Nothing Special   »   [go: up one dir, main page]

WO2006108520A1 - Uv-stabilisierte polycarbonatformkörper - Google Patents

Uv-stabilisierte polycarbonatformkörper Download PDF

Info

Publication number
WO2006108520A1
WO2006108520A1 PCT/EP2006/002943 EP2006002943W WO2006108520A1 WO 2006108520 A1 WO2006108520 A1 WO 2006108520A1 EP 2006002943 W EP2006002943 W EP 2006002943W WO 2006108520 A1 WO2006108520 A1 WO 2006108520A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
alkyl
formula
och
product according
Prior art date
Application number
PCT/EP2006/002943
Other languages
English (en)
French (fr)
Inventor
Frank Buckel
Gunther Stollwerck
Robert Maleika
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2006233568A priority Critical patent/AU2006233568A1/en
Priority to BRPI0608912-7A priority patent/BRPI0608912A2/pt
Priority to MX2007012566A priority patent/MX2007012566A/es
Priority to PL06723903T priority patent/PL1874856T3/pl
Priority to CA 2605230 priority patent/CA2605230A1/en
Priority to KR1020077026206A priority patent/KR101256251B1/ko
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to EP06723903A priority patent/EP1874856B1/de
Priority to CN2006800211006A priority patent/CN101198649B/zh
Priority to JP2008505766A priority patent/JP5530629B2/ja
Priority to AT06723903T priority patent/ATE516324T1/de
Publication of WO2006108520A1 publication Critical patent/WO2006108520A1/de
Priority to IL186584A priority patent/IL186584A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/14Layered products comprising a layer of synthetic resin next to a particulate layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/283Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/554Wear resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/584Scratch resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/269Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension including synthetic resin or polymer layer or component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31507Of polycarbonate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • Y10T428/31797Next to addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Definitions

  • the present invention relates to a multi-layered product comprising a first and a second layer, the second layer comprising polycarbonate, and wherein the first layer is a UV-protective layer based on polyalkyl (meth) acrylate containing a biphenyl-substituted triazine as a UV stabilizer , Moreover, the invention relates to the manufacture of these multi-layered products and products, e.g. Glazings containing said multi-layered products.
  • polycarbonate has the disadvantage that it is not inherently UV-stable.
  • the sensitivity curve of bisphenol A polycarbonate has the highest sensitivity between 320 nm and 330 nm. Below 300 nm, no solar radiation reaches the earth, and above 350 nm, this polycarbonate is so insensitive that yellowing no longer takes place.
  • UV stabilizers In order to protect polycarbonate from the damaging effects of UV-steels in the atmosphere, UV stabilizers are generally used which absorb the UV radiation and convert it into harmless thermal energy.
  • UV protection layers for example UV absorber-containing coextrusion layers, UV absorber-containing films or else UV-absorber-containing lacquers on polycarbonate is possible.
  • Typical UV absorber classes which can be used for this purpose are 2-hydroxybenzophenones, 2- (2-hydroxyphenyl) benzotriazoles, 2- (2-hydroxyphenyl) -1,3,5-triazines, 2 Cyanoacrylates and oxalanilides.
  • EP-A-0 110 221 discloses sheets of two layers of polycarbonate, one layer containing at least 3% by weight of a UV absorber. The preparation of these plates can be carried out according to EP-A 0 110 221 by coextrusion.
  • EP-A 0 320 632 discloses moldings of two layers of thermoplastic, preferably polycarbonate, one layer containing special substituted benzotriazoles as UV absorbers. EP-A 0 320 632 also discloses the production of these moldings by coextrusion.
  • EP-A 0 247 480 discloses multilayer boards in which, in addition to a layer of thermoplastic material, a layer of branched polycarbonate is present, the layer of polycarbonate containing special substituted benzotriazoles as UV absorbers. The preparation of these plates by coextrusion is also disclosed.
  • EP-A 0 500 496 discloses polymer compositions which are stabilized against UV light with special triazines and their use as outer layer in multilayer systems.
  • Polymers are polycarbonate, polyesters, polyamides, polyacetals, polyphenylene oxide and polyphenylene sulfide.
  • a multi-layer product comprising a first layer (A) and a second layer (B), wherein the first layer (A) is a UV protective layer of polyalkyl (meth) acrylate which contains a UV stabilizer according to formula (I), and the second layer (B) contains a polycarbonate.
  • the UV protective layer (A) may take the form of a film, a coextruded layer or a cured lacquer layer.
  • the multilayer article according to the invention may comprise further layers, in particular a further UV protective layer (C) which is likewise a layer of polyalkyl (meth) acrylate which contains a UV stabilizer according to formula (T) and the form of a film, a coextruded one Layer or a cured lacquer layer can take.
  • the layer sequence in this case is (A) - (B) - (C), and the layers (A) and (C) may have the same or different compositions.
  • the UV absorber used in layers (A) and optionally (C) of the multilayer products according to the invention has the general formula (I)
  • R 1 represents in each case branched or unbranched C r C 13 alkyl, C 2 -C 20 - alkenyl, C6-C12 aryl or -CO-C 1 -C 6 -alkyl
  • R 2 is H or branched or unbranched C 1 -C 8 -alkyl
  • R 3 is C 1 -C 12 -alkyl; C 2 -C 12 alkenyl or C 5 -C 6 cycloalkyl.
  • biphenyl-substituted triazines of general formula I are known from WO 96/28431; DE 197 39 797; WO 00/66675; US 6225384; US 6255483; EP 1 308 084 and FR 2812299 are known in principle.
  • the ratio of the two methacrylate monomer units is preferably 75 to 100% of methyl methacrylate or 25 to 0% of alkyl methacrylate, preferably 85 to 100% of methyl methacrylate or 15% to 0% of alkyl methacrylate, particularly preferably 90 to 100% of methyl methacrylate and 10% to 0% of alkyl methacrylate ( In% by weight).
  • the required UV absorber concentration depends on the layer thickness.
  • the inventive UV protective layers of cured coating formulations contain at layer thicknesses of 1 to 100 .mu.m, preferably 1 to 30 .mu.m, more preferably 1 to 10 .mu.m 0.5 to 20 wt .-%, preferably 1 to 15 wt .-%, particularly preferably 1.5 to 10 wt .-% based on the solids content of the paint formulation of UV absorber of formula (I), wherein formulations having layer thicknesses after application and curing of l ⁇ m at least 10 wt .-%, preferably> 15 wt.%, Such of 5 ⁇ m at least 2 wt .-%, preferably ⁇ 3 wt.% And those of 10 microns at least 1 wt .-% preferably -ä, 5 wt.% Contain, at most the above Containing amounts of UV absorber.
  • the UV protective layers of coextrusion layers according to the invention contain from layer thicknesses of 1 to 500 .mu.m, preferably 1 to 100 .mu.m, more preferably 2 to 50 .mu.m 0.05 to 20 wt .-%, preferably 0.1 to 15 wt .-%, especially preferably 0.5 to 10 wt .-% of UV absorber of formula (T), wherein coextrusion layers with a layer thickness of 2 microns at least 10 wt .-%, preferably> 15 wt .-%, those of 10 microns at least 2 wt .-%, preferably> 3 wt.% And those of 30 microns at least 0.7 wt .-%, preferably> 1 wt.% Contain, at most the above Containing amounts of UV absorber.
  • the UV protective layers of films of the invention contain at layer thicknesses of 2 .mu.m to 2 mm, preferably 50 .mu.m to 1 mm, particularly preferably 80 .mu.m to 500 .mu.m 0.01 to 20 wt .-%, preferably 0.02 to 5 wt.
  • UV absorber of the formula (I), wherein films having a layer thickness of 80 microns at least 0.25 wt .-%, preferably> 0.4 wt .-%, those of 200 microns at least 0.1 wt .-%, preferably> 0.15 wt.% And such from 500 microns at least 0.04 wt .-%, preferably> 0.06 wt.%, Containing at most the above amounts of UV absorber.
  • the thicker layer (A) is, the less UV absorber is needed.
  • UV protective layer Further stabilization of the UV protective layer can be achieved by using not only the biphenyl-substituted triazines, ie the actual UV absorbers, but also so-called HALS systems (hindered amine light stabilizers) of the general formula (II).
  • HALS systems hindered amine light stabilizers
  • R is composed of: ZR -ZR; or
  • the UV protective layers of cured coating formulations according to the invention contain from 0 to 5% by weight, preferably from 0 to 3% by weight, particularly preferably from 0.5 to 2% by weight, of the compound of the formula (II) based on the solids content of coating formulation.
  • the particularly preferred amount of the particularly preferred HALS system (II) reduces the necessary amount of UV absorber (I) to preferably> 10 wt .-% at a layer thickness after application and curing of l ⁇ m, preferably ⁇ 2 wt. % at 5 ⁇ m or preferably> 1% by weight at 10 ⁇ m.
  • HALS systems can be used in amounts of from 0 to 3% by weight.
  • higher molecular weight HALS systems are preferred in which the functional group
  • HALS systems whose weight loss at 300 0 C determined by TGA at a heating rate of 2O 0 C per minute in air ⁇ 3 wt .-%, like crizos- example (with Chimassorb 119 from Ciba Specialty Chemicals formula He)
  • Suitable polycarbonates for the second layer (B) of the multilayer products according to the invention are all known polycarbonates, these may be homopolycarbonates, copolycarbonates and thermoplastic polyester carbonates.
  • M w average molecular weights of from 18,000 to 40,000, preferably from 22,000 to 36,000 and in particular from 24,000 to 33,000, determined by measuring the relative solution viscosity in dichloromethane or mixtures of equal amounts by weight of phenol / o-dichlorobenzene calibrated by light scattering.
  • the polycarbonates are preferably prepared by the phase boundary process or the melt transesterification process and will be described below by way of example using the phase boundary process.
  • Preferred compounds to be used as starting compounds are bisphenols of the general formula
  • R is a divalent organic radical of 6 to 30 carbon atoms containing one or more aromatic groups.
  • Examples of such compounds are bisphenols which belong to the group of dihydroxydiphenyls, bis (hydroxyphenyl) alkanes, indanebisphenols, bis (hydroxyphenyl) ethers, bis (hydroxyphenyl) sulfones, bis (hydroxyphenyl) ketones and ⁇ , ⁇ '-bis (hydroxyphenyl) - diisopropylbenzenes.
  • Particularly preferred bisphenols belonging to the aforementioned linking groups are bisphenol-A, tetraalkylbisphenol-A, 4,4- (meta-phenylenediisopropyl) -diphenol (bisphenol M), 4,4- (para-phenylenediisopropyl) diphenol, l, l Bis- (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane (BP-TMC) and optionally mixtures thereof.
  • the bisphenol compounds to be used according to the invention are preferably reacted with carbonic acid compounds, in particular phosgene, or with diphenyl carbonate or dimethyl carbonate in the melt transesterification process.
  • Polyestercarbonates are preferably obtained by reacting the abovementioned bisphenols, at least one aromatic dicarboxylic acid and optionally carbonic acid equivalents.
  • Suitable aromatic dicarboxylic acids are, for example, phthalic acid, terephthalic acid, isophthalic acid, 3,3'- or 4,4'-diphenyldicarboxylic acid and benzophenone dicarboxylic acids.
  • a portion, up to 80 mole%, preferably from 20 to 50 mole%, of the carbonate groups in the polycarbonates may be replaced by aromatic dicarboxylic acid ester groups.
  • Inert organic solvents used in the interfacial process include, for example, dichloromethane, the various dichloroethanes and chloropropane compounds, tetrachloromethane, trichloromethane, chlorobenzene and chlorotoluene, preferably chlorobenzene or dichloromethane or mixtures of dichloromethane and chlorobenzene.
  • the interfacial reaction can be accelerated by catalysts such as tertiary amines, in particular N-alkylpiperidines or onium salts. Preference is given to tributylamine, triethylamine amine and N-ethylpiperidine used. In the case of the shrimp transesterification process, the catalysts mentioned in DE-A 4 238 123 are preferably used.
  • the polycarbonates can be deliberately and controlled branched by the use of small amounts of branching.
