazine, tris (2,4-
- phosphorus-based processing stabilizers such as di (tbutylbutyl) phosphite.
- the amount of addition of these compounds is preferably lppm to l.0% by weight with respect to the cellulose ester, more preferably 10 to 1 OOOppm.
- fine particles in addition to acicular fine particles having birefringence, fine particles can be further contained in the cellulose ester film as a matting agent. This makes it easy to carry and take up.
- the particle size of the matting agent is preferably primary particles or secondary particles of 10 nm to 0.1 ⁇ m.
- a substantially spherical matting agent having a primary particle acicular ratio of 1.1 or less is preferably used.
- the fine particles those containing silicon are preferred, and silicon dioxide is particularly preferred.
- Preferred examples of the silicon dioxide fine particles used in the present invention include Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, 0X50, TT600 (Nippon Aerosil Co., Ltd.) manufactured by Nippon Aerosil Co., Ltd. )), And commercially available products such as Aerogenole 200V, R972, R972V, R974, R202, and R812 can be preferably used.
- Examples of polymer fine particles include silicone resin, fluorine resin and acrylic resin.
- Silicone resin is preferred, particularly those having a three-dimensional network structure.For example, Tosnowl 103, 105, 108, 120, 145, 3120 and 240 (Toshiba Silicone) (Manufactured by Co., Ltd.).
- the silicon dioxide silicon fine particles preferably have a primary average particle diameter of 20 nm or less and an apparent specific gravity of 70 gZL or more.
- An average primary particle size of 5 to 16 nm is more preferred, and 5 to 12 nm is more preferred.
- the average primary particle size is smaller, and haze is preferred.
- the apparent specific gravity is preferably 90 to 200 gZL or more, more preferably 100 to 200 gZL or more. Higher apparent specific gravity makes it possible to produce a high-concentration fine particle dispersion and does not generate haze or aggregates.
- the amount of matting agent added in the present invention is 0.01 per lm 2 of the cellulose ester film. ⁇ Lg force S preferred, 0.03 to 0.3g force more preferred, 0.08 to 0.16g force more preferred! / ⁇ .
- the dope or fine particle dispersion used in the present invention preferably contains a surfactant, and is not particularly limited to phosphoric acid, sulfonic acid, carboxylic acid, non-one, cationic and the like. These are described, for example, in JP-A-61-243837.
- ⁇ Ka ⁇ of interfacial active agent preferably is from 0.002 to 2 mass 0/0 to cellulose ⁇ shea rate instrument 0.01 to 1 mass% is more preferable. If the addition amount is less than 0.001% by mass, the effect of addition cannot be fully exerted, and if the addition amount exceeds 2% by mass, precipitation or insoluble matter may occur.
- the non-one surfactant is a surfactant having a non-ionic hydrophilic group of polyoxyethylene, polyoxypropylene, polyoxybutylene, polyglycidyl sorbitan.
- Carboxylic acid salts, sulfates, sulfonates, and phosphate esters are typical examples of cation-based surfactants. Typical examples are fatty acid salts, alkylbenzene sulfonates, and alkyl naphthalene sulfonates.
- alkyl sulfonate alkyl sulfonate, a-olefin sulfonate, dialkyl sulfosuccinate, ⁇ -sulfonated fatty acid salt, ⁇ -methyl-oleyl taurine, petroleum sulfonate, alkyl sulfate, sulfate Fats and oils, polyoxyethylene alkyl ether sulfate, polyoxyethylene alkyl phenyl ether sulfate, polyoxyethylene styrenated phenyl ether sulfate, alkyl phosphate, polyoxyethylene alkyl ether phosphate, naphthalene sulfonate form And aldehyde condensates.
- Examples of cationic surfactants include ammine salts, quaternary ammonium salts, pyridium salts, etc., and primary to tertiary fatty amine salts, quaternary ammonium salts ( Tetraalkyl ammonium salts, trialkylbenzam salts, alkyl pyridinium salts, alkyl imi Dazolium salt, etc.).
- Examples of amphoteric surfactants include carboxybetaine and sulfobetaine, and N-trialkyl-N-carboxymethylammonium betaine, N-trialkylN sulfoalkylene ammonium betaine, and the like.
- the fluorosurfactant is a surfactant having a fluorocarbon chain as a hydrophobic group. Fluorosurfactants include CF CHCHO— (CHCHO) — OSO Na, CF SO
- a peeling accelerator for reducing the load during peeling may be added to the dope.
- surfactants are effective, and there are phosphoric acid-based, sulfonic acid-based, carboxylic acid-based, non-ionic, cationic and the like, but not limited thereto.
- Japanese Laid-Open Patent Publication No. 57-500833 discloses polyethoxylated phosphate ester as a release accelerator. JP 61-69
- No. 845 discloses that the monoester or diphosphate alkyl ester in which the non-esterified hydroxy group is in the form of a free acid can be rapidly removed by adding to the cellulose ester.
- JP-A-1-299847 discloses that the release load can be reduced by adding a phosphate ester compound containing an unesterified hydroxyl group and a propylene oxide chain and inorganic particles.
- R and R are each a substituted or unsubstituted alkyl group having 4 to 40 carbon atoms
- M is an alkali metal, an ammonium group;
- the cellulose acylate film contains at least one release agent represented by the formula (2) or (3). Hereinafter, these release agents will be described. R and R
- Preferred examples of 1 2 include substituted and unsubstituted alkyl groups having 4 to 40 carbon atoms (for example, butyl, hexyl, octyl, 2-ethylhexyl, nonyl, dodecyl, hexadecyl, octadecyl, eicosal).
- aryl groups eg, phenyl, naphthyl, methylphenyl, dimethylphenyl, trimethylphenyl, ethenylphenyl, propylphenyl, diisopropylphenyl, triisopropylphenyl, t-butylphenyl, di-t-butylphenyl, tree t Butyl phenyl, isopentyl phenyl, octyl phenyl, isooctyl phenyl, isonol phenyl, diison phenol, dode Naphthoylmethyl - le, iso-p
- alkyl hexyl, octyl, 2-ethylhexyl, nonyl, dodecyl, hexadecyl, octadecyl, docosayl, alkaryl as oleyl, and aryl as groups Phenyl, naphthyl, trimethylphenyl, disopropylphenyl, triisopropylphenyl, di-t-butylphenyl, tri-tert-phenylphenyl, iso-octylphenyl, iso-phenol, di-iso-phenol, dodecyl Isopentadecyl fail.
- Preferred linking groups among these are methylene, ethylene, propylene, butylene, poly (degree of polymerization 1 to 25) oxchethylene, poly (degree of polymerization 1 to 25) oxypropylene, poly (degree of polymerization 1 to 15) oxyglycerin.
- X is carboxylic acid (or salt), sulfonic acid (or salt), sulfate ester (or salt), particularly preferably sulfonic acid (or salt) or sulfate ester (or salt).
- Preferred salts are Na, K, ammonia, trimethylamine and triethanolamine. Specific examples of preferred compounds of the present invention are described below.
- RZ- -1133 iso-CH CH O— (CH CH O) (CH) SO Na
- the amount of these compounds used is preferably 0.002 to 2% by mass in the dope. More preferably, it is 0.005-1 mass%, More preferably, it is 0.01-0.5 mass%.
- the addition method is not particularly limited, but it may be liquid or solid as it is and added together with other materials before dissolution, or may be added later to a cellulose acylate solution prepared in advance. By containing these, the orientation of the fine particles Is easier to align.
- thermal stabilizers such as inorganic fine particles such as kaolin, talc, diatomaceous earth, quartz, calcium carbonate, barium sulfate, acidic titanium, and alumina, and alkaline earth metal salts such as calcium and magnesium can be added. Good.
- antistatic agents, flame retardants, lubricants, oils, etc. may be added.
- the cellulose ester film of the present invention is preferably formed by a solution casting film forming method.
- 1 and 10 represent melting pots.
- 2 and 11 represent the delivery pump.
- 6, 12 and 15 represent filters.
- 4 and 13 represent stock tanks.
- 5 and 14 represent the liquid feed pump.
- 8 and 16 represent conduits.
- 20 represents a junction tube.
- 21 represents a mixer.
- 30 represents a die.
- 31 represents a metal support.
- 32 represents the web.
- 33 represents a peeling position.
- 34 represents a tenter device.
- 35 represents a roll dryer.
- Reference numeral 36 denotes a transport roll.
- 37 represents a roll film.
- Fig. 4 is a diagram showing an example of a process schematically showing a dope preparation process, a casting process, and a drying process of the solution casting film-forming method according to the present invention.
- the method for preparing the needle-shaped fine particle dispersion according to the present invention is not particularly limited, but is preferably performed by the following method a) or b).
- a) An organic solvent and a resin for dispersing acicular fine particles are introduced into a dissolution vessel, and dissolved by stirring to obtain a resin solution. Separately, a mixture of an organic solvent and needle-shaped fine particles is transferred to a disperser such as a Manton gorley or a sand mill by a liquid feed pump and pre-dispersed. This is added to the above-mentioned resin solution, stirred and agglomerated with a filter to remove agglomerates and stocked as a fine particle dispersion (slightly different from FIG. 4). The prepared fine particle dispersion may be further repeatedly dispersed and filtered several times.
- a disperser such as a Manton gorley or a sand mill
- b) Add an organic solvent and resin to the dissolution vessel, stir and dissolve to make a resin solution, add needle-shaped fine particles to the resin solution, and disperse (such as Manton Gorin or Sand Mill) N, V)), and it is sent to a filter with a liquid feed pump to remove aggregates and to disperse needle-like fine particles. (Same operation may be repeated several times.) Then, the needle-shaped fine particle dispersion is transferred from the switching valve to the stock tank, and after standing and defoaming, transferred by a liquid feed pump (for example, a pressurized metering gear pump), filtered by a filter and transferred by a conduit.
- a liquid feed pump for example, a pressurized metering gear pump
- a plasticizer, a purple ray absorbent, a dispersant and the like may be further added to the acicular fine particle dispersion.
- Dispersers used in preparing the above-described acicular fine particle dispersion of the present invention are roughly divided into a medialess disperser and a media disperser, and both can be used.
- Examples of the medialess disperser include an ultrasonic type, a centrifugal type, and a high pressure type.
- a high pressure disperser is preferably used.
- a high-pressure dispersion device is a device that creates special conditions such as high shear and high-pressure conditions by passing a mixture of fine particles and solvent through a narrow tube at high speed. It is preferable that the maximum pressure condition inside the apparatus is 9.8 ⁇ 10 6 Pa or more in a tube having a tube diameter of 1 to 2000 / ⁇ ⁇ , for example, by treating with a high-pressure dispersion apparatus. More preferably, it is 19.6 ⁇ 10 6 Pa or more.
- the above-mentioned high-pressure disperser includes an ultra-high pressure homogenizer manufactured by Microfluidics Corporation (trade name: Microfluidizer 1), Nanomizer 1 manufactured by Nanomizer 1 and Ultra Ratarax, and other Manton Gorin type Examples thereof include a high-pressure dispersing device such as Izumi Food Machinery's homogenizer, Sanwa Kikai Co., Ltd. UHN-01.
- Examples of the media disperser include a ball mill, a sand mill, and a dyno mill that disperse using the collision force of media such as glass beads and ceramic beads.
- a media disperser is particularly preferably used.
- the fine particle dispersion thus prepared removes aggregates and foreign matters by filtration.
- a dope is prepared using the obtained fine particle dispersion.
- the dope is prepared by mixing the needle-shaped fine particle dispersion prepared in advance by the above method, the solvent, and the cellulose ester. Specifically, it is preferable that a part of the solvent and the acicular fine particle dispersion are added and mixed in the dissolution vessel, and then the remaining solvent and cellulose ester are added and dissolved therein with stirring. Additives and plasticizers according to the present invention Even if it is added to the melting pot, it can also be added after the addition.
- a cellulose ester an additive such as an additive or a plasticizer according to the present invention is added to the solvent in the dissolution vessel while stirring, and the acicular fine particle dispersion is further added during the dissolution of the cellulose ester.
- a solvent and a cellulose ester preferably an additive according to the present invention and an additive such as a plasticizer, are mixed to obtain a cellulose ester solution, and the acicular fine particle dispersion may be added thereto with stirring. it can.
- a dissolution vessel additives such as cellulose ester and plasticizer are dissolved in an organic solvent mainly composed of the above-mentioned good solvent for cellulose ester with stirring.
- an organic solvent mainly composed of the above-mentioned good solvent for cellulose ester with stirring.
- a method under normal pressure a method below the boiling point of the main solvent, a high-temperature dissolution method under pressure above the boiling point of the main solvent, a cooling dissolution method with cooling and dissolution, and a high-pressure dissolution at a fairly high pressure
- the high temperature dissolution method is preferably used in the present invention.
- the above-mentioned acicular fine particle dispersion and cellulose ester preferably the cellulose ester solution obtained by mixing the additive and solvent according to the present invention, are pumped after the cellulose ester is dissolved.
- the solution is sent to a filter and filtered.
- Filtration is preferably performed using an appropriate filter medium such as filter paper for the filter press.
- the filter medium in the present invention has a low absolute filtration accuracy to remove insoluble matters and the like! However, if the absolute filtration accuracy is too small, there is a problem that the filter medium is likely to be clogged, and a filter medium with an absolute filtration accuracy of 8 m or less is preferred. More preferred Filter media in the 3-6 m range is even more preferred.
- Examples of the filter paper include No. 244 and 277 of Azumi Filter Paper Co., Ltd., which are commercially available, and are preferably used.
- the filter material used for filtration can be a normal filter medium with no particular restrictions. However, plastic filter media such as polypropylene and Teflon (registered trademark), and metal filter media such as stainless steel fall off the fibers. Etc. are preferred. Filtration can be performed by a normal method, but the method of filtering while heating or holding at a temperature that is higher than the boiling point of the organic solvent used at normal pressure and in a range where the organic solvent does not boil is the filter medium.
- the increase in the differential pressure before and after (hereinafter sometimes referred to as filtration pressure) is preferably small.
- the preferred temperature range depends on the organic solvent used. Although it is true, it is 45 to 120 ° C, and 45 to 70 ° C is more preferable. It is preferable that the filtration pressure is small, preferably 0.3 to 1.6 MPa, more preferably 0.3 to 1.2 MPa, and further 0.3 to 1. OMPa. preferable.
- the dope thus obtained is stored in a stock tank, defoamed, and used for casting.
- a dope by mixing the needle-shaped fine particle dispersion and the cellulose ester solution in the dope pot, and the power mentioned as a method part or all of the cellulose ester solution and the fine particle dispersion Can also be mixed in-line.
- Fig. 4 shows an example of a process for adding an acicular fine particle dispersion in-line.
- the acicular fine particle dispersion is merged with a cellulose ester solution (or may be referred to as a dope stock solution) in a merge tube 20.
- a filter is disposed immediately before the merging pipe 20, and for example, a lump containing acicular fine particles or large foreign matter generated from the path due to exchange of the filter medium or the like is dispersed in the acicular fine particle dispersion or liquid being fed. It can be removed from the dope stock solution.
- a metal filter having solvent resistance is preferably used.
- the filter medium is preferably a metal, particularly stainless steel, from the viewpoint of durability. It is preferable that the viewpoint power of clogging also has a porosity of 60 to 80%.
- the filtration is performed with a metal filter medium having an absolute filtration accuracy of 30 to 60 / ⁇ ⁇ and a porosity of 60 to 80%. It can be removed and is preferable.
- metal filter media with absolute filtration accuracy of 30 to 60 m and porosity of 60 to 80% include NF-10, NF-12, and NF-of Finepore NF Series manufactured by Nippon Seisen Co., Ltd. 13 etc. can be mentioned.
- the absolute filtration accuracy is defined as follows. Place glass beads and pure water of test powders with different particle sizes specified in JIS Z 8901 in a beaker, and perform suction filtration with an apparatus as shown in Fig. 5 while stirring with a stirrer.
- Fig. 5 is a diagram schematically showing an apparatus for measuring absolute filtration accuracy.
- A represents a filter medium sample to be measured
- B represents a filtrate
- C represents a filtrate.
- the filtrate to be filtered B is stirred with a stirrer S, and is filtered with a low pressure vacuum pump P from atmospheric pressure to -4 kPa.
- V is a valve that can be opened and closed
- M is a manometer.
- Individual glass beads in filtrate B and filtrate C at this time The number is observed with a microscope, and the particle collection rate is obtained by the following equation (6).
- the particle size when the particle collection rate was 95% was defined as the absolute filtration accuracy.
- Particle collection rate (%) (Number in filtrate-Number in filtrate) Z (Number in filtrate) X 100
- the porosity of the filter medium is preferably 60 to 80%, more preferably 65 to 75%.
- a larger porosity is preferable because it has a higher pressure loss and a smaller porosity, which is preferable in terms of decreasing pressure.
- To determine the porosity first immerse the filter medium in a solvent with low surface tension, remove the air in the filter medium, calculate the amount of pores in the filter medium from the increased amount of solvent, and divide by the volume of the filter medium. can do.
- cellulose ester When preparing a dope by mixing a needle-shaped fine particle dispersion, cellulose ester, preferably an additive according to the present invention, and a solvent in advance in a dissolution vessel, it is usually unnecessary to add the needle-shaped fine particle dispersion in-line. However, if necessary, all or part of the acicular fine particles can be mixed in-line.
- the in-line addition process will be described with reference to FIG. 4.
- the cellulose ester solution sometimes referred to as a dope stock solution
- the needle-shaped fine particle dispersion are respectively transferred by the liquid feed pumps 5 and 14, and filtered by the filters 6 and 15. Then, the liquid is transferred through conduits 8 and 16, and the two liquids are joined together in a joining pipe 20.
- a mixer 21 such as an in-line mixer.
- a static mixer SWJ Toray static type in-tube mixer
- Hi-Mixer manufactured by Toray Engineering is preferred.
- the birefringence of the stretched film is measured by stretching in any of the drying steps described below, and the acicular fine particles having birefringence contained in the dope are measured based on the measurement result of the birefringence. It is preferable to adjust the content. In other words, if it is confirmed that the birefringence measurement result is deviated from the desired birefringence value, it is insufficient if the cause is considered to be due to the low content of acicular fine particles. It is preferable to add more fine particles to the dope stock solution to make up for what is being done. Add the fine particles at this time to the dope stock solution As a method, an in-line addition step is preferably used.
- a method of adjusting the content of needle-shaped fine particles having birefringence in the dope by a method of adding a needle-shaped fine particle dispersion having birefringence to the dope in-line is mentioned. Specifically, it can be added by a method using the above-mentioned in-line mixer.
- the acicular fine particle dispersion liquid added in-line (this may be referred to as an in-line additive liquid)
- the acicular fine particle dispersion liquid prepared by the above-described method can be used as it is.
- a solution in which a needle, fine particle concentration or cellulose ester concentration is adjusted by further adding a solvent, a cellulose ester solution, other additives, etc. can be used as the in-line additive solution.
- the in-line additive solution should preferably contain acicular fine particles at a concentration of 1 to 50 times the concentration of fine particles in the dope used for casting.
- the birefringence of the stretched film was measured, and the fine particle content in the dope was adjusted by increasing or decreasing the addition amount of the acicular fine particle addition liquid according to the measurement result of the birefringence.
- the birefringence value of the stretched film is preferably controlled to a desired value.
- the fine particle content in the dope can be increased or decreased by changing the mixing ratio of the acicular fine particle additive solution and the dope stock solution. In order to change the mixing ratio, the ratio of the feeding amount of the acicular fine particle-added calorie solution and the dope stock solution may be changed.
- the solid content concentration in the dope it is preferable to adjust the solid content concentration in the dope to 15% by mass or more, particularly 18 to 30% by mass. Is preferred. If the solid content concentration in the dope is too high, the viscosity of the dope becomes too high, and there may be a case where a sheer skin or the like occurs during casting to deteriorate the film flatness. Therefore, it is preferably 30% by mass or less.
- the dope prepared up to the previous step is fed to the die 30 and transferred to an endless metal support 31, for example, a stainless steel belt, or a metal support 31 such as a rotating metal drum. This is a process of casting a dope from the die 30.
- the surface of the metal support 31 is a mirror surface.
- a die 30 (for example, a pressure die) is preferable because the slit shape of the die portion can be adjusted and the film thickness can be uniformly blocked.
- the die 30 includes a coat hanger die, a T die, and the like, and any of them is preferably used. Dice to increase the film-forming speed Two or more groups may be provided on the metal support 31, and the dope amount may be divided and overlaid.
- the surface temperature of the metal support for casting is 10 to 55 ° C
- the temperature of the dope is 25 to 60 ° C
- the temperature of the solution may be equal to or higher than the temperature of the support. It is more preferable to set the temperature to 5 ° C or more.
- the more preferred range of the temperature of the support depends on the organic solvent used, but is 20-55. A more preferable range of C and the solution temperature is 35 to 45 ° C.
- Web (The name of the dope film after casting the dope on the metal support is the web.) 32 is heated on the metal support 31 and the solvent is evaporated until the web 32 can be peeled from the metal support 31. It is a process to make.
- To evaporate the solvent there are a method of blowing wind from the web 32 side, a method of transferring heat with liquid from the back surface of Z or the metal support 31, and a method of transferring front and back forces by radiant heat.
- the backside liquid heat transfer method is preferred because of its good drying efficiency. A method of combining them is also preferable. In the case of backside liquid heat transfer, it is preferable to heat at or below the boiling point of the organic solvent having the lowest boiling point or the organic solvent having the lowest boiling point.
- the web 32 having the solvent evaporated on the metal support 31 is peeled off at the peeling position 33.
- the peeled web 32 is sent to the next process. If the residual solvent amount of the web 32 at the time of peeling is too large (the formula described later), it will be difficult to peel off, or conversely, if it is dried on the metal support 31 and then peeled off, A part of 32 is peeled off.
- the thin web when the thin web is peeled off from the metal support, it is preferable to peel the thin web with a force within 170 NZm from the minimum tension that can be peeled as the peeling tension, in order to prevent the flatness from being deteriorated or twisted. A force of within is more preferred.
- the film forming speed As a method for increasing the film forming speed (the amount of residual solvent is as large as possible, and the film forming speed can be increased because of peeling), there is a gel casting method (gel casting). It is a method in which a poor solvent for cellulose ester is added to the dope and gelled after casting the dope. And a method of gelling by lowering the temperature of the metal support. By gelling on the metal support 31 and increasing the strength of the film at the time of peeling, peeling can be accelerated and the film forming speed can be increased.
- the web 32 on the metal support 31 can be peeled in the range of 5 to 150% by mass depending on the strength of the condition, the length of the metal support 31, etc., but peels off when the residual solvent amount is higher.
- the temperature at the peeling position on the metal support 31 is 10 to 40 ° C, preferably 15 to 30 ° C, and the residual solvent amount of the web 32 at the peeling position is 10 to 120. It is preferable to set it as the mass%.
- the amount of residual solvent when peeling from the metal support is preferably 10 to 150% by mass, more preferably 70. It is -150 mass%, More preferably, it is 100-130 mass%.
- the ratio of the good solvent contained in the residual solvent is preferably 50 to 90% by mass, more preferably 60 to 90% by mass, and particularly preferably 70 to 80% by mass.
- the amount of residual solvent can be expressed by the following formula (7).
- Residual solvent amount (% by mass) ⁇ (M-N) / N ⁇ X 100
- M is a mass of the web at an arbitrary time point, and is a mass measured by the following gas chromatography.
- N is a mass when the M is dried at 110 ° C. for 3 hours.
- the measurement is performed by gas chromatography connected to a headspace sampler.
- gas chromatography 5890 type SERISII manufactured by Hewlett Packard Co. and head space sampler HP7694 type were used, and the measurement was performed under the following measurement conditions.
- the present invention is not limited to the force arrangement in which the roll drying device 35 is arranged after the tenter device 34.
- hot air is generally blown on both sides of the web, but there is also a means of heating by applying a microwave instead of the wind. Too rapid drying tends to impair the flatness of the finished film.
- the drying temperature is usually in the range of 40 to 250 ° C throughout.
- drying temperature, amount of drying air, and drying time will differ, and the drying conditions should be selected appropriately according to the type and combination of solvents used.
- 37 is the winding of the finished cellulose ester film. In the drying process of a cellulose ester film, and more preferably wound in the residual solvent amount 0.5 wt 0/0 to the following preferred instrument 0.1 wt% to below.
- the cellulose ester film of the present invention is formed into a film by a casting process after preparing a dope to which acicular fine particles are added.
- a method for orienting the added acicular fine particles the film is formed at the time of film production.
- a method of stretching in the MD direction, or a method of making a dope flow during casting and orienting the acicular particles along this flow can be used. It is also possible to promote the orientation of acicular fine particles with an electric field or magnetic field.
- MD represents the film forming direction of the cellulose ester film
- TD represents the direction orthogonal to the film forming direction within the plane of the cellulose ester film. Therefore, in the case of a rolled cellulose ester film, MD is the film longitudinal direction, and TD is the film width direction.
- the present invention can be created by the following manufacturing method.
- (A) A method for producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, comprising acicular fine particles having birefringence and a dope containing cellulose ester and a solvent.
- Nozzle force When extruding onto a casting support, the dope is cast onto the casting support while driving the nozzle in a direction that is not parallel to the direction of movement of the casting support.
- a method for producing a cellulose ester film it is preferable that a plurality of nozzles be arranged in the width direction (Fig. 6 (a)). Therefore, the dope is pushed out to the casting support while reciprocating or vibrating the coater with the nozzle arranged in a direction perpendicular to the moving direction of the casting support (Fig. 6 (b)).
- the needle-shaped fine particles are oriented.
- the dope is cast on the casting support by smooth casting by casting the cover layer by successive casting. It is preferable to do this.
- (B) A method for producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, wherein acicular fine particles having birefringence and a dope containing cellulose ester and a solvent are flowed from a die.
- a die is used in which the dope supply unit and the dope discharge unit are arranged in a direction that is not parallel to the moving direction of the casting support (Fig. 7).
- the dope supply unit and the dope discharge unit are arranged in a direction substantially orthogonal to the moving direction of the casting support in the die.
- the dope flows in a direction that is not parallel to the moving direction of the casting support, and a part of the flow is also discharged onto the casting support.
- the dope once discharged from the dope discharging unit is circulated and returned to the dope supplying unit again. Thereby, the acicular fine particles in the dope discharged onto the casting support can be oriented.
- a groove may be provided in a direction that is not parallel to the moving direction of the casting support inside the slit of the die (FIG. 8 (a)).
- the dope with the acicular fine particles oriented in the TD direction is cast by allowing the flow along the grooves during casting in the die. about this
- it is preferable to make the alignment uniform and smooth by casting the dope by successive casting (cover layer) using another die with grooves cut in the slit in the opposite direction. 8 (b)).
- (C) A method of producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, comprising acicular fine particles having birefringence and a dope containing cellulose ester and a solvent.
- a method for producing a cellulose ester film comprising rubbing on a casting support in a direction that is not parallel to the moving direction of the casting support (that is, pressing a member that determines the direction of the layer).
- the member to be rubbed is not limited, but includes, for example, a gravure roll with a diagonal line, which will be described later, or an orientation belt provided separately. This gives a shearing force to the dope, thereby orienting the acicular fine particles.
- (D) A method for producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, and casting dope containing acicular fine particles having birefringence and cellulose ester and a solvent.
- a cellulose ester characterized by using a gravure roll to cast on a support so that the dope is rubbed (pressed) in a direction that is not parallel to the direction of movement of the cast support.
- a gravure roll with a diagonal line is used.
- the dotted line shows the hatched groove on the gravure roll.
- the dope cast on the support is cast so that gravure is observed in the lateral direction or oblique direction by a gravure roll.
- a gravure roll As shown in the figure, the rotational speed of the casting support and the gravure roll is controlled so that the gravure is marked in the lateral direction or the oblique direction.
- the force becomes a diagonal line as it is in the gravure roll. Since the angle of the diagonal line changes by attaching, the rotation speed of the casting support and the gravure roll can be adjusted so that the gravure is attached sideways.
- the gravure roll may be provided in a direction perpendicular to the film forming direction or may be provided in an inclined manner.
- (E) A cellulose ester film containing acicular fine particles having birefringence A method of manufacturing by a casting method, in which a needle-like fine particle having birefringence, a cellulose ester and a dope containing a solvent are cast on a casting support using a die. A method for producing a cellulose ester film, wherein a dope on a casting support is pressed by a member that moves in a direction that is not parallel to the moving direction of the film.
- the force cast web shown in Fig. 10 is rubbed on the surface with an alignment belt as an example of the member.
- the surface of the alignment belt preferably has a structure on the surface that promotes alignment by forming grooves like the gravure roll.
- the grooves of the alignment belt are cut obliquely with respect to the direction of movement of the alignment belt (Fig. 10 (a)).
- the orientation can be adjusted to be horizontal by adjusting the moving speed of the alignment belt and the casting speed of the dope (that is, the moving speed of the casting support).
- the grooves of the alignment belt may be cut along the belt rotation direction.
- the rotation angle of the alignment belt is not parallel to the web conveyance direction, and the angle is set to be the direction. The same effect can be obtained by arranging the components (Fig. 10 (b)).
- Grooves cut into gravure rolls are spaced in the range of 25-250 lines Z inch (2.54 mm), preferably 50-150 lines Z inches, and engraving depth for effective orientation. Is about 30 to 500 m, and the engraving angle is preferably in the range of 45 ° ⁇ 15 °.
- a film in which needle-shaped fine particles are oriented can be obtained by transverse stretching.
- a cast resin support made of resin may be used and a web containing a solvent may be stretched together with the support! /.
- this method may be combined with the above method because the orientation may not be sufficient only by stretching. It is preferable to use.
- a cellulose ester film particularly preferably used for a liquid crystal display device in a transverse electric field switching mode can be produced.
- (G) A method of producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, wherein acicular fine particles having birefringence and a dope containing cellulose ester and a solvent are flowed from a die.
- Laminar flow and turbulent flow are defined by Reynolds (Re) number.
- Reynolds number is the typical length of an object in the flow, D, velocity U, density p, viscosity r?
- Re 2300 is laminar
- 2300 Re 3000 is a transition zone
- Re> 3000 is turbulent.
- the size of the fine particles, the casting speed, the density of the dope, etc. are adjusted so that the Reynolds number is 2300 or less.
- FIG. 11 shows a cross-sectional view of a die used for casting.
- the slit interval usually ( By taking longer than 10 to 3 Omm), for example, with the above slit width, it is possible to orient the acicular fine particles in the dope by utilizing a portion that becomes a laminar flow inside the die, for example, by setting it to 35 mm or more.
- (H) A method for producing a cellulose ester film containing acicular fine particles having birefringence by a solution casting method, comprising acicular fine particles having birefringence, a dope containing cellulose ester and a solvent.
- a solution casting method comprising acicular fine particles having birefringence, a dope containing cellulose ester and a solvent.
- Figure 12 illustrates this.
- the ribbon is stretched by pulling the ribbon in the MD direction based on the difference between the dope discharge speed and the conveyance speed of the support (belt).
- the orientation can be obtained in the same manner by stretching the web in the MD direction while containing a solvent.
- this method sufficient alignment may not be obtained, and therefore it is preferable to use it in combination with other methods. Also, this method cannot be oriented in the TD direction.
- the cellulose ester film of the present invention can exhibit birefringence by stretching.
- a film containing a solvent can be stretched during the production of the solution casting method, or a film in a state where the solvent is dried can be stretched.
- the stretching temperature is preferably a glass transition temperature of the film of 20 ° C. or lower and below the temperature at which it flows.
- the glass transition temperature of the film can be measured by a known method. Stretching can be performed in the film forming direction or the width direction. In the present invention, it is preferable to stretch at least in the width direction.
- the cellulose ester resin By stretching, the cellulose ester resin exhibits birefringence, and acicular fine particles having birefringence have a higher ratio of orientation in the stretching direction.
- the birefringence value of the cellulose ester film is considered to be the sum of the birefringence due to the cellulose ester resin and the birefringence due to the orientation of the acicular fine particles having birefringence. As a result, it has become possible to stably produce a cellulose ester film having characteristics that were conventionally difficult to produce.
- the retardation value Ro is 105 nm ⁇ Ro ⁇ 350 nm, and Nz is 0.2 ⁇ Nz ⁇ 0.7, more preferably Rth, which has been difficult to produce with conventional cellulose ester films.
- Nz is 0.2 ⁇ Nz ⁇ 0.7, more preferably Rth, which has been difficult to produce with conventional cellulose ester films.
- the cellulose ester film of the present invention extends in the width direction by using fine particles having a needle shape and negative birefringence, but nevertheless, the direction orthogonal to the width direction, that is, the film forming direction.
- the film can have a slow axis.
- This cellulose ester film is used as a polarizing plate protective film.
- the horizontal electric field switching mode here includes the power of the IPS mode and the fringe-field switching (FFS) mode, which can greatly improve the viewing angle as with the IPS mode.
- FFS fringe-field switching
- Nz (nx-nz) / (nx-ny) (where nx is the refractive index in the slow axis direction in the plane, ny is the refractive index in the direction perpendicular to the slow axis in the plane, and the thickness of the film)
- nx is the refractive index in the slow axis direction in the plane
- ny is the refractive index in the direction perpendicular to the slow axis in the plane
- the thickness of the film The refractive index in the direction is nz and d is the film thickness (nm).
- a cell mouth-ester film having the retardation value of the present invention it is possible to preferably obtain a cell mouth-ester film having the retardation value of the present invention and to obtain a cellulose ester film having good flatness.
- These width retention or transverse stretching in the film forming process is preferably performed by a tenter, and may be a pin tenter or a clip tenter.
- the stretching step will be described in more detail.
- the stretch ratio in producing the cellulose ester film of the present invention is 1.01 to 3 times, preferably 1.5 to 3 times, with respect to the film forming direction or the width direction.
- the side to be stretched at a high magnification is 1.01 to 3 times, preferably 1.5 to 3 times, and the stretching ratio in the other direction is 0.8 to 1.5.
- the film can be stretched by a factor of preferably 0.9 to 1.2.
- the cellulose ester film containing acicular fine particles tends to have a high haze.
- the haze increases remarkably when the draw ratio is increased.
- it contains at least one additive that also selects the polymer strength obtained by polymerizing the polyester, polyhydric alcohol ester, polycarboxylic acid ester and ethylenically unsaturated monomer of the present invention.
- the cellulose ester film can be preferably used as a retardation film with little increase in haze even when stretched at a high magnification of 1.5 times or more.
- the film haze value is preferably 2% or less, more preferably 1.5% or less, and most preferably 1.0% or less.
- a process A is a process of gripping a film transported from a film transport process DO (not shown).
- the next process B as shown in FIG.
- the film is stretched in a direction (perpendicular to the traveling direction of the film), and in step C, the stretching is completed and the film is conveyed while being held.
- a slitter that cuts off the end in the film width direction after the film is peeled off and before the start of Step B and immediately after Z or Step C.
- a slitter that cuts off the film edge immediately before the start of the process A.
- the stretching operation may be performed in multiple stages, and it is preferable to perform biaxial stretching in the casting direction and the width direction.
- simultaneous biaxial stretching may be performed or may be performed stepwise.
- stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is performed in any one of the stages. It is also possible to bark.
- Simultaneous biaxial stretching also includes stretching in one direction and contracting the other while relaxing the tension.
- the stretching direction in the present invention refers to the stretching stress directly in the stretching operation. Usually, it is used in the sense of the direction of application, but when biaxially stretched in multiple stages, it is used in the sense of the one having the largest draw ratio.
- the film heating rate in step B is preferably in the range of 0.5 to 10 ° C Zs in order to improve the orientation angle distribution.
- the stretching time in step B is preferably a short time in order to reduce the dimensional change rate under the conditions of 80 ° C and 90% RH.
- the minimum required stretching time range is defined from the viewpoint of film uniformity. Specifically, it is preferably in the range of 1 to 10 seconds, and more preferably 4 to 10 seconds.
- the temperature in step B is 40 to 180 ° C, preferably 100 to 160 ° C.
- the heat transfer coefficient may be constant or changed.
- the heat transfer coefficient preferably has a heat transfer coefficient in the range of 41.9 to 419 X 10 3 jZm r. More preferably, it is in the range of 41.9 to 209.5 X 10 3 j / m 2 hr, and the range of 41.9 to 126 X 10 3 j / mr is most preferable.
- the stretching speed in the width direction in the step B may be constant or may be changed.
- the stretching speed is preferably 50 to 500% / min, more preferably 100 to 400% / min, and most preferably 200 to 300% Zmin.
- the temperature distribution in the width direction of the atmosphere is small.
- the temperature distribution in the width direction in the preferred tenter process is preferably within ⁇ 5 ° C. Within ⁇ 2 ° C is more preferable. Within ⁇ 1 ° C is most preferable. By reducing the temperature distribution, it can be expected that the temperature distribution in the width of the film will also be reduced.
- process D1 The power to perform at 50-160 ° C S Preferred ⁇ . More preferably, it is in the range of 80 to 150 ° C, and most preferably in the range of 110 to 150 ° C.
- Step D1 the fact that the atmospheric temperature distribution in the width direction of the film is small is also preferable from the viewpoint of improving the uniformity of the film.
- ⁇ 5 ° C is preferred.
- ⁇ 2 ° C is more preferred.
- ⁇ 1 ° C is most preferred.
- the film transport tension in step D1 is affected by the properties of the dope, the amount of residual solvent at the time of peeling and at step DO, the temperature in step D1, etc., but 120 to 200 N / m is preferred 140 -2 OONZm is more preferred. 140 to 160 NZm is most preferred.
- a tension cut roll is preferably provided for the purpose of preventing the film from stretching in the transport direction in step D1. After drying, it is preferable to provide a slitter and cut off the end portion before winding to obtain a good shape.
- the cellulose ester film when it is long, it is preferably coincident with the slow axial force conveying direction of the cellulose ester film. This is because a slow axis can be formed in the transport direction by continuously stretching a cellulose ester film containing needle-like negative birefringent fine particles in the width direction.
- the long PVA polarizer has an absorption axis in the longitudinal direction, and the slow axis of the cellulose ester film applied as a polarizing plate protective film is in the longitudinal direction. Become. This is a preferable configuration from the viewpoint of productivity of the polarizing plate.
- the amount of residual solvent to finish drying is 0.5% by mass or less, preferably 0.1% by mass or less, a film having good dimensional stability can be obtained.
- a winding method there are methods for controlling tension such as a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, and the like using a commonly used winder. Use them! Divide them!
- the residual solvent can be expressed by the above formula (7).
- the film thickness of the cellulose ester film varies depending on the purpose of use. From the viewpoint of thinning the liquid crystal display device, the finished film is preferably in the range of 10 to 150 / ⁇ ⁇ . 30 to the range of LOO ⁇ m In particular, the range of 40 to 80 ⁇ m is preferable. If it is too thin, for example, the required strength as a protective film for a polarizing plate may not be obtained. If it is too thick, the superiority of the thin film over the conventional cellulose ester film is lost. To adjust the film thickness, it is better to control the dope concentration, pumping amount, slit gap in the die base, die extrusion pressure, metal support speed, etc. to achieve the desired thickness. . Further, as a means for making the film thickness uniform, it is preferable to use a film thickness detection means to feed back the feedback information that has been programmed to each of the above-mentioned devices for adjustment.
- the atmosphere in the drying apparatus may be air, but is performed in an inert gas atmosphere such as nitrogen gas or carbon dioxide gas. May be. However, the danger of the explosion limit of the evaporating solvent in a dry atmosphere must always be considered!
- the optical film of the present invention preferably a cellulose ester film
- the optical film of the present invention is referred to as an optical film A.
- the optical film A is used as a cellulose ester film disposed on the liquid crystal display cell side of a polarizing plate used in a liquid crystal panel of a transverse electric field switching mode type, and is refracted in the slow axis direction in the film plane.
- nx (a) When the refractive index is nx (a), the refractive index in the direction perpendicular to X in the film plane is ny (a), the refractive index in the film thickness direction is nz (a), and the film thickness is d (nm)
- the retardation value Ro satisfying the relationship of nx (a)> nz (a)> n (a) and represented by the following formula (i) is 105 nm ⁇ Ro (a) ⁇ 350 nm, and the following formula ( It is preferable that Nz represented by ii) satisfies the optical value of 0.2 ⁇ Nz ⁇ 0.7.
- nx (a) is preferably in the film forming direction of the optical film A.
- the polarizing plate of the present invention uses the optical film as a protective film for the polarizing plate, and is disposed so that the slow axis of the optical film is substantially parallel or perpendicular to the absorption axis of the polarizer. Preferred.
- one polarizing plate sandwiching the liquid crystal cell of the transverse electric field switching mode type is the polarizing plate, and a polarizing plate protective film disposed on the liquid crystal display cell side of the other polarizing plate.
- Force 15nm ⁇ Ro ⁇ When the Rth (a) expressed by the above formula (iii) satisfies the optical value of 15 nm ⁇ Rth (a) ⁇ 15 nm, a lateral electric field switching mode type liquid crystal display device with improved viewing angle characteristics can be obtained. Since it is obtained, it is particularly preferable.
- a preferred optical film B in the present invention is a polarizing plate using the optical film of the present invention, on the liquid crystal display cell side of the other polarizing plate arranged with a liquid crystal cell of a transverse electric field switching mode type interposed therebetween.
- the retardation values Ro (b) and Rth (b) represented by the following formulas (iv) and (V) are one 15 nm ⁇ Ro (b) ⁇ 15 nm and one 15 nm. It satisfies the optical value of ⁇ Rth (b) ⁇ 15nm.
- nx (b) represents the refractive index in the slow axis direction in the film plane
- ny (b) represents the refractive index in the direction perpendicular to the slow axis
- nz (b) represents the film thickness direction
- D represents the film thickness (nm).
- the optical film B is preferably a cellulose ester film, which is sometimes referred to as a cell mouth ester film B.
- the optical film B may contain the polymers described in paragraph numbers [0032] to [0049] of JP-A-2003-12859.
- the preferred retardation value can be adjusted according to the type, amount and stretching conditions of the polymer described in the above publication.
- High transmittance is required as a component of LCD display devices, and the 500nm transmittance of the cellulose ester film produced by adding a combination of the above-mentioned additives is preferably 85-100%, more preferably 90-100%. Preferred is 92-100%.
- the 40 nm transmittance is preferably 40-100%, more preferably 50-100%, and most preferably 60-100%.
- UV absorption performance may be required, in which case the 380 nm transmittance is 0
- the cellulose ester film of the present invention has a thickness distribution R (%) in the width direction of 0 ⁇ R (
- %) ⁇ 5% is preferred, more preferably 0 ⁇ R (%) ⁇ 3%, particularly preferably 0 ⁇ R (%) ⁇ 1%.
- the cellulose ester film of the present invention has a haze value of preferably 2% or less, more preferably 1.5%, and most preferably 1% or less.
- the elastic modulus is preferably in the range of 1.5 to 5 GPa, more preferably in the range of 1.8 to 4 GPa, and particularly preferably in the range of 1.9 to 3 GPa.
