WO2006109354A1 - Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate - Google Patents
Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate Download PDFInfo
- Publication number
- WO2006109354A1 WO2006109354A1 PCT/JP2005/006998 JP2005006998W WO2006109354A1 WO 2006109354 A1 WO2006109354 A1 WO 2006109354A1 JP 2005006998 W JP2005006998 W JP 2005006998W WO 2006109354 A1 WO2006109354 A1 WO 2006109354A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- melamine
- composition
- pyrophosphate
- polyphosphate
- purity
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34928—Salts
Definitions
- the present invention relates to a production method capable of co-producing melamine pyrophosphate and melamine polyphosphate useful as flame retardants.
- Melamine pyrophosphate and melamine polyphosphate are basically added to paints, synthetic resins, particle boards, etc., in which polyphosphoric acid (condensed phosphoric acid) and melamine are combined.
- (A) One is a method in which melamine orthophosphate is used as a starting material, which is heated and calcined to condense to melamine polyphosphate.
- Japanese Patent Publication No. Sho 4 0-2 85 9 4 describes that melamine orthophosphate having a phosphorus content of 2 7-5 4% is heated and calcined at a temperature of 1800 to 2500 ° C, and at least one of them. It is disclosed that the melamine pyrophosphate is converted into melamine pyrophosphate. In particular, it is described that 40% or more of the melamine pyrophosphate is converted to melamine pyrophosphate by baking at 2 20-25.0 ° C. US Pat. No. 3,920,796 describes that a condensate composed mainly of melamine pyrophosphate can be produced by heating melamine orthophosphate at 1700-325 ° C.
- Japanese Patent Application Laid-Open No. 2 00 0-2 6 5 9 7 discloses polyphosphoric acid by heating melamine orthophosphate at 2600-320 ° C. It has been disclosed to produce melamine acid.
- 4, 950, 757 discloses the production of melamine pyrophosphate by reacting pyrophosphate and melamine in an aqueous solution at 0-60 ° C.
- 506063 discloses a method for producing melamine polyphosphate in which polyphosphoric acid obtained by contacting an alkali metal salt such as polyphosphoric acid with an acidic ion exchange resin is added to a melamine slurry and reacted.
- JP-A-10-306081 an excess (2.0 to 4.0 mol) of melamine per 1 mol of orthophosphoric acid is mixed and reacted at a temperature of 0 to 300 ° C., and the reaction product is 340- It is described that a double salt of melamine / melam-melem polyphosphate can be produced by calcining at 450 ° C., and JP-A-10-81691 describes that 1.0 to 1.5 for one mole of orthophosphoric acid. It is disclosed that melamine polyphosphate is produced by calcining at 240-340 ° C a powdered product prepared by reacting 0,1—1.5 mol urea at 0_140 ° C. ing.
- JP-A-11-130413 discloses that melamine polyphosphate can be produced by firing a raw material composition of 1 mol of ammonium phosphate and 1.50 mol of melamine at 300-350 ° C. Is disclosed.
- Japanese Patent No. 2004-155764 describes that melamine and ammonium phosphate are calcined at 170-230 ° C. to form melamine pyrophosphate
- Japanese Patent Application Laid-Open No. 2004-10649 discloses melamine, ammonium phosphate and urea. A mixture of 170-270. Calcination with C, then 270-350. The production of melamine polyphosphate by baking with C is described.
- This study is a method that can produce high-purity melamine pyrophosphate and melamine polyphosphate at an arbitrary ratio only by firing a mixture of raw material melamine and ammonium phosphate in a specific temperature range. Is intended to provide. Iffl disclosure
- a step of pulverizing and mixing melamine and ammonium phosphate to form a finely pulverized composition comprising melamine and ammonium phosphate, and a step of heating and reacting the finely pulverized composition within a range of 190-350 ° C.
- a method for co-production of high-purity melamine piprine phosphate and melamine polyphosphate characterized by comprising:
- a high purity melamine polyphosphate characterized in that the composition of phosphoric acid multimer (n 3) in melamine polyphosphate calculated by P-NMR peak area ratio is 97% or more.
- FIG. 1 is a flow chart showing a method for co-production of melamine pyrophosphate and melamine polyphosphate according to the present invention.
- FIG. 2 is a graph showing an example of the firing temperature and the production state of melamine pyrophosphate and melamine polyphosphate when a finely pulverized composition of melamine and ammonium phosphate is heated and fired.
- FIG. 1 is a flow sheet showing a method for co-production of melamine phosphate and melamine polyphosphate from melamine and ammonium phosphate as described above.
- the raw material compounds melamine 1 and ammonium phosphate 3 are sufficiently pulverized and mixed in the pulverization and mixing step 5 to form a finely pulverized composition 7 composed of melamine and ammonium phosphate.
- the finely pulverized composition has a temperature range ( ⁇ ⁇ —T 2 ) that mainly produces melamine pyrophosphate in the temperature range of 190 to 350 ° C. in calcination step 9, melamine pyrophosphate and polyphosphoric acid.
- the desired object is produced in the region where the mixture of melamine is formed ( ⁇ 3 — ⁇ 4 ) and in the region where melamine polyphosphate is mainly produced.
- melamine (C 3 H 6 N 6 ) is preferably white crystal particles with high purity and no coloration, which may be either granular or powdery. Yes. If various impurities derived from the manufacturing process, such as melam, melem, ammelin, ammelide, melamine cyanurate, colored organic impurities, fine catalyst particles, etc. are contained, recrystallization, alkaline aqueous solution It is preferable to purify by a known means such as washing by filtration or filtration. In addition, commercially available products with high purity are available and can be suitably used.
- Ammonium phosphate includes 1 ammonium phosphate (NH 4 H 2 P0 4 ), 2 ammonium hydrogen phosphate ((NH 4 ) 2 HP0 4 ), 3 ammonium phosphate ((NH 4 ) 3 ) P0 4
- diammonium hydrogen phosphate it is preferable to use diammonium hydrogen phosphate in that: the highest yield can be obtained.
- a mixture of these three types of ammonium phosphate may be used.
- ammonium phosphate a white granular product or powdery product having a sufficiently high purity is preferable.
- impurities derived from wet phosphoric acid it is preferable to increase the purity by recrystallization, but it is also possible to use a commercially available high purity one as it is. '
- pulverization / mixing treatment with fine particles of melamine and ammonium phosphate as starting materials is performed, To do.
- This will be the raw material composition for firing in the next firing step.
- the next firing step 9 is a typical solid-phase reaction, and is estimated to proceed at the part (interface) where the particles of each component are in contact with each other. Therefore, in order to perform the solid-phase reaction homogeneously at a sufficient rate, the raw material composition is sufficiently finely divided into melamine and ammonium phosphate, and its surface area is increased.
- the component concentration distribution is statistically uniform to the extent that there is no bias in the composition, and accordingly, the contact area between the component particles is required to be as high as possible.
- each of the raw materials may be mixed after being finely divided in advance, but it is preferable to include at least a step of performing both grinding and mixing.
- the apparatus for performing the pulverization and mixing step 5 may be a solid mixing apparatus, but more preferably a pulverizing / mixing apparatus capable of mixing while pulverizing.
- the “grinding / mixing process” basically includes an operation of pulverizing and mixing, an operation of mixing and then pulverizing, an operation of simultaneously performing pulverization and mixing, and further preliminary mixing, Further, it may be any operation for carrying out the pulverization and mixing at the same time. In short, any operation may be used as long as the operation can obtain the finely pulverized composition intended in the present invention.
- kneader mixer roll mill, internal mixer, micro mixer, flash mixer, ribbon mixer, V-type mixer, ball mill, rod mill, hammer mill, attrition mill, non-mill mill
- a jet mill, a jet mizer, a micronizer, a microatomizer, a magic mill, a charlotte colloid dosole, a premier colloid mill, a micron mill, and a colloid mill can be suitably used.
- ultra-fine grinding machines jet mills, jet mizers, micronizers, microatomizers, magic mills, charlotte colloid domills, premier colloid dominoles, micron mills, and colloids. Grinding of domill, etc.
- the average particle size (D 50) of melamine particles is about 20-100 zm, and that of ammonium phosphate particles is about 200-2000 zm.
- the average particle size (D 50) of ammonium phosphate is about 0.1-100 ⁇ m, preferably 1-50 / m, more preferably 1-20 ⁇ m, and most preferably about 1-10 ⁇ m.
- the mixing ratio of melamine and ammonium phosphate is 0.8 to 1.5 mol of melamine, preferably 0.9 to 1.1 mol, more preferably 0.1 mol to 1.0 mol of ammonium phosphate.
- Melamine is 0.95—1.08 mole, most preferably 0.98—1.06 mole.
- the finely pulverized composition thus adjusted is fired as a raw material for firing.
- melamine pyrophosphate is mainly produced in a temperature range of 190 to 350 ° C. Temperature range (T i— T 2 ), Mera pyrophosphate In the region where the mixture of melamine and melamine polyphosphate is formed ( ⁇ 3 — ⁇ 4 ) and the region where melamine polyphosphate is mainly formed ( ⁇ 5 — ⁇ 6 ), firing is controlled accordingly. It has a feature in the point to be generated.
- melamine pyrophosphate is obtained by firing in the temperature range ( ⁇ ⁇ - ⁇ 2 ), and melamine polyphosphate is obtained by firing in the region ( ⁇ 5 - ⁇ 6 ). It is possible to produce a mixture in any proportion of melamine pyrophosphate and melamine polyphosphate by firing in the region ( ⁇ 3 – ⁇ 4 ).
- the temperature range ( ⁇ — ⁇ 2 ) is typically 190–2 50 ° C
- the range (T 5 — T 6 ) is 270–350 ° C
- high purity melamine pyrophosphate (The composition of the phosphoric acid dimer in the melamine pyrophosphate calculated by P-NMR peak area ratio exceeds 98% is said. ), And high-purity melamine polyphosphate.
- the composition of phosphoric acid multimer (n 3) in melamine polyphosphate calculated by P-NMR peak area ratio is 97% or more. In addition, a mixture of these high-purity products is obtained.
- composition of melamine pyrophosphate and melamine polyphosphate was prepared by calcining melamine pyrophosphate and polyphosphate obtained by firing in the above temperature range ( ⁇ ⁇ —T 2 ) and ( ⁇ 5 — ⁇ 6 ), respectively. Needless to say, a composition of any ratio can be obtained by mixing melamine.
- the firing time can vary depending on the raw material composition, the particle size of the raw material composition, the molar ratio, the raw material treatment amount, the firing temperature, the type of the firing apparatus for carrying out the firing, and is not particularly limited.
- One minute is 50 hours, preferably 30 minutes to 30 hours, more preferably about 40 minutes to 15 hours, and most preferably about 50 minutes to 12 hours.
- the firing step is performed by a dryer or a heating furnace that can heat the finely pulverized composition 7 as a firing raw material in the predetermined firing temperature region. These dryers or heating furnaces are not particularly limited as long as they can uniformly heat the raw material composition at a predetermined temperature and time.
- a box-type dryer for example, a box-type dryer, a batch type or a continuous type rotation Furnace (Kuchiichi Tally Kiln), electric furnace, gas heating furnace, infrared heating furnace, moving bed furnace, fluidized bed furnace, etc.
- gas such as ammonia is released and released when the condensation reaction proceeds.
- an inert gas such as nitrogen, an oxidizing gas such as dry air, and a reducing gas such as hydrogen are continuously fed into the furnace, and the firing process is performed. It is preferable that the entrainment is continuously removed from the system.