  • Some suitable branching agents are: phloroglucinol, 4,6-dimethyl-2,4,6-tri- (4-hydroxy-phenyl) -hepten-2; 4,6-dimethyl-2,4,6-tri- (4-hydroxyphenyl) heptane; l, 3,5-tri- (4-hydroxyphenyl) benzene; 1,1,1-tri- (4-hydroxyphenyl) -ethane; Tri- (4-hy ⁇ roxyphenyl) phenylmethane; 2,2-bis [4,4-bis (4-hydroxyphenyl) -cyclohexyl] -propane; 2,4-bis- (4-hydroxyphenyl-isopropyl) -phenol; 2,6-bis- (2-hydroxy-5'-methyl-benzyl) -4-methyl phenol; 2- (4-hydroxyphenyl) -2- (2,4-dihydroxyphenyl) -prop
  • the optionally used 0.05 to 2 mol%, based on diphenols, of branching agents or mixtures of the branching agents can be used together with the diphenols but can also be added at a later stage of the synthesis.
  • the chain terminators used are preferably phenols such as phenol, alkylphenols such as cresol and 4-tert-butylphenol, chlorophenol, bromophenol, cumylphenol or mixtures thereof in amounts of 1 to 20 mol%, preferably 2 to 10 mol% per mol of bisphenol. Preference is given to phenol, 4-tert-butylphenol or cumylphenol.
  • Chain terminators and branching agents may be added separately or together with the bisphenol to the syntheses.
  • polycarbonates for the second layer of the erf ⁇ ndungswashen multilayer product are the homopolycarbonate based on bisphenol A, the homopolycarbonate based on l, l-bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane and the copolycarbonates based the two monomers bisphenol A and l, l-bis (4-hydroxyphenyl) - 3,3,5-trimethylcyclohexane.
  • the homopolycarbonate based on bisphenol A is particularly preferred.
  • the polycarbonate may contain stabilizers. Suitable stabilizers are, for example, phosphines, phosphites or Si-containing stabilizers and further compounds described in EP-A 0 500 496. Examples which may be mentioned are triphenyl phosphites, diphenylalkyl phosphites, phenyl dialkyl phosphites, tris (nonylphenyl) phosphite, tetrakis (2,4-di-tert.-burylphenyl) -4,4'-biphenylene diphosphinite and triaryl phosphite. Particularly preferred are triphenylphosphine and tris (2,4-di-tert-butylphenyl) phosphite.
  • the polycarbonate-containing second layer (B) of the inventive multi-layered product may contain 0.01 to 0.5% by weight of the esters or partial esters of monohydric to hexahydric alcohols, especially glycerin, pentaerythritol or Guerbet alcohols.
  • Monohydric alcohols include stearyl alcohol, palmityl alcohol and Guerbet alcohols.
  • a dihydric alcohol is glycol.
  • a trivalent alcohol is, for example, glycerine.
  • tetrahydric alcohols include pentaerythritol and mesoerythritol.
  • pentavalent alcohols are arabitol, ribitol and xylitol.
  • Hexahydric alcohols include mannitol, glucitol (sorbitol) and dulcitol.
  • the esters are preferably the monoesters, diesters, triesters, tetraesters, pentaesters and hexaesters or mixtures thereof, in particular random mixtures, of saturated, aliphatic C 10 to C 36 monocarboxylic acids and optionally hydroxy monocarboxylic acids, preferably with saturated, aliphatic Q 4 to C. 32 -monocarboxylic acids and optionally hydroxy-monocarboxylic acids.
  • the commercially available fatty acid esters in particular of pentaerythritol and of glycerol, may contain ⁇ 60% of different partial esters as a result of the preparation.
  • Saturated, aliphatic monocarboxylic acids having 10 to 36 carbon atoms are, for example, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachidic acid, behenic acid, lignoceric acid, cerotic acid and montanic acids.
  • Preferred saturated, aliphatic monocarboxylic acids having 14 to 22 carbon atoms are, for example, myristic acid, palmitic acid, stearic acid, hydroxystearic acid, arachic acid and behenic acid. Particularly preferred are saturated aliphatic monocarboxylic acids such as palmitic acid, stearic acid and hydroxystearic acid.
  • the saturated, aliphatic Cj 0 to C 3 6-carboxylic acids and the fatty acid esters are as such either known from the literature or can be prepared by literature methods.
  • Examples of pentaerythritol fatty acid esters are those of the particularly preferred monocarboxylic acids mentioned above.
  • esters of pentaerythritol and glycerol with stearic acid and palmitic acid are particularly preferred.
  • esters of Guerbet alcohols and of glycerol with stearic acid and palmitic acid and optionally hydroxystearic acid are particularly preferred.
  • the multilayered products according to the invention may contain organic dyes, inorganic color pigments, fluorescent dyes and particularly preferably optical brighteners.
  • the compound (a) is either (i) coextruded with polycarbonate in such a way that a thin UV protective layer of compound (a) is well adhering to the polycarbonate surface, or (ii) the compound (a) becomes thin Foil further processed, which is then back-injected or laminated with polycarbonate to form a well-adhesive composite.
  • a paint formulation comprising (bl) a polyalkyl (meth) acrylate resin containing methyl methacrylate as main component and possibly another alkyl methacrylate with a longer, linear or branched alkyl
  • the UV absorber-containing paint formulation (b) by means of flooding, dipping, spraying, rolling or spin coating is applied to the surface of a polycarbonate molding and then physically dried so that results in a well-adherent coating on PC.
  • a further advantage of the inventive multilayered products produced in this way is that the UV protective layer can be overcoated with scratch-resistant or abrasion-resistant coating systems.
  • a formulation of a scratch-resistant or abrasion-resistant paint for example but not exclusively, a polysiloxane, a silicate coating (water glass), or a nanoparticle-containing formulation by flooding, dipping, spraying, rolling or spin coating is applied to the surface of the UV protective layer and then cured to a well-bonded composite PC / UV-protective layer / scratch-resistant layer.
  • those multilayer products are preferred which are selected from the group consisting of plates, films and three-dimensional molded parts.
  • the present invention is the use of said multi-layered products, especially for outdoor applications with permanently high demands on the visual impression, such as the glazing.
  • the used optical quality polycarbonate Makrolon 2808 10 x 15 x 0.32 cm polycarbonate sheets were cleaned, dried and blown off with ionized air. Subsequently, the UV protective coating formulation was applied by flooding, flashed and then cured for 30 min at 50 0 C in a convection oven. The thickness of the transparent coating thus obtained was determined by means of an Eta SD 30 from Eta Optik GmbH to 7 to 10 microns along the plate in the direction of flow.
  • the initial absorbance of the coating of Example 1 is at 340 nm 5.0 and has a degradation of 0.049 MP 1 .
  • the yellowness index is calculated as follows: First, the wavelength-dependent yellowing of the material is determined by the spectral sensitivity method (Interpretation of the spectral sensitivity and of the activation spectrum of polymers, P. Trubiroha, Proceedings of the XXJJ Donau Stamm dealte, 17.8.2001, Berlin , Page 4-1). Then calculate the spectral distribution of the UV light of the sun behind the UV protection layer. From these two data sets, the yellowing after weathering can be calculated in a known manner by folding and integration over time. (Fundamentals of life-time prediction in weathering, A. Mackig, V. Wachtendorf, Proceedings 34th Annual Meeting of the Society for Environmental Simulation, Environmental Impacts capture, simulate and evaluate, 2.3.2005, Pfinztal, page 159).
  • ⁇ YI is the change in yellowness YI of the substrate material which must be protected by the UV absorber.
  • T is the weathering time and F is the weathering spectrum.
  • Ext ( ⁇ , t) is the wavelength-dependent and with time by degradation decreasing extinction of the UV Absorber and SR ( ⁇ , YT) the wavelength and yellow value-dependent spectral sensitivity of the substrate material.
  • UV absorber CGL 479 and Laclcmatrix thus fulfills the requirements with respect to extinction and degradation and therefore leads to a low yellowing.
  • Example 1 Comparative example identical to Example 1 except for the use of a non-inventive UV absorber (Chimassorb 81).
  • the preparation of the UV protective layer is carried out analogously to Example 1, wherein instead of 10 wt .-% based on the solids content of the paint formulation of CGL 479 10 wt .-% based on the solids content of the paint formulation of Chimassorb 81 (2-hydroxy-4- ( octyloxy) benzophenone from Ciba Specialty Chemicals) was used.
  • the preparation of the UV protective layer is carried out analogously to Example 1 , wherein instead of 10 wt .-% based on the solids content of the paint formulation of CGL 479 only 1 wt .-% based on the solids content of the paint formulation of CGL 479 was used.
  • the used optical quality polycarbonate Makrolon 2808 10 x 15 x 0.32 cm polycarbonate sheets were cleaned, dried and blown off with ionized air. Subsequently, the paint formulation was applied using a doctor blade, and allowed to vent to room temperature at room temperature. The thickness of the transparent coating thus obtained was determined to be about 23 ⁇ m by means of an Eta SD 30 from Eta Optik GmbH.
  • the UV absorber degradation rate was determined as described in Example 1.
  • the initial absorbance of the coating of example 5 at 340 nm is 1.3 and has a degradation of 0.096 MJ -1 , and thus more than 4 times as much as in example 3, which has a comparable initial extinction, ie with this protective layer only a UV Converted into an increase in yellowness after 30 MJ / m2 at 340 nm (equivalent to 10 years Florida) for polycarbonate of the type AL 2647 (see Example 1) gives a ⁇ YI value of 18, 1, whereby the erf ⁇ ndungszelen requirements are not met.
  • composition bisphenol A polycarbonate (Makrolon Type AL 2647 (medium-viscosity bisphenol A-poly- carbonate with UV stabilizer and mold release agent; MFR 13 g / l 0min after ISOL 133 at 300 0 C and 1.2 kg)) / UV-protective Layer with CGL 479 as UV absorber in a PMMA coating matrix / abrasion-resistant topcoat based on a siloxane coating
  • Example 1 the solids content of the paint consisting of a 2 to 1 mixture of the dissolved polymethacrylate from Example 1 and the solvent mixture used as a diluent (see also Example 1), this time to 13.23% determined.
  • Example 1 12 g of the dissolved polymethacrylate (see Example 1) are mixed with 6 g of the solvent mixture used as diluent (see also Example 1) and stirred for about 5 minutes. 0.199 g of CGL 479 (corresponding to 5% by weight, based on the above-defined solids content without UV absorber), 0.024 g of a HALS system (Tin.
  • the siloxane varnish (Silvue MP 100) from SDC Technology Inc. stored in the refrigerator at about 8 ° C. is brought to room temperature with stirring.
  • the AL 2647 panels provided with the UV protective layer are blown off with ionized air on the coated side, overcoated with the Silvue MP 100 lacquer in the same flow direction as the UV protective lacquer, then flashed off and then at 100 for 1 h 0 C cured in a convection oven.
  • the total thickness of the thus obtained optically flawless, transparent two-layer coating of UV protection layer and topcoat was determined by means of an Eta SD 30 from Eta Optik GmbH to 8 to 14 microns along the plate in the flood direction.
  • the base material Makrolon was melted (296 0 C and melt pressure 99 bar Speed 65.7 min "1, melt temperature) 3108 after pre-drying (4 hours at 120 0 C) on the Haupextruder.
  • the Coexmaterial was consisting of the pre-dried at 100 0 C 3h UV protection compound (see above) via a coextruder (speed 10 min “1 , melt temperature 286 ° C and melt pressure 54 bar) and transferred together with the base material via a plate nozzle on a rolling mill ,
  • the coex film thus obtained had a base material thickness of about 400 ⁇ m and a UV Coex protection layer of about 10 ⁇ m.
  • the UV absorber degradation of CGX UVA 006 in the UV coextrusion layer on Makrolon 3108 was determined as described in Example 1.
  • the initial extinction of the coex layer is 3.3 nm at 340 nm and has a degradation of 0.036 MJ -1 and thus offers a UV protection effect for> 30 MJ / m 2 at 340 nm, ie this UV protective layer fulfills the requirements according to the invention with respect to long-term stability. Converted into an increase in yellowness after 30 MJ / m2 at 340 nm (equivalent to 10 years Florida) for polycarbonate of the type AL 2647 (see Example 1), this gives a ⁇ YI value of 0.5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