- the stress at break is preferably in the range of 50 to 200 MPa, more preferably in the range of 70 to 150 MPa, and even more preferably in the range of 80 to: LOOMPa.
- the elongation at break at 23 ° C and 55% RH is preferably in the range of 20-80% 30-6
- the range of 0% is more preferable.
- the range of 40-50% is most preferable.
- the hygroscopic expansion coefficient is preferably in the range of 1 to 1%, more preferably in the range of 0.5 to 0.5%, and the force S is further preferably in the range of 0 to 0.2% or less.
- foreign matter bright spots is 0-80 amino ZCM 2 ranges der Rukoto desirability instrument 0-60 amino ZCM 2 It is further preferred instrument 0-30 pieces / cm 2 Most preferred.
- the contact angle of the cellulose ester film after the alkali hatching treatment is preferably 5 to 55 °, more preferably 10 to 30 °, more preferably 0 to 60 °.
- the center line average roughness (Ra) is a numerical value defined in JIS B 0601. Examples of the measuring method include a stylus method or an optical method.
- the center line average roughness (Ra) of the cellulose ester film of the present invention is preferably 20 nm or less, more preferably lOnm or less, and particularly preferably 4 nm or less.
- the polarizing plate can be produced by a general method.
- the cellulose ester film of the present invention that has been treated with an alkali acid solution uses a complete acid-polyvinyl alcohol aqueous solution on at least one surface of a polarizer produced by immersing and stretching a polybulal alcohol film in an iodine solution. It is preferable to stick them together.
- the cellulose ester film of the present invention may be used on the other surface, or another polarizing plate protective film may be used.
- a commercially available cellulose ester film can be used as the polarizing plate protective film used on the other surface.
- KC8UX2M, KC4UX, KC5UX, KC4UY, KC8UY, KC12UR, KC8UY—HA, KC8UX—RHA manufactured by Co-Caminoltop Co., Ltd.
- cyclic olefins other than cellulose ester film A film such as a resin, an acrylic resin, a polyester, or a polycarbonate may be used as the polarizing plate protective film on the other surface. In this case, since the suitability is low, it is preferable to bond to the polarizing plate through an appropriate adhesive layer.
- the polarizing plate of the present invention is obtained by using the cellulose ester film of the present invention on at least one side of a polarizer as a polarizing plate protective film.
- the slow axis of the cellulose ester film is arranged so as to be substantially parallel or perpendicular to the absorption axis of the polarizer! /.
- the cellulose ester film of the present invention is a liquid crystal display.
- Examples of the polarizer preferably used in the polarizing plate of the present invention include a polyvinyl alcohol-based polarizing film, which is a polybutyl alcohol-based film dyed with iodine and a dichroic dye. There is something.
- a polybula alcohol film a modified polybulal alcohol film modified with ethylene is preferably used.
- a polybulal alcohol aqueous solution is formed into a film and dyed by uniaxially stretching it, or after being dyed and then uniaxially stretched, preferably subjected to a durability treatment with a boron compound.
- the thickness of the polarizer is 5 to 40 m, preferably 5 to 30 m, and particularly preferably 5 to 20 ⁇ m.
- one side of the cellulose ester film of the present invention is bonded to form a polarizing plate. Bonding is preferably performed using a water-based adhesive mainly composed of a complete acid polybutyl alcohol or the like. In the case of a resin film other than the cellulose ester film, it can be bonded to the polarizing plate through an appropriate adhesive layer.
- the stretching direction (usually the longitudinal direction) shrinks and is orthogonal to the stretching. Extends in the direction (usually the width direction).
- the direction of stretching of the polarizer is bonded to the casting direction (MD direction) of the polarizing plate protective film. Therefore, when the polarizing plate protective film is used as a thin film, it is particularly important to suppress the stretching rate in the casting direction. is there. Book Since the cell mouth-ester film of the invention is excellent in dimensional stability, it is preferably used as such a polarizing plate protective film.
- the polarizing plate can be further constituted by laminating a protective film on one surface of the polarizing plate and a separate film on the other surface.
- the protective film and the separate film are used for the purpose of protecting the polarizing plate at the time of shipping the polarizing plate and at the time of product inspection.
- the liquid crystal display device of the present invention having excellent visibility and an increased viewing angle can be produced.
- the transverse electric field switching mode of the present invention is fringe electric field switching (FFS: Fringe).
- the polarizing plate of the present invention can be incorporated similarly to the IPS mode, and the liquid crystal display device of the present invention having the same effect can be manufactured.
- polarizing plates are arranged on both sides of the driving liquid crystal cell.
- the cellulose ester film of the present invention (optical film A) satisfying the optical values of retardation value Ro of 105 nm ⁇ Ro ⁇ 350 nm and Nz of 0.2 ⁇ Nz ⁇ 0.7 is the polarizing plate protective film.
- the polarizing plate A force is used on one surface of the liquid crystal cell.
- the cellulose ester film A is disposed between the adjacent polarizer and the driving liquid crystal cell.
- Polarizing plate B placed on the other side across the liquid crystal cell is used as polarizing plate protective film, optical film B satisfying the optical values of 15 nm ⁇ Ro ⁇ 15 nm and-15 nm ⁇ Rth ⁇ 15 nm. It is particularly preferable that the optical film B is disposed between the adjacent polarizer and the driving liquid crystal cell. Specifically, the configuration is shown in FIG. 15, but the configuration may be such that the viewing side polarizing plate and the knock light side polarizing plate are arranged oppositely across the liquid crystal cell. Further, the arrangement of the cellulose ester film having the axis direction shown in FIG. 16, the polarizing plate and the liquid crystal cell can be cited as a preferred transverse electric field switching mode type liquid crystal display device in the present invention.
- the polarizing plate protective film 2a of Configuration 1 in FIG. 15 is the cellulose ester film A and the polarizing plate protective film 2b is the optical film B, or the polarization protective film 2b of Configuration 1 in FIG.
- the optical plate protective film 2a is preferably the optical film B, and the polarizing plate protective film 2b is preferably the optical film A.
- 60 represents a polarizing plate.
- 62 represents an optical film B (polarizing plate protective film).
- 64 represents a polarizer.
- 66 represents an optical film A (polarizing plate protective film) according to the present invention.
- 68 represents a polarizing plate protective film.
- 70 represents a horizontal electric field switching mode type liquid crystal cell.
- 71 represents the rubbing axis of the liquid crystal.
- 72 and 74 represent the transmission axes of the polarizer.
- 73 and 75 represent the absorption axes of the polarizer.
- 76 represents the slow axis of the optical film A according to the present invention.
- the optical film B is preferably a cellulose ester film.
- This cellulose ester film B is described in JP-A-2003-12859. It can produce by this method. Specifically, it is preferable to adjust the retardation value, preferably including a polymer described in paragraph Nos. [0032] [0049] of JP-A-2003-12859 in a cellulose ester film. Can be done in different types and quantities.
- These polymers have preferably a on that it is contained preferably instrument particularly 3 to 25% by weight of 1 to 35 mass 0/0 contained in the cellulose ester film B controls the Rita one Deshiyon value.
- the cellulose ester film B can be produced by a known method for producing a cellulose ester film. In particular, it is preferable to produce it in combination with the above-mentioned additives which may use the production method described in JP-A-2002-249599.
- a suspension was prepared containing 60 g of methanol (20% with respect to water) and 80 g of strontium hydroxide octahydrate (26.7% with respect to water) per 300 g of water. Put this suspension in a beaker , While stirring the suspension with a stirring motor (Shinto Kagaku Co., Ltd., Three-One Motor BLh600), water bath with ultrasonic irradiation function (Honda Electronics Co., Ltd., ultrasonic cleaner W—113MK-II) was irradiated with ultrasonic waves.
- a stirring motor Shinto Kagaku Co., Ltd., Three-One Motor BLh600
- water bath with ultrasonic irradiation function Honda Electronics Co., Ltd., ultrasonic cleaner W—113MK-II
- the suspension was filtered with suction through a filter paper of 0.1 ⁇ m pore size, the product was placed in 500 ml of acetone, stirred for 24 hours, washed and washed again.
- the product obtained by filtration was dried in a vacuum dryer.
- the dried crystals were observed with a scanning electron microscope (SEM), they were strontium carbonate needle crystal particles with a length of 200 nm or less (average 150 nm) and a thickness of 10 to 20 nm and a needle ratio of 4 to 20 I was able to confirm.
- the minor axis is 10-20 nm, the major axis is 50-100 nm, expressed in Al (OH) and stearic acid.
- Rutile-type titanium oxide TTO-S-4 manufactured by Ishihara Sangyo Co., Ltd.
- surface treatment was used as needle-shaped fine particles 2.
- compositions were continuously dispersed for 5 minutes with an output scale of 10 using an ultrasonic disperser UH-300 (manufactured by SMT Co., Ltd.).
- Dispersion media Zircon beads (particle size 50 ⁇ m) 400 g Circumferential speed 10m / sec
- the mill jacket was cooled with cooling water.
- compositions were continuously dispersed for 5 minutes with an output scale of 10 using an ultrasonic disperser UH-300 (manufactured by SMT Co., Ltd.).
- the above dispersion was dispersed with an Ultra Apex Mill UAM015 (manufactured by Kotobuki Kogyo Co., Ltd.) under the following conditions, and the surface of the needle-shaped fine particles was treated with a silane coupling agent.
- Dispersion media Zircon beads (particle size 50 ⁇ m) 400g
- the mill jacket was cooled with cooling water.
- compositions were continuously dispersed for 5 minutes on an output scale 10 with an ultrasonic disperser UH-300 (manufactured by SMT Co., Ltd.).
- Dispersion media Zircon beads (particle size 50 ⁇ m) 400g
- the mill jacket was cooled with cooling water.
- the surface of the acicular fine particles was dispersed simultaneously with the stearic acid treatment.
- compositions were continuously dispersed for 5 minutes on an output scale 10 with an ultrasonic disperser UH-300 (manufactured by SMT Co., Ltd.).
- the dispersion was dispersed with an Ultra Apex Mill UAMO 15 (manufactured by Kotobuki Kogyo Co., Ltd.) under the following conditions to prepare an acicular fine particle liquid 4.
- Dispersion media Zircon beads (particle size 50 ⁇ m) 400 g
- the mill jacket was cooled with cooling water.
- Additive A (Polyester compound) 26 parts Tinuvin 326 (Ciba Specialty Chemicals) 1 part Tinuvin 109 (Ciba Specialty Chemicals) 1 copy
- Tinuvin 171 (Ciba Specialty Chemicals) 1 part Methylene chloride 468 words
- a dope solution 1 was prepared.
- a dope solution 2 was prepared in the same manner as in the preparation of the dope solution 1, except that the same amount of additive B (polyhydric alcohol ester) was used instead of the additive A.
- additive B polyhydric alcohol ester
- a dope solution 3 was prepared in the same manner as in the preparation of the dope solution 1 except that the same amount of the additive C (polyvalent carboxylic acid ester) was used instead of the additive A.
- a dope solution 4 was prepared in the same manner as in the preparation of the dope solution 1, except that the same amount of additive D (ethylenically unsaturated monomer polymer) was used instead of the additive A.
- additive D ethylenically unsaturated monomer polymer
- Dope solution 5 was prepared in the same manner as in the preparation of dope solution 1, except that the same amount of additive E (ethylenically unsaturated monomer polymer 2) was used instead of additive A.
- additive E ethylenically unsaturated monomer polymer 2
- Tinuvin 171 (Ciba Specialty Chemicals) 1 part
- the composition was put into a container and completely dissolved.
- a dope solution 6 was prepared.
- Tinuvin 171 (Ciba Specialty Chemicals) 1 part
- a dope solution 7 was prepared.
- Tinuvin 171 (Ciba Specialty Chemicals) 1 part
- a dope solution 8 was prepared.
- Tinuvin 326 (Ciba Specialty Chemicals) 1 part Tinuvin 109 (Ciba Specialty Chemicals) 1 part Tinuvin 171 (Ciba Specialty Chemicals) 1 part Methylene chloride 410
- a dope solution 9 was prepared.
- Tinuvin 326 (Ciba Specialty Chemicals) 1 part Tinuvin 109 (Ciba Specialty Chemicals) 1 part Tinuvin 171 (Ciba Specialty Chemicals) 1 part
- a dope solution 10 was prepared.
- a dope solution 12 was prepared in the same manner as in the preparation of the dope solution 1 except that the same amount (12% by mass) of triphosphate (abbreviated as TPP) was used instead of the additive A.
- TPP triphosphate
- TPP Triphenyl phosphate
- EPEG Ethylphthalyl glycolate
- Tinuvin 171 (Ciba Specialty Chemicals) 1 part Methylene chloride 468 words
- a dope solution 13 was prepared.
- Tinuvin 326 (Ciba Specialty Chemicals) 1 part Tinuvin 109 (Ciba Specialty Chemicals) 1 part Tinuvin 171 (Ciba Specialty Chemicals) 1 part Methylene chloride 497
- a dope solution 14 was prepared.
- dope liquids 101 to 106 In the preparation of the above dope liquids 1 to 6 and 11 to 14, dope liquids 101 to 106, except that the acicular fine particle liquid 1 was changed to the acicular fine particle liquid 2 (SrCO + silane coupling agent).
- the acicular fine particle liquid 1 is changed to the acicular fine particle liquid 3 (SrCO + step).
- a dope solution 206 was prepared in the same manner except that the solution was changed to (3) acid.
- cellulose acetate propionate (acetylation degree 1.90, propionyl substitution degree 0.75, weight average molecular weight 190,000) was added to the same amount of cellulose acetate propionate.
- Dope solutions 301 to 306 and 311 to 314 were prepared in the same manner except that it was changed to the nate (degree of substitution of acetyl group 0.18, degree of substitution of pionyl 2.50, weight average molecular weight 160,000).
- Dope solutions 401 to 406 and 411 to 414 were prepared in the same manner as in the preparation of the dope solutions 1 to 6 and 11 to 14, except that the acicular fine particle solution 1 was changed to the acicular fine particle solution 4 (TiO 2).
- Weight average molecular weight 800 Additive B (polyvalent alcohol ester)
- Each of the prepared dope liquids was formed by the film forming method described in Tables 1 and 2 to produce cellulose ester films 1 to 55.
- the prepared cellulose ester film was photographed with a transmission electron microscope at a magnification of 20,000 times, and the image was read with a Canon CanoScan FB 636U scanner at 300 dpi monochrome 256 gradations.
- the scanned image is an Endeavor Pro720, a personal computer made by Epson Direct. Image processing software installed on L (CPU; Athlon-1 GHz, memory; 512MB) Win
- the needle ratio, absolute maximum length, orientation angle, and barycentric position can be obtained for each particle described later.
- the azimuth angle and the needle ratio were measured for each needle-like particle of the image data extracted in this way.
- the needle ratio was determined by the following formula.
- the absolute maximum length is the length of the long axis of the acicular particles.
- the average interparticle distance D For the average interparticle distance D, first, the coordinates of the center of gravity of each acicular particle were obtained from the image data. [0460] Further, as shown in Fig. 3, the average azimuth direction obtained by the above-described method was set as the X-axis direction of the coordinates. The X-axis coordinate data of the center of gravity of each acicular particle were arranged in ascending order, and the difference between adjacent data was obtained. This was the interparticle distance in the X-axis direction. Similarly, in the Y-axis direction, the Y-axis coordinate data of the center of gravity of each acicular particle were arranged in ascending order, and the difference between adjacent data was obtained.
- the interparticle distance in the Y-axis direction was obtained as 1 particle number data.
- the X-axis direction interparticle distance and Y-axis direction interparticle distance data were collected to determine the average value, the average interparticle distance D, the standard deviation Ds, and the DsZD value. This value represents the dispersion state of the acicular particles in the film. The smaller the standard deviation, the more constant the distance between particles, and the more uniformly distributed.
- JIS K-7136 measurement was performed using a haze meter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.), and this was used as an index of transparency.
- the average refractive index of each cellulose ester film was measured using an Abbe refractometer IT (manufactured by Atago Co., Ltd.) and a spectral light source device.
- the film thickness was measured using a commercially available micrometer.
- Nz , nx—nz) Z (nx—ny)
- the refractive index in the direction of the slow axis in the plane is nx
- the refractive index in the direction perpendicular to the slow axis in the plane is ny
- the refractive index in the thickness direction of the film is nz
- d is the thickness of the film ( nm) respectively.
- cellulose ester film—Ro (b) and Rth (b) of B are the same as Ro and Rth described above. Determined by the method.
- Rth (80% RH) measured in the same environment after conditioning for 5 hours at 23 ° C and 80% RH, and the same environment after conditioning for 5 hours in the same way at 23 ° C and 20% RH
- the absolute value ⁇ Rth of the difference of Rth (20% RH) measured below was used as a measure of the retardation stability.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
- Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
Abstract
ポリエステル、多価アルコールエステル、多価カルボン酸エステル及びエチレン性不飽和モノマーを重合して得られたポリマーから選ばれる少なくとも1種の添加剤及び,針状微粒子を含有するセルロースエステルを延伸して製造した光学フィルムであって、該針状微粒子が延伸方向に対して負の複屈折性を示すことを特徴とする光学フィルム。
Description
明 細 書
光学フィルム、偏光板及び液晶表示装置
技術分野
[0001] 本発明は、位相差フィルムとして用いることのできる複屈折性を有する光学フィルム および該光学フィルムを用いた偏光板および液晶表示装置に関するものである。 背景技術
[0002] 薄膜表示装置の表示品質に対する要求が高まっており、 IPS, VA、 OCB等種々 の液晶表示方式が提案され、位相差フィルムの必要性は高まっている。フィルムに位 相差を与える手段としてポリカーボネートゃシクロォレフィン系のフィルム、セルロース アセテート系の榭脂フィルムを延伸する方法が提案されている。ポリカーボネートや シクロォレフイン系のフィルムを用いる場合には偏光板に位相差板を貼り合わせる必 要がある力 特にセルロースアセテートフィルムの場合は偏光板の保護フィルムが位 相差フィルムを兼ねることもできるので部材の減少、製造工程の簡略化、コストダウン が可能である。し力しながら、セルロースアセテート系榭脂の場合は発現できる位相 差値の範囲が限られており、各種の液晶表示方法に対応することが難し力つた。
[0003] セルロースエステルフィルムに微粒子を添加して、物性を改善する方法はこれまで にも提案されている。例えば、 WO2002Z059192では、表面硬度の大きなセル口 一スァシレートフィルムを得るため、平均粒径が lnmから 400nmの金属酸化物を 1 体積%から 99体積%含有することが提案されて 、る。ここで添加されて 、る微粒子 は球形もしくは不定形のものであった。
[0004] 複屈折性を有する針状微粒子を導入したものとして、榭脂に複屈折微粒子を含有 させることにより位相差を低減するなど複屈折性を制御した榭脂フィルムが得られるこ とが報告されている (例えば、特許文献 1、 2参照。 ) 0
[0005] 球状粒子にくらべ針状粒子の場合に位相差が発現しやすぐ効果的であるが、粒 子の状態によってはフィルムのカッティング性 (スリツティング性)が悪ぐフィルムを作 成する際に破断が発生することがあった。特に粒子の大きさが 500nm以下の場合に は榭脂と粒子の表面の相互作用が大きくなり粒子の添カ卩によってフィルム物性が変
化しやすぐカッティング性 (スリツティング性)が悪くなりやすい。さらに、針状粒子の 場合 (長径で 500ηπ!〜 100nm、針状比が 2以上)には粒子の向きとカッティングの 向き、榭脂そのものの配向などの影響でカッティング性が劣化しやす力つた。
[0006] また粒子の配向状態が悪いとスリット加工などのカッティングを行う際に切り粉が発 生しやすい。この切り粉が除去しきれず、フィルムに付着したままとなると異物となつ て、故障の原因になる。さらにこの切り粉は複屈折性を有する微粒子を含んでいるの で位相差をもっており、偏光板を作成する際に混入すると光漏れ (輝点)等の重大な 故障になりやすいなどの問題があった。また、複屈折微粒子と榭脂との組み合わせ によって光学異方性を制御した光学補償フィルムにお 、ては、位相差のばらつきが 大きくなることが判明し、その改善が必要であった。また、高温高湿環境下で、位相 差変動を少なくする方法の開発が求められている。
特許文献 1:国際公開 01Z025364号パンフレット
特許文献 2 :特開 2004— 109355号公報
発明の開示
[0007] 従って本発明の目的は、複屈折性を制御した光学フィルムにお ヽて、ヘイズ、位相 差バラツキが低減された光学フィルムと、視認性、視野角及び環境変化に対する位 相差安定性に優れた偏光板及び液晶表示装置を提供することにある。さら〖こ、本発 明の目的は、スリツティングの際に破断しやすくなる問題を改良し、位相差のばらつき を改善するとともに輝度ムラ,光漏れが改善された液晶表示装置を提供することにあ る。
[0008] 本発明の上記目的を達成するための本発明の態様の一つは、ポリエステル、多価 アルコールエステル、多価カルボン酸エステル及びエチレン性不飽和モノマーを重 合して得られたポリマーから選ばれる少なくとも 1種の添加剤及び,針状微粒子を含 有するセルロースエステルを延伸して製造した光学フィルムであって、該針状微粒子 が延伸方向に対して負の複屈折性を示すことを特徴とする光学フィルム。にある。
[0009] さらに、本発明の上記目的を達成するための本発明の態様の一つは、平均粒径 1 0〜500nmでありかつ下記で定義される針状比が 2〜: LOOである針状微粒子を含有 するロール状に製膜されたセルロースエステルフィルムであって、前記針状微粒子の
含有量は 1〜30質量%であり、フィルム中の前記針状微粒子の平均方位角が前記 セルロースエステルフィルムの製膜方向に対して、直交もしくは平行方向であり、か つ前記平均方位角の方向と各々の針状微粒子とのなす角度の絶対値の平均値 Hが 30° 以内にあり、更にフィルム中の前記針状微粒子の平均粒子間距離 Dと粒子間 距離の標準偏差 Dsから求められる DsZDが 1. 5以下であることを特徴とする光学フ イノレム。
[ooio] 針状比 =絶対最大長 Z対角幅にある。
図面の簡単な説明
[0011] [図 1]針状微粒子の方位角を示す図である。
[図 2]平均方位角の方向に対し各々の針状微粒子がなす角度を示す図である。
[図 3]各針状粒子の重心間の距離を示す図である。
[図 4]本発明に係わる溶液流延製膜方法のドープ調製工程、流延工程及び乾燥ェ 程を模式的に示した図である。
[図 5]絶対濾過精度を測定する装置を模式的に示した図である。
[図 6] (a)および (b)は複数のノズルが幅方向に配置されたダイスの例を示す図であ る。
[図 7] (a)および (b)はダイス内で液供給部と液排出部力 流延支持体の移動方向に 対し平行でな 、方向に配置されて 、るダイスの一例を示す図である。
[図 8] (a)および (b)はダイス内部に流延支持体の移動方向に対し平行でない方向に 溝を設けたダイスの一例を示す図である。
