Nothing Special   »   [go: up one dir, main page]

WO2006030830A1 - 燃料電池セルの製造方法及び製造設備 - Google Patents

燃料電池セルの製造方法及び製造設備 Download PDF

Info

Publication number
WO2006030830A1
WO2006030830A1 PCT/JP2005/016949 JP2005016949W WO2006030830A1 WO 2006030830 A1 WO2006030830 A1 WO 2006030830A1 JP 2005016949 W JP2005016949 W JP 2005016949W WO 2006030830 A1 WO2006030830 A1 WO 2006030830A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal plate
mold
fuel cell
film electrode
manufacturing
Prior art date
Application number
PCT/JP2005/016949
Other languages
English (en)
French (fr)
Inventor
Masakazu Sugimoto
Masaya Yano
Taiichi Sugita
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004270199A external-priority patent/JP3847311B2/ja
Priority claimed from JP2004270208A external-priority patent/JP4630029B2/ja
Priority claimed from JP2005007212A external-priority patent/JP2006196328A/ja
Priority claimed from JP2005153924A external-priority patent/JP2006331861A/ja
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2006030830A1 publication Critical patent/WO2006030830A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0284Organic resins; Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1058Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties
    • H01M8/106Polymeric electrolyte materials characterised by a porous support having no ion-conducting properties characterised by the chemical composition of the porous support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a manufacturing method and manufacturing equipment for manufacturing a thin fuel cell.
  • an anode 101 and a cathode 102 are disposed with a solid polymer electrolyte membrane 100 interposed therebetween.
  • the unit cell 105 is configured by being sandwiched by a pair of separators 104 via a gasket 103.
  • Each separator 104 is formed with a gas flow channel, and a flow path of a reducing gas (for example, hydrogen gas) is formed by contact with the anode 101, and an oxygen gas is formed by contact with the force sword 102.
  • a flow path (for example, oxygen gas) is formed.
  • Each gas is supplied to the electrode reaction (chemical reaction at the electrode) by the action of the catalyst supported in the anode 101 or the power sword 102 while flowing through each flow path in the unit cell 105, and the current of Generation and ionic conduction occur.
  • a large number of unit cells 105 are stacked and the unit cells 105 are electrically connected in series to form a fuel cell N, and the electrode 106 can be taken out from the unit cells 105 at both ends.
  • a fuel cell N is attracting attention as a power source for electric vehicles and a distributed power source for home use due to its clean and high efficiency.
  • the basic configuration of the fuel cell includes a plate-like thin film electrode composition and a pair of metal plates (force sword side metal plate and anode side metal plate) arranged on both sides of the thin film electrode composition.
  • the peripheral edges of these metal plates are sealed with caulking with an insulating layer interposed therebetween.
  • the thin film electrode composition is composed of a solid polymer electrolyte and a pair of electrode plates (anode side and force sword side) disposed on both sides thereof.
  • the metal plate is electrically insulated and sealed with caulking, the fuel cell can be reliably sealed without increasing the thickness while preventing short circuit between the two.
  • a solid polymer electrolyte and a metal plate are used, a free planar shape and bending are possible, and a compact, lightweight and free shape design is possible.
  • Non-patent document 1 Nikkei Mechanical separate volume “Fuel Cell Development Frontline” date of issue June 29, 2001, Nikkei BP, Chapter 3, PEFC, 3.1 Principles and Features p46
  • an object of the present invention is to provide a manufacturing method and manufacturing equipment for a fuel cell having such a configuration.
  • each member constituting the fuel battery cell is formed in a flat plate shape, and thus is easily deformed. Therefore, manufacture A manufacturing method and manufacturing equipment that can reliably manufacture fuel cells while suppressing deformation of members in the process are required.
  • a method for producing a fuel cell according to the present invention includes:
  • a plate-shaped thin film electrode composition, and a first metal plate and a second metal plate disposed on both sides of the thin film electrode composition, and a peripheral region of these metal plates interposing an insulating layer therebetween In the manufacturing method of a fuel cell that is mechanically sealed by a bending press,
  • the peripheral region of one metal plate is tilted inward and mechanically sealed by a bending press.
  • a bending press working means which is located in the central area of the metal plate and uses a regulating means for regulating the deformation of the central area and a bending press working means located in the peripheral area and performing processing for mechanical sealing.
  • the deformation of the central region is regulated by the regulating means.
  • a fuel battery cell to be manufactured includes a plate-shaped thin film electrode composition and a pair of metal plates disposed on both sides thereof, and the peripheral region of the pair of metal plates is bent with an insulating layer interposed therebetween. The peripheral region can be sealed by performing such mechanical sealing.
  • this fuel cell cell is configured based on a plate-shaped thin film electrode composition, it can be formed thin as a whole.
  • the fuel battery cell can be manufactured by a bending press carriage such as a cashew mechanism, and for this purpose, a regulating means and a bending press working means are used. Specifically, it has a restricting means located in the central region of the metal plate and a bending press working means located in the peripheral region. The peripheral region can be mechanically sealed by the bending press working means. When processing by the bending press processing means, the deformation of the central region is controlled by the control means. If this restriction is not present, the flat plate member may be deformed, but it is possible to eliminate a problem that would be exerted by restriction by the restriction means. As a result, the fuel cell can be reliably manufactured while suppressing deformation of the member in the manufacturing process.
  • the bending press working is not limited to one step, and can be performed in a plurality of steps. So In this case, the content of the press work is set according to each stage, and is not limited to a specific content. In addition, when it is performed in multiple steps, there are multiple types of regulation means and bending press working means.
  • the method further includes a step of pressing and pressing the inner region of the sealed peripheral region after the mechanical sealing.
  • sealing can be performed reliably and gas leakage can be reliably prevented.
  • the present invention it is preferable to include a step for forming the metal plate in the peripheral region where bending pressing is performed thinner than other portions.
  • a step for forming the metal plate in the peripheral region where bending pressing is performed thinner than other portions By thinning the region where the bending press is performed, mechanical sealing can be performed with a small load, and deformation of the members constituting the cell can be suppressed.
  • Examples of the method for reducing the thickness include etching and pressing.
  • the first mold as the regulating means includes at least a first upper mold positioned above the metal plate, and the second mold as the bending press working means is located above the metal plate.
  • the first upper mold that has moved from above reaches a position that restricts deformation of the central region.
  • the first mold includes a first upper mold positioned at least above the metal plate, and deformation of the metal plate can be restricted by the lower surface of the first upper mold.
  • the second mold includes a second upper mold and a second lower mold, and the peripheral region of the metal plate is positioned between them to perform mechanical sealing with the second mold. Can do. When the second upper die comes down and comes into contact with the peripheral area of the metal plate, the machining starts. If mechanical sealing is performed in multiple steps, the number of first and second upper molds and the number of first and second lower molds corresponding to the number of processes are prepared. In addition, the peripheral area of the metal plate is restricted from being deformed by the first upper mold moved from above at the same time as or after the start of machining by the second mold. Thereby, mechanical sealing can be reliably performed while suppressing deformation of the member.
  • the lower surface of the first upper mold is the first 2. It is preferable to be located above the upper surface of the lower mold.
  • the lower surface of the first upper mold is set to be positioned above the upper surface of the second lower mold.
  • the first upper mold allows a minimum necessary contact force to act on the upper surface of the metal plate, and it is possible to restrict deformation without applying an excessive force.
  • a pair of metal plates are drawn to form a space for accommodating the thin film electrode composition.
  • each of the pair of metal plates is punched into a predetermined shape.
  • the order of the punching process and the drawing process may be switched.
  • the thin film electrode composition is accommodated between a pair of punched metal plates, and the peripheral region is mechanically sealed by a bending press.
  • the press carriage in the manufacturing process of the present invention includes at least these processes, and it is needless to say that another process is added. /.
  • the peripheral area of the first metal plate is drawn, and the bent portion is formed around the entire peripheral area.
  • the thin film electrode composition and the second metal plate are placed in this order (corresponding to the central region of the metal plate).
  • the insulating layer is located on the inner wall side of the part.
  • the standing bent portion can be reliably brought down. If you try to do this in one step, it may not fall well and the quality of the sealed state will deteriorate, but if you do it step by step, you can seal reliably and prevent gas leaks, etc. be able to. As a result, the inside of the cell can be reliably sealed by reliably performing mechanical sealing by a bending press.
  • the drawing process for inclining at a predetermined angle is performed at least once, and may be performed not only once but also twice or more.
  • the predetermined angle is 45. Can be set.
  • the predetermined angle can be set stepwise, for example, 60 ° ⁇ 30 °. The same applies to three or more times, and various modifications can be considered.
  • the predetermined angle is preferably 40 ° or more and 50 ° or less with respect to a horizontal plane.
  • the clearance between the inner wall of the standing bent portion and the peripheral end surface of the second metal plate is preferably 0.05 to 0.15 mm.
  • the clearance between the standing bent portion and the peripheral end surface of the second metal plate is less than 0.05 mm, the clearance is too narrow. And the peripheral edge surface may come into contact with each other, and as a result, the force that causes the central region of the metal plate to protrude outwardly is large. Such a possibility can be suppressed. If the clearance exceeds 0.15mm, the possibility of gas leakage inside the cell increases. Therefore, it is preferable to set the clearance as described above.
  • the protruding amount of the curved shape is preferably 0.05 to 0.15 mm. If it is less than 0.05 mm, it is difficult to exert the effect of suppressing the outward protrusion of the central region of the metal plate. When the thickness exceeds 0.1 mm, there is a problem that the sealing pressure at the time of mechanical sealing becomes too large and the force acting on the thin film electrode composition becomes too large. By setting the protruding amount as described above, an appropriate sealing process can be achieved.
  • a transporting step of transporting a long metal plate having a predetermined width toward the progressive mold equipment in order to produce the first metal plate or the second metal plate, a transporting step of transporting a long metal plate having a predetermined width toward the progressive mold equipment,
  • a predetermined material is used as a material for processing the first metal plate and the second metal plate.
  • a long metal plate having a width (for example, provided in a rolled state by a roll) is used to convey the long metal plate toward the progressive mold equipment.
  • various molds are arranged along the conveying path of the long metal plate, and predetermined processing is performed while being conveyed.
  • the process of processing the first metal plate is controlled. First, a flow path for flowing fuel gas is formed. Next, a recess for accommodating the thin film electrode composition is formed. Note that the step of forming the flow path and the step of forming the recess may be reversed. Finally, the first metal plate is formed by punching the outer shape. In this way, a predetermined treatment can be continuously applied to the first metal plate, and the first metal plate can be efficiently manufactured. In the present invention, a further additional process may be added in addition to the process of processing the first metal plate limited to the above process. As described above, the metal plate constituting the fuel battery cell can be processed efficiently.
  • a process of processing the second metal plate according to this configuration will be described. First, a hole for taking in air is formed. Next, a recess for accommodating the thin film electrode composition is formed. Note that the step of forming the hole and the step of forming the recess may be reversed. Finally, the second metal plate is formed by punching out the outer shape. In this way, predetermined processing can be continuously performed on the second metal plate, and the second metal plate can be efficiently manufactured. In the present invention, a further processing step may be added in addition to the processing step of the second metal plate limited to the above-described step. As described above, it is possible to provide a manufacturing method capable of efficiently processing the metal plate constituting the fuel battery cell.
  • the metal mold used in the step of forming a recess for accommodating a thin film electrode composition in a long metal plate is composed of a first metal plate and a second metal plate. It is preferred that a common mold is used.
  • the concave portion for accommodating the thin film electrode composition is a function necessary for any metal plate, and is common. The cost can be reduced by using the mold.
  • step of forming the flow channel according to the present invention is performed in multiple steps.
  • the width of the force flow path that needs to be processed to a predetermined depth may be reduced. Therefore, since it is difficult to perform a desired shape in a single pressing step, it is possible to form a flow path having a desired shape by performing processing in multiple steps.
  • holes for processing positioning are formed in advance at predetermined intervals corresponding to the mold arrangement intervals of the progressive mold equipment, and the insulating layer is formed. It is preferable that the insulating sheet to be formed is attached in advance at the same predetermined intervals.
  • a positioning hole as a processing reference is required. These holes are formed in advance according to the mold arrangement interval.
  • an insulating sheet is previously attached to the long metal plate at the predetermined interval.
  • the insulating sheet can be attached by an appropriate method such as adhesion.
  • the insulating sheet according to the present invention is formed in a ring shape corresponding to the peripheral region, and is attached on the basis of the positioning hole.
  • the shape of the sealing portion can be accommodated.
  • the insulating sheet can be accurately attached at predetermined intervals, and the position of the shape formed by die processing and the ring-shaped insulating sheet can be determined. Accurate association is possible.
  • an insulating sheet is previously attached to both the long metal plate for forming the first metal plate and the long metal plate for forming the second metal plate, and the thin film electrode accommodated therein It is preferable that the insulating sheet is preliminarily attached at a position where the peripheral region of the composition is sandwiched between the insulating sheet on the first metal plate side and the insulating sheet on the second metal plate side.
  • the insulating sheet is attached to both the first metal plate and the second metal plate, and is insulated when the peripheral regions of the first metal plate and the second metal plate are sealed by press bending. Can be ensured. Further, the peripheral region of the thin film electrode composition is sandwiched between the insulating sheets, so that the thin film electrode composition can be securely held and fuel gas leakage or the like can be prevented.
  • a fuel cell manufacturing facility includes:
  • the peripheral region of one metal plate is tilted inward with the thin-film electrode composition set between the pair of metal plates.
  • a first upper mold (corresponding to a regulating means, the same shall apply hereinafter) located in the central area of the metal plate, and a second lower mold and a second upper mold for mechanically sealing the peripheral area of the metal plate (Corresponding to the lower side and upper side bending press working means, the same shall apply hereinafter)
  • the total stroke is set so as to be longer than the stroke until the second upper mold comes into contact with the metal plate and starts machining, and after the machining starts, the urging force of the urging mechanism is applied to the peripheral area of the metal plate. In addition to acting on the area, the deformation of the central area is restricted by the first upper mold.
  • a fuel cell to be manufactured includes a plate-shaped thin film electrode composition and a pair of metal plates disposed on both sides thereof, and the peripheral edges of the pair of metal plates are subjected to bending press with an insulating layer interposed therebetween. By doing so, the peripheral region can be sealed.
  • the fuel battery cell is configured based on a plate-like thin film electrode composition, it can be formed thin as a whole.
  • This fuel battery cell can be manufactured by a bending press carriage, and a mold mechanism is used for this purpose.
  • the mold mechanism includes a first upper mold located in the central region of the metal plate, and a second lower die and a second upper die located in the peripheral region of the metal plate for performing force shim sealing. .
  • An urging mechanism is provided for the second upper mold.
  • the second upper die Since the second upper die is provided with an urging mechanism, the urging mechanism is compressed after the machining is started. On the other hand, the first upper mold in the central area continues to fall until it comes into contact with the stopper. Then, it stops when the entire stroke is lowered, and the deformation of the metal plate is restricted. As a result, it is possible to manufacture a fuel cell in which the inside is reliably sealed while suppressing deformation of the member.
  • the lower surface of the first upper mold is preferably positioned above the upper surface of the second lower mold! /.
  • the lower surface of the first upper mold is set to be positioned above the upper surface of the second lower mold.
  • the first upper mold allows a minimum necessary contact force to act on the upper surface of the metal plate, and it is possible to restrict deformation without applying an excessive force.
  • the vertical distance between the lower surface of the first upper mold and the upper surface of the second lower mold is set to be substantially the same as the thickness of the fuel cell. It is preferable. As a result, the deformation of the member without applying an excessive force is restricted, and the Can be sealed.
  • an adjusting mechanism for adjusting the height of the first upper mold it is preferable to provide an adjusting mechanism for adjusting the height of the first upper mold.
  • a mold mechanism As a mold mechanism according to the present invention, at least a mold used in a step of forming a space for accommodating a thin film electrode composition by drawing a pair of metal plates, respectively,
  • a pair of metal plates are drawn to form a space for accommodating the thin film electrode composition.
  • each of the pair of metal plates is punched into a predetermined shape.
  • the order of the punching process and the drawing process may be switched.
  • the thin film electrode composition can be accommodated between a pair of punched metal plates, and the peripheral region can be mechanically sealed.
  • the present invention it is preferable to further include a mold used in the step of pressing the inner region of the sealed peripheral region after the mechanical sealing step. As a result, it is possible to reliably seal and prevent gas leakage.
  • a mold used in the step of forming the bent portion around the entire periphery of the peripheral region by drawing the peripheral region of the first metal plate;
  • the thin film electrode composition and the second metal plate are placed in this order on the first metal plate with the standing bent portion facing upward, and an insulating layer is set on the inner wall side of the standing bent portion.
  • an angle of the mold inclined at the predetermined angle is set to 40 ° or more and 50 ° or less with respect to a horizontal plane.
  • the battery cell can be reliably manufactured while suppressing deformation of the member in the manufacturing process.
  • a progressive metal mold facility in order to produce the first metal plate or the second metal plate, a progressive metal mold facility is provided that sequentially performs a predetermined process while conveying a long metal plate having a predetermined width.