Die vorliegende Erfindung betrifft ein mehrschichtiges Erzeugnis umfassend eine erste und eine zweite Schicht, wobei die zweite Schicht Polycarbonat enthält, und wobei die erste Schicht eine UV-Schutzschicht auf Basis von Polyalkyl(meth)acrylat ist, die ein biphenylsubstituiertes Triazin als UV-Stabilisator enthält. Außerdem betrifft die Erfindung die Herstellung dieser mehrschichtigen Erzeugnisse und Erzeugnisse, wie z.B. Verscheibungen, die die genannten mehrschichtigen Erzeugnisse enthalten.

Description

UV-stabilisierte PoIycarbonatformkörper
Die vorliegende Erfindung betrifft ein mehrschichtiges Erzeugnis umfassend eine erste und eine zweite Schicht, wobei die zweite Schicht Polycarbonat enthält, und wobei die erste Schicht eine UV-Schutzschicht auf Basis von Polyalkyl(meth)acrylat ist, die ein biphenylsubstituiertes Triazin als ÜV-Stabilisator enthält. Außerdem betrifft die Erfindung die Herstellung dieser mehrschichtigen Erzeugnisse und Erzeugnisse, wie z.B. Verscheibungen, die die genannten mehrschichtigen Erzeugnisse enthalten.
Formkörper aus Polycarbonat sind bereits seit längerem bekannt. Polycarbonat hat jedoch den Nachteil, dass es nicht selbst inhärent UV-stabil ist. Die Empfindlichkeitskurve von Bisphenol A- Polycarbonat weist die höchste Empfindlichkeit zwischen 320 nm und 330 nm auf. Unterhalb von 300 nm gelangt keine Sonnenstrahlung auf die Erde, und oberhalb von 350 nm ist dieses Polycarbonat so unempfindlich, dass keine Vergilbung mehr stattfindet.
Um Polycarbonat vor dem schädlichen Einfluss der UV-Stahlen in der Atmosphäre zu schützen, werden allgemein UV-Stabilisatoren eingesetzt, die die UV-Strahlung absorbieren und in unschäd- liehe thermische Energie umwandeln.
Vorteilhaft für einen dauerhaften Schutz ist es dabei, die schädliche UV-Strahlung bereits vor Erreichen der Polycarbonatoberfläche effektiv herauszufiltem, wie es durch die Verwendung von UV-Schutz-Schichten, beispielsweise UV-Absorber-haltige Koextrusionsschichten, UV-Absorber- haltige Folien oder auch UV-Absorber-haltige Lacke, auf Polycarbonat möglich ist.
Typische UV- Absorber - Klassen, die bekanntermaßen hierfür zum Einsatz kommen können , sind 2-Hydroxy-benzophenone, 2-(2-Hydroxyphenyl)benzotriazole, 2-(2-Hydroxyphenyl)-l,3,5~tri- azine, 2-Cyanacrylate und Oxalanilide.
Im Folgenden wird beispielhaft der Stand der Technik zu mehrschichtigen Erzeugnissen zusammengefasst.
EP-A 0 110 221 offenbart Platten aus zwei Schichten Polycarbonat, wobei eine Schicht wenigstens 3 Gew.-% eines UV-Absorbers enthält. Die Herstellung dieser Platten kann gemäß EP-A 0 110 221 durch Coextrusion erfolgen.
EP-A 0 320 632 offenbart Formkörper aus zwei Schichten aus thermoplastischem Kunststoff, bevorzugt Polycarbonat, wobei eine Schicht spezielle substituierte Benzotriazole als UV-Absorber enthält. EP-A 0 320 632 offenbart auch die Herstellung dieser Formkörper durch Coextrusion. EP-A 0 247 480 offenbart mehrschichtige Platten, in denen neben einer Schicht aus thermoplastischem Kunststoff eine Schicht aus verzweigtem Polycarbonat vorhanden ist, wobei die Schicht aus Polycarbonat spezielle substituierte Benzotriazole als UV-Absorber enthält. Die Herstellung dieser Platten durch Coextrusion wird ebenfalls offenbart.
EP-A 0 500 496 offenbart Polymerzusammensetzungen, die mit speziellen Triazinen gegen UV- Licht stabilisiert sind und deren Verwendung als Außenschicht in Mehrschichtsystemen. Als Polymere werden Polycarbonat, Polyester, Polyamide, Polyacetale, Polyphenylenoxid und PoIy- phenylensulfid genannt.
Es hat sich jedoch gezeigt, dass die bekannten UV-stabilisierten Polycarbonatformkörper für manche Anwendungen, insbesondere für Außenanwendungen mit dauerhaft hohen Anforderungen hinsichtlich des visuellen Eindrucks wie beispielsweise Verscheibungen eine noch ungenügende Langzeitstabilität gegen Vergilbung aufweisen.
Für solche Anwendungen ist es erforderlich, dass ein Polycarbonatformkörper unter einer Einstrahlung von 30 MJ/m2 bei 340 nm (entspricht 10 Jahren Außenbewitterung in Florida) um nicht mehr als Δ YI von 3 vergilbt (YI = Yellowness Index).
Die Bewitterung erfolgt bei diesem Test in einem Atlas Ci 5000 Weatherometer mit einer Bestrahlungsstärke von 0.75 W/m2/nm bei 340 nm und einem TrockenA-Beregnungszyklus von 102:18 Minuten. Die Schwarztafeltemperatur beträgt 700C, die Probenraumtemperatur 55°C und die Luftfeuchtigkeit 40 %.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, Polycarbonatformkörper zur Verfügung zu stellen, die unter einer Einstrahlung von 30 MJ/m2 bei 340 nm um nicht mehr als einen Δ YI von 3 unter den genannten Bedingungen vergilbt. Hierfür wurde gefunden, dass die Kombination aus UV-Absorber und Matrix eine ausreichende Extinktion und geringe Degradation aufweisen muss.
Diese Aufgabe wird überraschenderweise gelöst durch ein mehrschichtiges Erzeugnis umfassend eine erste Schicht (A) und eine zweite Schicht (B), wobei die erste Schicht (A) eine UV- Schutzschicht aus Polyalkyl(meth)acrylat ist, die einen UV-Stabilisator gemäß Formel (I) enthält, und die zweite Schicht (B) ein Polycarbonat enthält. Die UV-Schutzschicht (A) kann dabei die Form einer Folie, einer koextrudierten Schicht oder einer gehärteten Lackschicht annehmen.
Dieses mehrschichtige Erzeugnis ist Gegenstand der vorliegenden Erfindung. Das erfindungsgemäße mehrschichtige Erzeugnis kann weitere Schichte umfassen, insbesondere eine weitere UV-Schutzschicht (C), die ebenfalls eine Schicht aus Polyalkyl(meth)acrylat ist, die einen UV-Stabilisator gemäß Formel (T) enthält und die Form einer Folie, einer koextrudierten Schicht oder einer gehärteten Lackschicht annehmen kann. Die Schichtabfolge beträgt in diesem Fall (A)-(B)-(C), und die Schichten (A) und (C) können dieselbe oder unterschiedliche Zusammensetzungen haben.
Der in den Schichten (A) und gegebenenfalls (C) der erfindungsgemäßen mehrschichtigen Erzeugnissen verwendete UV-Absorber hat die allgemeine Formel (I)
Figure imgf000004_0001
wobei X OR1 ; OCH2CH2OR1; OCH2CH(OH)CH2OR1 oder OCH(R2)COOR3 bedeutet, dabei steht, R1 für jeweils verzweigtes oder unverzweigtes CrC13-Alkyl, C2-C20- Alkenyl, C6-C12-Aryl oder -CO-Ci-Cis-Alkyl, R2 ist H oder verzweigtes oder unverzweigtes C1-C8-AIlCyI, und R3 C1-C12- Alkyl; C2-C12-Alkenyl oder C5-C6-Cycloalkyl bedeutet.
Für UV-Schutzschichten (A) bzw. (C) in Form von Folien oder Koextrusionsschichten ist X bevorzugt OR1 ; besonders bevorzugt mit R1 = CH2CH(CH2CH3)C4H9
Für UV-Schutzschichten aus gehärteten Lackformulierungen ist X bevorzugt OCH(R2)COOR3; besonders bevorzugt mit R2 = CH3 und R3 = C8H17
Solche biphenylsύbstituierten Triazine der allgemeinen Formel I sind aus WO 96/28431; DE 197 39 797; WO 00/66675; US 6225384; US 6255483; EP 1 308 084 und FR 2812299 prinzipiell bekannt.
Erfindungsgemäße UV-Schutzschichten (A) bzw. (C) aus gehärteten Lackformulierungen enthalten als Bindermaterial ein physikalisch trocknendes Polyalkyl(meth)acrylatharz, enthaltend vorzugsweise Methylmethacrylat als Hauptkomponente und eventuell ein weiteres Alkyl(meth)acrylat mit längerer, linearer oder verzeigter Alkylkette (-CnH2n+i mit n>l), bevorzugt 1 < n < 10, besonders bevorzugt linear mit n = 3 (Butylmethacrylat). Bevorzugt beträgt das Verhältnis der beiden Methacrylatmonomereinheiten 75 bis 100% Methylmethacrylat bzw. 25 bis 0% Alkylmethacrylat, bevorzugt 85 bis 100% Methylmethacrylat bzw. 15% bis 0% Alkylmethacrylat, besonders bevorzugt 90 bis 100% Methylmethacrylat und 10% bis 0% Alkylmethacrylat (Angabe in Gew.-%).
Erfϊndungsgemäße UV-Schutzschichten (A) bzw. (C) in Form von Folien und Koextrusions- schichten enthalten als Polymermatrix ein Polyalkyl(meth)acrylat, bestehend aus Alkyl(meth)- acrylat-Monomeren, bevorzugt mit Alkylkettenlängen unter 10 Kohlenstoffatomen (-CnH2n+l mit n < 10), besonders bevorzugt ausschließlich mit n=l (Methylmethacrylat).
Da für einen dauerhaften UV-Schutz eine bestimmte Mindestextinktion der UV-Schutzschicht benötigt wird, hängt die erforderliche UV-Absorber Konzentration von der Schichtdicke ab.
Die erfmdungsgemäßen UV-Schutzschichten aus gehärteten Lackformulierungen enthalten bei Schichtdicken von 1 bis 100 μm, bevorzugt 1 bis 30 μm, besonders bevorzugt 1 bis 10 μm 0,5 bis 20 Gew.-%, bevorzugt 1 bis 15 Gew.-%, besonders bevorzugt 1,5 bis 10 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung an UV-Absorber der Formel (I), wobei Formulierungen mit Schichtdicken nach Applizieren und Härten von lμm mindestens 10 Gew.-%, bevorzugt >15 Gew.%, solche von 5 μm mindestens 2 Gew.-% bevorzugt Ξ3 Gew.% und solche von 10 μm mindestens 1 Gew.-% bevorzugt -ä,5 Gew.% enthalten, höchstens die o.g. Mengen an UV- Absorber enthaltend.
Die erfindungsgemäßen UV-Schutzschichten aus Koextrusionsschichten enthalten bei Schichtdicken von 1 bis 500 μm, bevorzugt 1 bis 100 μm, besonders bevorzugt 2 bis 50 μm 0,05 bis 20 Gew.-%, bevorzugt 0,1 bis 15 Gew.-%, besonders bevorzugt 0,5 bis 10 Gew.-% an UV- Absorber der Formel (T), wobei Koextrusionsschichten mit einer Schichtdicke von 2 μm mindestens 10 Gew.-%, bevorzugt > 15 Gew.-%, solche von 10 μm mindestens 2 Gew.-%, bevorzugt >3 Gew.% und solche von 30 μm mindestens 0,7 Gew.-%, bevorzugt >1 Gew.% enthalten, höchstens die o.g. Mengen an UV-Absorber enthaltend.
Die erfindungsgemäßen UV-Schutzschichten aus Folien enthalten bei Schichtdicken von 2 μm bis 2 mm, bevorzugt 50 μm bis 1 mm, besonders bevorzugt 80 μm bis 500 μm 0,01 bis 20 Gew.-%, bevorzugt 0,02 bis 5 Gew.-%, besonders bevorzugt 0,04 bis 2 Gew.-% an UV-Absorber der Formel (I), wobei Folien mit einer Schichtdicke von 80 μm mindestens 0,25 Gew.-%, bevorzugt >0,4 Gew.-%, solche von 200 μm mindestens 0,1 Gew.-%, bevorzugt >0,15 Gew.% und solche von 500 μm mindestens 0,04 Gew.-%, bevorzugt >0,06 Gew.% enthalten, höchstens die o.g. Mengen an UV-Absorber enthaltend.
Je dicker also Schicht (A) ist, umso weniger UV-Absorber wird benötigt.
Eine weitere Stabilisierung der UV-Schutzschicht kann erzielt werden, indem neben den biphenyl- substituierten Triazinen, also den eigentlichen UV-Absorbern, noch sogenannte HALS - Systeme (Hindered Amine Light Stabilizer) der allgemeinen Formel (II) zum Einsatz kommen.
Figure imgf000006_0001
wobei Y H; R1 oder OR1 darstellt und R1 die gleiche Bedeutung hat wie in Formel (I)
Figure imgf000006_0002
R setzt sich zusammen aus:Z-R -Z-R ; oder
Figure imgf000006_0003
Figure imgf000006_0004
damit ergeben sich folgende Formel
Formel Ha
Figure imgf000007_0001
Formel Hb und
Figure imgf000007_0002
Formel He
wobei-
-Z- eine divalente funktionelle Gruppe wie -COO-; -NH- oder -NHCOist -R5- ist ein divalenter organischer Rest wie-(CH2V mit n=0 bis 12; C=CH-Ph-OCH3 ;
Figure imgf000007_0003
R6 ist H oder CrC20Alkyl bevorzugt ist für UV-Schutzschichten aus gehärteten Lackformulierungen Y=OR und
R4=
Figure imgf000007_0004
besonders bevorzugt ist Y=OR mit R1=Cl-C13Alkyl und R4=
Figure imgf000008_0001
damit ergibt sich
Figure imgf000008_0002
Formel Ild
Die erfindungsgemäßen UV-Schutzschichten aus gehärteten Lackformulierungen enthalten dabei O bis 5 Gew.-%, bevorzugt O bis 3 Gew.-%, besonders bevorzugt 0,5 bis 2 Gew.-% der Verbindung der Formel (II) bezogen auf den Feststoffgehalt der Lackformulierung. Bei Verwendung der besonders bevorzugten Menge des besonders bevorzugten HALS Systems (II) reduziert sich die notwendige Menge an UV-Absorber (I) auf bevorzugt >10 Gew.-% bei einer Schichtdicke nach Applizieren und Härten von lμm, bevorzugt ≥2 Gew.-% bei 5 μm bzw. bevorzugt >l Gew.-% bei 10 μm.
Auch im Fall der UV-Schutzschichten aus Koextrusionsschichten bzw. aus Folien können HALS- Systeme in Mengen von 0 bis 3 Gew.-% eingesetzt werden. Hier sind jedoch aufgrund der höheren Verarbeitungstemperaturen höhermolekulare HALS-Systeme zu bevorzugen, bei denen die funktionelle Gruppe
Figure imgf000008_0003
der allgemeinen Formel II mehr als zweimal pro Molekül enthalten ist.
Besonders bevorzugt sind hochmolekulare HALS-Systeme, deren Gewichtsverlust bei 3000C bestimmt über TGA mit einer Heizrate von 2O0C pro min in Luft <3 Gew.-% ist, wie beispiels- weise bei Chimassorb 119 der Firma Ciba Specialty Chemicals (Formel He)
Figure imgf000009_0001
Formel IIe
Geeignete Polycarbonate für die zweite Schicht (B) der erfindungsgemäßen mehrschichtigen Erzeugnisse sind alle bekannten Polycarbonate, dies können Homopolycarbonate, Copolycarbonate und thermoplastische Polyestercarbonate sein.
Sie haben bevorzugt mittlere Molekulargewichte M w von 18.000 bis 40.000, vorzugsweise von 22.000 bis 36.000 und insbesondere von 24.000 bis 33.000, ermittelt durch Messung der relativen Lösungsviskosität in Dichlormethan oder in Mischungen gleicher Gewichtsmengen Phenol/o- Dichlorbenzol geeicht durch Lichtstreuung.