[図 9]斜線グラビアロールを用いる方法の一例を示す図である。
[図 10] (a)、 (b)、 (c)および (d)は配向ベルトを用いる方法の一例を示す図である。
[図 11]層流とを発生させるためにスリット長を長くとったダイスの一例を示す。
[図 12]ベルトの搬送でドープを引っ張り流延中に実質的延伸をおこなう方法の一例 を示す図である。
[図 13]本発明に用いられるテンター工程の 1例を示す概略図である。
[図 14]延伸工程での延伸角度を説明する図である。
[図 15]本発明に好ましい IPS型液晶表示装置の構成を示す概略図である。
[図 16]本発明に好ましい IPS型液晶表示装置の光学フィルム、偏光子、液晶セルの 吸収軸 Z透過軸の方向を示す模式図である。
発明を実施するための最良の形態
[0012] 本発明の上記目的は以下の構成により達成される。
(1) ポリエステル、多価アルコールエステル、多価カルボン酸エステル及びエチレン 性不飽和モノマーを重合して得られたポリマー力 選ばれる少なくとも 1種の添加剤 及び,針状微粒子を含有するセルロースエステルを延伸して製造した光学フィルム であって、該針状微粒子が延伸方向に対して負の複屈折性を示すことを特徴とする 光学フィルム。
(2) 前記光学フィルムが、下記の光学値を有することを特徴とする前記(1)に記載 の光学フイノレム。
nx (a >nz (a) >ny、a)
105nm≤Ro (a)≤ 350nm
0. 2<Nz< 0. 7
なお、 Ro (a)、 Nzは下記で定義されるものである。
[0013] 式(i) Ro (a) = (nx (a) - ny (a) ) X d
式 (ii) Nz=、nx(a)— nz (a))Z、nx(a ー ny(a) )
(ここで、榭脂の延伸方向 ¾yとし、延伸方向の屈折率を ny (a)、フィルム面内で yに 直交する方向の屈折率を nx (a)、フィルムの厚さ方向の屈折率を nz (a)、 dはフィル ムの厚み (nm)をそれぞれ表す。 )
(3) 前記針状粒子が平均粒径 10〜500nmかつ下記式で表される針状比が 2〜2 00であることを特徴とする前記(1)または(2)に記載の光学フィルム。
[0014] 式(1)
針状比 =絶対最大長 Z対角幅
(式中、対角幅は、絶対最大長に平行な 2本の直線で投影された粒子の像を挟んだ 時の 2直線間の最短距離を表し、絶対最大長は針状微粒子の長辺方向における最 大長を表す。 )
(4) 前記針状微粒子は、その表面が疎水化処理されていることを特徴とする前記(
1)〜(3) V、ずれか一項に記載の光学フィルム。
(5) 前記エチレン性不飽和モノマーを重合して得られたポリマー力 モノマー単位 にエステル結合を有することを特徴とする前記(1)〜 (4)の 、ずれか一項記載の光 学フィルム。
(6) 前記針状微粒子は、平均方位角の方向がフィルムの製膜方向に対して直交も しくは平行であり、かつ該平均方位角の方向と各々の該針状微粒子とのなす角度の 絶対値の平均値 Hが 30° 以内にあり、かつフィルム中の該針状微粒子の平均粒子 間距離 Dと該針状微粒子間距離の標準偏差 Dsから求められる DsZDが 1. 5以下で あることを特徴とする前記(1)〜(5)の 、ずれか 1項に記載の光学フィルム。
(7) 前記(1)〜(6)のいずれか 1項に記載の光学フィルムを、少なくとも一方の面に 有することを特徴とする偏光板。
(8) 前記(7)に記載の偏光板が横電解スイッチングモードである液晶セルを挟む少 なくとも一方の偏光板であることを特徴とする横電解スイッチングモード型液晶表示 装置。
(9) 横電解スイッチングモードである液晶セルおよび該液晶セルを挟む 2枚の偏光 板力 なる液晶表示装置であって、前記偏光板の液晶セル側に配される偏光板保 護フィルムのうち一枚が、前記(1)に記載の光学フィルムであることを特徴とする横電 解スイッチングモード型液晶表示装置。
(10) 前記偏光板の液晶セル側に配される偏光板保護フィルムのうち一枚以外の 偏光板保護フィルムが、下記光学値を有することを特徴とする前記 (9)記載の横電 解スイッチングモード型液晶表示装置。
- 15nm≤Ro (b)≤ 15nm
15nm≤ Rth (b)≤ 15nm
なお、 Ro (b)、 Rth (b)は下記で定義されるものである。
式(iv) Ro (b) = (nx (b) - ny (b) ) X d
式 (v) Rth (b) = { (nx (b) +ny(b) ) /2-nz (b) } X d
(ここで、光学フィルム Bの面内の遅相軸方向の屈折率を nx (b)、面内で遅相軸に 直交する方向の屈折率を ny(b)、フィルムの厚さ方向の屈折率を nz (b)、 dはフィル
ムの厚み (nm)をそれぞれ表す。 )
( 11) 平均粒径 10〜500nmでありかつ下記で定義される針状比が 2〜: L00である 針状微粒子を含有するロール状に製膜されたセルロースエステルフィルムであって、 前記針状微粒子の含有量は 1〜30質量%であり、フィルム中の前記針状微粒子の 平均方位角が前記セルロースエステルフィルムの製膜方向に対して、直交もしくは平 行方向であり、かつ前記平均方位角の方向と各々の針状微粒子とのなす角度の絶 対値の平均値 Hが 30° 以内にあり、更にフィルム中の前記針状微粒子の平均粒子 間距離 Dと粒子間距離の標準偏差 Dsから求められる DsZDが 1. 5以下であることを 特徴とする光学フィルム。
[0016] 針状比 =絶対最大長 Z対角幅
ここにおいて、対角幅とは絶対最大長に平行な 2本の直線で投影された粒子の像 を挟んだときの 2直線間の最短距離である。
( 12) 前記(11)に記載の光学フィルムにおいて、下記式 (i)で表されるリタ一デーシ ヨン値 Roが、 105nm≤Ro≤350nm、および下記式(ii)で表される Nzが 0. 2〜0. 7 の光学値を満たすことを特徴とする光学フィルム。
[0017] 式(i) Ro (a) = (nx (a)— ny (a) ) X d
¾; (ii) Nz = i,nx (a — nz (a) ) / (nx {a)— ny (a )
(ここで、フィルム面内遅相軸方向の屈折率を nx (a)、遅相軸に直交する方向の屈折 率を ny (a)、フィルム厚さ方向の屈折率を nz (a)、 dはフィルムの膜厚 (nm)をそれぞ れ表す。)
( 13) 前記(11)または(12)に記載の光学フィルムを少なくとも一方の面に有するこ とを特徴とする偏光板。
( 14) 前記(13)に記載の偏光板を、液晶セルの少なくとも一方の面に有することを 特徴とする液晶表示装置。
( 15) 前記( 11)または( 12)の!、ずれ力 1項に記載のセルロースエステルフィルムが 偏光板保護フィルムであって、かつ該セルロースエステルフィルムの遅相軸が偏光子 の吸収軸に実質的に平行または直交するように配置されていることを特徴とする偏光 板。
(16) 前記(15)に記載の偏光板が、横電界スイッチングモードである液晶セルを挟 む少なくとも一方の偏光板として用いられることを特徴とする横電界スイッチングモー ド型液晶表示装置。
(17) 横電界スィッチイングモードである液晶セルを挟む一方の偏光板が上記(15) 記載の偏光板であり、かつ他方の偏光板の液晶表示セル側に配置される偏光板保 護フィルム (光学フィルム— Bと定義する)力 下記式 (iv)、 (V)で表されるリターデー シヨン値 Ro (b)、 Rth (b)が一 15nm≤Ro (b)≤ 15nm、かつ一 15nm≤Rth (b)≤ 1 5nmの光学値を満たすことを特徴とする横電界スィッチイングモード型液晶表示装 置。
[0018] 式(iv) Ro (b) = (nx (b) - ny (b) ) X d
式 (v) Rth (b) = { (nx (b) +ny (b) ) /2-nz (b) } X d (ここで、光学フィルム B の面内の遅相軸方向の屈折率を nx (b)、遅相軸に直交する方向の屈折率を ny(b) 、フィルムの厚さ方向の屈折率を nz (b)、 dはフィルムの厚み(nm)をそれぞれ表す。 )
(18) 光学フィルム Bがセルロースエステルフィルムであることを特徴とする前記( 17)に記載の横電界スィッチイングモード型液晶表示装置。
[0019] 本発明によれば、複屈折性を制御した光学フィルムにお ヽて、ヘイズ、位相差バラ ツキが低減された光学フィルムと、視認性、視野角及び環境変化に対する位相差安 定性に優れた偏光板及び液晶表示装置を提供することができる。さらに、本発明によ れば、スリツティングの際に破断しやすくなる問題を改良し、位相差のばらつきを改善 するとともに輝度ムラ,光漏れが改善された液晶表示装置を提供することができる。
[0020] 本発明を実施するための最良の形態について以下説明するが、本発明はこれによ り限定されるものではない。
[0021] 本発明の光学フィルムは、好ましくは平均粒径(長径) 10〜500nmでありかつ式(1 )で定義される針状比 (アスペクト比とも 、う)が 2〜: L00である針状微粒子を含有する ロール状に製膜されたセルロースエステルフィルムであり、前記針状微粒子の含有量 は 1〜30質量%であり、フィルム中の前記針状微粒子の平均方位角が前記セルロー スエステルフィルムの製膜方向に対して、直交もしくは平行方向であり、かつ前記平
均方位角の方向と各々の針状微粒子とのなす角度の絶対値の平均値 Hが 30° 以 内にあり、更にフィルム中の前記針状微粒子の平均粒子間距離 Dと粒子間距離の標 準偏差から求められる DsZDが 1. 5以下であることを特徴とするセルロースエステル フィルムである。ここで、絶対最大長とは、電子顕微鏡写真によって観測される針状 微粒子の最長径をいい、長径ともいう。また、対角幅は長径に平行な 2本の直線で投 影された粒子の像を挟んだ時の 2直線間の距離を ヽ、短径とも 、う。
[0022] 式(1)
針状比 =絶対最大長 Z対角幅
上記式(1)において、対角幅は、絶対最大長に平行な 2本の直線で投影された粒 子の像を挟んだ時の 2直線間の最短距離を表し、絶対最大長は針状微粒子の長辺 方向における最大長を表す。
[0023] 針状微粒子を配向させる手段として、例えば、 2倍以上の高倍率で延伸する方法が 考えられるが、ヘイズの増加を抑えるために、好ましくは、ポリエステル、多価アルコ ールエステル、多価カルボン酸エステル及びエチレン性不飽和モノマーを重合して 得られたポリマーから選ばれる少なくとも 1種の添加剤を含有することを特徴とするセ ルロースエステルフィルムによって、針状の複屈折微粒子の配向がしゃすくなり、へ ィズが低減され、位相差のばらつきを低減することができることを新たに見出したもの である。更に、これを用いた偏光板を使用した液晶表示装置は大画面でも隅々まで コントラストが高ぐ斑がなく視認性に優れており、視野角に優れた横電界スィッチィ ングモードの液晶表示装置を提供することができた。特に、大画面で隅々までコント ラストが高い表示が行え、かつバックライトの熱や環境変動などにより、 2倍以上の高 延伸倍率で延伸されたセルロースエステルフィルムの環境変動による平面性劣化を 防止することができ、その結果、安定した位相差を得ることができた。特に、直下型バ ックライトを用いた横電界スィッチモードの液晶表示装置において、光漏れが改良さ れた液晶表示装置提供することができるものである。
[0024] 《針状微粒子》
はじめに、本発明に係る針状微粒子にっ 、て説明する。
[0025] 本発明のセルロースエーテルフィルムにおいては、平均粒径 10〜500nmであり、
かつ上記式(1)で定義される針状比が 2〜: LOOである針状微粒子を含有することを 特徴とし、好ましくは 1〜30質量%の範囲で含有することが好ましい。針状微粒子の 含有量は、目的とする位相差に合わせて適宜調整されるが、含有量が 1%未満では 十分な効果が得られず、また 30質量%を超えると、フィルムが脆くなるため好ましくな い。
[0026] 本発明に係る針状微粒子は、針状であれば特に制限はなぐ好ましくは複屈折性 を有して!/、る針状微粒子である。
[0027] 複屈折性微粒子としては、 WO01Z0253643あるいは特開 2004— 109355号に 記載の複屈折性微粒子を用いることができる。例えば、炭酸カルシウム、炭酸ストロン チウム、炭酸マグネシウム、炭酸マンガン、炭酸コバルト、炭酸亜鉛、炭酸バリウム等 の種々の炭酸塩、酸化チタンに代表される種々の酸化物、 MgSO - 5Mg (OH) · 3
4 2
Η 0、 6CaO - 6SiO ·Η 0、 9A1 Ο · 2Β Ο等の複屈折性ウイスカ一等が挙げられる
2 2 2 2 3 2 3
[0028] 例えば、正方晶系、六方晶系及び菱面体晶系は一軸性複屈折性結晶、斜方晶系 、単斜晶系及び三斜晶系の結晶が好ましく用いられる。また、これらは単結晶であつ てもよいし、多結晶であってもよい。
[0029] また、ポリスチレンある 、はアクリル榭脂の棒状もしくは短繊維状粒子等も好ましく 用いられる。例えば、ポリスチレン榭脂あるいはアクリル榭脂を有し、極細繊維を細か く切断して製造した短繊維状の粒子であってもよ!/、。これらの繊維は製造過程で延 伸されていることが複屈折性を発現しやすくなるため好ましい。また、これらの粒子に 含まれて 、る榭脂は架橋されて 、ることが好ま U、。
[0030] しかし、これらに限られるわけではなぐ前述の大きさ、形状、針状比等の要件を満 たせば、種々のものが利用可能である。
[0031] これらの複屈折性微粒子は長径 (絶対最大長)の平均が 10〜500nmで、前記式( 1)で規定する針状比が 2以上であることが好ましぐ特に針状比が 2〜: L00であること が好ましぐ 3〜30であることがさらに好ましい。針状比は、微粒子の絶対最大長と対 角幅から前式(1)によって求められる。これは微粒子もしくはフィルム中に含まれる微 粒子の電子顕微鏡観察によって得られる画像データ力 求めることができる。
[0032] 複屈折性微粒子の複屈折性につ!、ては、次のように定義する。複屈折性微粒子の 長径方向に偏光した光に対する屈折率を npr、長径方向に直交する方向に偏光した 光に対する平均屈折率を nvtとする。複屈折性微粒子の複屈折 Δ ηは、下記式 (2) で定義される。
[0033] 式(2)
A n=npr— nvt
すなわち、複屈折性微粒子の長径方向の屈折率が、それに直交する方向の平均 屈折率よりも大きければ正の複屈折、その逆であれば負の複屈折となる。
[0034] 本発明で使用される複屈折性微粒子の持つ複屈折の絶対値には特に制限はない 力 0. 01-0. 3であることが好ましぐ 0. 05-0. 3であることがさらに好ましい。
[0035] 正の複屈折性を有する複屈折性結晶としては、 MgSO · 5Mg (OH) · 3H 0、 6C
4 2 2 aO - 6SiO ·Η 0、 9A1 O · 2Β O、 TiO (ルチル型結晶)が挙げられる。負の複屈折
2 2 2 3 2 3 2
性を示す複屈折性結晶としては、炭酸カルシウム、炭酸ストロンチウム等が挙げられ る。針状結晶の場合は結晶の長い方向の屈折率がそれとは直行する方向の屈折率 よりも小さい材料を意味する。
[0036] 〈炭酸塩微粒子〉
炭酸塩微粒子は、均一沈殿法あるいは炭酸ガス化合法等によって製造することが できる。例えば、特開平 3— 88714号、特公昭 55— 51852号、特開昭 59— 22322 5号等に記載の方法で製造することができる。
[0037] 炭酸ストロンチウム結晶は、水に溶解したストロンチウムイオンと炭酸イオンとを接触 させて得ることができる。炭酸イオンは、ストロンチウム化合物を含有する溶液中に炭 酸ガスをパブリングする方法等によって添加したり、もしくは炭酸イオンを発生する物 質を添加し、反応もしくは分解させて得ることができる。例えば、特開 2004— 35347 号に記載の方法で炭酸ストロンチウム結晶微粒子を製造することができ、この方法で 得られた炭酸ストロンチウム微粒子が複屈折性微粒子として好ましく用いることができ る。炭酸ガスを発生させる物質としては尿素が挙げられ、尿素の加水分解酵素を併 用して発生した炭酸ガスイオンとストロンチウムイオンとを反応させて炭酸ストロンチウ ム微粒子を得ることができる。微細な結晶を得るためには、できるだけ温度を下げて
反応させることが好ましい。氷点下以下に冷却することが微細な結晶粒子を得ること ができるため好ましい。例えば、凝固点降下物質としてエチレングリコール類等の有 機溶媒を添加することも好ましぐ凝固点が氷点下 5°Cを下回るように添加することが 好ましい。これによつて、長径方向の平均粒径が 500nm以下の炭酸ストロンチウムの 微粒子を得ることができる。
[0038] 炭酸ストロンチウムは二軸性の複屈折結晶であり、特開 2004— 35347号によれば 、それぞれの光学軸方向の屈折率は、 n(na, nb, nc) = (l. 520, 1. 666, 1. 669 )であり、針状結晶の長軸方向は、屈折率 1. 520の光学軸方向とほぼ一致すること が報告されている。そのため、針状結晶の配向方向に対して負の複屈折効果を持つ 。この炭酸ストロンチウム結晶微粒子は、針状 (棒状)の形態であるため、粘性のある 媒体内に分散させた状態で応力を作用させることにより、統計的に所定の方向に配 向させることができる。
[0039] 〔針状微粒子の表面疎水化処理〕
本発明に係る針状微粒子は、その表面が疎水化処理されて 、ることが好ま 、。
[0040] 本発明に適用可能な表面の疎水化処理方法として、特に制限はなぐ例えば、シラ ンカップリング剤、チタネートカップリング剤、ステアリン酸等により表面処理されてい ることが好ましい。
[0041] 以下、本発明に係る針状微粒子表面の疎水化処理につ!、て、その詳細を説明す る。
[0042] 本発明に係る針状微粒子表面の疎水化処理は、針状微粒子を撹拌等により分散 させたものに、アルコール等で溶解した疎水化処理剤溶液を噴霧するか或 ヽは気化 した疎水化処理剤を接触させて付着させる乾式処理、又は、針状微粒子を溶液中に 分散させ、その中に疎水化処理剤を滴下して付着させる湿式処理等の従来公知の 方法で行うことができる。
[0043] 疎水化処理剤としては、公知の化合物を用いることができ、具体例を下記に挙げる 。又、これらの化合物は組み合わせて使用しても良い。
[0044] チタネートカップリング剤としては、例えば、テトラプチノレチタネート、テトラオクチノレ チタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルペンゼ
ンスルフォ-ルチタネート及びビス(ジォクチルパイロフォスフェート)ォキシアセテート チタネート等が挙げられる。
[0045] シランカップリング剤としては、例えば、 γ - (2 アミノエチル)ァミノプロピルトリメト キシシラン、 γ— (2—アミノエチル)ァミノプロピルメチルジメトキシシラン、 γ—メタク リロキシプロピルトリメトキシシラン、 Ν— /3 ビュルべンジルアミノエチルー Ν— γ ァミノプロピルトリメトキシシラン塩酸塩、へキサメチルジシラザン、メチルトリメトキシシ ラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、へキシルトリメトキシシラ ン、ォクチルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、フ ェニルトリメトキシシラン、 ο メチルフエニルトリメトキシシラン及び ρ メチルフエニル トリメトキシシラン等が挙げられる。
[0046] シリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフエ-ルシリコ ーンオイル及びアミノ変性シリコーンオイル等が挙げられる。
[0047] これらの疎水化処理剤は、針状微粒子に対して 1〜40質量%添加して被覆するこ と力 S好ましく、 3〜30質量%がより好ましい。
[0048] また、本発明においては、疎水化処理剤として下記の化合物も用いることができる。
[0049] 本発明に使用することができる化合物として、脂肪酸、脂環族カルボン酸、芳香族 カルボン酸、榭脂酸等を挙げることができる。例えば、カブロン酸、力プリル酸、カプリ ン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ベへニン酸等の飽和脂 肪酸;ソルビン酸、エライジン酸、ォレイン酸、リノール酸、リノレン酸、エル力酸等の 不飽和脂肪酸;シクロペンタン環ゃシクロへキサン環を持つナフテン酸等の脂環族力 ルボン酸;ナフトェ酸やナフタル酸等のナフタレンのカルボン酸等の芳香族カルボン 酸;ァビエチン酸、ピマル酸、レボピマール酸、ネオアビェチン酸、パラストリン酸、デ ヒドロアビエチン酸、イソピマール酸、サンダラコピマール酸、コムル酸、セコデヒドロ ァビエチン酸、ジヒドロアビエチン酸等の榭脂酸が挙げられ、中でも本発明に係る針 状微粒子の表面処理に分散効果を付与する点でパルミチン酸、ステアリン酸の使用 が好ましい。
[0050] また、脂肪酸、脂環族カルボン酸、芳香族カルボン酸、榭脂酸の金属塩ある!、はァ ミン塩としては、例えば、ラウリン酸カリウム、ミリスチン酸カリウム、パルミチン酸力リウ
ム、ステアリン酸バリウム、カルシウム、アルミニウム、亜鉛、マグネシウム等の飽和脂 肪酸塩、ォレイン酸カリウム、ナトリウム、カリウムジエタノールアミン塩等の不飽和脂 肪酸塩、ナフテン酸鉛、シクロへキシル酪酸鉛等の脂環族カルボン酸塩、安息香酸 ナトリウムやサリチル酸ナトリウム等の芳香族カルボン酸塩が挙げられる。
[0051] また、本発明に係る針状微粒子表面処理時または以前に、既述の脂肪酸、脂環族 カルボン酸、芳香族カルボン酸、榭脂酸に、リチウム、ナトリウム、カリウム、ルビジウム 、ベリリウム、マグネシウム、カルシウム、ストロンチウム、ノ リウム、亜鉛、アルミニウム、 鉛、コバルト、アミノ基を持つ化合物を混合、反応させて、脂肪酸、脂環族カルボン酸 、芳香族カルボン酸、榭脂酸の金属塩あるいはアミン塩を適宜調製してもよい。
[0052] 上記の脂肪酸、脂環族カルボン酸、芳香族カルボン酸、榭脂酸の金属塩の中でも 、本発明に係る針状微粒子の表面処理では、ステアリン酸カルシウムが好適に用い られる。
[0053] 脂肪酸、脂環族カルボン酸、芳香族カルボン酸、榭脂酸のエステルとしては、例え ば、力プロン酸ェチル、ビュル、アジピン酸ジイソプロピル、カプリル酸ェチル、カプリ ン酸ァリル、ェチル、ビュル、セバシン酸ジェチル、ジイソプロピル、イソオクタン酸セ チル、ジメチルオクタン酸オタチルドデシル、ラウリン酸メチル、ブチル、ラウリル、ミリ スチン酸メチル、イソプロピル、セチル、ミリスチル、イソセチル、オタチルドデシル、ィ ソトリデシル、パルミチン酸メチル、イソプロピル、ォクチル、セチル、イソステアリル、 ステアリン酸メチル、ブチル、ォクチル、ステアリル、コレステリル、イソステアリン酸イソ セチル、ベへ-ン酸メチル、ベへ-ル等の飽和脂肪酸エステル、ォレイン酸メチル、 リノール酸ェチル、イソプロピル、エル力酸メチル等の不飽和脂肪酸エステル、その 他、長鎖脂肪酸高級アルコールエステル、ネオペンチルポリオール (長鎖、中鎖を含 む)脂肪酸系エステルおよび部分エステルイ匕合物、ジペンタエリスリトール長鎖脂肪 酸エステル、コンプレックス中鎖脂肪酸エステル、 12—ステアロイルステアリン酸イソ セチル、イソステアリル、ステアリル、牛脂脂肪酸ォクチルエステル、多価アルコール 脂肪酸エステル Zアルキルグリセリルエーテルの脂肪酸エステル等の耐熱性特殊脂 肪酸エステル、安息香酸エステル系に代表される芳香族エステルが挙げられ、中で も本発明に係る針状微粒子の表面処理にお!ヽては、多価アルコール脂肪酸エステ
ルの多価アルコールステアリン酸エステルの多価アルコールステアリン酸またはパル ミチン酸の使用が好ましい。
[0054] 脂肪族、脂環族、芳香族のスルホン酸の例として、スルホ琥珀酸、ジォクチルスル ホ琥珀酸、テトラデセンスルホン酸等のスルホン酸、ラウリル、ミリスチル、パルミチン、 ステアリン、ォレイン、セチル等のアルキル基力もなるアルキル硫酸、ポリオキシェチ レン(2)ラウリルエーテル硫酸、ポリオキシエチレン(3)ラウリルエーテル硫酸、ポリオ キシエチレン (4)ラウリルエーテル硫酸、ポリオキシエチレン(3)アルキルエーテル硫 酸、ポリオキシエチレン(4)ノユルフェ-ルエーテル硝酸、直鎖(C10、 C12、 C14) アルキルベンゼンスルホン酸、分岐アルキルベンゼンスルホン酸、ナフタレンスルホ ン酸、ドデシルベンゼンスルホン酸等の芳香族スルホン酸等が挙げられ、中でも本発 明に係る針状微粒子の表面処理にぉ 、ては、ドデシルベンゼンスルホン酸の使用が 好ましい。
[0055] 脂肪族、脂環族、芳香族のスルホン酸の金属塩、ァミン塩の例としては、上記脂肪 族、脂環族、芳香族のスルホン酸のナトリウム塩、ァミン塩が一般的であるが、本発明 の炭酸カルシウムの表面処理時または以前に、脂肪族、脂環族、芳香族のスルホン 酸にリチウム、ナトリウム、カリウム、ルビジウム、ベリリウム、マグネシウム、カルシウム、 ストロンチウム、バリウム、亜鉛、アルミニウム、鉛、コバルト、アミノ基を持つ化合物を 混合、反応させて脂肪族、脂環族、芳香族のスルホン酸の金属塩、アミン塩を適適 宜成しても良い。中でも本発明に係る針状微粒子の表面処理においては、ドデシル ベンゼンスルホン酸ソーダの使用が好まし 、。
[0056] 本発明において、上記化合物の配合量は、好ましくは針状微粒子 100質量部に対 して 0. 1〜10質量部であり、その中でも特に好ましくは 0. 5〜5質量部である。
[0057] 針状微粒子の表面処理を行うには、ヘンシェルミキサー等を用いた乾式法、溶剤 中で処理した後、溶剤を除去する湿式溶剤法等、通常の処理方法を用いることがで きる。溶剤法で用いられる溶剤には特に限定されないが、トルエン、キシレン等の芳 香族、へキサン、ヘプタン等の脂肪族、エタノール、イソプロパノール、ブタノール等 のアルコール、ェチルセ口ソルブ、ブチルセ口ソルブ等のエーテル類、酢酸ェチル、 酢酸ブチル等のエステル、アセトン、メチルェチルケトン等のケトン類、塩化メチレン
を挙げることができ、これらを単独もしくは適宜混合して、溶剤として用いることができ る。
[0058] 〔針状微粒子の合成例〕
以下に、本発明に係る針状微粒子の一例として、炭酸ストロンチウム結晶の具体的 な製造方法を以下に示す。
[0059] 〈合成例 1〉
水 375g【こ対し、尿素 81. 75g (水【こ対し 21. 8質量0 /0)、 ϊ¾酸ストロンチウム 30. 75 g (水に対し 8. 2質量%)を添加した。さらに反応を氷点下で行なうために反応液に有 機溶媒としてエチレングリコールを 75. OOg (水に対し 20質量0 /0)添加した。この溶液 を反応容器へ入れ、超音波を照射しながら、攪拌し、冷却した。
[0060] 攪拌モーターとして新東科学株式会社製、スリーワンモーター BLh600を、超音波 照射機能付ウォーターバスとして本多電子株式会社製、超音波洗浄器 W— 113MK — 11、クーラーとしてトーマス科学機器株式会社製、密閉タンク型ハンディクーラー T RL— C13を用いた。
[0061] クーラーにより、ウォーターバス中のエチレングリコール系不凍液(トーマス科学機 器株式会社製、ナイブライン)を循環させることにより、反応液の温度を 5°Cまで下 げ、 5°Cに保った。続いて消化酵素 Urease 1. 50gを反応液に添加した。消化酵 素添加後、反応液中では結晶の析出が始まり、白濁した。反応液の温度を 5°Cに 保ちながら、 12時間反応させた。
[0062] その後、反応液の温度を 20°Cまで上げ、 20°Cに保ちながら 12時間、結晶を熟成さ せた。得られた結晶をろ過により取り出し、乾燥させた。乾燥後の結晶の走査型電子 顕微鏡 (SEM)観察写真から、長さが 500nm以下 (おおよそ平均 400nm程度)の炭 酸ストロンチウム針状結晶微粒子が得られて 、る。
[0063] 〈合成例 2〉
水 300gに対し、メタノール 60g (水に対し 20質量0 /0)と、水酸化ストロンチウム八水 和物 80g (水に対し 26. 7質量%)とをカ卩えた懸濁液を調製した。この懸濁液を反応 容器に入れ、生成した粒子の凝集をできる限り防ぎつつ、反応系にエネルギーを与 えて結晶核の生成を促すために、攪拌モーター (新東科学株式会社製、スリーワン
モーター BLh600)によって懸濁液を撹拌した。さらに、超音波照射機能付ウォータ 一バス (本多電子株式会社製、超音波洗浄器 W— 113MK— Π)によって超音波を 照射した。懸濁液の温度を— 10°Cに保っためにクーラー(トーマス科学機器株式会 社製、密閉タンク型ハンディクーラー TRL—C13)を用いてウォーターバス中の巿販 のエチレングリコール系不凍液 (トーマス科学機器株式会社製、ナイブライン)を循環 させた。
[0064] COガスと Nガスをガス混合器(コフロック株式会社、 MiNi—Gascom PMG—1
2 2
)を用いて、体積比で CO: N = 30 : 70の割合で混合し、懸濁液中に 200mlZmin
2 2
の流量で導入した。 pHが 7付近で安定するまで、この懸濁液中にの混合ガスを導入 した後、混合ガス導入を止めた。
[0065] この懸濁液とは別にシランカップリング溶液を調製した。水 40gに対し、酢酸を加え PH5. 3程度とし、さらにシランカップリング剤(3—ダリシドォキシプロピルトリメトキシ シラン)を添加し、約 3時間撹拌することにより調製した。
[0066] シランカップリング剤の量は、炭酸ストロンチウムに対して 30質量%とした。調製し たシランカップリング溶液を懸濁液へカ卩え、 24時間攪拌モーターによって攪拌しなが ら、表面処理を行った。未反応分を取り除くため、懸濁液を 0. 1 μ mポアサイズの濾 紙で吸引濾過し、生成物を 500mlのアセトン中に入れて 24時間撹拌して洗浄し、も う一度濾過してできた生成物を真空乾燥機で乾燥させた。得られた結晶の電子顕微 鏡によって観察し、平均長さ 200nm以下の炭酸ストロンチウム結晶を得た。
[0067] 本発明にお ヽて、針状微粒子は、有機溶媒と後述の針状微粒子の分散用榭脂とと もに微粒子分散液に分散される。このようにして調製された針状微粒子分散液を用 いることによって、位相差の安定したセルロースエステルフィルムを得ることができ、光 学補償フィルムとして好ましく利用することができる。
[0068] 〔平均方位角、 Ds/D〕
また、本発明の光学フィルムに含まれる針状微粒子は、平均方位角がフィルムの製 膜方向に対して直交もしくは平行であり、かつ該平均方位角の方向と各々の該針状 微粒子とのなす角度の絶対値の平均値 Hが 30° 以内にあり、かつフィルム中の該 針状微粒子の平均粒子間距離 Dと該針状微粒子間距離の標準偏差 Dsから求めら
れる DsZDが 1. 5以下であることが好ましい。
[0069] フィルム中の針状微粒子の配向状態及び分散状態の評価は、フィルム中の微粒子 を電子顕微鏡によって観察した画像データを用いて求めることができる。
[0070] 画像データから、各々の針状微粒子について、方位角および針状比を求める。針 状比は前記式(1)によって求めることができる。絶対最大長は針状粒子の長軸の長 さ (長径)に相当する。
[0071] 異物もしくは壊れた粒子などの針状比が 2未満の粒子は、ノイズとなるため平均方 位角や平均粒子間距離の計算力 除外し、針状比 2以上の各々の粒子について求 める。
[0072] 本発明でいう方位角とは、針状粒子の絶対最大長の方向と基準軸とのなす角度を いう。基準軸は任意に設定することができる力 例えばフィルムの幅手方向に設定す ることができる。各々の針状微粒子の方位角を求め、その平均値を平均方位角とした
[0073] 次に求めた平均方位角の方向を新たな基準軸と設定し、各々の針状粒子につい てその粒子の方位角と平均方位角方向との角度差を求め、その角度差の絶対値の 平均を求めた。これが、 [平均方位角の方向と各々の針状微粒子の方位角とのなす 角度の絶対値の平均値 H]である。 Hは 30度以内である。
[0074] 具体的な評価法を説明すると、作製したフィルムを透過型電子顕微鏡で 2万倍で 撮影しその画像をキャノン(株)製のスキャナ CanoScan FB 636Uを用い 300dpi モノクロ 256階調で読み込んだ。
[0075] 読み込んだ画像はエプソンダイレクト(株)製のパソコンである Endeavor Pro720 L (CPU; Athlon - 1 GHz,メモリ; 512MB)にインストールした画像処理ソフト Win ROOF ver3. 60 (三谷商事 (株)製)に取り込んだ。
[0076] とりこんだ画像について画像前処理として 2 X 2 μ mの視野の範囲について抽出( 自動で画像の 2値化)を行って粒子の画像抽出を行った。粒子の画像抽出後の画面 で粒子の 90%以上が抽出されていることを確認し、もし抽出が十分でない場合は検 出レベルの手動調整を行い、粒子の 90%以上が検出、抽出されるよう調整を行う。
[0077] 観察範囲の針状粒子の個数が 1000個に満たない場合はさらに別の 2 X 2 mの
視野の範囲について同様の操作を行い、粒子の個数が合計で 1000個以上になる まで行った。
[0078] このようにして抽出処理した画像データの各々の針状粒子について、方位角の測 定を行った。針状微粒子の方位角について、図 1により説明する。
[0079] 図 1は、顕微鏡で、針状微粒子を含有するフィルムを 2万倍で撮影しスキャナで読 み込んだ画像の例を示す。各々の粒子について、基準軸に対する粒子の絶対最大 長(長軸方向)の方位角を出す。 al、 a2 an。これら方位角の平均値 A = ave (a l〜an)を算出し平均方位角とする。粒子数 (n)としては、 1000個以上を測定し、平 均値を算出する。
[0080] この平均方位角がフィルムの製膜方向に対して ± 5° 以内にある場合に、長手方 向に対して平行であるという。また、同様にフィルムの製膜方向に対して直交する方 向(幅手方向)に対して、 ± 5° 以内にある場合に、フィルムの製膜方向に対して、直 交方向にあると 、う。好ましくは該平均方位角がフィルムの製膜方向もしくは幅手方 向に対して、 ± 3° の方向にあることが好ましぐ更に好ましくは ± 1° の方向にあるこ とであり、特に好ましくは ±0. 5° の方向にあることである。
[0081] また、 [平均方位角の方向と各々の針状微粒子の方位角とのなす角度の絶対値の 平均値 H]は 30° 以内である。
[0082] 図 2に Hについて説明する。図において、 bl、 b2、 b3 ' · · 'bnは、それぞれの針状 微粒子の絶対最大長の方向(長軸方向)が、平均方位角とのなす角度であり、下記 式(3)によりその絶対値の平均値が求められる。
[0083] 式(3)
H = ave ( I bl I〜 I bn I )
これについても前記平均値 Aの算出と同様に、 1000個以上の粒子について測定 する。
[0084] Hは 30° 以内であり、 2〜26° であることがより好ましぐ 2〜19° であることが好ま しぐ最も好ましくは 2〜 11° である。
[0085] 平均粒子間距離 Dは、まず、前記画像データから各々の針状粒子の重心位置の座 標を求める。
[0086] このとき、前述の方法で求めた平均方位角の方向を座標の X軸方向とする。各々の 針状粒子の重心位置の X軸座標のデータを小さ 、順に並べ、隣接するデータの差を 求める。これを X軸方向の粒子間距離とする。 Y軸方向についても同様に、各々の針 状粒子の重心位置の Y軸座標のデータを小さ 、順に並べ、隣接するデータの差を 求める。これを Y軸方向の粒子間距離とする。 X軸方向の粒子間距離と Y軸方向の 粒子間距離は、夫々粒子数 1のデータが得られる。この X軸方向の粒子間距離及 ひ Ύ軸方向の粒子間距離のデータをまとめて平均値を求め、平均粒子間距離 Dとし 、その標準偏差を Dsとし、 DsZD値を求める。この値は針状粒子のフィルム中の分 散状態を表して 、る。この標準偏差が少な 、ほど粒子間の距離が一定に保たれてお り、均一に分散されていることになる。
[0087] 本発明において、この値は、 1. 5以下である。好ましくは 0. 7〜1. 5、より好ましく は 0. 7〜1. 3であり、特に好ましくは 1. 0以下である。
[0088] 各粒子の重心距離の平均の算出は、具体的には、図 3に示すように、各針状粒子 の重心間の距離を X— Y平面上において、 X成分、 Y成分の両方すベてを用いて算 出する。
[0089] 図 3においては、 6個の粒子モデルを用いて説明している力 X軸上に投影された 隣接粒子との粒子間距離、 D1〜D5、 Y軸上へ投影された各隣接粒子間距離である D6〜D10の平均値 D = ave (Dl〜D10)、を平均粒子間距離とする。実際はこれを 1000以上の粒子について行って平均値 Dを算出する。また、これにより求めた各粒 子重心間の距離について、標準偏差 (Ds)を求める。
[0090] このように、針状の微粒子を分散し、また、配向させることでこのカッティング性が著 しく向上し、位相差のばらつきを改善することができる。
[0091] 添加した微粒子を分散、配向させる方法としては、フィルム作製 (流延)時にフィル ムを TDまたは MDに延伸する方法、あるいは流延時にドープの流れを作り、この流 れに沿う形で粒子を配向させる方法などを取ることが可能である。さらに電場や磁場 などで粒子の配向を促進することも可能でこれらの方法によれば針状粒子が添加さ れた場合でもカッティング性 (スリツティング性)を改良することができる。
[0092] これら針状微粒子を含有するセルロースエステルフィルムの製造方法としては、少
なくとも針状で複屈折を有する該微粒子と該微粒子の分散用榭脂とを含有する微粒 子分散液を予め調製し、ついで該微粒子分散液と、セルロースエステルとを溶剤と混 合することにより調製したドープを用いてし、溶液流延するセルロースエステルフィル ムの製造方法により、得ることができる。
[0093] (複屈折を有する針状微粒子の分散用樹脂)
複屈折を有する針状微粒子の分散用榭脂は 3, 000〜200, 000の重量平均分子 量であることが好ましぐ 3, 000-90, 000の重量平均分子量であることがより好まし い。
[0094] 複屈折を有する針状微粒子の分散用榭脂は、エチレン性不飽和単量体単位を有 する単独重合体または共重合体、アクリル酸またはメタクリル酸エステル単独重合体 または共重合体、メタクリル酸メチルエステル単独重合体または共重合体、セルロー スエステル、セルロースエーテルポリウレタン榭脂、ポリカーボネート榭脂、ポリエステ ル榭脂、エポキシ榭脂及びケトン樹脂から選択される少なくとも 1種であることが好ま しい。セルロースエステルは総ァシル基置換度 2. 0〜2. 8であることが好ましい。
[0095] これらの榭脂は、溶液流延に使用される高濃度のセルロースエステル溶液であるド ープ(セルロース濃度 15〜30質量%)に含有させても、ヘイズの上昇が少なぐ均一 なフィルムを形成することができる榭脂である。
[0096] 複屈折を有する針状微粒子を含有する微粒子分散液において、その分散用の榭 脂の濃度は 0. 1〜10質量%であることが好ましい。また、この分散液において微粒 子の濃度は 0. 2〜: L0質量%であることが好ましい。
[0097] 本発明においては、微粒子分散液の粘度を 10〜500mPa' sの範囲にコントロー ルすることが好ましい。
[0098] そこで、本発明者らは、種々の榭脂について、榭脂の種類、分子量を変化させて検 討した結果、榭脂については下記のようなものが好ましぐまた、重量平均分子量に ついては、 3, 000-90, 000のものであれば広範囲の榭脂を使用することにより微 粒子分散液の分散状態を著しく改善することができるば力りでなぐセルロースエステ ル溶液との相溶性もよぐさらに塊が発生しにくいドープを形成することもできることを 見い出した。重量平均分子量について、より好ましくは 5, 000-50, 000、さらには
10, 000-30, 000のものが好ましい。榭脂としては、特に限定がなく従来公知のも のを広く使用することができるが、下記のごとき榭脂がより好適に使用できる。
[0099] 本発明に係る微粒子分散液にお!、て好ましく用いられる榭脂として、エチレン性不 飽和単量体単位を有する単独重合体または共重合体を挙げることができ、より好まし くは、ポリアクリル酸メチル、ポリアクリル酸ェチル、ポリアクリル酸プロピル、ポリアタリ ル酸シクロへキシル、アクリル酸アルキルの共重合体、ポリメタクリル酸メチル、ポリメ タクリル酸ェチル、ポリメタクリル酸シクロへキシル、メタクリル酸アルキルエステル共 重合体等のアクリル酸またはメタクリル酸エステルの単独重合体または共重合体であ り、さらにアクリル酸またはメタクリル酸のエステルは透明性、相溶性に優れ、アクリル 酸エステルまたはメタクリル酸エステル単位を有する単独重合体または共重合体、特 に、アクリル酸またはメタクリル酸メチル単位を有する単独重合体または共重合体が 好ましい。具体的にはポリメタクリル酸メチルが好ましい。ポリアクリル酸またはポリメタ クリル酸シクロへキサンのようなアクリル酸またはメタクリル酸の脂環式アルキルエステ ルは耐熱性が高ぐ吸湿性が低い、複屈折が低い等の利点を有し好ましい。
[0100] この他の榭脂としては、例えば、セルロースアセテート、セルロースアセテートプロピ ォネート、セルロースアセテートブチレート等のァシル基の置換度が 1. 8〜2. 80の セノレロースエステノレ榭旨;セノレロースメチノレエーテノレ、セノレロースェチノレエーテノレ、 セルロースプロピルエーテル等のアルキル基置換度 2. 0〜2. 80のセルロースエー テル榭脂;アルキレンジカルボン酸とジァミンとの重合物のポリアミド榭脂;アルキレン ジカルボン酸とジオールとの重合物、アルキレンジオールとジカルボン酸との重合物 、シクロへキサンジカルボン酸とジオールとの重合物、シクロへキサンジオールとジカ ルボン酸との重合物、芳香族ジカルボン酸とジオールとの重合物等のポリエステル榭 脂;ポリ酢酸ビニル、酢酸ビニル共重合体等の酢酸ビニル榭脂;ポリビニルァセター ル、ポリビニルブチラール等のポリビニルァセタール榭脂;下記に示すようなエポキシ 榭脂、下記に示すようなケトン樹脂、アルキレンジイソシアナートとアルキレンジォー ルの線状重合物等の下記に示すようなポリウレタン榭脂等を挙げることができ、これら 力も選ばれる少なくとも一つを含有することが好ましい。エポキシ榭脂としては、 1分 子中にエポキシ基を 2個以上持ったィ匕合物が、開環反応によって榭脂を形成したも
ので、以下に示すようなエポキシ榭脂を挙げることができ、代表的な市販品としてァラ ルダイド EPN1179及びァラルダイド AER260 (旭チノ (株)製)がある。なお、ァラル ダイド EPN 1179は重量平均分子量が約 405である。 nは重合度を示す。
[化 1]
[0102] また、ケトン樹脂としては、ビニルケトン類を重合して得られるもので、以下に示すよ うなケトン樹脂を挙げることができ、代表的な市販品として、ハイラック 110及びハイラ ック 110H (日立化成 (株)製)がある。 nは重合度を示す。
[0103] [化 2]
ラ ク 110
[0104] 上記の榭脂について、本発明者らは、さらに、後述のような分散方法を工夫するこ とにより、上記重量平均分子量範囲外(3, 000未満、 90, 000を超える)ものであつ ても良好な微粒子の分散性が改善でき、凝集性のほとんどな 、微粒子分散液を形成 することができることを見い出した。
[0105] 上記の榭脂は重量平均分子量に制限なく使用することができるが、重量平均分子 量が小さい方が使用しやすぐ重量平均分子量として 300 40, 000程度の範囲が 好ましく、 500 20, 000力より好ましく、 5, 000 20, 000力 ^さらに好まし!/ 重量 平均分子量が小さ 、程ドープのセルロースエステルとの相溶性、微粒子の分散性に 優れ、大き 、程少量の榭脂で微粒子分散液の粘度を調整することができるため好ま しい。
[0106] (分散剤)
本発明で用いられる微粒子分散液あるいはドープには、分散剤を含有することが 好ましい。分散剤の添加量は、セルロースエステルに対して 0. 002 2質量0 /0が好 ましぐ 0. 01 1質量%がより好ましい。分散剤としては、特に高分子分散剤が好ま しく用いられ、ノ-オン系高分子分散剤、ァ-オン系高分子分散剤、カチオン系高分 子分散剤が適宜選択される。
[0107] 固体微粒子を溶媒中あるいは高分子組成物溶液中に均一に分散するために、固 体微粒子に吸着する高分子分散剤が用いられることは知られている。高分子分散剤 は、固体微粒子の表面に吸着層を形成し、力かる吸着層が固体微粒子間に斥力を
生じせしめることにより固体微粒子の凝集を妨げる。微粒子を分散させる高分子分散 剤として用いられる高分子には、単独のモノマーからなるホモポリマー、複数のモノマ 一からなるランダムコポリマー等が挙げられる力 良好な分散性能を得るために、従 来より、固体微粒子と相互作用して吸着する部分と、溶媒和して固体微粒子表面か ら液体中に溶け拡がる部分の双方を 1分子内に複数含み、力かる 2つの作用を 1分 子内で機能分担させた複雑な構造を有する高分子分散剤が考案されており、具体 的には力かる 2つの作用が機能分担されている櫛型高分子等が良好な高分子分散 剤として知られている。本発明ではこれらの高分子分散剤がドープもしくは微粒子分 散液に含まれることが好まし 、。
[0108] 高分子分散剤としては、特開 2001— 162934号の一般式 (I)あるいは一般式 (Π) 記載の高分子分散剤、特開 2004— 97955号に記載の高分子分散剤、特開 2001 - 260265号の段落番号 [0024]〜 [0027]に記載のァニオン性高分子分散剤、特 開平 8— 337560号に記載のポリオキシプロピレン脂肪酸アル力ノールアミドィ匕合物 の混合物、特開平 9— 20740号に記載のポリオキシプロピレン脂肪酸イソプロパノー ルアミド混合物、特開平 9— 192470号、同 9— 313917号に記載の分散剤、特開平 11 197485号に記載の分散剤、特開 2004— 89787号に記載の分散剤等が挙げ られる力 これらのみに限定されるものではない。例えば、 F— 1000、 KF— 1525、ヒ ノアク Γ6000、同 7000、同 8000、同 8000E、 KM— 1300M (川研ファインケミカ ル株式会社製)等がある。このほか、ポリエチレングリコール、ポリプロピレングリコー ル、ポリビュルメチルエーテル、ポリ酢酸ビュル、ポリビュルアルコール、ポリ N ビ- ルピロリドン、ポリ(2—メチルー 2—ォキサゾリン)、ポリ(2—ェチルー 2—ォキサゾリン )及びこれらのポリマー成分を含有するマクロマーが挙げられる。
[0109] 分散剤の含有量は、ドープもしくは微粒子分散液中に 0. 0001〜1質量%であるこ とが好ましい。
[0110] また、針状微粒子の前記分散状態 (DsZD)を制御してセルロースエステルを製造 する方法のうち好ま 、態様にっ 、て以下に挙げる。
[0111] (a)針状微粒子と溶剤と針状微粒子分散用樹脂とを含有する針状微粒子分散液を 調製し、これをセルロースエステルを溶剤に溶解することにより調製されたドープに混
合し、支持体上に流延し、次いで乾燥することを特徴とするセルロースエステルフィ ルムの製造方法。
[0112] (b)前記針状微粒子の分散がビーズ径 0. 03〜0. 3mmのサンドグラインダーで分 散したものであることを特徴とする前記 (a)記載のセルロースエステルフィルムの製造 方法。
[0113] (c)前記針状微粒子分散液が、針状微粒子と溶剤との分散液を作製し、ここに針状 微粒子分散用榭脂を添加した後、再分散して調製した針状微粒子分散液であること を特徴とする(a)記載のセルロースエステルフィルムの製造方法。
[0114] (d)前記針状微粒子の分散液に含有される針状微粒子分散用榭脂が 3, 000-2 00, 000の重量平均分子量を有することを特徴とする前記 (a)又は (c)記載のセル口 ースエステルフィルムの製造方法。