  • the remit die equipment is
  • the effects and effects of the powerful configuration are as described above, and the first metal plate can be continuously processed in a predetermined manner, and the first metal plate can be manufactured efficiently. it can.
  • the processing steps of the first metal plate are not limited to the above steps, and other processing steps may be added.
  • the metal plate constituting the fuel battery cell can be processed efficiently.
  • a mold for forming a hole for taking air into the long metal plate a mold for forming a recess for accommodating the thin film electrode composition in the long metal plate, A die that forms the second metal plate by punching the outer shape of the metal plate is preferred.
  • the second metal plate can be continuously processed in a predetermined manner, and the second metal plate can be efficiently manufactured.
  • the processing step of the second metal plate is not limited to the above step, and another processing step may be added.
  • the metal plate constituting the fuel cell can be processed efficiently.
  • the metal mold used in the step of forming a recess for accommodating the thin film electrode composition in the long metal plate includes a first metal plate and a second metal plate. It is preferred that a common mold is used.
  • a mold control unit that controls the operation of each mold constituting the progressive mold facility is provided, and this mold control unit is provided with a first metal plate when processing the first metal plate. It is preferable to deactivate a mold that is used only for processing the second metal plate and to deactivate a mold that is used only for processing the first metal plate when processing the second metal plate.
  • FIG. 1 is an assembled perspective view showing an example of a fuel cell according to the present invention.
  • FIG. 2 is a longitudinal sectional view showing an example of a fuel cell according to the present invention.
  • FIG. 3 is an external perspective view showing the configuration of the mold.
  • FIG. 17 Cross-sectional view showing a state in which a metal plate and a thin film electrode composition are set in a mold
  • FIG. 22 External perspective view showing the configuration of another embodiment of the fuel cell according to the present invention (anode ⁇ rule)
  • FIG. 23 External perspective view showing the configuration of another embodiment of the fuel battery cell according to the present invention (Force Sword)
  • FIG. 24 Assembly perspective view showing an example of the fuel cell shown in Figs.
  • FIG. 25 A longitudinal sectional view showing an example of the fuel cell shown in Figs.
  • FIG. 26 Diagram showing the flow channel of the fuel cell in Fig. 24
  • FIG. 34 is a sectional view showing a state in which a metal plate and a thin film electrode composition are set in a mold.
  • FIG. 1 is an assembled perspective view showing an example of the fuel battery cell of the present invention
  • FIG. 2 is a longitudinal sectional view showing an example of the fuel battery cell of the present invention.
  • the fuel cell of the present invention comprises a plate-shaped solid polymer electrolyte 1 and a force sword side electrode plate 2 disposed on one side of the solid polymer electrolyte 1. And an anode side electrode plate 3 arranged on the other side.
  • a fuel flow channel 9 is formed in the anode side metal plate 5 by etching, and the peripheral region 5a of the anode side metal plate 5 and the peripheral region 4a of the force sword side metal plate 4 are etched.
  • An example in which the thickness is thinner than other parts is shown.
  • regions other than the peripheral regions 4a and 5a of the metal plates 4 and 5 are referred to as central regions 4b and 5b.
  • a so-called caulking process is performed! /.
  • the solid polymer electrolyte 1 may be any as long as it is used in a conventional solid polymer membrane type battery. From the viewpoint of chemical stability and conductivity, a sulfonic acid group that is a super strong acid is used. A cation-exchange membrane having a perfluorocarbon polymer strength having a suitable property is preferably used. As such a cation exchange membrane, naphth ion (registered trademark) is preferably used. In addition, for example, a porous membrane made of fluorine resin such as polytetrafluoroethylene impregnated with the above naphth ion or other ion conductive material, or a porous film made of polyolefin resin such as polyethylene or polypropylene. The membrane may be a non-woven fabric carrying the above naphth ion or other ion conductive material.
  • the electrode plates 2 and 3 can function as a gas diffusion layer, and can supply and discharge fuel gas, oxidizing gas, and water vapor, and at the same time have a function of collecting current. .
  • the same or different electrode plates 2 and 3 can be used, and the base material has an electrocatalytic action. It is preferable to carry the catalyst which carries out.
  • the catalyst is preferably supported at least on the inner surfaces 2b and 3b in contact with the solid polymer electrolyte 1.
  • the electrode base material for example, a conductive porous material such as an aggregate of fibrous carbon and conductive polymer fibers such as carbon paper and carbon fiber nonwoven fabric can be used.
  • the electrode plates 2 and 3 are prepared by adding a water-repellent material such as fluorine resin to such a conductive porous material.
  • a catalyst and a water-repellent substance such as fluorine resin are mixed and mixed with a solvent to form a paste or ink, and then this is applied to one side of an electrode substrate that should face the solid polymer electrolyte membrane. It is formed by applying.
  • the electrode plates 2 and 3 and the solid polymer electrolyte 1 are designed according to the reducing gas and the oxygen gas supplied to the fuel cell.
  • the oxygen gas supplied to the fuel cell it is preferable to use air as the oxidizing gas and hydrogen gas as the reducing gas.
  • methanol or dimethyl ether can be used in place of the reducing gas.
  • the force sword side electrode plate 2 on the side where the air is naturally supplied causes a reaction between oxygen and hydrogen ions to generate water, so that a strong electrode reaction
  • a strong electrode reaction It is preferable to design according to.
  • the phenomenon that the porous electrode body is clogged (flooding) due to the condensation of water vapor tends to occur especially at the air electrode where water is generated. Therefore, in order to obtain stable characteristics of the fuel cell over a long period of time, it is effective to ensure the water repellency of the electrode so that the flooding phenomenon does not occur.
  • platinum, palladium, ruthenium, rhodium, silver, nickel, iron, copper, cobalt and molybdenum force at least one metal force selected or an oxide thereof can be used.
  • the thickness of the electrode plates 2 and 3 is preferably 50 to 500 m in consideration of the electrode reaction, strength, handling properties, etc., which are effective for reducing the overall thickness as the thickness is reduced.
  • the electrode plates 2 and 3 and the solid polymer electrolyte 1 may be laminated and integrated in advance by bonding, fusing, or the like, but they may be simply laminated and arranged. Such a laminate is also available as a thin film electrode assembly (MEA) 10 A little.
  • a force sword side metal plate 4 is disposed on the surface of the force sword side electrode plate 2, and an anode side metal plate 5 is disposed on the surface of the anode side electrode plate 3.
  • the anode side metal plate 5 is provided with a fuel inlet 5c and a discharge port 5d, and further, in the present embodiment, a flow channel 9 is provided in the anode side metal plate 5.
  • the force sword side metal plate 4 is provided with a large number of openings 4c for supplying oxygen in the air. As long as the force sword side electrode plate 2 can be exposed, the opening 4c may have any number, shape, size, formation position, and the like. However, considering the supply efficiency of oxygen in the air and the current collection effect from the force sword side electrode plate 2, the area of the opening 4c is 10 to 50% of the area of the force sword side electrode plate 2. Particularly preferred is 20 to 40%.
  • the opening 4c of the cathode side metal plate 4 may be provided with a plurality of circular holes or slits regularly or randomly, or may be provided with a metal mesh.
  • any metal can be used as long as it does not adversely affect the electrode reaction.
  • examples thereof include stainless steel plates, nickel, copper, and copper alloys.
  • weight, elastic modulus, strength, corrosion resistance, press cache property, etching cache property, stainless steel plate, nickel, etc. are preferable.
  • the channel groove 9 provided in the anode side metal plate 5 may have any planar shape or cross-sectional shape as long as a channel of hydrogen gas or the like can be formed by contact with the electrode plate 3.
  • the inlet 5 c and the outlet 5 d are connected by a single continuous channel groove 9, and the channel groove 9 is zigzag periodically folded back along the width direction of the metal plate 5. It is formed into a shape.
  • various forms of the flow path grooves 9 can be employed.
  • a part of the channel groove 9 of the metal plate 5 may be formed on the outer surface of the electrode plate 3.
  • a mechanical method such as a hot press or cutting may be used, but it is preferable to perform groove processing by laser irradiation in order to perform fine processing suitably.
  • an aggregate of fibrous carbon is preferable as the base material of the electrode plates 2 and 3.
  • Each of the inlet 5c and the outlet 5d communicating with the channel groove 9 of the metal plate 5 has one or more than one. Numbers can be formed.
  • the thickness of the metal plates 4 and 5 is effective for reducing the overall thickness as the thickness is reduced. However, in consideration of strength, elongation, weight, elastic modulus, handling property, etc., 0.1 to 1 mm is preferable. Etching is preferred as a method of forming the flow channel 9 in the metal plate 5 from the viewpoint of ease of processing accuracy.
  • a width of 0.1 to: LOmm and a depth of 0.05 to lmm are preferable.
  • the cross-sectional shape of the channel groove 9 is preferably substantially square, substantially trapezoidal, substantially semicircular, V-shaped or the like.
  • Etching is also used to form the opening 4c in the metal plate 4, the thin walls of the peripheral regions 4a and 5a of the metal plates 4 and 5, and the formation of the inlet 5c and the outlet 5d into the metal plate 5. It is preferable to do. Etching can be performed using, for example, a dry film resist or the like and forming an etching resist having a predetermined shape on the metal surface, and then using an etching solution corresponding to the type of the metal plates 4 and 5. In addition, the cross-sectional shape of the channel groove 9 can be controlled with higher accuracy by selectively etching each metal using a laminate of two or more kinds of metals.
  • the embodiment shown in FIG. 2 is an example in which the thickness of the force squeeze portions (peripheral regions 4a and 5a) of the metal plates 4 and 5 is reduced by etching. In this way, by etching the force crimping portion to an appropriate thickness, sealing with caulking can be performed more easily. From this viewpoint, the thickness of the caulking portion is preferably 0.05 to 0.3 mm.
  • the peripheral regions 4a and 5a of the metal plates 4 and 5 are sealed by force shimming while being electrically insulated. Electrical insulation can be performed using an insulating material, but in the present embodiment, it can be performed by interposing the peripheral portion la of the solid polymer electrolyte 1.
  • a structure in which the solid polymer electrolyte 1 is sandwiched between the peripheral regions 4a and 5a of the metal plates 4 and 5 as shown in FIG. 2 is preferable. That is, the solid polymer electrolyte 1 in the region outside the electrode plates 2 and 3 is sandwiched between the peripheral regions 4a and 5a. According to such a structure, it is possible to effectively prevent inflow of gas or the like to one force or the other of the electrode plates 2 and 3.
  • the caulking structure shown in FIG. 2 is preferable from the viewpoint of sealing performance, ease of manufacture, thickness, and the like. That is, the peripheral region 4a of one force sword side metal plate 4 is made larger than the peripheral region 5a of the other anode side metal plate 5, and the cathode is placed with the solid polymer electrolyte 1 interposed.
  • a caulking structure in which the peripheral region 4a of the cathode side metal plate 4 is folded back so as to sandwich the peripheral region 5a of the anode side metal plate 5 is preferable.
  • a fuel cell When a fuel cell is configured, one or a plurality of fuel cells as shown in Figs. 1 and 2 can be used.
  • the solid polymer electrolyte 1, a pair of electrode plates 2, 3, and A unit cell can be constituted by a pair of metal plates 4 and 5, and a plurality of the unit cells can be laminated or arranged on the same surface. By doing so, it is possible to provide a high-power fuel cell by connecting the bolts and nuts to each other and applying a constant pressure to the cell parts.
  • a fuel supply pipe can be directly joined to the fuel inlet 5c and outlet 5d of the metal plate 5, but the fuel cell is made thinner.
  • a joint mechanism having a pipe parallel to the surface of the metal plate 5 having a small thickness.
  • a metal pin for a joint can be attached to the metal plate 5 at the inlet 5c. This attachment can be performed by force fitting.
  • a pipe can be press-fitted and attached to this pin.
  • the metal plates 4, 5 and the solid polymer electrolyte 1 which are members constituting the fuel battery cell are formed in a rectangular shape, but their four corners are formed in an R shape. By applying R to the four corners, the force squeeze sealing process described later is performed to make the shape easy.
  • FIG. 3 is an external perspective view showing a mold that is a main part of the manufacturing facility.
  • Fig. 4 is a conceptual diagram showing the cross-sectional configuration of the mold.
  • the manufacturing facility includes a fixed unit 20 and a movable unit 30.
  • the stationary unit 20 includes a first lower mold 21 and a second lower mold 22 as molds.
  • the first lower mold 21 is provided with a coil spring 23 as an urging mechanism, and acts to urge the first lower mold 21 upward.
  • the first lower mold 21 presses the central region 4b of the power sword side metal plate 4 of the fuel cell.
  • the second lower mold 22 is arranged so as to surround the first lower mold 21, and the peripheral edge of the metal plate 4 Press the area 4a.
  • the second lower mold 22 is formed in a substantially rectangular annular shape in plan view.
  • the second lower mold 22 includes a mechanism (corresponding to the first adjustment mechanism 24) that can be adjusted in the vertical direction.
  • the adjustment mechanism 24 can be configured by a mechanism using a bolt and a nut, for example.
  • the first adjustment mechanism 24 can adjust the relative height relationship between the upper surface of the first lower mold 21 and the upper surface of the second lower mold 22. Specifically, the first lower mold 21 located in the central area is in a position recessed from the second lower mold 22 located in the peripheral area, and the protruding amount hi of the second lower mold 22 relative to the first lower mold 21 is hi. Can be adjusted.
  • the second lower mold 22 is formed with a hole 22a for inserting a guide shaft for guiding the second upper mold in the vertical direction. Further, as shown in FIG. 3, holes for planting the two positioning pins 25 are also formed. With this positioning pin 25, the member to be processed can be positioned. Positioning holes are formed in the member to be processed, and the workpiece W can be positioned at the time of processing by inserting the hole into the positioning pin 25.
  • the movable unit 30 includes a first upper mold 31 and a second upper mold 3 as molds.
  • the second upper die 32 is provided with a coil spring 33 as an urging mechanism, and acts to urge the second upper die 32 downward.
  • the first upper mold 31 presses the central region 5b of the anode side metal plate 5 of the fuel cell.
  • the second upper die 32 is disposed so as to surround the first upper die 31 and performs press working on the peripheral region 5a of the metal plate 5.
  • the second upper mold 32 is formed in a substantially rectangular annular shape in plan view.
  • the second upper mold 32 includes a mechanism that can be adjusted in the vertical direction (equivalent to the second adjusting mechanism 34).
  • As the adjustment mechanism 34 for example, a mechanism using bolts and nuts can be used.
  • the second adjustment mechanism 34 can adjust the relative height relationship between the lower surface of the first upper mold 31 and the lower surface of the second upper mold 3 2. Specifically, the protrusion amount h2 of the second upper mold 32 relative to the first upper mold 31 can be adjusted. By providing the adjusting mechanisms 24 and 34 as described above, an appropriate pressing force can be applied in the press carriage.
  • the first lower mold 21 and the first upper mold correspond to the first mold, and the second lower mold 22 and the second upper mold 32 are the second mold (lower bending). Equivalent to press working means and upper bending press working means).
  • the second upper mold 32 is inserted with a guide shaft for guiding the second upper mold 32 in the vertical direction.
  • a hole 32a is formed.
  • a hole 32b into which the positioning pin 25 is inserted is also formed.
  • a pressing force can be applied by operating the operation unit 40.
  • the movable unit 30 is moved downward by operating the operation unit 40.
  • the abutting portion 26 provided on the fixed side unit 20 side and the abutting portion 36 provided on the movable side unit 30 side are configured to abut, and the distance Y between them is determined by the movable side unit 30. Corresponds to the travel stroke.
  • the form of the force workpiece W schematically showing the workpiece W as an object of press working is different depending on the process of the press force.
  • FIG. 5 is a process diagram showing the order of the manufacturing process. Etching is performed on the metal plates 4 and 5 as a process prior to processing using the manufacturing equipment shown in FIGS. 3 and 4 (Sl). As shown in FIG. 6 (a), the anode-side metal plate 5 is formed by etching a metal plate having a constant thickness to reduce the thickness of the peripheral region 5a, and the channel groove 9, the inlet 5c, and the outlet. 5d is also formed by etching. For example, a metal plate with a thickness of 0.3 mm is etched to form the peripheral region 5a with a thickness of 0.1 mm and a flow channel groove 9 with a depth of about 0.2 mm.
  • the metal plate 4 of the force sword side 4 is etched with a constant thickness to reduce the thickness of the peripheral region 4a and to increase the number of openings.
  • Part 4c is also formed by etching.
  • a metal plate having a thickness of 0.3 mm is etched, and the thickness of the peripheral region 4a is set to about 0.1 mm.
  • drawing of the power sword side metal plate 4 and drawing of the anode side metal plate 5 are performed (S2, S3). This drawing process is a process for forming a 150 m step on the metal plates 4 and 5.
  • Figures 7 (a) and 7 (b) show how each metal plate is drawn.
  • steps 4f and 5f are formed at locations near the boundaries between the peripheral regions 4a and 5a and the central regions 4b and 5b of the metal plates 4 and 5.
  • spaces 4g and 5g are formed inside the metal plates 4 and 5, respectively.
  • the space portions 4g and 5g function as space portions for accommodating the electrode plates 2 and 3 of the thin film electrode composition 10.
  • the metal plate 4 and the metal plate 5 are drawn separately.
  • FIG. 7 As the mold configuration for drawing, the shape shown in FIG. 4 can be used.
  • the metal molds first and second lower molds 21 and 22 and first and second upper molds 31 and 32
  • the same mold can be used for the mold.
  • FIG. 7 it is shown in accordance with the posture when assembled, but the posture (vertical direction) when actually set in the manufacturing equipment is the posture of the metal plate 5 shown in FIG. 7 (b). Will be set.
  • the first upper mold 31 located in the central regions 4b and 5b is continuously lowered downward, and the stopper is applied while the lower surface of the first upper mold 31 is further lowered than the lower surface of the second upper mold 32. Stop in contact. The stroke until the stopper stops is set for each process. As a result, the metal plates 4 and 5 are drawn to form steps (space portions 4g and 5g). The step size at this time is, for example, about 0.15 mm, and the space portions 4g and 5g corresponding to the thickness of the electrode plates 2 and 3 to be accommodated are formed.
  • a thin-film electrode composition 10 (the electrode plates 2 and 3 are assembled on both sides of the solid polymer electrolyte 1) is set in the metal plate 4 drawn by 90 °.
  • the electrode plate 2 of the thin film electrode composition 10 is accommodated in the space portion 4 g of the metal plate 4, and the electrode plate 3 is accommodated in the space portion 5 g of the metal plate 5.
  • a metal plate 5 is set on the top.
  • the peripheral portion la of the solid polymer electrolyte 1 has a shape along the peripheral region 5a bent 90 °, and is similarly set to be bent 90 °.
  • the peripheral portion la of the solid polymer electrolyte 1 is slightly protruded from the peripheral region 5a.
  • the first and second upper molds 31 and 32 descend downward.
  • the peripheral region 5a is bent 45 ° inward.
  • the stoppers contact portions 26, 36
  • the compression process of the coil spring 33 proceeds until the stopper comes into contact.
  • the first upper die 31 is above the metal plate 5 of the fuel cell and is in contact with the metal plate 5 when the second upper die 32 and the second lower die 22 come into contact with each other. Absent .