Zur Herstellung von Polycarbonaten sei beispielhaft auf „Schnell, Chemistry and Physics of Polycarbonats, Polymer Reviews, Vol. 9, Interscience Publishers, New York, London, Sydney 1964", und auf „D.C. PREVORSEK, B.T. DEBONA and Y. KESTEN, Corporate Research Center, Allied Chemical Corporation, Moristown, New Jersey 07960, 'Synthesis of Poly(ester)carbonate Copolymers' in Journal of Polymer Science, Polymer Chemistry Edition, Vol. 19, 75-90 (1980)", und auf „D. Freitag, U. Grigo, P.R. Müller, N. Nouvertne, BAYER AG, 'Polycarbonates' in Encyclopedia of Polymer Science and Engineering, Vol. 11, Second Edition, 1988, Seiten 648-718" und schließlich auf „Dres. U. Grigo, K. Kircher und P.R. Müller 'Polycarbonate' in Becker/Braun, Kunststoff-Handbuch, Band 3/1, Polycarbonate, Polyacetale, Polyester, Celluloseester, Carl Hanser Verlag München, Wien 1992, Seiten 117-299" verwiesen. Die Herstellung der Polycarbonate erfolgt vorzugsweise nach dem Phasengrenzflächenverfahren oder dem Schmelze-Umesterungsverfahren und wird im Folgenden beispielhaft an dem Phasengrenzflächenverfahren beschrieben.
Als Ausgangsverbindungen bevorzugt einzusetzende Verbindungen sind Bisphenole der allge- meinen Formel
HO-R-OH,
worin R ein divalenter organischer Rest mit 6 bis 30 Kohlenstoffatomen ist, der eine oder mehrere aromatische Gruppen enthält.
Beispiele solcher Verbindungen sind Bisphenole, die zu der Gruppe der Dihydroxydiphenyle, Bis(hydroxyphenyl)alkane, Indanbisphenole, Bis(hydroxyphenyl)ether, Bis(hydroxyphenyl)- sulfone, Bis(hydroxyphenyl)ketone und α,α'-Bis(hydroxyphenyl)- diisopropylbenzole gehören.
Besonders bevorzugte Bisphenole, die zu den vorgenannten Verbindungsgruppen gehören, sind Bisphenol-A, Tetraalkylbisphenol-A, 4,4-(meta-Phenylendiisopropyl) diphenol (Bisphenol M), 4,4-(para-Phenylendiisopropyl) diphenol, l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan (BP-TMC) sowie gegebenenfalls deren Gemische.
Bevorzugt werden die erfindungsgemäß einzusetzenden Bisphenolverbindungen mit Kohlensäureverbindungen, insbesondere Phosgen, oder beim Schmelzeumesterungsprozess mit Diphenyl- carbonat bzw. Dimethylcarbonat, umgesetzt.
Polyestercarbonate werden bevorzugt durch Umsetzung der bereits genannten Bisphenole, mindestens einer aromatischen Dicarbonsäure und gegebenenfalls Kohlensäureäquivalente erhalten. Geeignete aromatische Dicarbonsäuren sind beispielsweise Phthalsäure, Terephthalsäure, Isophthalsäure, 3,3'- oder 4,4'-Diphenyldicarbonsäure und Benzophenondicarbonsäuren. Ein Teil, bis zu 80 Mol.-%, vorzugsweise von 20 bis 50 Mol-% der Carbonatgruppen in den Polycarbonaten können durch aromatische Dicarbonsäureester-Gruppen ersetzt sein.
Beim Phasengrenzflächenverfahren verwendete inerte organische Lösungsmittel sind beispielsweise Dichlormethan, die verschiedenen Dichlorethane und Chlorpropanverbindungen, Tetrachlormethan, Trichlormethan, Chlorbenzol und Chlortoluol, vorzugsweise werden Chlorbenzol oder Dichlormethan bzw. Gemische aus Dichlormethan und Chlorbenzol eingesetzt.
Die Phasengrenzflächenreaktion kann durch Katalysatoren wie tertiäre Amine, insbesondere N- Alkylpiperidine oder Oniumsalze beschleunigt werden. Bevorzugt werden Tributylamin, Triethyl- amin und N-Ethylpiperidin verwendet. Im Falle des Schrnelzeumesterungsprozesses werden bevorzugt die in DE-A 4 238 123 genannten Katalysatoren verwendet.
Die Polycarbonate können durch den Einsatz geringer Mengen Verzweiger bewusst und kontrolliert verzweigt werden. Einige geeignete Verzweiger sind: Phloroglucin, 4,6-Dimethyl-2,4,6-tri- (4-hydroxyρhenyl)-hepten-2; 4,6-Dimethyl-2,4,6-tri-(4-hydroxyphenyl)-heptan; l,3,5-Tri-(4-hy- droxyphenyl)-benzol; 1 , 1 , l-Tri-(4-hydroxyphenyl)-ethan; Tri-(4-hyάroxyphenyl)-phenylmethan; 2,2-Bis-[4,4-bis-(4-hydroxyphenyl)-cyclohexyl]-propan; 2,4-Bis-(4-hydroxyphenyl-isopropyl)- phenol; 2,6-Bis-(2-hydroxy-5'-methyl-benzyl)-4-methylphenol; 2-(4-Hydroxyphenyl)-2-(2,4- dihydroxyphenyl)-propan; Hexa-(4-(4-hydroxyphenyl-isopropyl)-phenyl)-orthoterephthalsäure- ester; Tetra-(4-hydroxyphenyl)-methan; Tetra-(4-(4-hydroxyphenyl-isopropyl)-phenoxy)-methan; α,α>'α"-Tris-(4-hydroxyphenyl)-l,3,5-triisopropylbenzol; 2,4-Dihydroxybenzoesäure; Trimesin- säure; Cyanurchlorid; 3,3-Bis-(3-methyl-4-hydroxyphenyl)-2-oxo-2,3-dihydroindol; l,4-Bis-(4',4"- dihydroxytriphenyl)-methyl)-benzol und insbesondere: l,l,l-Tri-(4-hydroxyphenyl)-ethan und Bis- (3 -methyl-4-hydroxyphenyl)-2-oxo-2,3 -dihydroindol .
Die gegebenenfalls mitzuverwendenden 0,05 bis 2 Mol-%, bezogen auf eingesetzte Diphenole, an Verzweigern bzw. Mischungen der Verzweigern, können mit den Diphenolen zusammen eingesetzt werden aber auch in einem späteren Stadium der Synthese zugegeben werden.
Als Kettenabbrecher werden bevorzugt Phenole wie Phenol, Alkylphenole wie Kresol und 4-tert- Butylphenol, Chlorphenol, Bromphenol, Cumylphenol oder deren Mischungen verwendet in Mengen von 1 - 20 Mol-%, bevorzugt 2 - 10 Mol-% je Mol Bisphenol. Bevorzugt sind Phenol, 4- tert.-Butylphenol bzw. Cumylphenol.
Kettenabbrecher und Verzweiger können getrennt oder aber auch zusammen mit dem Bisphenol den Synthesen zugesetzt werden.
Die Herstellung der Polycarbonate nach dem Schmelzeumesterungsprozess ist in DE-A 4238 123 beispielhaft beschrieben.
Erfindungsgemäß bevorzugte Polycarbonate für die zweite Schicht des erfϊndungsgemäßen mehrschichtigen Erzeugnisses sind das Homopolycarbonat auf Basis von Bisphenol A, das- Homopolycarbonat auf Basis von l,l-Bis-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexan und die Copolycarbonate auf Basis der beiden Monomere Bisphenol A und l,l-Bis-(4-hydroxyphenyl)- 3,3,5-trimethylcyclohexan.
Das Homopolycarbonat auf Basis von Bisphenol A ist besonders bevorzugt. Das Polycarbonat kann Stabilisatoren enthalten. Geeignete Stabilisatoren sind beispielsweise Phosphine, Phosphite oder Si enthaltende Stabilisatoren und weitere in EP-A 0 500 496 beschriebene Verbindungen. Beispielhaft seien Triphenylphosphite, Diphenylalkylphosphite, Phenyl- dialkylphosphite, Tris-(nonylphenyl)phosphit, Tetrakis-(2,4-di-tert.-burylphenyl)-4,4'-biphenylen- diphospqnit und Triarylphosphit genannt. Besonders bevorzugt sind Triphenylphosphin und Tris- (2,4-di-tert.-butylρhenyl)phosphit.
Ferner kann die Polycarbonat enthaltende zweite Schicht (B) des erfϊndungsgemäßen mehrschichtigen Erzeugnisses 0,01 bis 0,5 Gew.-% der Ester oder Teilester von ein- bis sechswertigen Alkoholen, insbesondere des Glycerins, des Pentaerythrits oder von Guerbetalkoholen enthalten.
Einwertige Alkohole sind beispielsweise Stearylalkohol, Palmitylalkohol und Guerbetalkohole.
Ein zweiwertiger Alkohol ist beispielsweise Glycol.
Ein dreiwertiger Alkohol ist beispielsweise Gylcerin.
Vierwertige Alkohole sind beispielsweise Pentaerythrit und Mesoerythrit.
Fünfwertige Alkohole sind beispielsweise Arabit, Ribit und Xylit.
Sechswertige Alkohole sind beispielsweise Mannit, Glucit (Sorbit) und Dulcit.
Die Ester sind bevorzugt die Monoester, Diester, Triester, Tetraester, Pentaester und Hexaester oder deren Mischungen, insbesondere statistische Mischungen, aus gesättigten, aliphatischen C10 bis C36-Monocarbonsäuren und gegebenenfalls Hydroxy-Monocarbonsäuren, vorzugsweise mit gesättigten, aliphatischen Q4 bis C32-Monocarbonsäuren und gegebenenfalls Hydroxy-Mono- carbonsäuren.
Die kommerziell erhältlichen Fettsäureester, insbesondere des Pentaerythrits und des Glycerins, können herstellungsbedingt <60 % unterschiedlicher Teilester enthalten.
Gesättigte, aliphatische Monocarbonsäuren mit 10 bis 36 C- Atomen sind beispielsweise Caprin- säure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Hydroxystearinsäure, Arachin- säure, Behensäure, Lignocerinsäure, Cerotinsäure und Montansäuren.
Bevorzugte gesättigte, aliphatische Monocarbonsäuren mit 14 bis 22 C-Atomen sind beispielsweise Myristinsäure, Palmitinsäure, Stearinsäure, Hydroxystearinsäure, Arachinsäure und Behensäure. Besonders bevorzugt sind gesättigte, aliphatische Monocarbonsäuren wie Palmitinsäure, Stearinsäure und Hydroxystearinsäure.
Die gesättigten, aliphatischen Cj0 bis C36-Carbonsäuren und die Fettsäureester sind als solche entweder literaturbekannt oder nach literaturbekannten Verfahren herstellbar. Beispiele für Pentaerythritfettsäureester sind die der besonders bevorzugten, vorstehend genannten Monocarbonsäuren.
Besonders bevorzugt sind Ester des Pentaerythrits und des Glycerins mit Stearinsäure und Palmitinsäure.
Besonders bevorzugt sind auch Ester von Guerbetalkoholen und des Glycerins mit Stearinsäure und Palmitinsäure und gegebenenfalls Hydroxystearinsäure.
Die erfmdungsgemäßen mehrschichtigen Erzeugnisse können organische Farbstoffe, anorganische Farbpigmente, Fluoreszenzfarbstoffe und besonders bevorzugt optische Aufheller enthalten.
Die Herstellung der erfϊndungsgemäßen UV-Schutz-Schichten (A) bzw. (C) erfolgt entweder über die Herstellung eines Compounds (a) aus (al) einem Polyalkyl(rneth)acrylat, bestehend aus Alkyl(meth)acrylat, bevorzugt mit Alkylkettenlängen unter 10 Kohlenstoffatomen (-CnH2n+l mit n < 10), besonders bevorzugt ausschließlich mit n=l (Methylmethacrylat) und (a2) einem biphenylsubstituierten Triazins der allgemeinen Formel (I). Anschließend wird das Compound (a) entweder (i) mit Polycarbonat in der Weise koextrudiert, dass sich eine dünne UV-Schutzschicht aus Compound (a) gut haftend auf der Polycarbonatoberfläche befindet, oder (ii) das Compound (a) wird zu einer dünnen Folie weiterverarbeitet, die anschließend mit Polycarbonat zu einem gut haftenden Verbund hinterspritzt oder laminiert wird.
Alternativ erfolgt die Herstellung der erfindungsgemäßen UV-Schutz-Schichten (A) bzw. (C) über das Einbringen (b2) eines biphenylsubstituierten Triazins der allgemeinen Formel (I) in eine Lackformulierung (b) enthaltend (bl) ein Polyalkyl(meth)acrylatharz, enthaltend Methylmethacrylat als Hauptkomponente und eventuell ein weiteres Alkylmethacrylat mit längerer, linearer oder verzeigter Alkylkette (-CnH2n+i mit n>l), bevorzugt 1 < n < 10, besonders bevorzugt linear mit n = 3 (Butylmethacrylat), und einem oder mehreren Lösemitteln, sowie eventuell weiteren Lackadditiven wie beispielsweise Füllstoffe, Verlaufmittel, Radikalfänger usw.. Anschließend wird die UV-Absorber-haltige Lackformulierung (b) mittels Fluten, Tauchen, Sprühen, Aufwalzen oder Aufschleudern auf die Oberfläche eines Polycarbonatformteils aufgebracht und anschließend physikalisch getrocknet, so dass sich eine gut haftende Beschichtung auf PC ergibt. Ein weiterer Vorteil der so hergestellten erfϊndungsgemäßen mehrschichtigen Erzeugnisse liegt darin, dass sich die UV-Schutzschicht mit kratzfesten bzw. abriebbeständigen Beschichtungs- systemen überbeschichten lässt. Dazu wird eine Formulierung eines kratzfesten bzw. abriebsbeständigen Lackes beispielsweise aber nicht ausschließlich ein Polysiloxanlack, eine Silikat- beschichtung (Wasserglas), oder auch eine nanopartikelhaltige Formulierung durch Fluten, Tauchen, Sprühen, Aufwalzen oder Aufschleudern auf die Oberfläche der UV-Schutzschicht aufgebracht und anschließend zu einem gut haftenden Verbund PC / UV-Schutz-Schicht / Kratz- fest-Schicht ausgehärtet.
Erfindungsgemäß sind diejenigen mehrschichtigen Erzeugnis bevorzugt, die ausgewählt sind aus der Gruppe bestehend aus Platten, Folien und dreidimensionalen Formteilen.
Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung besagter mehrschichtiger Erzeugnisse insbesondere für Außenanwendungen mit dauerhaft hohen Anforderungen hinsichtlich des visuellen Eindrucks, wie beispielsweise der Verscheibung.
Die Erfindung wird durch die folgenden Beispiele weiter erläutert ohne auf diese beschränkt zu sein. Die erfindungsgemäßen Beispiele geben lediglich bevorzugte Ausführungsformen der vorliegenden Erfindung wieder.
- -
Beispiele
Beispiel 1:
Bisphenol A Polycarbonat (Typ Makrolon 2808 (mittelviskoses BPA-PC (MFR 10 g/l 0min nach ISO 1133 bei 3000C und 1,2kg), ohne UV-Stabilisierung) beschichtet mit einer UV-Schutz-Schicht aus CGL 479 der Firma Ciba Specialty Chemicals (biphenylsύbstituiertes Triazin der Formel I mit X=OCH(CH3)COOC8H17) in einer PMMA-Lack-Matrix
Herstellung der Lackformulierung:
Zur Bestimmung des Feststoffgehaltes der verwendeten Lackformulierung wurden 4 g eines Polymethacrylats bestehend aus 92 Gew.-% Methylmethacrylat und 8 Gew.-% Butylmethacrylat (bestimmt über 1H-NMR, Mw=41,5 kg/mol bestimmt über GPC kalibriert auf PS) gelöst in einer Mischung aus Ethylacetat, Methoxypropanol; Diacetonalkohol und Butanon mit 2 g eines als Verdünner eingesetzten Lösemittelgemisches aus Ethylacetat, Butanol und Methoxypropanol 1 h bei 1000C eingeengt und der zurückbleibende Feststoff ausgewogen. Die erhaltenen 0,874g entsprechen einem Feststoffgehalt von 14,56 %.
20 g des als Verdünner eingesetzten Lösemittelgemisches (s.o.) werden mit 0,874 g CGL 479 versetzt (dies entspricht 10 Gew.-% bezogen auf den Feststoffgehalt des Lackes ohne UV- Absorber) und ca. 5 min bei RT gerührt. Zu dieser homogenen Lösung wurden 40 g des gelösten Polymethacrylats (s.o.) gegeben und noch mal ca. 5 min bei RT gerührt, wodurch die einsatzbereite homogene UV-Schutz-Lackformulierung erhalten wurde