[0115] (e)前記針状微粒子の分散液に含有される針状微粒子分散用榭脂がエチレン性 不飽和単量体単位を有する単独重合体または共重合体、アクリル酸またはメタクリル 酸エステル単独重合体または共重合体、メタクリル酸メチルエステル単独重合体また は共重合体、セルロースエステル、セルロースエーテルポリウレタン榭脂、ポリカーボ ネート榭脂、ポリエステル榭脂、エポキシ榭脂及びケトン樹脂から選択される少なくと も 1種であることを特徴とする(a)〜(d)に記載のセルロースエステルフィルムの製造 方法。
[0116] (f)前記針状微粒子の分散液に含まれる溶剤が、メチレンクロライド、酢酸メチル、 エタノール、メタノール、アセトン力 選択される少なくとも 1種の溶媒を含有することを 特徴とする(a)〜(e)記載のセルロースエステルフィルムの製造方法。
[0117] (g)前記針状微粒子とセルロースエステルと溶剤とを含有するドープを支持体上に 流延し、次 、で乾燥することを特徴とするセルロースエステルフィルムの製造方法に おいて、乾燥工程のいずれかで延伸する工程を有し、延伸後のフィルムの複屈折を 測定する工程を有し、該複屈折を測定する工程で得られた結果によって、ドープに 含まれる複屈折を有する針状微粒子の含有量を調整することを特徴とするセルロー スエステルフィルムの製造方法。
[0118] (h)前記ドープに含まれる針状微粒子の含有量を調整する方法が、複屈折を有す
る針状微粒子のインライン添加液を主ドープに添加する方法によって行われることを 特徴とする (g)に記載のセルロースエステルフィルムの製造方法。
[0119] 〔ドープを形成する材料〕
本発明にお 、て、セルロースエステル及び有機溶媒を含有するセルロースエステ ル溶液と、高い針状比を有する複屈折を有する針状微粒子、該微粒子の分散用榭 脂、有機溶媒及び、好ましくは、ポリエステル、多価アルコールエステル、多価カルボ ン酸エステル及びエチレン性不飽和モノマーを重合して得られたポリマー力 選ば れる少なくとも 1種の添加剤を含有する微粒子分散液を混合したものをドープと 、 ヽ 、これをもつて溶液流延製膜しセル口ースエステルフィルムを形成せしめるものである
[0120] 〔添加剤〕
本発明のセルロースエーテルフィルムにお ヽては、本発明に係る針状微粒子と共 に、ポリエステル、多価アルコールエステル、多価カルボン酸エステル及びエチレン 性不飽和モノマーを重合して得られたポリマー力 選ばれる少なくとも 1種の添加剤 を含有することを特徴とする。これらの添加剤は 1〜30質量%の範囲で含有されてい ることが好ましぐ特に 5〜30質量%の範囲で含有されていることが好ましい。上記で 示した含有量の範囲とすることで、セルロースエステルとの相溶性が良好となり、針状 微粒子が廃校しやすくなる。
[0121] 各化合物の詳細について、以下にその詳細を説明する。
[0122] (ポリエステル系化合物)
ポリエステル系化合物は特に限定されないが、分子内に芳香環またはシクロアルキ ル環を有するポリエステル系化合物を用いることができる。
[0123] 本発明に有用なポリエステルにつ ヽて述べる。
[0124] ポリエステルの片方の構成成分である二塩基酸としては、脂肪族二塩基酸、脂環 式二塩基酸、芳香族二塩基酸が好ましぐ例えば、脂肪族二塩基酸としては、マロン 酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、ァゼライン酸、セバシ ン酸、ゥンデカンジカルボン酸、ドデカンジカルボン酸等、芳香族二塩基酸としては、 フタル酸、テレフタル酸、イソフタル酸、 1, 4 キシリデンジカルボン酸等、脂環式二
塩基酸としては、 1, 3—シクロブタンジカルボン酸、 1, 3—シクロペンタンジカルボン 酸、 1, 4ーシクロへキサンジカルボン酸、 1, 4ーシクロへキサンジ酢酸等を挙げること ができる。
特に、脂肪族ジカルボン酸としては、炭素原子数力 〜 12のもの、脂環式二塩基 性酸及び芳香族ジカルボン酸が好ましく、これら力 選ばれる少なくとも一つのものを 使用する。つまり、 2種以上の二塩基酸を組み合わせて使用してよい。もう片方の構 成成分であるグリコールとしては、例えば、エチレングリコール、ジエチレングリコール 、 1, 2—プロピレングリコール、 1, 3—プロピレングリコール、 1, 2—ブチレングリコー ル、 1, 3—ブチレングリコール、 1, 4ーブチレングリコール、 1, 5—ペンタンジオール 、 1, 6—へキサンジオール、 1, 4ーシクロへキサンジオール、 1, 5—ペンチレングリ コーノレ、 1, 4ーシクロへキサンジメタノール、ジエチレングリコール、トリエチレングリコ ール、テトラエチレンダリコール等を挙げることができる力 これらのうちエチレングリコ ール、 1, 2—プロピレングリコール、 1, 3—プロピレングリコール、 1, 2—ブチレングリ コール、 1, 3—ブチレングリコール、 1, 4ーブチレングリコール、 1, 6—へキサンジォ ール、 1, 4ーシクロへキサンジメタノール、ジエチレングリコール、トリエチレングリコー ノレ力 S好ましく、更に、 1, 3—プロピレングリコーノレ、 1, 4ーブチレングリコーノレ 1, 6— へキサンジオール、ジエチレングリコールを好ましく用いられる。ポリエステルは結晶 化しにくいものが好ましい。ポリエステルの重縮合は常法によって行われる。例えば、 上記二塩基酸とダリコールの直接反応、上記の二塩基酸またはこれらのアルキルェ ステル類、例えば二塩基酸のメチルエステルとグリコール類とのポリエステルイ匕反応 またはエステル交換反応により熱溶融縮合法力 ある!/、はこれら酸の酸クロライドとグ リコールとの脱ハロゲンィ匕水素反応の何れかの方法により容易に合成し得る力 重量 平均分子量がさほど大きくないポリエステルは直接反応によるのが好ましい。低分子 量側に分布が高くあるポリエステルはセルロースエステルとの相溶性が非常によぐ フィルム形成後、透湿度も小さぐしカゝも透明性に富んだセルロースエステルフィルム を得ることができる。分子量の調節方法は、特に制限なく従来の方法を使用できる。 例えば、重合条件にもよるが、 1価の酸または 1価のアルコールで分子末端を封鎖す る方法により、これらの 1価のものの添加する量によりコントロールできる。この場合、 1
価の酸がポリマーの安定性力 好ましい。例えば、酢酸、プロピオン酸、酪酸、ピバリ ン酸、安息香酸等を上げることができるが、重縮合反応中には系外に溜去せず、停 止して反応系外にこのような 1価の酸を系外に除去するときに溜去し易いものが選ば れるが、これらを混合使用してもよい。また、直接反応の場合には、反応中に溜去し てくる水の量により反応を停止するタイミングを計ることによつても重量平均分子量を 調節できる。その他、仕込むグリコールまたは二塩基酸のモル数を偏らせることによ つてもできるし、反応温度をコントロールしても調節できる。
[0126] 又、下記のポリエステルエーテルも、本発明で用いられるポリエステルに含まれるも のとする。
[0127] 本発明に有用なポリエステルエーテルは、上記ポリエステルや上記二塩基性酸あ るいはこれらのアルキルエステル類と、エーテル単位の両末端に OH基を有する化 合物を、ポリエステルィ匕反応またはエステル交換反応により熱溶融縮合法カゝ、末端 O H基を有するポリエステルにエーテルィ匕する反応法によりポリエステルエーテルを得 ることができる。エーテル単位としては特に限定されないが、例えば、 HO (RO) nRO H (ここで Rはアルキレン基、ァリーレン基、ァラルキレン基、 2官能脂環基等でこれら が混ざり合っていてもよい、また nは 1〜100)のようなジエチレングリコール、トリェチ レングリコール、テトラエチレンダリコール、ポリエチレングリコール、ポリプロピレングリ コーノレ、ポリブチレングリコーノレ、ポリフエ二レングリコール、ポリシクロへキシレングリコ 一ル等を挙げることが出来、これらを組み合わて使用してもよい。ポリマーの分子量 を調整する方法は、とくに制限なく使用出来、ポリエステルの場合と同様に行うことが できる。
[0128] また、本発明に適したポリエステルエーテルを市販品から求めることができる。例え ば、 Dupont社製のハイテレル(Hytrel)コポリエステル類、 GAF社製のガルフレック (Galflex)ポリマー、「旭電化工業 (株)社製アデ力サイザ一 RSシリーズ」を挙げること ができる。
[0129] 更に、本発明のポリエステルフィルムに含有されるポリエステル系化合物としては、 下記一般式 (I)で表される化合物が、特に好ましい。
[0130] 一般式 (I)
B—(G— A) n— G— B
上記一般式(I)において、 Bはベンゼンモノカルボン酸残基、 Gは炭素数 2〜12の アルキレングリコール残基、炭素数 6〜 12のァリールグリコール残基または炭素数が 4〜 12のォキシアルキレングリコール残基、 Aは炭素数 4〜 12のアルキレンジカルボ ン酸残基または炭素数 6〜 12のァリールジカルボン酸残基を表し、また nは 1以上の 整数を表す。
[0131] 一般式(I)にお!/、て、 Bで示されるベンゼンモノカルボン酸残基と Gで示されるアル キレングリコール残基またはォキシアルキレングリコール残基またはァリールグリコー ル残基、 Aで示されるアルキレンジカルボン酸残基またはァリールジカルボン酸残基 とから構成されるものであり、通常のポリエステル系化合物と同様の反応により得られ る。
[0132] 本発明で使用されるポリエステル系化合物のベンゼンモノカルボン酸成分としては 、例えば、安息香酸、パラターシヤリブチル安息香酸、オルソトルイル酸、メタトルィル 酸、パラトルィル酸、ジメチル安息香酸、ェチル安息香酸、ノルマルプロピル安息香 酸、ァミノ安息香酸、ァセトキシ安息香酸等があり、これらはそれぞれ 1種または 2種 以上の混合物として使用することができる。
[0133] 一般式 (I)において、 Gで示される炭素数 2〜 12のアルキレングリコール成分として は、エチレングリコール、 1, 2 プロピレングリコール、 1, 3 プロピレングリコール、
1. 2 ブタンジオール、 1, 3 ブタンジオール、 2—メチルー 1, 3 プロパンジォー ル、 1, 4 ブタンジオール、 1, 5 ペンタンジオール、 2, 2 ジメチルー 1, 3 プロ パンジオール(ネオペンチルグリコール)、 2, 2 ジェチルー 1, 3 プロパンジォー ル(3, 3 ジメチロールペンタン)、 2—n—ブチルー 2 ェチルー 1, 3 プロパンジ オール(3, 3 ジメチロールヘプタン)、 3—メチルー 1, 5 ペンタンジオール 1, 6 一へキサンジオール、 2, 2, 4 トリメチルー 1, 3 ペンタンジオール、 2 ェチルー
1. 3 へキサンジオール、 2—メチルー 1, 8 オクタンジオール、 1, 9ーノナンジォ ール、 1, 10—デカンジオール、 1, 12—ォクタデカンジオール等があり、これらのグ リコールは、 1種または 2種以上の混合物として使用される。
[0134] また、一般式 (I)において、 Gで示される炭素数 4〜12のォキシアルキレングリコー
ル成分としては、例えば、ジエチレングリコール、トリエチレングリコール、テトラエチレ ングリコール、ジプロピレングリコール、トリプロピレングリコール等があり、これらのグリ コールは、 1種または 2種以上の混合物として使用できる。
[0135] 一般式 (I)において、 Gで示される炭素数 6〜12のァリールグリコール成分としては ゝ例えば、ハイドロキノン、レゾルシン、ビスフエノーノレ A、ビスフエノーノレ F、ビスフエノ ール等があり、これらのグリコールは、 1種または 2種以上の混合物として使用できる。
[0136] 一般式(I)において、 Aで示される炭素数 4〜 12のアルキレンジカルボン酸成分と しては、例えば、コハク酸、マレイン酸、フマル酸、グルタール酸、アジピン酸、ァゼラ イン酸、セバシン酸、ドデカンジカルボン酸等があり、これらは、それぞれ 1種または 2 種以上の混合物として使用される。炭素数 6〜 12のァリーレンジカルボン酸成分とし ては、フタル酸、テレフタル酸、 1, 5 ナフタレンジカルボン酸、 1, 4 ナフタレンジ カルボン酸等がある。
[0137] 本発明で使用されるエステル系化合物は、数平均分子量が、好ましくは 300〜20 00、より好ましくは 500〜 1500の範囲が好適である。また、その酸価は、 0. 5mgKO HZg以下、水酸基価は 25mgKOHZg以下、より好ましくは酸価 0. 3mgKOH/g 以下、水酸基価は 15mgKOHZg以下のものが好適である。
[0138] 本発明でいうエステル系化合物の酸価とは、試料 lg中に含まれる酸を中和するの に要する水酸ィ匕カリウムのミリグラム数をいう。酸価及び水酸価は、 JIS K 0070に 準拠して測定したものである。
[0139] 以下、本発明に係るポリエステル系化合物の合成例を示す。
[0140] 〈サンプル 1 (ポリエステル系化合物)〉
反応容器に、フタル酸 820部(5モル)、 1, 2 プロピレングリコール 608部(8モル) 、安息香酸 610部(5モル)及び触媒としてテトライソプロピルチタネート 0. 30部を一 括して仕込み窒素気流中で攪拌下、還流凝縮器を付して過剰の 1価アルコールを還 流させながら、酸価が 2以下になるまで 130〜250°Cで加熱を続け生成する水を連 続的に除去した。次いで 200〜230°Cで 50〜最終的に 400Pa以下の減圧下、留出 分を除去し、この後濾過して次の性状を有するポリエステル系化合物を得た。
[0141] 粘度(25°C、 mPa's) ; 19815
酸価 ; 0. 4
〈サンプル 2 (ポリエステル系化合物)〉
反応容器に、アジピン酸 500部(3. 5モル)、安息香酸 305部(2. 5モル)、ジェチ レングリコール 583部(5. 5モル)及び触媒としてテトライソプロピルチタネート 0. 45 部を用いる以外はサンプル No. 1と全く同様にして次の性状を有するポリエステル系 化合物を得た。
[0142] 粘度(25°C、 mPa' s) ; 90
酸価 ; 0. 05
〈サンプル 3 (ポリエステル系化合物)〉
反応容器にイソフタル酸 570部(3. 5モル)、安息香酸 305部(2. 5モル)、ジプロピ レングリコール 737部(5. 5モル)及び触媒としてテトライソプロピルチタネート 0. 40 部を用いる以外はサンプル No. 1と全く同様にして次の性状を有するポリエステル系 化合物を得た。
[0143] 粘度(25°C、 mPa' s) ; 33400
酸価 ;0. 2
以下に、ポリエステル系化合物の具体的化合物を示すが、本発明はこれに限定さ れない。
[0144] [化 3]
COOCH2CH2OCH2CH2—OCO—(CH2)4—COO— CH2CH2OCH2CH2— OCO~^
COOCH2CH2CH2OCH2CH2CH2— OCO—
COOCH2CH2OCH2CH2— OCO- "COOCH2CH2OCH2CH2OCO-
COOCH, "CH2OCO-(CH2)a— COOCH; -CH2OCO -
[0146] 本発明に係るポリエステル系化合物の含有量は、セルロースエステルフィルム中に 1〜20質量%含有することが好ましぐ特に 3〜: L 1質量%含有することが好ましい。
[0147] (多価アルコールエステル系化合物)
多価アルコールエステル系化合物は、 2価以上の脂肪族多価アルコールとモノ力 ルボン酸のエステルよりなる化合物であり、分子内に芳香環またはシクロアルキル環 を有することが好ましい。好ましくは 2〜20価の脂肪族多価アルコールエステルであ る。
[0148] 本発明に好ましく用いられる多価アルコールは、次の一般式 (B)で表される。
[0149] 一般式 (B)
R (OH)
1 n
上記一般式(B)において、 Rは n価の有機基である。 nは 2以上の正の整数、 OH
1
基はアルコール性、及び Zまたはフエノール性水酸基を表す。
[0150] 好ましい多価アルコールの例としては、例えば以下のようなものを挙げることができ る力 本発明はこれらに限定されるものではない。アド二トール、ァラビトール、ェチレ ングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコー ル、 1, 2 プロパンジオール、 1, 3 プロパンジオール、ジプロピレングリコール、トリ プロピレングリコール、 1, 2 ブタンジオール、 1, 3 ブタンジオール、 1, 4 ブタン ジオール、ジブチレングリコール、 1, 2, 4 ブタントリオール、 1, 5 ペンタンジォー ル、 1, 6 へキサンジオール、へキサントリオール、ガラクチトール、マンニトール、 3 ーメチルペンタン 1, 3, 5 トリオール、ピナコール、ソルビトール、トリメチロールプ 口パン、トリメチロールェタン、キシリトール等を挙げることができる。特に、トリエチレン グリコール、テトラエチレンダリコール、ジプロピレングリコール、トリプロピレングリコー ル、ソルビトール、トリメチロールプロパン、キシリトールが好ましい。
[0151] 本発明に係る多価アルコールエステルに用いられるモノカルボン酸としては、特に 制限はなぐ公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカル ボン酸等を用いることができる。脂環族モノカルボン酸、芳香族モノカルボン酸を用 Vヽると透湿性、保留性を向上させる点で好ま Uヽ。
[0152] 好ましいモノカルボン酸の例としては、以下のようなものを挙げることができる力 本 発明はこれに限定されるものではない。
[0153] 脂肪族モノカルボン酸としては、炭素数 1〜32の直鎖または側鎖を有する脂肪酸 を好ましく用いることができる。炭素数は 1〜20であることが更に好ましぐ 1〜: L0であ ることが特に好ま 、。酢酸を含有させるとセルロースエステルとの相溶性が増すた め好ましぐ酢酸と他のモノカルボン酸を混合して用いることも好まし 、。
[0154] 好ま 、脂肪族モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草 酸、カプロン酸、ェナント酸、力プリル酸、ペラルゴン酸、力プリン酸、 2—ェチルーへ キサン酸、ゥンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パ ルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、ァラキン酸、ベヘン酸、リ
グノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラタセル酸等の 飽和脂肪酸、ゥンデシレン酸、ォレイン酸、ソルビン酸、リノール酸、リノレン酸、ァラキ ドン酸等の不飽和脂肪酸等を挙げることができる。
[0155] 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロへ キサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることが できる。
[0156] 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルィル酸等の安息香酸 のベンゼン環にアルキル基を導入したもの、ビフエ二ルカルボン酸、ナフタレンカル ボン酸、テトラリンカルボン酸等のベンゼン環を 2個以上有する芳香族モノカルボン 酸、またはそれらの誘導体を挙げることができる。特に安息香酸が好ましい。
[0157] 多価アルコールエステルの分子量は特に制限はないが、 300〜1500でぁることカ 好ましぐ 350〜750であることが更に好ましい。分子量が大きい方が揮発し難くなる ため好ましぐ透湿性、セルロースエステルとの相溶性の点では小さい方が好ましい
[0158] 多価アルコールエステルに用いられるカルボン酸は 1種類でもよいし、 2種以上の 混合であってもよい。また、多価アルコール中の OH基は、全てエステル化してもよい し、一部を OH基のままで残してもよい。
[0159] 以下に、多価アルコールエステルの具体的化合物を例示する。
[0160] [化 5]
C4H9 -C- 0-(CH2)2-0- (CH2)2-0- {CH2)2— O - C _ C4H9 o o
C-0-{CH2)2-O-{CH2)2-O-(CH2)2-O-C-
-+CH2-CH-CH2-
33
— C-0- cH2-CH2-CH2-o) ~ O— C-Y
o 3 O ^ ^-" '
[0164] (多価カルボン酸エステル系化合物)
本発明に係る多価カルボン酸エステル系化合物は、 2価以上、好ましくは 2価〜 20 価の多価カルボン酸とアルコールのエステルより得られる。また、脂肪族多価カルボ ン酸は 2〜20価であることが好ましぐ芳香族多価カルボン酸、脂環式多価カルボン 酸の場合は 3価〜 20価であることが好まし 、。
[0165] 本発明に用いられる多価カルボン酸は、次の一般式 (C)で表される化合物であるこ とが好ましい。
[0166] 一般式 (C)
R (COOH) (OH)
2 m n
上記一般式(C)において、 Rは(m+n)価の有機基、 mは 2以上の正の整数、 nは
2
0以上の整数、 COOH基はカルボキシル基、 OH基はアルコール性またはフエノー ル性水酸基を表す。
[0167] 好ましい多価カルボン酸の例としては、例えば以下のようなものを挙げることができ る力 本発明はこれらに限定されるものではない。トリメリット酸、トリメシン酸、ピロメリッ ト酸のような 3価以上の芳香族多価カルボン酸またはその誘導体、コハク酸、アジピ ン酸、ァゼライン酸、セバシン酸、シユウ酸、フマル酸、マレイン酸、テトラヒドロフタル 酸のような脂肪族多価カルボン酸、酒石酸、タルトロン酸、リンゴ酸、クェン酸のような ォキシ多価カルボン酸などを好ましく用いることができる。特にォキシ多価カルボン酸 を用いることが、保留性向上などの点で好ましい。
[0168] 本発明に係る多価カルボン酸エステル系化合物に用いられるアルコールとしては 特に制限はなく公知のアルコール、フエノール類を用いることができる。例えば炭素 数 1〜32の直鎖または側鎖を持った脂肪族飽和アルコールまたは脂肪族不飽和ァ ルコールを好ましく用いることができる。炭素数 1〜20であることが更に好ましぐ炭素 数 1〜10であることが特に好ましい。また、シクロペンタノール、シクロへキサノールな どの脂環式アルコールまたはその誘導体、ベンジルアルコール、シンナミルアルコー ルなどの芳香族アルコールまたはその誘導体なども好ましく用いることができる。
[0169] 多価カルボン酸としてォキシ多価カルボン酸を用いる場合は、ォキシ多価カルボン 酸のアルコール性またはフエノール性の水酸基をモノカルボン酸を用いてエステル 化しても良い。好ましいモノカルボン酸の例としては以下のようなものを挙げることが できる力 本発明はこれに限定されるものではない。
[0170] 脂肪族モノカルボン酸としては炭素数 1〜32の直鎖または側鎖を持った脂肪酸を 好ましく用いることができる。炭素数 1〜20であることが更に好ましぐ炭素数 1〜: LO であることが特に好ましい。
[0171] 好ましい脂肪族モノカルボン酸としては、例えば、酢酸、プロピオン酸、酪酸、吉草 酸、カプロン酸、ェナント酸、力プリル酸、ペラルゴン酸、力プリン酸、 2—ェチルーへ キサンカルボン酸、ゥンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシ ル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、ァラキン酸、ベへ
ン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラタセル 酸などの飽和脂肪酸、ゥンデシレン酸、ォレイン酸、ソルビン酸、リノール酸、リノレン 酸、ァラキドン酸などの不飽和脂肪酸などを挙げることができる。
[0172] 好ましい脂環族モノカルボン酸の例としては、シクロペンタンカルボン酸、シクロへ キサンカルボン酸、シクロオクタンカルボン酸、またはそれらの誘導体を挙げることが できる。
[0173] 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルィル酸などの安息香 酸のベンゼン環にアルキル基を導入したもの、ビフエ二ルカルボン酸、ナフタリンカル ボン酸、テトラリンカルボン酸などのベンゼン環を 2個以上もつ芳香族モノカルボン酸 、またはそれらの誘導体を挙げることができる。特に酢酸、プロピオン酸、安息香酸で あることが好ましい。
[0174] 多価カルボン酸エステル化合物の分子量は特に制限はないが、分子量 300〜10 00の範囲であることが好ましぐ 350〜750の範囲であることが更に好ましい。保留 性向上の点では大きい方が好ましぐ透湿性、セルロースエステルとの相溶性の点で は小さい方が好ましい。
[0175] 本発明の多価カルボン酸エステルに用 、られるアルコ一ル類は一種類でも良いし
、二種以上の混合であっても良い。
[0176] 本発明に用いられる多価カルボン酸エステル化合物の酸価は lmgKOHZg以下 であることが好ましぐ 0. 2mgKOHZg以下であることが更に好ましい。酸価を上記 範囲にすることによって、リタ一デーシヨンの環境変動も抑制されるため好ましい。
[0177] (エチレン性不飽和モノマーを重合して得られたポリマー)
本発明に係るエチレン性不飽和モノマーを重合して得られたポリマーは、エチレン 性不飽和モノマーと光重合開始剤との重合により得られる。
[0178] 本発明に係るエチレン性不飽和モノマーを重合して得られるポリマー(以下、本発 明に係るポリマーともいう)としては、アクリル系ポリマー、芳香環を側鎖に有するアタリ ル系ポリマーまたはシクロへキシル基を側鎖に有するアクリル系ポリマーを包含する。
[0179] 本発明に係るポリマーの重量平均分子量は 500〜10, 000のものであること力 セ ルロースエステルとの相溶性が良好で、製膜中にお 、て蒸発も揮発も起こらな 、観
点から好ましい。特に、アクリル系ポリマー、芳香環を側鎖に有するアクリル系ポリマ 一またはシクロへキシル基を側鎖に有するアクリル系ポリマーについて、好ましくは 5 00〜5, 000のものであれば、上記に力!]え、製膜後のセルロースエステルフィルムの 透明性が優れ、透湿度も極めて低ぐ偏光板用保護フィルムとして優れた性能を示 す。
[0180] 本発明に係るポリマーは、重量平均分子量が 500以上 10, 000未満であるから、 オリゴマー力も低分子量ポリマーの間にあると考えられるものである。このようなポリマ 一を合成するには、通常の重合では分子量のコントロールが難しぐ分子量をあまり 大きくしない方法でできるだけ分子量を揃えることのできる方法を用いることが望まし い。力かる重合方法としては、クメンペルォキシドゃ tーブチルヒドロペルォキシドのよ うな過酸化物重合開始剤を使用する方法、重合開始剤を通常の重合より多量に使 用する方法、重合開始剤の他にメルカプト化合物や四塩化炭素等の連鎖移動剤を 使用する方法、重合開始剤の他にベンゾキノンゃジニトロベンゼンのような重合停止 剤を使用する方法、更に特開 2001— 0128911号または同 2000— 344823号公 報にあるような一つのチオール基と 2級の水酸基とを有する化合物、あるいは、該化 合物と有機金属化合物を併用した重合触媒を用いて塊状重合する方法等を挙げる ことが出来、何れも本発明において好ましく用いられる力 特に、該公報に記載の方 法が好ましい。
[0181] 本発明に有用なポリマーを構成するモノマーを下記に挙げるがこれに限定されな い。
[0182] エチレン性不飽和モノマーを重合して得られるポリマーを構成するエチレン性不飽 和モノマー単位としては:ビュルエステルとして、例えば、酢酸ビニル、プロピオン酸 ビュル、酪酸ビュル、吉草酸ビュル、ピバリン酸ビュル、カプロン酸ビュル、力プリン 酸ビュル、ラウリン酸ビュル、ミリスチン酸ビュル、パルミチン酸ビュル、ステアリン酸ビ -ル、シクロへキサンカルボン酸ビュル、ォクチル酸ビュル、メタクリル酸ビュル、クロ トン酸ビュル、ソルビン酸ビュル、安息香酸ビュル、桂皮酸ビュル等;アクリル酸エス テルとして、例えば、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル(i n 一)、アクリル酸ブチル(n i s— t一)、アクリル酸ペンチル(n i s—)、
アクリル酸へキシル(n i一)、アクリル酸へプチル(n i一)、アクリル酸ォクチル( n i一)、アクリル酸ノ-ル(n i一)、アクリル酸ミリスチル(n i一)、アクリル酸 シクロへキシル、アクリル酸(2—ェチルへキシル)、アクリル酸ベンジル、アクリル酸フ エネチル、アクリル酸( ε一力プロラタトン)、アクリル酸(2—ヒドロキシェチル)、アタリ ル酸(2 ヒドロキシプロピル)、アクリル酸(3 ヒドロキシプロピル)、アクリル酸(4ーヒ ドロキシブチル)、アクリル酸(2—ヒドロキシブチル)、アクリル酸—ρ ヒドロキシメチ ルフエ-ル、アクリル酸 ρ— (2—ヒドロキシェチル)フエ-ル等;メタクリル酸エステル として、上記アクリル酸エステルをメタクリル酸エステルに変えたもの;不飽和酸として 、例えば、アクリル酸、メタクリル酸、無水マレイン酸、クロトン酸、ィタコン酸等を挙げ ることができる。上記モノマーで構成されるポリマーはコポリマーでもホモポリマーでも よく、ビニノレエステノレのホモポリマー、ビニノレエステノレのコポリマー、ビニノレエステルと アクリル酸またはメタクリル酸エステルとのコポリマーが好ましい。
[0183] 本発明において、アクリル系ポリマーは、芳香環あるいはシクロへキシル基を有する モノマー単位を有しないアクリル酸またはメタクリル酸アルキルエステルのホモポリマ 一またはコポリマーを指す。芳香環を側鎖に有するアクリル系ポリマーというのは、必 ず芳香環を有するアクリル酸またはメタクリル酸エステルモノマー単位を含有するァク リル系ポリマーである。また、シクロへキシル基を側鎖に有するアクリル系ポリマーとい うのは、シクロへキシル基を有するアクリル酸またはメタクリル酸エステルモノマー単 位を含有するアクリル系ポリマーである。
[0184] 芳香環及びシクロへキシル基を有さないアクリル酸エステルモノマーとしては、例え ば、アクリル酸メチル、アクリル酸ェチル、アクリル酸プロピル(i n—)、アクリル酸 ブチル(n i s— t—)、アクリル酸ペンチル(n i s—)、アクリル酸へキシ ル(n i一)、アクリル酸へプチル(n i一)、アクリル酸ォクチル(n i—)、アタリ ル酸ノ-ル(n i一)、アクリル酸ミリスチル(n i一)、アクリル酸(2—ェチルへキ シル)、アクリル酸( ε—力プロラタトン)、アクリル酸(2—ヒドロキシェチル)、アクリル 酸(2 ヒドロキシプロピル)、アクリル酸(3 ヒドロキシプロピル)、アクリル酸(4ーヒド 口キシブチル)、アクリル酸(2—ヒドロキシブチル)、アクリル酸(2—メトキシェチル)、 アクリル酸(2—エトキシェチル)等、または上記アクリル酸エステルをメタクリル酸エス
テルに変えたものを挙げることができる。
[0185] アタリノレ系ポリマーは上記モノマーのホモポリマーまたはコポリマーであるが、アタリ ル酸メチルエステルモノマー単位が 30質量%以上を有していることが好ましぐまた 、メタクリル酸メチルエステルモノマー単位力 0質量%以上有することが好ましい。特 にアクリル酸メチルまたはメタクリル酸メチルのホモポリマーが好ましい。
[0186] 芳香環を有するアクリル酸またはメタクリル酸エステルモノマーとしては、例えば、ァ クリル酸フエ-ル、メタクリル酸フエ-ル、アクリル酸(2または 4ークロロフヱ-ル)、メタ クリル酸(2または 4 クロ口フエ-ル)、アクリル酸(2または 3または 4 エトキシカルボ -ルフエ-ル)、メタクリル酸(2または 3または 4 エトキシカルボ-ルフエ-ル)、ァク リル酸 (oまたは mまたは p トリル)、メタクリル酸 (oまたは mまたは p トリル)、アタリ ル酸ベンジル、メタクリル酸ベンジル、アクリル酸フエネチル、メタクリル酸フエネチル 、アクリル酸(2—ナフチル)等を挙げることができる力 アクリル酸ベンジル、メタクリル 酸ベンジル、アクリル酸フエ-チル、メタクリル酸フエネチルを好ましく用いることがで きる。
[0187] 芳香環を側鎖に有するアクリル系ポリマー中、芳香環を有するアクリル酸またはメタ クリル酸エステルモノマー単位が 20〜40質量%を有し、且つアクリル酸またはメタク リル酸メチルエステルモノマー単位を 50〜80質量0 /0有することが好まし!/、。該ポリマ 一中、水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位を 2〜20質 量%有することが好ましい。
[0188] シクロへキシル基を有するアクリル酸エステルモノマーとしては、例えば、アクリル酸 シクロへキシル、メタクリル酸シクロへキシル、アクリル酸(4ーメチルシクロへキシル)、 メタクリル酸(4ーメチルシクロへキシル)、アクリル酸(4ーェチルシクロへキシル)、メタ クリル酸 (4ーェチルシクロへキシル)等を挙げることができる力 アクリル酸シクロへキ シル及びメタクリル酸シクロへキシルを好ましく用いることができる。
[0189] シクロへキシル基を側鎖に有するアクリル系ポリマー中、シクロへキシル基を有する アクリル酸またはメタクリル酸エステルモノマー単位を 20〜40質量0 /0を有し且つ 50 〜80質量%有することが好ましい。また、該ポリマー中、水酸基を有するアクリル酸ま たはメタクリル酸エステルモノマー単位を 2〜20質量%有することが好ましい。
[0190] 上述のエチレン性不飽和モノマーを重合して得られるポリマー、アクリル系ポリマー 、芳香環を側鎖に有するアクリル系ポリマー及びシクロへキシル基を側鎖に有するァ クリル系ポリマーは何れもセルロースエステルとの相溶性に優れ、蒸発や揮発もなく 生産性に優れ、偏光板用保護フィルムとしての保留性がよぐ透湿度が小さぐ寸法 安定性に優れている。
[0191] 本発明にお 、て、水酸基を有するアクリル酸またはメタクリル酸エステルモノマーの 場合は、ホモポリマーではなぐコポリマーの構成単位である。この場合、好ましくは、 水酸基を有するアクリル酸またはメタクリル酸エステルモノマー単位がアクリル系ポリ マー中 2〜20質量%含有することが好ましい。
[0192] 本発明において、側鎖に水酸基を有するポリマーも好ましく用いることができる。水 酸基を有するモノマー単位としては、前記したモノマーと同様である力 アクリル酸ま たはメタクリル酸エステルが好ましぐ例えば、アクリル酸(2—ヒドロキシェチル)、ァク リル酸(2 ヒドロキシプロピル)、アクリル酸(3 ヒドロキシプロピル)、アクリル酸(4 ヒドロキシブチル)、アクリル酸(2—ヒドロキシブチル)、アクリル酸—p ヒドロキシメチ ルフエ-ル、アクリル酸 p— (2—ヒドロキシェチル)フエ-ル、またはこれらアクリル 酸をメタクリル酸に置き換えたものを挙げることが出来、好ましくは、アクリル酸ー2— ヒドロキシェチル及びメタクリル酸 2—ヒドロキシェチルである。ポリマー中に水酸基 を有するアクリル酸エステルまたはメタクリル酸エステルモノマー単位はポリマー中 2 〜20質量%含有することが好ましぐより好ましくは 2〜 10質量%である。
[0193] 前記のようなポリマーが上記の水酸基を有するモノマー単位を 2〜20質量%含有 したものは、勿論セルロースエステルとの相溶性、保留性、寸法安定性が優れ、透湿 度が小さいば力りでなぐ偏光板用保護フィルムとしての偏光子との接着性に特に優 れ、偏光板の耐久性が向上する効果を有している。
[0194] また、本発明においては、ポリマーの主鎖の少なくとも一方の末端に水酸基を有す ることが好ましい。主鎖末端に水酸基を有するようにする方法は、特に主鎖の末端に 水酸基を有するようにする方法であれば限定な 、が、ァゾビス(2—ヒドロキシェチル プチレート)のような水酸基を有するラジカル重合開始剤を使用する方法、 2—メルカ ブトエタノールのような水酸基を有する連鎖移動剤を使用する方法、水酸基を有する
重合停止剤を使用する方法、リビングイオン重合により水酸基を末端に有するよう〖こ する方法、特開 2000— 128911号または同 2000— 344823号公報にあるような一 つのチオール基と 2級の水酸基とを有する化合物、あるいは、該化合物と有機金属 化合物を併用した重合触媒を用いて塊状重合する方法等により得ることが出来、特 に該公報に記載の方法が好ま 、。この公報記載に関連する方法で作られたポリマ 一は、綜研ィ匕学社製のァクトフロー'シリーズとして市販されており、好ましく用いるこ とがでさる。
[0195] 上記の末端に水酸基を有するポリマー及び Zまたは側鎖に水酸基を有するポリマ 一は、本発明において、ポリマーの相溶性、透明性を著しく向上する効果を有する。
[0196] (セルロースエステル)
本発明に用いられるセルロースエステルの原料のセルロースとしては、特に限定は ないが、綿花リンター、木材パルプ、ケナフ等を挙げることができる。またそれらから 得られたセルロースエステルはそれぞれ単独で、または任意の割合で混合して使用 することができる。
[0197] 本発明に係わるセルロースエステルは、セルロース原料のァシル化剤が酸無水物( 無水酢酸、無水プロピオン酸、無水酪酸)である場合には、酢酸のような有機酸ゃメ チレンクロライド等の有機溶媒を用い、硫酸のようなプロトン性触媒を用いて反応が行 われる。ァシル化剤が酸クロライド(CH COCl、 C H COCl、 C H COC1)の場合に
3 2 5 3 7
は、触媒としてァミンのような塩基性ィ匕合物を用いて反応が行われる。具体的には特 開平 10— 45804号に記載の方法で合成することができる。セルロースエステルはァ シル基がセルロース分子の水酸基に反応する。セルロース分子はグルコースユニット が多数連結したものからなっており、グルコースユニットあたり 3個の水酸基がある。こ の 3個の水酸基にァシル基が誘導された数を置換度という。例えば、セルローストリア セテートはグルコースユニットの 3個の水酸基全てにァセチル基が結合している。
[0198] セルロースエステルフィルムに用いることができるセルロースエステルとしては、総ァ シル基置換度が 2. 4〜2. 8であることが好ましい。
[0199] 本発明に用いられるセルロースエステルの分子量は、数平均分子量(Mn)で 50, 0 00〜200, 000のもの力用!/、られる。 60, 000〜200, 000のもの力 ^さらに好まし <、
80, 000〜200, 000力特に好まし!/ヽ。
[0200] 本発明で用いられるセルロースエステルは、重量平均分子量(Mw)と数平均分子 量(Mn)の比、 MwZMnが、前記のように 1. 4〜3. 0であることが好ましぐさらに好 ましくは 1. 7〜2. 2の範囲である。
[0201] セルロースエステルの平均分子量及び分子量分布は、高速液体クロマトグラフィー を用いて公知の方法で測定することができる。これを用いて数平均分子量、重量平 均分子量を算出し、その比(MwZMn)を計算することができる。
[0202] 測定条件は以下の通りである。
[0203] 溶媒:メチレンクロライド
カラム: Shodex K806、 K805、 K803G (昭和電工 (株)製を 3本接続して使用し た)
カラム温度: 25°C
試料濃度 : 0. 1質量%
検出器: RI Model 504 (GLサイエンス社製)
ポンプ: L6000 (日立製作所 (株)製)
流量: 1. Omレ mm
校正曲線:標準ポリスチレン STK standard ポリスチレン (東ソ一 (株)製) Mw= 1000000〜500迄の 13サンプノレ【こよる校正曲線を使用した。 13サンプノレ ίま、〖ま ίま、 等間隔に用いることが好ましい。
[0204] 本発明に用いられるセルロースエステルは、炭素数 2〜22程度のカルボン酸エス テルであり、特にセルロースの低級脂肪酸エステルであることが好ましい。セルロース の低級脂肪酸エステルにおける低級脂肪酸とは炭素原子数が 6以下の脂肪酸を意 味し、例えば、セルロースアセテート、セノレロースプロピオネート、セノレロースブチレー ト、セルロースアセテートフタレート等や、特開平 10— 45804号、同 8— 231761号、 米国特許第 2, 319, 052号等に記載されているようなセルロースアセテートプロピオ ネート、セルロースアセテートプチレート等の混合脂肪酸エステルを用いることができ る。あるいは、特開 2002— 179701号、同 2002— 265639号、 ^12002- 265638 号に記載の芳香族カルボン酸とセルロースとのエステル、セルロースァシレートも好
ましく用いられる。上記記載の中でも、特に好ましく用いられるセルロースの低級脂肪 酸エステルは、セルローストリアセテート、セルロースアセテートプロピオネートである 。これらのセルロースエステルは混合して用いることもできる。
[0205] セルローストリアセテート以外で好ましいセルロースエステルは、炭素原子数 2〜4 のァシル基を置換基として有し、ァセチル基の置換度を Xとし、プロピオ-ル基もしく はプチリル基の置換度を Yとした時、下記式 (a)及び (b)を同時に満たすセルロース エステルである。
[0206] 式(a) 2. 4≤X+Y≤2. 8
式(b) 0≤X≤2. 5
ァシル基で置換されて 、な 、部分は通常水酸基として存在して 、る。これらは公知 の方法で合成することができる。
[0207] これらァシル基置換度は、 ASTM— D817— 96に規定の方法に準じて測定するこ とがでさる。
[0208] ァセチルセルロースの場合、酢化率を上げようとすれば、酢化反応の時間を延長す る必要がある。ただし、反応時間を余り長くとると分解が同時に進行し、ポリマー鎖の 切断ゃァセチル基の分解等が起り、好ましくない結果をもたらす。従って、酢化度を 上げ、分解をある程度抑えるためには反応時間はある範囲に設定することが必要で ある。反応時間で規定することは反応条件がさまざまであり、反応装置や設備その他 の条件で大きく変わるので適切でない。ポリマーの分解は進むにつれ、分子量分布 が広くなつていくので、セルロースエステルの場合にも、分解の度合いは通常用いら れる重量平均分子量 (Mw) Z数平均分子量 (Mn)の値で規定できる。即ちセルロー ストリアセテートの酢ィ匕の過程で、余り長過ぎて分解が進み過ぎることがなぐかつ酢 化には十分な時間酢ィ匕反応を行わせしめるための反応度合いの一つの指標として 重量平均分子量 (Mw) Z数平均分子量 (Mn)の値を用いることができる。
[0209] セルロースエステルの製造法の一例を以下に示すと、セルロース原料として綿化リ ンター 100質量部を解砕し、 40質量部の酢酸を添加し、 36°Cで 20分間前処理活性 化をした。その後、硫酸 8質量部、無水酢酸 260質量部、酢酸 350質量部を添加し、 36°Cで 120分間エステルイ匕を行った。 24質量%酢酸マグネシウム水溶液 11質量部
で中和した後、 63°Cで 35分間ケン化熟成し、ァセチルセルロースを得た。これを 10 倍の酢酸水溶液 (酢酸:水 = 1: 1 (質量比) )を用いて、室温で 160分間攪拌した後、 濾過、乾燥させてァセチル置換度 2. 75の精製ァセチルセルロースを得た。このァセ チルセルロースは Mnが 92, 000、 Mwが 156, 000、 Mw/Mnは 1. 7であった。同 様にセルロースエステルのエステルイ匕条件 (温度、時間、攪拌)、加水分解条件を調 整することによって置換度、 MwZMn比の異なるセルロースエステルを合成すること ができる。
[0210] なお、合成されたセルロースエステルは、精製して低分子量成分を除去したり、未 酢化の成分を濾過で取り除くことも好ましく行われる。
[0211] また、混酸セルロースエステルの場合には、特開平 10— 45804号公報に記載の 方法によって得ることができる。ァシル基の置換度の測定方法は ASTM -D817- 96の規定に準じて測定することができる。
[0212] また、セルロースエステルは、セルロースエステル中の微量金属成分によっても影 響を受ける。これらは製造工程で使われる水に関係していると考えられるが、不溶性 の核となり得るような成分は少ない方が好ましぐ鉄、カルシウム、マグネシウム等の 金属イオンは、有機の酸性基を含んで ヽる可能性のあるポリマー分解物等と塩形成 することにより不溶物を形成する場合があり、少ないことが好ましい。鉄 (Fe)成分に ついては、 lppm以下であることが好ましい。カルシウム(Ca)成分については、地下 水や河川の水等に多く含まれ、これが多いと硬水となり、飲料水としても不適当であ る力 カルボン酸や、スルホン酸等の酸性成分と、また多くの配位子と配位ィ匕合物、 即ち錯体を形成しやすぐ多くの不溶なカルシウムに由来するスカム (不溶性の澱、 濁り)を形成する。
[0213] カルシウム(Ca)成分は 60ppm以下、好ましくは 0〜30ppmである。マグネシウム( Mg)成分については、やはり多過ぎると不溶分を生ずるため、 0〜70ppmであること が好ましぐ特に 0〜20ppmであることが好ましい。鉄 (Fe)分の含量、カルシウムお a)分含量、マグネシウム (Mg)分含量等の金属成分は、絶乾したセルロースエステ ルをマイクロダイジェスト湿式分解装置 (硫硝酸分解)、アルカリ溶融で前処理を行つ た後、 ICP—AES (誘導結合プラズマ発光分光分析装置)を用いて分析を行うことに
よって求めることができる。
[0214] (有機溶媒)
セルロースエステルを溶解しセルロースエステル溶液またはドープ形成に有用な有 機溶媒としては、塩素系有機溶媒と非塩素系有機溶媒がある。塩素系の有機溶媒と してメチレンクロライド (塩化メチレン)を挙げることができ、セルロースエステル、特に セルローストリアセテートの溶解に適して 、る。昨今の環境問題から非塩素系有機溶 媒の使用が検討されている。非塩素系有機溶媒としては、例えば、酢酸メチル、酢酸 ェチル、酢酸ァミル、アセトン、テトラヒドロフラン、 1, 3 ジォキソラン、 1, 4 ジォキ サン、シクロへキサノン、ギ酸ェチノレ、 2, 2, 2 トリフノレ才ロエタノーノレ、 2, 2, 3, 3 - へキサフルオロー 1—プロパノール、 1, 3 ジフルオロー 2 プロパノール、 1, 1, 1, 3, 3, 3 へキサフノレオロー 2—メチノレ一 2 プロノ ノーノレ、 1, 1, 1, 3, 3, 3 へキ サフルオロー 2 プロパノール、 2, 2, 3, 3, 3 ペンタフルオロー 1 プロパノール、 ニトロエタン等を挙げることができる。これらの有機溶媒をセルローストリアセテートに 対して使用する場合には、常温での溶解方法も使用可能であるが、高温溶解方法、 冷却溶解方法、高圧溶解方法等の溶解方法を用いることにより不溶解物を少なくす ることができるので好まし 、。セルローストリアセテート以外のセルロースエステルに対 しては、メチレンクロライドを用いることはできる力 酢酸メチル、酢酸ェチル、アセトン が好ましく使用される。特に酢酸メチルが好ましい。本発明において、上記セルロー スエステルに対して良好な溶解性を有する有機溶媒を良溶媒と 、、また溶解に主 たる効果を示し、その中で大量に使用する有機溶媒を主 (有機)溶媒または主たる( 有機)溶媒という。
[0215] 本発明に係るドープには、上記有機溶媒の他に、 1〜40質量%の炭素原子数 1〜 4のアルコールを含有させることが好まし、。これらはドープを金属支持体に流延後 溶媒が蒸発をし始めアルコールの比率が多くなるとドープ膜 (ウェブ)がゲルイ匕し、ゥ エブを丈夫にし金属支持体から剥離することを容易にするゲル化溶媒として用いられ たり、これらの割合が少な ヽ時は非塩素系有機溶媒のセルロースエステルの溶解を 促進する役割もある。炭素原子数 1〜4のアルコールとしては、メタノール、エタノール 、 n—プロパノーノレ、 iso プロパノーノレ、 n—ブタノ一ノレ、 sec ブタノ一ノレ、 tert—ブ
タノールを挙げることができる。これらのうちドープの安定性に優れ、沸点も比較的低 ぐ乾燥性もよいこと等力もエタノールが好ましい。これらの有機溶媒は単独ではセル ロースエステルに対して溶解性を有して 、な 、ので貧溶媒と 、う。
[0216] ドープ中のセルロースエステルの濃度は 15〜30質量0 /0、ドープ粘度は 100〜500 Pa ' sの範囲に調製されることが良好なフィルム面品質を得る上で好ましい。