  • the stopper comes into contact, the first upper mold 31 will not go down any further. Stop in the state shown in Fig. 11. At this time, the lower surface 31 a of the first upper mold 31 presses (contacts) the upper surface of the metal plate 5. Thereby, it can suppress that the center area
  • the vertical gap dimension A h between the upper surface of the second lower mold 22 and the first upper mold 31 is set to about 0.5 mm.
  • the thickness of the metal plates 4 and 5 is 0.3 mm.
  • the thickness of the solid polymer electrolyte 1 is 0.025 mm. Therefore, the gap dimension A h is substantially the same as the thickness of the fuel cell that is force-sealed. As a result, deformation of the member can be effectively regulated without applying an excessive force to the fuel cell.
  • the 45 ° angle setting is preferably 45 ° ⁇ 5 °, more preferably 45 ° ⁇ 1 °. If it exceeds 50 °, there is a possibility that the bent part will not fall down well when performing 0 ° drawing. For example, a phenomenon such as buckling may occur, and it may not be crushed well, the quality of force shim sealing will deteriorate, and problems such as gas leakage will occur. Also, if the angle is smaller than 40 °, it is not preferable because the bent portion falls well inside when the angle is smaller than 40 ° at a time.
  • the outer shape of the force sword side metal plate 4 is drawn by 0 ° (S9).
  • the mold used in the 0 ° drawing process is a different mold from the 45 ° drawing process, and the press surface 32d is formed on a horizontal plane as shown in FIG.
  • the peripheral area 5a bent at 45 ° in the previous process is further pressed down and tilted inward.
  • the peripheral portion la of the solid polymer electrolyte 1 is also brought down inside.
  • the peripheral region 5a is bent 180 ° in a horizontal state.
  • the peripheral regions 4a and 5a are sealed by caulking.
  • the solid polymer electrolyte 1 is interposed as an insulating layer between the peripheral region 4a and the peripheral region 5a, and is sealed in a state in which a short circuit between the metal plates 4 and 5 is prevented.
  • FIG. 13 (b) shows the shape of the first lower mold 21 used.
  • the first upper mold 31 has a similar mold shape.
  • Each mold is provided with projections 21t and 31t formed in a ring shape.
  • the inner side of the peripheral regions 4a and 5a is pressed in a ring shape.
  • the steps for performing force shim sealing are S7 to S10 in FIG.
  • the 90 ° standing bent part formed in the S6 process is laid down and crushed, it does not fall down at once, and after drawing to 45 °, it is drawn to 0 °.
  • Force squeeze sealing is performed in stages. If you try to do this in one step, the sealing state will not be assured if the standing bend will fall down well, but as described above, it can be reliably sealed by drawing in two steps. it can.
  • the central region 5b of the metal plate 5 is brought into contact with the first upper die 31, so that the deformation of the central region 5b is restricted when the pressing force is applied.
  • a gap is formed between the central region 4a of the metal plate 4 and the first lower mold 21, no pressing force or regulating force acts. Thereby, deformation of the central regions 4b and 5b can be effectively prevented while preventing an excessive force from acting on the central regions 4a and 5a.
  • the force squeeze sealing step refers to S7 to S10 in FIG.
  • FIG. 14 is a process diagram showing the order of the manufacturing process when bending is performed.
  • S16 and S17 are calendered with the bending process of the force sword side metal plate 4 and the bending process of the anode side metal plate 5.
  • S11 to S15 are the same as described above, and S18 to S22 in FIG. 14 are the same as S6 to S10 in FIG. Therefore, the description will focus on the differences from the above description.
  • the metal plates 4, 5 and the thin film electrode composition 10 are set (S19).
  • Figure 17 shows this state.
  • a thin film electrode composition 10 (the electrode plates 2 and 3 are assembled on both sides of the solid polymer electrolyte 1) is set in the metal plate 4 drawn by 90 °.
  • the metal plates 4 and 5 have curved concave portions 4k and 5k, and the central portions of the curved concave portions 4k and 5k come into contact with the thin film electrode composition 10.
  • the central regions 4b and 5b of the metal plates 4 and 5 formed in the curved shape are pressed by the first lower mold 21 and the first upper mold 31 to deform the curved shape into a planar shape. It is done.
  • the peripheral regions 4a and 5a are force-sealed, the central regions 4b and 5b tend to float up, and the contact state with the thin film electrode composition 10 is deteriorated. Therefore, even if the above-described force acts on the central regions 4b and 5b, the contact between the thin film electrode composition 10 and the metal plates 4 and 5 can be reliably maintained, and the electric output can be efficiently performed. Can be taken out.
  • the dimensions kl and k2 of the curved concave portions are preferably 0.05 to 0.15 mm. The reason is that if it is less than 0.05 mm, it is difficult to exert the effect of suppressing the outward protrusion of the central region of the metal plate. If it exceeds 0.15 mm, it is difficult to perform force shim sealing. Another problem is that the sealing pressure becomes too large and the force acting on the thin film electrode composition 10 becomes too large. By setting the protruding amount as described above, it is possible to perform appropriate force sealing.
  • the gap dimension j (see Fig. 17) between the inner wall surface of the bent portion of the metal plate 4 and the end surface of the peripheral region 5a of the metal plate 5 shall be 0.05 to 0.15 mm. Is preferred. The reason is that if the thickness is less than 0.05 mm, the clearance is too narrow, so that the standing bent portion and the peripheral edge surface may come into contact with each other in the force shim sealing process. Therefore, this possibility can be suppressed if the force at which the central region of the metal plate protrudes outward due to this force is 0.05 mm or more. If the clearance exceeds 0.15 mm, the possibility of gas leakage inside the cell increases. Therefore, it is preferable to set the clearance as described above.
  • the metal plates 4, 5 are processed to have a curved shape, and then force squeeze sealing is performed. Therefore, the completed fuel battery cell has a good contact state between the metal plates 4, 5 and the thin film electrode composition 10, and the electric output can be taken out efficiently.
  • FIG. 20 (a) is a graph showing the relationship between the current density (mAZcm 2 ) and the output density (mWZcm 2 ), clearly showing that the direction force output processed into a curved shape is large.
  • FIG. 20 (b) is a graph showing the relationship between the current density (mAZcm 2 ) and the cell resistance ( ⁇ ⁇ ), and it can be seen that the output is larger when processed into a curved shape.
  • FIG. 21 is a graph showing the degree of variation in the cell thickness of the manufactured fuel cells. The measurement was performed with a micrometer.
  • the flow grooves 9 formed on the anode side metal plate 5 will be described with respect to the force that has been described for the method of forming by etching, and the process of forming this by press casing. In addition, the process of manufacturing the metal plates 4 and 5 by the progressive die equipment will be described.
  • Fig. 22 is an external perspective view of the fuel cell of the present invention as viewed from the anode side cover
  • Fig. 23 is an external perspective view of the force sword side force as well.
  • 24 is an assembled perspective view showing an example of the fuel cell shown in FIGS. 22 and 23
  • FIG. 25 is a longitudinal sectional view of the fuel cell shown in FIGS.
  • FIG. 26 is a diagram showing the shape of the flow channel. The explanation will focus on the differences from the fuel cell described in Figs.
  • the channel groove 9 provided in the anode side metal plate 5 may have any planar shape or cross-sectional shape as long as a channel such as hydrogen gas can be formed by contact with the electrode plate 3.
  • the inlet 5c and the outlet 5d are connected by the channel groove 9, and the channel groove 9 is formed in a zigzag shape that is periodically folded along the width direction of the metal plate 5.
  • the channel groove 9 is composed of a wide horizontal groove 9a and a narrow vertical groove 9b, and the horizontal groove 9a and the horizontal groove 9a on both sides of the width direction are connected by three vertical grooves 9b. Therefore, even if one of the vertical grooves 9b is blocked for some reason, the remaining vertical grooves 9b prevent the flow path grooves 9 from being completely blocked.
  • various forms of the channel grooves 9 can be adopted, and the present invention is not limited to the configuration shown in FIG.
  • the flow path groove 9 in the metal plate 5 it can be formed by performing press working (stamping) on the metal plate. That is, by punching from the back surface side of the metal plate 5 shown in FIG. 24, the flow path is formed on the back surface side of the metal plate 5 as shown in FIGS. A groove 9 can be formed. Further, since the flow channel 9 is formed by stamping, the same shape as the flow channel 9 appears on the surface side of the metal plate 5 as shown in FIG.
  • the cross-sectional shape of the channel groove 9 is preferably substantially square, substantially trapezoidal, substantially semicircular, or V-shaped.
  • the formation of the opening hole 4c in the metal plate 4 and the formation of the injection port 5c and the discharge port 5d in the metal plate 5 are also performed using a pressing force. Furthermore, concave portions are formed in the central regions 4b and 5b in the metal plates 4 and 5 using the same press caloe (punching process). This recessed portion is a recessed portion for accommodating the electrode plates 2 and 3 constituting the thin film electrode composition 10 as shown in FIG. Therefore, the area of the recess is processed according to the size of the electrode plates 2 and 3 to be accommodated.
  • a ring-shaped (frame-shaped) insulating sheet 11 is disposed in the peripheral region 4a as shown in FIG.
  • the outer edge of the insulating sheet 11 is set to be approximately the same size as the edge of the metal plate 4, and the inner edge is a region where a large number of opening holes 4c are formed (or a size slightly larger than the size of the electrode plate 2). Is set to a slightly larger size.
  • ring-shaped (frame-shaped) insulating sheets 12 are arranged on both the front and back surfaces of the peripheral region 5a as shown in FIG.
  • the sizes of the insulating sheets 12 on both the front and back sides are the same.
  • the outer edge of the insulating sheet 12 is set to be approximately the same size as the edge of the metal plate 5, and the inner edge is set to be slightly larger than the electrode plate 3.
  • the solid polymer electrolyte 1 is slightly larger than the size of the electrode plates 2 and 3, and the peripheral region la exposed from the electrode plates 2 and 3 is insulated as shown in FIG. It is assembled so as to be sandwiched between the sheets 11 and 12.
  • the peripheral region la of the solid polymer electrolyte 1 in the region outside the electrode plates 2 and 3 is connected to the peripheral region 4a, via the insulating sheets 11 and 12. It is in the state of being clamped by 5a. According to such a structure, inflow of gas or the like from one of the electrode plates 2 and 3 to the other can be effectively prevented.
  • an insulating sheet 12 is also provided on the surface side of the metal plate 5, and when sealing with force squeeze, it is possible to seal in a state in which insulation performance is ensured.
  • the insulating sheets 11 and 12 sheet-like resin, rubber, thermoplastic elastomer, ceramics, etc. can be used.
  • the insulating sheets 11 and 12 are attached to the metal plates 4 and 5 in advance by being attached or applied directly or via an adhesive. Can be kept. This point will be described later.
  • the caulking structure shown in FIG. 25 is preferable from the viewpoints of sealing performance, ease of manufacture, thickness, and the like. That is, the peripheral region 4a of one of the force-sword-side metal plates 4 is made larger than the peripheral region 5a of the other anode-side metal plate 5, and the cathode-side metal plate 4 A caulking structure in which the peripheral region 4a is folded back so as to sandwich the peripheral region 5a of the anode side metal plate 5 is preferable. A manufacturing method and manufacturing equipment for performing such force squeeze sealing will be described in detail later.
  • a joint booth (metal pin) 5e is attached to the metal plate 5 at the inlet 5c. This attachment can be performed by force fitting.
  • a metal pipe 13 can be press-fitted and attached to the pin 5 e.
  • a gas supply flow path can be formed by inserting the oil-repellent pipe 14 into the metal pipe 13 (see FIG. 25). The same configuration is adopted for the outlet 5d.
  • FIG. 27 is a diagram showing an outline of a manufacturing process of a fuel cell. As shown in FIG. 27, the process is divided into the process of manufacturing the force sword side metal plate 4, the process of manufacturing the anode side metal plate 5, and the process of manufacturing the thin film electrode composition 10. After the electrode composition 1 is manufactured, a process of assembling a fuel cell using these is performed.
  • FIG. 28 is a conceptual diagram showing the configuration of the progressive die equipment.
  • This progressive mold equipment can process both the power sword side metal plate 4 and the anode side metal plate 5, and therefore, seven molds are arranged along the transfer path.
  • a metal roll having a long metal plate having a predetermined width attached to the mouth is used as a raw material for processing each of the metal plates 4 and 5. Pull this metal roll force long metal plate Take it out and send it to the progressive die equipment, and the necessary processing is done.
  • long metal plates having the same width are used, but the metal plate 4 is one having an insulating sheet 11 attached on one side in advance, and the metal plate 5 is Use one that has insulating sheets 12 on both sides in advance.
  • the seven molds shown in Fig. 28 are arranged at predetermined intervals, and molds (first, second, third and sixth molds) used only when the anode side metal plate 5 is manufactured, A metal mold (4th and 7th mold) that is used only when manufacturing the power sword side metal plate 4 and a metal mold that can be used in common for both metal plates 4 and 5 (5th mold) Have. Therefore, when the force sword side metal plate 4 is manufactured, the first, second, third, and sixth molds are controlled to be inoperative, and when the anode side metal plate 5 is manufactured, the fourth, seventh metal plate is manufactured.
  • a mold control unit is provided for controlling the mold to be inactive.
  • Fig. 29 is a plan view showing how the power sword side metal plate 4 is processed by the progressive die equipment
  • Fig. 30 shows how the anode side metal plate 5 is processed by the progressive die equipment. It is a top view.
  • Fig. 31 is a cross-sectional view showing how the power sword side metal plate 4 is processed by the progressive die equipment
  • Fig. 32 is a cross sectional view showing how the anode side metal plate 5 is processed by the progressive die equipment. It is.
  • the process of manufacturing the force sword side metal plate 4 will be specifically described.
  • the long metal plate 50 from which the metal roll force is also drawn has a predetermined width, and positioning holes 50a are formed in advance on both sides in the width direction at predetermined intervals.
  • the insulating sheet 11 is also attached in advance at predetermined intervals. When the insulating sheet 11 is pasted, it can be pasted on the basis of the positioning hole 50a.
  • the long metal plate 50 is conveyed from the left side to the right side in FIG.
  • a large number of holes 4c are formed by press drilling (Sl).
  • the cross-sectional shape at this stage is shown in Fig. 31 (b). This is done with the 4th mold.
  • a recess 4g punching process for accommodating the electrode plate 2 is performed (S2).
  • the cross-sectional shape at this stage is shown in Fig. 31 (c). This is done with the fifth mold.
  • processing for punching the outer shape of the metal plate 4 is performed (S3).
  • the cross-sectional shape at this stage is shown in Fig. 31 (d). It is. This is done with the 7th mold.
  • the length after punching is indicated by L2.
  • the movement of the long metal plate 50 is intermittently moved in the conveyance direction, and when a predetermined process is performed by the mold, the long metal plate 50 is conveyed by a predetermined interval where the mold is arranged.
  • the As the operation of the mold, SI, S2, and S3 shown in Fig. 29 are processed at the same time. In other words, the force is increasing toward the downstream side in the transport direction. This is the same when the anode-side metal plate 5 is processed.
  • a long metal plate 51 drawn out from a metal roll has a predetermined width, and positioning holes 51a are formed in advance on both sides in the width direction at predetermined intervals. Insulating sheets 12 are also attached to both the front and back surfaces at predetermined intervals in advance. When the insulating sheet 12 is pasted, it can be pasted on the basis of the positioning hole 51a.
  • the punching process (first stage) of the flow channel 9 is performed (Sl l).
  • the channel groove 9 is not completely formed, and the groove depth is shallow.
  • a second stage punching process is performed for the channel groove 9 (S12). Thereby, the processing of the channel groove 9 is completed.
  • the cross-sectional shape at this stage is shown in Fig. 32 (b).
  • a press drilling force is formed to form holes (injection port 5c and discharge port 5d) for mounting the booth (S13). This is done with a third mold.
  • a recess 5g launching force for accommodating the electrode plate 3 is performed (S14).
  • the cross-sectional shape at this stage is shown in Fig. 32 (c). This is done with the fifth mold.
  • processing for punching the outer shape of the metal plate 5 is performed (S15).
  • the cross-sectional shape at this stage is shown in FIG. 32 (d). This is done with the 6th mold. The length after punching is indicated by L1.
  • Booth 5e can be connected to inlet 5c and outlet 5d by caulking.
  • FIG. 33 (b) shows a perspective view after drawing, and standing bent portions are formed on the entire circumference of the peripheral region 4a. By forming such a standing bent portion, it is possible to facilitate force squeeze sealing.
  • the mold equipment used in the assembly process of the fuel cell using the metal plates 4 and 5 manufactured as described above those having the configurations shown in Figs. 3 and 4 can be used. .
  • the basic structure of this mold can be applied to the case where the mold used in the fuel cell assembly process described below is misaligned.
  • the shape of the mold may differ depending on the type of processing, but the basic mold configuration can be the structure shown in Figs.
  • the metal plates 4 and 5 are used for punching (drawing) to form the recesses 4g and 5g for accommodating the electrode plates 2 and 3 of the thin film electrode composition 10 and the punching of the outer shape, As explained.
  • the metal plate 4 is drawn on the force sword side metal plate 4 (see Fig. 33), and the fuel cell is assembled.
  • This assembly process is the same as described in FIGS.
  • the mold configuration and the like in each process are shown in FIGS. 34 to 37, they are basically the same as those described in FIGS.
  • the channel groove 9 is formed by pressing force, a difference is that a mold is formed in accordance with the shape of the channel groove 9.
  • Fig. 34 shows a state in which the metal plates 4, 5 and the thin-film electrode composition 10 manufactured by the progressive die equipment are set.
  • a thin-film electrode composition 10 (in which the electrode plates 2 and 3 are assembled on both sides of the solid polymer electrolyte 1) is set in the metal plate 4 drawn by 90 °.
  • the first upper mold 31 has a recess 31a for escaping the booth 5e that is caulked to the metal plate 5, and a recess 31b for escaping the protrusion on the surface of the metal plate 5 due to the formation of the flow channel groove 9. Is provided.
  • insulating sheets 11 and 12 are interposed as insulating layers between the peripheral region 4a and the peripheral region 5a.
  • the metal plates 4 and 5 are sealed in a state that prevents short-circuiting.
  • the configuration of the fuel cell is not limited to the structure shown in FIGS.
  • the force sword side metal plate 4 has many openings 4c for taking in air.
  • the power sword side metal plate 4 is formed in the same shape as the anode side metal plate 5.
  • the configuration in which the solid polymer electrolyte 1 is interposed as an insulating layer is described.
  • force squeeze sealing is performed by using an insulating member separately. May be.
  • the thickness of the insulating material is preferably 0.1 mm or less from the viewpoint of thinning. It is possible to further reduce the thickness by coating an insulating material (for example, an insulating material having a thickness of 1 ⁇ m is possible).
  • insulating materials sheet-like resin, rubber, thermoplastic elastomer, ceramics, etc. can be used. In order to improve the sealing performance, resin, rubber, thermoplastic elastomer, etc.
  • the insulating material can be attached to the metal plates 4 and 5 in advance by attaching or applying the insulating material directly or via an adhesive to the periphery of the metal plates 4 and 5.
  • the flow groove 9 formed in the anode side metal plate 5 is divided into two times, and the force is applied to press carriage by one or three or more stepwise processing. It may be formed.
  • the force obtained by bending and crimping the peripheral region 4a of the force-sword side metal plate 4 may be bent and force-sealing sealed by bending the peripheral region 5a of the anode-side metal plate 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