- the melamine pyrophosphate or melamine polyphosphate obtained by the present invention is sufficiently high in purity as described above and can be preferably used as a flame retardant as it is. No purification process such as washing with water is required. However, if desired, operations such as washing with water, solid extraction (leaching), and repulping may be performed to obtain a product with higher purity.
- high-purity melamine pyrophosphate and melamine polyphosphate can be produced together in an arbitrary ratio.
- the significance of this is as follows.
- melamine polyphosphate generally has favorable characteristics that, as the degree of condensation proceeds, the thermal decomposition temperature generally increases and the solubility in water decreases.
- the degree of condensation increases, the acidity increases and the hygroscopicity increases.
- the affinity with the matrix resin due to moisture absorption, the occurrence of bleed, and the decrease in electrical insulation can occur.
- melamine pyrophosphate and melamine polyphosphate having a higher degree of polymerization are mainly used for applications where high thermal decomposition temperature and low solubility are more important depending on the purpose, and moisture absorption. It is preferable to mainly use melamine pyrophosphate for applications where safety, low bleeding, and low electrical insulation are more important. Furthermore, by using melamine pyrophosphate and melamine polyphosphate as a composition and adjusting the composition ratio as appropriate, it can be said that optimum performance is developed for each application. According to the present invention, melamine pyrophosphate, melamine polyphosphate, and an arbitrary composition thereof can be co-produced at an arbitrary ratio, so that the industrial significance is extremely large.
- the purity of melamine pyrophosphate and melamine polyphosphate is
- LC has a relatively high solubility in water for melamine orthophosphate, and it can be dissolved in water and measured for its concentration.
- melamine pyrophosphate and melamine polyphosphate are essential for water. The solubility of was extremely low, and accurate purity analysis using LC was difficult.
- purity analysis using a solvent other than water was impossible.
- P-NMR is an analysis method that focuses on the P-terminal group and P-intermediate group of melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate, so there are no problems such as XRD and LC described above. Melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate can each be accurately quantified.
- the P-NMR method employed in the present invention is an epoch-making that has made it possible to quantitate condensed phosphates that were previously impossible with conventional methods such as XRD and LC. This is a method.
- Melamine pyrophosphate and / or melamine polyphosphate obtained by the method of the present invention can be blended with various polymer materials and resins to form a flame retardant resin composition.
- resins include polyethylene, polypropylene, polybutene, polybutadiene, polyvinyl acetate, ethylene vinyl acetate copolymer resin, ethylene vinyl alcohol copolymer resin, polyamide, polyamide imide, polyether imide, and polyphenylene.
- the mixture was supplied to a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) and pulverized and mixed.
- the particle size distribution of the pulverized mixture was measured by a laser diffraction scattering method (ICROTRACs MODEL No. 9320 X-100, manufactured by REEDS & NORTHRUP). The result is D50:
- the mixed pulverized product has a melamine / ammonium phosphate molar ratio of 1.03, and the charging ratio is maintained. It was confirmed that
- the temperature was raised to each predetermined baking temperature of 180-350 ° C in 120 minutes, and maintained at the predetermined temperature for 11 hours, respectively.
- the gas generated during firing was absorbed and collected by the phosphoric acid solution. Thereafter, the sample was cooled to 50 ° C. or lower under nitrogen flow, and calcined samples were fired at predetermined temperatures.
- the firing temperature is the temperature of the “finely pulverized composition” housed in the vat, and was measured by inserting thermocouple thermometers at six locations in the finely pulverized composition.
- the baked product (hereinafter also referred to as “baked product”) is crushed by stirring for 1 minute at 100 Orpm with a Henshi X-L mixer (made by Kokusan Centrifuge Co., Ltd., chemical mixer, capacity 20L).
- solid-state nuclear magnetic resonance analysis 31 P MAS NMR spectroscopy equipment (manufactured by JEOL Ltd., the ECA400 used), P- beak area ratio or these NMR, Oruzorin melamine, melamine pyrophosphate, the composition ratio of the melamine polyphosphate ( OrthoZPyro / Poly)
- Table 1 The results are shown in Table 1.
- Average particle size is the value of D50.
- Table 1 in the present invention, it is understood that melamine pyrophosphate having a purity exceeding 98.0% is obtained at a calcination temperature of 190 to 250 ° C. The fired product easily became particles with an average particle diameter of 8 mm by simple crushing treatment.
- high-purity melamine polyphosphate with a purity of 97.0% or higher is obtained at a firing temperature of 270-350 ° C.
- the fired product can be easily crushed by a simple crushing treatment. And particles having an average particle size of 8 ⁇ m.
- Example 2 (1) 1700 g of the finely pulverized raw material composition for firing prepared in the same manner as in Example 1 was divided into three equal parts, and each was placed in a stainless steel bat. Each of them was referred to as “bat 1 ⁇ bat 2 and bat 3”) in the same box-type dryer (manufactured by Yubai Co., Ltd.) as in the example, and heated and baked.
- FIG. 2 is a graph showing an example of the transition of the firing temperature and the state of production of melamine pyrophosphate and melamine polyphosphate when heated and fired under nitrogen flow.
- the temperature inside the dryer (T a) (set temperature) 260 – 270 ° C was raised in 120 minutes, and after the temperature rise, the temperature of the finely pulverized composition (Ts) (hereinafter also referred to as “product temperature”) When the temperature reached 220 ° C (2 hours 30 minutes), the bat 1 was removed.
- A is the part where the product temperature (T s) curve becomes almost constant, which corresponds to the point where diammonium hydrogen phosphate releases ammonia and changes to phosphate-ammonium. It is estimated to be.
- part B where the product temperature curve becomes slightly constant from around 200 ° C is the part where melamine orthophosphate is changed to melamine pyrophosphate.
- the above vat (1) is taken out when the firing temperature rises again from B, that is, when it is estimated that the reaction of melamine orthozolate to melamin pyrophosphate has been completed. '?
- the obtained calcined product was crushed by stirring for 1 minute at 1 OOrpm using a Henschel mixer (Chemical mixer, volume 20 L, manufactured by Kokusan Centrifuge Co., Ltd.) in the same manner as in Example 1.
- a Henschel mixer Carbon mixer, volume 20 L, manufactured by Kokusan Centrifuge Co., Ltd.
- P—N The peak area ratio of MR was measured.
- the composition of the fired product (P-NMR peak area ratio) is shown in Table 2.
- high-purity pyrophosphoric acid is obtained by firing a raw material finely pulverized composition for firing and taking out a part of the ground composition at a predetermined firing temperature.
- Melamine (bat (1)), melamine polyphosphate (bat (3)), and a mixture of these (bat (2)) can be produced at the desired ratio.
- Example 1 (1) 1700 g of the raw material pulverized composition for calcination prepared in the same manner as in Example 1 was divided into a ratio of 10 to 90, and 1 170 g and 2 15 30 g were accommodated in stainless steel bats
- the temperature inside the dryer (set temperature) 260-270 C is raised in 120 minutes. After the temperature rises, the vat 1 is removed when the product temperature reaches 220 ° C (2 hours 30 minutes have passed). Baking continued.
- Example 2 From the results of Example 2, it was found that high purity melamine pyrophosphate and melamine polyphosphate were produced in the vat 1 fired at 220 ° C. and the battery 2 fired at 2 67 ° C., respectively. Obviously, as shown in Table 3, the ratio of each generation can be changed freely, such as 1 0 to 9 0, 5 0 to 5 0, 8 0 to 2 0, and finally mixed uniformly. Thus, a high purity melamine pyrophosphate and melamine polyphosphate mixed at an arbitrary ratio can be obtained. This is also an embodiment of the method of co-production of melamine pyrophosphate and melamine polyphosphate in the present invention. IlfflW Noh in Tsurugi '''
- high-purity melamine piprine phosphate and melamine polyphosphate can be co-produced at an arbitrary ratio by firing at the specific firing temperature using the same finely pulverized composition as a firing raw material. It is possible.
- melamine pyrophosphate and melamine polyphosphate obtained by the method of the present invention are extremely high in purity, such as polyethylene, polypropylene, polyvinyl acetate, ethylene vinyl acetate copolymer resin, polyamide, and polyphenylene ether. It is preferably used as a flame retardant for polyester, polycarbonate, polyalkylene terephthalate, polystyrene, polyurethane, ABS resin, epoxy resin, polyvinyl chloride, and these alloy resins.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
A process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate, which comprises a step in which melamine and ammonium phosphate are pulverized and mixed to form a finely pulverized composition comprising melamine and ammonium phosphate and a step in which the finely pulverized composition is reacted with heating in the range of 190-350°C, wherein the finely pulverized composition is reacted with heating at 190-250°C to obtain melamine pyrophosphate and reacted with heating at 270-350°C to obtain melamine polyphosphate. These are suitable for use as a flame retardant for resins, etc.
Description
高純度のピロリン酸メラミンとポリリン酸メラミンの併産方法 技術分野 Method for co-production of high purity melamine pyrophosphate and melamine polyphosphate
本発明は、 難燃剤などとして有用な高純度のピロリン酸メラミン及びポリリン 酸メラミンを併産することのできる製造方法に関する。 The present invention relates to a production method capable of co-producing melamine pyrophosphate and melamine polyphosphate useful as flame retardants.
背景技術 明 Background art
ピロリン酸メラミンやポリリン酸メラミンは、 基本的にはポリリン酸 (縮合リ ン酸) とメラミンが結合した、 塗料、 合成樹脂、 パーティクルボード等に添加す 書. Melamine pyrophosphate and melamine polyphosphate are basically added to paints, synthetic resins, particle boards, etc., in which polyphosphoric acid (condensed phosphoric acid) and melamine are combined.
る塩素等のハロゲンを含有していない難燃剤として有用な化合物であって、 従来 より、 種々の製造方法が提案されている。 In the past, various production methods have been proposed that are useful as flame retardants that do not contain halogen such as chlorine.
(従来のピロリン酸メラミン及びポリリン酸メラミンの製造方法) (Conventional method for producing melamine pyrophosphate and melamine polyphosphate)
( A) 一つは、 オルソリン酸メラミンを出発物質としてこれを加熱 ·焼成 '縮合 せしめてポリリン酸メラミンとする方法である。 (A) One is a method in which melamine orthophosphate is used as a starting material, which is heated and calcined to condense to melamine polyphosphate.
例えば、 特公昭 4 0 - 2 8 5 9 4には、 リン含有量が 2 7 - 5 4 %のオルソリ ン酸メラミンを温度 1 8 0— 2 5 0 °Cにおいて加熱'焼成し、 少なくともその一 部をピロリン酸メラミンに変化させることが開示され、 特に 2 2 0— 2 5.0 °Cに おいて焼成することにより、 その 4 0 %以上をピロリン酸メラミンとすることが 記載されている。 また、 米国特許 3 , 9 2 0 , 7 9 6には、 オルソリン酸メラミ ンを 1 7 0— 3 2 5 °Cで加熱することにより、 ピロリン酸メラミンを主体とする 縮合物を製造できることが当該縮合の反応速度のァレニウス式とともに開示さ れており、 さらに、 特開 2 0 0 0— 2 6 5 9 7には、 オルソリン酸メラミンを 2 6 0 - 3 2 0 °Cで加熱することによりポリリン酸メラミンを製造することが開 示されている。 For example, Japanese Patent Publication No. Sho 4 0-2 85 9 4 describes that melamine orthophosphate having a phosphorus content of 2 7-5 4% is heated and calcined at a temperature of 1800 to 2500 ° C, and at least one of them. It is disclosed that the melamine pyrophosphate is converted into melamine pyrophosphate. In particular, it is described that 40% or more of the melamine pyrophosphate is converted to melamine pyrophosphate by baking at 2 20-25.0 ° C. US Pat. No. 3,920,796 describes that a condensate composed mainly of melamine pyrophosphate can be produced by heating melamine orthophosphate at 1700-325 ° C. Further, it is disclosed together with the Arrhenius equation of the reaction rate of the condensation. Further, Japanese Patent Application Laid-Open No. 2 00 0-2 6 5 9 7 discloses polyphosphoric acid by heating melamine orthophosphate at 2600-320 ° C. It has been disclosed to produce melamine acid.