[0217] ドープ中に添加される添加剤としては、可塑剤、紫外線吸収剤、酸化防止剤、染料 、微粒子等がある。本発明において、微粒子以外の添加剤についてはセルロースェ ステル溶液の調製の際に添加してもよ 、し、微粒子分散液の調製の際に添加しても よい。液晶画像表示装置に使用する偏光板には耐熱耐湿性を付与する可塑剤、酸 化防止剤や紫外線吸収剤等を添加することが好まし 、。下記に添加剤を説明する。
[0218] (可塑剤)
本発明に係わるセルロースエステル溶液またはドープには、 ヽゎゆる可塑剤として 知られる化合物を、機械的性質向上、柔軟性を付与、耐吸水性付与、水蒸気透過率 低減、リタ一デーシヨン調整等の目的で添加することが好ましぐ例えばリン酸エステ ルゃカルボン酸エステルが好ましく用いられる。
[0219] リン酸エステルとしては、例えばトリフエ-ルホスフェート、トリクレジルホスフェート、 フエ-ルジフエ-ルホスフェート等を挙げることができる。
[0220] カルボン酸エステルとしては、フタル酸エステル及びクェン酸エステル等、フタル酸 エステルとしては、例えばジメチルフタレート、ジェチルホスフェート、ジォクチルフタ レート及びジェチルへキシルフタレート等、またクェン酸エステルとしてはタエン酸ァ セチルトリェチル及びタエン酸ァセチルトリブチルを挙げることができる。またその他、 ォレイン酸ブチル、リシノール酸メチルァセチル、セバチン酸ジブチル、トリァセチン 等も挙げられる。アルキルフタリルアルキルグリコレートもこの目的で好ましく用いられ る。アルキルフタリルアルキルグリコレートのアルキルは炭素原子数 1〜8のアルキル 基である。アルキルフタリルアルキルグリコレートとしてはメチルフタリルメチルダリコレ ート、ェチルフタリルェチルダリコレート、プロピルフタリルプロピルグリコレート、ブチ ルフタリルブチルダリコレート、ォクチルフタリルオタチルダリコレート、メチルフタリル ェチルダリコレート、ェチルフタリルメチルダリコレート、ェチルフタリルプロピルグリコ
レート、プロピルフタリルェチルダリコレート、メチルフタリルプロピルグリコレート、メチ ルフタリルブチルダリコレート、ェチルフタリルブチルダリコレート、ブチルフタリルメチ ルグリコレート、ブチルフタリルェチルダリコレート、プロピルフタリルブチルダリコレー ト、ブチルフタリルプロピルグリコレート、メチルフタリルオタチルダリコレート、ェチルフ タリルォクチルグリコレート、ォクチルフタリルメチルダリコレート、ォクチルフタリルェ チルダリコレート等を挙げることができ、メチルフタリルメチルダリコレート、ェチルフタ リルェチルダリコレート、プロピルフタリルプロピルグリコレート、ブチルフタリルブチル グリコレート、ォクチルフタリルオタチルダリコレートが好ましく用いられる。またこれら アルキルフタリルアルキルグリコレートを 2種以上混合して使用してもよい。
[0221] また、前記の多価アルコールエステルも好ましく用いられる。
[0222] これらの化合物は、セルロースエステルに対して 1〜 30質量0 /0、好ましくは 1〜20 質量%となるように含まれていることが好ましい。また、延伸及び乾燥中のブリードア ゥト等を抑制させるため、 200°Cにおける蒸気圧が 1400Pa以下の化合物であること が好ましい。
[0223] これらの化合物は、セルロースエステル溶液の調製の際に、セルロースエステルや 溶媒と共に添加してもよ ヽし、溶液調製中や調製後に添加してもよ ヽ。
[0224] この他の添加剤として、特開 2002— 22956号〖こ記載のポリエステル、ポリエステル エーテル、特開 2003— 171499号記載のウレタン榭脂、特開 2002— 146044号記 載のロジン及びロジン誘導体、エポキシ榭脂、ケトン樹脂、トルエンスルホンアミド榭 脂、特開 2003— 96236号記載の多価アルコールとカルボン酸とのエステル、特開 2 003— 165868号の一般式(1)記載のィ匕合物、特開 2004— 292696号記載のポリ エステル重合体またはポリウレタン重合体等が挙げられる。これらの添加剤は、ドー プもしくは微粒子分散液に含有させることができる。
[0225] (紫外線吸収剤)
本発明の光学フィルムには、紫外線吸収剤を含有させることができる。使用し得る 紫外線吸収剤としては、例えば、ォキシベンゾフエノン系化合物、ベンゾトリアゾール 系化合物、サリチル酸エステル系化合物、ベンゾフエノン系化合物、シァノアクリレー ト系化合物、ニッケル錯塩系化合物、トリアジン系化合物等を挙げることができるが、
着色の少ないベンゾトリアゾール系化合物が好ましい。また、特開平 10— 182621 号、同 8— 337574号、特開 2001— 72782号記載の紫外線吸収剤、特開平 6— 14 8430号、特開 2002— 31715号、同 2002— 169020号、同 2002— 47357号、同 2002- 363420号、同 2003— 113317号記載の高分子紫外線吸収剤も好ましく 用いられる。紫外線吸収剤としては、偏光子や液晶の劣化防止の観点から、波長 37 Onm以下の紫外線の吸収能に優れており、かつ、液晶表示性の観点から、波長 400 nm以上の可視光の吸収が少な!/、ものが好まし!/、。
[0226] 本発明に有用な紫外線吸収剤の具体例として、 2—(2' —ヒドロキシ一 ーメチ ルフエ-ル)ベンゾトリアゾール、 2— (2' —ヒドロキシ— 3' , 5' —ジ— tert—ブチ ルフエ-ル)ベンゾトリアゾール、 2— (2' —ヒドロキシ— 3' —tert—ブチル—5' - メチルフエ-ル)ベンゾトリアゾール、 2— (2' —ヒドロキシ— 3' , 5' —ジ— tert— ブチルフエ-ル)一 5 クロ口べンゾトリアゾール、 2— (2' —ヒドロキシ一 3' —(3 , " , 5 Q" —テトラヒドロフタルイミドメチル) 5, —メチルフエ二ル)ベンゾトリ ァゾール、 2, 2—メチレンビス(4— (1, 1, 3, 3—テトラメチルブチル)一6—(2H— ベンゾトリァゾールー 2 ィル)フエノール)、 2—(2' —ヒドロキシ 3' —tert—ブ チルー 5' メチルフエ-ル)ー5 クロ口べンゾトリァゾール、 2—(2H べンゾトリア ゾールー 2 ィル)ー6 (直鎖及び側鎖ドデシル)ー4 メチルフエノール、ォクチル —3—〔3— tert ブチル—4—ヒドロキシ— 5— (クロ口— 2H—ベンゾトリァゾール— 2 -ィル)フエ-ル〕プロピオネートと 2 ェチルへキシル 3—〔 3— tert -ブチル 4 -ヒドロキシ 5— (5 クロ口一 2H ベンゾトリアゾール - 2 ィル)フエ-ル〕プロ ピオネートの混合物等を挙げることができるが、これらに限定されない。また、市販品 として、チヌビン(TINUVIN) 109、チヌビン(TINUVIN) 171、チヌビン(TINUVI N) 326 (何れもチバ'スぺシャリティ ·ケミカルズ社製)を好ましく使用できる。高分子 紫外線吸収剤としては、大塚ィ匕学社製の反応型紫外線吸収剤 RUVA— 93を例とし て挙げることができる。
[0227] ベンゾフエノン系化合物の具体例として、 2, 4 ジヒドロキシベンゾフエノン、 2, 2'
—ジヒドロキシ一 4—メトキシベンゾフエノン、 2 ヒドロキシ一 4—メトキシ一 5—スルホ ベンゾフエノン、ビス(2 メトキシ 4 ヒドロキシ 5 ベンゾィルフエ-ルメタン)等
を挙げることができるが、これらに限定されない。
[0228] 本発明で好ましく用いられる上記記載の紫外線吸収剤は、透明性が高ぐ偏光板 や液晶素子の劣化を防ぐ効果に優れたべンゾトリアゾール系紫外線吸収剤やべンゾ フエノン系紫外線吸収剤が好ましぐ不要な着色がより少な 、ベンゾトリアゾール系紫 外線吸収剤が特に好ましく用いられる。
[0229] 紫外線吸収剤のドープへの添加方法は、ドープ中で紫外線吸収剤が溶解するよう なものであれば制限なく使用できる力 本発明にお 、ては紫外線吸収剤をメチレンク 口ライド、酢酸メチル、ジォキソラン等のセルロースエステルに対する良溶媒、または 良溶媒と低級脂肪族アルコール (メタノール、エタノール、プロパノール、ブタノール 等)のような貧溶媒との混合有機溶媒に溶解し紫外線吸収剤溶液としてセルロース エステル溶液に添加してドープとする方法が好ま ヽ。この場合できるだけドープ溶 媒組成と紫外線吸収剤溶液の溶媒組成とを同じとするか近づけるのが好ま ヽ。紫 外線吸収剤の含有量は 0. 01〜5質量%、特に 0. 5〜3質量%である。
[0230] (酸化防止剤)
酸ィ匕防止剤としては、ヒンダードフエノール系の化合物が好ましく用いられ、例えば 、 2, 6 ジ tーブチルー p タレゾール、ペンタエリスリチルーテトラキス〔3—(3, 5 ージ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート〕、トリエチレングリコール ビス〔3—(3—t—ブチルー 5—メチルー 4ーヒドロキシフエ-ル)プロピオネート〕、 1 , 6—へキサンジオール—ビス〔3— (3, 5—ジ— t—ブチル—4—ヒドロキシフエ-ル) プロピオネート〕、 2, 4 ビス一(n—ォクチルチオ)ー6—(4ーヒドロキシ 3, 5 ジ —tーブチルァ-リノ) 1, 3, 5 トリアジン、 2, 2 チォージエチレンビス〔3—(3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネート〕、ォクタデシルー 3— (3 , 5—ジ— t—ブチル—4—ヒドロキシフエ-ル)プロピオネート、 N, N' —へキサメチ レンビス(3, 5 ジ一 t—ブチル 4 ヒドロキシ一ヒドロシンナマミド)、 1, 3, 5 トリメ チルー 2, 4, 6 トリス(3, 5 ジ tーブチルー 4ーヒドロキシベンジル)ベンゼン、ト リス一(3, 5—ジ一 t—ブチル 4—ヒドロキシベンジル)一イソシァヌレイト等が挙げら れる。特に 2, 6 ジ一 t—ブチル p クレゾール、ペンタエリスリチルーテトラキス〔3 一(3, 5—ジ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート〕、トリエチレングリ
コール—ビス〔 3— ( 3— t ブチル— 5—メチル— 4—ヒドロキシフエ-ル)プロビオネ ート〕が好ましい。また例えば、 N, N' —ビス〔3— (3, 5—ジ一 t—ブチル 4—ヒド ロキシフエ-ル)プロピオ-ル〕ヒドラジン等のヒドラジン系の金属不活性剤ゃトリス(2 , 4—ジ一 t ブチルフエ-ル)フォスファイト等のリン系加工安定剤を併用してもょ ヽ 。これらの化合物の添カ卩量は、セルロースエステルに対して質量割合で lppm〜l. 0%が好ましく、 10〜 1 OOOppm力さらに好まし!/ヽ。
[0231] (マット剤)
本発明では、複屈折を有する針状微粒子の他に、さらにマット剤として微粒子をセ ルロースエステルフィルム中に含有させることができる。これによつて、搬送や巻き取 りをしやすくすることができる。
[0232] マット剤の粒径は 10nm〜0. 1 μ mの 1次粒子もしくは 2次粒子であるであることが 好ましい。 1次粒子の針状比は 1. 1以下の略球状のマット剤が好ましく用いられる。
[0233] 微粒子としては、ケィ素を含むものが好ましぐ特に二酸ィ匕珪素が好ましい。本発明 に好ましい二酸ィ匕珪素の微粒子としては、例えば、 日本ァエロジル (株)製のァエロ ジル R972、 R972V, R974、 R812、 200、 200V, 300、 R202、 0X50、 TT600 ( 以上日本ァエロジル (株)製)の商品名で市販されているものを挙げることができ、ァ エロジノレ 200V、 R972、 R972V, R974、 R202、 R812を好ましく用! /、ること力でき る。ポリマーの微粒子の例として、シリコーン榭脂、弗素榭脂及びアクリル榭脂を挙げ ることができる。シリコーン榭脂が好ましぐ特に三次元の網状構造を有するものが好 ましく、例えば、トスノくール 103、同 105、同 108、同 120、同 145、同 3120及び同 2 40 (東芝シリコーン (株)製)を挙げることができる。
[0234] 二酸ィ匕珪素の微粒子は、 1次平均粒子径が 20nm以下であり、かつ見かけ比重が 70gZL以上であるものが好ましい。 1次粒子の平均径が 5〜16nmがより好ましぐ 5 〜 12nmがさらに好まし 、。 1次粒子の平均径が小さ 、方がヘイズが低く好まし 、。 見かけ比重は 90〜200gZL以上が好ましぐ 100〜200gZL以上がより好ましい。 見かけ比重が大きい程、高濃度の微粒子分散液を作ることが可能になり、ヘイズ、凝 集物が発生せず好ましい。
[0235] 本発明におけるマット剤の添カ卩量は、セルロースエステルフィルム lm2当たり 0. 01
〜lg力 S好ましく、 0. 03〜0. 3g力より好ましく、 0. 08〜0. 16g力さらに好まし!/ヽ。
[0236] (界面活性剤)
本発明で用いられるドープあるいは微粒子分散液には、界面活性剤を含有するこ と力 S好ましく、リン酸系、スルフォン酸系、カルボン酸系、ノ-オン系、カチオン系等特 に限定されない。これらは、例えば特開昭 61— 243837号等に記載されている。界 面活性剤の添カ卩量は、セルロースァシレートに対して 0. 002〜2質量0 /0が好ましぐ 0. 01〜1質量%がより好ましい。添加量が 0. 001質量%未満であれば添加効果を 十分に発揮することができず、添加量が 2質量%を超えると、析出したり、不溶解物を 生じたりすることがある。
[0237] ノ-オン系界面活性剤としては、ポリオキシエチレン、ポリオキシプロピレン、ポリオ キシブチレン、ポリグリシジルゃソルビタンをノ-オン性親水性基とする界面活性剤で あり、具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキ ルフエニールエーテル、ポリオキシエチレン一ポリオキシプロピレングリコール、多価 アルコール脂肪酸部分エステル、ポリオキシエチレン多価アルコール脂肪酸部分ェ ステル、ポリオキシエチレン脂肪酸エステル、ポリグリセリン脂肪酸エステル、脂肪酸 ジエタノールアミド、トリエタノールァミン脂肪酸部分エステルを挙げることができる。
[0238] ァ-オン系界面活性剤としてはカルボン酸塩、硫酸塩、スルフォン酸塩、リン酸エス テル塩であり、代表的なものとしては脂肪酸塩、アルキルベンゼンスルフォン酸塩、ァ ルキルナフタレンスルフォン酸塩、アルキルスルフォン酸塩、 aーォレフインスルフォ ン酸塩、ジアルキルスルフォコハク酸塩、 α—スルフォン化脂肪酸塩、 Ν—メチルー Νォレイルタウリン、石油スルフォン酸塩、アルキル硫酸塩、硫酸化油脂、ポリオキシ エチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフエ-一ルエーテル 硫酸塩、ポリオキシエチレンスチレン化フエニールエーテル硫酸塩、アルキルリン酸 塩、ポリオキシエチレンアルキルエーテルリン酸塩、ナフタレンスルフォン酸塩ホルム アルデヒド縮合物等である。
[0239] カチオン系界面活性剤としてはァミン塩、 4級アンモ-ゥム塩、ピリジュム塩等を挙 げることができ、第 1〜第 3脂肪アミン塩、第 4級アンモ-ゥム塩 (テトラアルキルアンモ -ゥム塩、トリアルキルべンジルアンモ -ゥム塩、アルキルピリジゥム塩、アルキルイミ
ダゾリゥム塩等)を挙げることができる。両性系界面活性剤としてはカルボキシべタイ ン、スルフォベタイン等であり、 N—トリアルキル—N—カルボキシメチルアンモ -ゥム ベタイン、 N -トリアルキル N スルフォアルキレンアンモニゥムベタイン等である。 フッ素系界面活性剤は、フルォロカーボン鎖を疎水基とする界面活性剤である。フッ 素系界面活性剤としては、 C F CHCHO— (CHCHO) — OSO Na、 C F SO
8 17 2 2 2 2 10 3 8 17
N(CH ) (CH CH O) H、 C F SO N(C H )CH COOK, C F COONH、
2 3 7 2 2 16 8 17 2 3 7 2 7 15 4
C F SO N(C H ) (CH CH O) - (CH ) —SO Naゝ C F SO N(C H ) (CH )
8 17 2 3 7 2 2 4 2 4 3 8 17 2 3 7 2 3
— N+(CH) -I—、CF SO N(C H )CH CH CH N+(CH ) — CH COO—、 C F C
3 3 8 17 2 3 7 2 2 2 3 2 2 8 17
HCHO(CHCHO) — H、CF CHCHO(CH) — N+(CH) ·Ι\ H(CF)
2 2 2 2 16 8 17 2 2 2 3 3 3 2 8
CH CH OCOCH CH(SO )COOCH CH CH CH (CF ) H、 H(CF ) CH C
2 2 2 3 2 2 2 2 2 8 2 6 2
H 0(CH CH O) H、 H(CF ) CH CH O (CH ) N+(CH ) ·Γ、 H(CF ) C
2 2 2 16 2 8 2 2 2 3 3 3 2 8
H CH OCOCH CH(SO )COOCH H CH CH C F 、 C F - C H - SO N(C
2 2 2 3 2 2 2 2 8 17 9 17 6 4 2 3
H ) (CH CH O) H、 CF -CH CSO N(C H ) (CH ) N+(CH ) ·Ι—等
7 2 2 16 9 17 6 4 2 3 7 2 3 3 3 が挙げられる力 これらに限定される訳ではない。
[0240] (剥離促進剤)
さらに、剥離時の荷重を小さくするための剥離促進剤も、ドープに添加してもよい。 それらは、界面活性剤が有効であり、リン酸系,スルフォン酸系,カルボン酸系,ノ- オン系,カチオン系等があるが、これらに特に限定されない。これらの剥離促進剤は
、例えば特開昭 61— 243837号等に記載されている。特開昭 57— 500833号には ポリエトキシル化リン酸エステルが剥離促進剤として開示されている。特開昭 61— 69
845号には非エステル化ヒドロキシ基が遊離酸の形であるモノまたはジリン酸アルキ ルエステルをセルロースエステルに添加することにより迅速に剥離できることが開示さ れている。また、特開平 1— 299847号には非エステル化ヒドロキシル基及びプロピレ ンォキシド鎖を含むリン酸エステルイ匕合物と無機物粒子を添加することにより剥離荷 重が低減できることが開示されて ヽる。
[0241] また、下記式(2)または(3)で表される化合物が含まれて!/、ることが好ま 、。
[0242] 式(2)(R— Β— Ο) -P( = 0)-(OM)
n2
式(3) R B— X
式中、 R及び Rは、それぞれ、炭素数 4〜40の置換もしくは無置換のアルキル基、
1 2
ァルケ-ル基、ァラルキル基またはァリール基であり; Mは、アルカリ金属、アンモ-
1
ァ、低級アルキルァミンであり; B及び Bは、それぞれ、 2価の連結基であり;Xは、力
1 2
ルボン酸またはその塩、スルフォン酸またはその塩、あるいは硫酸エステルまたはそ の塩であり; nlは、 1または 2であり;そして、 n2は、 3— nlである。
[0243] 式(2)または(3)で表される少なくとも一種の剥離剤を、セルロースァシレートフィル ムが含有することを特徴とする。以下に、これらの剥離剤について記述する。 Rと R
1 2 の好ましい例としては、炭素数 4〜40の置換、無置換のアルキル基(例えば、ブチル 、へキシル、ォクチル、 2—ェチルへキシル、ノニル、ドデシル、へキサデシル、ォクタ デシル、エイコサ -ル、ドコサ -ル、ミリシル、等)、炭素数 4〜40の置換、無置換のァ ルケ-ル基(例えば、 2 へキセ -ル、 9ーデセ -ル、ォレイル等)、炭素数 4〜40の 置換、無置換のァリール基(例えば、フエ-ル、ナフチル、メチルフエ-ル、ジメチル フエニル、トリメチルフエニル、ェチルフエニル、プロピルフエニル、ジイソプロピルフエ ニル、トリイソプロピルフエニル、 t ブチルフエニル、ジー t ブチルフエニル、トリー t ブチルフエニル、イソペンチルフエニル、ォクチルフエニル、イソォクチルフエニル、 イソノ-ルフエ-ル、ジイソノ-ルフエ-ル、ドデシルフェ -ル、イソペンタデシルフェ- ル)である。
[0244] これらの中でもさらに好ましいのは、アルキルとしては、へキシル、ォクチル、 2 ェ チルへキシル、ノニル、ドデシル、へキサデシル、ォクタデシル、ドコサ -ル、ァルケ- ルとしてはォレイル、ァリール基としてはフエ-ル、ナフチル、トリメチルフエ-ル、ジィ ソプロピルフエニル、トリイソプロピルフエニル、ジー t—ブチルフエニル、トリー tーブチ ルフエニル、イソオタチルフエ-ル、イソノ-ルフエ-ル、ジイソノ-ルフエ-ル、ドデシ ルフイソペンタデシルフェ-ルである。
[0245] 次に、 B、 Bの 2価の連結基について記述する。炭素数 1〜10のアルキレン、ポリ(
1 2
重合度 1〜50)ォキシエチレン、ポリ(重合度 1〜50)ォキシプロピレン、ポリ(重合度 1〜50)ォキシグリセリン、でありこれらの混合したものでもよい。これらで好ましい連 結基は、メチレン、エチレン、プロピレン、ブチレン、ポリ(重合度 1〜25)ォキシェチレ ン、ポリ(重合度 1〜25)ォキシプロピレン、ポリ(重合度 1〜15)ォキシグリセリンであ
5 c
次に、 Xは、カルボン酸 (または塩)、スルフォン酸 (または塩)、硫酸エステル (また は塩)であるが、特に好ましくはスルフォン酸 (または塩)、硫酸エステル (または塩)で ある。塩としては好ましくは Na、 K、アンモ-ゥム、トリメチルァミン及びトリエタノール ァミンである。以下に、本発明の好ましい化合物の具体例を記載する。
RZ- - 1 C Η 0-Ρ( = 0)-(ΟΗ)
8 17 2
RZ- -2 C Η Ο— Ρ( = 0)—(OK)
12 25 2
RZ- -3 C H OCHCHO— P( = 0)—(OK)
RZ- -4
31 2 2 5
RZ- -55 {C H O(CHCHO) P( = 0)-OH
RZ- -6
18 35 2 8 2
RZ- -7
9 3 2 2
RZ- -8 (CH CH O) P( = 0)— (OK) (OH)
RZ- -9
12 25
RZ- -10
12 25
RZ- -11
33
RZ- -12
33
RZ- -1133 iso-CH CH O—(CH CH O) (CH ) SO Na
2 2 3
RZ- -14 (CH ) SO Na
9 19 2 2 2 Ϊ 2 4 3
RZ- -15
RZ- -17
17 33 3 2 2 3
RZ- -18 H -CH SO ·ΝΗ
12 25 6 4 3 4
これらの化合物の使用量は、ドープ中に 0.002〜2質量%で含有することが好まし い。より好ましくは 0.005〜1質量%であり、さらに好ましくは 0.01-0.5質量%で ある。その添加方法は、特に限定されないがそのまま液体あるいは固体のまま、溶解 する前に他の素材と共に添加され溶液としてもよいし、予め作製されたセルロースァ シレート溶液に後から添加してもよい。これらを含有すること〖こよって、微粒子の配向
がそろいやすくなる。
[0248] (その他の添加剤)
この他、カオリン、タルク、ケイソゥ土、石英、炭酸カルシウム、硫酸バリウム、酸ィ匕チ タン、アルミナ等の無機微粒子、カルシウム、マグネシウム等のアルカリ土類金属の 塩等の熱安定剤を加えてもよい。さらに帯電防止剤、難燃剤、滑剤、油剤等も加える 場合がある。
[0249] 《溶液流延製膜方法》
本発明のセルロースエステルフィルムは、溶液流延製膜法により製膜されることが 好ましい。ここで、溶液流延製膜方法について図 4を用いて説明する。図 4中、 1及び 10は溶解釜を表す。 2および 11は送液ポンプを表す。 3、 6、 12及び 15は濾過器を 表す。 4及び 13はストックタンクを表す。 5及び 14は送液ポンプを表す。 8及び 16は 導管を表す。 20は合流管を表す。 21は混合機を表す。 30はダイスを表す。 31は金 属支持体を表す。 32はウェブを表す。 33は剥離位置を表す。 34はテンター装置を 表す。 35はロール乾燥装置を表す。 36は搬送ロールを表す。また、 37はロールフィ ルムを表す。
[0250] 図 4は、本発明に係わる溶液流延製膜方法のドープ調製工程、流延工程及び乾燥 工程を模式的に示した工程の 1例を示した図である。
[0251] (1)針状微粒子分散液調製工程
本発明に係る針状微粒子分散液の調製方法は、特に限定はされないが、下記の a )もしくは b)の方法で行うことが好ましい。
[0252] a)溶解釜中に有機溶媒と針状微粒子分散用樹脂を導入し、攪拌溶解し、樹脂溶 液とする。これとは別に有機溶媒と針状微粒子の混合液を送液ポンプでマントンゴー リーやサンドミル等の分散機に移送しプレ分散を行なう。これを前記の榭脂溶液に添 加し、攪拌し濾過器で凝集物を取り除き、微粒子分散液としストックする(図 4と若干 異なる)。調製された微粒子分散液はさらに何回か分散と濾過を繰り返してもよい。
[0253] b)溶解釜中に有機溶媒と榭脂を加え、攪拌溶解して榭脂溶液とし、この榭脂溶液 に針状微粒子を加えて、マントンゴーリンもしくはサンドミル等の分散機(図示してな V、)で分散し、それを送液ポンプで濾過器に送って凝集物を除き針状微粒子分散液
とする (何回か同様な操作を繰り返し循環させてもょ ヽ)。そして針状微粒子分散液を 切り替え弁からストックタンクに移送し、静置脱泡後、送液ポンプ (例えば加圧型定量 ギヤポンプ)で移送し、濾過器で濾過して導管で移送する。
[0254] 針状微粒子分散液にはさらに可塑剤、紫線吸収剤、分散剤等も添加してもよ ヽ。
[0255] 本発明の上記のような針状微粒子分散液を調製する際に使用する分散機は、大き くはメディアレス分散機とメディア分散機とに分けられ、どちらも使用することができる
[0256] メディアレス分散機としては超音波型、遠心型、高圧型等があり、本発明において は高圧分散装置が好ましく用いられる。高圧分散装置は微粒子と溶媒を混合した組 成物を細管中に高速通過させることで、高剪断や高圧状態等特殊な条件を作りだす 装置である。高圧分散装置で処理することにより、例えば、管径 1〜2000 /ζ πιの細 管中で装置内部の最大圧力条件が 9. 8 X 106Pa以上であることが好ましい。さらに 好ましくは 19. 6 X 106Pa以上である。またその際、最高到達速度が lOOmZsec以 上に達するもの、伝熱速度が lOOkcalZhr以上に達するものが好ましい。上記のよう な高圧分散装置には Microfluidics Corporation社製超高圧ホモジナイザー(商 品名マイクロフルイダィザ一)ある 、はナノマイザ一社製ナノマイザ一、ある 、はウルト ラタラックスがあり、他にもマントンゴーリン型高圧分散装置、例えば、ィズミフードマシ ナリ製ホモゲナイザー、三和機械 (株)社製 UHN— 01等が挙げられる。
[0257] メディア分散機としては、ガラスビーズ、セラミックビーズ等のメディアの衝突力を利 用して分散するタイプのボールミル、サンドミル、ダイノミル等が挙げられる。本発明で は、特にメディア分散機が好ましく用いられる。
[0258] このようにして調製された微粒子分散液は濾過により、凝集物や異物が除去される 。得られた微粒子分散液を用いて、ドープが調製される。
[0259] (2)セルロースエステル溶液調製工程
本発明では、上記の方法で予め調製された針状微粒子分散液と溶媒とセルロース エステルとを混合してドープが調製される。具体的には、溶解釜に溶媒の一部と針状 微粒子分散液とを添加混合した後、ここに残りの溶媒とセルロースエステルとを攪拌 しながら添加し溶解させることが好ましい。本発明に係る添加剤や可塑剤等は、先に
溶解釜に添加して 、ても、後力ら添加することもできる。
[0260] あるいは、溶解釜中の溶媒にセルロースエステル、本発明に係る添加剤や可塑剤 等の添加剤を攪拌しながら添加し、セルロースエステルの溶解中にさらに前記針状 微粒子分散液を添加してもよい。もしくは、溶媒とセルロースエステル、好ましくは本 発明に係る添加剤及び可塑剤等の添加剤とを混合してセルロースエステル溶液を得 て、ここに前記針状微粒子分散液を攪拌しながら添加することもできる。
[0261] セルロースエステル溶液を調製する方法をさらに詳細に説明する。
[0262] 前述のセルロースエステルに対する良溶媒を主とする有機溶媒に溶解釜中でセル ロースエステルや可塑剤等の添加剤を攪拌しながら溶解する。溶解には、常圧で行 う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う高温溶解 方法、冷却して溶解する冷却溶解方法、かなりの高圧で行う高圧溶解方法等種々の 溶解方法があるが、本発明においては、高温溶解方法が好ましく用いられる。
[0263] 溶解釜の中で前記針状微粒子分散液とセルロースエステル、好ましくは本発明に 係る添加剤と溶媒が混合されて得られたセルロースエステル溶液は、セルロースエス テルが溶解した後、ポンプで濾過器に送液して濾過される。
[0264] 濾過は、このセルロースエステル溶液をフィルタープレス用の濾紙等の適当な濾材 を用いて行うことが好ましい。本発明における濾過材としては、不溶物等を除去する ために絶対濾過精度が小さ!、方が好ま 、が、絶対濾過精度が小さすぎると濾過材 の目詰まりが発生しやすいという問題点があり、絶対濾過精度 8 m以下の濾材が好 ましぐ 1〜8 mの範囲の濾材がより好ましぐ 3〜6 mの範囲の濾材がさらに好ま しい。濾紙としては、例えば市販品の安積濾紙 (株)の No. 244や 277等を挙げるこ とができ、好ましく用いられる。
[0265] 濾過の濾材の材質は特に制限はなぐ通常の濾材を使用することができるが、ポリ プロピレン、テフロン (登録商標)等のプラスチック製の濾材ゃステンレス等の金属製 の濾材が繊維の脱落等がなく好ましい。濾過は通常の方法で行うことができるが、加 圧下で、使用有機溶媒の常圧での沸点以上で、かつ有機溶媒が沸騰しない範囲の 温度で加熱または保温しながら濾過する方法が、濾過材前後の差圧 (以下、濾圧と することがある)の上昇が小さぐ好ましい。好ましい温度範囲は使用有機溶媒に依
存はするが、 45〜120°Cであり、 45〜70°Cがより好ましぐ 45〜55°Cの範囲である ことがさらに好ましい。濾圧は小さい方が好ましぐ 0. 3〜1. 6MPaであることが好ま しく、 0. 3〜1. 2MPaであることがより好ましぐ 0. 3〜1. OMPaであることがさらに 好ましい。
[0266] このようにして得られたドープはストックタンクに保管され、脱泡された後流延に用い られる。
[0267] このようにドープ釜中で針状微粒子分散液とセルロースエステル溶液とを混合して ドープを調製することが好まし 、方法として挙げられる力 セルロースエステル溶液と 微粒子分散液の一部もしくは全部をインラインで混合することもできる。例えば、図 4 ではインラインで針状微粒子分散液を添加する工程の一例を示して ヽる。針状微粒 子分散液は、セルロースエステル溶液 (もしくはドープ原液と称する場合がある)と、 合流管 20で合流される。合流管 20の直前には、濾過器が配置されており、例えば濾 材交換等に伴い経路から発生する、針状微粒子を含有する塊や大きな異物を、送液 中の針状微粒子分散液あるいはドープ原液から除去することができる。ここでは、耐 溶剤性を有する金属製の濾過器が好ましく用いられる。濾材としては、耐久性の観点 から金属、特にステンレス鋼が好ましい。目詰まりの観点力も 60〜80%の空孔率を 有していることが好ましい。最も好ましくは、絶対濾過精度 30〜60 /ζ πιであって、か つ空孔率 60〜80%の金属製濾材で濾過することであり、これにより、長期に亘り、確 実に粗大な異物を除くことができ好ましい。絶対濾過精度 30〜60 mでかつ空孔率 60〜80%の金属製濾材としては、例えば、日本精線 (株)製ファインポア NFシリー ズの NF— 10、同 NF— 12、同 NF— 13等を挙げることができる。
[0268] 本発明において、絶対濾過精度は以下のように定義される。 JIS Z 8901に規定 される粒径の異なる試験用粉体のガラスビーズと純水をビーカーに入れ、スターラー で撹拌しながら、図 5に示すような装置で吸引濾過を行う。図 5は絶対濾過精度を測 定する装置を模式的に示した図である。ここにおいて、 Aは測定しょうとする濾材試 料、 Bは被濾過液、 Cは濾液を表す。被濾過液 Bはスターラー Sで攪拌されており、低 圧真空ポンプ Pにより大気圧から— 4kPaの圧力に維持して濾過する。 Vは開閉でき るバルブ、 Mはマノメータである。この時の被濾過液 Bと濾液 C中のガラスビーズの個
数を顕微鏡で観察し、以下の式 (6)で粒子捕集率を求める。粒子捕集率 95%の時 の粒子径を絶対濾過精度とした。
[0269] 式(6)
粒子捕集率 (%) = (被濾過液中の個数ー濾液中の個数) Z (被濾過液中の個 数) X 100
上記濾材の空孔率は 60〜80%であることが好ましぐ 65〜75%がより好ましい。 空孔率が大きい方が圧力損失力 、さくなる点で好ましぐ空孔率の小さい方が耐圧 性に優れるため好ましい。空孔率を求めるには、まず濾材を表面張力の低い溶媒中 に浸漬し、濾材中の空気を取り除き、溶媒の増加した量から濾材の空孔量を求め、 濾材の体積で割れば、算出することができる。
[0270] (3)インライン添カ卩工程
溶解釜で、あらかじめ針状微粒子分散液、セルロースエステル、好ましくは本発明 に係る添加剤、溶媒を混合してドープを調製する場合は、通常針状微粒子分散液を インライン添加する必要はない。し力しながら、必要に応じて、針状微粒子の全部もし くは一部をインラインで混合することができる。図 4を用いてインライン添加工程を説 明すると、セルロースエステル溶液 (ドープ原液と称することがある)及び針状微粒子 分散液それぞれを送液ポンプ 5及び 14により移送し濾過器 6及び 15で濾過し、導管 8及び 16中を移送し合流管 20で両液を合流させる。合流した両液は導管内を層状 で移送するためそのままでは混合しにくい。そこで、両液を合流後、インラインミキサ 一のような混合機 21で十分に混合しながら次工程に移送する。本発明で使用できる インラインミキサーとしては、例えば、スタチックミキサー SWJ (東レ静止型管内混合器
Hi -Mixer,東レエンジニアリング製)が好ましい。
[0271] 本発明においては、後述の乾燥工程のいずれかで延伸し、延伸後のフィルムの複 屈折を測定し、該複屈折の測定結果によって、ドープに含まれる複屈折を有する針 状微粒子の含有量を調整することが好ましい。すなわち、複屈折の測定結果が、所 望の複屈折の値力 ずれていることが確認された場合、その原因が針状微粒子の含 有量が少ないことにあると考えられた場合に、不足している分を補うため微粒子をさら にドープ原液に添加することが好まし 、。このときの微粒子をドープ原液に添加する
方法としてインライン添加工程が好ましく用いられる。具体的には、複屈折を有する 針状微粒子分散液をインラインでドープに添加する方法によってドープ中の複屈折 を有する針状微粒子の含有量を調整する方法が挙げられる。具体的には、上記のィ ンラインミキサーを用いる方法で添加することができる。インラインで添加する針状微 粒子分散液 (これをインライン添加液と称する場合がある。)は、前述の方法で調製し た針状微粒子分散液をそのまま用いることができる。あるいは、さらに溶媒やセル口 ースエステル溶液、その他の添加剤等を添加して、針状微粒子濃度やセルロースェ ステル濃度を調整した液をインライン添加液として使用することができる。インライン添 加液は、流延に用いられるドープ中の微粒子濃度に対して、 1. 1〜50倍の濃度で 針状微粒子を含有して ヽることが好ま ヽ。
[0272] 延伸後のフィルムの複屈折を測定し、該複屈折の測定結果によって、前記針状微 粒子添加液の添加量を増減させることで、ドープ中の微粒子含有量を調整し、これ によって、延伸後のフィルムの複屈折値を所望の値に制御することが好ましい。ドー プ中の微粒子含有量の増減は、針状微粒子添加液とドープ原液との混合比を変化 させること〖こよって行うことができる。混合比を変化させるためには、針状微粒子添カロ 液とドープ原液の送液量の比を変化させればよい。
[0273] (2)の工程もしくは(2)と(3)の工程によって調製されたドープは、ドープ中の固形 分濃度は 15質量%以上に調整することが好ましぐ特に 18〜30質量%が好ましい。 ドープ中の固形分濃度が高すぎるとドープの粘度が高くなりすぎ、流延時にシヤーク スキン等が生じてフィルム平面性が劣化する場合があるので、 30質量%以下である ことが望ましい。
[0274] (4)流延工程
前工程までに調製されたドープをダイス 30に送液し、無限に移送する無端の金属 支持体 31、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体 3 1上の流延位置に、ダイス 30からドープを流延する工程である。金属支持体 31の表 面は鏡面となっている。ダイス 30 (例えば加圧型ダイス)は口金部分のスリット形状を 調整でき、膜厚を均一にしゃすいため好ましい。ダイス 30には、コートハンガーダイ スゃ Tダイ等があるが、何れも好ましく用いられる。製膜速度を上げるためにダイスを
金属支持体 31上に 2基以上設け、ドープ量を分割して重層してもよい。
[0275] 流延用の金属支持体の表面温度は 10〜55°C、ドープの温度は 25〜60°C、さらに 溶液の温度を支持体の温度と同じまたはそれ以上の温度にすることが好ましぐ 5°C 以上の温度に設定することがさらに好ましい。
[0276] 溶液温度、支持体温度は、高いほど溶媒の乾燥速度が速くできるので好ましいが、 あまり高すぎると発泡したり、平面性が劣化する場合がある。
[0277] 支持体の温度のさらに好ましい範囲は、使用する有機溶媒に依存するが、 20-55 。C、溶液温度のさらに好ましい範囲は、 35〜45°Cである。
[0278] (5)溶媒蒸発工程
ウェブ (金属支持体上にドープを流延した以降のドープ膜の呼び方をウェブとする) 32を金属支持体 31上で加熱し金属支持体 31からウェブ 32が剥離可能になるまで 溶媒を蒸発させる工程である。溶媒を蒸発させるには、ウェブ 32側から風を吹カゝせる 方法及び Zまたは金属支持体 31の裏面から液体により伝熱させる方法、輻射熱によ り表裏力 伝熱する方法等があるが、裏面液体伝熱の方法が乾燥効率がよく好まし い。またそれらを組み合わせる方法も好ましい。裏面液体伝熱の場合は、ドープ使用 有機溶媒の主溶媒または最も低い沸点を有する有機溶媒の沸点以下で加熱するの が好ましい。
[0279] (6)剥離工程
金属支持体 31上で溶媒が蒸発したウェブ 32を、剥離位置 33で剥離する工程であ る。剥離されたウェブ 32は次工程に送られる。剥離する時点でのウェブ 32の残留溶 媒量 (後述の式)があまり大き過ぎると剥離し難力つたり、逆に金属支持体 31上で充 分に乾燥させてから剥離すると、途中でウェブ 32の一部が剥がれたりする。本発明 において、薄手のウェブを金属支持体から剥離する際、平面性の劣化やつれがない ように行うには、剥離張力として剥離できる最低張力から 170NZm以内の力で剥離 することが好ましぐ 140NZm以内の力がより好ましい。
[0280] 製膜速度を上げる方法 (残留溶媒量ができるだけ多 、うちに剥離するため製膜速 度を上げることができる)としてゲル流延法 (ゲルキャスティング)がある。それは、ドー プ中にセルロースエステルに対する貧溶媒を加えて、ドープ流延後、ゲル化する方
法、金属支持体の温度を低めてゲル化する方法等がある。金属支持体 31上でゲル ィ匕させ剥離時の膜の強度を上げておくことによって、剥離を早め製膜速度を上げるこ とができるのである。金属支持体 31上でのウェブ 32の乾燥が条件の強弱、金属支持 体 31の長さ等により 5〜150質量%の範囲で剥離することができるが、残留溶媒量 がより多い時点で剥離する場合、ウェブ 32が柔らか過ぎると剥離時平面性を損なつ たり、剥離張力によるッレゃ縦スジが発生しやすぐ経済速度と品質との兼ね合いで 剥離の際の残留溶媒量が決められる。従って、本発明においては、該金属支持体 3 1上の剥離位置における温度を 10〜40°C、好ましくは 15〜30°Cとし、かつ該剥離 位置におけるウェブ 32の残留溶媒量を 10〜120質量%とすることが好ましい。
[0281] 製造時のセルロースエステルフィルムが良好な平面性を維持するために、金属支 持体から剥離する際の残留溶媒量を 10〜150質量%とすることが好ましぐより好ま しくは 70〜150質量%であり、さらに好ましくは 100〜130質量%である。残留溶剤 中に含まれる良溶剤の比率は 50〜90質量%が好ましぐさらに好ましくは、 60-90 質量%であり、特に好ましくは、 70〜80質量%である。
[0282] 本発明にお 、ては、残留溶媒量は下式 (7)で表すことができる。
[0283] 式(7)
残留溶媒量 (質量%) = { (M-N) /N} X 100
ここで、 Mはウェブの任意時点での質量で、下記のガスクロマトグラフィーにより測 定した質量であり、 Nは該 Mを 110°Cで 3時間乾燥させた時の質量である。測定はへ ッドスペースサンプラーを接続したガスクロマトグラフィーで測定する。本発明では、ヒ ユーレット'パッカード社製ガスクロマトグラフィー 5890型 SERISIIとヘッドスペースサ ンプラー HP7694型を使用し、以下の測定条件で行った。
[0284] ヘッドスペースサンプラー加熱条件: 120°C、 20分
GC導入温度: 150°C
昇温: 40°C、 5分保持→100°C (8°CZ分)
カラム: J&W社製 DB— WAX (内径 0. 32mm,長さ 30m)。
[0285] (7)乾燥工程
剥離後、一般には、ウェブ 32を複数のロールに交互に通して搬送するロール乾燥
装置 35及びウェブ 32の両端を把持して搬送するテンター装置 34を用いてウェブ 32 を乾燥する。図 4では、テンター装置 34の後にロール乾燥装置 35が配置されている 力 の配置のみに限定されるものではない。乾燥の手段としてはウェブの両面に熱風 を吹かせるのが一般的であるが、風の代わりにマイクロウエーブを当てて加熱する手 段もある。あまり急激な乾燥はでき上がりのフィルムの平面性を損ねやすい。全体を 通して、通常乾燥温度は 40〜250°Cの範囲で行われる。使用する溶媒によって、乾 燥温度、乾燥風量及び乾燥時間が異なり、使用溶媒の種類、組合せに応じて乾燥 条件を適宜選べばょ 、。 37はでき上がったセルロースエステルフィルムの巻き取りで ある。セルロースエステルフィルムの乾燥工程において、残留溶媒量を 0. 5質量0 /0 以下にすることが好ましぐ 0. 1質量%以下にして巻き取ることがより好ましい。
[0286] 本発明のセルロースエステルフィルムは、針状微粒子を添加したドープを調製後、 流延工程によりフィルム製膜されるが、添加した針状微粒子を配向させる方法として はフィルム作製時にフィルムを TDまたは MD方向に延伸する方法、或いは流延時に ドープの流れを作り、この流れに沿う形で針状粒子を配向させる方法などをとることが 可能である。さらに電場や磁場などで針状微粒子の配向を促進することも可能である
[0287] 以下、針状微粒子を配向させる具体的な方法について述べる。
[0288] 本発明にお 、て、 MDとはセルロースエステルフィルムの製膜方向を表し、 TDはセ ルロースエステルフィルムの面内で製膜方向に直交する方向を表す。従って、ロール 状セルロースエステルフィルムの場合、 MDとはフィルム長手方向であり TDはフィル ム幅手方向を表す。
[0289] (針状微粒子を TD方向に並べる方法)
本発明は、以下の製造方法により作成することができる。
[0290] (A)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープをノズル力 流延支持体上に押し出す際に、流延支 持体の移動方向に対し平行でな 、方向に該ノズルを動力しながら、該ドープを流延 支持体上に流延することを特徴とするセルロースエステルフィルムの製造方法。
[0291] この場合、複数のノズルが幅方向に配置されて 、ることが好まし 、(図 6 (a) )。従つ て、前記ノズルを配置したコーターを流延支持体の移動方向に対し直交する方向に 往復移動、もしくは振動させながら、流延用支持体にドープを押し出す(図 6 (b) )こと によって、針状微粒子を配向させる。
[0292] 前記ノズルを配置したコーター、または通常のダイスを用いて、逐次流延でカバー 層を流延することにより重ねてドープを流延することで流延支持体上のドープ膜を平 滑ィ匕することが好ましい。
[0293] また、
(B)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープをダイスから流延支持体上に押し出す際に用いられ るダイスが、ダイス内で流延支持体の移動方向に対し平行でな 、方向にドープが流 れる構造を有していることを特徴とするセルロースエステルフィルムの製造方法。
[0294] 例えば、内部でドープ供給部とドープ排出部が、流延支持体の移動方向に対し平 行でな 、方向に配置されて 、るダイスを用いる(図 7)。
[0295] 好ましくは、ダイス内でドープ供給部とドープ排出部が、流延支持体の移動方向に 対し略直交する方向に配置されている。これによつて、流延支持体の移動方向に対 し平行でない方向にドープが流れるようにし、その流れの一部をダイス力も流延用支 持体上に吐出するものである。好ましくは、ドープ排出部から一度排出されたドープ は循環され、再びドープ供給部に戻される。これにより流延支持体上に吐出されたド ープ中の針状微粒子を配向させることができる。
[0296] これにつ 、てもコーターをもうひとつ用いて逐次流延でドープを流延する(カバー層 )こと〖こより平滑化することができる。この場合、カバー層を流延するコーターの構造 は先に流延を行ったコーターに対して MD方向にっ 、て左右対称になるようにするこ とが望ましい。これにより配向の均一化を行うことができる。
[0297] また、ダイスのスリット内部に流延支持体の移動方向に対し平行でな 、方向に溝を 設けてもよい、(図 8 (a) )。これによりダイス内部で流延時に溝に沿った流れができる ことで針状微粒子が TD方向に配向した状態のドープがキャストされる。これについて
も逆方向にスリット内に溝を切った別のダイスを用いて、逐次流延でドープを流延す る(カバー層)ことにより配向の均一化、また平滑ィ匕することが好ま 、(図 8 (b) )。
[0298] (C)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープを流延用支持体上で、流延支持体の移動方向に対 し平行でない方向に擦る(即ち層の向きを決定する部材を押し付ける)ことを特徴とす るセルロースエステルフィルムの製造方法。
[0299] 擦る部材としては、限定されないが、例えば、後述の斜線をきつたグラビアロール、 また別に設けられた配向ベルト等がある。これによつてドープに剪断力を与え、それ によって針状微粒子を配向させるのである。
[0300] 次いで、この一つの態様として、
(D)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープを流延用支持体上に流延する際に、グラビアロール を用いて、流延支持体の移動方向に対し平行でな 、方向にドープを擦る(押しつけ られる)ように流延することを特徴とするセルロースエステルフィルムの製造方法。
[0301] この方法においては、斜線をきつたグラビアロールを用いる。図 9において、点線が グラビアロール上にきった斜線の溝を示している。
[0302] 支持体上に流延されたドープに、グラビアロールにより横方向もしくは斜め方向に グラビア目がつくように流延するものである。具体的には、図の様な斜線グラビアロー ルを用いて、流延用支持体とグラビアロールの回転速度を制御して、横方向もしくは 斜め方向にグラビア目がっくようにする。
[0303] ウェブと 1: 1 (グラビアロールの回転速度と、ウェブの搬送速度が、周速差がない状 態)であれば、グラビアロールそのままの斜めにきられた線になる力 周速差をつける ことで斜めの線の角度は変わるので、流延用支持体とグラビアロールの回転速度を、 横向きにグラビア目が着くように調整できる。