 製造工程において部材の変形を抑制しながら確実に燃料電池セルを製造できる製造方法を提供する。板状の薄膜電極組成体10と、この薄膜電極組成体10の両側に配置された一対の金属板4,5とを備え、これら金属板4,5の周縁領域4a,5aが絶縁層1aを間に介在させた状態でカシメにより封止される燃料電池セルの製造方法において、一対の金属板4,5の間に薄膜電極組成体10がセットされた状態で一方の金属板4の周縁領域4aを内側方向へ倒してカシメ封止するに際し、金属板4,5の中央領域4b,5bに位置し、中央領域4b,5bの変形を規制する第1金型31と、周縁領域4a,5aに位置し、カシメ封止のための加工を行う第2金型22,32とを用い、第2金型22,32で周縁領域4a,5aのカシメ封止を行う時に、第1金型31で中央領域4b,5bの変形を規制するように構成した。

Description

明 細 書
燃料電池セルの製造方法及び製造設備
技術分野
[0001] 本発明は、薄型の燃料電池セルを製造するための製造方法及び製造設備に関す るものである。
背景技術
[0002] ポリマー電解質のような固体高分子電解質を使用した高分子型燃料電池は、高い エネルギー変換効率を持ち、薄型小型 '軽量であることから、家庭用コージエネレー シヨンシステムや自動車向けに開発が活発化している。かかる燃料電池の従来技術 の構造として、図 38に示すものが知られている(例えば、非特許文献 1参照)。
[0003] 即ち、図 38に示すように、固体高分子電解質膜 100を挟んでアノード 101とカソー ド 102とを配設する。さらに、ガスケット 103を介して一対のセパレータ 104により挟持 して単位セル 105を構成する。各々のセパレータ 104にはガス流路溝が形成されて おり、アノード 101との接触により、還元ガス (例えば、水素ガス)の流路が形成され、 力ソード 102との接触により、酸ィ匕ガス (例えば、酸素ガス)の流路が形成される。各 々のガスは、単位セル 105内の各流路を流通しながら、アノード 101又は力ソード 10 2の内部に担持された触媒の作用により電極反応 (電極における化学反応)に供され 、電流の発生とイオン伝導が生じる。
[0004] この単位セル 105を多数個積層し、単位セル 105どうしを電気的に直列に接続して 燃料電池 Nを構成し、電極 106は、積層した両端の単位セル 105から取り出すことが できる。このような燃料電池 Nは、クリーンかつ高効率という特徴から、種々の用途、 特に、電気自動車用電源や家庭用分散型電源として注目されて 、る。
[0005] 一方、近年の IT技術の活発化に伴 、、携帯電話、ノートパソコン、デジカメなどモ パイル機器が頻繁に使用される傾向があるが、これらの電源は、ほとんどリチウムィォ ン二次電池が用いられている。ところが、モノィル機器の高機能化に伴って消費電 力がどんどん増大し、その電源用としてクリーンで高効率な燃料電池が注目されてき ている。 [0006] し力しながら、図 38に示すような従来の構造では、構造に自由度が無いため、モバ ィル機器の電源として求められる薄型小型軽量ィ匕ゃ形状の高自由度化に難があり、 メンテナス性が悪いという問題もあった。また、燃料電池セル内で酸化還元ガスを相 互に混合させないように供給し、かつ、密閉化することが難しぐこれらの条件を満た しながら、燃料電池セルの大きさや重量を低減ィ匕することは困難であった。つまり、従 来、セル部品をボルト及びナットの締結部品で相互結合して、セル部品に一定の圧 力を加えていたため、シール性を確保する上で、各部材の剛性を高める必要性があ り、どうしても薄型化、小型化、軽量化、自由な形状設計が困難であった。
[0007] 力かる問題点に鑑みて、本願発明者らは、薄型化、小型化等に対応することができ る燃料電池セルを発明し、出願を行ってきた (例えば、特願 2004— 82882)。その 燃料電池セルの基本的な構成は、板状の薄膜電極組成体と、この薄膜電極組成体 の両側に配置された一対の金属板 (力ソード側金属板及びアノード側金属板)とを備 え、これら金属板の周縁が絶縁層を間に介在させた状態でカシメにより封止されてい ることを特徴とするものである。また、薄膜電極組成体は、固体高分子電解質とその 両側に配置される一対の電極板 (アノード側及び力ソード側)により構成される。金属 板の周縁を電気的に絶縁した状態でカシメにより封止しているため、両者の短絡を防 止しながら、厚みをさほど増加させずに確実に燃料電池セルの封止を行うことができ る。これによつてメンテナンスも容易になり、し力も図 38に示す従来構造と比較してセ ル部材に剛性が要求されな 、ため、各燃料電池セルを大幅に薄型化することができ る。更に、固体高分子電解質や金属板を使用するため、自由な平面形状や屈曲が 可能となり、小型軽量かつ自由な形状設計が可能となる。
[0008] 非特許文献 1:日経メカ-カル別冊「燃料電池開発最前線」発行日 2001年 6月 29日 、発行所:日経 BP社、第 3章 PEFC、 3. 1原理と特徴 p46
発明の開示
発明が解決しょうとする課題
[0009] そこで、本発明の課題は、かかる構成を有する燃料電池セルの製造方法及び製造 設備を提供することである。特に薄型化を図るにあたり、燃料電池セルを構成する個 々の部材は平板状に形成されるため、変形をしやすい形状をしている。従って、製造 工程において部材の変形を抑制しながら確実に燃料電池セルを製造できる製造方 法及び製造設備が要求される。
課題を解決するための手段
[0010] 上記課題を解決するため本発明に係る燃料電池セルの製造方法は、
板状の薄膜電極組成体と、この薄膜電極組成体の両側に配置された第 1金属板及 び第 2金属板とを備え、これら金属板の周縁領域が絶縁層を間に介在させた状態で 曲げプレスにより機械的封止される燃料電池セルの製造方法において、
前記一対の金属板の間に薄膜電極組成体がセットされた状態で一方の金属板の 周縁領域を内側方向へ倒して曲げプレスによる機械的封止をするに際し、
金属板の中央領域に位置し、中央領域の変形を規制する規制手段と、前記周縁 領域に位置し、機械的封止のための加工を行う曲げプレス加工手段とを用い、曲げ プレス加工手段で周縁領域の封止を行う時に、規制手段で中央領域の変形を規制 することを特徴とするものである。
[0011] 力かる構成による燃料電池セルの製造方法の作用 ·効果を説明する。製造すべき 燃料電池セルは、板状の薄膜電極組成体と、その両側に配置される一対の金属板 を備えており、これら一対の金属板の周縁領域を絶縁層を介在させて曲げプレス〖こ よる機械的封止を行うことで周縁領域を封止することができる。また、この燃料電池セ ルは、板状の薄膜電極組成体をベースとして構成されるので、全体としても薄型に形 成することができる。
[0012] この燃料電池セルは、例えばカシメカ卩ェのような曲げプレスカ卩ェにより製造すること ができ、そのために規制手段と曲げプレス加工手段を使用する。具体的には、金属 板の中央領域に位置する規制手段と、周縁領域に位置する曲げプレス加工手段とを 有する。曲げプレス加工手段により、周縁領域の機械的封止を行うことができる。曲 げプレス加工手段により加工を行う時に、規制手段により中央領域の変形を規制す る。この規制がない状態だと、平板状の部材が変形するおそれがあるが、規制手段 により規制することで力かる問題をなくすことができる。これにより、製造工程において 部材の変形を抑制しながら確実に燃料電池セルを製造することができる。
[0013] なお、曲げプレス加工であるが、 1工程とは限らず、複数工程で行うこともできる。そ の場合、プレス加工の内容は、その各段階に応じて設定されるものであり、特定の内 容のものに限定されるものではない。また、複数工程で行われる場合、規制手段や 曲げプレス加工手段も複数種類用意されて 、てもよ!、。
[0014] 本発明において、機械的封止の後に、封止された周縁領域の内側領域をプレス押 圧する工程を更に有することが好ましい。これにより、確実に封止を行い、ガスのリー クを確実に防止することができる。
[0015] 本発明において、曲げプレスを行う周縁領域の金属板の厚みを他の部分よりも薄く 形成するための工程を有することが好ましい。曲げプレスを行う領域を薄くすることで 、機械的封止を少ない負荷で行うことができ、セルを構成する部材に対する変形を抑 制することができる。厚みを薄くする方法としては、例えば、エッチング、プレス加工が あげられる。
[0016] 本発明に係る規制手段としての第 1金型は、少なくとも金属板の上側に位置する第 1上型を備えると共に、曲げプレス加工手段としての第 2金型は、金属板の上側に位 置する第 2上型と、金属板の下側に位置する第 2下型とを備えており、
この第 2上型を上方力 移動させて、第 2下型と第 2上型とにより周縁領域の機械的 封止を行うための工程と、
この加工と同時もしくは後に、上方から移動してきた第 1上型が中央領域の変形を 規制する位置に到達する工程とを有することが好ましい。
[0017] 第 1金型として、少なくとも金属板の上側に位置する第 1上型を備え、この第 1上型 の下面により、金属板の変形を規制することができる。また、第 2金型は、第 2上型と 第 2下型とを備えており、これらの間に金属板の周縁領域を位置させることで、第 2金 型による機械的封止を行うことができる。第 2上型が下方に降りてきて金属板の周縁 領域に当接すると、加工が開始される。なお、機械的封止が複数工程で行われる場 合は、第 1 ·第 2上型や第 1 ·第 2下型なども工程数に対応した数が用意される。そし て、第 2金型による加工開始と同時もしくは加工開始後に、上方から移動してきた第 1 上型により、金属板の周縁領域が変形しょうとするのを規制する。これにより、部材の 変形を抑制しつつ、確実に機械的封止を行うことができる。
[0018] 本発明において、前記機械的封止のための加工を行う時に、第 1上型の下面は第 2下型の上面よりも上方に位置して 、ることが好まし 、。
[0019] 金属板の周縁領域の変形を規制するために、第 1上型の下面は第 2下型の上面よ りも上方に位置するように設定する。これにより、第 1上型により必要最小限の当接力 を金属板上面に作用させることができ、無理な力を作用させることなぐ変形を規制 することができる。
[0020] 本発明に係る機械的封止に先立ち、
一対の金属板を夫々絞り加工することで薄膜電極組成体を収容する空間を形成す る工程と、
一対の金属板を夫々所定の形状に打ち抜く工程とを行うことが好ましい。
[0021] 燃料電池セルの製造工程において、まず、一対の金属板を夫々絞り加工し、薄膜 電極組成体を収容する空間を形成する。次に、一対の金属板を夫々所定の形状に 打ち抜き加工する。なお、本発明としては、この打ち抜き加工と絞り加工の順番を入 れ替えてもよい。そして、打ち抜きされた一対の金属板の間に薄膜電極組成体を収 容し、周縁領域を曲げプレスにより機械的封止する。なお、本発明における製造工程 におけるプレスカ卩ェは、これらの工程を少なくとも含むものであり、更に別の工程が付 加されて 、てもよ ヽのは言うまでもな!/、。
[0022] 本発明において、第 1金属板の周縁領域を絞り加工することで、周縁領域全周に 立ち曲げ部を形成する工程と、
立ち曲げ部が上方に向いた状態の第 1金属板の上に薄膜電極組成体と第 2金属 板とがこの順番で置かれると共に、立ち曲げ部の内壁側に絶縁層がセットされる工程 と、
立ち曲げ部の全周が金属板の内側方向に向けて所定角度傾斜するような絞り加工 を少なくとも 1回行う工程と、
前記所定角度傾斜された立ち曲げ部の全周を第 2金属板の周縁領域に対して倒 し込むことで、周縁領域を前記機械的封止する工程とを有することが好ましい。
[0023] この構成〖こよると、第 1金属板の周縁領域を絞り加工し、周縁領域全周に立ち曲げ 部を形成する。この立ち曲げ部が上方を向いた状態にし、その内部 (金属板の中央 領域に相当する)に薄膜電極組成体と第 2金属板をこの順序で置く。また、立ち曲げ 部の内壁側には絶縁層が位置した状態とする。次に、立ち曲げ部を金属板の内側に 向けて絞り加工し、絶縁層を介在させた状態で、第 2金属板の周縁領域に倒しこむ 力 これを 1工程で行うのではなぐ少なくとも 2工程で行う。
[0024] すなわち、まず立ち曲げ部を内側に所定角度傾斜した状態となるまで絞り加工を行 う。そして、その次に、この傾斜した状態の立ち曲げ部を第 2金属板の周縁領域に倒 し込む。これにより、絶縁層を介在させた状態で周縁領域を機械的封止することがで きる。段階的に封止を行うことで、確実に立ち曲げ部を倒し込むことができる。これを 1工程で行おうとすると、うまく倒れない可能性があり、封止状態の品質も低下するが 、段階的に行うことで、確実に封止することができ、ガスのリーク等を防止することがで きる。その結果、曲げプレスによる機械的封止を確実に行いセル内部を確実に封止 できる。
[0025] なお、本発明において、所定角度傾斜させる絞り加工は少なくとも 1回行われ、 1回 だけでなく 2回以上に分けて行っても良い。 1回で行う場合は、所定角度を例えば 45 。に設定できる。また、 2回で行う場合は、所定角度を例えば 60°→30°のように段階 的に設定できる。 3回以上も同様であり、種々の変形例が考えられる。
本発明において、前記所定角度は、水平面に対して 40°以上 50°以下であることが 好ましい。
[0026] 例えば、所定角度傾斜させるための絞り加工を 1回とする場合、 50°を超えると 0° 絞り加工を行う時に、うまく内側に立ち曲げ部が倒れない可能性がある。例えば、座 屈のような現象が生じてうまくつぶれない可能性があり、封止状態の品質が低下し、 ガスリークなどの問題が生じる。また、 40°よりも小さいと、一度に 40°よりも小さくする 際にうまく内側に立ち曲げ部が倒れにくくなるので好ましくな 、。
[0027] 本発明において、第 1金属板の上に薄膜電極組成体と第 2金属板とがこの順番で 置かれる工程の前に、
第 1金属板及び第 2金属板のうちの少なくとも一方の金属板を、その中央領域が周縁 領域よりも薄膜電極組成体の方向へ突出した湾曲形状に加工する工程を有すること が好ましい。
[0028] この構成によると、第 1 ·第 2金属板は、単なる平面状ではなぐ少なくとも一方は、 その中央領域が周縁領域よりも薄膜電極組成体の方向へ突出した湾曲形状に加工 される。従って、周縁領域を封止加工する場合に、中央領域が外側へ突出するような 力が作用しても、予め内側へ湾曲形状に加工しているため、製造された燃料電池セ ルの中央領域が外側へ膨らむような形状に仕上がることを抑制することができる。こ れにより、薄膜電極組成体と第 1 ·第 2金属板との接触状態を良好にすることができる 。その結果、製造工程において部材の変形を抑制しながら確実に電池セルを製造す ることがでさる。
[0029] 本発明において、前記立ち曲げ部の内壁と第 2金属板の周縁端面とのすきまは、 0 . 05〜0. 15mmであることが好ましい。
[0030] 機械的封止を行うときに、立ち曲げ部と第 2金属板の周縁端面とのすきまが 0. 05 mm未満では、すきまが狭すぎるため、機械的封止工程において、立ち曲げ部と前 記周縁端面とが当接する可能性があり、これに起因して、金属板の中央領域が外側 へ突出しようとする力が大きく作用することになる力 0. 05mm以上であれば、その ような可能性を抑制することができる。また、すきまが 0. 15mmを超えると、セル内部 のガス漏れの可能性が高まる。従って、上記のようにすきまを設定することが好ましい
[0031] 本発明において、前記湾曲形状の突出量は、 0. 05-0. 15mmであることが好ま しい。 0. 05mm未満では、金属板の中央領域の外側への突出を抑制する効果を発 揮することが難しい。 0. 15mmを超えると、機械的封止を行う時の封止圧力が大きく なりすぎ、薄膜電極組成体に作用する力も大きくなりすぎるという問題がある。突出量 を上記のように設定することで、適切な封止工程とすることができる。
[0032] 本発明において、第 1金属板もしくは第 2金属板を製作するため、所定幅を有する 長尺状金属板を順送金型設備に向けて搬送する搬送工程と、
長尺状金属板に燃料ガス用の流路を形成する工程と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する工程と、 長尺状金属板力 外形を打ち抜くことで、第 1金属板を形成する工程と、を前記順 送金型設備により連続的に行うことが好ましい。
[0033] この構成によると、第 1金属板及び第 2金属板を加工するための素材として、所定 幅を有する長尺状金属板 (例えば、ロールに巻き取られて ヽる状態で提供される)を 使用し、長尺状金属板を順送金型設備に向けて搬送する。順送金型設備には、長 尺状金属板の搬送経路に沿って種々の金型が配置されており、搬送されつつ所定 の加工が施されていく。
[0034] 最初に第 1金属板の加工工程について制御する。まず、燃料ガスを流すための流 路を形成する。次に、薄膜電極組成体を収容するための凹部を形成する。なお、流 路を形成する工程と、凹部を形成する工程は逆にしても良い。最後に、外形を打ち 抜くことで第 1金属板を形成する。このように、連続的に第 1金属板に対して所定の加 ェを施すことができ、効率よく第 1金属板の製作を行うことができる。なお、本発明とし て、第 1金属板の加工工程が上記工程のみに限定されるものではなぐ更に別の加 ェ工程が付加されていても良い。以上のように、燃料電池セルを構成する金属板の 加工を効率良く行うことができる。
[0035] 本発明において、長尺状金属板に空気を取り込むための穴を形成する工程と、 長尺状金属板に薄膜電極組成体を収容するための凹部を形成する工程と、 長尺状金属板から外形を打ち抜くことで、第 2金属板を形成する工程とを前記順送 金型設備により連続的に行うことが好ましい。
[0036] この構成による第 2金属板の加工工程を説明する。まず、空気を取り込むための穴 を形成する。次に、薄膜電極組成体を収容するための凹部を形成する。なお、穴を 形成する工程と、凹部を形成する工程は逆にしても良い。最後に、外形を打ち抜くこ とで第 2金属板を形成する。このように、連続的に第 2金属板に対して所定の加工を 施すことができ、効率よく第 2金属板の製作を行うことができる。なお、本発明として、 第 2金属板の加工工程が上記工程のみに限定されるものではなぐ更に別の加工ェ 程が付加されていても良い。以上のように、燃料電池セルを構成する金属板の加工 を効率良く行うことができる製造方法を提供することができる。
[0037] 本発明にお ヽて、長尺状金属板に薄膜電極組成体を収容するための凹部を形成 する前記工程で使用される金型は、第 1金属板と第 2金属板とで共通の金型が使用 されることが好ましい。
[0038] 薄膜電極組成体を収容する凹部は、いずれの金属板にも必要な機能であり、共通 の金型を使用することでコストを削減することができる。
[0039] 本発明において、前記第 1金属板を製造するに際し、
流路を形成する前記工程と、凹部を形成する前記工程との間に、
前記流路の両端部に、ガス供給パイプ取り付け用のブースを結合するための穴と、 ガス排出パイプ取り付け用のブースを結合するための穴を形成する工程を有すること が好ましい。
[0040] 燃料ガス用の流路に燃料ガスを供給するためには、供給パイプと排出パイプを取り 付ける必要があり、その取り付け用のブースを結合するための穴を形成する。かかる ブースを金属板に結合することで、供給パイプや排出パイプの取り付けを容易に行う ことができる。そして、この穴を形成するための金型を順送金型設備の中に設けること で、効率良く第 1金属板を製造することができる。
[0041] 本発明に係る前記流路を形成する工程は、複数回に分けて行われることが好まし い。
[0042] ガス流路を形成するために、所定の深さとなるように加工する必要がある力 流路の 幅が小さくなる場合もある。従って、所望の形状を 1回のプレス工程で行おうとするの は難しいので、複数回に分けて加工することで、所望の形状の流路を形成することが できる。
[0043] 本発明に係る前記長尺状金属板には、加工位置決め用の孔が順送金型設備の金 型配列間隔に対応した所定間隔ごとに予め形成されていると共に、前記絶縁層を構 成する絶縁シートが同じ所定間隔ごとに予め付着されていることが好ましい。
[0044] 金属板を順送金型設備により加工する場合、加工基準となる位置決め用の孔が必 要である。この孔を金型配列間隔に合わせて、予め形成しておく。また、第 1金属板 と第 2金属板とをプレス曲げ加工により封止する場合に絶縁層を介在させる必要があ るが、予め長尺状金属板に絶縁シートを前記所定間隔で付着させておくことで、絶縁 層を間に介在させる工程を省くことができ、製造工程を簡素化することができる。なお 、絶縁シートの付着は接着等の適宜の方法により、行うことができる。
[0045] 本発明に係る前記絶縁シートは、前記周縁領域に対応したリング状に形成され、前 記位置決め用の孔を基準として付着されて ヽることが好ま ヽ。 [0046] 絶縁シートをリング状に形成しておくことで、封止部の形状に対応させることができ る。また、位置決め用の孔を基準として付着するようにすることで、絶縁シートを所定 間隔ごとに精度良く付着させることができ、金型加工により形成される形状とリング状 の絶縁シートとの位置を正確に対応付けることができる。