( B ) 他の方法は、 ポリリン酸とメラミンを反応させるもので、 例えば、 特閧昭 6 1 - 1 2 6 0 9 1には、 P 2 0 5濃度 7 2質量%以上のポリリン酸とメラミンを 水性媒体の実質的不存在下に、 ニーダ一中で 9 0— 1 7 0 °C程度で固相反応させ
ることにより、 ポリリン酸メラミンを製造することが開示されており、 米国特許(B) Another method, in which the reaction of polyphosphoric acid and melamine, for example, Japanese閧昭6 1 - 1 2 6 0 9 The 1, P 2 0 5 concentration of 7 2 mass% or more polyphosphate and melamine Is allowed to undergo a solid phase reaction in the kneader at about 90-170 ° C in the substantial absence of an aqueous medium. The production of melamine polyphosphate
4, 950, 757には、 水溶液中でピロリン酸とメラミンを 0— 60 °Cで反応 させてピロリン酸メラミンを製造することが開示され、 さらに、 特表 2002 -4, 950, 757 discloses the production of melamine pyrophosphate by reacting pyrophosphate and melamine in an aqueous solution at 0-60 ° C.
506063には、 ポリリン酸等のアルカリ金属塩を酸性イオン交換樹脂に接触 させて得たポリリン酸を、 メラミンのスラリーに添加して反応させるポリリン酸 メラミンの製造方法が開示されている。 506063 discloses a method for producing melamine polyphosphate in which polyphosphoric acid obtained by contacting an alkali metal salt such as polyphosphoric acid with an acidic ion exchange resin is added to a melamine slurry and reacted.
(C) また別の方法として、 オルソリン酸とメラミンを出発物質として直接反 応 ·縮合させてポリリン酸メラミンを得る方法が提案されている。 (C) As another method, a method of directly reacting and condensing orthophosphoric acid and melamine to obtain melamine polyphosphate has been proposed.
例えば、特開平 10— 306081には、オルソリン酸 1モルに対し過剰(2. 0-4. 0モル) のメラミンを 0— 300°Cの温度で混合反応させ、 当該反応生 成物を 340-450°Cで焼成することにより、 ポリリン酸メラミン ·メラム - メレムの複塩を製造できることが記載され、 特開平 10— 8169 1には、 オル ソリン酸 1モルに対し、 1. 0— 1. 5モルのメラミン、 0. .1— 1. 5モルの 尿素を 0_ 140°Cで反応させたパウダー状生成物を、 240-340°Cで焼成 することによりポリリン酸メラミンを製造することが開示されている。 For example, in JP-A-10-306081, an excess (2.0 to 4.0 mol) of melamine per 1 mol of orthophosphoric acid is mixed and reacted at a temperature of 0 to 300 ° C., and the reaction product is 340- It is described that a double salt of melamine / melam-melem polyphosphate can be produced by calcining at 450 ° C., and JP-A-10-81691 describes that 1.0 to 1.5 for one mole of orthophosphoric acid. It is disclosed that melamine polyphosphate is produced by calcining at 240-340 ° C a powdered product prepared by reacting 0,1—1.5 mol urea at 0_140 ° C. ing.
(D) さらに別法として、 特開平 1 1 - 130413には、 リン酸アンモニゥム 1モルとメラミン 1. 50モルの原料組成物を 300— 350°Cで焼成すること により、 ポリリン酸メラミンを製造できることが開示されている。 (D) As yet another method, JP-A-11-130413 discloses that melamine polyphosphate can be produced by firing a raw material composition of 1 mol of ammonium phosphate and 1.50 mol of melamine at 300-350 ° C. Is disclosed.
また、 特閧 2004— 155764にはメラミンとリン酸アンモニゥムを 17 0 - 230°Cで焼成することによりピロリン酸メラミンとすることが記載され、 特開 2004- 10649にはメラミン、 リン酸アンモニゥム及び尿素の混合物 を 170— 270。Cで仮焼し、 次に 270— 350。Cで焼成するこによりポリリ ン酸メラミンを製造することが記載されている。 Japanese Patent No. 2004-155764 describes that melamine and ammonium phosphate are calcined at 170-230 ° C. to form melamine pyrophosphate, and Japanese Patent Application Laid-Open No. 2004-10649 discloses melamine, ammonium phosphate and urea. A mixture of 170-270. Calcination with C, then 270-350. The production of melamine polyphosphate by baking with C is described.
しかしながら、 これら従来の製造方法は、 得られたピロリン酸メラミンやポリ リン酸メラミンの分解温度が充分高いものではなく、 難燃性が不十分であった。 また、 反応又は焼成中のメラミンの損失が大きいため、 リン酸に対して過剰のメ ラミンを使用しなければならなかったり、 出発物質として高価でかつ調製が容易 ではないポリリン酸を使用する必要がある等の問題があり、 また、 純度を十分に 高くするためには、 実質的に水による洗浄処理の必要があった。 このように全て
の点で満足すべき方法はなかつた。 さらにそもそもピロリン酸メラミンとポリリ ン酸メラミンを同時に製造する方法は従来全く知られていなかった。 However, these conventional production methods are not sufficiently high in the decomposition temperature of the obtained melamine pyrophosphate and melamine polyphosphate, and have insufficient flame retardancy. Also, the loss of melamine during reaction or calcination is large, so it is necessary to use an excess of melamine relative to phosphoric acid, or to use polyphosphoric acid that is expensive and not easy to prepare as a starting material. There were some problems, and in order to obtain a sufficiently high purity, it was necessary to carry out a cleaning process with water substantially. All this way There was no way to be satisfied with this point. In the first place, a method for simultaneously producing melamine pyrophosphate and melamine polyphosphate has never been known.
本 ¾明は、 原料であるメラミンとリン酸アンモニゥムとの混合物を、 特定の温 度範囲で焼成することのみにより、 高純度のピロリン酸メラミン及びポリリン酸 メラミンを任意の割合で併産しうる方法を提供しょうとするものである。 Ifflの開示 This study is a method that can produce high-purity melamine pyrophosphate and melamine polyphosphate at an arbitrary ratio only by firing a mixture of raw material melamine and ammonium phosphate in a specific temperature range. Is intended to provide. Iffl disclosure
本究明によれば、 以下の発明が提供される。 According to the present study, the following inventions are provided.
(1) メラミンとリン酸アンモニゥムを粉砕、 混合し、 メラミンとリン酸アン モニゥムからなる微粉砕組成物を形成する工程及び当該微粉砕組成物を 190 -350°Cの範囲で加熱 '反応せしめる工程からなることを特徴とする高純度の ピ口リン酸メラミンとポリリン酸メラミンの併産方法。 (1) A step of pulverizing and mixing melamine and ammonium phosphate to form a finely pulverized composition comprising melamine and ammonium phosphate, and a step of heating and reacting the finely pulverized composition within a range of 190-350 ° C. A method for co-production of high-purity melamine piprine phosphate and melamine polyphosphate, characterized by comprising:
( 2) 前記微粉砕組成物を 1 90— 250°Cで加熱 '反応させてピロリン 酸メラミンを得、 また、 2 70— 350°Cで加熱 ·反応させてポリ リン酸 メラミンを得る請求項 1に記載の併産方法。 (2) The finely pulverized composition is heated and reacted at 190-250 ° C to obtain melamine pyrophosphate, and is heated and reacted at 270-350 ° C to obtain melamine polyphosphate. Co-production method as described in 4.
(3) ピロリン酸メラミンとポリリン酸メラミンがそれぞれ分離した状態で得 られるか、 混合物として得られる請求項 1又は 2に記載の併産方法。 (3) The method according to claim 1 or 2, wherein the melamine pyrophosphate and the melamine polyphosphate are obtained in a separated state or as a mixture.
(4) P— NMRピーク面積比により算出したピロリン酸メラミンにおけるリ ン酸 2量体の組成が 98 %を超える請求項 1― 3のいずれかに記載の併産方法。 (4) The co-production method according to any one of claims 1 to 3, wherein the composition of the phosphoric acid dimer in the melamine pyrophosphate calculated from the P-NMR peak area ratio exceeds 98%.
( 5 ) P— NMRピーク面積比により算出したポリリン酸メラミンにおけるリ ン酸多量体 (n≥3)の組成が 97%以上である請求項 1—3のいずれかに記載 の併産方法。 (5) The co-production method according to any one of claims 1 to 3, wherein the composition of the phosphoric acid multimer (n≥3) in the melamine polyphosphate calculated from the P-NMR peak area ratio is 97% or more.
(6) P-NMRピーク面積比により算出したピロリン酸メラミンにおけるリ ン酸 2量体の組成が 98%を超えることを特徴とする高純度ピロリン酸メラミ ン。 (6) High-purity melamine pyrophosphate characterized in that the composition of phosphoric acid dimer in melamine pyrophosphate calculated by P-NMR peak area ratio exceeds 98%.
(7) P— NMRピーク面積比により算出したポリ リン酸メラミンにおけ るリン酸多量体 (n 3) の組成が 97%以上であることを特徴とする高純 度ポリ リン酸メラミン。 (7) A high purity melamine polyphosphate characterized in that the composition of phosphoric acid multimer (n 3) in melamine polyphosphate calculated by P-NMR peak area ratio is 97% or more.
(8)請求項 1一 5のいずれかに記載の方法により得られたピロリン酸メラミン
及び/又はポリ リン酸メラミン、 又は請求項 6又は 7に記載のピロリン酸メ ラミン及び/又はポリ リン酸メラミンを、 ポリエチレン、 ポリプロピレン、 ポリ酢酸ビニル、 ェ チレン酢酸ビニル共重合樹脂、 ポリアミ ド、 ポリフエ二 レンエーテル、 ポリエステル、 ポリカーボネート、 ポリアルキレンテレフ夕 レート、 ポリスチレン、 ポリウレタン、 A B S樹脂、 エポキシ樹脂、 ポリ塩 化ビニル及びこれらのァロイ樹脂から選択される少なく とも一つの樹脂に 配合してなる難燃性樹脂組成物。 図面の簡単な説明 (8) Melamine pyrophosphate obtained by the method according to any one of claims 1 to 5 And / or melamine polyphosphate, or melamine pyrophosphate and / or melamine polyphosphate according to claim 6 or 7, and polyethylene, polypropylene, polyvinyl acetate, ethylene vinyl acetate copolymer resin, polyamide, polyphenylene. Flame retardancy blended in at least one resin selected from diene ether, polyester, polycarbonate, polyalkylene terephthalate, polystyrene, polyurethane, ABS resin, epoxy resin, polyvinyl chloride, and these alloy resins Resin composition. Brief Description of Drawings
第 1図は、本発明によるピロリン酸メラミン及びポリリン酸メラミンの併産方法 を示すフローシ一トである。 FIG. 1 is a flow chart showing a method for co-production of melamine pyrophosphate and melamine polyphosphate according to the present invention.