[0304] グラビアロールは製膜方向と直交する方向に設けてもよいし、傾けて設けてもよい。
[0305] (E)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流
延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープをダイスを用 ヽて流延用支持体上に流延する際に、 流延支持体の移動方向に対し平行でな 、方向に移動する部材によって、流延用支 持体上のドープを押しつけることを特徴とするセルロースエステルフィルムの製造方 法。
[0306] 流延支持体の移動方向に対し平行でな!、方向に移動する部材力 配向ベルトであ る。
[0307] 図 10にこれを示す力 流延したウェブを、前記部材の例としては配向ベルトで表面 を擦るものである。配向ベルト表面は前記グラビアロールのように溝をきつて配向を促 す構造を表面に有することが好ましい。配向ベルトの溝は、配向ベルトの移動方向に 対し斜めに切られている(図 10 (a) )。この場合、前記グラビアロール同様に、配向べ ルトの移動速度とドープの流延速度 (即ち流延支持体の移動速度)の調整により、配 向が横向きになるように調整できる。
[0308] 又、配向ベルトの溝がベルト回転方向に沿って切られていてもよくこの場合には、 配向ベルトの回転方向をウェブの搬送方向に対し平行でな 、方向となるように角度 を付けて配置することで同様に効果が得られる(図 10 (b) )。
[0309] グラビアロールに切られた溝は、配向を効果的に行うには間隔が 25〜250線 Zィ ンチ(2. 54mm)の範囲、好ましくは 50〜 150線 Zインチ、また彫刻深さは 30〜500 m程度であり、また彫刻角度は 45° ± 15° の範囲が好ましい。
[0310] また、ダイスのスリット内に切られた溝や、又配向ベルト上に切られた溝も同様であ る。
[0311] (F)複屈折を有する針状微粒子を含有するセルロースエステル溶液を支持体上に 流延し、溶媒を含有した状態でウェブを延伸後、乾燥させることを特徴とするセル口 ースエステルフィルムの製造方法。
[0312] 溶媒を含有した状態のウェブを剥離した後、横延伸を行うことで針状の微粒子が配 向したフィルムを得ることができる。また、例えば榭脂製流延支持体を用い、溶媒を含 有したウェブを支持体ごと延伸してもよ!/、。
[0313] 但し、この方法は、延伸だけで配向は充分でない場合があるため、前記の方法と併
用するのが好ましい。
[0314] 以上のような方法で、針状微粒子を TD方向に配向させることによって、横電界スィ ツチングモードの液晶表示装置に特に好ましく用いられるセルロースエステルフィル ムを作製することができる。
[0315] 次に針状微粒子を MD方向に並べる方法にっ 、て述べる。
[0316] (針状微粒子を MD方向に並べる方法)
(G)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープをダイスから流延支持体上に押し出す際に、流延支 持体の移動方向に対し平行な方向に層流で押し出されたドープを流延支持体上に 流延することを特徴とするセルロースエステルフィルムの製造方法。
[0317] 層流、乱流はレイノルズ (Re)数により定義される。レイノルズ数とは、流れの中にあ る物体の代表的な長さを D、速度を U、密度を p、粘性率を r?とすると、
Re = DU / r?なる無次元数によって定義される。
[0318] 一般に、 Reく 2300の時を層流、 2300く Reく 3000を遷移域、 Re> 3000の時を 乱流という。本発明においてはレイノルズ数 2300以下となるよう微粒子のサイズ、流 延速度、またドープの密度等を調整する。
[0319] 例えば図 11に流延に用 、るダイスの断面図を示すが、例えばスリット間隔(通常 40 0〜: L 000 m)をやや狭めに、例えば 350 m以下、そしてスリット長を通常(10〜3 Omm)より長くとることで、例えば、上記のスリット幅では、 35mm以上とするなどにより 、ダイス内部で層流となる部分を利用してドープ中の針状微粒子を配向させることが できる。また、図では示していないが、ダイス内部でスリット間隔を多段で絞るようにす ることで、ドープに剪断力を与え、これによつて針状微粒子を配向させることが好まし い。
[0320] (H)複屈折を有する針状微粒子を含有するセルロースエステルフィルムを溶液流 延法により製造する方法であって、複屈折を有する針状微粒子及びセルロースエス テル及び溶媒を含有するドープをダイスから流延支持体上に押し出す際に、流延支 持体の移動方向に対し平行な方向に層流で押し出されたドープのリボンが流延支持
体によって引っ張られるようにして流延されることを特徴とするセルロースエステルフィ ルムの製造方法。
[0321] 図 12にこれを示す。図でドープの吐出速度と支持体 (ベルト)の搬送速度との差で リボンを MD方向に引っ張ることで、延伸するものである。
[0322] また、 (F)と同様に、溶媒を含んだ状態でウェブを MD方向に延伸することによって も同様に配向を得ることができる。但しこの方法では、十分な配向を得ることができな い場合があるため他の方法と併用することが好ましい。また、この方法では TD方向 へは配向させることができない。
[0323] 次に本発明における延伸工程にっ 、て述べる。
[0324] (8)延伸工程 (テンター工程ともいう)
本発明のセルロースエステルフィルムは、延伸によって複屈折性を発現することが できる。溶液流延法の製造時に溶媒を含む状態で延伸するか、または溶媒が乾燥し た状態のフィルムを延伸することができる。延伸温度は、フィルムのガラス転移温度 20°C〜流動する温度以下で行うことが好ま 、。ここでフィルムのガラス転移温度は 公知の方法で測定することができる。延伸は、製膜方向もしくは幅手方向に行うこと ができる力 本発明では少なくとも幅手方向に延伸することが好ましい。
[0325] 延伸によって、セルロースエステル榭脂が複屈折性を発現し、複屈折を有する針状 微粒子は延伸方向に配向する比率が高くなる。セルロースエステルフィルムの複屈 折の値は、セルロースエステル榭脂による複屈折と複屈折を有する針状微粒子の配 向による複屈折とを合わせた値になると考えられる。これにより、従来は製造が困難 であった特性のセルロースエステルフィルムを安定に製造することが可能となった。
[0326] 本発明によって、従来セルロースエステルフィルムでは製造が困難であった、リタ一 デーシヨン値 Roが 105nm≤Ro≤350nm、及び Nzが 0. 2<Nz< 0. 7、より好まし くは Rthが― 30nm≤Rth≤ + 20nmの範囲のセルロースエステルフィルムを安定に 製造することができるようになった。しかも、本発明のセルロースエステルフィルムは 針状で負の複屈折を有する微粒子を用いることによって、幅手方向に延伸して 、る にもかかわらず、幅手方向に直交する方向、すなわち製膜方向に遅相軸を有するフ イルムとすることができる。このセルロースエステルフィルムを偏光板保護フィルムとし
て用いることで、斜め 45度の光漏れを抑制しコントラストを増加させることができる偏 光板が提供でき、これによつて、特に、横電界スィッチイングモードの液晶セルの視 野角を大幅に改善することができたのである。ここでいう横電界スィッチイングモード には、 IPSモードのほ力、フリンジ電場スイッチング(FFS : Fringe— Field Switchi ng)モードも含まれ、 IPSモードと同様に視野角を大幅に改善することができる。
[0327] なお、上記の Ro、 Rth、 Nzは、自動複屈折計 KOBRA— 21ADH (王子計測機器
(株)製)を用いて、 23°C、 55%RHの環境下で波長 590nmのリタ一デーシヨン測定 を行 、、また同様にしてアッベの屈折率計で試料の平均屈折率を測定した値を下記 式に入力して面内リタ一デーシヨン Ro及び厚み方向のリタ一デーシヨン Rth及び Nz の値を得た。
[0328] Ro = (nx— ny) X d
Rth= { (nx+ny) /2-nz} X d
Nz= (nx-nz) / (nx-ny) (式中、面内の遅相軸方向の屈折率を nx、面内で遅 相軸に直交する方向の屈折率を ny、フィルムの厚さ方向の屈折率を nz、 dはフィルム の厚み (nm)をそれぞれ表す。 )
これ〖こより、本発明のリターデーション値を有するセル口 -スエステルフィルムを好 ましく得ることと共に、平面性の良好なセルロースエステルフィルムを得ることができる 。製膜工程のこれらの幅保持あるいは横方向の延伸はテンターによって行うことが好 ましぐピンテンターでもクリップテンターでもよい。
[0329] 延伸工程についてさらに詳細に説明する。本発明のセルロースエステルフィルムを 製造する際の延伸倍率は、製膜方向もしくは幅手方向に対して、 1. 01〜3倍であり 、好ましくは 1. 5〜3倍である。 2軸方向に延伸する場合、高倍率で延伸する側が、 1 . 01〜3倍であり、好ましくは 1. 5〜3倍であり、もう一方の方向の延伸倍率は 0. 8〜 1. 5倍、好ましくは 0. 9〜1. 2倍に延伸することができる。
[0330] また、針状微粒子を含むセルロースエステルフィルムは、ヘイズが高くなる傾向にあ り、特に、延伸倍率を高くすると著しくヘイズが上昇する。しかしながら、本発明のポリ エステル、多価アルコールエステル、多価カルボン酸エステル及びエチレン性不飽 和モノマーを重合して得られたポリマー力も選ばれる少なくとも 1種の添加剤を含有
することを特徴とするセルロースエステルフィルムは、特に、 1. 5倍以上という様な高 倍率で延伸を行っても、ヘイズの上昇が少なぐ位相差フィルムとして好ましく用いる ことができる。フィルムヘイズ値としては、 2%以内が好ましぐ 1. 5%以内がより好ま しぐ 1. 0%以内が最も好ましい。
[0331] 本発明に係る光学補償フィルムを作製するための延伸工程 (テンター工程とも!、う) の一例を、図 13を用いて説明する。
[0332] 図 13において、工程 Aでは、図示されていないフィルム搬送工程 DOから搬送され てきたフィルムを把持する工程であり、次の工程 Bにおいて、図 14に示すようにフィル ムが幅手方向(フィルムの進行方向と直交する方向)に延伸され、工程 Cにおいては 、延伸が終了し、フィルムが把持したまま搬送される工程である。
[0333] フィルム剥離後から工程 B開始前及び Zまたは工程 Cの直後に、フィルム幅方向の 端部を切り落とすスリツターを設けることが好ましい。特に、 A工程開始直前にフィル ム端部を切り落とすスリツターを設けることが好ましい。幅手方向に同一の延伸を行つ た際、特に工程 B開始前にフィルム端部を切除した場合とフィルム端部を切除しな ヽ 条件とを比較すると、前者がよりフィルムの幅手方向で光学遅相軸の分布(以下、配 向角分布という)を改良する効果が得られる。
[0334] これは、残留溶媒量の比較的多い剥離から幅手延伸工程 Bまでの間での長手方 向の意図しない延伸を抑制した効果であると考えられる。
[0335] テンター工程において、配向角分布を改善するため意図的に異なる温度を持つ区 画を作ることも好ましい。また、異なる温度区画の間にそれぞれの区画が干渉を起こ さな 、ように、ニュートラルゾーンを設けることも好ま 、。
[0336] なお、延伸操作は多段階に分割して実施してもよぐ流延方向、幅手方向に二軸 延伸を実施することが好ましい。また、二軸延伸を行う場合にも同時二軸延伸を行つ てもよいし、段階的に実施してもよい。この場合、段階的とは、例えば、延伸方向の異 なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異 なる方向の延伸をそのいずれかの段階にカ卩えることも可能である。また、同時 2軸延 伸には、一方向に延伸し、もう一方を張力を緩和して収縮させる場合も含まれる。
[0337] また、本発明における延伸方向とは、延伸操作を行う場合の直接的に延伸応力を
加える方向という意味で使用する場合が通常であるが、多段階に二軸延伸される場 合に、最終的に延伸倍率の大きくなつた方の意味で使用される。
[0338] セルロースエステルフィルムを幅手方向に延伸する場合には、配向角分布が悪くな ることはよく知られている。 Rthと Roの値を一定比率とし、かつ、配向角分布を良好な 状態で幅手延伸を行うため、工程 A、 B、 Cで好ましいフィルム温度の相対関係が存 在する。工程 A、 B、 C終点でのフィルム温度をそれぞれ Ta°C、 Tb°C、 Tc°Cとすると 、 Ta≤Tb— 10であることが好ましい。また、 Tc≤Tbであることが好ましい。 Ta≤Tb 10かつ、 Tc≤Tbであることがさらに好ましい。
[0339] 工程 Bでのフィルム昇温速度は、配向角分布を良好にするために、 0. 5〜10°CZs の範囲が好ましい。
[0340] 工程 Bでの延伸時間は、 80°C、 90%RH条件における寸法変化率を小さくするた めには短時間である方が好ましい。但し、フィルムの均一性の観点から、最低限必要 な延伸時間の範囲が規定される。具体的には 1〜 10秒の範囲であることが好ましく、 4〜10秒がより好ましい。また、工程 Bの温度は 40〜180°C、好ましくは 100〜160 °Cである。
[0341] 上記テンター工程にぉ 、て、熱伝達係数は一定でもよ 、し、変化させてもょ 、。熱 伝達係数としては、 41. 9〜419 X 103jZm rの範囲の熱伝達係数を持つことが好 ましい。さらに好ましくは、 41. 9〜209. 5 X 103j/m2hrの範囲であり、 41. 9〜126 X 103j/m rの範囲が最も好ましい。
[0342] 80°C、 90%RH条件下における寸法安定性を良好にするため、上記工程 Bでの幅 手方向への延伸速度は、一定で行ってもよいし、変化させてもよい。延伸速度として は、 50〜500%/min力好ましく、さらに好ましくは 100〜400%/min、 200〜300 %Zminが最も好ましい。
[0343] テンター工程において、雰囲気の幅手方向の温度分布が少ないこと力 フィルムの 均一性を高める観点力 好ましぐテンター工程での幅手方向の温度分布は、 ± 5°C 以内が好ましぐ ± 2°C以内がより好ましぐ ± 1°C以内が最も好ましい。上記温度分 布を少なくすることにより、フィルムの幅手での温度分布も小さくなることが期待できる
[0344] 工程 Cに於 、て、寸法変化を抑えるため幅方向に緩和することが好ま 、。具体的 には、前工程のフィルム幅に対して 95〜99. 5%の範囲になるようにフィルム幅を調 整することが好ましい。
[0345] テンター工程で処理した後、さらに後乾燥工程 (以下、工程 D1)を設けるのが好ま し!ヽ。 50〜160°Cで行うの力 S好まし ヽ。さらに好ましく ίま、 80〜150°Cの範囲であり、 最も好ましくは 110〜 150°Cの範囲である。
[0346] 工程 D1で、フィルムの幅方向の雰囲気温度分布が少ないことは、フィルムの均一 性を高める観点力も好ましい。 ±5°C以内が好ましぐ ±2°C以内がより好ましぐ ± 1 °C以内が最も好ましい。
[0347] 工程 D1でのフィルム搬送張力は、ドープの物性、剥離時及び工程 DOでの残留溶 媒量、工程 D1での温度等に影響を受けるが、 120〜200N/mが好ましぐ 140-2 OONZmがさらに好ましい。 140〜160NZmが最も好ましい。
[0348] 工程 D1での搬送方向へフィルムの伸びを防止する目的で、テンションカットロール を設けることが好ましい。乾燥終了後、巻き取り前にスリツターを設けて端部を切り落 とすことが良好な卷姿を得るため好ましい。
[0349] 本発明にお 、て、セルロースエステルフィルムが長尺状であるとき、セルロースエス テルフィルムの遅相軸力 搬送方向と一致していることが好ましい。これは、針状の負 の複屈折性微粒子を含有するセルロースエステルフィルムを幅手方向に連続的に延 伸することで、搬送方向に遅相軸が形成できる。長尺状の PVA偏光子は長手方向 に吸収軸が存在しており、偏光板保護フィルムとして適用するセルロースエステルフ イルムの遅相軸が長手方向にあることで、両者を直接貼合できる配置となる。このこと は偏光板の生産性の観点力も好ましい構成である。
[0350] (9)巻き取り工程
乾燥が終了したウェブをフィルムとして巻き取る工程である。乾燥を終了する残留溶 媒量は、 0. 5質量%以下、好ましくは 0. 1質量%以下とすることにより寸法安定性の 良好なフィルムを得ることができる。巻き取り方法は、一般に使用されているワインダ 一を用いればよぐ定トルク法、定テンション法、テーパーテンション法、内部応力一 定のプログラムテンションコントロール法等の張力をコントロールする方法があり、そ
れらを使!ヽ分ければよ!、。残留溶媒は前記式 (7)で表せる。
[0351] セルロースエステルフィルムの膜厚は、使用目的によって異なる力 液晶表示装置 の薄型化の観点から、仕上がりフィルムとして 10〜150 /ζ πιの範囲が好ましぐさらに 30〜: LOO μ mの範囲がより好ましぐ特に 40〜80 μ mの範囲が好ましい。薄過ぎる と例えば偏光板用保護フィルムとしての必要な強度が得られな 、場合がある。厚過ぎ ると従来のセルロースエステルフィルムに対して薄膜ィ匕の優位性がなくなる。膜厚の 調節には、所望の厚さになるように、ドープ濃度、ポンプの送液量、ダイスの口金のス リット間隙、ダイスの押し出し圧力、金属支持体の速度等をコントロールするのがよい 。また、膜厚を均一にする手段として、膜厚検出手段を用いて、プログラムされたフィ ードバック情報を上記各装置にフィードバックさせて調節するのが好ましい。
[0352] 溶液流延製膜法を通しての流延直後力 の乾燥までの工程において、乾燥装置 内の雰囲気を、空気とするのもよいが、窒素ガスや炭酸ガス等の不活性ガス雰囲気 で行ってもよい。ただ、乾燥雰囲気中の蒸発溶媒の爆発限界の危険性は常に考慮さ れなければならな!/、ことはもちろんである。
[0353] 次に、本発明の光学フィルム(好ましくはセルロースエステルフィルム)を横電界スィ ツチングモード型液晶表示装置に用いる場合を説明する。ここでは、本発明の光学 フィルムを光学フィルム Aと称することとする。本発明において、光学フィルム Aは、横 電界スイッチングモード型である液晶パネルに用いられる偏光板の液晶表示セル側 に配置されるセルロースエステルフィルムとして用いられ、フィルム面内の遅相軸方 向の屈折率を nx (a)、フィルム面内で Xに直交する方向の屈折率を ny (a)、フィルム の厚さ方向の屈折率を nz (a)、フィルムの厚みを d (nm)としたときに、 nx (a) >nz (a) >n (a)の関係を満たし、かつ下記式 (i)で表されるリタ一デーシヨン値 Roが 105nm ≤Ro (a)≤350nm,及び下記式(ii)で表される Nzが 0. 2<Nz< 0. 7の光学値を 満たすことが好まし 、。特に本発明の光学フィルムがセルロースエステルフィルムで あった場合、 nx(a)が光学フィルム Aの製膜方向にあることが好ましい。
[0354] 式 (i) Ro (a) = (nx (a) - ny (a) ) X d
式 (ii Nz= (nx(a)— nz、a) ) Z nx(a)— ny、a) )
式(iii) Rth (a) = { (nx (a) +ny(a) ) /2~nz (a) } X d
また、本発明の偏光板は、上記光学フィルムを偏光板の保護フィルムとして使用し 、かつ該光学フィルムの遅相軸が偏光子の吸収軸に実質的に平行または直交する ように配置されることが好ま 、。
[0355] さらに、横電界スイッチングモード型である液晶セルを挟む一方の偏光板が上記偏 光板であり、かつ他方の偏光板の液晶表示セル側に配置される偏光板保護フィルム 力 15nm≤Ro≤15nm、かつ上記式(iii)で表される Rth(a)が、 15nm≤Rth (a)≤15nmの光学値を満たす時に、より視野角特性が改善される横電界スィッチン グモード型液晶表示装置が得られるため特に好ましい。
[0356] 次に、本発明において好ましい光学フィルム Bについて説明する。
[0357] 本発明において好ましい光学フィルム Bは、本発明の光学フィルムを用いた偏光 板に対し、横電界スイッチングモード型である液晶セルを挟んで配置されるもう一方 の偏光板の液晶表示セル側に配置される光学フィルムであり、下記式 (iv)、 (V)で表 されるリタ一デーシヨン値 Ro (b)、 Rth (b)が一 15nm≤Ro (b)≤ 15nm、かつ一 15n m≤Rth(b)≤ 15nmの光学値を満たすことを特徴とする。
[0358] 式(iv) Ro (b) = (nx (b) - ny (b) ) X d
式 (v) Rth (b) = { (nx (b) +ny(b) ) /2-nz (b) } X d
ここで、 nx (b)はフィルム面内の遅相軸方向の屈折率を表し、 ny(b)は遅相軸に直 交する方向の屈折率を表し、 nz (b)はフィルム厚さ方向の屈折率を表し、 dはフィルム の膜厚 (nm)を表す。これらは、前記式 (I)で表される Ro、式 (III)で表される Rthと同 様の方法で求めることができる。
[0359] 光学フィルム Bはセルロースエステルフィルムであることが好ましぐそれをセル口 ースエステルフィルム Bと 、うことがある。
[0360] 上記リタ一デーシヨン値の範囲を満たすフィルムを作製する為に、光学フィルム B は、特開 2003— 12859号公報段落番号 [0032]〜[0049]に記載のポリマーを含 有させることが好ましぐリタ一デーシヨン値の調整を前記公報記載のポリマーの種類 、量、延伸条件等で行うことが出来る。
[0361] これらポリマーは光学フィルム B中に 1〜35質量%含有することが好ましぐ特に 3〜25質量%含有することがリタ一デーシヨン値を制御する上で好ましい。
[0362] 光学フィルム Bの製造法、延伸方法については、前記光学フィルム Aと同様な方 法を用いることが出来る力 特開 2002— 249599号に記載されている方法を用いる ことが好ましい。
[0363] 以下、本発明に係るセルロースエステルフィルム並びに、光学フィルム Bの物性 に関し下記に纏める。
[0364] (セルロースエステルフィルムの透過率)
LCD表示装置の部材としては高い透過率が求められ、上述の添加剤を組み合せ て添加し、製造されたセルロースエステルフィルムの 500nm透過率は、 85〜100% が好ましぐ 90〜100%がさらに好ましぐ 92〜100%が最も好ましい。 400nm透過 率は 40〜100%が好ましぐ 50〜100%がさらに好ましぐ 60〜100%が最も好まし い。また、紫外線吸収性能が求められることがあり、その場合は、 380nm透過率は 0
〜10%が好ましぐ 0〜5%がさらに好ましぐ 0〜3%が最も好ましい。
[0365] (セルロースエステルフィルムの幅手方向の膜厚分布)
本発明のセルロースエステルフィルムは、幅手方向での膜厚分布 R(%)を 0≤R (
%)≤ 5%であることが好ましぐさらに好ましくは、 0≤R(%)≤3%であり、特に好ま しくは、 0≤R (%)≤1%である。
[0366] (セルロースエステルフィルムのヘイズ値)
本発明のセルロースエステルフィルムは、ヘイズ値が、 2%以内が好ましぐ 1. 5% 力 り好ましぐ 1%以内が最も好ましい。
[0367] (セルロースエステルフィルムの弾性率)
弾性率は 1. 5〜5GPaの範囲が好ましぐさらに好ましくは、 1. 8〜4GPaであり、 特に好ましくは、 1. 9〜3GPaの範囲である。
[0368] また、破断点応力が 50〜200MPaの範囲であることが好ましぐ 70〜150MPaの 範囲であることがさらに好ましぐ 80〜: LOOMPaの範囲であることが最も好ましい。
[0369] 23°C、 55%RHでの破断点伸度が 20〜80%の範囲であることが好ましぐ 30〜6
0%の範囲であることがさらに好ましぐ 40〜50%の範囲であることが最も好ましい。
[0370] また、吸湿膨張率が 1〜1%の範囲であることが好ましぐ 0. 5〜0. 5%の範囲 力 Sさらに好ましぐ 0〜0. 2%以下が最も好ましい。
[0371] また、輝点異物が 0〜80個 Zcm2であることが好ましぐ 0〜60個 Zcm2の範囲であ ることがさらに好ましぐ 0〜30個/ cm2の範囲であることが最も好ましい。
[0372] 一般的にセルロースエステルフィルムを偏光板保護フィルムとして使用する場合、 偏光子との接着性を良好なものにするため、アルカリ鹼ィ匕処理が行われる。アルカリ 鹼ィ匕処理後のフィルムと偏光子とをポリビニルアルコール水溶液を接着剤として接着 するため、セル口 スエステルフィルムのアル力リ酸化処理後の水との接触角が高い とポリビニルアルコールでの接着ができず偏光板保護フィルムとしては問題となる。
[0373] このため、アルカリ鹼化処理後のセルロースエステルフィルムの接触角は 0〜60° が好ましぐ 5〜55° 力さらに好ましぐ 10〜30° が最も好ましい。
[0374] (セルロースエステルフィルムの中心線平均粗さ(Ra) )
セルロースエステルフィルムを LCD用部材として使用する際、フィルムの光漏れを 低減するため高い平面性が要求される。中心線平均粗さ (Ra)は、 JIS B 0601に 規定された数値であり、測定方法としては、例えば、触針法もしくは光学的方法等が 挙げられる。
[0375] 本発明のセルロースエステルフィルムの中心線平均粗さ(Ra)としては、 20nm以下 が好ましぐさらに好ましくは、 lOnm以下であり、特に好ましくは、 4nm以下である。
[0376] (偏光板)
本発明の偏光板、それを用いた本発明の液晶表示装置について説明する。
[0377] 偏光板は一般的な方法で作製することができる。アルカリ酸ィ匕処理した本発明のセ ルロースエステルフィルムは、ポリビュルアルコール系フィルムをヨウ素溶液中に浸漬 延伸して作製した偏光子の少なくとも一方の面に、完全酸ィ匕型ポリビニルアルコール 水溶液を用いて貼り合わせることが好ましい。もう一方の面にも本発明のセルロース エステルフィルムを用いても、別の偏光板保護フィルムを用いてもよい。本発明のセ ルロ スエステルフィルムに対して、もう一方の面に用いられる偏光板保護フィルムは 市販のセルロースエステルフィルムを用いることができる。例えば、市販のセルロース エステルフィルムとして、 KC8UX2M、 KC4UX、 KC5UX、 KC4UY、 KC8UY、 K C12UR、 KC8UY—HA、 KC8UX—RHA (以上、コ-カミノルタォプト(株)製)等 が好ましく用いられる。あるいは、セルロースエステルフィルム以外の環状ォレフィン
榭脂、アクリル榭脂、ポリエステル、ポリカーボネート等のフィルムをもう一方の面の偏 光板保護フィルムとして用いてもよい。この場合は、ケンィ匕適性が低いため、適当な 接着層を介して偏光板に接着加工することが好まし ヽ。
[0378] 本発明の偏光板は、本発明のセルロースエステルフィルムを偏光子の少なくとも片 側に偏光板保護フィルムとして使用したものである。その際、該セルロースエステルフ イルムの遅相軸が偏光子の吸収軸に実質的に平行または直交するように配置されて 、ることが好まし!/、。
[0379] この偏光板が、横電界スイッチングモード型である液晶セルを挟んで配置される一 方の偏光板として、本発明のセルロースエステルフィルム(特に好ましくは前述の光 学フィルム A)が液晶表示セル側に配置されることが好まし!/、。
[0380] 本発明の偏光板に好ましく用いられる偏光子としては、ポリビニルアルコール系偏 光フィルムが挙げられ、これはポリビュルアルコール系フィルムにヨウ素を染色させた ものと二色性染料を染色させたものがある。ポリビュルアルコール系フィルムとしては 、エチレンで変性された変性ポリビュルアルコール系フィルムが好ましく用いられる。 偏光子は、ポリビュルアルコール水溶液を製膜し、これを一軸延伸させて染色するか 、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったもの が用いられている。偏光子の膜厚は 5〜40 m、好ましくは 5〜30 mであり、特に 好ましくは 5〜20 μ mである。該偏光子の面上に、本発明のセルロースエステルフィ ルムの片面を貼り合わせて偏光板を形成する。好ましくは完全酸ィ匕ポリビュルアルコ 一ル等を主成分とする水系の接着剤によって貼り合わせる。また、セルロースエステ ルフィルム以外の榭脂フィルムの場合は、適当な粘着層を介して偏光板に接着加工 することができる。
[0381] 偏光子は一軸方向(通常は長手方向)に延伸されているため、偏光板を高温高湿 の環境下に置くと延伸方向(通常は長手方向)は縮み、延伸に対して直交する方向( 通常は幅方向)には伸びる。偏光板保護フィルムの膜厚が薄くなるほど偏光板の伸 縮率は大きくなり、特に偏光子の延伸方向の収縮量が大きい。通常、偏光子の延伸 方向は偏光板保護フィルムの流延方向(MD方向)と貼り合わせるため、偏光板保護 フィルムを薄膜ィ匕する場合は、特に流延方向の伸縮率を抑えることが重要である。本
発明のセル口—スエステルフィルムは寸法安定に優れるため、このような偏光板保護 フィルムとして好適に使用される。
[0382] 偏光板は、さらに該偏光板の一方の面にプロテクトフィルムを、反対面にセパレート フィルムを貼合して構成することができる。プロテクトフィルム及びセパレートフィルム は偏光板出荷時、製品検査時等において偏光板を保護する目的で用いられる。
[0383] (横電界スィッチイングモード型液晶表示装置)
本発明の偏光板を市販の横電界スイッチングモード型液晶表示装置に組み込むこ とによって、視認性に優れ、視野角が拡大された本発明の液晶表示装置を作製する ことができる。
[0384] 本発明の横電界スイッチングモードとは、フリンジ電場スイッチング(FFS: Fringe
-Field Switching)モードも本発明に含み、 IPSモードと同様に本発明の偏光板 を組み込むことができ、同様の効果をもつ本発明の液晶表示装置を作製することが できる。
[0385] 横電界スイッチングモード型液晶表示装置では、駆動用液晶セルを挟んで両側に 偏光板が配置される。本発明では、リタ一デーシヨン値 Roが 105nm≤Ro≤350nm 、及び Nzが 0. 2<Nz< 0. 7の光学値を満たす本発明のセルロースエステルフィル ム(光学フィルム A)が偏光板保護フィルムとして用いられて 、る偏光板 A力 前記液 晶セルの一方の面に用いられる。このとき、セルロースエステルフィルム Aは隣接する 偏光子と駆動用液晶セルとの間に配置される。液晶セルを挟んでもう一方の側に配 置される偏光板 Bは、偏光板保護フィルムとして、 15nm≤Ro≤15nm、かつ— 15 nm≤Rth≤ 15nmの光学値を満たす光学フィルム— Bが用いられており、光学フィ ルムー Bが隣接する偏光子と駆動用液晶セルとの間に配置されていることが特に好 ましい。具体的には、図 15の構成— 1であるが、液晶セルを挟んで視認側偏光板、 ノ ックライト側偏光板が逆に配置されている構成でもよい。また図 16に示される軸の 向きを有するセルロースエステルフィルム、偏光板、液晶セルの配置が本発明に好ま しい横電界スイッチングモード型液晶表示装置として挙げられる。すなわち、図 15の 構成 1の偏光板保護フィルム 2aがセルロースエステルフィルム Aであり、偏光板保 護フィルム 2bが光学フィルム Bであることが好ましく、もしくは図 15の構成 1の偏
光板保護フィルム 2aが光学フィルム Bであり、偏光板保護フィルム 2bが光学フィル ム Aであることが好ましい。図 16中、 60は偏光板を表す。 62は光学フィルム B (偏光 板保護フィルム)を表す。 64は偏光子を表す。 66は本発明に係る光学フィルム A (偏 光板保護フィルム)を表す。 68は偏光板保護フィルムを表す。 70は横電界スィッチン グモード型液晶セルを表す。 71は液晶のラビング軸を表す。 72及び 74は偏光子の 透過軸を表す。 73及び 75は偏光子の吸収軸を表す。また、 76は本発明に係る光学 フィルム Aの遅相軸を表す。
[0386] 上記リタ一デーシヨン値の範囲を満たすフィルムを作製するために、光学フィルム Bは、セルロースエステルフィルムであることが好ましぐこのセルロースエステルフィ ルム— Bは、特開 2003— 12859号記載の方法で作製することができる。具体的に は、特開 2003— 12859号の段落番号 [0032ト [0049]に記載のポリマーをセル ロースエステルフィルムに含有させることが好ましぐリタ一デーシヨン値の調整を前 記公報記載のポリマーの種類、量で行うことができる。
[0387] これらポリマーはセルロースエステルフィルム B中に 1〜35質量0 /0含有することが 好ましぐ特に 3〜25質量%含有することがリタ一デーシヨン値を制御する上で好まし い。
[0388] セルロースエステルフィルム Bの製造法については、公知のセルロースエステル フィルムの製造方法で製造することができる。特に、特開 2002— 249599記載の製 造方法を用いてもよぐ上記添加剤と組み合わせて作製することが好ましい。
実施例
[0389] 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定され るものではない。なお、実施例において「部」あるいは「%」の表示を用いる力 特に 断りがない限り「質量部」ある!/、は「質量%」を表す。
[0390] 実施例 1
《針状微粒子の調製》
〔針状微粒子 1の調製: SrCO〕
3
水 300gに対し、メタノール 60g (水〖こ対し 20%)と、水酸化ストロンチウム八水和物 80g (水に対し 26. 7%)とをカ卩えた懸濁液を調製した。この懸濁液をビーカーに入れ
、攪拌モーター (新東科学株式会社製、スリーワンモーター BLh600)によって懸濁 液を撹拌しながら、さらに超音波照射機能付ウォーターバス (本多電子株式会社製、 超音波洗浄器 W— 113MK— II)によって超音波を照射した。懸濁液の温度を— 10 °Cに保っためにクーラー(トーマス科学機器株式会社製、密閉タンク型ハンディクー ラー TRL— C13)を用いてウォーターバス中の市販のエチレングリコール系不凍液( トーマス科学機器株式会社製、ナイブライン;登録商標)を循環させた。
[0391] COガスと Nガスを、体積比で CO: N = 30 : 70の割合で混合し、懸濁液中に 20
2 2 2 2
OmlZminの流量で導入した。 pHが 7付近で安定するまで、この懸濁液中に混合ガ スを導入した後、混合ガス導入を止めた。
[0392] 次 、で、未反応分を取り除くため、懸濁液を 0. 1 μ mポアサイズの濾紙で吸引濾過 し、生成物を 500mlのアセトン中に入れて 24時間撹拌して洗浄し、もう一度濾過して できた生成物を真空乾燥機で乾燥させた。乾燥後の結晶を走査型電子顕微鏡 (SE M)で観察したところ、長さが 200nm以下(平均 150nm)、太さが 10〜20nmの針状 比 4〜20の炭酸ストロンチウム針状結晶微粒子であることが確認できた。
[0393] 〔針状微粒子 2 :TiO〕
2
粒子径短軸が 10〜20nm、長軸が 50〜100nm、 Al(OH)及びステアリン酸で表
3
面処理を施したルチル型の酸ィ匕チタン TTO— S—4 (石原産業製)を針状微粒子 2と した。
[0394] 《針状微粒子液の調製》
〔針状微粒子液 1の調製:針状微粒子 = SrCO〕
3
下記各組成物を、超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で連続 5分間分散した。
[0395] 針状微粒子 1 32g
メチレンクロライド 184g
エタノール 184g
次 、で、上記分散物をウルトラァペックスミル UAM015 (寿工業社製)で下記条件 で分散を行!、針状微粒子液 1を調製した。
[0396] 分散メディア:ジルコ-ァビーズ (粒径 50 μ m) 400g
周速 10m/ sec
分散液の循環流速 60mlZminで循環 分散時間 5時間
ミルジャケットは冷却水で冷却した。
[0397] 〔針状微粒子液 2の調製:針状微粒子 = SrCO +シランカップリング剤〕
3
下記各組成物を、超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で連続 5分間分散した。
[0398] 針状微粒子 1 32g
3—メタクリロキシプロピルトリメトキシシラン (KBM503、信越ィ匕学工業社製) lg
ImolZL塩酸 0. lg
メチレンクロライド 184g
エタノール 184g
次 、で、上記分散物をウルトラァペックスミル UAM015 (寿工業社製)で下記条件 で分散を行 ヽ、針状微粒子表面にシランカップリング剤処理を施した針状微粒子液
2を調製した。
[0399] 分散メディア:ジルコ-ァビーズ (粒径 50 μ m) 400g
Jき」速 10m/ sec
分散液の循環流速 60mlZminで循環 分散時間 5時間
ミルジャケットは冷却水で冷却した。
[0400] 〔針状微粒子液 3の調製: SrCO +ステアリン酸〕
3
下記各組成物を、超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で連続 5分間分散した。
[0401] 針状微粒子 1 32g
ステアリン酸 1. Og
メチレンクロライド 184g
エタノール 184g
次 、で、上記分散物をウルトラァペックスミル UAMO 15 (寿工業社製)で下記条件 で分散を行 ヽ、針状微粒子表面にステアリン酸処理を施した針状微粒子液 3を調製 した。
[0402] 分散メディア:ジルコ-ァビーズ (粒径 50 μ m) 400g
Jき」速 10m/ sec
分散液の循環流速 60mlZminで循環 分散時間 5時間
ミルジャケットは冷却水で冷却した。この方法で針状微粒子の表面のステアリン酸 処理と同時に分散を行った。
[0403] 〔針状微粒子液 4の調製: TiO〕
2
下記各組成物を、超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で連続 5分間分散した。
[0404] 針状微粒子 2 32g
メチレンクロライド 184g
エタノール 184g
次 、で、上記分散物をウルトラァペックスミル UAMO 15 (寿工業社製)で下記条件 で分散を行!、針状微粒子液 4を調製した。
[0405] 分散メディア:ジルコ-ァビーズ (粒径 50 μ m) 400g
Jき」速 10m/ sec
分散液の循環流速 60mlZminで循環 分散時間 5時間
ミルジャケットは冷却水で冷却した。
[0406] 《ドープ液の調製》
〔ドープ液 1の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 25部
添加剤 A (ポリエステル系化合物) 26部 チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部
チヌビン 171 (チバスペシャルティケミカルズ製) 1部 メチレンクロライド 468言
エタノール 34部
上記各組成物を容器に投入し完全に溶解した。
[0407] 次 、で、上記溶液に、針状微粒子液 1の 200部をゆっくり添加した後、この混合液 の 350gを超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0408] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 1を調製した。
[0409] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 147部
メチレンクロライド 100言
〔ドープ液 2の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量の添加剤 B (多価アルコ ールエステル)を用いた以外は同様にして、ドープ液 2を調製した。
[0410] 〔ドープ液 3の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量の添加剤 C (多価カルボ ン酸エステル)を用いた以外は同様にして、ドープ液 3を調製した。
[0411] 〔ドープ液 4の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量の添加剤 D (エチレン性 不飽和モノマー重合物)を用いた以外は同様にして、ドープ液 4を調製した。
[0412] 〔ドープ液 5の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量の添加剤 E (エチレン性 不飽和モノマー重合物 2)を用いた以外は同様にして、ドープ液 5を調製した。
[0413] 〔ドープ液 6の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 25部
添加剤 B 16部
添加剤 C 10部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部
チヌビン 171 (チバスペシャルティケミカルズ製) 1部
メチレンクロライド 468言
エタノール 34部
上記組成物を容器に投入し完全に溶解した。
[0414] 次 、で、上記溶液を攪拌しながら、針状微粒子液 1の 200部をゆっくり添加した後、 この混合液の 350gを超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒 子分散液を調製した。
[0415] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 6を調製した。
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 147部
メチレンクロライド 100言
〔ドープ液 7の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 26部
添加剤 B 6部
添加剤 C 4部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部
チヌビン 171 (チバスペシャルティケミカルズ製) 1部
メチレンクロライド 486言
エタノール 42部
上記組成物を容器に投入し完全に溶解した。
[0417] 次いで、上記溶液を攪拌しながら、針状微粒子液 1の 188部をゆっくり添加した後、 この混合液の 350gを超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目 盛り 10で容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒 子分散液を調製した。
[0418] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 7を調製した。
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 149部
メチレンクロライド 100言
〔ドープ液 8の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 23部
添加剤 B 29部
添加剤 C 17部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部
チヌビン 171 (チバスペシャルティケミカルズ製) 1部
メチレンクロライド 445言
エタノール 23部
上記各組成物を容器に投入し完全に溶解した。
[0420] 次いで、上記溶液に、針状微粒子液 1の 217部をゆっくり添加した後、この混合液 の 350部を超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0421] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 8を調製した。
[0422] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 145咅 メチレンクロライド 100咅
〔ドープ液 9の調製〕
セルロースアセテートプロピオネート(ァセチル置換度: 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 21部
添加剤 B 48部
添加剤。 29部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部 チヌビン 109 (チバスペシャルティケミカルズ製) 1部 チヌビン 171 (チバスペシャルティケミカルズ製) 1部 メチレンクロライド 410
エタノーノレ 7部
上記各組成物を容器に投入し完全に溶解した。
[0423] 次 、で、上記溶液に、針状微粒子液 1の 243部をゆっくり添加した後、この混合液 の 350部を超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0424] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 9を調製した。
[0425] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 141部
メチレンクロライド 100言
〔ドープ液 10の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 19部
添加剤 B 61部
添加剤 C 36部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部 チヌビン 171 (チバスペシャルティケミカルズ製) 1部
メチレンクロライド 392部
上記各組成物を容器に投入し完全に溶解した。
[0426] 次いで、上記溶液に、針状微粒子液 1の 258部をゆっくり添加した後、この混合液 の 350部を超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0427] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 10を調製した。
[0428] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 141部
メチレンクロライド 100言
〔ドープ液 11の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量の添加剤 F (前記合成例 で示したサンプル 1 (ポリエステル系化合物))を用いた以外は同様にして、ドープ液 1 1を調製した。
[0429] 〔ドープ液 12の調製〕
上記ドープ液 1の調製において、添加剤 Aに代えて、同量(12質量%)のトリフエ- ルホスフェート (TPPと略記)を用いた以外は同様にして、ドープ液 12を調製した。
[0430] 〔ドープ液 13の調製〕
セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 25部
トリフエ-ルホスフェート(TPPと略記) 21部
ェチルフタリルグリコレート(EPEGと略記) 5部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部
チヌビン 109 (チバスペシャルティケミカルズ製) 1部
チヌビン 171 (チバスペシャルティケミカルズ製) 1部
メチレンクロライド 468言
エタノール 34部
上記各組成物を容器に投入し完全に溶解した。
[0431] 次いで、上記溶液に、針状微粒子液 1の 200部をゆっくり添加した後、この混合液 の 350部を超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0432] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 13を調製した。
[0433] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 147部
メチレンクロライド 100咅
〔ドープ液 14の調製〕