[0047] 本発明において、第 1金属板形成用の長尺状金属板と、第 2金属板形成用の長尺 状金属板の両方に絶縁シートが予め付着されており、収容される薄膜電極組成体の 周縁領域が、第 1金属板側の絶縁シートと第 2金属板側の絶縁シートで挟持されるよ うな位置に、絶縁シートが予め付着されて 、ることが好ま 、。
[0048] 絶縁シートを第 1金属板と第 2金属板の両方に付着させている構成であり、第 1金 属板と第 2金属板の周縁領域をプレス曲げ加工で封止したときに絶縁性を確実に確 保することができる。また、薄膜電極組成体の周縁領域が絶縁シートで挟持されてお り、薄膜電極組成体を確実に保持すると共に、燃料ガスのリーク等を防止することが できる。
[0049] 上記課題を解決するため本発明に係る燃料電池セルの製造設備は、
板状の薄膜電極組成体と、この薄膜電極組成体の両側に配置された第 1金属板及 び第 2金属板の金属板とを備え、これら金属板の周縁領域が絶縁層を間に介在させ た状態で曲げプレスにより機械的封止される燃料電池セルの製造設備において、 前記一対の金属板の間に薄膜電極組成体がセットされた状態で一方の金属板の 周縁領域を内側方向へ倒して曲げプレスによる機械的封止をするに際し用いられる 機構として、
前記金属板の中央領域に位置する第 1上型 (規制手段に相当し、以下同じ)と、 金属板の周縁領域に対して機械的封止を施すための第 2下型及び第 2上型 (下側 •上側曲げプレス加工手段に相当し、以下同じ)と、
機械的封止を行う際の第 1上型と第 2上型が搭載されるユニットの全ストロークを規 定するストッパーと、
第 2上型に対して設けられた付勢機構とを備え、
前記全ストロークは、第 2上型が金属板に当接して加工を開始するまでのストロークよ りも長くなるように設定され、加工開始後は付勢機構による付勢力が金属板の周縁領 域に対して作用すると共に、第 1上型により中央領域の変形を規制することを特徴と するものである。
[0050] カゝかる燃料電池セルの製造設備の作用 ·効果を説明する。製造すべき燃料電池セ ルは、板状の薄膜電極組成体と、その両側に配置される一対の金属板を備えており 、これら一対の金属板の周縁を絶縁層を介在させて曲げプレスを行うことで周縁領域 を封止することができる。また、この燃料電池セルは、板状の薄膜電極組成体をべ一 スとして構成されるので、全体としても薄型に形成することができる。
[0051] この燃料電池セルは曲げプレスカ卩ェにより製造することができ、そのために金型機 構を使用する。この金型機構として、金属板の中央領域に位置する第 1上型と、金属 板の周縁領域に位置して力シメ封止を行うための第 2下型及び第 2上型を備えている 。また、第 2上型に対しては付勢機構が設けられている。力シメ封止のための加工を 行う時に、第 1上型と第 2上型とを上方から下方に下ろしてくる。まず、第 2上型が金 属板の周縁領域に当接し、これにより、加工が開始する。第 2上型がこれ以上下方に 下がらない状態となっても、ストッパーには当接しておらず、上型のユニットは更に下 に下がろうとする。第 2上型には付勢機構が設けられているので、加工が開始した後 は、付勢機構が圧縮される状態になる。一方、中央領域の第 1上型は、ストッパーに 当接するまで下がり続ける。そして全ストローク下がった状態で停止し、金属板の変 形を規制する。これにより、部材の変形を抑制しながら確実に内部を封止した燃料電 池セルを製造することができる。
[0052] 本発明において、前記機械的封止を行う時に、第 1上型の下面は第 2下型の上面 よりも上方に位置して 、ることが好まし!/、。
[0053] 金属板の周縁領域の変形を規制するために、第 1上型の下面は第 2下型の上面よ りも上方に位置するように設定する。これにより、第 1上型により必要最小限の当接力 を金属板上面に作用させることができ、無理な力を作用させることなぐ変形を規制 することができる。
[0054] 本発明において、前記機械的封止を行う時に、第 1上型の下面と第 2下型の上面 の垂直距離は、燃料電池セルの厚みとほぼ同一となるように設定されて ヽることが好 ましい。これにより、無理な力を作用させることなぐ部材の変形を規制し、確実にセ ルの封止を行うことができる。
[0055] 本発明において、第 1上型の高さを調整する調整機構を設けることが好ましい。こ れにより、金属板の変形を規制させるに際して、適切な当接力を作用させるように予 め調整しておくことができる。
[0056] 本発明に係る金型機構として、少なくとも、一対の金属板を夫々絞り加工することで 薄膜電極組成体を収容する空間を形成する工程に用いられる金型と、
一対の金属板を夫々所定の形状に打ち抜く工程に用いられる金型とを有すること が好ましい。
[0057] 燃料電池セルの製造工程にお!/、て、まず、一対の金属板を夫々絞り加工し、薄膜 電極組成体を収容する空間を形成する。次に、一対の金属板を夫々所定の形状に 打ち抜き加工する。なお、本発明としては、この打ち抜き加工と絞り加工の順番を入 れ替えてもよい。そして、打ち抜きされた一対の金属板の間に薄膜電極組成体を収 容し、周縁領域を機械的封止することができる。
[0058] 本発明において、機械的封止工程の後に、封止された周縁領域の内側領域を押 圧する工程に用いられる金型を更に備えていることが好ましい。これにより、確実に封 止を行 、、ガスのリークを確実に防止することができる。
[0059] 本発明において、第 1金属板の周縁領域を絞り加工することで、周縁領域全周に 立ち曲げ部を形成する工程に用いられる金型と、
立ち曲げ部が上方に向いた状態の第 1金属板の上に薄膜電極組成体と第 2金属 板とがこの順番で置かれると共に、立ち曲げ部の内壁側に絶縁層がセットされ、更に 、立ち曲げ部の全周が金属板の内側方向に向けて所定角度傾斜するような絞り加工 を少なくとも 1回行うために用いられる金型と、
前記所定角度傾斜された立ち曲げ部の全周を第 2金属板の周縁領域に対して倒 し込むことで、周縁領域を前記機械的封止する工程に用いられる金型とを有すること を特徴とするものである。
[0060] この構成によると、先ほど説明したのと同じように、機械的封止を 1工程で行うので はなぐ少なくとも 2工程で行う。すなわち、立ち曲げ部を内側に所定角度傾斜した状 態となるまで絞り加工 (既に述べたようにこの絞り加工は少なくとも 1回行われる。)を 行う。その次に、この傾斜した状態の立ち曲げ部を第 2金属板の周縁領域に倒し込 む。これにより、絶縁層を介在させた状態で周縁領域を機械的封止することができる 。段階的に封止を行うことで、確実に立ち曲げ部を倒し込むことができる。その結果、 機械的封止を確実に行いセル内部を確実に封止できる。
[0061] 本発明において、前記所定角度傾斜させる金型の角度は水平面に対して 40°以 上 50°以下に設定されていることが好ましい。
[0062] 力かる角度に一端絞り加工することで、前述したように、段階的に機械的封止を確 実に行うことができる。
[0063] 本発明において、第 1金属板及び第 2金属板のうちの少なくとも一方の金属板を、 その中央領域が周縁領域よりも薄膜電極組成体の方向へ突出した湾曲形状に加工 する工程に用いられる金型を更に備えることが好ま 、。
[0064] 力かる構成により、製造工程において部材の変形を抑制しながら確実に電池セル を製造することができる。
[0065] 本発明において、第 1金属板もしくは第 2金属板を製作するため、所定幅を有する 長尺状金属板を搬送しつつ、順次所定の加工を行う順送金型設備を備え、この順送 金型設備は、
長尺状金属板に燃料ガス用の流路を形成する金型と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する金型と、 長尺状金属板から外形を打ち抜くことで、第 1金属板を形成する金型とを備えたこと が好ましい。
[0066] 力かる構成による作用 ·効果は既に述べたとおりであり、連続的に第 1金属板に対 して所定の加工を施すことができ、効率よく第 1金属板の製作を行うことができる。な お、本発明として、第 1金属板の加工工程が上記工程のみに限定されるものではなく 、更に別の加工工程が付加されていても良い。以上のように、燃料電池セルを構成 する金属板の加工を効率良く行うことができる。
[0067] 本発明において、長尺状金属板に空気を取り込むための穴を形成する金型と、 長尺状金属板に薄膜電極組成体を収容するための凹部を形成する金型と、 長尺状金属板から外形を打ち抜くことで、第 2金属板を形成する金型とを備えたこと が好ましい。
[0068] この構成による作用 ·効果はすでに述べた通りであり、連続的に第 2金属板に対し て所定の加工を施すことができ、効率よく第 2金属板の製作を行うことができる。なお 、本発明として、第 2金属板の加工工程が上記工程のみに限定されるものではなぐ 更に別の加工工程が付加されていても良い。以上のように、燃料電池セルを構成す る金属板の加工を効率良く行うことができる。
[0069] 本発明にお ヽて、長尺状金属板に薄膜電極組成体を収容するための凹部を形成 する前記工程で使用される金型は、第 1金属板と第 2金属板とで共通の金型が使用 されることが好ましい。
[0070] 力かる構成を採用することで、コストを削減することができる。
[0071] 本発明にお 、て、順送金型設備を構成する各金型の作動を制御する金型制御部 を備え、この金型制御部は、第 1金属板を加工する際に、第 2金属板の加工のみに 使用する金型を不作動にし、第 2金属板を加工する際に、第 1金属板の加工のみに 使用する金型を不作動にすることが好ましい。
[0072] 力かる構成によれば、同じ順送金型設備の中に、第 1金属板のみに使用する金型 、第 2金属板のみに使用する金型が存在する。第 1金属板の製造を行うときは、第 1 金属板のみに使用する金型を作動させ、第 2金属板のみに使用する金型を不作動 にする。逆に、第 2金属板の製造を行うときは、第 2金属板のみに使用する金型を作 動させ、第 1金属板のみに使用する金型を不作動にする。これにより、共通の順送金 型設備を用いて、第 1金属板と第 2金属板の両方を製造することができる。
図面の簡単な説明
[0073] [図 1]本発明の燃料電池セルの一例を示す組み立て斜視図
[図 2]本発明の燃料電池セルの一例を示す縦断面図
[図 3]金型の構成を示す外観斜視図
[図 4]金型の断面構成を示す概念図
[図 5]加工工程を示す工程図
[図 6]エッチング力卩ェを示す概念図
[図 7]絞り加工を示す概念図 :図 8]打ち抜き加工の工程を示す概念図
:図 9]力ソード側金属板の外形 90°絞り加工を示す概念図
:図 10]金属板と薄膜電極組成体を金型にセットした状態を示す断面図
:図 11]力ソード側金属板の外形 45°絞り加工を示す概念図
:図 12]力ソード側金属板の外形 0°絞り加工を示す概念図
:図 13]リング押え加工を示す概念図
:図 14]加工工程を示す工程図(湾曲加工)
:図 15]湾曲形状加工の工程を示す概念図
:図 16]力ソード側金属板の外形 90°絞り加工を示す概念図
:図 17]金属板と薄膜電極組成体を金型にセットした状態を示す断面図
:図 18]力ソード側金属板の外形 45°絞り加工を示す概念図
:図 19]力ソード側金属板の外形 0°絞り加工を示す概念図
:図 20]電流密度と出力密度の関係を示すグラフ
:図 21]製造された燃料電池セルのセル厚みのばらつきの程度を示すグラフ
:図 22]本発明に係る燃料電池セルの別実施形態の構成を示す外観斜視図 (アノード ί則)
:図 23]本発明に係る燃料電池セルの別実施形態の構成を示す外観斜視図 (力ソード ί則)
:図 24]図 22, 23の燃料電池セルの一例を示す組み立て斜視図
:図 25]図 22, 23の燃料電池セルの一例を示す縦断面図
:図 26]図 24の燃料電池セルの流路溝を示す図
:図 27]燃料電池セルの製造工程の概略を示す図
:図 28]順送金型設備の構成を示す概念図
:図 29]順送金型設備による力ソード側金属板の製造工程を示す平面図
:図 30]順送金型設備によるアノード側金属板の製造工程を示す平面図
:図 31]順送金型設備による力ソード側金属板の製造工程を示す断面図
:図 32]順送金型設備によるアノード側金属板の製造工程を示す断面図
:図 33]力ソード側金属板の周縁領域に立ち曲げ部の絞り加工を示す図 [図 34]金属板と薄膜電極組成体を金型にセットした状態を示す断面図
[図 35]力ソード側金属板の外形 45°絞り加工を示す概念図 圆 36]力ソード側金属板の外形 0°絞り加工を示す概念図
圆 37]リング押え加工を示す概念図
圆 38]従来技術に係る燃料電池の構成を示す図
符号の説明
1 固体高分子電解質
la 周縁部
2 力ソード側電極板
3 アノード側電極板
4 力ソード側金属板
4a 周縁領域
4b 中央領域
5 アノード側金属板
5a 周縁領域
5b 中央領域
10 薄膜電極組成体
20 固定側ユニット
21 第 1下型
22 第 2下型
23 コイルスプリング
26 当接部 (ストッパー)
30 可動側ユニット
31 第 1上型
32 第 2上型
33 コイルスプリング
36 当接部 (ストッパー)
発明を実施するための最良の形態 [0075] 本発明に係る燃料電池セル (燃料電池を構成する単位セル)の製造方法及び製造 設備の好適な実施形態を図面を用いて説明する。まず、製造対象となる燃料電池セ ルの構成を説明する。図 1は、本発明の燃料電池セルの一例を示す組み立て斜視 図であり、図 2は、本発明の燃料電池セルの一例を示す縦断面図である。
[0076] 本発明の燃料電池セルは、図 1、図 2に示すように、板状の固体高分子電解質 1と 、その固体高分子電解質 1の一方側に配置された力ソード側電極板 2と、他方側に 配置されたアノード側電極板 3とを備えるものである。本実施形態では、アノード側金 属板 5に、エッチングにより燃料の流路溝 9が形成され、アノード側金属板 5の周縁領 域 5aと力ソード側金属板 4の周縁領域 4aがエッチング等により他の部分より厚みを薄 くしてある例を示す。周縁領域 4a, 5aの厚みを薄くすることで、曲げプレス力卩ェを行 い易くなる。すなわち、周縁領域 4a, 5aは曲げプレス力卩ェが行われる領域に相当す る。また、説明の便宜上、金属板 4, 5の周縁領域 4a, 5a以外の領域を中央領域 4b, 5bと称することにする。本実施形態において、周縁領域を機械的に封止するための 曲げプレス加工の例として、 、わゆるカシメ加工を行なって!/、る。
[0077] 固体高分子電解質 1としては、従来の固体高分子膜型電池に用いられるものであ れば何れでもよいが、化学的安定性及び導電性の点から、超強酸であるスルホン酸 基を有するパーフルォロカーボン重合体力 なる陽イオン交換膜が好適に用いられ る。このような陽イオン交換膜としては、ナフイオン (登録商標)が好適に用いられる。 その他、例えば、ポリテトラフルォロエチレン等のフッ素榭脂からなる多孔質膜に上記 ナフイオンや他のイオン伝導性物質を含浸させたものや、ポリエチレンやポリプロピレ ン等のポリオレフイン榭脂からなる多孔質膜ゃ不織布に上記ナフイオンや他のイオン 伝導性物質を担持させたものでもよ 、。
[0078] 固体高分子電解質 1の厚みは、薄くするほど全体の薄型化に有効であるが、イオン 伝導機能、強度、ハンドリング性などを考慮すると、 10〜300 /ζ πιが使用可能である
1S 25〜50 mが好ましい。
[0079] 電極板 2, 3は、ガス拡散層としての機能を発揮して、燃料ガスや、酸化ガス及び水 蒸気の供給'排出を行なうと同時に、集電の機能を発揮するものが使用できる。電極 板 2, 3としては、同一又は異なるものが使用でき、その基材には電極触媒作用を有 する触媒を担持させることが好ましい。触媒は、固体高分子電解質 1と接する内面 2b , 3bに少なくとも担持させるのが好ましい。
[0080] 電極基材としては、例えば、カーボンペーパー、カーボン繊維不織布などの繊維質 カーボン、導電性高分子繊維の集合体などの電導性多孔質材が使用できる。一般 に、電極板 2, 3は、このような電導性多孔質材にフッ素榭脂等の撥水性物質を添カロ して作製されるものであって、触媒を担持させる場合、白金微粒子などの触媒とフッ 素榭脂等の撥水性物質とを混合し、これに溶媒を混合して、ペースト状或いはインク 状とした後、これを固体高分子電解質膜と対向すべき電極基材の片面に塗布して形 成される。
[0081] 一般に、電極板 2, 3や固体高分子電解質 1は、燃料電池に供給される還元ガスと 酸ィ匕ガスに応じた設計がなされる。本発明では、酸化ガスとして空気が用いられると 共に、還元ガスとして水素ガスを用いるのが好ましい。また、還元ガスの代わりに、メタ ノールゃジメチルエーテル等を用いることもできる。
[0082] 例えば、水素ガスと空気を使用する場合、空気が自然供給される側の力ソード側電 極板 2では、酸素と水素イオンの反応が生じて水が生成するため、力かる電極反応に 応じた設計をするのが好ましい。特に、低作動温度、高電流密度及び高ガス利用率 の運転条件では、特に水が生成する空気極にぉ 、て水蒸気の凝縮による電極多孔 体の閉塞 (フラッデイング)現象が起こりやすい。したがって、長期にわたって燃料電 池の安定な特性を得るためには、フラッデイング現象が起こらないように電極の撥水 性を確保することが有効である。
[0083] 触媒としては、白金、パラジウム、ルテニウム、ロジウム、銀、ニッケル、鉄、銅、コバ ルト及びモリブデン力 選ばれる少なくとも 1種の金属力 又はその酸ィ匕物が使用で き、これらの触媒をカーボンブラック等に予め担持させたものも使用できる。
[0084] 電極板 2, 3の厚みは、薄くするほど全体の薄型化に有効である力 電極反応、強 度、ハンドリング性などを考慮すると、 50〜500 mが好ましい。電極板 2, 3と固体 高分子電解質 1とは、予め接着、融着等を行って積層一体ィ匕しておいてもよいが、単 に積層配置されているだけでもよい。このような積層体は、薄膜電極組立体 10 (Me mbrane Electrode Assembly : MEA)として入手することもでき、これを使用して ちょい。
[0085] 力ソード側電極板 2の表面には力ソード側金属板 4が配置され、アノード側電極板 3 の表面にはアノード側金属板 5が配置される。アノード側金属板 5には燃料の注入口 5c及び排出口 5dが設けられ、更に本実施形態では、アノード側金属板 5に流路溝 9 が設けられている。
[0086] 力ソード側金属板 4には、空気中の酸素を供給するための多数の開口部 4cが設け られている。開口部 4cは、力ソード側電極板 2が露出可能であれば、その個数、形状 、大きさ、形成位置などは何れでもよい。但し、空気中の酸素の供給効率と、力ソード 側電極板 2からの集電効果などを考慮すると、開口部 4cの面積は力ソード側電極板 2の面積の 10〜50%であるのが好ましぐ特に 20〜40%であるのが好ましい。カソ ード側金属板 4の開口部 4cは、例えば規則的又はランダムに複数の円孔ゃスリット 等を設けたり、または金属メッシュによって開口部を設けてもよい。
[0087] 金属板 4, 5としては、電極反応に悪影響がないものであれば何れの金属も使用で き、例えばステンレス板、ニッケル、銅、銅合金などが挙げられる。但し、伸び、重量、 弾性率、強度、耐腐食性、プレスカ卩ェ性、エッチングカ卩ェ性などの観点から、ステン レス板、ニッケルなどが好ましい。
[0088] アノード側金属板 5に設けられる流路溝 9は、電極板 3との接触により水素ガス等の 流路が形成できるものであれば何れの平面形状や断面形状でもよ 、。本実施形態 では、注入口 5cと排出口 5dとを連続する一本の流路溝 9により接続しており、その流 路溝 9は、金属板 5の幅方向に沿って周期的に折り返すジグザグ状に形成されて 、 る。流路密度、燃料電池セル積層時の積層密度、屈曲性などを考慮して、種々の形 態の流路溝 9を採用することができる。
[0089] なお、このような金属板 5の流路溝 9の一部を電極板 3の外面に形成してもよい。電 極板 3の外面に流路溝を形成する方法としては、加熱プレスや切削などの機械的な 方法でもよいが、微細加工を好適に行う上で、レーザ照射によって溝加工を行うこと が好ましい。レーザ照射を行う観点カゝらも、電極板 2, 3の基材としては、繊維質カー ボンの集合体が好ましい。
[0090] 金属板 5の流路溝 9に連通する注入口 5c及び排出口 5dは、それぞれ 1個又は複 数を形成することができる。なお、金属板 4, 5の厚みは、薄くするほど全体の薄型化 に有効であるが、強度、伸び、重量、弾性率、ハンドリング性などを考慮すると、 0. 1 〜lmmが好ましい。金属板 5に流路溝 9を形成する方法としては、加工の精度ゃ容 易性から、エッチングが好ましい。エッチングによる流路溝 9では、幅 0. 1〜: LOmm、 深さ 0. 05〜lmmが好ましい。また、流路溝 9の断面形状は、略四角形、略台形、略 半円形、 V字形などが好ましい。