第 2図は、メラミンとリン酸アンモニゥムの微粉砕組成物を加熱 '焼成した際の、 焼成温度とピロリン酸メラミンとポリリン酸メラミンの生成状態の一例を示すグ ラフである。 日3 »ま施:する めの 自の FIG. 2 is a graph showing an example of the firing temperature and the production state of melamine pyrophosphate and melamine polyphosphate when a finely pulverized composition of melamine and ammonium phosphate is heated and fired. Day 3 »Masame: To own
以下、 本発明を実施するための最良の形態を図面を参照しながら詳細に説 明する。 . Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. .
第 1図は、 上記したように本発明によるメラミンとリン酸アンモニゥムからピ 口リン酸メラミン及びポリリン酸メラミンの併産方法を示すフローシートであ る o FIG. 1 is a flow sheet showing a method for co-production of melamine phosphate and melamine polyphosphate from melamine and ammonium phosphate as described above.
すなわち、 原料化合物であるメラミン 1及びリン酸アンモニゥム 3は、 粉砕' 混合工程 5において充分に粉碎 ·混合され、 メラミン及びリン酸アンモニゥムか らなる微粉砕組成物 7を形成する。 当該微粉砕組成物は、 焼成工程 9において、 1 9 0 - 3 5 0 °Cの温度範囲で、 ピロリン酸メラミンを主として生成する温度領 域 (Ί\— T 2 )、 ピロリン酸メラミンとポリリン酸メラミンの混合物を生成する 領域 (Τ 3— Τ 4 )、 及びポリリン酸メラミンを主として生ずる領域 (Τ 5— Τ 6 ) において、 それぞれ焼成され、 それぞれ所望の目的物を生成する。 That is, the raw material compounds melamine 1 and ammonium phosphate 3 are sufficiently pulverized and mixed in the pulverization and mixing step 5 to form a finely pulverized composition 7 composed of melamine and ammonium phosphate. The finely pulverized composition has a temperature range (Ί \ —T 2 ) that mainly produces melamine pyrophosphate in the temperature range of 190 to 350 ° C. in calcination step 9, melamine pyrophosphate and polyphosphoric acid. In the region where the mixture of melamine is formed (Τ 3 — Τ 4 ) and in the region where melamine polyphosphate is mainly produced (Τ 5 -Τ 6 ), the desired object is produced.
(原料化合物)
(a)原料の一つであるメラミン (C3H6N6) としては、 純度の高い、 着色の ない白色の結晶粒子であることが好ましく、 粒状品、 粉状品いずれであってもよ い。 なお、 製造過程に由来する種々の不純物、 例えばメラム、 メレム、 アンメリ ン、 アンメリ ド、 シァヌ一ル酸メラミン、 着色有機不純物、 微細な触媒粒子等が 含有されている場合は、 再結晶、 アルカリ水溶液による洗浄、 濾過等の公知の手 段で精製することが好ましい。 また、 純度の高い市販品が入手可能であり好適に 使用することができる。 (Raw compound) (a) As one of the raw materials, melamine (C 3 H 6 N 6 ) is preferably white crystal particles with high purity and no coloration, which may be either granular or powdery. Yes. If various impurities derived from the manufacturing process, such as melam, melem, ammelin, ammelide, melamine cyanurate, colored organic impurities, fine catalyst particles, etc. are contained, recrystallization, alkaline aqueous solution It is preferable to purify by a known means such as washing by filtration or filtration. In addition, commercially available products with high purity are available and can be suitably used.
(b) リン酸アンモニゥムとしては、 リン酸一アンモニゥム (NH4H2P04)、 リン酸水素二アンモニゥム ((NH4) 2HP04)、 リン酸三アンモニゥム ((NH 4) 3) P04)のいずれであってもよいが、 なかでも、:最も高収率が得られる点 で、 リン酸水素二アンモニゥムを使用することが好ましい。 なお、 これら三種類 のリン酸アンモニゥムの混合物であってもよい。 (b) Ammonium phosphate includes 1 ammonium phosphate (NH 4 H 2 P0 4 ), 2 ammonium hydrogen phosphate ((NH 4 ) 2 HP0 4 ), 3 ammonium phosphate ((NH 4 ) 3 ) P0 4 In particular, it is preferable to use diammonium hydrogen phosphate in that: the highest yield can be obtained. A mixture of these three types of ammonium phosphate may be used.
リン酸アンモニゥムとしては、純度の充分高い白色の粒状品または粉状品が好 ましい。 なお、 原料である湿式リン酸由来の不純物が多い場合は、 再結晶により 純度を高めることが好ましいが、 市販で入手しうる高純度のものをそのまま使用 するこども可能で'ある。 ' As the ammonium phosphate, a white granular product or powdery product having a sufficiently high purity is preferable. In addition, when there are many impurities derived from wet phosphoric acid as a raw material, it is preferable to increase the purity by recrystallization, but it is also possible to use a commercially available high purity one as it is. '
本発明においては、 まず、 第 1図のフローに示したように、 出発原料であるメ ラミン及びリン酸アンモニゥムをそれぞれ微細な粒子とする粉砕 ·混合処理を行 レ、、 微粉砕組成物 7とする。 これが次の焼成工程の焼成用原料組成物となる 次の焼成工程 9は、 典型的な固相反応であって、 各成分の粒子が互いに接触し ている部分 (界面) で進行すると推定されるものであるから、 当該固相反応を充 分な速度で均質に行わしめるためには、 原料組成物は、 メラミン及びリン酸アン モニゥムのそれぞれが充分微細粒子化されて、 その表面積が増大せしめられ、 か つ、 組成に偏りが無い程度に、 統計的に成分濃度分布が均一となり、 従って、 各 成分粒子相互間の接触面積が出来るだけ高いことが要請される。 In the present invention, first, as shown in the flow of FIG. 1, pulverization / mixing treatment with fine particles of melamine and ammonium phosphate as starting materials is performed, To do. This will be the raw material composition for firing in the next firing step. The next firing step 9 is a typical solid-phase reaction, and is estimated to proceed at the part (interface) where the particles of each component are in contact with each other. Therefore, in order to perform the solid-phase reaction homogeneously at a sufficient rate, the raw material composition is sufficiently finely divided into melamine and ammonium phosphate, and its surface area is increased. In addition, the component concentration distribution is statistically uniform to the extent that there is no bias in the composition, and accordingly, the contact area between the component particles is required to be as high as possible.
この場合、 原料のそれぞれを予め粉碎 '微細化してから混合してもよいが、 粉 砕と混合を併せて行う工程を少なくとも含むことが好ましい。 従って、 粉砕'混 合工程 5を行うための装置としては、固体混合装置でもよいが、より好ましくは、 粉砕しながら混合することが可能な粉砕 ·混合装置が望ましい。 なお、 ここにい
う 「粉砕 ·混合工程」 とは、 基本的には、 粉砕してから混合する操作、 混合して から粉砕する操作、 粉砕と混合を同時に実施する操作、 さらには予備的に混合し てから、 さらに粉砕と混合を同時に実施する操作のどれであってもよく、 要する に本発明で目的とする微粉砕組成物が得られる操作であればいずれであっても よい。 In this case, each of the raw materials may be mixed after being finely divided in advance, but it is preferable to include at least a step of performing both grinding and mixing. Accordingly, the apparatus for performing the pulverization and mixing step 5 may be a solid mixing apparatus, but more preferably a pulverizing / mixing apparatus capable of mixing while pulverizing. Here The “grinding / mixing process” basically includes an operation of pulverizing and mixing, an operation of mixing and then pulverizing, an operation of simultaneously performing pulverization and mixing, and further preliminary mixing, Further, it may be any operation for carrying out the pulverization and mixing at the same time. In short, any operation may be used as long as the operation can obtain the finely pulverized composition intended in the present invention.
粉砕'混合装置としては、 例えば、 ニーダ一ミキサー、 ロールミル、 インター ナルミキサー、 ミユーラ一ミキサー、 フラッシュミキサー、 リボンミキサー、 V 型ミキサー、 ボールミル、 ロッドミル、 ハンマ一ミル、 アトリシヨンミル、 ノヽン マ一ミル、 ジェットミル、 ジェットマイザ一、 マイクロナイザ一、 マイクロアト マイザ一、 マジックミル、 シャロッテコロイ ドミソレ、 プレミアコロイ ドミル、 ミ クロンミル、 及びコロイ ドミル等が好適に使用可能である。 For example, kneader mixer, roll mill, internal mixer, micro mixer, flash mixer, ribbon mixer, V-type mixer, ball mill, rod mill, hammer mill, attrition mill, non-mill mill A jet mill, a jet mizer, a micronizer, a microatomizer, a magic mill, a charlotte colloid dosole, a premier colloid mill, a micron mill, and a colloid mill can be suitably used.
このうち、特に好ましくは、いわゆる超微粉粉砕機と称される、ジェットミル、 ジェットマイザ一、 マイクロナイザ一、 マイクロアトマイザ一、 マジックミル、 シャロッテコロイ ドミル、 プレミアコロイ ドミノレ、 ミクロンミル、 及びコロイ ド ミル等の粉砕.混合装置である Among these, particularly preferred are so-called ultra-fine grinding machines, jet mills, jet mizers, micronizers, microatomizers, magic mills, charlotte colloid domills, premier colloid dominoles, micron mills, and colloids. Grinding of domill, etc.
なお、 少量の原料組成物を調製する場合は、 乳鉢や石臼等で行って'もよい。 ' 通常、 メラミン粒子の平均粒径 (D 50 ) は、 例えば 20- 100 zm程度、 リン酸アンモニゥム粒子のそれは、 200— 2000 zm程度であるが、 粉碎 · 混合後の微粉砕組成物におけるメラミン及びリン酸アンモニゥムの平均粒径 (D 50 ) は、 0. 1— 100〃m、 好ましくは 1— 50 /m、 さらに好ましくは 1 — 20〃m、 最も好ましくは 1一 10〃m程度である。 When preparing a small amount of the raw material composition, it may be performed in a mortar or a stone mortar. 'Normally, the average particle size (D 50) of melamine particles is about 20-100 zm, and that of ammonium phosphate particles is about 200-2000 zm. The average particle size (D 50) of ammonium phosphate is about 0.1-100 μm, preferably 1-50 / m, more preferably 1-20 μm, and most preferably about 1-10 μm.
本発明において、 メラミンとリン酸アンモニゥムの混合割合は、 リン酸アンモ ニゥム 1. 0モルに対し、 メラミン 0. 8— 1. 5モル、好ましくはメラミン 0. 9— 1. 1モル、 さらに好ましくはメラミン 0. 95— 1. 08モル、 最も好ま しくはメラミン 0. 98— 1. 06モルである。 In the present invention, the mixing ratio of melamine and ammonium phosphate is 0.8 to 1.5 mol of melamine, preferably 0.9 to 1.1 mol, more preferably 0.1 mol to 1.0 mol of ammonium phosphate. Melamine is 0.95—1.08 mole, most preferably 0.98—1.06 mole.