Beschichtung der Substrate mit der UV-Schutz-Lackformulierung:
Die verwendeten spritzgegossenen Polycarbonat-Platten in optischer Qualität aus Makrolon 2808 der Größe 10 x 15 x 0,32cm wurden gereinigt, getrocknet und mit ionisierter Luft abgeblasen. Anschließend wurde die UV-Schutz-Lackformulierung im Flutverfahren aufgebracht, abgelüftet und danach für 30 min bei 500C in einem Umlufttrockenschrank gehärtet. Die Dicke der so erhaltenen transparenten Beschichtung wurde mittels eines Eta SD 30 der Firma Eta Optik GmbH zu 7 bis 10 μm entlang der Platte in Flutrichtung bestimmt.
Untersuchung der Haftung der UV-Schutzschicht auf dem PC-Substrat:
Es wurden folgende Haftungstests a.) Klebebandabriss (verwendetes Klebeband 3M 898) ohne und mit Gitterschnitt (analog zu ISO 2409 bzw. ASTM D 3359); b.) Klebebandabriss nach 4 h Lagerung in kochendem Wasser; c.) Klebebandabriss nach 10 Tagen Lagerung in ca. 65°C - -
warmem Wasser (analog ISO 2812-2 und ASTM 870-02) durchgeführt und alle bestanden, d.h. es kam zu keinerlei Abriss der Beschichtung (Bewertung 0 gemäß ISO 2409 bzw. 5B gemäß ASTM D 3359).
Bestimmung der UV-Absorber-Degradation von CGL 479 in der hergestellten UV-Schutz-Schicht auf Makrolon 2808 in einem Atlas Ci 5000 Weatherometer mit einer Bestrahlungsstärke von 0,75 W/m2/nm bei 340 nm und einem Trocken/-Beregnungszyklus von 102:18 Minuten:
Die Anfangsextinktion der Beschichtung aus Beispiel 1 beträgt bei 340 nm 5.0 und weist eine Degradation von 0.049 MP1 auf. Daraus ergibt sich eine UV-Filterwirkung dieser UV- Schutzschicht von deutlich mehr als 30 MJ/m2 bei 340 nm (entspricht 10 Jahre Florida) bzw. umgerechnet in eine Vergilbungszunahme nach 30 MJ/m2 bei 340 nm für Polycarbonat des Typs AL 2647 (mittelviskoses Bisphenol A-Polycarbonat mit UV-Stabilisator und Formtrermmittel; MFR 13 g/10min nach ISO1133 bei 3000C und 1,2kg) von Δ YI gleich 0,1 und erfüllt damit die erfmdungsgemäße Aufgabe nach 10 Jahren Florida ein Δ YI von nicht mehr als 3 Einheiten zu erreichen.
Der Yellowness-Index wird wie folgt berechnet: Man bestimmt zunächst die wellenlängenabhängige Vergilbung des Materials nach der spektralen Empfindlichkeitsmethode (Interpretation of the spectral sensivity and of the activation spectrum of polymers, P. Trubiroha, Tagungsband der XXJJ. Donauländergespräche, 17.8.2001, Berlin, Seite 4-1). Dann berechnet man die spektrale Verteilung des UV-Lichtes der Sonne hinter der UV-Schutzschicht. Aus diesen beiden Datensätzen lässt sich auf bekannte Weise durch eine Faltung und Aufintegration über die Zeit die Vergilbung nach Bewitterung berechnen. (Grundsätzliches zur Lebensdauervorhersage in der Bewitterung, A. Geburtig, V. Wachtendorf, Tagungsband 34. Jahrestagung der Gesellschaft für Umweltsimulation, Umwelteinflüsse erfassen, simulieren und bewerten, 2.3. 2005, Pfinztal, Seite 159).
Bei Kenntnis der spektralen Empfindlichkeit SR, lässt sich die Vergilbung während der Bewitterung mit der folgenden Formel berechnen:
T 400 nm
AYI= J jrμ) * 1 (T^'0 * SR(λ, YI) dλ dt
0 2S0nm
Darin ist Δ YI die Änderung des Gelbwerts YI des Substratmaterials, das durch den UV-Absorber geschützt werden muss. T ist die Bewitterungszeit und F ist das Bewitterungsspektram. Ext(λ,t) ist die wellenlängenabhängige und mit der Zeit durch Degradation abnehmende Extinktion des UV- Absorbers und SR (λ,YT) die Wellenlängen- und gelbwertabhängige spektrale Empfindlichkeit des Substratmaterials. Mit dieser Formel kann die Vergilbung des Substratmaterials berechnet werden. Da die Formel jedoch nicht anlalytisch lösbar ist, muss die Berechnung numerisch erfolgen.
Die Kombination aus UV-Absorber CGL 479 und Laclcmatrix erfüllt also die Anforderungen hinsichtlich Extinktion und Degradation und führt daher zu einer geringen Vergilbung.
Beispiel 2:
Vergleichsbeispiel identisch mit Beispiel 1 bis auf die Verwendung eines nicht erfindungsgemäßen UV-Absorbers (Chimassorb 81). Die Herstellung der UV-Schutzschicht erfolgt analog zu Beispiel 1, wobei anstatt 10 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung an CGL 479 10 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung an Chimassorb 81 (2-Hydroxy-4-(octyloxy)benzophenon der Firma Ciba Specialty Chemicals) eingesetzt wurde.
Beispiel 3:
Vergleichsbeispiel identisch mit Beispiel 1 bis auf die Verwendung einer für die mittlere Schichtdicke von ca. 8,5 μm zu geringen Menge von lediglich 1 Gew.-% an dem UV-Absorber CGL 479. Die Herstellung der UV-Schutzschicht erfolgt analog zu Beispiel 1, wobei anstatt 10 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung an CGL 479 lediglich 1 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung an CGL 479 eingesetzt wurde.
Beispiel 4:
Vergleichsbeispiel identisch mit Beispiel 3 bis auf die zusätzliche Verwendung des HALS Systems Tinuvin 123 (Bis(l-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)decandisäureester, Formel 1Id mit n=8 und R1==C8H17 der Firma Ciba Specialty Chemicals). Durch die dadurch ereichte zusätzliche Stabilisierung des UV-Absorbers CGL 479, wird trotz der allein zu geringen Menge an UV-Absorber von nur 1 Gew.-% bei der mittleren Schichtdicke von ca. 8,5 μm wieder ein erfindungsgemäße Formulierung mit entsprechender Langzeitstabilität erreicht.
Figure imgf000018_0001
Beispiel 5;
Die Verwendung des UV-Absorbers CGL 479 in einer Lackformulierung auf Basis von Polycarbonat, appliziert und gehärtet auf einem PC-Substrat, führt zu einer hoch UV-Absorber- haltigen PC-Oberfläche, und offenbart durch die experimentell bestimmte, ungenügende UV- Filterwirkung die Bedeutung der Lackmatrix für den Aufbau einer erfmdungsgemäßen UV- Schutzschicht.
Herstellung der Lackformulierung:
In 75 g Methylenchlorid wurden 25 g Bisphenol A Polycarbonat (Typ Makrolon 2808) gelöst und - mit 125 mg CGL 479 (0,5 Gew.-% bezogen auf den Feststoffgehalt der Lackformulierung) der Firma Ciba Specialty Chemicals (biphenylsubstituiertes Triazin der Formel I mit X=OCH(CH3)COOC8H17) versetzt. Beschichtung der PC-Substrate mit der Lackformulierung:
Die verwendeten spritzgegossenen Polycarbonat-Platten in optischer Qualität aus Makrolon 2808 der Größe 10 x 15 x 0,32cm wurden gereinigt, getrocknet und mit ionisierter Luft abgeblasen. Anschließend wurde die Lackformulierung mit Hilfe eines Rakels aufgebracht, und bei Raumtemperatur bis zur Trockene ablüften gelassen. Die Dicke der so erhaltenen transparenten Beschichtung wurde mittels eines Eta SD 30 der Firma Eta Optik GmbH zu ca. 23 μm bestimmt.
Die Bestimmung der UV-Absorber-Abbaurate erfolgte, wie in Beispiel 1 beschrieben. Die Anfangsextinktion der Beschichtung aus Beispiel 5 beträgt bei 340 nm 1,3 und weist eine Degradation von 0,096 MJ"1 auf und damit über 4 mal soviel wie in Beispiel 3, das über eine vergleichbare Anfangsextinktion verfügt. D.h. mit dieser Schutzschicht wird lediglich eine UV- Filterwirkung für ca.12 MJ/m2 erreicht. Umgerechnet in eine Vergilbungszunahme nach 30 MJ/m2 bei 340 nm (entspricht 10 Jahre Florida) für Polycarbonat des Typs AL 2647 (siehe Beispiel 1) ergibt dies einen Δ YI - Wert von 18,1, womit die erfϊndungsgemäßen Anforderungen nicht erfüllt werden.
Beispiel 6:
Aufbau: Bisphenol A Polycarbonat (Typ Makrolon AL 2647 (mittelviskoses Bisphenol A-PoIy- carbonat mit UV-Stabilisator und Formtrennmittel; MFR 13 g/l 0min nach ISOl 133 bei 3000C und 1,2 kg)) / UV-Schutz-Schicht mit CGL 479 als UV-Absorber in einer PMMA-Lackmatrix / abriebsfester Decklack auf Basis eines Siloxanlacks
Herstellung der Lackformulierung:
Zunächst wurde wieder wie unter Beispiel 1 beschrieben der Feststoffgehalt des Lackes bestehend aus einer 2 zu 1 Mischung des gelösten Polymethacrylats aus Beispiel 1 und dem als Verdünner eingesetzten Lösemittelgemischs (siehe ebenfalls Beispiel 1), diesmal zu 13,23 %, bestimmt.
12 g des gelösten Polymethacrylats (siehe Beispiel 1) werden mit 6 g des als Verdünner eingesetzten Lösemittelgemischs (siehe ebenfalls Beispiel l)versetzt und ca. 5 min gerührt. Zu dieser homogenen Lösung werden nacheinander 0,119 g CGL 479 (entspricht 5 Gew.-% bezogen auf den oben bestimmten Feststoffgehalt ohne UV-Absorber), 0,024 g eines HALS-Systems (Tin. 123 (Bis(l-octyloxy-2,2,6,6-tetramethyl-4-piperidyl)decandisäureester, Formel Ud mit n=8 & R1=C8H17 der Firma Ciba Specialty Chemicals) (entspricht 1 Gew.-% bezogen auf den oben bestimmten Feststoffgehalt ohne die weiteren Zusätze), sowie 0,091 g eines Verlaufsmittels (BYK 347 der Firma BYK-Chemie GmbH) (entspricht 0,5 Gew.-% bezogen auf die gesamte Menge Lack ohne Verlaufsmittel) gegeben. Nach weiteren ca. 5 min rühren ist die Lackformulierung einsatzbereit.
Beschichtung der Substrate mit der UV-Schutz-Lackformulierung:
Die verwendeten spritzgegossenen Polycarbonat-Platten in optischer Qualität aus Makrolon AL2647 (s.o.) der Größe 10 x 15 x 0,32cm wurden gereinigt, mit obiger Lackformulierung beschichtet und anschließend gehärtet.
Überbeschichtung der UV-Schutz-Schicht mit einem abriebsfesten Decklack:
Der im Kühlschrank bei ca. 8°C gelagerte Siloxanlack (Silvue MP 100) der Firma SDC Technologie Inc. wird unter Rühren auf Raumtemperatur gebracht. Die mit der UV-Schutzschicht versehenen AL 2647 Platten werden auf der beschichteten Seite mit ionisierter Luft abgeblasen, mit dem Silvue MP 100 Lack im Flutverfahren in der gleichen Fließrichtung wie beim UV-Schutz- Lack überbeschichtet, anschließend abgelüftet und danach für 1 h bei 1000C in einem Umluft- trockenschrank gehärtet. Die Gesamtdicke der so erhaltenen optisch einwandfreien, transparenten zweilagigen Beschichtung aus UV-Schutz-Schicht und Decklack wurde mittels eines Eta SD 30 der Firma Eta Optik GmbH zu 8 bis 14 μm entlang der Platte in Flutrichtung bestimmt.
Untersuchung der Haftung PC / UV-Schutz-Schicht / Decklack:
Die Haftung des Aufbaus Makrolon AL2647 / UV-Schutz-Schicht / Silvue MP 100 wurde nach den in Beispiel 1 beschriebenen drei Methoden getestet und bestanden.
Beispiel 7:
Coextrudierte Folien mit dem Aufbau Bisphenol A Polycarbonat (Typ Makrolon 3108 (hochviskoses BPA-PC (MFR 6,5 g/10min nach ISO 1133 bei 3000C und 1,2 kg) ohne UV- Stabilisierung)) / UV-Schutz-Coexschicht aus CGX UVA 006 der Firma Ciba Specialty Chemicals (biphenylsubstituiertes Triazin der Formel I mit X=OCH2CH(CH2CH3)C4H9) in einer PMMA- Matrix aus Plexiglas 8H (PMMA mit einem Mw von 103,5 kg/mol bestimmt über GPC kalibriert auf PS) der Firma Röhm GmbH & Co. KG
Herstellung des UV-Schutz-Compounds:
Zu 14,25 kg bei 1000C 3 h vorgetrocknetem Plexiglas 8H wurden auf einem Zweischneckenextruder (ZSK 32/3) bei einer Drehzahl von 150 min"1 750 g des UV-Absorbers CGX UVA 006 (entspricht 5 Gew.-%) zudosiert. Die Massentemperatur betrug 2600C und das erhaltene Granulat war klar und transparent. Herstellung der Coexfolie:
Bei der Herstellung der einseitigen Coexfolie wurde das Basismaterial Makrolon 3108 nach Vortrocknung (4h bei 1200C) auf dem Haupextruder (Drehzahl 65,7 min"1, Massetemperatur 2960C und Massedruck 99 bar) aufgeschmolzen. Von der anderen Seite wurde das Coexmaterial bestehend aus dem bei 1000C 3h vorgetrocknetem UV-Schutz-Compound (siehe oben) über einen Coextruder (Drehzahl 10 min"1, Massetemperatur 286°C und Massedruck 54 bar) zugeführt und gemeinsam mit dem Basismaterial über eine Plattendüse auf ein Walzwerk übertragen. Die so erhaltene Coexfolie hatte eine Basismaterialdicke von etwa 400 μm und eine UV-Coexschutz- schicht von etwa lOμm.
Die Bestimmung der UV-Absorber-Degradation von CGX UVA 006 in der UV-Coexschutzschicht auf Makrolon 3108 erfolgte wie in Beispiel 1 beschrieben. Die Anfangsextinktion der Coexschicht beträgt bei 340 nm 3,3 und weist eine Degradation von 0.036 MJ"1 auf und bietet damit einen UV Schutzwirkung für >30 MJ/m2 bei 340nm, d.h. diese UV-Schutzschicht erfüllt die erfmdungs- gemäßen Anforderungen bezüglich Langzeitstabilität. Umgerechnet in eine Vergilbungszunahme nach 30 MJ/m2 bei 340nm (entspricht 10 Jahre Florida) für Polycarbonat des Typs AL 2647 (siehe Beispiel 1) ergibt dies einen Δ YI - Wert von 0,5.
Beispiel 8:
Vergleichsbeispiel analog Beispiel 7, aber unter Verwendung einer nicht erfindungsgemäßen Matrix für die UV-Coexschicht bestehend aus Plexiglas HW55 (Copolymerisat aus 83 Gew.-% Methylmethacrylat mit 17 Gew.-% Styrol bestimmt über 1H-NMR; Mw=146,8 kg/mol bestimmt über GPC kalibriert auf PS)
Die Anfangsextinktion dieser aus Plexiglas HW55 mit 5 Gew.-% CGX UVA 006 analog zu Beispiel 7 hergestellten Coexschicht beträgt bei 340 nm 3,7 und weist eine Degradation von 0.19 MJ"1 auf und bietet damit einen UV Schutzwirkung von lediglich 21 MJ/m2 bei 340nm, bzw. umgerechnet in eine Vergilbungszunahme nach 30 MJ/m2 bei 340 nm (entspricht 10 Jahre Florida) für Polycarbonat des Typs AL 2647 (siehe Beispiel 1) ein Δ YI - Wert von 8,3, d.h. diese UV- Schutzschicht erfüllt die erfindungsgemäßen Anforderungen bezüglich Langzeitstabilität nicht.