セルロースアセテートプロピオネート(ァセチル置換度: 90、プロピオ-ル置換度 0. 75、重量平均分子量 190, 000) 27部
チヌビン 326 (チバスペシャルティケミカルズ製) 1部 チヌビン 109 (チバスペシャルティケミカルズ製) 1部 チヌビン 171 (チバスペシャルティケミカルズ製) 1部 メチレンクロライド 497
エタノーノレ 47部
上記各組成物を容器に投入し完全に溶解した。
[0434] 次いで、上記溶液に、針状微粒子液 1の 179部をゆっくり添加した後、この混合液 の 350部を超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 10で 容器のまわりを冷水で冷やしながら連続 10分間再分散を行 、、針状微粒子分散液 を調製した。
[0435] 針状微粒子分散液をよく攪拌しながら、下記組成物をゆっくり加え完全に溶解して
、ドープ液 14を調製した。
[0436] セルロースアセテートプロピオネート(ァセチル置換度 1. 90、プロピオ-ル置換度
0. 75、重量平均分子量 190, 000) 150部
メチレンクロライド 100言
〔ドープ液 101〜106、 111〜114の調製〕
上記ドープ液 1〜6、 11〜14の調製において、針状微粒子液 1を針状微粒子液 2 ( SrCO +シランカップリング剤)に変更した以外は同様にして、ドープ液 101〜106、
3
111〜114を調製した。
[0437] 〔ドープ液 206の調製〕
上記ドープ液 6の調製において、針状微粒子液 1を針状微粒子液 3 (SrCO +ステ
3 アリン酸)に変更した以外は同様にして、ドープ液 206を調製した。
[0438] 〔ドープ液 301〜306、 311〜314の調製〕
上記ドープ液 101〜106、 111〜114の調製において、セルロースアセテートプロ ピオネート(ァセチル置換度 1. 90、プロピオニル置換度 0. 75、重量平均分子量 19 0, 000)を、同量のセルロースアセテートプロピオネート(ァセチル置換度 0. 18、プ 口ピオニル置換度 2. 50、重量平均分子量 160, 000)に変更した以外は同様にして 、ドープ液 301〜306、 311〜314を調製した。
[0439] 〔ドープ液 401〜406、 411〜414の調製〕
上記ドープ液 1〜6、 11〜14の調製において、針状微粒子液 1を針状微粒子液 4 ( TiO )に変更した以外は同様にして、ドープ液 401〜406、 411〜414を調製した。
2
[0440] なお、表 1、表 2に略称で記載した各ドープ液の調製に用いた化合物の詳細を以下 に示す。
[0441] [化 9]
A:1,4—ブタンジ才一ル
重量平均分子量 800 添加剤 B (多価ァルコールエステル)
添加剤 C (多価カルボン酸エステル)
H2C-COO-C4H9(n)
H3COOC-C-COO-C4H9(n)
H2C— COO— C4Hs(n)
[0442] [化 10] 添加剤 D (ェチレン性不飽和モノマー重合体 >
-CH2-CH VOH
COOCH3 )
重量平均分子量 8000
[0443] 《製膜方法》
〔製膜方法 1 :延伸倍率 1. 2倍〕
図 6に記載の複数のノズルが幅方向に配置されたダイスを用い、ドープを 40°Cに保
ち、 40°Cに保温されたステンレスベルト上に均一に流延した。残留溶媒量が 80%ま で乾燥した後、ステンレスベルト上から張力 170NZmで剥離した。その後、テンター で両端を把持し、幅手方向(TD方向)に 1. 2倍の延伸を行った。さらに多数のロー ルで搬送張力 130NZmで搬送させながら 120°Cで 10分間乾燥して m、幅 1. 3mのセルロースエステルフィルムを得た。両端部には高さ 幅 1. 5cmのナー リングを設けた。
[0444] 〔製膜方法 2:延伸倍率 1. 5倍〕
上記製膜方法 1において、延伸倍率を 1. 5倍に変更した以外は同様にし、これを 製膜方法 2とした。
[0445] 〔製膜方法 3 :延伸倍率 3. 0倍〕
上記製膜方法 1において、延伸倍率を 3. 0倍に変更した以外は同様にし、これを 製膜方法 3とした。
[0446] 《セルローエステルフィルムの作製》
上記調製した各ドープ液を、表 1、 2に記載の製膜方法で製膜を行い、セルローェ ステルフィルム 1〜 55を作製した。
[0447] [表 1]
セルロース フィルム中への添.力口剤群 製膜方法
ドープ液
エステル ¾-& 添カロ量 備 考 フィルム番号 種類 畨 延伸倍率
(%)
1 1 添加剤 A 12 1 1.2 本発明
2 2 添加剤 B 12 1 1.2 本発明
3 3 添加剤 C 12 1 1.2 本発明
4 4 添加剤 D 12 1 1.2 本発明
5 5 添加剤 E 12 1 1.2 本発明
6 6 添加剤 B/添加剤 C 12 1 1.2 本発明
7 11 添加剤 F 12 ί 1.2 本発明
8 12 T P P 12 1 1.2 比較例
9 13 T P P/E P E G 12 1 1.2 比較例
10 14 - - 1 1.2 比較例
11 1 添加剤 A 12 2 1.5 本発明
12 2 添加剤 B 12 2 1.5 本発明
13 3 添加剤 C 12 2 1.5 本発明
14 4. 添加剤 D 12 2 1.5 本発明
15 5 添加剤 E 12 2 1.5 本発明
16 6 添加剤 BZ添加剤 C 12 2 1.5 本発明
17 7 添加剤 3/添加剤 C 5 2 1.5 本発明
18 8 添加剤 3ノ添加剤 C 20 1 1.5 本発明
19 9 添加剤 3/添加剤 C 30 2 1 ,5 本発明
20 10 添加剤 3ノ添加剤 C 35 2 1.5 本発明
21 11 添加剤 F 12 2 1.5 本発明
22 12 T P P 12 2 1.5 比較例
23 13 T P P/E P E G 12 2 1.5 比較例
24 14 - - 2 1 ,5 比較例 2]
セルロース フィルム中への添加剤群 製膜方法
ドープ液
エステル ¾¾. 添加量 備 考 フィルム番号 種類 番号 延伸倍率
(%)
25 101 添加剤 A 12 2 1.5 本発明
26 102 添加剤 B 12 2 \ .5 本発明
27 103 添加剤 C 12 2 1.5 本発明
28 104 添加剤 D 12 2 1.5 本発明
29 105 添加剤 E 12 2 1.5 本発明
30 106 添加剤 B/添加剤 C 12 2 1.5 本発明
31 111 添加剤 F 12 2 \ .5 本発明
32 112 T P P 12 2 1.5 比較例
33 113 T P P/E P E G 12 2 1.5 比較例
34 114 - - 2 1.5 比較例
35 206 添加剤 B_ 添加剤 C 12 2 1.5 本発明
36 301 添加剤 A 12 3 3.0 本発明
37 302 添加剤 B 12 3 3.0 本発明
38 303 添加剤 C 12 3 3.0 本発明
39 304 添加剤 D 12 3 3.0 本発明
40 305 添加剤 E 12 3 3.0 本発明
41 306 添加剤 3ノ添加剤 C 12 3 3.0 本発明
42 311 添加剤 F 12 3 3.0 本発明
43 312 T P P 12 3 3.0 比較例
44 313 T P P/E P E G 12 3 3.0 比較例
45 314 - - 3 3.0 比較例
46 401 添加剤 A 12 2 T .5 本発明
47 402 添加剤 B 12 2 1.5 本発明
48 403 添加剤 C 12 2 1.5 本発明
49 404 添加剤 D 12 2 1.5 本発明
50 405 添加剤 E 12 2 1.5 本発明
51 406 添加剤 BZ添加剤 C 】2 2 1.5 本発明
52 411 添加剤 F 12 2 1.5 本発明
53 4t2 T P P \2 2 1.5 比較例
54 413 T P P/E P E G 12 2 1.5 比較例
55 414 - - 2 1.5 比較例
[0449] 《セルローエステルフィルムの評価》
上記作製した各セルロースエステルフィルムにつ 、て、下記の各評価を行った。
[0450] 〔微粒子の平均方位角及び DsZDの評価〕
作製したセルローエステルフィルムを透過型電子顕微鏡で 2万倍で撮影しその画 像をキャノン (株)製のスキャナ CanoScan FB 636Uを用い 300dpi モノクロ 256 階調で読み込んだ。
[0451] 読み込んだ画像はエプソンダイレクト(株)製のパソコンである Endeavor Pro720
L (CPU; Athlon - 1 GHz,メモリ; 512MB)にインストールした画像処理ソフト Win
ROOF ver3. 60 (三谷商事 (株)製)に取り込んだ。
[0452] この画像処理ソフトで、後に述べる各々の粒子について、針状比、絶対最大長、方 位角、重心位置を求めることができる。
[0453] 取り込んだ画像について、画像前処理として 2 X 2 mの視野の範囲について抽出
(自動で画像の 2値化)を行って粒子の画像抽出を行った。粒子の画像抽出後の画 面で粒子の 90%以上が抽出されていることを確認し、もし抽出が十分でない場合は 検出レベルの手動調整を行い、粒子の 90%以上が検出、抽出されるよう調整を行つ た。
[0454] 観察範囲の針状粒子の個数が 1000個に満たない場合はさらに別の 2 X 2 mの 視野の範囲について同様の操作を行い、粒子の個数が合計で 1000個以上になる まで行った。
[0455] このようにして抽出処理した画像データの各々の針状粒子について、方位角およ び針状比の測定を行った。針状比は下式によって求めた。絶対最大長は、針状粒子 の長軸の長さとした。
[0456] 針状比 =絶対最大長 Z対角幅
異物や壊れた粒子などの針状比が 2未満の粒子にっ 、ては、ノイズとなるため平均 方位角や平均粒子間距離の計算力 除外し、針状比 2以上の各々の粒子について 求めた。
[0457] 図 1に示すように、針状粒子の絶対最大長をとるとき、基準軸との角度を方位角とし た。基準軸は任意に設定することができる力 フィルムの幅手方向に設定した。各々 の針状微粒子の方位角を求め、その平均値を平均方位角とした。
[0458] また、図 2に示す平均方位角方向を新たな基準軸として、各々の針状粒子につい て、その粒子の方位角と平均方位角方向との角度差を求め、その絶対値の平均を求 めた。これを、 [平均方位角の方向と各々の針状微粒子の方位角とのなす角度の絶 対値の平均値 H]とした。
[0459] 平均粒子間距離 Dは、まず、前記画像データから各々の針状粒子の重心位置の座 標を求めた。
[0460] また、図 3に示すように、前述の方法で求めた平均方位角方向を座標の X軸方向と した。各々の針状粒子の重心位置の X軸座標のデータを小さい順に並べ、隣接する データの差を求めた。これを X軸方向の粒子間距離とした。 Y軸方向についても同様 に、各々の針状粒子の重心位置の Y軸座標のデータを小さい順に並べ、隣接するデ 一タの差を求めた。これを Y軸方向の粒子間距離とした。 X軸方向の粒子間距離と Y 軸方向の粒子間距離は夫々粒子数 1のデータを得た。この X軸方向の粒子間距 離及び Y軸方向の粒子間距離のデータをまとめて平均値を求め、平均粒子間距離 Dとし、その標準偏差を Dsとし、 DsZD値を求めた。この値は針状粒子のフィルム中 の分散状態を表して 、る。この標準偏差が少な 、ほど粒子間の距離が一定に保たれ ており、均一に分散されていることになる。
[0461] 〔ヘイズ値の測定〕
JIS K— 7136に従って、ヘイズメーター NDH2000 (日本電色工業 (株)製)を用 いて測定し、これを透明性の指標とした。
[0462] 〔リタ一デーシヨン Ro、 Rth、 Ro (b)、 Rth (b)の測定〕
アッベ屈折率計 IT (株式会社ァタゴ製)と分光光源装置を用いて各セルロースエス テルフィルムの平均屈折率を測定した。また、巿販のマイクロメータを用いてフィルム の厚みを測定した。
[0463] 自動複屈折計 KOBRA— 21ADH (王子計測機器 (株)製)を用いて、 23°C、 55% RHの環境下で 24時間放置したフィルムにおいて同環境下波長が 590nmにおける フィルムのリタデーシヨン測定を行った。上述の平均屈折率と膜厚を下記式に入力し 面内リタデーシヨン Ro、厚み方向のリタデーシヨン Rthおよび Nzの値を得た。
[0464] Ro = (nx ny) X d
Rth= { (nx+ny) /2-nz} X d
Nz=、nx— nz)Z (nx— ny)
式中、面内の遅相軸の方向の屈折率を nx、面内で遅相軸に直交する方向の屈折 率を ny、フィルムの厚さ方向の屈折率を nz、 dはフィルムの厚み(nm)をそれぞれ表 す。
[0465] また、セルロースエステルフィルム— Bの Ro (b)、 Rth(b)も、上記 Ro、 Rthと同様の
方法で求めた。
[0466] 〔リタ一デーシヨン安定性の評価〕
23°C、 80%RHにて 5時間調湿した後、同環境下で測定した Rth (80%RH)と、 2 3°C、 20%RHにて同様に 5時間調湿した後に同環境下で測定した Rth(20%RH) の差の絶対値 Δ Rthをリタデーシヨン安定性の尺度とした。
[0467] リタ一デーシヨン安定性 ARth= | Rth (80%RH) -Rth(20%RH) |
〔リタ一デーシヨンばらつきの評価〕
作製したセルロースエステルフィルムの TD方向に均等に 5点を、 MD方向の lmお きに巻き芯側で 4列、計 20点、同様に巻きのほぼ真ん中で lmおきに 4列、計 20点、 及び巻き外側で lmおきに 4列、計 20点、合計 60点について Roを測定した。このよう にして測定した Roのばらつきにつ 、て下記のようにして算出した。
[0468] Roのばらつき(%) = (Roの最大値 Roの最小値) ZRoの平均値 X 100
以上により得られた結果を、表 3、 4に示す。
[0469] [表 3]
セノレロース 各評価結果
エステル 式(3 ) 位相差値 * 2
ヘイズ * 3 備 考 フィノレム H D s /D R 0 R t N z Δ Rth
( % ) ( % ) 番号 ( * 1 ) nm) nm) (nm)
1 22 0.9 0.6 163 53 0.83 5 0.9 本発明
2 21 0.8 0.5 171 50 0.79 4 0.7 本発明
3 22 0.9 0.4 163 53 0.83 4 0.8 本発明
4 23 0.8 0.7 156 57 0.86 5 0.8 本発明
5 24 0.9 0.6 148 61 0.91 6 0.9 本発明
6 20 0.7 0.4 182 44 0.74 3 0.8 本発明
7 25 1.0 0.7 137 66 0.98 7 1.0 本発明
8 38 1.1 0.8 34 118 3.97 15 3.1 比較例
9 39 1.2 0.9 23 123 5.85 12 2.7 比較例
10 40 1 .3 1.1 16 127 8.44 27 6.0 比較例
11 17 0.8 1.2 186 39 0.71 6 0.9 本発明
12 16 0.9 1.2 194 35 0.68 5 0.8 本発明
13 15 0.8 1.1 203 31 0.65 5 0.8 本発明
14 17 0.8 1.4 186 39 0.71 6 0.9 本発明
15 18 0.9 1.3 178 43 0.74 6 0.9 本発明
16 15 0.7 1.1 203 31 0.65 4 0.8 本発明
17 28 0.8 1.4 96 84 1.38 6 0.9 本発明
18 13 0.7 1.1 219 23 0.61 5 0.9 本発明
19 20 0.8 1.1 162 51 0.81 5 0.8 本発明
20 31 0.9 1.0 72 96 1.83 12 2.1 本発明
21 20 1.1 1.4 162 51 0.81 7 1.0 本発明
22 34 1.3 1.7 47 108 2.80 17 3.1 比較例
23 33 1.2 1.8 55 104 2.39 15 2.9 比較例
24 37 1.2 2.1 23 121 5.76 29 7.0 比較例
* 1 :平均方位角の方向と各々の針状微粒子とのなす角度の絶対値の平均値 H (°
* 2 :位相差安定性 A Rth= I Rth(80%RH) - Rth(2O%RH) |
氺 3 :位相差バラツキ = ( R 0最大値 R 0最小値) ZR 0平均値 X100 4]
セノレロース 各評価結果
エステル 式(3) ヘイズ 位相差値 * 2
* 3 備 考 フ ィノレム H D s /D R o R t N z Δ Rth
(%) (%)
番号 (* 1) i>nm) m) (nra)
25 12 0.8 1.1 227 18 0.58 7 0.7 本発明
26 13 0.7 1.1 219 23 0.61 6 0.6 本発明
27 12 0.8 1.0 227 18 0.58 6 0.6 本発明
28 14 0.8 1.3 211 27 0.63 7 0.7 本発明
29 13 0.7 1.2 219 23 0.61 7 0.7 本発明
30 10 0.7 1.0 243 10 0.54 5 0.6 本発明
31 18 0.9 1.3 178 43 0.74 8 0.8 本発明
32 32 1.0 1.6 64 100 2.06 18 2.9 比較例
33 31 1.1 1.7 72 96 1.83 16 2.7 比較例
34 35 1.0 2.0 39 112 3.37 30 6.8 比較例
35 11 0.6 0.9 235 14 0.56 4 0.6 本発明
36 5 0.9 1.4 266 -4 0.48 7 1.0 本発明
37 4 0.8 1.4 274 一 8 0.47 6 0.9 本発明
38 4 0.9 1.3 274 一 8 0.47 6 0.9 本発明
39 5 0.9 1.6 266 一 4 0.48 7 1.0 本発明
40 4 0.8 1.5 274 一 8 0.47 7 1.0 本発明
41 3 0.7 1.3 282 一 12 0.46 5 0.9 本発明
42 8 1.1 1.8 241 8 0.53 7 1.0 本発明
43 18 1.2 23.0 160 49 0.81 19 3.6 比較例
44 21 1.3 21.0 135 61 0.95 17 3.4 比較例
45 29 1.2 25.0 70 94 1.84 31 7.5 比較例
46 11 1.2 2.6 470 341 1.23 9 1.6 本発明
47 12 1.1 2.6 455 333 1.23 8 1.5 本発明
48 11 1.0 2.4 470 341 1.23 8 1.5 本発明
49 13 1.1 3.0 442 327 1.24 9 1.6 本発明
50 12 1.0 2.8 455 333 1.23 9 1.6 本発明
51 9 1.0 2.4 493 352 1.21 7 1.5 本発明
52 17 1.2 3.0 391 301 1.27 10 1.7 本発明
53 31 1.4 3.6 213 212 1.50 24 4.2 比較例
54 30 1.3 3.8 225 218 1.47 22 4.0 比較例
55 34 1.4 4.4 174 193 1.61 36 8.1 比較例
:平均方位角の方向と各々の針状微粒子とのなす角度の絶対値の
平均値 H(° )
* 2 :位相差安定性 ARth= I Rth(80%RH)-Rth(20%RH) |
* 3:位相差バラツキ =(R 0最大値一 R 0最小値) R o平均値 xioo 表 3、 4に記載の結果より明らかなように、針状比が 2〜: LOOである針状微粒子と、本 発明に係る添加剤(ポリエステル、多価アルコールエステル、多価カルボン酸エステ ル及びエチレン性不飽和モノマーを重合して得られたポリマー)から選択される少な
くとも 1種を含有する本発明のセル口—スエステルフィルムは、比較例に対し、ヘイズ が低ぐリタ一デーシヨン安定性に優れ、かつリタ一デーシヨンばらつきが小さいことが 分かる。
[0472] 実施例 2
《偏光板 Aの作製》
厚さ 50 μ mのポリビュルアルコールフィルムを一軸延伸(温度 110°C、延伸倍率 5 倍)した。これをヨウ素 0. 075g、ヨウ化カリウム 6g、水 lOOgの比率カゝらなる水溶液に 60秒間浸漬し、ついでヨウ化カリウム 6g、ホウ酸 7. 5g、水 lOOgの比率力もなる 68°C の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。
[0473] 次いで、工程 1〜5に従って偏光板 Al〜55を作製した。
[0474] (工程 1)
偏光板保護フィルムとして、実施例 1で作製したセルロースエステルフィルム 1〜55 を、それぞれ 60°Cの 2モル/ Lの水酸ィ匕ナトリウム溶液に 90秒間浸漬し、ついで水 洗、乾燥して偏光子と貼合する側を酸化した。
[0475] 同様に、反対側の偏光板保護フィルムとして、市販のセルロースエステルフィルム K C8UX2M (コニ力ミノルタォプト(株)製)の鹼化も行った。
[0476] (工程 2)
前記偏光子を固形分 2重量%のポリビュルアルコール接着剤槽中に 1〜2秒浸漬 した。
[0477] (工程 3)
工程 2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程 1で処理した 実施例 1で作製した各セルロースエステルフィルムの鹼ィ匕した面上にのせ、さらに反 対側の偏光板保護フィルムとして、工程 1で処理した市販のセルロースエステルフィ ルム KC8UX2Mの酸ィ匕した面が偏光子に接するように積層した。
[0478] (工程 4)
工程 3で各セルロースエステルフィルムと偏光子を積層した偏光板を、圧力 20〜3 ON/cm2,搬送スピードは約 2mZ分で貼合した。
[0479] (工程 5)
80°Cの乾燥機中で、工程 4で作製した偏光板を 2分間乾燥して、偏光板 Al〜55 を作製した。
[0480] この方法により、図 15の構成 1において、偏光板 Aの構成、即ち、偏光板保護フ イルム lbとして市販のセルロースエステルフィルム KC8UX2M (コ-力ミノルタォプト (株)製)を用い、偏光板保護フィルム 2bとして各セルロースエステルフィルム用いた 偏光板 Al〜55を作製した。
[0481] 《偏光板 Bの作製》
〔セルロースエステルフィルム Bの作製〕
偏光板 Bに用 、るセルロースエステルフィルム Bを下記のようにして作製した。
[0482] (ポリマーの調製)
特開 2000— 344823号公報に記載の重合方法により塊状重合を行った。即ち、 攪拌機、窒素ガス導入管、温度計、投入口及び環流冷却管を備えたフラスコに下記 メチルメタタリレートとルテノセンを導入しながら内容物を 70°Cに加熱した。次いで、 充分に窒素ガス置換した下記 β メルカプトプロピオン酸の半分を攪拌下フラスコ内 に添カ卩した。 β—メルカプトプロピオン酸添加後、攪拌中のフラスコ内の内容物を 70 °Cに維持し 2時間重合を行った。更に、窒素ガス置換した j8—メルカプトプロピオン 酸の残りの半分を追加添加後、更に攪拌中の内容物の温度が 70°Cに維持し重合を 4時間行った。反応物の温度を室温に戻し、反応物に 5質量%ベンゾキノンのテトラヒ ドロフラン溶液を 20部添加して重合を停止させた。重合物をエバポレーターで減圧 下 80°Cまで徐々に加熱しながらテトラヒドロフラン、残存モノマー及び残存チオール 化合物を除去してポリマーを得た。重量平均分子量は 3, 400であった。また水酸基 価(下記の測定方法による)は 50であった。
[0483] メチルメタタリレート 100部
ルテノセン (金属触媒) 0. 05部
β メルカプトプロピオン酸 12部
〈水酸基価の測定〉
この測定は、 JIS Κ 0070 (1992)に準ずる。この水酸基価は、試料 lgをァセチ ル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムの
mg数と定義される。具体的には試料 Xg (約 lg)をフラスコに精秤し、これにァセチル 化試薬(無水酢酸 20mlにピリジンをカ卩えて 400mlにしたもの) 20mlを正確に加える 。フラスコの口に空気冷却管を装着し、 95〜100°Cのグリセリン浴にて加熱する。 1時 間 30分後、冷却し、空気冷却管から精製水 lmlを加え、無水酢酸を酢酸に分解する 。次に電位差滴定装置を用いて 0. 5molZL水酸ィ匕カリウムエタノール溶液で滴定 を行い、得られた滴定曲線の変曲点を終点とする。更に空試験として、試料を入れな いで滴定し、滴定曲線の変曲点を求める。水酸基価は、次の式によって算出する。
[0484] 水酸基価 = { (B C) X f X 28. 05ZX} +D
式中、 Bは空試験に用いた 0. 5molZLの水酸ィ匕カリウムエタノール溶液の量 (ml) 、 Cは滴定に用いた 0. 5molZLの水酸ィ匕カリウムエタノール溶液の量 (ml)、 fは 0. 5molZL水酸化カリウムエタノール溶液のファクター、 Dは酸価、また、 28. 05は水 酸化カリウムの lmol量 56. 11の 1Z2。
[0485] (セルロースエステルフィルム Bの作製)
〈二酸化珪素分散液 Bの調製〉
ァエロジル R972V (日本ァエロジル (株)製、一次粒子の平均径 16nm、見掛け比 重 90gZリットル) 12部
エタノール 88部
以上をディゾルバーで 30分間撹拌混合した後、マントンゴーリンで分散を行った。 分散後の液濁度は 200ppmであった。二酸ィ匕珪素分散液に 88部のメチレンクロライ ドを撹拌しながら投入し、ディゾルバーで 30分間撹拌混合し、二酸化珪素分散希釈 液 Bを作製した。
[0486] 〈インライン添加液 Bの調製〉
チヌビン 109 (チバスペシャルティケミカルズ (株)製) 11部
チヌビン 171 (チバスペシャルティケミカルズ (株)製) 5部
メチレンクロライド 100言
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
これに二酸化珪素分散希釈液 Bを 36部、撹拌しながら加えて、更に 30分間撹拌し た後、セルロースアセテートプロピオネート(ァセチル基置換度 1. 9、プロピオ-ル基
置換度 0. 8)の 6部を撹拌しながら加えて、更に 60分間撹拌した後、アドバンテック 東洋(株)のポリプロピレンワインドカートリッジフィルター TCW—PPS— 1Nで濾過し ゝインライン添カ卩液 Bを調製した。
[0488] 〈ドープ液 Bの調製〉
セルロースアセテート(ァセチル置換度 2. 92、分子量 Mn= 148000、分子量 Mw
= 310000, Mw/Mn= 2. 1) 100部
上記調製したポリマー 12部
メチレンクロライド 440言
エタノール 40部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙 (株)製 の安積濾紙 No. 24を使用して濾過し、ドープ液 Bを調製した。
[0489] 製膜ライン中で、 日本精線 (株)製のファインメット NFでドープ液 Bを濾過した。
[0490] インライン添加液のライン中で、 日本精線 (株)製のファインメット NFでインライン添 加液 Bを濾過した。濾過したドープ液 Bの 100部に対し、濾過したインライン添加液 B の 2部をカ卩えて、インラインミキサー (東レ静止型管内混合機 Hi- Mixer, SWJ)で 十分混合し、次いで、ベルト流延装置を用い、温度 35°C、 1. 8m幅でステンレスバン ド支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が 120%になる まで溶媒を蒸発させ、ステンレスバンド支持体上力 剥離した。剥離したセルロース エステルのウェブを 35°Cで溶媒を蒸発させ、 1. 65m幅にスリットし、その後、テンタ 一で TD方向(フィルムの搬送方向と直交する方向)に 1. 1倍に延伸しながら、 150 °Cの乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は 30%であった。
[0491] その後、 110°C、 120°Cの乾燥ゾーンを多数のロールで搬送させながら乾燥を終 了させ、 1. 5m幅にスリットし、フィルム両端に幅 15mm、平均高さ 10 mのナーリン グ加工を施し、巻き取り初期張力 220NZm、終張力 l lONZmで内径 6インチコア に巻き取り、膜厚 80 mの偏光板 3に用いるセルロースアセテートフィルム Bを得た。
[0492] このセルロースエステルフィルム Bのリタ一デーシヨン値を測定したところ、 Ro (b)
=0. lnm、 Rth(b) =0nmであった
前記偏光板 Aの作製において、各セルロースエステルフィルムに代えて、上記のセ ルロースエステルフィルム Bを用 ヽた以外は同様にして偏光板 Bを作製した。即ち 図 15の構成 1において、偏光板 Bの偏光板保護フィルム 2aとしてセルロースエス テルフィルム—Bを用いた。尚、偏光板保護フィルム laとしては前記セルロースエス テルフィルム KC8UX2M (コ-力ミノルタォプト(株)製)を用いた。
[0493] 〔偏光板の評価:透過率の測定〕
上記作製した偏光板 Al〜55を断裁し、各々 2枚の偏光板 Aを用意した。同じ偏光 板 Aを直交させた状態で分光光度計 U— 3310 (日立製作所 (株)製)を用いて 550η mの透過率を測定した。その結果、本発明のセルロースエステルフィルムを用いた偏 光板(1〜7、 11〜19、 21、 25〜31、 35〜42、 46〜52)は、透過率力 . 1%以内 であったが、比較例のセルロースエステルフィルムを用いた偏光板(8〜10、 20、 22 〜24、 32〜34、 43〜45、 53〜55)は 0. 5%で、本発明のセルロースエステルフィ ルムを用いた偏光板は均一性に優れて 、るため、直交した偏光板の光漏れが少な かった。
[0494] 《液晶表示装置の作製》
視認性評価を行う液晶パネルを以下のようにして作製した。
[0495] IPSモード型液晶表示装置である日立製液晶テレビ Wooo W17—LC50を用い 、あら力じめ貼合されて 、た両面の偏光板を剥がして上記で作製した各偏光板 A36 〜45、偏光板 Bをそれぞれ液晶セルのガラス面に貼合した。その際、セルロースエス テルフィルムの遅相軸、偏光子の吸収軸、液晶セルの遅相軸の向きおよび液晶表示 装置の構成は、偏光板の作製時に図 15、図 16 (軸の配置)になるように貼り合わせ、 液晶パネルの貼り合わせを行った。
[0496] 以上に様にして作製した各液晶表示装置にっ 、ての視認性の評価を行った。
[0497] 〔液晶表示装置の視認性評価〕
(パネルムラの評価)
上記で作製した液晶パネルで白および黒を表示させて、その時の輝度ムラ、光漏 れを目視で評価した。本発明のセルロースエステルフィルムを用いて作製した本発 明の偏光板を用いて作製した液晶パネルでは、白表示での輝度ムラが少なぐ黒表
示の光漏れもほとんどなかった。これに対して、比較のセルロースエステルフィルムを 用いた偏光板を使用して作製した液晶パネルでは白表示での輝度ムラが目立ち、黒 表示の光漏れも観察された。さらに、液晶パネルを 24時間連続点灯してパネル温度 が上昇した後の輝度ムラ、光漏れについても目視で評価したところ、本発明のセル口 ースエステルフィルムを用いた偏光板を使用して作製した液晶パネルでは輝度ムラ、 光漏れの変動がなぐ初期の良好な状態を維持していた力 比較のセルロースエス テルフィルムを用いた偏光板を使用して作製した液晶パネルでは、輝度ムラ、光漏れ 力 Sさらに劣化していた。
[0498] 以上に結果より、本発明のセルロースエステルフィルムを用いた偏光板を使用して 作製した液晶パネルでは、位相差のばらつきが少ないため、初期の輝度ムラ、光漏 れが少ない上、位相差の安定性にも優れているため輝度ムラ、光漏れの劣化もほと んどなかった。
[0499] (視野角の評価)
上記で作製した液晶パネルの白表示と黒表示時のコントラストについて、 ELDIM 社製 EZ— contrastを用いて測定を行った。パネル面の法線方向力 の傾き角 80° における液晶パネルの白表示と黒表示時のコントラストが大きいほど視野角は広いと 言える。本発明のセルロースエステルフィルムを用いて作製した本発明の偏光板を 用いた液晶パネルでは、 80° におけるコントラストが全方位で 40以上あった。これに 対して、比較のセルロースエステルフィルムを用いて作製した偏光板を用いた液晶パ ネルでは、コントラストが 20以下の部分 (方位)があった。したがって本発明のセル口 ースエステルフィルムを使用した液晶パネルでは視野角が大幅に改善して 、た。 実施例 100
〈ドープ 1の作製〉
(微粒子分散液 1の作製)
下記方法で SrCOの微粒子分散物を作製した。
3
[0500] 水 375g【こ対し、尿素 81. 75g (水【こ対し 21. 8質量0 /0)、 酸ストロンチウム 30. 75 g (水に対し 8. 2質量%)を添加した。さらに反応を氷点下で行なうために反応液に有 機溶媒としてエチレングリコールを 75g (水に対し 20質量0 /0)添加した。この溶液を反
応容器へ入れ、超音波を照射しながら、攪拌し、冷却した。
[0501] 攪拌モーターとして新東科学株式会社製、スリーワンモーター BLh600を、超音波 照射機能付ウォーターバスとして本多電子株式会社製、超音波洗浄器 W— 113MK — 11、クーラーとしてトーマス科学機器株式会社製、密閉タンク型ハンディクーラー T RL— C13を用いた。
[0502] クーラーにより、ウォーターバス中のエチレングリコール系不凍液(トーマス科学機 器株式会社製、ナイブライン;登録商標)を循環させることにより、反応液の温度を— 5°Cまで下げ、—5°Cに保った。続いて消化酵素 Urease, 1. 50gを反応液に添カロし た。消化酵素添加後、反応液中では結晶の析出が始まり、白濁した。反応液の温度 を 5°Cに保ちながら、 12時間反応させた。
[0503] その後、反応液の温度を 20°Cまで上げ、 20°Cに保ちながら 12時間、結晶を熟成さ せた。得られた結晶をろ過により取り出し、乾燥させた。乾燥後の結晶を走査型電子 顕微鏡 (SEM)で観察したところ長さが 500nm以下(おおよそ平均 400nm程度)、 太さが 20〜50nmの針状比 4〜20の炭酸ストロンチウム針状結晶微粒子であること が確認できた。
[0504] 次に、
上記で作製した SrCOの微粒子分散物 32g
3
メチレンクロライド 184g
エタノール 184g
上記組成物を超音波分散機 UH - 300 (株式会社エスエムテー製)で出力目盛り 10 で連続 5分間分散後、ウルトラァペックスミル UAM015 (寿工業)で下記条件で分散 を行った。
分散液量 400g
分散メディア 50 μ mジルコ-ァビーズ 400g
周速 10mZsec、分散液の循環流速 60mlZminで 5時間循環し、ミルジャケットは冷 却水で冷却した。
(微粒子液 1)
(微粒子分散液 1の作製)
セルローストアセテートプロピオネート 8. 7質量部
(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75 重量平均分子量 190, 000) 卜リフエ二ノレフォスフェート
ェチルフタリルェチルダリコレート
チヌビン 326 (チバスペシャルティケミカルズ製) 0. 60質 部 チヌビン 109 (チバスペシャルティケミカルズ製) 1. 02質 部 チヌビン 171 (チバスペシャルティケミカルズ製) 1. 02質 部 メチレンクロライド
エタノーノレ
上記組成物を容器に投入し完全に溶解した。
[0505] この溶液を攪拌しながら、微粒子液 1を 152. 2質量部をゆっくり添加した後、この混 合液 350gを超音波分散機 UH - 300 (株式会社エスエムテー製)で出力目盛り 10 で容器のまわりを冷水で冷やしながら連続 10分間再分散を行った。
[0506] (ドープ原液の作製)
セルローストアセテートプロピオネート 166質量部
(ァセチル置換度 1. 90、プロピオニル置換度 0. 75)
メチレンクロライド 449. 9質量部
エタノール 42. 6質量部
上記組成物を容器に投入し完全に溶解した。この溶液を攪拌しながら微粒子分散液 1の 341. 7質量部を混合してドープ 1とした。
[0507] 〈ドープ 2の作製〉
(微粒子液 1の作製)
微粒子分散液 1の作製をドープ 1の作製と同様に行った。
[0508] (微粒子分散液 2の作製)
セルローストアセテートプロピオネート 8. 7質量部
(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75 重量平均分子量 190, 000
)
トリフエニルフォスフェート 16. 0質量部
ェチルフタリルェチルダリコレート 4. 0質量部 チヌビン 326 (チバスぺシャリティケミカルズ製) 0. 60質量部
チヌビン 109 (チバスぺシャリティケミカルズ製) 1. 02質量部
チヌビン 171 (チバスぺシャリティケミカルズ製) 1. 02質量部
メチレンクロライド 149. 6質量咅
エタノーノレ 15. 0質量部
上記組成物を容器に投入し完全に溶解した。
[0509] この溶液を攪拌しながら微粒子液 1を 152. 2質 :部、ゆっくり添加、混合して微粒 子分散液 2とした。
[0510] (ドープ原液の作製)
ドープ原液はドープ 1の作製と同様に作製した。
[0511] 次いで、ドープ原液を容器に投入し攪拌しながら、微粒子分散液 2の 341. 7質量 部を混合してドープ 2とした。
[0512] 〈ドープ 3の作製〉
(微粒子液 2の作製)
ドープ 1の作製で用いた炭酸ストロンチウム微粒子 32g エタノール 184g
メチレンクロライド 184g
上記組成物を超音波分散機 UH - 300 (株式会社エスエムテー製)で出力目盛り 10 で連続 5分間分散後、下記の構成のサンドグラインダーで分散を行った。ミル部内径 120mm,高さ 180mm、攪拌ディスク直径 80mm、 20mm間隔で 3枚をシャフトにと りつけ、分散メディア 0. 5mmジルコユアビーズ 400g、ディスク回転数 1200rpm、分 散液量 400g、ミル部を密閉しバッチ式で 5時間分散した。ミルジャケットは冷却水で 冷却した。
[0513] (微粒子分散液 3の作製)
セルローストアセテートプロピオネート 24. 9質量部
(ァセチル置換度 1. 90、プロピオ-ル置換度 0. 75 重量平均分子量 190, 00
0)
卜リフエ二ノレフォスフェート 16. 0質量部 ェチルフタリルェチルダリコレート 4. 0質量部
チヌビン 326 (チバスぺシャリティケミカルズ製) 0. 60質!;部
チヌビン 109 (チバスぺシャリティケミカルズ製) 1. 02質!;部
チヌビン 171 (チバスぺシャリティケミカルズ製) 1. 02質!;部
メチレンクロライド 599. 5質量咅
エタノーノレ 57. 5質量部
上記組成物を容器に投入し完全に溶解した。
[0514] この溶液を攪拌しながら、微粒子液 2の 152. 2質量部をゆっくり添加した後、この 混合液 350gを超音波分散機 UH— 300 (株式会社エスエムテー製)で出力目盛り 1
0で容器のまわりを冷水で冷やしながら連続 10分間再分散を行った。
[0515] (ドープの作製)
微粒子分散液 3をよく攪拌しながら、下記のようにセルローストアセテートプロビオネ ートをゆっくり加え完全に溶解しドープ 3とした。
微粒子分散榭脂溶液 3 852. 9質量部
セルローストアセテートプロピオネート 149. 6質量部
(ァセチル置換度 1. 90、プロピオニル置換度 0. 75)
《フィルムの作製》
実施例 101 ;延伸 TD配向
前記ドープ 1を 40°Cに保温されたステンレスベルト上に均一に流延した。流延に用 いたダイスのスリット長は 20mm、スリット間隔は 500 mとした。残留溶媒量が 80% まで乾燥した後、ステンレスベルト上力も剥離し、その後、テンターで幅方向に 1. 4倍 の延伸を行った。さらに多数のロールで搬送させながら 120°Cで乾燥して厚み 80 μ m、幅 1. 3mのフィルムを得た。
[0516] 実施例 102 ;延伸 MD配向
前記ドープ 1を 40°Cに保ち、 40°Cに保温されたステンレスベルト上に均一に流延し た。流延に用いたダイスのスリット長は 20mm、スリット間隔は 500 mとした。
[0517] 残留溶媒量が 80%まで乾燥した後、ステンレスベルト上力も剥離し、その後、テン
ターで幅方向に 1. 05倍の延伸を行った。さらに多数のロールで搬送させながら 120 °Cで乾燥して 80 /ζ πι、幅 1. 3mのフィルムを得た。剥離の速度よりも巻き取りの速度 を高くすることで、搬送中に MD方向に 1. 5倍の延伸を行った。
[0518] 比較例 101
101にお!/、て延伸倍率を TD方向に 1. 05倍にした。
[0519] 実施例 103 ;流延 TD配向
前記ドープ 1を 40°Cに保温されたステンレスベルト上に均一に流延した。流延には 内径 lmmのノズルを 10mm間隔で流延支持体であるステンレスベルトに対し直交す る方向に並べてブロック状にしたものを用いた(図 6)。このノズルブロックを振幅 10m mで 2回 Z秒で振動させながら、ステンレスベルト上に流延を行った。残留溶媒量が 80%まで乾燥した後、ステンレスベルト上力も剥離した。その後、テンタークリップで TD方向に 1. 05倍の延伸を行った。さらに多数のロールで搬送させながら 120°Cで 10分間乾燥して 80 m、幅 1. 3mのフィルムを得た。
[0520] 実施例 104 ;流延 TD配向
実施例 103においてテンターの延伸倍率を TD方向に 1. 4倍にした。
[0521] 実施例 105 ;流延 TD配向
前記ドープ 1を 40°Cに保温されたステンレスベルト上に巾 1200mmで均一に流延 した。
[0522] 流延には内径 lmmのノズルを 10mm間隔で流延支持体であるステンレスベルトに 対し直交する方向に並べてブロック状にしたものを用いた。このノズルブロックを振幅 10mmで 2回 Z秒で振動させながら、ステンレスベルト上に流延を行った。さらにこの 後、通常のダイス (スリット長 20mm、スリット間隔 500 m)を用いて先に流延したド ープの上にドープ 1を用いて積層し、逐次流延を行った。なおドープ流量の比率は 1 層目 Z2層目 =4Zlとした。
[0523] 残留溶媒量が 80%まで乾燥した後、ステンレスベルト上力も剥離した。その後、テ ンターで TD方向に 1. 4倍の延伸を行った。さらに多数のロールで搬送させながら 12 0°Cで乾燥して 80 m、幅 1. 3mのフィルムを得た。
[0524] 実施例 106
前記ドープ 1を 40°Cに保ち、 40°Cに保温されたステンレスベルト上に均一に流延し た。
[0525] 流延に用いたダイスのスリット長は 40mm、スリット間隔 350 μ mして、ドープを送液 することで針状粒子を配向させた。
[0526] 残留溶媒量が 80%まで乾燥した後、ステンレスベルトから剥離した。その後、テンタ 一クリップで TD方向に 1. 05倍の延伸を行った。さらに多数のロールで搬送させなが ら 120°Cで乾燥して厚み 80 m、幅 1. 3mのフィルムを得た。
[0527] 実施例 107
実施例 106においてダイスのスリット長を 35mmとし、同様にフィルムを得た。
[0528] 実施例 108
前記ドープ 1を 40°Cに保ち、 40°Cに保温されたステンレスベルト上に均一に流延し た。流延に用いたダイスのスリット長は 40mm、スリット間隔 350 mとして、ドープを 送液することで針状粒子を配向させた。
[0529] 残留溶媒率が 80%まで乾燥した後、ステンレスベルトから剥離した。その後、テンタ 一で TD方向に 1. 05倍の延伸を行った。さらに多数のロールで搬送させながら 120 °Cで乾燥して厚み 80 m、幅 1. 3mのフィルムを得た。この時、ロール巻き取りまで のフィルム搬送速度を剥離の速度よりも高く設定することで MD方向に 1. 5倍の延伸 を行った。
[0530] 実施例 109
101にお 、てドープ 2を用いたほか同様にしてフィルムを作製した。
[0531] 実施例 110
前記ドープ 1を 40°Cに保温されたステンレスベルト上に均一に流延した。流延に用 いたダイスは図 8のタイプであり、スリット長 30mm、スリット間隔 0. 8mmとし片側より ドープを供給し、スリット内には供給側と反対の方向に向けてに深さ 0. 5mmの溝を 1 mm間隔でスリット幅方向に対し 45° の角度で設けた。このスリット内にドープを通過 させることでダイスのスリット出口で粒子を TD方向に配向させた。
[0532] 残留溶媒量が 80%まで乾燥した後、ステンレスベルト上力も剥離した。その後、テ ンターで幅方向に 1. 4倍の延伸を行った。さらに多数のロールで搬送させながら 12
0°Cで乾燥して 80 m、幅 1. 3mのフィルムを得た。
[0533] 実施例 111
前記ドープ 1を 40°Cに保温されたステンレスベルト上に均一に流延した。この流延 力 lm下流側で下記グラビアロールを用いて TD方向に粒子配向を行った(図 9)。
[0534] (グラビアロール)
直径 50mm
斜線目 80線、角度 45° 、彫刻深さ 100 μ m
グラビアロールを回転しながら流延したドープに接触させ、その回転数を調整してド ープ上でのグラビア目が搬送方向直交する方向となるようにすることで粒子を TD方 向に配向させた。また、グラビアに付着した余分なドープはブレードで力きとり、ドー プ受けに回収した。
[0535] 残留溶媒量が 80%まで乾燥した後、ステンレスベルト上力も剥離した。その後、テ ンターで幅方向に 1. 4倍の延伸を行った。さらに多数のロールで搬送させながら 12
0°Cで乾燥して厚み 80 m、幅 1. 3mのフィルムを得た。
[0536] 比較例 102
実施例 101にお 、てドープ 3を用いたほか同様にしてフィルムを作製した。
[0537] 以下に本発明に係わる実施例 101〜111のセルロースエステルフィルムおよび比 較例 101 , 102の光学フィルムにつ 、て下記の評価を行った結果を示す。
[0538] (カッティング性 (スリツティング性)の評価)
実際の製膜工程でのスリツティング性 (フィルムの破断のしゃすさ)の評価には工程 で長尺、長時間のテストを行う必要があるがコスト、時間が膨大になる。そこで下記の 強制的な厳しい条件で試験を行うことで短時間で評価が可能であり、スリツターで 30
Omm幅のフィルムを 1000mスリットを行った。
[0539] スリット条件は、スリット幅 50mm、スリット速度 10mZmin、張力 5kg、スリット方式と しては上刃 Z下刃方式を用いた。
[0540] この時のフィルムの破断頻度を計測する。
[0541] 上記条件で評価した時の破断頻度と実際の工程での破断頻度につ!ヽては経験上 のデータの蓄積があり、上記の破断頻度 10以下;実際の工程ではほとんど破断が発
生せず好ま ヽ上記の破断頻度 10〜20;実際の工程でまれに破断が発生するが実 用レベルにある上記の破断頻度 21〜30;実際の工程で時々破断が発生するが何と か実用レベルにある上記の破断頻度 30以上;実際の工程で頻繁に破断が発生し実 用的でな 、であることが判っており、これで評価した。
[0542] (リタ一デーシヨン Ro、 Rthの測定)
アッベ屈折率計 1T (株式会社ァタゴ製)と分光光源装置を用いて光学フィルムの平 均屈折率を測定した。また、市販のマイクロメータを用いてフィルムの厚みを測定した
[0543] 自動複屈折計 KOBRA— 21ADH (王子計測機器 (株)製)を用いて、 23°C、 55% RHの環境下で 24時間放置したフィルムにおいて同環境下波長が 590nmにおける フィルムのリタデーシヨン測定を行った。上述の平均屈折率と膜厚を下記式に入力し 面内リタデーシヨン Ro、厚み方向のリタデーシヨン Rthおよび Nzの値を得た。
[0544] Ro = (nx— ny) X d
Rth= { (nx+ny) /2-nz} X d
Nz= (nx— nz)Z(nx— ny)式中、面内の遅相軸方向の屈折率を nx、面内で遅相 軸に直交する方向の屈折率を ny、フィルムの厚さ方向の屈折率を nz、 dはフィルムの 厚み (nm)をそれぞれ表す。