(焼成工程) (Baking process)
本発明の方法においては、 このように調整した微粉砕組成物を焼成用原料とし て焼成するものであるが、焼成工程 9において、 190— 350°Cの温度範囲で、 ピロリン酸メラミンを主として生成する温度領域 (T i— T 2)、 ピロリン酸メラ
ミンとポリリン酸メラミンの混合物を生成する領域 (τ3— τ4)、 及びポリリン 酸メラミンを主として生ずる領域(τ5— τ6)において、 それそれ制御して焼成 し、 それぞれ所望の目的物を生成させる点に特色を有する。 In the method of the present invention, the finely pulverized composition thus adjusted is fired as a raw material for firing. In the firing step 9, melamine pyrophosphate is mainly produced in a temperature range of 190 to 350 ° C. Temperature range (T i— T 2 ), Mera pyrophosphate In the region where the mixture of melamine and melamine polyphosphate is formed (τ 3 — τ 4 ) and the region where melamine polyphosphate is mainly formed (τ 5 — τ 6 ), firing is controlled accordingly. It has a feature in the point to be generated.
すなわち、第 1図に示すように、温度領域(Ί\— Τ 2)で焼成することにより、 ピロリン酸メラミンが得られ、 領域(Τ5— Τ6)で焼成することによりポリリン 酸メラミンが得られ、 その間の領域(Τ3— Τ4)で焼成することにより、 ピロリ ン酸メラミンとポリリン酸メラミンの任意の割合の混合物を生成することがで きるのである。 そして、 具体的には、 温度領域 (Ί — Τ2) は、 通常 190— 2 50°Cであり、 領域.(T5— T6) は 270— 350°C、 領域 (T3— T4) は 250°Cを越え、 270°C未満の温度範囲である。 That is, as shown in Fig. 1, melamine pyrophosphate is obtained by firing in the temperature range (Ί \-Τ 2 ), and melamine polyphosphate is obtained by firing in the region (Τ 5 -Τ 6 ). It is possible to produce a mixture in any proportion of melamine pyrophosphate and melamine polyphosphate by firing in the region (Τ 3 – Τ 4 ). Specifically, the temperature range (Ί — Τ 2 ) is typically 190–2 50 ° C, and the range (T 5 — T 6 ) is 270–350 ° C, and the range (T 3 — T 4). ) Is in the temperature range above 250 ° C and below 270 ° C.
このように当該温度領域において焼成することにより、 高純度のピロリン酸メ ラミン (P— NMRピーク面積比により算出したピロリン酸メラミンにおけるリ ン酸 2量体の組成が 98%を超えるものをいう。)、 及び高純度のポリリン酸メラ. ミン (P— NMRピーク面積比により算出したポリリン酸メラミンにおけるリン 酸多量体(n 3) の組成が 97%以上であるものをいう。 こで nは重合度で ' ある。)、 さらにはこれらの高純度品の混合物が得られる。 Thus, by baking in the said temperature range, high purity melamine pyrophosphate (The composition of the phosphoric acid dimer in the melamine pyrophosphate calculated by P-NMR peak area ratio exceeds 98% is said. ), And high-purity melamine polyphosphate. The composition of phosphoric acid multimer (n 3) in melamine polyphosphate calculated by P-NMR peak area ratio is 97% or more. In addition, a mixture of these high-purity products is obtained.
なお、 ピロリン酸メラミンとポリリン酸メラミンの混合物 (組成物) は、 上記 温度領域 (Ί\— T2)、 及び (Τ5— Τ6) でそれぞれ焼成して得られたピロリン 酸メラミンとポリリン酸メラミンを混合することにより任意の割合の組成物が 得られることはいうまでもない。 Note that the mixture (composition) of melamine pyrophosphate and melamine polyphosphate was prepared by calcining melamine pyrophosphate and polyphosphate obtained by firing in the above temperature range (Ί \ —T 2 ) and (Τ 5 — Τ 6 ), respectively. Needless to say, a composition of any ratio can be obtained by mixing melamine.
焼成時間は、 原料組成、 原料組成物の粒径、 モル比、 原料処理量、 焼成温度、 焼成を実施する焼成装置の形式等によって変わりうるものであり、 特に限定する ものではないが、 通常 20分一 50時間、 好ましくは 30分 _30時間、 さらに 好ましくは 40分— 15時間程度、 最も好ましくは 50分一 12時間程度である。 焼成工程は、 焼成原料である本微粉砕組成物 7を上記所定の焼成温度領域に加 熱しうる乾燥機又は加熱炉により行われる。 これら乾燥機又は加熱炉としては、 所定の温度、 時間に、 均一に当該原料組成物を加熱しうるものであれば特に限定 するものではなく、 例えば箱型乾燥機、 バッチ式若しくは連続式の回転炉 (口一 タリーキルン)、 電気炉、 ガス加熱炉、 赤外線加熱炉、 移動層炉、 流動層炉等が
好適に用いられる。 ,,, また、 焼成工程において、 縮合反応が進行する際、 アンモニア等気体が離脱 - 放出される。 そのため、 窒素等の不活性気体、 乾燥空気等の酸化性気体、 水素等 の還元性気体を、 当該加熱炉に連続的に送入しながら、 焼成工程を実施し、 焼成 時に離脱する気体は、 連続的に系外に同伴除去することが好ましい。 The firing time can vary depending on the raw material composition, the particle size of the raw material composition, the molar ratio, the raw material treatment amount, the firing temperature, the type of the firing apparatus for carrying out the firing, and is not particularly limited. One minute is 50 hours, preferably 30 minutes to 30 hours, more preferably about 40 minutes to 15 hours, and most preferably about 50 minutes to 12 hours. The firing step is performed by a dryer or a heating furnace that can heat the finely pulverized composition 7 as a firing raw material in the predetermined firing temperature region. These dryers or heating furnaces are not particularly limited as long as they can uniformly heat the raw material composition at a predetermined temperature and time. For example, a box-type dryer, a batch type or a continuous type rotation Furnace (Kuchiichi Tally Kiln), electric furnace, gas heating furnace, infrared heating furnace, moving bed furnace, fluidized bed furnace, etc. Preferably used. In addition, in the firing process, gas such as ammonia is released and released when the condensation reaction proceeds. For this reason, an inert gas such as nitrogen, an oxidizing gas such as dry air, and a reducing gas such as hydrogen are continuously fed into the furnace, and the firing process is performed. It is preferable that the entrainment is continuously removed from the system.
本発明により得られたピロリン酸メラミンゃポリ リン酸メラミンは、 上記 したようにそれ自体充分に高純度のものであり、 そのまま難燃剤等として好 ましく使用できるものであり、 基本的にはさらに水による洗浄等の精製工程 は必要としない。ただし、所望によりさらにより純度の高い製品とするため、 水洗、 固体抽出 (leaching) 、 リパルプ等の操作を行ってもよい。 The melamine pyrophosphate or melamine polyphosphate obtained by the present invention is sufficiently high in purity as described above and can be preferably used as a flame retardant as it is. No purification process such as washing with water is required. However, if desired, operations such as washing with water, solid extraction (leaching), and repulping may be performed to obtain a product with higher purity.
(ピロリン酸メラミン及びポリ リン酸メラミンの併産) (Combination of melamine pyrophosphate and melamine polyphosphate)
本発明の方法によれば、 高純度のピロリン酸メラミンとポリ リン酸メラミ ン.を任意の割合で併産することができる。 この意義は次のとおりである。 通常、 ポリ リン酸メラミンはその縮合度が進むと、 一般的には熱分解温度 が高くなり、 また、 水への溶解度が低くなるという好ましい特性を有する。 一方; 縮合度が増大すると酸性度が高くなるとともに、' その吸湿性が大き:ぐ なる。 その結果、 種々の樹脂に配合した際に、 吸湿によるマトリックス樹脂 との親和性の低下、 ブリードの発生、 電気絶縁性の低下が生じうることにな る。 According to the method of the present invention, high-purity melamine pyrophosphate and melamine polyphosphate can be produced together in an arbitrary ratio. The significance of this is as follows. In general, melamine polyphosphate generally has favorable characteristics that, as the degree of condensation proceeds, the thermal decomposition temperature generally increases and the solubility in water decreases. On the other hand, as the degree of condensation increases, the acidity increases and the hygroscopicity increases. As a result, when blended with various resins, the affinity with the matrix resin due to moisture absorption, the occurrence of bleed, and the decrease in electrical insulation can occur.
従って、 ピロリン酸メラミンとそれより重合度の高いポリリン酸メラミンとは、 その目的に応じ、 高熱分解温度及び低溶解度がより重要視される用途には、 ポリ リン酸を主として使用し、 また、 吸湿性、 低ブリード性、 低電気絶縁性がより重 要な用途には、 ピロリン酸メラミンを主として使用することが好ましい。 更に、 ピロリン酸メラミンとポリリン酸メラミンを組成物として使用し、 かつ、 その組 成比を適宜調整することにより、 用途毎に最適な性能を発現させるということも できる。 本発明によれば、 ピロリン酸メラミン、 ポリリン酸メラミン、 及びこの 任意の組成物を任意の割合で併産することができるため、 産業上の意義は極めて 大きい。 Therefore, melamine pyrophosphate and melamine polyphosphate having a higher degree of polymerization are mainly used for applications where high thermal decomposition temperature and low solubility are more important depending on the purpose, and moisture absorption. It is preferable to mainly use melamine pyrophosphate for applications where safety, low bleeding, and low electrical insulation are more important. Furthermore, by using melamine pyrophosphate and melamine polyphosphate as a composition and adjusting the composition ratio as appropriate, it can be said that optimum performance is developed for each application. According to the present invention, melamine pyrophosphate, melamine polyphosphate, and an arbitrary composition thereof can be co-produced at an arbitrary ratio, so that the industrial significance is extremely large.
( P— NMR法)
本発明の方法により得られたピロリン酸メラミンゃポリ リン酸メラミン はいずれもきわめて高純度であり、 特に水への溶解度が高く、 ブリードゃ絶 縁性低下の原因となるオルソリン酸メラミンを実施的に含有しない。 (P-NMR method) Melamine pyrophosphate and melamine polyphosphate obtained by the method of the present invention are extremely high in purity, particularly highly soluble in water, and bleed can be effectively treated with melamine orthophosphate which causes a decrease in insulation. Does not contain.
本発明においては、 ピロリン酸メラミン及びポリ リン酸メラミンの純度は In the present invention, the purity of melamine pyrophosphate and melamine polyphosphate is
P— N M R法によった。 この方法による純度測定法として、 従来の方法に比 較して、 以下の点で優れている。 すなわち、 According to the P—N M R method. As a purity measurement method by this method, it is superior to the conventional method in the following points. That is,
リン酸メラミン、 ピロリン酸メラミン及びポリリン酸メラミンの純度の定量方 法としては、 従来、 X R D (X線回折分析)、 L C , (液体クロマトグラフィー) などがあった。 しかしながら、 X R Dにおいては、 オルソリン酸メラミン、 ピロ リン酸メラミンは I C D Dカード、 または、 J C P D Sカードに登録されている ものの、 ポリリン酸メラミンについては、 登録がない。 従って、 ポリリン酸につ いては、 自己が合成したポリリン酸メラミンの X R Dビークを基準にして純度を 推測するしかなかった。また、 X R D分析自身、定性分析には多用されるものの.、 定量分析にはその精度において必ずしも信頼性の高いものとはいえな.いのが現 状である。 Conventional methods for quantifying the purity of melamine phosphate, melamine pyrophosphate, and melamine polyphosphate include XRD (X-ray diffraction analysis), LC, and liquid chromatography. However, in XRD, although melamine orthophosphate and melamine pyrophosphate are registered in the ICPD card or JCPDS card, there is no registration for melamine polyphosphate. Therefore, the purity of polyphosphate could only be estimated based on the XRD beak of melamine polyphosphate synthesized by the self. In addition, although XRD analysis itself is frequently used for qualitative analysis, it is not necessarily reliable for quantitative analysis.