Claims

Patentansprüche
1. Mehrschichtiges Erzeugnis umfassend eine erste Schicht (A) und eine zweite Schicht (B), wobei die erste Schicht (A) eine UV-Schutzschicht aus Polyalkyl(meth)acrylat mit einer Schichtdicke von 1 μm bis 2 mm ist, die 0,01 bis 20 Gewichtsprozent (bezogen auf (A)) eines UV-Stabilisators gemäß Formel (T) enthält
Figure imgf000022_0001
wobei X OR1 ; OCH2CH2OR1; OCH2CH(OH)CH2OR1 oder OCH(R2)COOR3 bedeutet, dabei steht R1 für jeweils verzweigtes oder unverzweigtes Ci-C13-Alkyl, C2-C20-Alkenyl, C6-Ci2-Aryl oder -CO-CrCiS-Alkyl, R2 steht für H oder verzweigtes oder unverzweigtes C1-C8-AIkVl, und R3 steht für CrC12-Alkyl; C2-C12-Alkenyl oder C5-C6-Cycloalkyl,
und die zweite Schicht ein Polycarbonat enthält.
2. Mehrschichtiges Erzeugnis gemäß Anspruch 1, wobei Schicht (A) eine gehärtete Lackformulierung mit einer Schichtdicke von 1 bis 100 μm ist und der Anteil an UV-Absorber der Formel (T) 0,5 bis 20 Gew.-%, bezogen auf die Schicht (A) beträgt.
3. Mehrschichtiges Erzeugnis gemäß Anspruch 1, wobei Schicht (A) eine Koextru- sionsschicht mit einer Schichtdicke von 1 bis 500 μm ist und der Anteil an UV-Absorber der Formel (I) 0,05 bis 20 Gew.-% bezogen auf die Schicht (A) beträgt.
4. Mehrschichtiges Erzeugnis gemäß Anspruch 1, wobei Schicht (A) eine Folie mit einer Schichtdicke von 2 μm bis 2 mm ist und der Anteil an UV-Absorber der Formel (T) 0,01 bis 20 Gew.-% bezogen auf die Schicht (A) beträgt.
5. Mehrschichtiges Erzeugnis gemäß einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, dass die Schicht (A) bis zu 5 Gew.-% bezogen auf die Schicht (A) eines Stabilisators der Formel (D) enthält
Figure imgf000023_0001
wobei Y für H; R1 oder OR1 steht und R1 die gleiche Bedeutung wie in Formel (I) hat und
R4 steht für -Z-R -Z-R6 oder
Figure imgf000023_0002
wobei-
Z- eine divalente funktionelle Gruppe wie -COO-; -NH- oder -NHCO-ist
R5 ein divalenter organischer Rest wie-(CH2)n- mit n=0 bis 12; C=CH-Ph-OCH3 ;
Figure imgf000023_0003
R6 H oder CrC20Alkyl ist.
6. Mehrschichtiges Erzeugnis gemäß Anspruch 2 dadurch gekennzeichnet, dass die Schicht (A) 0,5 bis 2 Gew.-% bezogen auf die Schicht (A) eines Stabilisators der Formel (II) enthält
Figure imgf000024_0001
wobei Y und R4 dieselbe Bedeutung wie in Anspruch 5 haben.
Mehrschichtiges Erzeugnis gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass es eine zusätzliche Schicht (C) aufweist, wobei die Schicht (C) eine UV-Schutzschicht aus Polyalkyl(meth)acrylat mit einer Schichtdicke von 1 μm bis 2 mm ist, die 0.01 bis 20 Gewichtsprozent (bezogen auf (A)) eines UV-Stabilisators gemäß Formel (I) enthält
Figure imgf000024_0002
wobei X OR1; OCH2CH2OR1; OCH2CH(OH)CH2OR1 oder OCH(R2)COOR3 bedeutet, wobei R1 für jeweils verzweigtes oder unverzweigtes Ci-Ci3-Alkyl, C2-C20-Alkenyl, C6- C12-Aryl oder -CO-Ci-Cig-Alkyl steht, R2 für H oder verzweigtes oder unverzweigtes Q- C8-Alkyl steht, und R3 für CrCi2-Alkyl; C2-Ci2-Alkenyl oder C5-C6-Cycloalkyl steht, und
die Schichtfolge (A)-(B)-(C) beträgt.
Mehrschichtiges Erzeugnis gemäß einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es auf der Schicht (A) (und optional auch auf Schicht (C) oder Schicht (B)) eine zusätzliche kratzfeste bzw. abriebbeständige Lackschicht auf Basis eines Polysiloxanlacks, einer Silikatbeschichtung oder einer nanopartikelhaltigen Formulierung aufweist.
Mehrschichtiges Erzeugnis gemäß einem der Ansprüche 1 bis 8 ausgewählt aus der Gruppe bestehend aus Platten, Folien und dreidimensionalen Formteilen. 10. Verwendung von mehrschichtigen Erzeugnissen gemäß einem der Ansprüche 1 bis 9 für Außenanwendungen mit dauerhaft hohen Anforderungen hinsichtlich des visuellen Eindrucks, insbesondere für Verscheibung.
PCT/EP2006/002943 2005-04-13 2006-03-31 Uv-stabilisierte polycarbonatformkörper WO2006108520A1 (de)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BRPI0608912-7A BRPI0608912A2 (pt) 2005-04-13 2006-03-31 produtos moldados de policarbonato estabilizado em face e uv
MX2007012566A MX2007012566A (es) 2005-04-13 2006-03-31 Moldes de policarbonato estabilizados con uv.
PL06723903T PL1874856T3 (pl) 2005-04-13 2006-03-31 Poliwęglanowe korpusy formowane stabilizowane UV
CA 2605230 CA2605230A1 (en) 2005-04-13 2006-03-31 Uv-stabilized polycarbonate mouldings
KR1020077026206A KR101256251B1 (ko) 2005-04-13 2006-03-31 Uv 안정화된 성형 폴리카보네이트 생성물
AU2006233568A AU2006233568A1 (en) 2005-04-13 2006-03-31 UV-stabilized molded polycarbonate products
EP06723903A EP1874856B1 (de) 2005-04-13 2006-03-31 Uv-stabilisierte polycarbonatformkörper
CN2006800211006A CN101198649B (zh) 2005-04-13 2006-03-31 紫外光稳定化的聚碳酸酯模塑体
JP2008505766A JP5530629B2 (ja) 2005-04-13 2006-03-31 紫外線安定化成形ポリカーボネート製品
AT06723903T ATE516324T1 (de) 2005-04-13 2006-03-31 Uv-stabilisierte polycarbonatformkörper
IL186584A IL186584A (en) 2005-04-13 2007-10-11 Uv-stabilized molded polycarbonate products

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005017023.4 2005-04-13
DE200510017023 DE102005017023A1 (de) 2005-04-13 2005-04-13 UV-stabilisierte Polycarbonatformkörper

Publications (1)

Publication Number Publication Date
WO2006108520A1 true WO2006108520A1 (de) 2006-10-19

Family

ID=36636505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/002943 WO2006108520A1 (de) 2005-04-13 2006-03-31 Uv-stabilisierte polycarbonatformkörper

Country Status (17)

Country Link
US (1) US7442430B2 (de)
EP (1) EP1874856B1 (de)
JP (1) JP5530629B2 (de)
KR (1) KR101256251B1 (de)
CN (1) CN101198649B (de)
AT (1) ATE516324T1 (de)
AU (1) AU2006233568A1 (de)
BR (1) BRPI0608912A2 (de)
CA (1) CA2605230A1 (de)
DE (1) DE102005017023A1 (de)
ES (1) ES2367656T3 (de)
IL (1) IL186584A (de)
MX (1) MX2007012566A (de)
PL (1) PL1874856T3 (de)
RU (1) RU2420408C9 (de)
TW (1) TWI387532B (de)
WO (1) WO2006108520A1 (de)