[0091] 金属板 4への開口部 4cの形成、金属板 4, 5の周縁領域 4a, 5aの薄肉ィ匕、金属板 5への注入口 5c及び排出口 5dの形成についても、エッチングを利用するのが好まし い。エッチングは、例えばドライフィルムレジストなどを用いて、金属表面に所定形状 のエッチングレジストを形成した後、金属板 4, 5の種類に応じたエッチング液を用い て行うことが可能である。また、 2種以上の金属の積層板を用いて、金属ごとに選択 的にエッチングを行うことで、流路溝 9の断面形状をより高精度に制御することができ る。
[0092] 図 2に示す実施形態は、金属板 4, 5の力シメ部 (周縁領域 4a, 5a)をエッチングに より厚みを薄くした例である。このように、力シメ部をエッチングして適切な厚さにする ことで、カシメによる封止をより容易に行うことができる。この観点から、カシメ部の厚 みとしては、 0. 05〜0. 3mmが好ましい。
[0093] 本発明では、金属板 4, 5の周縁領域 4a, 5aは、電気的に絶縁した状態で力シメに より封止されている。電気的な絶縁は、絶縁材料を用いて行うこともできるが、本実施 形態では、固体高分子電解質 1の周縁部 laを介在させることで行うことができる。
[0094] 本発明では、力シメを行う際、図 2に示すように、金属板 4, 5の周縁領域 4a, 5aに よって固体高分子電解質 1を挟持する構造が好ましい。つまり、電極板 2, 3よりも外 側の領域にある固体高分子電解質 1を周縁領域 4a, 5aにより挟持した状態とする。 このような構造によると、電極板 2, 3の一方力 他方へのガス等の流入を効果的に防 止することができる。
[0095] カシメ構造としては、シール性や製造の容易性、厚み等の観点から図 2に示すもの が好ましい。つまり、一方の力ソード側金属板 4の周縁領域 4aを他方のアノード側金 属板 5の周縁領域 5aより大きくしておき、固体高分子電解質 1を介在させつつ、カソ ード側金属板 4の周縁領域 4aをアノード側金属板 5の周縁領域 5aを挟圧するように 折り返したカシメ構造が好ましい。このカシメ構造では、プレス加工等によって、金属 板 4の周縁領域 4aに段差を設けておくのが好ま ヽ。このようなカシメ構造を行うため の製造設備については、後で詳細に説明する。
[0096] 燃料電池を構成する場合、図 1, 2に示すような燃料電池セルを 1個又は複数個使 用することができるが、固体高分子電解質 1、一対の電極板 2, 3、及び一対の金属 板 4, 5で単位セルを構成し、この単位セルを複数積層したり、同一面に配列して使 用することも可能である。このようにすると、ボルト及びナットの締結部品で相互結合し て、セル部品に一定の圧力を加えなくても、高出力の燃料電池を提供することができ る。
[0097] 燃料電池として使用の際、金属板 5の燃料の注入口 5c及び排出口 5dには、直接、 燃料供給用のパイプを接合することも可能であるが、燃料電池の薄型化を行う上で、 厚みが小さぐ金属板 5の表面に平行なパイプを有するジョイント機構を設けるのが 好ましい。例えば、注入口 5cにジョイント用の金属製ピンを金属板 5に対して取り付け ることができる。この取り付けは、力シメゃ圧入により行うことができる。このピンに対し て、パイプを圧入して取り付けることができる。
[0098] 燃料電池セルを構成する部材である金属板 4, 5及び固体高分子電解質 1は、矩 形状に形成されているが、その四隅は R形状に形成されている。四隅に Rをつけるこ とで後述する力シメ封止加工を行 、易 、形状にして 、る。
[0099] <製造方法及び製造設備につ!、て >
次に、図 1, 2に示す燃料電池セルの製造方法及び製造設備について説明する。 図 3は、製造設備の主要部である金型を示す外観斜視図である。図 4は、金型の断 面構成を示す概念図である。
[0100] 製造設備は、固定側ユニット 20と、可動側ユニット 30を備えている。固定側ユニット 20は、金型として第 1下型 21と第 2下型 22を備えている。第 1下型 21には、付勢機 構としてコイルスプリング 23が設けられており、第 1下型 21を上方に向けて付勢する 作用を行う。第 1下型 21は、燃料電池セルの力ソード側金属板 4の中央領域 4bを押 圧作用する。第 2下型 22は、第 1下型 21を取り囲むように配置され、金属板 4の周縁 領域 4aに対するプレス加工を行う。第 2下型 22は、平面視で略矩形の環状に形成さ れている。第 2下型 22は、上下方向に調整可能な機構 (第 1調整機構 24に相当)を 備えている。調整機構 24としては、例えば、ボルト'ナットを用いた機構により構成す ることができる。第 1調整機構 24により第 1下型 21の上面と第 2下型 22の上面の相対 的な高さ関係を調整することができる。具体的には、中央領域に位置する第 1下型 2 1は周縁領域に位置する第 2下型 22よりも凹んだ位置にあり、第 2下型 22の第 1下型 21に対する突出量 hiを調整することができる。
[0101] 第 2下型 22には、第 2上型を上下方向にガイドするためのガイド軸を挿入するため の孔 22aが形成されている。また、図 3に示すように、 2本の位置決めピン 25を植設 するための孔も形成される。この位置決めピン 25により、加工される部材の位置決め を行うことができる。加工される部材には、位置決め用の孔が形成されており、これを 位置決めピン 25に嵌入させることで、加工時のワーク Wの位置決めを行うことができ る。
[0102] 可動側ユニット 30は、金型として第 1上型 31と第 2上型 3を備えている。第 2上型 32 には、付勢機構としてコイルスプリング 33が設けられており、第 2上型 32を下方に向 けて付勢する作用を行う。第 1上型 31は、燃料電池セルのアノード側金属板 5の中 央領域 5bを押圧作用する。第 2上型 32は、第 1上型 31を取り囲むように配置され、 金属板 5の周縁領域 5aに対するプレス加工を行う。第 2上型 32は、平面視で略矩形 の環状に形成されている。第 2上型 32は、上下方向に調整可能な機構 (第 2調整機 構 34に相当)を備えている。調整機構 34としては、例えば、ボルト'ナットを用いた機 構により構成することができる。第 2調整機構 34により第 1上型 31の下面と第 2上型 3 2の下面の相対的な高さ関係を調整することができる。具体的には、第 2上型 32の第 1上型 31に対する突出量 h2を調整することができる。以上のような調整機構 24, 34 を設けることで、プレスカ卩ェにおいて、適切な押圧力を作用させることができる。
[0103] なお、第 1下型 21と第 1上型 (規制手段に相当)は第 1金型に相当し、第 2下型 22と 第 2上型 32は第 2金型(下側曲げプレス加工手段及び上側曲げプレス加工手段)に 相当する。
[0104] 第 2上型 32には、第 2上型 32を上下方向にガイドするためのガイド軸を挿入するた めの孔 32aが形成される。また、位置決めピン 25が挿入される孔 32bも形成される。
[0105] 図 4に示すように、操作部 40を操作することで、プレス力卩ェを行うことができる。すな わち、操作部 40を操作することで可動側ユニット 30を下方に移動させる。固定側ュ ニット 20の側に設けられた当接部 26と、可動側ユニット 30の側に設けられた当接部 36とが当接するように構成され、両者の距離 Yが可動側ユニット 30の移動ストローク に相当する。
[0106] 製造設備を用いたプレス加工の工程数は、後述するように大きく分けて 8工程 (カロ ェの内容では 6工程)有している。下型 21, 22と上型 31, 32は、各工程に適した金 型が夫々使用されるが、共通で使用できるものがあれば、共通で使用する。各工程 において、金型の大きさや形状などは異なっているが、基本的な構成は図 4に示す 通りである。
[0107] なお、プレス加工の種類である力 打ち抜き加工、絞り加工などが含まれており、本 発明として特定の種類の加工に限定されるものではない。
[0108] また、図 4にはプレス加工の対象としてのワーク Wを模式的に図示している力 ヮー ク Wの形態はプレス力卩ェの工程により異なるものである。例えば、単一の部材の時も あるし、複数の部材がセットされることもある。
[0109] <製造工程 >
次に、具体的な製造工程を説明する。図 5は製造工程の順番を示す工程図である 。図 3, 4に示す製造設備を使用して加工を行う前の工程として、金属板 4, 5に対す るエッチングを行う(Sl)。アノード側金属板 5は図 6 (a)に示すように、厚さ一定の金 属プレートをエッチングし、周縁領域 5aの厚さを薄くすると共に、流路溝 9と注入口 5 c及び排出口 5dも同じくエッチングで形成する。例えば、 0. 3mmの厚さの金属プレ ートをエッチングし、周縁領域 5aの厚さを 0. lmm、流路溝 9の深さを 0. 2mm程度 に形成する。
[0110] 力ソード側金属板 4についても、同様に図 6 (b)に示すように、厚さ一定の金属プレ ートをエッチングし、周縁領域 4aの厚さを薄くすると共に、多数の開口部 4cも同じくェ ツチングで形成する。例えば、 0. 3mmの厚さの金属プレートをエッチングし、周縁領 域 4aの厚さを 0. 1mm程度にする。 [0111] 以上のような前工程を行った後、製造設備を用いた加工を行う。まず、力ソード側金 属板 4の絞り加工とアノード側金属板 5の絞り加工を行う(S2, S3)。この絞り加工は、 金属板 4, 5に 150 mの段差を形成するための加工である。図 7 (a) (b)に夫々の金 属板が絞り加工される様子を示す。この絞り加工により、金属板 4, 5の周縁領域 4a, 5aと中央領域 4b, 5bの境界に近い場所に段差 4f, 5fが形成される。また、これに伴 い、金属板 4, 5の内側には、空間部 4g, 5gが形成される。この空間部 4g, 5gは、薄 膜電極組成体 10の電極板 2, 3を収容するための空間部として機能する。金属板 4と 金属板 5の絞り加工は、夫々別個に行われる。
[0112] 絞り加工を行うための金型構成は、図 4に示している形状のものを使用することがで きる。また、力ソード側金属板 4を絞り加工するための金型 (第 1 ·第 2下型 21, 22と第 1 ·第 2上型 31, 32)と、アノード側金属板 5を絞り加工するための金型は、同じ金型 を使用することができる。なお、図 7では、組み立てられる時の姿勢に合わせて図示 しているが、実際に製造設備にセットされるときの姿勢 (上下方向)は、図 7 (b)に示さ れる金属板 5の姿勢でセットされることになる。
[0113] 絞り加工を行うとき、第 2下型 22が上力も下りてくると、金属板 4, 5の周縁領域 4a, 5aにまず当接する。その時点では、まだストッパー(当接部 26, 36)は当接していな いので、第 2上型 32はさらに下がろうとする力 第 2下型 22は固定された状態である ので、物理的にこれ以上下がることはできず、スプリング 33が圧縮されていくことにな る。
[0114] 一方、中央領域 4b, 5bに位置する第 1上型 31は引き続いて下方に下がり、第 1上 型 31の下面が第 2上型 32の下面よりも更に下がった状態でストッパーが当接して停 止する。なお、ストッパーに停止するまでのストロークは、各工程ごとに設定されるもの である。これにより、金属板 4, 5に対する絞り加工が行われ、段差 (空間部 4g, 5g)が 形成される。このときの段差寸法としては、例えば 0. 15mm程度であり、収容される 電極板 2, 3の厚みに対応した空間部 4g, 5gが形成される。
[0115] 次に、金属板 4, 5の打ち抜き加工を行う(S4, S5)。この打ち抜き加工の様子を図 8に示す。アノード側金属板 5の打ち抜き寸法と L1と、力ソード側金属板 4の打ち抜き 寸法 L2とでは、 L2の方が大きくなつているため、打ち抜き工程で使用する金型はァ ノード側金属板 5と力ソード側金属板 4とで異なる。後述するように、カシメ工程でカソ ード側金属板 4の周縁領域 4aを力シメ封止するために、カシメ代が必要となるため、 寸法が大きくなつている。この打ち抜きカ卩ェにおける金型の動きは、ストローク Yの量 は異なって設定されるものの、基本的には、 S2, S3における絞り加工と同じ動きをす る。
[0116] 次に、力ソード側金属板 4の外形 90°絞り加工を行う(S6)。この絞り加工の様子を 図 9 (a)に示し、絞り加工された金属板 4の形状を図 9 (b)に示す。この絞り加工では 、金属板 4の周縁領域 4aの全周を 90°立ち曲げる。この絞り加工における金型の動 きも、 S2, S3で説明したのと基本的に同じである。
[0117] 次に、金属板 4, 5と薄膜電極組成体 10をセットする(S7)。この状態を図 10に示す 。 90°絞り加工された金属板 4の中に、薄膜電極組成体 10 (固体高分子電解質 1の 両面に電極板 2, 3が組み立てられたもの)がセットされる。薄膜電極組成体 10の電 極板 2が金属板 4の空間部 4gに収容され、電極板 3が金属板 5の空間部 5gに収容さ れる状態になる。一番上には、金属板 5がセットされる。固体高分子電解質 1の周縁 部 laは、 90°立ち曲げられた周縁領域 5aに沿う形となり、同じように 90°曲げられた 状態にセットされる。固体高分子電解質 1の周縁部 laの方が、周縁領域 5aよりも少し だけ突出した状態となっている。
[0118] この状態にセットして力 力ソード側金属板 4の外形 45°絞り加工を行う(S8)。この 時に使用される第 2上型 32は、図 10に示すように水平面に対して 45°の傾斜面 32c を備えている。この傾斜面 32cを作用させることで、 90°に立ち曲げられた周縁領域 5 aをー且 45°に絞り加工する。この時の状態を図 11に示す。
[0119] 操作部 40を操作することで、第 1 ·第 2上型 31 , 32が下方に降りてくる。第 2下型 22 と第 2上型 32が当接することで、周縁領域 5aが 45°内側に曲げられる。第 2上型 32 が第 2下型 22に当接した時点では、まだストッパー(当接部 26, 36)は当接していな い状態である(図 4参照)。ストッパーの当接が行われるまでは、コイルスプリング 33の 圧縮工程が進む。一方、第 1上型 31のほうは、第 2上型 32と第 2下型 22が当接した 時点では、燃料電池セルの金属板 5よりも上方にあり、金属板 5には接触していない 。そして、ストッパーが当接した状態になると、これ以上第 1上型 31は下には下がらず 、図 11に示す状態で停止する。このとき、第 1上型 31の下面 31aが金属板 5の上面 を押圧(当接)している。これにより、燃料電池セルの中央領域 4b, 5bが変形するの を抑制することができる。
[0120] なお、金属板 4の下面と第 1下型 21の上面とは、当接した状態にはなぐ隙間が形 成されている状態である。なお、プレスした状態での、第 2下型 22の上面と第 1上型 3 1の垂直方向の隙間寸法 A hは、 0. 5mm程度に設定される。また、この場合の金属 板 4, 5の厚みは 0. 3mmである。固体高分子電解質 1の厚みは、 0. 025mmである 。従って、隙間寸法 A hは、力シメ封止される燃料電池セルの厚みとほぼ同じ厚みと なっている。これにより、無理な力を燃料電池セルに作用させることなぐ効果的に部 材の変形を規制することができる。
45°の角度の設定は、 45° ± 5°が好ましぐ 45° ± 1°がより好ましい。 50°を超えると 0°絞り加工を行う時に、うまく内側に立ち曲げ部が倒れない可能性がある。例えば、 座屈のような現象が生じてうまくつぶれない可能性があり、力シメ封止の品質が低下 し、ガスリークなどの問題が生じる。また、 40°よりも小さいと、一度に 40°よりも小さく する際にうまく内側に立ち曲げ部が倒れに《なるので好ましくない。
[0121] 以上のように 45°の絞り加工が行われた後、力ソード側金属板 4の外形 0°絞り加工 を行う(S9)。これにより、カシメカ卩ェが終了する。外形 0°絞り加工で使用する金型は 、 45°絞り加工とは異なる金型を使用し、図 12に示すように、プレス面 32dは水平面 に形成される。前工程で 45°に曲げられた周縁領域 5aを更に押さえ込んで内側に倒 す形になる。このとき、固体高分子電解質 1の周縁部 laもいっしょに内側に倒される 。これにより、周縁領域 5aは水平な状態に 180°折り曲げられた状態になる。これによ り、周縁領域 4a, 5aがカシメにより封止されたことになる。また、周縁領域 4aと周縁領 域 5aの間には、絶縁層として固体高分子電解質 1が介在しており、金属板 4, 5同士 の短絡を防止した状態で封止される。
[0122] 図 11に示したのと同様に、第 2下型 22と第 2上型 32とが当接した後、ストッパー(当 接部 26, 36)が当接するまでは、コイルスププリング 33の圧縮工程が持続される。ま た、ストッパーが当接した状態で、第 1上型 31の下面の位置は、図 11と同様である。 また、第 1下型 21と金属板 4の下面には隙間が開いた状態である。 [0123] 工程 S9において力シメ封止が終了する力 更に安全を期すためリング押さえ加工 を行う(S10)。この加工は、力シメ封止された周縁領域 4a, 5aの少し内側の領域をプ レスで押圧する工程であり、これにより、封止状態をより確実にすることができる。この 時の状態を図 13 (a)に示す。また図 13 (b)は、使用される第 1下型 21の形状を示す 。第 1上型 31も同様の金型形状を有する。夫々の金型には、リング状に形成された 突起部 21t, 31tを備えている。これら突起部 21t, 31tを用いて図 13 (a)に示すよう に、周縁領域 4a, 5aのすぐ内側をリング状に押える。これにより、より力シメ封止を確 実〖こすることができる。以上により図 2に示すような燃料電池セルが完成する。
[0124] 以上の工程において、力シメ封止を行うための工程は図 5における S7〜S10である 。特に、 S6工程で形成した 90°の立ち曲げ部を内側に倒してつぶす場合に、一度に 倒すのではなぐー且 45°に絞り加工した後に、 0°の絞り加工するようにしており、 2 段階で力シメ封止を行うようにしている。これを 1段階で行おうとすると、立ち曲げ部が うまく倒れるかどうかの保証がなぐ封止状態も悪くなるが、前述のように 2段階で絞り 加工を行うことで、確実に封止することができる。
[0125] また、 S8, S9工程では金属板 5の中央領域 5bを第 1上型 31に当接させることで、 プレス力卩ェを行う時に中央領域 5bの変形を規制している。また、金属板 4の中央領 域 4aと第 1下型 21の間は隙間が形成されるので、押圧力あるいは規制力は作用しな い。これにより、中央領域 4a, 5aに対して無理な力が作用するのを防止しつつ、中央 領域 4b, 5bの変形を効果的に防止することができる。
[0126] なお、本発明において力シメ封止工程とは、図 5における S7から S10を指すもので ある。
[0127] <製造工程の別実施形態 >
次に、金属板 4, 5に対して湾曲加工を行なう場合の製造工程を説明する。図 14は 、湾曲加工を行なう場合の製造工程を順番を示す工程図である。図 5と異なるのは、 S16, S17に力ソード側金属板 4の湾曲加工とアノード側金属板 5の湾曲加工が付カロ されている点である。 S11〜S15は前述と同じであり、図 14の S18〜S22は図 5の S 6〜S10と同じである。従って、前述の説明と異なる点を中心に説明する。
[0128] <製造工程 > S11〜S15の工程後、金属板 4, 5に対して湾曲形状 (絞り加工の一種である)の加 ェを行う(S16, S17) 0この湾曲形状力卩ェの様子を図 15に示す。この加工により、金 属板 4, 5の中央領域になだらかな曲面凹部 4k, 5kが形成される。この曲面凹部 4k , 5kの深さは、 kl =k2 = 0. 05〜0. 15mm程度力好ましい(図 15は誇張して描い ている)。この曲面凹部 4k, 5kの突出方向は、薄膜電極組成体 10の方向に向いて いる。なお、凹部に形成されるのは中央領域のみであり、周縁領域 4a, 5aについて は、水平状態のままである。この湾曲形状加工における金型の動きは、 S2, S3 (図 5 )で説明したのと基本的に同じである。
[0129] 次に、力ソード側金属板 4の外形 90°絞り加工を行う(S18)。この絞り加工の様子を 図 16 (a)に示し、絞り加工された金属板 4の形状を図 16 (b)に示す。この絞り加工で は、金属板 4の周縁領域 4aの全周を 90°立ち曲げる。この絞り加工における金型の 動きも、 S2, S3 (図 5)で説明したのと基本的に同じである。
[0130] 次に、金属板 4, 5と薄膜電極組成体 10をセットする(S19)。この状態を図 17に示 す。 90°絞り加工された金属板 4の中に、薄膜電極組成体 10 (固体高分子電解質 1 の両面に電極板 2, 3が組み立てられたもの)がセットされる。
[0131] また、金属板 4, 5には曲面凹部 4k, 5kが形成されており、曲面凹部 4k, 5kの中心 部分が薄膜電極組成体 10と接触する形となって ヽる。