一方、 L Cは、 オルゾリン酸メラミンについては水への溶解度が比較的高く、 水へ溶解させて、 その濃度を測定することが可能であるが、 肝心のピロリン酸メ ラミンやポリリン酸メラミンは水への溶解度がきわめて低く、 L Cを用いた正確. な純度分析が困難であった。また、オルソリン酸メラミン、ピロリン酸メラミン、 ポリリン酸メラミンを分解することなく、 溶解させる適当な溶媒が存在しないた め、 水以外の溶媒を用いた純度分析も不可能であった。 On the other hand, LC has a relatively high solubility in water for melamine orthophosphate, and it can be dissolved in water and measured for its concentration. However, melamine pyrophosphate and melamine polyphosphate are essential for water. The solubility of was extremely low, and accurate purity analysis using LC was difficult. In addition, since there is no suitable solvent for dissolving melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate without decomposing them, purity analysis using a solvent other than water was impossible.
これに対し、 P— NMRは、 オルソリン酸メラミン、 ピロリン酸メラミン及び ポリリン酸メラミンの P末端基、 P中間基等に注目して分析する方法であるため、 上記した X R Dや L Cのごとき問題がなく、 オルソリン酸メラミン、 ピロリン酸 メラミン及びポリリン酸メラミンをそれぞれ正確に定量することができる。 この ように、 本発明で採用している P— NMR法は、 これまで、 X R Dや、 L C等の 従来法では不可能であった縮合リン酸塩の定量を事実上可能とした画期的な方 法といえるものである。 In contrast, P-NMR is an analysis method that focuses on the P-terminal group and P-intermediate group of melamine orthophosphate, melamine pyrophosphate, and melamine polyphosphate, so there are no problems such as XRD and LC described above. Melamine orthophosphate, melamine pyrophosphate and melamine polyphosphate can each be accurately quantified. Thus, the P-NMR method employed in the present invention is an epoch-making that has made it possible to quantitate condensed phosphates that were previously impossible with conventional methods such as XRD and LC. This is a method.
(難燃性樹脂組成物)
本 ¾明の方法により得られたピロリン酸メラミン及び/又はポリ リン酸メ ラミンは種々の高分子材料や樹脂に配合して難燃性樹脂組成物とすること ができる。 このような樹脂としては、 例えば、 ポリエチレン、 ポリプロピレ ン、 ポリブテン、 ポリブタジエン、 ポリ酢酸ビニル、 エ チレン酢酸ビニル共 重合樹脂、 エチレンビニルアルコール共重合樹脂、 ポリアミ ド、 ポリアミ ド イミ ド、 ポリエーテルイ ミ ド、 ポリフエ二レンエーテル、 ポリエステル、 ポ リカーボネート、 ポリエチレンテレフ夕レート、 ポリブチレンテレフ夕レー ト、 ポリアルキレンテレフ夕レート、 ポリエーテルエーテルケトン、 ポリエ 一テルスルフォン、 ポリスチレン、 ポリひーメチルスチレン、 ポリパラビニ ルフエノ一ル、 シリコーン樹脂、 ポリウレタン、 ポリアクリロエトリル、 ポ リビニルブチラール、 A B S樹脂、 A B S / P V Cァロイ、 A A S樹脂、 メ 夕クリル樹脂、 ノルボルネン樹脂、 エポキシ樹脂、 ポリ塩化ビニル、 ポリ塩 化ビニリデン、 及びこれらのァロイ樹脂等が好ましいものとして例示される。 これら難燃性樹脂組成物からは、 高い難燃性が付与された樹脂成形体、 塗 料、 繊維製品等が得られる。 (Flame retardant resin composition) Melamine pyrophosphate and / or melamine polyphosphate obtained by the method of the present invention can be blended with various polymer materials and resins to form a flame retardant resin composition. Examples of such resins include polyethylene, polypropylene, polybutene, polybutadiene, polyvinyl acetate, ethylene vinyl acetate copolymer resin, ethylene vinyl alcohol copolymer resin, polyamide, polyamide imide, polyether imide, and polyphenylene. Diene ether, Polyester, Polycarbonate, Polyethylene terephthalate, Polybutylene terephthalate, Polyalkylene terephthalate, Polyetheretherketone, Polyestersulfone, Polystyrene, Polymethylstyrene, Polyvinylphenol, Silicone Resin, Polyurethane, Polyacryloetryl, Polyvinyl butyral, ABS resin, ABS / PVC alloy, AAS resin, Methyl chloride resin, Norbornene resin, Epoxy resin, Polyethylene resin Vinyl chloride, Porishio fluoride, and the like these Aroi resins are exemplified as preferred. From these flame retardant resin compositions, resin molded products, coating materials, textile products, and the like imparted with high flame resistance can be obtained.
施.你 I 你 .I
以下、 本発明の具体的な実施の態様を、 実施例により説明する。 なお、 以下、 特に断りなき限り、 %は質量%を示す。 Hereinafter, specific embodiments of the present invention will be described by way of examples. Hereinafter, unless otherwise specified,% indicates mass%.
〔実施例 1〕 Example 1
( 1 ) メラミン (三井化学社製) 8 . 4 3 6 k g及びリン酸水素二アンモニゥム (下関三井化学社製) 8 . 5 6 4 k g計 1 7 kgを、ヘンシェルミキサー (FM-75、 三井鉱山社製、 容量 7 5 L ) へ入れ、 1 3 2 O rpmで 2分間撹拌し、 予備的に混 合した混合物を得た。 (1) Melamine (Mitsui Chemicals) 8.4 3 6 kg and hydrogen phosphate diammonium (Shimonoseki Mitsui Chemicals) 8.5 6 4 kg total 17 kg, Henschel mixer (FM-75, Mitsui Mine) And stirred at 1 3 2 O rpm for 2 minutes to obtain a premixed mixture.
当該混合物をジエツトミル(セィシン企業社製、 STJ-200)に供給して粉砕■ 混合した。当該粉砕'混合品の粒度分布は、レーザ回折散乱法(REEDS&NORTHRUP 社製、 ICROTRACs MODEL No . 9320 X - 100) にて測定した。 結果は、 D50: The mixture was supplied to a jet mill (manufactured by Seishin Enterprise Co., Ltd., STJ-200) and pulverized and mixed. The particle size distribution of the pulverized mixture was measured by a laser diffraction scattering method (ICROTRACs MODEL No. 9320 X-100, manufactured by REEDS & NORTHRUP). The result is D50:
5 / m、 Dio: 3〃m、 D90: 8〃mであった。 また、 混合 '粉砕品のメラミン /リン酸アンモニゥムモル比は、 1 . 0 3であり、 仕込みの割合が維持されてい
ることが確認された。 5 / m, Dio: 3 mm, D90: 8 mm. In addition, the mixed pulverized product has a melamine / ammonium phosphate molar ratio of 1.03, and the charging ratio is maintained. It was confirmed that
(2) 当該混合 '粉砕品 (以下 「焼成用原料微粉砕組成物」 又は単に 「微粉砕組 成物」 という。) 1700 gを、 ステンレス製バットに収容し、 この微粉砕組成 物の入ったバットを、 箱型乾燥機 (熱風式) (タバイ社製) にセッ卜した。 (2) 1700 g of the mixed 'ground product (hereinafter referred to as “raw material finely pulverized composition” or simply “finely pulverized composition”) contained in a stainless steel vat containing the finely pulverized composition. The bat was set in a box dryer (hot air type) (manufactured by Tabai).
窒素流通下、 表 1に示したような、 180— 350 °Cの各所定の焼成温度ま で 120分間で昇温し、 当該所定の温度において、 それぞれ 1 1時間維持し、 焼成した。 焼成時に発生するガスは、 リン酸液に吸収させ回収した。 その後、 窒素流通下で 50°C以下まで冷却し、 それぞれ所定の温度において焼成した焼 成物試料を得た。 なお、 焼成温度は、 バット内に収容された 「微粉砕組成物」 の温度であり、 微粉砕組成物内において 6個所に熱電対温度計を挿入して測定 した。 Under nitrogen flow, as shown in Table 1, the temperature was raised to each predetermined baking temperature of 180-350 ° C in 120 minutes, and maintained at the predetermined temperature for 11 hours, respectively. The gas generated during firing was absorbed and collected by the phosphoric acid solution. Thereafter, the sample was cooled to 50 ° C. or lower under nitrogen flow, and calcined samples were fired at predetermined temperatures. The firing temperature is the temperature of the “finely pulverized composition” housed in the vat, and was measured by inserting thermocouple thermometers at six locations in the finely pulverized composition.
(3) 当該焼成物 (以下 「焼成品」 ともいう。) をへンシ Xルミキサー (国産遠心 器社製、 ケミカルミキサー、 容量 20L) で、 100 Orpmで 1分間撹拌して 解砕し、 これを固体核磁気共鳴解析 (31P MAS NMRスペクトル測定装 置 (日本電子社製、 ECA400使用) により、 P— NMRのビーク面積比か ら、 オルゾリン酸メラミン、 ピロリン酸メラミン、 ポリリン酸メラミンの組成 割合 (OrthoZPyro/Poly) を求めた。 結果を表 1に示した。
(3) The baked product (hereinafter also referred to as “baked product”) is crushed by stirring for 1 minute at 100 Orpm with a Henshi X-L mixer (made by Kokusan Centrifuge Co., Ltd., chemical mixer, capacity 20L). solid-state nuclear magnetic resonance analysis (31 P MAS NMR spectroscopy equipment (manufactured by JEOL Ltd., the ECA400 used), P- beak area ratio or these NMR, Oruzorin melamine, melamine pyrophosphate, the composition ratio of the melamine polyphosphate ( OrthoZPyro / Poly) The results are shown in Table 1.
(注) *Y= (焼成品の質量/微粉砕組成物質量) X I 00 (Note) * Y = (Mass of fired product / Amount of finely pulverized composition) X I 00
**) 10%分散液として測定。 **) Measured as 10% dispersion.
***) 平均粒径は、 D50の値である。 表 1に示されるように、 本発明においては、 焼成温度 190 - 250°Cにおい て純度 98. 0 %を超える高純度のピロリン酸メラミンが得られることがわかる。 なお、 焼成品は、 簡単な解砕処理により容易に平均粒径 8〃mの粒子となった。 また、 焼成温度 270— 350°Cにおいて、 純度 97. 0%以上の高純度のポリ リン酸メラミンが得られ、 同様にこの温度で焼成した場合も、焼成品は、 簡単な 解砕処理により容易に平均粒径 8 ^ mの粒子となるものであった。 ***) Average particle size is the value of D50. As shown in Table 1, in the present invention, it is understood that melamine pyrophosphate having a purity exceeding 98.0% is obtained at a calcination temperature of 190 to 250 ° C. The fired product easily became particles with an average particle diameter of 8 mm by simple crushing treatment. In addition, high-purity melamine polyphosphate with a purity of 97.0% or higher is obtained at a firing temperature of 270-350 ° C. Similarly, when fired at this temperature, the fired product can be easily crushed by a simple crushing treatment. And particles having an average particle size of 8 ^ m.