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008107133A1 (de) * 2007-03-07 2008-09-12 Bayer Materialscience Ag Erzeugnis mit verbesserter lackhaftung
WO2010130350A1 (de) 2009-05-12 2010-11-18 Bayer Materialscience Ag Witterungsstabile mehrschichtsysteme
DE102009019493A1 (de) 2009-05-04 2010-11-18 Bayer Materialscience Ag Polar lösliche UV-Absorber
WO2010130348A1 (de) * 2009-05-12 2010-11-18 Bayer Materialscience Ag Langzeit uv-stabile kälte schlagzähe coextrusionsfolien
JP2011500905A (ja) * 2007-10-20 2011-01-06 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 紫外線保護組成物
WO2011032915A1 (de) 2009-09-19 2011-03-24 Bayer Materialscience Ag Kombination zweier triazin uv absorber für lack auf pc
DE102009058200A1 (de) 2009-12-15 2011-06-16 Bayer Materialscience Ag Polymer-Zusammensetzung mit Wärme-absorbierenden Eigenschaften und hoher Stabilität
WO2011085909A1 (de) 2009-12-21 2011-07-21 Bayer Materialscience Ag Mehrschichtsystem, enthaltend eine basisschicht, eine primerschicht und eine kratzfestschicht
WO2011141365A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Stabilisatorzusammensetzungen
WO2011141369A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
WO2011141368A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität
WO2011141366A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
WO2011154192A1 (de) * 2010-06-10 2011-12-15 Evonik Degussa Gmbh Neuartige mattierungsmittel für uv-überdrucklacke
WO2012049091A1 (de) 2010-10-12 2012-04-19 Bayer Materialscience Ag Spezielle uv-absorber für härtbare uv-schutz beschichtungen
DE102010042939A1 (de) 2010-10-26 2012-04-26 Bayer Materialscience Aktiengesellschaft Fugenlose Heckklappe
WO2012055757A1 (de) 2010-10-25 2012-05-03 Bayer Materialscience Ag Kunststoff-mehrschichtaufbau mit niedriger energietransmission
WO2012080395A1 (de) 2010-12-17 2012-06-21 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
WO2012080397A2 (de) 2010-12-17 2012-06-21 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
WO2013057074A1 (de) 2011-10-18 2013-04-25 Bayer Intellectual Property Gmbh Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften
WO2013079478A1 (de) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Mehrschichtkörper aus polycarbonat mit tiefenglanzeffekt
WO2013079477A1 (de) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Mehrschichtkörper aus polycarbonat mit tiefenglanzeffekt
US8641784B2 (en) 2010-12-17 2014-02-04 Bayer Materialscience Ag Organic colouring agents and coloured polymer compositions with a high stability to weathering
EP2700455A1 (de) 2012-08-23 2014-02-26 Bayer MaterialScience AG Nasslackapplikation auf Kunststoffsubstraten mit Plasmahärtung
US8716374B2 (en) 2010-12-17 2014-05-06 Bayer Materialscience Ag Colour-stable LED substrates
WO2014095981A1 (de) 2012-12-20 2014-06-26 Bayer Materialscience Ag Mehrschichtkörper aus polycarbonat mit hoher bewitterungsstabilität
WO2014095954A1 (de) 2012-12-20 2014-06-26 Bayer Materialscience Ag Gedeckt eingefärbte polycarbonat formmassen enthaltend ir-reflektierende pigmente
WO2014118116A1 (de) 2013-02-01 2014-08-07 Bayer Materialscience Ag Uv-absorber enthaltendes urethanacrylat
WO2014118114A1 (de) 2013-02-01 2014-08-07 Bayer Materialscience Ag Verfahren zur herstellung von uv-absorbern
WO2014118233A1 (de) 2013-02-01 2014-08-07 Bayer Material Science Ag Verfahren zur herstellung eines polymerisierbaren uv-absorbers
US9713915B2 (en) 2013-01-18 2017-07-25 Covestro Deutschland Ag Bird protection glazing
WO2018060081A1 (de) 2016-09-27 2018-04-05 Covestro Deutschland Ag Frontscheibe für kraftfahrzeug
WO2018091556A1 (de) 2016-11-17 2018-05-24 Covestro Deutschland Ag Transparenter mehrschichtkörper zum wärmemanagement
WO2018091558A1 (de) 2016-11-17 2018-05-24 Covestro Deutschland Ag Opaker mehrschichtkörper aus polycarbonat zum wärmemanagement
WO2018108978A1 (de) 2016-12-15 2018-06-21 Covestro Deutschland Ag Transparent beschichtetes polycarbonat bauteil, dessen herstellung und verwendung
EP3395875A1 (de) 2017-04-24 2018-10-31 Covestro Deutschland AG Laserstrahl-durchlässiges substratmaterial für sensoranwendungen
WO2019020478A1 (de) 2017-07-24 2019-01-31 Covestro Deutschland Ag Led-beleuchtungselemente mit formteilen aus transluzenten polycarbonat-zusammensetzungen mit tiefenglanzeffekt
WO2019121347A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Vorrichtung aus einem mehrschichtkörper und einem lidar-sensor
WO2019228959A1 (de) 2018-05-29 2019-12-05 Covestro Deutschland Ag Opaker mehrschichtkörper aus polycarbonat mit hoher bewitterungsstabilität
US10500304B2 (en) 2013-06-21 2019-12-10 DePuy Synthes Products, Inc. Films and methods of manufacture
US10814112B2 (en) 2005-10-13 2020-10-27 DePuy Synthes Products, Inc. Drug-impregnated encasement
WO2021063718A1 (de) 2019-09-30 2021-04-08 Covestro Intellectual Property Gmbh & Co. Kg Led-beleuchtungselemente auf basis von mehrschichtkörpern mit steinoptik
WO2021063719A1 (de) 2019-09-30 2021-04-08 Covestro Intellectual Property Gmbh & Co. Kg Led-beleuchtungselemente auf basis von mehrschichtkörpern mit massivsteinoptik
WO2021076561A1 (en) 2019-10-15 2021-04-22 Covestro Llc Three part headlamp assembly

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016642A1 (de) * 2006-04-08 2007-10-18 Bayer Materialscience Ag UV-härtende Schutzschicht für thermoplastische Substrate
DE102006030870A1 (de) * 2006-07-04 2008-01-10 Webasto Ag Schutzbeschichtung zum UV-Schutz und Kratzschutz für ein Bauteil
US8765029B2 (en) * 2006-12-05 2014-07-01 Sabic Innovative Plastics Ip B.V. Light transmissive articles and methods thereof
DE102006060163A1 (de) * 2006-12-18 2008-06-19 Evonik Röhm Gmbh Folienverbund
TWI464201B (zh) * 2006-12-19 2014-12-11 Mitsubishi Polyester Film Gmbh 單一或多層穩定的聚酯膜
DE102007017936A1 (de) * 2007-04-13 2008-10-16 Bayer Materialscience Ag Erzeugnisse mit verbesserter Flammwidrigkeit
US7923100B2 (en) * 2008-01-28 2011-04-12 Sabic Innovative Plastics Ip B.V. Multilayer articles and methods for making multilayer articles
DE102009052042A1 (de) 2009-11-05 2011-05-12 Bayer Materialscience Ag Polycarbonatzusammensetzung mit verbesserter Flammwidrigkeit für Extrusionsanwendungen
EP2496636B1 (de) 2009-11-05 2019-05-15 Covestro Deutschland AG Polycarbonatzusammensetzung mit verbesserter flammwidrigkeit für extrusionsanwendungen
JPWO2011105382A1 (ja) 2010-02-23 2013-06-20 旭硝子株式会社 ハードコート層を有する樹脂基板
JP5779939B2 (ja) * 2011-03-29 2015-09-16 大日本印刷株式会社 ハードコートフィルム及びそれを用いたハードコート樹脂成型体
KR101073704B1 (ko) 2011-06-21 2011-10-14 (주)동신폴리켐 투광 조절용 복층시트와 그 제조장치 및 그 제조방법
CN103635316B (zh) * 2011-06-30 2016-10-19 捷恩智株式会社 耐候性层压膜及图像显示装置
TWI590843B (zh) 2011-12-28 2017-07-11 信迪思有限公司 膜及其製造方法
US9168760B2 (en) * 2013-02-01 2015-10-27 Tong Li Method of creating an image on a stone substrate surface and resulting product
WO2017208881A1 (ja) * 2016-05-30 2017-12-07 住友化学株式会社 樹脂積層体、表示装置及び偏光板
US10654127B2 (en) 2017-10-24 2020-05-19 Tong Li Engraving system and method of operation thereof
US20220186004A1 (en) * 2019-03-29 2022-06-16 Dai Nippon Printing Co., Ltd. Cosmetic sheet and cosmetic material using same, and resin composition for surface protection layer
JP7509136B2 (ja) * 2019-03-29 2024-07-02 大日本印刷株式会社 化粧シート、化粧材及び樹脂組成物
MX2022009822A (es) * 2020-02-18 2022-09-05 Roehm Gmbh Hoja multicapa acrilica con propiedades mecanicas mejoradas y una alta resistencia a la intemperie.
US11446761B2 (en) 2020-03-06 2022-09-20 Tong Li Engraving machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061558A (en) * 1988-05-11 1991-10-29 Rohm Gmbh Chemische Fabrik Methacrylate protective coating containing a uv-absorber for polycarbonate
GB2290745A (en) * 1994-07-01 1996-01-10 Ciba Geigy Ag Coextruded stabilised laminated thermolastics
US5783307A (en) * 1996-11-04 1998-07-21 Eastman Chemical Company UV stabilized multi-layer structures with detectable UV protective layers and a method of detection
EP1033243A1 (de) * 1999-03-02 2000-09-06 Asahi Denka Kogyo Kabushiki Kaisha Koextrudierter Gegenstand aus aromatischem Polycarbonatharz
JP2000327802A (ja) * 1999-05-25 2000-11-28 Mitsubishi Rayon Co Ltd アクリルフィルムおよび積層品
US20040209020A1 (en) * 2003-04-15 2004-10-21 3M Innovative Properties Company Light-stable structures
US20050031855A1 (en) * 2003-07-25 2005-02-10 Helmut-Werner Heuer Polyformals as a coextrusion protective layer on polycarbonate

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313979A (en) * 1980-09-25 1982-02-02 General Electric Company Method for improving adhesion of silicone resin coating composition
US4478876A (en) * 1980-12-18 1984-10-23 General Electric Company Process of coating a substrate with an abrasion resistant ultraviolet curable composition
DE8233007U1 (de) 1982-11-25 1983-03-24 Röhm GmbH, 6100 Darmstadt Polycarbonat-kunststofftafel
DE3617978A1 (de) 1986-05-28 1987-12-03 Bayer Ag Verzweigte thermoplastische polycarbonate mit verbessertem schutz gegen uv-licht
DE3739765A1 (de) 1987-11-24 1989-06-08 Bayer Ag Beschichtete formkoerper und ein verfahren zu ihrer herstellung
TW222292B (de) * 1991-02-21 1994-04-11 Ciba Geigy Ag
EP1213283B1 (de) * 1995-03-15 2009-04-29 Ciba Holding Inc. Biphenyl-substituierte Triazine als Lichtschutzmittel
US6255483B1 (en) * 1995-03-15 2001-07-03 Ciba Specialty Chemicals Corporation Biphenyl-substituted triazines
JP3904262B2 (ja) * 1995-11-06 2007-04-11 旭化成ケミカルズ株式会社 積層体
BE1012529A3 (fr) * 1996-09-13 2000-12-05 Ciba Sc Holding Ag Melange de triaryltriazines et son utilisation pour la stabilisation de materiaux organiques.
US5891942A (en) * 1997-05-01 1999-04-06 Fibre Glass-Evercoat Company, Inc. Coating composition with improved water and mar resistance
JP2004515558A (ja) * 1999-03-26 2004-05-27 エー. ラポイント,デイビッド 耐摩耗コーティング組成物、それらの製造方法及びそれにより被覆された物品
US6191199B1 (en) * 1999-05-03 2001-02-20 Ciba Speciatly Chemicals Corporation Stabilized adhesive compositions containing highly soluble, high extinction photostable hydroxyphenyl-s-triazine UV absorbers and laminated articles derived therefrom
CO5231248A1 (es) 2000-07-26 2002-12-27 Ciba Sc Holding Ag Articulos transparentes de polimero de baja consistencia
MXPA04005551A (es) * 2001-12-10 2004-09-10 Bayer Materialscience Ag Placas coloreadas, multicapa, resistentes a la intemperie.
US6620509B1 (en) * 2002-04-22 2003-09-16 Mitsubishi Gas Chemical Company, Inc. Transparent resin laminate and molded article used the same
CA2460387C (en) * 2002-06-21 2010-09-28 Teijin Chemicals, Ltd. Acrylic resin composition, organosiloxane resin composition and laminate comprising the same
JP2004035613A (ja) * 2002-06-28 2004-02-05 Teijin Chem Ltd 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
EP1308084A1 (de) 2002-10-02 2003-05-07 Ciba SC Holding AG Synergistisch wirksame UV-Absorbercombination
JP2004314422A (ja) * 2003-04-16 2004-11-11 Teijin Chem Ltd 耐熱性、耐光性光学部品
DE102006016642A1 (de) * 2006-04-08 2007-10-18 Bayer Materialscience Ag UV-härtende Schutzschicht für thermoplastische Substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5061558A (en) * 1988-05-11 1991-10-29 Rohm Gmbh Chemische Fabrik Methacrylate protective coating containing a uv-absorber for polycarbonate
GB2290745A (en) * 1994-07-01 1996-01-10 Ciba Geigy Ag Coextruded stabilised laminated thermolastics
US5783307A (en) * 1996-11-04 1998-07-21 Eastman Chemical Company UV stabilized multi-layer structures with detectable UV protective layers and a method of detection
EP1033243A1 (de) * 1999-03-02 2000-09-06 Asahi Denka Kogyo Kabushiki Kaisha Koextrudierter Gegenstand aus aromatischem Polycarbonatharz
JP2000327802A (ja) * 1999-05-25 2000-11-28 Mitsubishi Rayon Co Ltd アクリルフィルムおよび積層品
US20040209020A1 (en) * 2003-04-15 2004-10-21 3M Innovative Properties Company Light-stable structures
US20050031855A1 (en) * 2003-07-25 2005-02-10 Helmut-Werner Heuer Polyformals as a coextrusion protective layer on polycarbonate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200127, Derwent World Patents Index; Class A14, AN 2001-260217, XP002389785 *