[0545] (リタ一デーシヨン安定性の評価)
23°C、 80%RHにて 5時間調湿した後、同環境下で測定した Rth (80%RH)と、 2 0%RHにて同様に 5時間調湿した後に同環境下で測定した Rth (20%RH)の差の 絶対値をリタデーシヨンの安定性とした。
[0546] リタ一デーシヨン安定性 = I Rth (80%RH) -Rth (20%RH) |
(リタ一デーシヨンばらつきの評価)
作製したセルロースエステルフィルムの TD方向に均等に 5点を、 MD方向の lmお きに巻き芯側で 4列、計 20点、同様に巻きのほぼ真ん中で lmおきに 4列、計 20点、 及び巻き外側で lmおきに 4列、計 20点、合計 60点について Roを測定した。このよう にして測定した Roのばらつきにつ 、て下記のようにして算出した。
[0547] Roのばらつき(%) = (Roの最大値 Roの最小値) ZRoの平均値 X 100
(微粒子の配向角、分散度の評価)
微粒子の針状比、方位角、平均方位角、及び平均粒子間距離 D粒子間距離の標 準偏差 Dsの評価
作製したフィルムを透過型電子顕微鏡で 2万倍で撮影しその画像をキャノン (株)製 のスキャナ CanoScan FB 636Uを用い 300dpi モノクロ 256階調で読み込んだ
[0548] 読み込んだ画像はエプソンダイレクト(株)製のパソコンである Endeavor Pro720 L (CPU; Athlon - 1 GHz,メモリ; 512MB)にインストールした画像処理ソフト Win ROOF ver3. 60 (三谷商事 (株)製)に取り込んだ。
[0549] この画像処理ソフトで、後に述べる各々の粒子について、針状比、絶対最大長、方 位角、重心位置を求めることができる。
[0550] とりこんだ画像について画像前処理として 2 X 2 μ mの視野の範囲について抽出( 自動で画像の 2値化)を行って粒子の画像抽出を行った。粒子の画像抽出後の画面 で粒子の 90%以上が抽出されていることを確認し、もし抽出が十分でない場合は検 出レベルの手動調整を行い、粒子の 90%以上が検出、抽出されるよう調整を行った
[0551] 観察範囲の針状粒子の個数が 1000個に満たない場合はさらに別の 2 X 2 mの 視野の範囲について同様の操作を行い、粒子の個数が合計で 1000個以上になる まで行った。
[0552] このようにして抽出処理した画像データの各々の針状粒子について、方位角およ び針状比の測定を行った。針状比は下式によって求めることができる。絶対最大長 は針状粒子の長軸の長さに相当する。
[0553] 針状比 =絶対最大長 Z対角幅対角幅とは、絶対最大長に平行な 2本の直線で投 影された粒子の像をはさんだときの 2直線間の最短距離。
[0554] 異物もしくは壊れた粒子などの針状比が 2未満の粒子は、ノイズとなるため平均方 位角や平均粒子間距離の計算力 除外し、針状比 2以上の各々の粒子について求 めた。
[0555] 針状粒子の絶対最大長をとるときの、基準軸との角度を方位角とする。基準軸は任
意に設定することができる力 例えばフィルムの幅手方向に設定することができる。各 々の針状微粒子の方位角を求め、その平均値を平均方位角とした。
[0556] また、平均方位角方向を基準軸として、各々の針状粒子についてその粒子の方位 角と平均方位角方向との角度差を求め、その絶対値の平均を求めた。これが、 [平均 方位角の方向と各々の針状微粒子の方位角とのなす角度の絶対値の平均値 H]で ある。
[0557] 平均粒子間距離 Dは、まず、前記画像データから各々の針状粒子の重心位置の座 標を求める。
[0558] このとき、前述の方法で求めた平均方位角方向を座標の X軸方向とする。各々の針 状粒子の重心位置の X軸座標のデータを小さ 、順に並べ、隣接するデータの差を求 める。これを X軸方向の粒子間距離とする。 Y軸方向についても同様に、各々の針状 粒子の重心位置の Y軸座標のデータを小さ!/、順に並べ、隣接するデータの差を求め る。これを Y軸方向の粒子間距離とする。 X軸方向の粒子間距離と Y軸方向の粒子 間距離は夫々粒子数— 1のデータが得られる。この X軸方向の粒子間距離及び Y軸 方向の粒子間距離のデータをまとめて平均値を求め、平均粒子間距離 Dとし、その 標準偏差を Dsとし、 DsZD値を求める。この値は針状粒子のフィルム中の分散状態 を表している。この標準偏差が少ないほど粒子間の距離が一定に保たれており、均 一に分散されていることになる。
[0559] 上記の評価を、実施例 101〜: L 11、比較例 101, 102のフィルムを用いて行った結 果を以下に示す。
[0560] 以上の評価結果を表 5に纏めた。
[0561] [表 5]
, ¾nr室室¾¾jij itπ0562101: 101102 /SνnnΛ〜,"
H ;平均方位角の方向と各々の針状微粒子の方位角とのなす角の絶対値の平均値 (° )
D s /D ;粒 間距離の標準偏差 Z粒子間距離の平均値
[0563] (偏光板の故障発生頻度の評価)
実施例 101〜: L 11、比較例 101, 102のフィルムを用いて作製した偏光板を用いて 、以下の評価を行った。
[0564] 作製した偏光板の吸収軸を直交させ、暗室中でライトテーブル上に置き lm2あたり の輝点 (光漏れの発生している故障部分)を数えた。 2個以下 :実際の液晶パネル に使用するにあたり良好なレベル 3〜5個 :実際の液晶パネルに使用するにあたり 問題のないレベル 6〜10個:実際の液晶パネルに使用するにあたり収率は落ちるが 何とか使用可能なレベル 11個以上:パネル収率が劣化し実用的でな 、レベルで評 価し 7こ。
[0565] 本発明に係わるセルロースエステルフィルムが本発明の目的にお!、て優れて!/、るこ とが判る。
[0566] 〈偏光板の作製〉
厚さ 50 μ mのポリビュルアルコールフィルムを一軸延伸(温度 110°C、延伸倍率 5 倍)した。これをヨウ素 0. 075g、ヨウ化カリウム 6g、水 lOOgの比率カゝらなる水溶液に 60秒間浸漬し、ついでヨウ化カリウム 6g、ホウ酸 7. 5g、水 lOOgの比率力もなる 68°C の水溶液に浸漬した。これを水洗、乾燥し偏光子を得た。ついで工程 1〜5に従って 偏光板 101〜: L 11、 i, iiを作製した。
工程 1
偏光板保護フィルムとして、実施例 101で作製した本発明のセルロースエステルフ イルムを 60°Cの 2モル/ Lの水酸ィ匕ナトリウム溶液に 90秒間浸漬し、ついで水洗、乾 燥して偏光子と貼合する側を酸ィ匕した。
[0567] 同様に、反対側の偏光板保護フィルムとして、市販のセルロースエステルフィルム K C8UX2M (コニ力ミノルタォプト(株)製)の鹼化も行った。
工程 2
前記偏光子を固形分 2質量%のポリビュルアルコール接着剤槽中に 1〜2秒浸漬 した。工程 3
工程 2で偏光子に付着した過剰の接着剤を軽く拭き除き、これを工程 1で処理した 実施例 101で作製した本発明のセルロースエステルフィルムの鹼ィ匕した面上にのせ
、さらに反対側の偏光板保護フィルムとして、工程 1で処理した市販のセルロースエス テルフィルム KC8UX2Mの鹼ィ匕した面が偏光子に接するように積層し、偏光板 1とし た。
工程 4
工程 3でセルロースエステルフィルムと偏光子を積層した偏光板を圧力 20〜 30N /cm2,搬送スピードは約 2mZ分で貼合した。
工程 5
80°Cの乾燥機中に工程 4で作製した偏光板を 2分間乾燥した。
[0568] 同様にして実施例 102〜111で作製した本発明のセルロースエステルフィルムを用 いて比較例 101, 102を用いて偏光板 i, iiを作製した。
[0569] この方法により、図 15の構成 1において、偏光板 Aの構成、即ち、偏光板保護フ イルム lbとして市販のセルロースエステルフィルム KC8UX2M (コ-力ミノルタォプト (株)製)を用い、偏光板保護フィルム 2bとして実施例 101〜111で作製した本発明 のセルロースエステルフィルムおよび比較例 101, 102をそれぞれ用いた偏光板 10 1〜 111および偏光板 i, iiを作製した。
[0570] 〈偏光板 Bの作製〉
偏光板 Bに用 、るセルロースエステルフィルム Bを下記のようにして作製した。
[0571] 〈ポリマーの調製〉
特開 2000— 344823号公報に記載の重合方法により塊状重合を行った。即ち、 攪拌機、窒素ガス導入管、温度計、投入口及び環流冷却管を備えたフラスコに下記 メチルメタタリレートとルテノセンを導入しながら内容物を 70°Cに加熱した。次いで、 充分に窒素ガス置換した下記 β メルカプトプロピオン酸の半分を攪拌下フラスコ内 に添カ卩した。 β—メルカプトプロピオン酸添加後、攪拌中のフラスコ内の内容物を 70 °Cに維持し 2時間重合を行った。更に、窒素ガス置換した j8—メルカプトプロピオン 酸の残りの半分を追加添加後、更に攪拌中の内容物の温度が 70°Cに維持し重合を 4時間行った。反応物の温度を室温に戻し、反応物に 5質量%ベンゾキノンのテトラヒ ドロフラン溶液を 20質量部添加して重合を停止させた。重合物をエバポレーターで 減圧下 80°Cまで徐々に加熱しながらテトラヒドロフラン、残存モノマー及び残存チォ
一ルイ匕合物を除去してポリマー 7を得た。重量平均分子量は 3, 400であった。また 水酸基価(下記の測定方法による)は 50であった。
[0572] メチルメタタリレート 100質量部
ルテノセン (金属触媒) 0. 05質量部
β メルカプトプロピオン酸 12質量部
(水酸基価の測定方法)
この測定は、 JIS Κ 0070 (1992)に準ずる。この水酸基価は、試料 lgをァセチ ル化させたとき、水酸基と結合した酢酸を中和するのに必要とする水酸化カリウムの mg数と定義される。具体的には試料 Xg (約 lg)をフラスコに精秤し、これにァセチル 化試薬(無水酢酸 20mlにピリジンをカ卩えて 400mlにしたもの) 20mlを正確に加える 。フラスコの口に空気冷却管を装着し、 95〜100°Cのグリセリン浴にて加熱する。 1時 間 30分後、冷却し、空気冷却管から精製水 lmlを加え、無水酢酸を酢酸に分解する 。次に電位差滴定装置を用いて 0. 5molZL水酸ィ匕カリウムエタノール溶液で滴定 を行い、得られた滴定曲線の変曲点を終点とする。更に空試験として、試料を入れな いで滴定し、滴定曲線の変曲点を求める。水酸基価は、次の式によって算出する。
[0573] 水酸基価 = { (B—C) X f X 28. 05ZX} +D
式中、 Bは空試験に用いた 0. 5molZLの水酸ィ匕カリウムエタノール溶液の量 (ml) 、 Cは滴定に用いた 0. 5molZLの水酸ィ匕カリウムエタノール溶液の量 (ml)、 fは 0. 5molZL水酸化カリウムエタノール溶液のファクター、 Dは酸価、また、 28. 05は水 酸化カリウムの lmol量 56. 11の 1Z2。
[0574] 〈偏光板 Bに用いるセルロースエステルフィルム Bの作製〉
(二酸ィ匕珪素分散液 B)ァエロジル R972V (日本ァエロジル (株)製) 12質量部 (一次粒子の平均径 16nm、見掛け比重 90gZリットル)
エタノール 88質量部
以上をディゾルバーで 30分間撹拌混合した後、マントンゴーリンで分散を行った。 分散後の液濁度は 200ppmであった。二酸ィ匕珪素分散液に 88質量部のメチレンク 口ライドを撹拌しながら投入し、ディゾルバーで 30分間撹拌混合し、二酸化珪素分散 希釈液 Bを作製した。
[0575] (インライン添加液 Bの作製)
メチレンクロライド 100質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、濾過した。
[0576] これに二酸化珪素分散希釈液 Bを 36質量部、撹拌しながら加えて、更に 30分間撹 拌した後、セルロースアセテートプロピオネート(ァセチル基置換度 1. 9、プロピオ- ル基置換度 0. 8) 6質量部を撹拌しながら加えて、更に 60分間撹拌した後、アドバン テック東洋(株)のポリプロピレンワインドカートリッジフィルター TCW—PPS - 1Nで 濾過し、インライン添加液 Bを調製した。
[0577] (ドープ液 Bの調製)
セルロースアセテート(ァセチル置換度 2. 92、分子量 Mn= 148000、
分子量 Mw= 310000、 MwZMn= 2. 1) 100質量部
上記調製したポリマー 12質量部
メチレンクロライド 440質量部
エタノール 40質量部
以上を密閉容器に投入し、加熱し、撹拌しながら、完全に溶解し、安積濾紙 (株)製 の安積濾紙 No. 24を使用して濾過し、ドープ液 Bを調製した。
[0578] 製膜ライン中で日本精線 (株)製のファインメット NFでドープ液 Bを濾過した。インラ イン添加液ライン中で、 日本精線 (株)製のファインメット NFでインライン添加液 Bを濾 過した。濾過したドープ液 Bを 100質量部に対し、濾過したインライン添加液 Bを 2質 量部加えて、インラインミキサー (東レ静止型管内混合機 Hi -Mixer, SWJ)で十 分混合し、次いで、ベルト流延装置を用い、温度 35°C、 1. 8m幅でステンレスバンド 支持体に均一に流延した。ステンレスバンド支持体で、残留溶剤量が 120%になるま で溶媒を蒸発させ、ステンレスバンド支持体上力も剥離した。剥離したセルロースェ ステルのウェブを 35°Cで溶媒を蒸発させ、 1. 65m幅にスリットし、その後、テンター で TD方向(フィルムの搬送方向と直交する方向)に 1. 1倍に延伸しながら、 150°Cの 乾燥温度で、乾燥させた。このときテンターで延伸を始めたときの残留溶剤量は 30
%であった。
[0579] その後、 110°C、 120°Cの乾燥ゾーンを多数のロールで搬送させながら乾燥を終 了させ、 1. 5m幅にスリットし、フィルム両端に幅 15mm、平均高さ 10 mのナーリン グ加工を施し、巻き取り初期張力 220NZm、終張力 l lONZmで内径 6インチコア に巻き取り、膜厚 80 mの偏光板 3に用いるセルロースエステルフィルム— Bを得た
[0580] このセルロースエステルフィルム Bのリタ一デーシヨン値を測定したところ、 Ro (b)
=0. lnm、 Rth(b) =Onmであった。 Ro (b)、 Rth(b)の測定は前述の Ro、 Rthの 測定と同様の方法でおこなった。
[0581] 前記偏光板の作製において、本発明に係わる実施例 101のセルロースエステルフ イルムにかえて上記のセルロースエステルフィルム Bを用いた以外は同様にして偏 光板 Bを作製した。即ち図 15の構成 1において、偏光板 Bの偏光板保護フィルム 2 aとしてセルロースエステルフィルム Bを用いた。尚、偏光板保護フィルム laとしては 前記セルロースエステルフィルム KC8UX2M (コ-力ミノルタォプト(株)製)を用いた
[0582] (偏光板の評価)
上記作製した偏光板 1〜11、 i, iiを断裁し、各々 2枚の偏光板を用意した。同じ偏 光板を直交させた状態で分光光度計 U 3310 (日立製作所 (株)製)を用いて 550 nmの透過率を測定した。 101〜111で作製した本発明のセルロースエステルフィル ムを用いた偏光板 1〜11では 0. 1%以内であった力 比較例 101, 102のセルロー スエステルフィルムを用いた偏光板 i, ϋは 0. 5%で、本発明の実施例による偏光板は 均一性に優れているため直交した偏光板の光漏れが少な力つた。
[0583] 〈液晶表示装置の作製〉
視認性評価を行う液晶パネルを以下のようにして作製した。
[0584] IPSモード型液晶表示装置である日立製液晶テレビ Wooo W17—LC50を用い てあらかじめ貼合されていた両面の偏光板を剥がして上記で作製した偏光板をそれ ぞれ液晶セルのガラス面に貼合した。その際、セルロースエステルフィルムの遅相軸 、偏光子の吸収軸、液晶セルの遅相軸の向きおよび液晶表示装置の構成は図 15、
図 16 (軸の配置)になるように偏光板の作製時の貼り合わせ、液晶パネルの貼り合わ せを行った。
[0585] (液晶表示装置の視認性評価)
上記で作製した液晶パネルで白および黒を表示させて、その時の輝度ムラ、光漏 れを目視で評価した。実施例 101〜111で作製した本発明のセルロースエステルフ イルムを用いた偏光板 1〜 11を使用して作製した液晶パネルでは白表示での輝度ム ラが少なぐ黒表示の光漏れもほとんどなかった。これに対して、比較例 101, 102で 作製したセルロースエステルフィルムを用いた偏光板 i, iiを使用して作製した液晶パ ネルでは白表示での輝度ムラが目立ち、黒表示の光漏れも観察された。さらに、液 晶パネルを 24時間連続点灯してパネル温度が上昇した後の輝度ムラ、光漏れにつ いても目視で評価したところ、実施例 101〜111で作製した本発明のセルロースエス テルフィルムを用いた偏光板 101〜: L 11を使用して作製した液晶パネルでは輝度ム ラ、光漏れの変動がなぐ初期の良好な状態を維持していたが、比較例 101, 102で 作製したセルロースエステルフィルムを用いた偏光板 i, iiを使用して作製した液晶パ ネルでは輝度ムラ、光漏れがさらに劣化して 、た。
[0586] 本発明の実施例による偏光板について、位相差のばらつきが少ないため、初期の 輝度ムラ、光漏れが少ない上、位相差の安定性にも優れているため輝度ムラ、光漏 れの劣化もほとんどなかった。
Claims
[1] ポリエステル、多価アルコールエステル、多価カルボン酸エステル及びエチレン性不 飽和モノマーを重合して得られたポリマー力も選ばれる少なくとも 1種の添加剤及び, 針状微粒子を含有するセルロースエステルを延伸して製造した光学フィルムであって 、該針状微粒子が延伸方向に対して負の複屈折性を示すことを特徴とする光学フィ ノレム。
[2] 前記光学フィルムが、下記の光学値を有することを特徴とする請求の範囲第 1項に記 載の光学フィルム。
nx (a >nz (a) >ny、a)
105nm≤Ro (a)≤ 350nm
0. 2<Nz< 0. 7
なお、 Ro (a)、 Nzは下記で定義されるものである。
式(i) Ro (a) = (nx (a) - ny (a) ) X d
式 (ii) Nz=、nx(a)— nz (a))Z、nx(a ー ny(a) )
(ここで、榭脂の延伸方向 ¾yとし、延伸方向の屈折率を ny (a)、フィルム面内で yに 直交する方向の屈折率を nx (a)、フィルムの厚さ方向の屈折率を nz (a)、 dはフィル ムの厚み (nm)をそれぞれ表す。 )
[3] 前記針状粒子が平均粒径 10〜 500nm力つ下記式で表される針状比が 2〜 200で あることを特徴とする請求の範囲第 1項または第 2項に記載の光学フィルム。
式 (1)
針状比 =絶対最大長 Z対角幅
(式中、対角幅は、絶対最大長に平行な 2本の直線で投影された粒子の像を挟んだ 時の 2直線間の最短距離を表し、絶対最大長は針状微粒子の長辺方向における最 大長を表す。 )
[4] 前記針状微粒子は、その表面が疎水化処理されて 、ることを特徴とする請求の範囲 第 1項〜第 3項のいずれか一項に記載の光学フィルム。
[5] 前記エチレン性不飽和モノマーを重合して得られたポリマー力 モノマー単位にエス テル結合を有することを特徴とする請求の範囲第 1項〜第 4項のいずれか一項記載
の光学フイノレム。
[6] 前記針状微粒子は、平均方位角の方向がフィルムの製膜方向に対して直交もしくは 平行であり、かつ該平均方位角の方向と各々の該針状微粒子とのなす角度の絶対 値の平均値 Hが 30° 以内にあり、かつフィルム中の該針状微粒子の平均粒子間距 離 Dと該針状微粒子間距離の標準偏差 Dsから求められる DsZDが 1. 5以下である ことを特徴とする請求の範囲第 1項〜第 5項のいずれか 1項に記載の光学フィルム。
[7] 請求の範囲第 1項〜第 6項のいずれか 1項に記載の光学フィルムを、少なくとも一方 の面に有することを特徴とする偏光板。
[8] 請求の範囲第 7項に記載の偏光板が横電解スイッチングモードである液晶セルを挟 む少なくとも一方の偏光板であることを特徴とする横電解スイッチングモード型液晶 表示装置。
[9] 横電解スイッチングモードである液晶セルおよび該液晶セルを挟む 2枚の偏光板か らなる液晶表示装置であって、前記偏光板の液晶セル側に配される偏光板保護フィ ルムのうち一枚力 請求の範囲第 1項に記載の光学フィルムであることを特徴とする 横電解スイッチングモード型液晶表示装置。
[10] 前記偏光板の液晶セル側に配される偏光板保護フィルムのうち一枚以外の偏光板 保護フィルムが、下記光学値を有することを特徴とする請求の範囲第 9項に記載の横 電解スイッチングモード型液晶表示装置。
- 15nm≤Ro (b)≤ 15nm
15nm≤ Rth (b)≤ 15nm
なお、 Ro (b)、 Rth (b)は下記で定義されるものである。
式(iv) Ro (b) = (nx (b) - ny (b) ) X d
式 (v) Rth (b) = { (nx (b) +ny(b) ) /2-nz (b) } X d
(ここで、光学フィルム面内の遅相軸方向の屈折率を nx (b)、面内で遅相軸に直交 する方向の屈折率を ny(b)、フィルムの厚さ方向の屈折率を nz (b)、 dはフィルムの 厚み (nm)をそれぞれ表す。 )
[11] 平均粒径 10〜500nmでありかつ下記で定義される針状比が 2〜: L00である針状微 粒子を含有するロール状に製膜されたセルロースエステルフィルムであって、前記針
状微粒子の含有量は 1〜30質量%であり、フィルム中の前記針状微粒子の平均方 位角が前記セルロースエステルフィルムの製膜方向に対して、直交もしくは平行方向 であり、かつ前記平均方位角の方向と各々の針状微粒子とのなす角度の絶対値の 平均値 Hが 30° 以内にあり、更にフィルム中の前記針状微粒子の平均粒子間距離 Dと粒子間距離の標準偏差 Dsから求められる DsZDが 1. 5以下であることを特徴と する光学フィルム。
針状比 =絶対最大長 Z対角幅
ここにおいて、対角幅とは絶対最大長に平行な 2本の直線で投影された粒子の像 を挟んだときの 2直線間の最短距離である。
[12] 請求の範囲第 11項に記載の光学フィルムにおいて、下記式 (i)で表されるリターデ ーシヨン値 Ro力 105nm≤Ro≤350nm,および下記式(ii)で表される Nzが 0. 2〜 0. 7の光学値を満たすことを特徴とする光学フィルム。
式 (i) Ro (a) = (nx (a) - ny (a) ) X d
¾; (ii) Nz = i,nx (a — nz (a) ) / (nx {a)— ny (a )
(ここで、フィルム面内遅相軸方向の屈折率を nx (a)、遅相軸に直交する方向の屈折 率を ny (a)、フィルム厚さ方向の屈折率を nz (a)、 dはフィルムの膜厚 (nm)をそれぞ れ表す。)
[13] 請求の範囲第 11項または第 12項に記載の光学フィルムを少なくとも一方の面に有 することを特徴とする偏光板。
[14] 請求の範囲第 13項に記載の偏光板を、液晶セルの少なくとも一方の面に有すること を特徴とする液晶表示装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007514791A JPWO2006118168A1 (ja) | 2005-04-28 | 2006-04-27 | 光学フィルム、偏光板及び液晶表示装置 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005131513 | 2005-04-28 | ||
JP2005-131513 | 2005-04-28 | ||
JP2005139591 | 2005-05-12 | ||
JP2005-139591 | 2005-05-12 | ||
JP2005139590 | 2005-05-12 | ||
JP2005-139590 | 2005-05-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006118168A1 true WO2006118168A1 (ja) | 2006-11-09 |
Family
ID=37307966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/308800 WO2006118168A1 (ja) | 2005-04-28 | 2006-04-27 | 光学フィルム、偏光板及び液晶表示装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20070030417A1 (ja) |
JP (1) | JPWO2006118168A1 (ja) |
TW (1) | TW200700475A (ja) |
WO (1) | WO2006118168A1 (ja) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010041514A1 (ja) * | 2008-10-08 | 2010-04-15 | コニカミノルタオプト株式会社 | 光学フィルム、及びそれを用いた偏光板 |
JP2012032623A (ja) * | 2010-07-30 | 2012-02-16 | Nitto Denko Corp | 位相差フィルムおよびその製造方法 |
JP5321448B2 (ja) * | 2007-02-21 | 2013-10-23 | コニカミノルタ株式会社 | セルロースエステルフィルムおよびその製造方法 |
JP2014080360A (ja) * | 2012-09-28 | 2014-05-08 | Ube Material Industries Ltd | 針状炭酸ストロンチウム微粉末 |
JP2014224926A (ja) * | 2013-05-16 | 2014-12-04 | 東ソー株式会社 | ポリマー組成物を用いた光学フィルム |
JP2016151648A (ja) * | 2015-02-17 | 2016-08-22 | コニカミノルタ株式会社 | 位相差フィルム、位相差フィルムの製造方法、偏光板および垂直配向型液晶表示装置 |
JP2017027064A (ja) * | 2016-09-05 | 2017-02-02 | コニカミノルタ株式会社 | 偏光板およびこれを用いた液晶表示装置 |
WO2020217511A1 (ja) * | 2019-04-26 | 2020-10-29 | コニカミノルタ株式会社 | 偏光板 |
KR102710337B1 (ko) * | 2023-04-13 | 2024-09-26 | 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | 편광자 및 액정 디스플레이 장치 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008209895A (ja) * | 2007-01-31 | 2008-09-11 | Nitto Denko Corp | 連結組み合わせ型光学フィルム、液晶パネル、画像表示装置および液晶表示装置 |
JP2008260919A (ja) * | 2007-03-16 | 2008-10-30 | Fujifilm Corp | セルロースアセテートプロピオネートフィルム、セルロースアセテートプロピオネートフィルムの製造方法、光学補償シート、偏光板および液晶表示装置 |
US8784725B2 (en) | 2009-06-04 | 2014-07-22 | Sk Innovation Co., Ltd. | Wide casting belt, method for manufacturing a wide film, and wide film |
CN102576109B (zh) | 2009-08-13 | 2014-10-15 | 日本瑞翁株式会社 | 相位差板及其制造方法以及液晶显示装置 |
JP5612953B2 (ja) * | 2010-04-12 | 2014-10-22 | 日東電工株式会社 | 粒子、粒子分散液、粒子分散樹脂組成物および樹脂成形体 |
US20150037535A1 (en) * | 2011-03-14 | 2015-02-05 | Asahi Kasei Chemicals Corporation | Organic/Inorganic Composite, Manufacturing Method Therefor, Organic/Inorganic Composite Film, Manufacturing Method Therefor, Photonic Crystal, Coating Material, Thermoplastic Composition, Microstructure, Optical Material, Antireflection Member, and Optical Lens |
US9428624B2 (en) | 2012-01-23 | 2016-08-30 | Sk Innovation Co., Ltd. | Method for manufacturing a wide film, and wide film |
WO2014165076A1 (en) * | 2013-03-13 | 2014-10-09 | Celanese Acetate Llc | Cellulose diester films for playing cards |
JP2015114352A (ja) * | 2013-12-09 | 2015-06-22 | 株式会社ジャパンディスプレイ | 液晶表示装置 |
US11526050B2 (en) * | 2018-05-07 | 2022-12-13 | Innolux Corporation | Display device |
CN116107014B (zh) * | 2023-04-13 | 2023-09-01 | Tcl华星光电技术有限公司 | 偏光片和液晶显示装置 |
CN116107011B (zh) * | 2023-04-13 | 2023-07-25 | Tcl华星光电技术有限公司 | 偏光片及显示装置 |
CN116107013B (zh) * | 2023-04-13 | 2023-07-04 | Tcl华星光电技术有限公司 | 偏光片及其制备方法、显示面板 |
CN116125582B (zh) * | 2023-04-13 | 2023-08-22 | Tcl华星光电技术有限公司 | 偏光片和液晶显示装置 |
CN116107012B (zh) * | 2023-04-13 | 2023-09-15 | Tcl华星光电技术有限公司 | 偏光片和液晶显示装置 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07120619A (ja) * | 1993-10-22 | 1995-05-12 | Fuji Photo Film Co Ltd | 光学異方素子およびそれを用いた液晶表示素子 |
JPH1010487A (ja) * | 1996-06-18 | 1998-01-16 | Sharp Corp | 液晶表示装置 |
JP2001091743A (ja) * | 1999-09-22 | 2001-04-06 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
JP2001100205A (ja) * | 1999-09-30 | 2001-04-13 | Fuji Photo Film Co Ltd | ゲストホスト反射型液晶表示素子 |
JP2001108806A (ja) * | 1999-10-05 | 2001-04-20 | Tomoegawa Paper Co Ltd | フィラーレンズおよびその製造方法 |
JP2004109355A (ja) * | 2002-09-17 | 2004-04-08 | Yasuhiro Koike | 光学材料の製造方法、光学材料並びに光学素子 |
JP2005037440A (ja) * | 2003-07-15 | 2005-02-10 | Konica Minolta Opto Inc | 光学補償フィルム、偏光板及び液晶表示装置 |
JP2005062672A (ja) * | 2003-08-19 | 2005-03-10 | Fuji Photo Film Co Ltd | 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置 |
JP2005070535A (ja) * | 2003-08-26 | 2005-03-17 | Jsr Corp | 位相差膜形成用組成物、位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2353023A (en) * | 1940-08-06 | 1944-07-04 | Freund Ernest | Process for the treatment of cellulose acetate films |
JPH11212078A (ja) * | 1998-01-22 | 1999-08-06 | Fuji Photo Film Co Ltd | 液晶表示装置 |
WO2000060384A1 (fr) * | 1999-03-31 | 2000-10-12 | Daicel Chemical Industries, Ltd. | Couche de diffusion de lumiere, couche composite de diffusion de lumiere et ecran a cristaux liquides |
US6559915B1 (en) * | 1999-07-19 | 2003-05-06 | Fuji Photo Film Co., Ltd. | Optical films having matt property, films having a high transmittance, polarizing plates and liquid crystal display devices |
EP1089093B1 (en) * | 1999-09-28 | 2008-04-02 | FUJIFILM Corporation | Anti-reflection film, polarizing plate comprising the same, and image display device using the anti-reflection film or the polarizing plate |
KR100752090B1 (ko) * | 1999-11-22 | 2007-08-28 | 후지필름 가부시키가이샤 | 시이트 편광체, 광학 필름, 액정 디스플레이 및 시이트편광체의 제조방법 |
JP2001249223A (ja) * | 2000-03-03 | 2001-09-14 | Fuji Photo Film Co Ltd | 光学補償シート、偏光板および液晶表示装置 |
JP4352592B2 (ja) * | 2000-07-11 | 2009-10-28 | コニカミノルタホールディングス株式会社 | セルロースエステルドープ組成物、セルロースエステルフィルムの製造方法、セルロースエステルフィルム及びそれを用いた偏光板 |
JP4802409B2 (ja) * | 2000-07-21 | 2011-10-26 | コニカミノルタホールディングス株式会社 | 光学補償フィルム、それを用いた偏光板及び液晶表示装置 |
US6835425B2 (en) * | 2000-12-12 | 2004-12-28 | Konica Corporation | Layer-forming method using plasma state reactive gas |
JP2002221608A (ja) * | 2001-01-26 | 2002-08-09 | Daicel Chem Ind Ltd | 光散乱シートおよび液晶表示装置 |
JP3928842B2 (ja) * | 2001-04-05 | 2007-06-13 | 日東電工株式会社 | 偏光板及び表示装置 |
US6814914B2 (en) * | 2001-05-30 | 2004-11-09 | Konica Corporation | Cellulose ester film, its manufacturing method, optical retardation film, optical compensation sheet, elliptic polarizing plate, and image display |
US20030057595A1 (en) * | 2001-08-13 | 2003-03-27 | Fuji Photo Film Co., Ltd. | Solvent casting process, polarizing plate protective film, optically functional film and polarizing plate |
US7099082B2 (en) * | 2001-08-29 | 2006-08-29 | Fuji Photo Film Co., Ltd. | Method for producing optical compensating film, optical compensating film, circularly polarizing plate, and liquid crystal display |
US6890608B2 (en) * | 2002-03-29 | 2005-05-10 | Fuji Photo Film Co., Ltd. | Optical compensatory sheet, liquid-crystal display and elliptical polarizing plate employing same |
JP3983166B2 (ja) * | 2002-12-26 | 2007-09-26 | 日東電工株式会社 | 光学素子及びこれを用いた偏光面光源並びにこれを用いた表示装置 |
JP2005068314A (ja) * | 2003-08-26 | 2005-03-17 | Fuji Photo Film Co Ltd | 光学用セルロースアシレートフィルムと、その製造方法 |
JP2005301227A (ja) * | 2004-03-17 | 2005-10-27 | Fuji Photo Film Co Ltd | 位相差膜、その製造方法およびそれを用いた液晶表示装置 |
US20060004192A1 (en) * | 2004-07-02 | 2006-01-05 | Fuji Photo Film Co., Ltd. | Method of preparing a cellulose acylate, cellulose acylate film, polarizing plate, and liquid crystal display device |
-
2006
- 2006-04-27 JP JP2007514791A patent/JPWO2006118168A1/ja active Pending
- 2006-04-27 US US11/411,823 patent/US20070030417A1/en not_active Abandoned
- 2006-04-27 WO PCT/JP2006/308800 patent/WO2006118168A1/ja active Application Filing
- 2006-04-28 TW TW095115326A patent/TW200700475A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07120619A (ja) * | 1993-10-22 | 1995-05-12 | Fuji Photo Film Co Ltd | 光学異方素子およびそれを用いた液晶表示素子 |
JPH1010487A (ja) * | 1996-06-18 | 1998-01-16 | Sharp Corp | 液晶表示装置 |
JP2001091743A (ja) * | 1999-09-22 | 2001-04-06 | Fuji Photo Film Co Ltd | 位相差板および円偏光板 |
JP2001100205A (ja) * | 1999-09-30 | 2001-04-13 | Fuji Photo Film Co Ltd | ゲストホスト反射型液晶表示素子 |
JP2001108806A (ja) * | 1999-10-05 | 2001-04-20 | Tomoegawa Paper Co Ltd | フィラーレンズおよびその製造方法 |
JP2004109355A (ja) * | 2002-09-17 | 2004-04-08 | Yasuhiro Koike | 光学材料の製造方法、光学材料並びに光学素子 |
JP2005037440A (ja) * | 2003-07-15 | 2005-02-10 | Konica Minolta Opto Inc | 光学補償フィルム、偏光板及び液晶表示装置 |
JP2005062672A (ja) * | 2003-08-19 | 2005-03-10 | Fuji Photo Film Co Ltd | 光学異方性層、それを用いた位相差板、楕円偏光板及び液晶表示装置 |
JP2005070535A (ja) * | 2003-08-26 | 2005-03-17 | Jsr Corp | 位相差膜形成用組成物、位相差膜、位相差素子、偏光板、およびこれらを使用した液晶表示素子 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5321448B2 (ja) * | 2007-02-21 | 2013-10-23 | コニカミノルタ株式会社 | セルロースエステルフィルムおよびその製造方法 |
KR101454046B1 (ko) * | 2007-02-21 | 2014-10-27 | 코니카 미놀타 어드밴스드 레이어즈 인코포레이티드 | 셀룰로오스 에스테르 필름 및 그의 제조 방법 |
WO2010041514A1 (ja) * | 2008-10-08 | 2010-04-15 | コニカミノルタオプト株式会社 | 光学フィルム、及びそれを用いた偏光板 |
JP2012032623A (ja) * | 2010-07-30 | 2012-02-16 | Nitto Denko Corp | 位相差フィルムおよびその製造方法 |
JP2014080360A (ja) * | 2012-09-28 | 2014-05-08 | Ube Material Industries Ltd | 針状炭酸ストロンチウム微粉末 |
JP2014224926A (ja) * | 2013-05-16 | 2014-12-04 | 東ソー株式会社 | ポリマー組成物を用いた光学フィルム |
JP2016151648A (ja) * | 2015-02-17 | 2016-08-22 | コニカミノルタ株式会社 | 位相差フィルム、位相差フィルムの製造方法、偏光板および垂直配向型液晶表示装置 |
JP2017027064A (ja) * | 2016-09-05 | 2017-02-02 | コニカミノルタ株式会社 | 偏光板およびこれを用いた液晶表示装置 |
WO2020217511A1 (ja) * | 2019-04-26 | 2020-10-29 | コニカミノルタ株式会社 | 偏光板 |
JPWO2020217511A1 (ja) * | 2019-04-26 | 2020-10-29 | ||
JP7367756B2 (ja) | 2019-04-26 | 2023-10-24 | コニカミノルタ株式会社 | 偏光板 |
KR102710337B1 (ko) * | 2023-04-13 | 2024-09-26 | 티씨엘 차이나 스타 옵토일렉트로닉스 테크놀로지 컴퍼니 리미티드 | 편광자 및 액정 디스플레이 장치 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006118168A1 (ja) | 2008-12-18 |
US20070030417A1 (en) | 2007-02-08 |
TW200700475A (en) | 2007-01-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2006118168A1 (ja) | 光学フィルム、偏光板及び液晶表示装置 | |
JP5262114B2 (ja) | セルロースエステルフィルム、光拡散フィルム、偏光板及び液晶表示装置 | |
JP4883083B2 (ja) | 光学フィルムの製造方法 | |
WO2006118038A1 (ja) | 光学フィルム、偏光板及び横電界スイッチングモード型液晶表示装置 | |
JP5181862B2 (ja) | 光学フィルム、及び偏光板 | |
JP5069433B2 (ja) | セルロースエステルフィルムの製造方法、並びに、そのセルロースエステルフィルムを用いた偏光板及び液晶表示装置 | |
WO2008015911A1 (fr) | Film de protection de plaque polarisante, plaque polarisante et écran à cristaux liquides | |
WO2006117981A1 (ja) | 光学フィルム、偏光板及び横電界スイッチングモード型液晶表示装置 | |
JP2009210777A (ja) | 光学フィルム、及びそれを用いた偏光板 | |
JPWO2007125797A1 (ja) | 偏光板用光学補償樹脂フィルム、光学補償樹脂フィルムの製造方法、偏光板及び液晶表示装置 | |
JP5776362B2 (ja) | セルロースエステルフィルムおよびその製造方法、並びにこれを用いた位相差フィルムおよび表示装置 | |
WO2006117948A1 (ja) | セルロースエステルフィルム、その製造方法及びセルロースエステルフィルムを用いた偏光板、液晶表示装置 | |
WO2007046228A1 (ja) | 光学フィルムの製造方法、光学フィルムの製造装置、及び光学フィルム | |
JP2008076478A (ja) | 偏光板保護フィルム、それを用いた偏光板及び液晶表示装置 | |
CN101405119A (zh) | 纤维素酯薄膜及其制造方法 | |
JP2008107778A (ja) | 光学フィルム及びその製造方法、偏光板用保護フィルム、及びそれを用いた偏光板、並びに液晶表示装置 | |
JP2009114371A (ja) | セルロースエステルフィルム、偏光板及び画像表示装置 | |
JP2011246538A (ja) | セルロースエステルフィルムの製造方法、セルロースエステルフィルム、偏光板、及び液晶表示装置 | |
JP6330870B2 (ja) | 偏光板およびこれを用いた液晶表示装置 | |
JP2008304658A (ja) | 液晶表示装置 | |
WO2010041514A1 (ja) | 光学フィルム、及びそれを用いた偏光板 | |
JPWO2008018279A1 (ja) | 偏光板保護フィルム、それを用いた偏光板及び液晶表示装置 | |
JP6146446B2 (ja) | 偏光板およびこれを用いた液晶表示装置 | |
JP2008068531A (ja) | 光学フィルム及びその製造方法、偏光板用保護フィルム及びそれを用いた偏光板、並びに液晶表示装置 | |
JP5450775B2 (ja) | 光学フィルム、及び偏光板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2007514791 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06745728 Country of ref document: EP Kind code of ref document: A1 |