〔実施例 2〕
( 1 )実施例 1と同様にして調製した焼成用原料微粉砕組成物 1700 gを、 3 等分し、 それぞれステンレス製バットに収容し、 この微粉砕組成物を収容したバ ヅト (以下、 それぞれを 「バット①ヽ バット②、 及びバット③」 という。) を、 実施例と同じ箱型乾燥機 (夕バイ社製) にセッ卜し加熱 '焼成した。 (Example 2) (1) 1700 g of the finely pulverized raw material composition for firing prepared in the same manner as in Example 1 was divided into three equal parts, and each was placed in a stainless steel bat. Each of them was referred to as “bat ① ヽ bat ② and bat ③”) in the same box-type dryer (manufactured by Yubai Co., Ltd.) as in the example, and heated and baked.
( 2 )第 2図は、 窒素流通下に加熱 ·焼成した際に、 焼成温度の推移とピロリン 酸メラミン及びポリリン酸メラミンの生成状態の一例を示すグラフである。 (2) FIG. 2 is a graph showing an example of the transition of the firing temperature and the state of production of melamine pyrophosphate and melamine polyphosphate when heated and fired under nitrogen flow.
まず、 乾燥機内雰囲気温度 (T a) (設定温度) 260— 270°Cまで 120 分間で昇温し、 昇温後、 微粉砕組成物の温度 (Ts) (以下 「品温」 ともいう。) が 220°C (2時間 30分経過) に達した時点でバット①を取り出した。 First, the temperature inside the dryer (T a) (set temperature) 260 – 270 ° C was raised in 120 minutes, and after the temperature rise, the temperature of the finely pulverized composition (Ts) (hereinafter also referred to as “product temperature”) When the temperature reached 220 ° C (2 hours 30 minutes), the bat ① was removed.
( 3)図において、 Aは、品温(T s )のカーブがほぼ一定になる部分であるが、 これはリン酸水素二アンモニゥムがアンモニアを放出しリン酸ーアンモニゥム に変化する個所に相当するものと推定される。 また、 焼成温度が 200°C付近か ら品温のカーブがほぽ一定になる部分 Bは、オルソリン酸メラミンがピロリン酸 メラミンに変化する部分であると推定される。上記バット①の取り出しは、 焼成 温度が Bから再び立ち上がる部分、 すなわち、 オルゾリ.ン酸メラミンからピロリ ン酸メ:ラミン の反応が完了したものと推定される時点で行つだ。 ' ? (3) In the figure, A is the part where the product temperature (T s) curve becomes almost constant, which corresponds to the point where diammonium hydrogen phosphate releases ammonia and changes to phosphate-ammonium. It is estimated to be. In addition, it is estimated that part B where the product temperature curve becomes slightly constant from around 200 ° C is the part where melamine orthophosphate is changed to melamine pyrophosphate. The above vat (1) is taken out when the firing temperature rises again from B, that is, when it is estimated that the reaction of melamine orthozolate to melamin pyrophosphate has been completed. '?
(4) この後焼成物温度 (Ts)は Cに示すように上昇するが、 当該温度がピー クに達し (D)、 緩やかに下がり始めた時点で (品温: 250°C) (3時間 30分 経過)、 バット②を取り出した。 この点以後のカーブ (E) においては、 ピロリ ン酸メラミンからポリリン酸メラミンへの生成反応が行われる領域であり、 この 領域では、 後記する表 2に示すように、 ピロリン酸メラミンとポリリン酸メラミ ンの混合物 (組成物) が得られる。 (4) After this, the calcined product temperature (Ts) rises as shown in C, but when the temperature reaches a peak (D) and begins to fall slowly (product temperature: 250 ° C) (3 hours After 30 minutes), the bat ② was removed. The curve (E) after this point is the region where the formation reaction from melamine pyrophosphate to melamine polyphosphate is performed. In this region, as shown in Table 2 below, melamine pyrophosphate and melamine polyphosphate A mixture (composition) is obtained.
(5) 最後に品温が 267°Cに達し、 ほぼ一定になった時点 (F) ( 1 1時間経 過) において、 バット③を取り出した。 それぞれのバットは、 実施例 1と同様に 窒素流通下で 50°C以下まで冷却し、 又、焼成時発生するガスはリン酸液に吸収 させ回収した。 (5) Finally, when the product temperature reached 267 ° C and became almost constant (F) (1 1 hour passed), bat ③ was taken out. Each vat was cooled to 50 ° C. or lower under nitrogen flow as in Example 1, and the gas generated during firing was absorbed and collected in the phosphoric acid solution.
得られた焼成物を実施例 1と同様にしてヘンシェルミキサ一(国産遠心器社製、 ケミカルミキサー、 容量 20 L)で、 1 O OOrpmで 1分間撹拌して解砕し、 こ れを NMRスペクトル測定(日本電子社製、 ECA400使用) により、 P— N
MRのピーク面積比を測定した。焼成物の組成 (P-NMRピーク面積比)を表 2に 示す。 The obtained calcined product was crushed by stirring for 1 minute at 1 OOrpm using a Henschel mixer (Chemical mixer, volume 20 L, manufactured by Kokusan Centrifuge Co., Ltd.) in the same manner as in Example 1. By measurement (manufactured by JEOL Ltd., using ECA400), P—N The peak area ratio of MR was measured. The composition of the fired product (P-NMR peak area ratio) is shown in Table 2.
表 2 Table 2
表 2に示したように、 本発明によれば、 焼成用原料微粉砕組成物を焼成し、 所 定の焼成温度において、 当該粉砕組成物の一部をそれぞれ取り出すことにより、 高純度のピロリン酸メラミン (バット①)、 ポリリン酸メラミン (バット③)、 及 びこれらの混合物 (バット②) を所望の割合で併産することができる。 As shown in Table 2, according to the present invention, high-purity pyrophosphoric acid is obtained by firing a raw material finely pulverized composition for firing and taking out a part of the ground composition at a predetermined firing temperature. Melamine (bat (1)), melamine polyphosphate (bat (3)), and a mixture of these (bat (2)) can be produced at the desired ratio.
〔実施例 3〕 Example 3
( 1 ) 実施例 1と同様にして調製した焼成用原料微粉砕組成物 1700 gを、 1 0対 90の割合で分けてそれぞれステンレス製バットに① 170 g及び② 15 30 gを収容し (以下、 それぞれを「バット①( 170 g)」及び「バット②( 1 530 g)j という。) を、 実施例と同じ箱型乾燥機 (夕バイ社製) にセットし加 熱 -焼成した。 (1) 1700 g of the raw material pulverized composition for calcination prepared in the same manner as in Example 1 was divided into a ratio of 10 to 90, and ① 170 g and ② 15 30 g were accommodated in stainless steel bats The “bat (1) (170 g)” and the “bat (2 (1 530 g) j”) were set in the same box-type dryer (manufactured by Yubai Co., Ltd.) as in the example, and heated and fired.
まず、 乾燥機内雰囲気温度 (設定温度) 260— 270 Cまで 120分間で昇 温し、 昇温後、 品温が 220°C (2時間 30分経過) に達した時点でバット①を 取り出し、 さらに焼成を続けた。 First, the temperature inside the dryer (set temperature) 260-270 C is raised in 120 minutes. After the temperature rises, the vat ① is removed when the product temperature reaches 220 ° C (2 hours 30 minutes have passed). Baking continued.
品温が 267°Cに達し、 ほぼ一定になった時点(11時間経過) において、 バ ット②を取り出した。 それぞれのバットは、 実施例 1と同様に窒素流通下で 5 0°C以下まで冷却し、 又、 焼成時発生するガスはリン酸液に吸収させ回収した。
得られた焼成物「バット①( 1 7 0 g )及びバッ卜②( 1 5 3 0 g )」を混合し、 実施例 1と同様にしてヘンシェルミキサーで解 ^し、 P— N MRのピーク面積比 を測定した。 当該焼成物の組成 (P-NMRビーク面積比) を表 3に示す。 When the product temperature reached 267 ° C and became almost constant (11 hours have passed), Bat 2 was taken out. Each vat was cooled to 50 ° C. or lower under nitrogen flow in the same manner as in Example 1, and the gas generated at the time of firing was absorbed into the phosphoric acid solution and recovered. The resulting fired product “Vat ① (1700 g) and Bag ② (1 5 30 g)” was mixed and dissolved with a Henschel mixer in the same manner as in Example 1, and the peak of P—N MR was obtained. The area ratio was measured. Table 3 shows the composition (P-NMR beak area ratio) of the fired product.
同様の操作を焼成用原料微粉砕組成物 1 7 0 0 gを、 5 0対 5 0の割合で分け たもの (「バット① (8 5 0 g )」 及び「バット② (8 5 0 g )」 という。)、 8 0 対 2 0の割合で分けたもの (「バット①(1 3 6 0 g )」及び「バット②(3 4 0 g )j という。) を、 実施例と同じ箱型乾燥機(夕バイ社製) にセッ卜し加熱 ·焼 成し、バヅト①はそれぞれ 2 2 0 °Cで取り出し、 バヅト②はそれぞれ 2 6 7 °Cで 取り出した。同様にしてバット①の焼成品とバット②の焼成品を混合してその組 成 (P-NMRピーク面積比) を測定した結果を表 3に示す。 表 3 The same operation was performed by dividing the raw material pulverized composition for baking 1 700 g in a ratio of 50 to 50 (“Bat ① (8 500 g)” and “But ② (8 500 g)) ), Divided by a ratio of 80 to 20 (referred to as “bat ① (1 3 60 g)” and “bat ② (3 4 0 g) j”). It was set in a dryer (manufactured by Yubai Co., Ltd.), heated and calcined, and barts (1) were each taken out at 220 ° C, and barts (2) were taken out at 26 ° C each. Table 3 shows the results of mixing the product and the fired product of bat ② and measuring the composition (P-NMR peak area ratio).
実施例 2の結果から、 2 2 0 °Cで焼成したバット①、 2 6 7 °Cで焼成したバッ ト②においては、 それぞれ高純度のピロリン酸メラミン、 ポリリン酸メラミンが 生成していることは明らかであるが、表 3に示すように、それぞれの生成割合を、 1 0対 9 0、 5 0対 5 0、 8 0対 2 0のように自由に変更し、 これを最後に均一 混合することにより、 高純度のピロリン酸メラミン及びポリリン酸メラミンが、 任意の割合で混合した、 両者の組成物を得ることができる。 これも、 本発明にお ける高純度のピロリン酸メラミン及びポリリン酸メラミンの併産方法の一実施 形態である。
鶴卜の ilfflW能 ' From the results of Example 2, it was found that high purity melamine pyrophosphate and melamine polyphosphate were produced in the vat ① fired at 220 ° C. and the battery ② fired at 2 67 ° C., respectively. Obviously, as shown in Table 3, the ratio of each generation can be changed freely, such as 1 0 to 9 0, 5 0 to 5 0, 8 0 to 2 0, and finally mixed uniformly. Thus, a high purity melamine pyrophosphate and melamine polyphosphate mixed at an arbitrary ratio can be obtained. This is also an embodiment of the method of co-production of melamine pyrophosphate and melamine polyphosphate in the present invention. IlfflW Noh in Tsurugi ''
本発明によれば、 高純度のピ口リン酸メラミンとポリリン酸メラミンを、 同一- の微粉砕組成物を焼成原料として特定の焼成温度で焼成するだけで、 任意の割合 でそれぞれを併産することが可能である。 According to the present invention, high-purity melamine piprine phosphate and melamine polyphosphate can be co-produced at an arbitrary ratio by firing at the specific firing temperature using the same finely pulverized composition as a firing raw material. It is possible.