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10814112B2 (en) 2005-10-13 2020-10-27 DePuy Synthes Products, Inc. Drug-impregnated encasement
WO2008107133A1 (de) * 2007-03-07 2008-09-12 Bayer Materialscience Ag Erzeugnis mit verbesserter lackhaftung
JP2011500905A (ja) * 2007-10-20 2011-01-06 バイエル・マテリアルサイエンス・アクチェンゲゼルシャフト 紫外線保護組成物
KR101568434B1 (ko) 2007-10-20 2015-11-11 바이엘 머티리얼사이언스 아게 Uv 차단성을 가지는 조성물
DE102009019493A1 (de) 2009-05-04 2010-11-18 Bayer Materialscience Ag Polar lösliche UV-Absorber
US8715406B2 (en) 2009-05-04 2014-05-06 Bayer Materialscience Ag UV absorbers soluble in polar media
US8697227B2 (en) 2009-05-12 2014-04-15 Bayer Materialscience Ag Weather-resistant multilayer systems
WO2010130350A1 (de) 2009-05-12 2010-11-18 Bayer Materialscience Ag Witterungsstabile mehrschichtsysteme
DE102009020938A1 (de) 2009-05-12 2010-11-18 Bayer Materialscience Ag Witterungsstabile Mehrschichtsysteme
WO2010130348A1 (de) * 2009-05-12 2010-11-18 Bayer Materialscience Ag Langzeit uv-stabile kälte schlagzähe coextrusionsfolien
WO2011032915A1 (de) 2009-09-19 2011-03-24 Bayer Materialscience Ag Kombination zweier triazin uv absorber für lack auf pc
DE102009042307A1 (de) 2009-09-19 2011-05-12 Bayer Materialscience Ag Kombination zweier Triazin UV Absorber für Lack auf PC
US8399547B2 (en) 2009-12-15 2013-03-19 Bayer Materialscience Ag Polymer composition with heat-absorbing properties and high stability
DE102009058200A1 (de) 2009-12-15 2011-06-16 Bayer Materialscience Ag Polymer-Zusammensetzung mit Wärme-absorbierenden Eigenschaften und hoher Stabilität
WO2011082940A1 (de) 2009-12-15 2011-07-14 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität
WO2011085909A1 (de) 2009-12-21 2011-07-21 Bayer Materialscience Ag Mehrschichtsystem, enthaltend eine basisschicht, eine primerschicht und eine kratzfestschicht
US8895137B2 (en) 2009-12-21 2014-11-25 Bayer Materialscience Ag Scratch resistant top coats having good adhesion
WO2011141368A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität
US9605129B2 (en) 2010-05-10 2017-03-28 Covestro Deutschland Ag Polymer composition having heat-absorbing properties and improved colour properties
WO2011141369A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
WO2011141366A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und verbesserten farbeigenschaften
WO2011141365A1 (de) 2010-05-10 2011-11-17 Bayer Materialscience Ag Stabilisatorzusammensetzungen
US8628699B2 (en) 2010-05-10 2014-01-14 Bayer Materialscience Ag Stabilizer combinations
US8357741B2 (en) 2010-05-10 2013-01-22 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and improved colour properties
US8845920B2 (en) 2010-05-10 2014-09-30 Bayer Materialscience Ag Polymer compositions with heat-absorbing properties and a high stability
WO2011154192A1 (de) * 2010-06-10 2011-12-15 Evonik Degussa Gmbh Neuartige mattierungsmittel für uv-überdrucklacke
WO2012049091A1 (de) 2010-10-12 2012-04-19 Bayer Materialscience Ag Spezielle uv-absorber für härtbare uv-schutz beschichtungen
EP2447236A1 (de) 2010-10-12 2012-05-02 Bayer MaterialScience AG Spezielle UV-Absorber für härtbare UV-Schutz Beschichtungen
US9273213B2 (en) 2010-10-12 2016-03-01 Covestro Deutschland Ag Special UV absorbers for curable UV-protective coatings
WO2012055757A1 (de) 2010-10-25 2012-05-03 Bayer Materialscience Ag Kunststoff-mehrschichtaufbau mit niedriger energietransmission
DE102010042939A1 (de) 2010-10-26 2012-04-26 Bayer Materialscience Aktiengesellschaft Fugenlose Heckklappe
WO2012055873A2 (de) 2010-10-26 2012-05-03 Bayer Materialscience Ag Fugenlose heckklappe
WO2012080395A1 (de) 2010-12-17 2012-06-21 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
US8968610B2 (en) 2010-12-17 2015-03-03 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and high stability to weathering
WO2012080397A2 (de) 2010-12-17 2012-06-21 Bayer Materialscience Ag Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften und hoher stabilität gegen bewitterung
US9212272B2 (en) 2010-12-17 2015-12-15 Bayer Materialscience Ag Organic colouring agents and coloured polymer compositions with a high stability to weathering
US8641784B2 (en) 2010-12-17 2014-02-04 Bayer Materialscience Ag Organic colouring agents and coloured polymer compositions with a high stability to weathering
US8716374B2 (en) 2010-12-17 2014-05-06 Bayer Materialscience Ag Colour-stable LED substrates
US9029440B2 (en) 2010-12-17 2015-05-12 Bayer Materialscience Ag Polymer composition having heat-absorbing properties and high stability to weathering
US9651712B2 (en) 2011-10-18 2017-05-16 Covestro Deutschland Ag Polymer composition with heat-absorbing properties
WO2013057074A1 (de) 2011-10-18 2013-04-25 Bayer Intellectual Property Gmbh Polymer-zusammensetzung mit wärme-absorbierenden eigenschaften
WO2013079477A1 (de) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Mehrschichtkörper aus polycarbonat mit tiefenglanzeffekt
WO2013079478A1 (de) 2011-11-30 2013-06-06 Bayer Intellectual Property Gmbh Mehrschichtkörper aus polycarbonat mit tiefenglanzeffekt
EP2700455A1 (de) 2012-08-23 2014-02-26 Bayer MaterialScience AG Nasslackapplikation auf Kunststoffsubstraten mit Plasmahärtung
US9845412B2 (en) 2012-12-20 2017-12-19 Covestro Deutschland Ag Multi-layer body made of polycarbonate with high weathering resistance
WO2014095954A1 (de) 2012-12-20 2014-06-26 Bayer Materialscience Ag Gedeckt eingefärbte polycarbonat formmassen enthaltend ir-reflektierende pigmente
WO2014095981A1 (de) 2012-12-20 2014-06-26 Bayer Materialscience Ag Mehrschichtkörper aus polycarbonat mit hoher bewitterungsstabilität
US9713915B2 (en) 2013-01-18 2017-07-25 Covestro Deutschland Ag Bird protection glazing
WO2014118116A1 (de) 2013-02-01 2014-08-07 Bayer Materialscience Ag Uv-absorber enthaltendes urethanacrylat
US9593088B2 (en) 2013-02-01 2017-03-14 Covestro Deutschland Ag Method for producing a polymerizable UV absorber
WO2014118233A1 (de) 2013-02-01 2014-08-07 Bayer Material Science Ag Verfahren zur herstellung eines polymerisierbaren uv-absorbers
US9604943B2 (en) 2013-02-01 2017-03-28 Covestro Deutschland Ag UV absorber-containing urethane acrylate
WO2014118114A1 (de) 2013-02-01 2014-08-07 Bayer Materialscience Ag Verfahren zur herstellung von uv-absorbern
US10500304B2 (en) 2013-06-21 2019-12-10 DePuy Synthes Products, Inc. Films and methods of manufacture
WO2018060081A1 (de) 2016-09-27 2018-04-05 Covestro Deutschland Ag Frontscheibe für kraftfahrzeug
US11351764B2 (en) 2016-11-17 2022-06-07 Covestro Deutschland Ag Opaque multi-layer body of polycarbonate for heat management
US11440382B2 (en) 2016-11-17 2022-09-13 Covestro Deutschland Ag Transparent multilayer structure for thermal management
WO2018091558A1 (de) 2016-11-17 2018-05-24 Covestro Deutschland Ag Opaker mehrschichtkörper aus polycarbonat zum wärmemanagement
WO2018091556A1 (de) 2016-11-17 2018-05-24 Covestro Deutschland Ag Transparenter mehrschichtkörper zum wärmemanagement
WO2018108978A1 (de) 2016-12-15 2018-06-21 Covestro Deutschland Ag Transparent beschichtetes polycarbonat bauteil, dessen herstellung und verwendung
US11027312B2 (en) 2016-12-15 2021-06-08 Covestro Deutschland Ag Transparently coated polycarbonate component, its production and use
WO2018197398A1 (de) 2017-04-24 2018-11-01 Covestro Deutschland Ag Laserstrahl-durchlässiges substratmaterial für sensoranwendungen
EP3395875A1 (de) 2017-04-24 2018-10-31 Covestro Deutschland AG Laserstrahl-durchlässiges substratmaterial für sensoranwendungen
US11512181B2 (en) 2017-04-24 2022-11-29 Covestro Deutschland Ag Laser beam-permeable substrate material for use on sensors
WO2019020478A1 (de) 2017-07-24 2019-01-31 Covestro Deutschland Ag Led-beleuchtungselemente mit formteilen aus transluzenten polycarbonat-zusammensetzungen mit tiefenglanzeffekt
US11598495B2 (en) 2017-07-24 2023-03-07 Covestro Deutschland Ag LED lighting elements comprising molded parts made of translucent polycarbonate compositions having a deep gloss effect
WO2019121347A1 (de) 2017-12-21 2019-06-27 Covestro Deutschland Ag Vorrichtung aus einem mehrschichtkörper und einem lidar-sensor
US11747447B2 (en) 2017-12-21 2023-09-05 Covestro Deutschland Ag Device comprising a multi-layer body and a LiDAR sensor
WO2019228959A1 (de) 2018-05-29 2019-12-05 Covestro Deutschland Ag Opaker mehrschichtkörper aus polycarbonat mit hoher bewitterungsstabilität
US12104045B2 (en) 2018-05-29 2024-10-01 Covestro Intellectual Property Gmbh & Co. Kg Opaque multi-layer body made of polycarbonate and having weathering stability
WO2021063719A1 (de) 2019-09-30 2021-04-08 Covestro Intellectual Property Gmbh & Co. Kg Led-beleuchtungselemente auf basis von mehrschichtkörpern mit massivsteinoptik
WO2021063718A1 (de) 2019-09-30 2021-04-08 Covestro Intellectual Property Gmbh & Co. Kg Led-beleuchtungselemente auf basis von mehrschichtkörpern mit steinoptik
WO2021076561A1 (en) 2019-10-15 2021-04-22 Covestro Llc Three part headlamp assembly

Also Published As

Publication number Publication date
TW200708397A (en) 2007-03-01
US20060234061A1 (en) 2006-10-19
ATE516324T1 (de) 2011-07-15
DE102005017023A1 (de) 2006-10-19
CA2605230A1 (en) 2006-10-19
KR20080004595A (ko) 2008-01-09
EP1874856B1 (de) 2011-07-13
US7442430B2 (en) 2008-10-28
PL1874856T3 (pl) 2011-12-30
CN101198649B (zh) 2011-11-09
MX2007012566A (es) 2007-11-16
TWI387532B (zh) 2013-03-01
JP5530629B2 (ja) 2014-06-25
RU2420408C2 (ru) 2011-06-10
RU2420408C9 (ru) 2012-06-10
ES2367656T3 (es) 2011-11-07
IL186584A (en) 2013-03-24
RU2007141516A (ru) 2009-05-20
AU2006233568A1 (en) 2006-10-19
BRPI0608912A2 (pt) 2010-02-17
IL186584A0 (en) 2008-01-20
CN101198649A (zh) 2008-06-11
EP1874856A1 (de) 2008-01-09
KR101256251B1 (ko) 2013-04-18
JP2008535700A (ja) 2008-09-04

Similar Documents

Publication Publication Date Title
EP1874856B1 (de) Uv-stabilisierte polycarbonatformkörper
EP2477812B1 (de) Kombination zweier triazin uv absorber für lack auf pc
EP1456029B1 (de) Ir-reflektierende, transparante mehrschicht-kunststofflaminate
WO2007115678A1 (de) Uv-härtende schutzschicht für thermoplastische substrate
WO2002083410A1 (de) Wärmeabsorbierendes schichtsystem
WO2014118251A1 (de) Uv-härtbare beschichtungszusammensetzung
EP2429816B1 (de) Witterungsstabile mehrschichtsysteme
EP1762591A1 (de) Zusammensetzung enthaltend Polycarbonat und neuartige UV-Absorber
WO2005012405A1 (de) Polyformale als coextrusionsschutzschicht auf polycarbonat
EP1453673A1 (de) Mehrschichtiges erzeugnis
EP1290078B1 (de) Transparente thermoplastische zusammensetzung
WO2002083412A1 (de) Wärmeabsorbierendes schichtsystem
EP2951162B1 (de) Uv-absorber enthaltendes urethanacrylat
WO2010130348A1 (de) Langzeit uv-stabile kälte schlagzähe coextrusionsfolien

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006723903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/012566

Country of ref document: MX

Ref document number: 2605230

Country of ref document: CA

Ref document number: 7778/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 186584

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2008505766

Country of ref document: JP

Ref document number: 2006233568

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2006233568

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077026206

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007141516

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200680021100.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006723903

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0608912

Country of ref document: BR

Kind code of ref document: A2