[0132] この状態にセットして力 力ソード側金属板 4の外形 45°絞り加工を行う(S20)。こ の時に使用される第 2上型 32は、図 17に示すように水平面に対して 45°の傾斜面 3 2cを備えている。この傾斜面 32cを作用させることで、 90°に立ち曲げられた周縁領 域 5aをー且 45°に絞り加工する。この時の状態を図 18に示す。
[0133] このとき、湾曲形状に形成されていた金属板 4, 5の中央領域 4b, 5bは、第 1下型 2 1と第 1上型 31によりプレスされ、湾曲形状が平面形状に変形させられる。また、周縁 領域 4a, 5aを力シメ封止する時に、中央領域 4b, 5bが浮き上がろうとして、薄膜電極 組成体 10との接触状態が悪くなるが、本発明の場合、湾曲形状に形成しているので 、中央領域 4b, 5bに上記のような力が作用したとしても、確実に薄膜電極組成体 10 と金属板 4, 5との接触を維持することができ、電気出力を効率よく取り出すことができ る。 [0134] なお、先ほど曲面凹部の寸法 kl, k2は、 0. 05〜0. 15mmが好ましいことを述べ た。その理由は、 0. 05mm未満では、金属板の中央領域の外側への突出を抑制す る効果を発揮することが難しいからであり、 0. 15mmを超えると、力シメ封止を行う時 の封止圧力が大きくなりすぎ、薄膜電極組成体 10に作用する力も大きくなりすぎると いう問題がある力もである。突出量を上記のように設定することで、適切な力シメ封止 を行うことができる。
[0135] さらに、金属板 4の立ち曲げ部の内壁面と、金属板 5の周縁領域 5aの端面との間の 隙間寸法 j (図 17参照)は、 0. 05〜0. 15mmとすることが好ましい。その理由は、 0. 05mm未満では、すきまが狭すぎるため、力シメ封止工程において、立ち曲げ部と前 記周縁端面とが当接する可能性があるためである。従って、これに起因して、金属板 の中央領域が外側へ突出しようとする力が大きく作用することがある力 0. 05mm以 上であれば、そのような可能性を抑制することができる。また、すきまが 0. 15mmを 超えると、セル内部のガス漏れの可能性が高まる。従って、上記のようにすきまを設 定することが好ましい。
[0136] 以上のように 45°の絞り加工が行われた後、力ソード側金属板 4の外形 0°絞り加工 を行う(S21)。これにより、カシメカ卩ェが終了する(図 19参照)。以下、 S22におけるリ ング押え力卩ェが行なわれる(図 13と同じ)。
[0137] 本発明においては、燃料電池セルを製造するに際して金属板 4, 5に湾曲形状を 加工した上で、力シメ封止を行っている。従って、完成した燃料電池セルは、金属板 4, 5と薄膜電極組成体 10との接触状態が良好であり、電気出力も効率よく取り出す ことができる。
[0138] <実施例 >
次に、湾曲形状に加工した場合としない場合とで、どの程度の出力差があるのかを 実験的に確認した。湾曲形状の突出寸法は 0. 1mmとした。図 20 (a)は、電流密度( mAZcm2)と出力密度 (mWZcm2)の関係を示すグラフであり、明らかに、湾曲形状 に加工した方力 出力が大きいことが分かる。図 20 (b)は、電流密度 (mAZcm2)と セル抵抗 (πι Ω )との関係を示すグラフであり、湾曲形状に加工した方が、出力が大き いことが分かる。 [0139] 図 21は、製造された燃料電池セルのセル厚みのバラツキの程度を示すグラフであ る。測定はマイクロメータにより測定した。測定箇所は、 1つの燃料電池セルにつき、 セルの長辺方向に 7箇所、短辺方向に 5箇所の計 35箇所である。グラフからも、湾曲 形状に加工した方力 バラツキが小さくなつていることが分かる。以上のように、実験 的にも本発明の優れて 、ることが確認された。
[0140] <金属板の製造工程の実施形態 >
アノード側金属板 5に形成される流路溝 9については、エッチングにより形成する方 法について説明してきた力 これをプレスカ卩ェにより形成する工程について説明する 。あわせて、金属板 4, 5を順送金型設備により製作する工程についても説明する。
[0141] 図 22は、本発明の燃料電池セルのアノード側カゝら見た外観斜視図であり、図 23は 同じく力ソード側力も見た外観斜視図である。図 24は、図 22, 23に示す燃料電池セ ルの一例を示す組み立て斜視図であり、図 25は、図 22, 23に示す燃料電池セルの 縦断面図である。図 26は、流路溝の形状を示す図である。図 1, 2で説明した燃料電 池セルと異なる点を中心に説明する。
[0142] アノード側金属板 5に設けられる流路溝 9は、電極板 3との接触により水素ガス等の 流路が形成できるものであれば何れの平面形状や断面形状でもよ 、。本実施形態 では、注入口 5cと排出口 5dとを流路溝 9により接続しており、その流路溝 9は、金属 板 5の幅方向に沿って周期的に折り返すジグザグ状に形成されている。流路溝 9は、 幅が太い横方向の溝 9aと幅が細い縦方向の溝 9bとで構成され、幅方向両側にある 横溝 9aと横溝 9aとを 3本の縦溝 9bで接続しており、縦溝 9bの 1本が何らかの原因で 封鎖されたとしても、残りの縦溝 9bにより流路溝 9が完全に封鎖されることを防止して いる。流路密度、燃料電池セル積層時の積層密度、屈曲性などを考慮して、種々の 形態の流路溝 9を採用することができ、図 26の形態に限定されるものではない。
[0143] なお、既述のように、このような金属板 5の流路溝 9の一部を電極板 3の外面に形成 してちよい。
[0144] 金属板 5に流路溝 9を形成する方法としては、金属板に対してプレス加工 (打ち出し 加工)を行うことで形成することができる。すなわち、図 24に示す金属板 5において裏 面側から打ち出し加工を行うことで、図 25, 26に示すように金属板 5の裏面側に流路 溝 9を形成することができる。また、打ち出し加工により流路溝 9を形成するので、図 2 2に示すように金属板 5の表面側には、流路溝 9と同じ形状が表れる。流路溝 9の断 面形状は、略四角形、略台形、略半円形、 V字形などが好ましい。
[0145] 金属板 4への開口孔 4cの形成、金属板 5への注入口 5c及び排出口 5dの形成につ いても、プレス力卩ェを利用して行われる。さらに、金属板 4, 5には、同じくプレスカロェ( 打ち出し加工)を利用して、中央領域 4b, 5bに凹部が形成される。この凹部は、図 2 5に示すように、薄膜電極組成体 10を構成する電極板 2, 3を収容するための凹部で ある。従って、凹部の面積は、収容される電極板 2, 3の大きさに応じて加工される。
[0146] 本発明では、金属板 4, 5の周縁領域 4a, 5aは、電気的に絶縁した状態で力シメに より封止されている。電気的な絶縁は、絶縁シート(絶縁層に相当)を用いて行うが、 固体高分子電解質 1の周縁部 laを介在させることで行うこともできる。
[0147] 力ソード側金属板 4には、図 24に示すようにリング状 (額縁状)の絶縁シート 11が周 縁領域 4aに配置される。絶縁シート 11の外側の縁は金属板 4の縁とほぼ同じ大きさ に設定され、内側の縁は、多数の開口孔 4cが形成される領域 (あるいは、電極板 2の 大きさより少し大きなサイズ)よりも少し大きなサイズに設定される。
[0148] アノード側金属板 5にも、図 24に示すようにリング状 (額縁状)の絶縁シート 12が周 縁領域 5aの表裏両面に配置される。この表裏両面の絶縁シート 12のサイズは同じで ある。絶縁シート 12の外側の縁は金属板 5の縁とほぼ同じ大きさに設定され、内側の 縁は、電極板 3よりも少し大きなサイズに設定される。
[0149] 固体高分子電解質 1は、電極板 2, 3の大きさよりも少し大きくなつており、図 25に示 すように、電極板 2, 3から露出した状態にある周縁領域 laが、絶縁シート 11 , 12に より挟持されるように組み立てられる。
[0150] すなわち、本発明では、力シメを行う際、電極板 2, 3よりも外側の領域にある固体高 分子電解質 1の周縁領域 laを絶縁シート 11, 12を介して、周縁領域 4a, 5aにより挟 持した状態とする。このような構造によると、電極板 2, 3の一方から他方へのガス等の 流入を効果的に防止することができる。また、金属板 5の表面側にも絶縁シート 12が 設けられており、力シメ封止した際に、絶縁性能を確実に確保した状態で封止するこ とがでさる。 [0151] 絶縁シート 11, 12としては、シート状の榭脂、ゴム、熱可塑性エラストマ一、セラミツ タスなどが使用できるが、シール性を高める上で、榭脂、ゴム、熱可塑性エラストマ一 などが好ましい。絶縁シート 11, 12は、金属板 4, 5を所定の形状に加工する前に、 直接あるいは粘着剤を介して貼着したり、塗布したりして、予め金属板 4, 5に一体ィ匕 しておくことができる。この点については、後述する。
[0152] カシメ構造としては、シール性や製造の容易性、厚み等の観点から図 25に示すも のが好ましい。つまり、一方の力ソード側金属板 4の周縁領域 4aを他方のアノード側 金属板 5の周縁領域 5aより大きくしておき、絶縁シート 11, 12を介在させつつ、カソ ード側金属板 4の周縁領域 4aをアノード側金属板 5の周縁領域 5aを挟圧するように 折り返したカシメ構造が好ま 、。このような力シメ封止を行うための製造方法及び製 造設備については、後で詳細に説明する。
[0153] 図 22には、注入口 5cにジョイント用のブース(金属製ピン) 5eが金属板 5に対して 取り付けられている。この取り付けは、力シメゃ圧入により行うことができる。このピン 5 eに対して、金属パイプ 13を圧入して取り付けることができる。この金属パイプ 13に対 して更に榭脂性パイプ 14挿入することで、ガス供給流路を形成することができる(図 2 5参照)。排出口 5dについても、同じ構成を採用している。
[0154] <燃料電池セルの製造工程 >
次に、図 22〜図 26で説明した燃料電池セルの製造工程及び製造設備について 説明する。図 27は、燃料電池セルの製造工程の概略を示す図である。図 27に示す ように、力ソード側金属板 4を製造する工程、アノード側金属板 5を製造する工程、薄 膜電極組成体 10を製造する工程に分かれており、金属板 4, 5と薄膜電極組成体 1 が製造された後、これらを用いて燃料電池セルを組み立てる工程が行われる。
[0155] まず、力ソード側金属板 4とアノード側金属板 5を製造するための順送金型設備の 構成に付いて説明する。図 28は、順送金型設備の構成を示す概念図である。この順 送金型設備は、力ソード側金属板 4とアノード側金属板 5の両方を加工することができ 、そのため 7つの金型が搬送経路に沿って配置されている。
[0156] 各金属板 4, 5を加工するための原材料として、所定幅を有する長尺状金属板を口 一ルに卷きつけた金属ロールを使用する。この金属ロール力 長尺状金属板を引き 出して順送金型設備に送り込み、必要な加工が施される。金属板 4, 5は、同じ幅の 長尺状金属板が使用されるが、金属板 4については、予め片面に絶縁シート 11が付 着されているものを使用し、金属板 5については、予め両面に絶縁シート 12が付着さ れているものを使用する。
[0157] 図 28に示す 7つの金型は、所定間隔で配置されており、アノード側金属板 5を製造 する場合にのみ使用する金型 (第 1, 2, 3, 6金型)と、力ソード側金属板 4を製造する 場合にのみ使用する金型 (第 4, 7金型)と、両金属板 4, 5に対して共通に使用でき る金型 (第 5金型)とを有している。従って、力ソード側金属板 4の製造を行う場合、第 1, 2, 3, 6金型は不作動となるように制御し、アノード側金属板 5の製造を行う場合、 第 4, 7金型が不作動になるように制御する金型制御部が設けられる。
[0158] 以上のように構成すれば、力ソード側金属板 4とアノード側金属板 5とで別々の順送 金型設備を設ける必要はないので、設備費を安価にすることができる。
[0159] 次に、具体的な加工内容について説明する。図 29は、力ソード側金属板 4を順送 金型設備により加工していく様子を示す平面図、図 30は、アノード側金属板 5を順送 金型設備により加工していく様子を示す平面図である。図 31は、力ソード側金属板 4 を順送金型設備により加工していく様子を示す断面図、図 32は、アノード側金属板 5 を順送金型設備により加工していく様子を示す断面図である。
[0160] 最初に力ソード側金属板 4を製造する工程を具体的に説明する。図 29において、 金属ロール力も引き出された長尺状金属板 50は、所定幅を有すると共に、所定間隔 ごとに位置決め用孔 50aが幅方向両側に予め形成されている。また、絶縁シート 11 も予め所定間隔ごとに貼り付けられている。絶縁シート 11を貼り付ける場合は、位置 決め用孔 50aを基準として貼り付けることができる。長尺状金属板 50は、図 29の左 側から右側へと搬送される。
[0161] 図 29に示すように、まず最初に多数の孔 4cをプレス穴あけにより形成する(Sl)。こ の段階での断面形状は図 31 (b)に示される。これは第 4金型により行われる。次に、 電極板 2を収容するための凹部 4g打ち出し加工が行われる(S 2)。この段階での断 面形状は図 31 (c)に示される。これは第 5金型により行われる。次に、金属板 4の外 形を打ち抜くための加工が行われる(S3)。この段階での断面形状は図 31 (d)に示さ れる。これは第 7金型により行われる。打ち抜き後の長さが L2で示される。
[0162] 長尺状金属板 50の動きとしては、搬送方向に対して間歇的に移動し、金型による 所定の加工が行われると、金型が配列されている所定間隔の分だけ搬送される。金 型の動作としては、図 29に示す SI, S2, S3の加工は同時に行われる。すなわち、 搬送方向の下流側に行くほど力卩ェが進んでいることになる。この点は、アノード側金 属板 5を加工する場合も同じである。
[0163] 次にアノード側金属板 5を製造する工程を具体的に説明する。図 30において、金 属ロールから引き出された長尺状金属板 51は、所定幅を有すると共に、所定間隔ご とに位置決め用孔 51aが幅方向両側に予め形成されている。また、絶縁シート 12も 予め所定間隔ごとに表裏両面に貼り付けられている。絶縁シート 12を貼り付ける場 合は、位置決め用孔 51aを基準として貼り付けることができる。
[0164] 図 30に示すように、まず最初に流路溝 9の打ち出し加工 (第 1段階)を行う(Sl l)。
これは第 1金型により行われる。この第 1段階では、流路溝 9は完全には形成されて おらず、溝深さは浅い状態である。次に、流路溝 9の第 2段階の打ち出し加工を行う( S12)。これにより、流路溝 9の加工が完了する。この段階での断面形状は図 32 (b) に示される。次に、ブースを取り付ける孔(注入口 5c及び排出口 5d)を形成するため のプレス穴あけ力卩ェを行う(S13)。これは第 3金型により行われる。
[0165] 次に、電極板 3を収容するための凹部 5g打ち出し力卩ェが行われる(S 14)。この段 階での断面形状は図 32 (c)に示される。これは第 5金型により行われる。次に、金属 板 5の外形を打ち抜くための加工が行われる(S15)。この段階での断面形状は図 32 (d)に示される。これは第 6金型により行われる。打ち抜き後の長さが L1で示される。
[0166] 図 28に示すように、アノード側金属板 5の外形を打ち抜きした後に、図 25 (b)で示 すようなブースを取り付ける加工を行う。ブース 5eは、注入口 5cと排出口 5dにカシメ により結合することができる。
[0167] また、力ソード側金属板 4の外形を打ち抜き加工した後に、図 33に示すような周縁 領域 4aを 90°内側に立ち曲げるための絞り加工が行われる。図 33 (b)に絞り加工を 行った後の斜視図を示すが、周縁領域 4aの全周に立ち曲げ部が形成される。このよ うな立ち曲げ部を形成することで、力シメ封止加工を行いやすくすることができる。 [0168] 上記のように製作された金属板 4, 5を用いて燃料電池セルの組み立て工程に使用 する金型設備については、既に説明した図 3、図 4の構成のものを用いることができる 。既に説明したように、この金型の基本的構成は、以下説明する燃料電池セルの組 み立て工程で使用する金型の!/、ずれの場合にも適用可能である。加工内容の違 、 に応じて金型形状が異なることもあるが、基本的な金型構成は図 3, 4に示す構造と することができる。
[0169] この金型により燃料電池セルを組み立てていくものである力 順送金型設備におい ても使用できる金型構成である。例えば、金属板 4, 5に薄膜電極組成体 10の電極 板 2, 3を収容するための凹部 4g, 5gを形成する打ち出し加工 (絞り加工)、外形の 打ち抜き加工に使用した場合については、既に説明した通りである。
[0170] <燃料電池セルの製造 (組立)工程 >
順送金型設備により金属板 4, 5の打ち抜き加工を行なった後、力ソード側金属板 4 に立ち曲げ部の絞り加工を行い(図 33参照)、燃料電池セルの組み立てを行なう。こ の組立工程は、図 5や図 14で説明したのと同じである。また、各工程における金型構 成等について、図 34〜図 37に示すが、基本的には図 10〜図 13で説明したのと同 じであるので、詳しい説明は省略する。ただし、流路溝 9がプレス力卩ェで形成されて いるため、流路溝 9の形状に合わせて金型が形成されている点が異なる。
[0171] 順送金型設備により製造された金属板 4, 5と薄膜電極組成体 10をセットした状態 を図 34に示す。 90°絞り加工された金属板 4の中に、薄膜電極組成体 10 (固体高分 子電解質 1の両面に電極板 2, 3が組み立てられたもの)がセットされる。第 1上型 31 には、金属板 5にカシメ結合されているブース 5eを逃げるための凹部 31aと、流路溝 9の形成に伴う金属板 5の表面の突出部を逃げるための凹部 31bが設けられている。
[0172] 図 36に示すように、周縁領域 4a, 5aがカシメにより封止されると、周縁領域 4aと周 縁領域 5aの間には、絶縁層として絶縁シート 11, 12が介在しており、金属板 4, 5同 士の短絡を防止した状態で封止される。
[0173] <別実施形態 >
燃料電池セルの構成は図 1, 2, 22〜26に示す構造のものに限定されるものでは ない。例えば、力ソード側金属板 4は空気を取り込むための開口部 4cを多数有する 形状をして 、るが、力ソード側金属板 4をアノード側金属板 5と同様の形状に形成して ちょい。
[0174] 図 1, 2の実施形態では、流路溝の形成と周縁領域の厚みを薄くする工程、注入口
'排出口 ·開口部を形成する工程をエッチングにより行っている力 これらもプレスカロ 工により行ってもよい。
[0175] 図 1, 2の実施形態では、固体高分子電解質 1を絶縁層として介在させる構成を説 明しているが、絶縁部材を別に用いて、これを介在させて力シメ封止を行っても良い 。絶縁材料の厚みとしては、薄型化の観点から、 0. 1mm以下が好ましい。なお、絶 縁材料をコーティングすることにより、更なる薄型化が可能である(例えば絶縁材料の 厚み 1 μ mも可能)。絶縁材料としては、シート状の榭脂、ゴム、熱可塑性エラストマ 一、セラミックスなどが使用できる力 シール性を高める上で、榭脂、ゴム、熱可塑性 エラストマ一などが好ましぐ特にポリプロピレン、ポリエチレン、ポリエステル、フッ素 榭脂、ポリイミドが好ましい。絶縁材料は、金属板 4, 5の周縁に直接あるいは粘着剤 を介して貼着したり、塗布したりして、予め金属板 4, 5に一体ィ匕しておくことも可能で ある。
[0176] S8, S9の工程では、第 1下型 21と金属板 5の下面の間には隙間が設けられている 状態であるので、第 1下型 21は必ずしも設けておく必要はない。
[0177] 本実施形態におけるセルの組立工程では、次工程のプレス力卩ェに移行する場合 は、金型を取り替えながら順番に行う例を説明したが、順送金型を用いて連続的に プレスカ卩ェできる構成を採用してもよ!/、。
[0178] 本実施形態では力シメ封止工程における金属板の絞り加工は、所定傾斜角度を 4 5°に設定し、次に 0°絞り加工を行っている。すなわち、 2段階で力シメ封止を行うが、 これを 3段階以上としてもよい。例えば、 60°→30°→0°に設定することができる。もち ろん、この角度以外でも良い。また、 4段階以上の多段階に設定してもよい。
[0179] 本実施形態に係る順送金型設備では、アノード側金属板 5に形成する流路溝 9を 2 回に分けてプレスカ卩ェにしている力 1回もしくは 3回以上の段階的加工により形成し てもよい。
[0180] 本実施形態の組立工程では、薄膜電極組成体 10の形に組み立てた後に、金型に セットするようにしている力 金型にセットする際に、力ソード側電極板 2、固体高分子 電解質 アノード側電極板 3の順番に積層する形でセットしてもよ 、。
[0181] 本実施形態では、力ソード側金属板 4の周縁領域 4aを折り曲げてカシメ封止して ヽ る力 アノード側金属板 5の周縁領域 5aを折り曲げて力シメ封止してもよい。
[0182] 本発明に係る実施形態につ!ヽて種々説明してきたが、これらの実施形態は適宜組 み合わせて実施することができる。

Claims

請求の範囲
[1] 板状の薄膜電極組成体と、この薄膜電極組成体の両側に配置された第 1金属板及 び第 2金属板とを備え、これら金属板の周縁領域が絶縁層を間に介在させた状態で 曲げプレスにより機械的封止される燃料電池セルの製造方法において、 前記一対の金属板の間に薄膜電極組成体がセットされた状態で一方の金属板の 周縁領域を内側方向へ倒して曲げプレスによる機械的封止をするに際し、
金属板の中央領域に位置し、中央領域の変形を規制する規制手段と、前記周縁 領域に位置し、機械的封止のための加工を行う曲げプレス加工手段とを用い、曲げ プレス加工手段で周縁領域の封止を行う時に、規制手段で中央領域の変形を規制 することを特徴とする燃料電池セルの製造方法。
[2] 請求項 1の燃料電池セルの製造方法にお!、て、
前記機械的封止の後に、封止された周縁領域の内側領域を更にプレス押圧する 工程を有する。
[3] 請求項 1の燃料電池セルの製造方法にお!、て、
曲げプレスを行う周縁領域の金属板の厚みを予め他の部分よりも薄く形成するェ 程を有する。
[4] 請求項 1の燃料電池セルの製造方法にお!、て、
第 1金属板の周縁領域を絞り加工することで、周縁領域全周に立ち曲げ部を形成 する工程と、
立ち曲げ部が上方に向いた状態の第 1金属板の上に薄膜電極組成体と第 2金属 板とがこの順番で置かれると共に、立ち曲げ部の内壁側に絶縁層がセットされる工程 と、
立ち曲げ部の全周が金属板の内側方向に向けて所定角度傾斜するような絞り加工 を少なくとも 1回行う工程と、
前記所定角度傾斜された立ち曲げ部の全周を第 2金属板の周縁領域に対して倒 し込むことで、周縁領域を前記機械的封止する工程と、を更に有する。
[5] 請求項 4の燃料電池セルの製造方法にお 、て、
前記所定角度は、水平面に対して 40°以上 50°以下である。
[6] 請求項 4の燃料電池セルの製造方法にお 、て、
第 1金属板の上に薄膜電極組成体と第 2金属板とがこの順番で置かれる工程の前 に、
第 1金属板及び第 2金属板のうちの少なくとも一方の金属板を、その中央領域が周縁 領域よりも薄膜電極組成体の方向へ突出した湾曲形状に加工する工程を有する。
[7] 請求項 4の燃料電池セルの製造方法にお 、て、
前記立ち曲げ部の内壁と第 2金属板の周縁端面とのすきまは、 0. 05-0. 15mm である。
[8] 請求項 6の燃料電池セルの製造方法にお 、て、
前記湾曲形状の突出量は、 0. 05〜0. 15mmである。
[9] 請求項 1の燃料電池セルの製造方法にお!、て、
第 1金属板もしくは第 2金属板を製作するため、所定幅を有する長尺状金属板を順 送金型設備に向けて搬送する搬送工程と、
長尺状金属板に燃料ガス用の流路を形成する工程と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する工程と、 長尺状金属板力 外形を打ち抜くことで、第 1金属板を形成する工程と、を前記順 送金型設備により連続的に行う。
[10] 請求項 9の燃料電池セルの製造方法にお 、て、
長尺状金属板に空気を取り込むための穴を形成する工程と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する工程と、 長尺状金属板力 外形を打ち抜くことで、第 2金属板を形成する工程と、を前記順 送金型設備により連続的に行う。
[11] 請求項 10の燃料電池セルの製造方法において、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する前記工程で使 用される金型は、第 1金属板と第 2金属板とで共通の金型が使用される。
[12] 請求項 9の燃料電池セルの製造方法にお 、て、
前記第 1金属板を製造するに際し、
流路を形成する前記工程と、凹部を形成する前記工程との間に、 前記流路の両端部に、ガス供給パイプ取り付け用のブースを結合するための穴と、 ガス排出パイプ取り付け用のブースを結合するための穴を形成する工程を有する。
[13] 請求項 9の燃料電池セルの製造方法にぉ 、て、
前記流路を形成する工程は、複数回に分けて行われる。
[14] 請求項 9の燃料電池セルの製造方法にお 、て、
前記長尺状金属板には、加工位置決め用の孔が順送金型設備の金型配列間隔 に対応した所定間隔ごとに予め形成されていると共に、前記絶縁層を構成する絶縁 シートが同じ所定間隔ごとに予め付着されている。
[15] 請求項 14の燃料電池セルの製造方法にぉ 、て、
前記絶縁シートは、前記周縁領域に対応したリング状に形成され、前記位置決め 用の孔を基準として付着されている。
[16] 請求項 14の燃料電池セルの製造方法にお 、て、
第 1金属板形成用の長尺状金属板と、第 2金属板形成用の長尺状金属板の両方 に絶縁シートが予め付着されており、収容される薄膜電極組成体の周縁領域が、第 1金属板側の絶縁シートと第 2金属板側の絶縁シートで挟持されるような位置に、絶 縁シートが予め付着されて 、る。
[17] 板状の薄膜電極組成体と、この薄膜電極組成体の両側に配置された第 1金属板及 び第 2金属板とを備え、これら金属板の周縁領域が絶縁層を間に介在させた状態で 曲げプレスにより機械的封止される燃料電池セルの製造設備において、
前記一対の金属板の間に薄膜電極組成体がセットされた状態で一方の金属板の 周縁領域を内側方向へ倒して曲げプレスによる機械的封止をするに際し用いられる 機構として、
前記金属板の中央領域に位置する規制手段と、
金属板の周縁領域に対して機械的封止を施すための下側曲げプレス加工手段及 び上側曲げプレス加工手段と、
機械的封止を行う際の規制手段と上側曲げプレス加工手段が搭載されるユニット の全ストロークを規定するストッパーと、
上側曲げプレス加工手段に対して設けられた付勢機構と、を備え、 前記全ストロークは、上側曲げプレス加工手段が金属板に当接して加工を開始す るまでのストロークよりも長くなるように設定され、加工開始後は付勢機構による付勢 力が金属板の周縁領域に対して作用すると共に、規制手段により中央領域の変形を 規制することを特徴とする燃料電池セルの製造設備。
[18] 請求項 17の燃料電池セルの製造設備において、
前記機械的封止を行う時に、規制手段の下面は下側曲げプレス加工手段の上面 よりも上方に位置している。
[19] 請求項 17の燃料電池セルの製造設備において、
前記機械的封止工程の後に、封止された周縁領域の内側領域をプレス押圧する 工程に用いられる手段を更に備えて 、る。
[20] 請求項 17の燃料電池セルの製造設備にぉ 、て、
第 1金属板の周縁領域を絞り加工することで、周縁領域全周に立ち曲げ部を形成 する工程に用いられる金型と、
立ち曲げ部が上方に向いた状態の第 1金属板の上に薄膜電極組成体と第 2金属 板とがこの順番で置かれると共に、立ち曲げ部の内壁側に絶縁層がセットされ、更に 、立ち曲げ部の全周が金属板の内側方向に向けて所定角度傾斜するような絞り加工 を少なくとも 1回行うために用いられる金型と、
前記所定角度傾斜された立ち曲げ部の全周を第 2金属板の周縁領域に対して倒 し込むことで、周縁領域を前記機械的封止する工程に用いられる金型とを更に有す る。
[21] 請求項 20の燃料電池セルの製造設備にぉ 、て、
前記所定角度傾斜させる金型の角度は水平面に対して 40°以上 50°以下に設定さ れている。
[22] 請求項 17の燃料電池セルの製造設備にぉ 、て、
第 1金属板及び第 2金属板のうちの少なくとも一方の金属板を、その中央領域が周 縁領域よりも薄膜電極組成体の方向へ突出した湾曲形状に加工する工程に用いら れる金型を更に備える。
[23] 請求項 17の燃料電池セルの製造設備にぉ 、て、 第 1金属板もしくは第 2金属板を製作するため、所定幅を有する長尺状金属板を搬 送しつつ、順次所定の加工を行う順送金型設備を備え、この順送金型設備は、 長尺状金属板に燃料ガス用の流路を形成する金型と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する金型と、 長尺状金属板から外形を打ち抜くことで、第 1金属板を形成する金型とを備える。
[24] 請求項 23の燃料電池セルの製造設備にぉ 、て、
長尺状金属板に空気を取り込むための穴を形成する金型と、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する金型と、 長尺状金属板から外形を打ち抜くことで、第 2金属板を形成する金型とを備える。
[25] 請求項 24の燃料電池セルの製造設備にぉ 、て、
長尺状金属板に薄膜電極組成体を収容するための凹部を形成する前記工程で使 用される金型は、第 1金属板と第 2金属板とで共通の金型が使用される。
[26] 請求項 23の燃料電池セルの製造設備にぉ 、て、
順送金型設備を構成する各金型の作動を制御する金型制御部を備え、この金型 制御部は、第 1金属板を加工する際に、第 2金属板の加工のみに使用する金型を不 作動にし、第 2金属板を加工する際に、第 1金属板の加工のみに使用する金型を不 作動にする。
PCT/JP2005/016949 2004-09-16 2005-09-14 燃料電池セルの製造方法及び製造設備 WO2006030830A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2004270199A JP3847311B2 (ja) 2004-09-16 2004-09-16 燃料電池セルの製造方法及び製造設備
JP2004270208A JP4630029B2 (ja) 2004-09-16 2004-09-16 燃料電池セルの製造方法及び製造設備
JP2004-270199 2004-09-16
JP2004-270208 2004-09-16
JP2005007212A JP2006196328A (ja) 2005-01-14 2005-01-14 電池セルの製造方法及び製造設備
JP2005-007212 2005-01-14
JP2005153924A JP2006331861A (ja) 2005-05-26 2005-05-26 燃料電池セルの製造方法及び燃料電池セルの製造設備
JP2005-153924 2005-05-26

Publications (1)

Publication Number Publication Date
WO2006030830A1 true WO2006030830A1 (ja) 2006-03-23

Family

ID=36060081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/016949 WO2006030830A1 (ja) 2004-09-16 2005-09-14 燃料電池セルの製造方法及び製造設備

Country Status (1)

Country Link
WO (1) WO2006030830A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075792A2 (en) * 2005-01-14 2006-07-20 Honda Motor Co., Ltd. Fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298874A (ja) * 2001-04-02 2002-10-11 Kemitsukusu:Kk 平面型燃料電池用セパレータ及び平面型燃料電池
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
JP2004200064A (ja) * 2002-12-19 2004-07-15 Fujitsu Component Ltd 燃料電池および燃料電池スタック
JP2005150008A (ja) * 2003-11-19 2005-06-09 Nitto Denko Corp 燃料電池
JP2005268176A (ja) * 2004-03-22 2005-09-29 Nitto Denko Corp 燃料電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002298874A (ja) * 2001-04-02 2002-10-11 Kemitsukusu:Kk 平面型燃料電池用セパレータ及び平面型燃料電池
JP2003282131A (ja) * 2002-03-20 2003-10-03 Samsung Sdi Co Ltd 通気型直接メタノール燃料電池セルパック
JP2004200064A (ja) * 2002-12-19 2004-07-15 Fujitsu Component Ltd 燃料電池および燃料電池スタック
JP2005150008A (ja) * 2003-11-19 2005-06-09 Nitto Denko Corp 燃料電池
JP2005268176A (ja) * 2004-03-22 2005-09-29 Nitto Denko Corp 燃料電池

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075792A2 (en) * 2005-01-14 2006-07-20 Honda Motor Co., Ltd. Fuel cell
WO2006075792A3 (en) * 2005-01-14 2006-10-26 Honda Motor Co Ltd Fuel cell
US8192894B2 (en) 2005-01-14 2012-06-05 Honda Motor Co., Ltd. Plate-laminating type fuel cell

Similar Documents

Publication Publication Date Title
JP6368807B2 (ja) 燃料電池スタックの製造方法及び燃料電池用金属セパレータの製造方法
US20140017590A1 (en) Electrolyte membrane-electrode assembly for fuel cells, and method for producing same
US20190273268A1 (en) Frame equipped membrane electrode assembly, method of producing the frame equipped membrane electrode assembly, and fuel cell
JP5429357B2 (ja) 燃料電池
EP2112705A1 (en) Film-film reinforcing member bonded body, film-catalyst layer bonded body, film-electrode bonded body, and polyelectrolyte type fuel cell
US10559835B2 (en) Resin-framed membrane-electrode assembly for fuel cell
JP2009199877A (ja) 燃料電池および燃料電池の製造方法
JP5343532B2 (ja) 燃料電池及び燃料電池スタック製造方法
JP3847311B2 (ja) 燃料電池セルの製造方法及び製造設備
WO2015049859A1 (ja) 燃料電池用セパレーターおよび燃料電池
US20090136807A1 (en) Mea component, and polymer electrolyte fuel cell
KR101127028B1 (ko) 연료 전지
JP2005150008A (ja) 燃料電池
KR100546016B1 (ko) 연료전지용 전류집전체와 그 제조방법, 그리고 이를구비한 연료전지
JP2009193700A (ja) 燃料電池用電極集成体、燃料電池用電極集成体の製造方法および燃料電池
JP2006196328A (ja) 電池セルの製造方法及び製造設備
JP4477910B2 (ja) 燃料電池
JP4630029B2 (ja) 燃料電池セルの製造方法及び製造設備
WO2006030830A1 (ja) 燃料電池セルの製造方法及び製造設備
JP2007157438A (ja) 燃料電池セルの製造方法及び燃料電池セルの製造設備
JP2006331861A (ja) 燃料電池セルの製造方法及び燃料電池セルの製造設備
JP2018078003A (ja) 燃料電池の製造方法
CN116368649A (zh) 用于电化学电池的膜电极单元和用于制造膜电极单元的方法
US10847826B2 (en) Polymer electrolyte fuel cells and production method thereof
JP4660151B2 (ja) 燃料電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580031063.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1550/CHENP/2007

Country of ref document: IN

Ref document number: 1200700805

Country of ref document: VN

122 Ep: pct application non-entry in european phase

Ref document number: 05783243

Country of ref document: EP

Kind code of ref document: A1