また、 本発明の方法により得られたピロリン酸メラミンゃポリ リン酸メラ ミンは極めて高純度であり、 ポリエチレン、 ポリプロピレン、 ポリ酢酸ビニ ル、ェ チレン酢酸ビニル共重合樹脂、ポリアミ ド、ポリフエ二レンエーテル、 ポリエステル、 ポリカーボネート、 ポリアルキレンテレフ夕レート、 ポリス チレン、 ポリウレタン、 A B S樹脂、 エポキシ樹脂、 ポリ塩化ビニル及びこ れらのァロイ樹脂等の難燃剤として好ましく使用される。
In addition, melamine pyrophosphate and melamine polyphosphate obtained by the method of the present invention are extremely high in purity, such as polyethylene, polypropylene, polyvinyl acetate, ethylene vinyl acetate copolymer resin, polyamide, and polyphenylene ether. It is preferably used as a flame retardant for polyester, polycarbonate, polyalkylene terephthalate, polystyrene, polyurethane, ABS resin, epoxy resin, polyvinyl chloride, and these alloy resins.
Claims
1. メラミンとリン酸アンモニゥムを粉砕、 混合し、 メラミンとリン酸アンモ ニゥムからなる微粉砕組成物を形成する工程及び当該微粉砕組成物を 190— 350°Cの範囲で加熱 '反応せしめる工程からなることを特徴とする高純度のビ 口リン酸メラミンとポリリン酸メラミンの併産方法。 1. From the step of pulverizing and mixing melamine and ammonium phosphate to form a finely pulverized composition comprising melamine and ammonium phosphate, and the step of heating and reacting the finely pulverized composition in the range of 190-350 ° C. A method of co-production of high-purity melamine biphosphate phosphate and melamine polyphosphate, characterized in that
2. 前記微粉砕組成物を 1 90— 250。Cで加熱 ·反応させてピロリン酸 メラミンを得、 また、 270— 3 50°Cで加熱 ·反応させてポリ リン酸メ ラミンを得る請求項 1に記載の併産方法。 2. 1 90-250 for the finely divided composition. The co-production method according to claim 1, wherein melamine pyrophosphate is obtained by heating and reacting with C, and melamine pyrophosphate is obtained by heating and reacting at 270 to 3500C.
3. ピロリン酸メラミンとポリリン酸メラミンがそれぞれ分離した状態で得ら れるか、 混合物として得られる請求項 1又は 2に記載の併産方法。 3. The co-production method according to claim 1 or 2, wherein the melamine pyrophosphate and the melamine polyphosphate are obtained separately or as a mixture.
4. P-NMRピーク面積比により算出したビ口リン酸メラミンにおけるリン 酸 2量体の糸 S成が 98 %を超える請求項 1― 3のいずれかに記載の併産方法。 4. The method of co-production according to any one of claims 1 to 3, wherein the yarn S formation of the phosphoric acid dimer in bimel phosphate melamine calculated by P-NMR peak area ratio exceeds 98%.
5. P-NMRピーク面積比により算出したポリリン酸メラミンにおけるリン 酸多量体(n^3) の組成が 97%以上である請求項 1一 3のいずれかに記載の 併産方法。 5. The co-production method according to any one of claims 1 to 3, wherein the composition of the phosphoric acid multimer (n ^ 3) in the melamine polyphosphate calculated from the P-NMR peak area ratio is 97% or more.
6. P-NMRピーク面積比により算出したピロリン酸メラミンにおけるリン 酸 2量体の組成が 98%を超えることを特徴とする高純度ピロリン酸メラミン。 6. High-purity melamine pyrophosphate characterized in that the composition of phosphoric acid dimer in melamine pyrophosphate calculated by P-NMR peak area ratio exceeds 98%.
7. P— NMRピーク面積比により算出したポリ リン酸メラミンにおける リン酸多量体 (n≥ 3) の組成が 97%以上であることを特徴とする高純度 ポリ リン酸メラミン。 7. A high-purity melamine polyphosphate characterized in that the composition of phosphoric acid multimers (n≥3) in the melamine polyphosphate calculated by P—NMR peak area ratio is 97% or more.
8.請求項 1— 5のいずれかに記載の方法により得られたピロリン酸メラミン及 び/又はポリ リン酸メラミン、 又は請求項 6又は 7に記載のピロリン酸メラ ミン及び Z又はポリ リン酸メラミンを、 ポリエチレン、 ポリプロピレン、 ポ り酢酸ビニル、 エ チレン酢酸ビニル共重合樹脂、 ポリアミ ド、 ポリフエニレ ンエーテル、 ポリエステル、 ポリ力一ポネート、 ポリアルキレンテレフタレ —ト、 ポリスチレン、 ポリウレタン、 AB S樹脂、 エポキシ樹脂、 ポリ塩化 ビニル及びこれらのァロイ樹脂から選択される少なく とも一つの樹脂に配 合してなる難燃性樹脂組成物。
8. Melamine pyrophosphate and / or melamine polyphosphate obtained by the method according to any one of claims 1 to 5, or melamine pyrophosphate and Z or melamine polyphosphate according to claim 6 or 7. Polyethylene, Polypropylene, Polyvinyl acetate, Ethylene vinyl acetate copolymer resin, Polyamide, Polyphenylene ether, Polyester, Polystrength Ponate, Polyalkylene terephthalate, Polystyrene, Polyurethane, ABS resin, Epoxy resin, A flame retardant resin composition obtained by combining at least one resin selected from polyvinyl chloride and these alloy resins.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/006998 WO2006109354A1 (en) | 2005-04-05 | 2005-04-05 | Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2005/006998 WO2006109354A1 (en) | 2005-04-05 | 2005-04-05 | Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006109354A1 true WO2006109354A1 (en) | 2006-10-19 |
Family
ID=37086652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/006998 WO2006109354A1 (en) | 2005-04-05 | 2005-04-05 | Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2006109354A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210020997A (en) * | 2018-06-13 | 2021-02-24 | 가부시키가이샤 아데카 | Polyphosphate amine salt composition, polyphosphate amine salt flame retardant composition, flame retardant synthetic resin composition containing the same, and molded article thereof |
WO2021216206A1 (en) * | 2020-04-24 | 2021-10-28 | J.M. Huber Corporation | Methods for the continuous polymerization of phosphate compounds to form polyphosphate compositions |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147175A (en) * | 2001-11-14 | 2003-05-21 | Daicel Chem Ind Ltd | Flame-retardant polyester composition |
JP2003268231A (en) * | 2002-03-20 | 2003-09-25 | Daicel Chem Ind Ltd | Flame-retarded polyamide-based resin composition |
JP2004010649A (en) * | 2002-06-04 | 2004-01-15 | Shimonoseki Mitsui Chemicals Inc | Method for producing melamine polyphosphate |
JP2004155764A (en) * | 2002-09-12 | 2004-06-03 | Shimonoseki Mitsui Chemicals Inc | Method for producing melamine pyrophosphate |
-
2005
- 2005-04-05 WO PCT/JP2005/006998 patent/WO2006109354A1/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003147175A (en) * | 2001-11-14 | 2003-05-21 | Daicel Chem Ind Ltd | Flame-retardant polyester composition |
JP2003268231A (en) * | 2002-03-20 | 2003-09-25 | Daicel Chem Ind Ltd | Flame-retarded polyamide-based resin composition |
JP2004010649A (en) * | 2002-06-04 | 2004-01-15 | Shimonoseki Mitsui Chemicals Inc | Method for producing melamine polyphosphate |
JP2004155764A (en) * | 2002-09-12 | 2004-06-03 | Shimonoseki Mitsui Chemicals Inc | Method for producing melamine pyrophosphate |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20210020997A (en) * | 2018-06-13 | 2021-02-24 | 가부시키가이샤 아데카 | Polyphosphate amine salt composition, polyphosphate amine salt flame retardant composition, flame retardant synthetic resin composition containing the same, and molded article thereof |
KR102667723B1 (en) * | 2018-06-13 | 2024-05-20 | 가부시키가이샤 아데카 | Polyphosphoric acid amine salt composition, polyphosphoric acid amine salt flame retardant composition, flame retardant synthetic resin composition containing the same, and molded product thereof |
WO2021216206A1 (en) * | 2020-04-24 | 2021-10-28 | J.M. Huber Corporation | Methods for the continuous polymerization of phosphate compounds to form polyphosphate compositions |
CN115605431A (en) * | 2020-04-24 | 2023-01-13 | J.M.休伯有限公司(Us) | Process for continuous polymerization of phosphate compounds to form polyphosphate compositions |
US11939430B2 (en) | 2020-04-24 | 2024-03-26 | J.M. Huber Corporation | Methods for the continuous polymerization of phosphate compounds to form polyphosphate compositions |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10793437B2 (en) | Method for the manufacture of Fe(II)P/Fe(II)MetP compounds | |
WO1998039307A1 (en) | 1,3,5-triazine derivative salts of polyacids comprising phosphorus, sulfur, and oxygen and process for producing the same | |
CN1080738C (en) | Melamine polymetaphosphate and process for its production | |
TWI506032B (en) | Alkaline zinc cyanide particles and methods for producing the same | |
US20120172594A1 (en) | Process for the Synthesis of Melamine Cyanurate in Lamellar Crystalline Shape with High Purity and Flowability | |
CN103079999B (en) | The manufacture method of pyrophosphate salt | |
JP2004155764A (en) | Method for producing melamine pyrophosphate | |
WO2006109354A1 (en) | Process for simultaneously producing high-purity melamine pyrophosphate and melamine polyphosphate | |
CN102976300A (en) | Method for preparing crystal II type ammonium polyphosphate by using polyphosphoric acid | |
JPH10306081A (en) | Polyphosphoric acid melamine/melam/melem double salt and production thereof | |
TWI529175B (en) | Resin nucleating agent and resin composition | |
JP2004010649A (en) | Method for producing melamine polyphosphate | |
JP3867234B2 (en) | Slightly soluble condensed melamine phosphate and method for producing the same | |
CN106008397B (en) | A kind of preparation method of piperazine pyrophosphate | |
US9718687B2 (en) | Method of converting limestone into tri-calcium phosphate and tetra-calcium phosphate powder simultaneously | |
JPS61126091A (en) | Production of polyphosphoric acid aminotriazine compound | |
JP2007063557A (en) | Method for producing amino phosphate flame retardant | |
CN113185551A (en) | Hyperbranched phosphorus-containing flame retardant and preparation method of flame-retardant PLA material | |
JP3295780B2 (en) | Poorly soluble ammonium polyphosphate compound, method for producing the same, and resin containing the same | |
JPH1081691A (en) | Polymetaphosphoric acid melamine and its production | |
JPH05239223A (en) | Production of polycarbodiimide powder | |
JP2004067791A (en) | Hardly soluble melamine polyphosphate | |
JP2008120636A (en) | Water-resistant aluminum nitride powder and method for producing granules containing the same | |
KR20170070565A (en) | Preparation method of flame retardancy copper phosphate and flame retardancy copper phosphate prepared thereby | |
JPH11302005A (en) | Production of type ii ammonium polyphosphate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
NENP | Non-entry into the national phase |
Ref country code: RU |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: RU |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 05728698 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 5728698 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |