Nothing Special   »   [go: up one dir, main page]

WO2006013765A1 - 人物判定装置及び人物検索追跡装置 - Google Patents

人物判定装置及び人物検索追跡装置 Download PDF

Info

Publication number
WO2006013765A1
WO2006013765A1 PCT/JP2005/013769 JP2005013769W WO2006013765A1 WO 2006013765 A1 WO2006013765 A1 WO 2006013765A1 JP 2005013769 W JP2005013769 W JP 2005013769W WO 2006013765 A1 WO2006013765 A1 WO 2006013765A1
Authority
WO
WIPO (PCT)
Prior art keywords
walking
information
person
image
sequence
Prior art date
Application number
PCT/JP2005/013769
Other languages
English (en)
French (fr)
Inventor
Taro Imagawa
Masahiro Iwasaki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006531421A priority Critical patent/JP3910629B2/ja
Priority to US11/342,651 priority patent/US7397931B2/en
Publication of WO2006013765A1 publication Critical patent/WO2006013765A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/0304Detection arrangements using opto-electronic means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/20Movements or behaviour, e.g. gesture recognition

Definitions

  • the present invention relates to a person determination apparatus that determines whether or not persons included in different image sequences are the same person, and an apparatus for searching and tracking a person using the person determination apparatus.
  • Patent Document 1 1)
  • FIG. 1A to FIG. 1C are diagrams for explaining a person search / tracking method described in Patent Document 1.
  • FIG. 1A and FIG. 1B show temporally continuous frame images taken of the same person.
  • a frame image A10 shown in FIG. 1A shows an image of a person Al moving in the right direction.
  • the rectangle A12 is a circumscribed rectangle including the head and torso parts detected as a region where the motion is small (person stable region) using the motion vector.
  • the circumscribed rectangle A22 of the human stable area detected from the person A21 is indicated by a broken line.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-346159 (3rd and 6th pages, FIGS. 2 and 9) Disclosure of Invention
  • the present invention solves the above-described conventional problem, and can determine the same person even between frames that are separated in time or between frames shot by different cameras.
  • Another object of the present invention is to provide a person search / tracking apparatus that searches for and tracks a person using the person determination apparatus.
  • a person determination device is a person determination device that determines whether or not persons included in different image sequences are the same.
  • a sequence and an image sequence input means for receiving an input of a second image sequence acquired by a different time sensor or a different image sensor from the first image sequence, and the input first and second image sequences.
  • the walking sequence extracting means for extracting the first and second walking sequences, which are image sequences indicating the walking state of the person, and the extracted first and second walking sequences, respectively,
  • Walking information extracting means for extracting the first and second walking information which is information for identifying the periodic movement of the walking, and the extracted first and second walking
  • a walking information collating means for collating the distribution, based on the collation result by the walking information collating unit, Te, a force whether a person with each other included in the first and second image sequence are identical
  • determining means for determining.
  • walking information for example, information indicating a temporal or spatial walking cycle of a person, temporal
  • a human image sequence obtained between different frames or from different sensors is associated. be able to.
  • a person determination device that can determine the same person and a person search / tracking device that searches and tracks a person using the person determination device are realized.
  • FIG. 1A is a diagram showing an example of a detection rectangle in a conventional person search / tracking apparatus.
  • FIG. 1B is a diagram showing an example of a detection rectangle in a conventional person search / tracking apparatus.
  • FIG. 1C is a diagram showing movement of a detection rectangle in a conventional person search / tracking apparatus
  • FIG. 2 is a functional block diagram showing a configuration of a person determination device according to Embodiment 1 of the present invention.
  • FIG. 3 is a diagram showing an example of an image sequence in the first embodiment of the present invention.
  • FIG. 4A is a diagram showing an example of a sequence of human lower body images.
  • FIG. 4B is a diagram showing an example of a walking sequence in the first embodiment of the present invention.
  • FIG. 4C is a diagram showing an example of the shape of the minimum pattern of the walking sequence.
  • FIG. 5 is a diagram showing spatiotemporal phase information and spatiotemporal position information in Embodiment 1 of the present invention.
  • FIG. 6A is a diagram showing an example of a walking locus in the first embodiment of the present invention.
  • FIG. 6B is a diagram showing an example of the estimated walking state in the first embodiment of the present invention.
  • FIG. 6C is a diagram showing an example of walking states with different phase states in Embodiment 1 of the present invention.
  • FIG. 7A is a diagram showing an example of the relationship between the walking locus and the change between the legs in the first embodiment of the present invention.
  • FIG. 7B is a diagram showing an example of a change between legs in the first embodiment of the present invention.
  • FIG. 7C is a diagram showing an example of a change between legs in the first embodiment of the present invention.
  • FIG. 8A is a diagram showing an example of a display of a walking sequence in the first embodiment of the present invention.
  • FIG. 8B is a diagram showing an example of a walking sequence display in the first embodiment of the present invention.
  • FIG. 8C is a diagram showing an example of a walking sequence display in the first embodiment of the present invention.
  • FIG. 9 is a diagram showing an example of a storage format of a result of searching and tracking a walking sequence according to Embodiment 1 of the present invention.
  • FIG. 10 is a block diagram showing a configuration of a person search / tracking apparatus according to Embodiment 1 of the present invention.
  • FIG. 11 is a diagram showing an example of a screen for performing a search and tracking instruction in the first embodiment of the present invention.
  • FIG. 12 is a flowchart showing an example of a verification procedure in the first embodiment of the present invention.
  • FIG. 13A is a diagram showing an example of an image sequence 1 in the first embodiment of the present invention.
  • FIG. 13B is a diagram showing an example of an image sequence 2 in the first embodiment of the present invention.
  • FIG. 14 shows an example of a walking sequence extraction procedure according to the first embodiment of the present invention. It is a flowchart to show.
  • FIG. 15 is a flowchart showing an example of a procedure for extracting spatio-temporal period information 'spatio-temporal phase information-spatio-temporal position information in Embodiment 1 of the present invention.
  • FIG. 16A is a diagram showing an example of detection of a specific walking state in the first embodiment of the present invention.
  • FIG. 16B is a diagram showing an example of a detection template for a specific walking state in the first embodiment of the present invention.
  • FIG. 16C is a diagram showing an example of a specific walking state detection process in the first embodiment of the present invention.
  • FIG. 17 is a diagram showing an example of display by the control unit in Embodiment 1 of the present invention.
  • FIG. 18A is a diagram showing an example of an image sequence 1 in the second embodiment of the present invention.
  • FIG. 18B is a diagram showing an example of an image sequence 2 in the second embodiment of the present invention.
  • FIG. 19 is a functional block diagram showing a configuration of a person determination device according to Embodiment 2 of the present invention.
  • a person determination apparatus is a person determination apparatus that determines whether or not humans included in different image sequences have the same power, and includes a first image sequence and the first image sequence.
  • An image sequence input means for accepting an input of a second image sequence acquired at a different time or a different image sensor from the one image sequence, and a human character from the input first and second image sequences, respectively.
  • a walking sequence extraction means for extracting the first and second walking sequences, which are image sequences indicating the walking state, and a periodic movement of the person walking from the extracted first and second walking sequences, respectively.
  • the walking information extracting means for extracting the first and second walking information, which is information for identifying the walking information, and the walking information for comparing the extracted first and second walking information.
  • An information verification unit and a determination unit that determines whether or not the persons included in the first and second image sequences are the same based on a verification result by the walking information verification unit.
  • walking information for example, a person's time or space Information indicating a typical walking cycle, temporal or spatial phase information in a periodic walking motion of a person, or temporal or spatial positional information indicating a periodic walking motion of a person. May be.
  • the present invention makes use of the fact that walking characteristics such as the walking cycle and step length differ for different people, and that the same person walks with constant walking characteristics.
  • the same person can be determined without depending on the spatial and spatial positions, and the same person can be determined between frames that are separated in time or frames taken by different cameras.
  • the walking information collating means may add the first and second image sequences to the first and second image sequences based on the first and second spatiotemporal phase information included in the first and second walking information, respectively.
  • the walking information may be collated by comparing the time or position at which the included person assumes a predetermined walking posture.
  • the walking information matching unit is configured to determine the first image of the person included in the first image sequence based on the first spatiotemporal phase information included in the first walking information.
  • a phase information estimator for estimating spatio-temporal phase information at a time or position different from a sequence, and based on the spatio-temporal phase information and the second spatio-temporal phase information estimated by the phase information estimating means,
  • a walking information matching unit that compares walking information by comparing the time or position at which the person included in the first and second image sequences assumes a predetermined walking posture;
  • the walking information collating unit is configured to perform the first and second spatiotemporal phase information included in the first and second walking information, respectively, based on the first and second spatiotemporal phase information.
  • the walking information may be collated by comparing the walking postures of the persons included in the first and second image sequences.
  • the walking information collating means is based on the phase information included in the first spatiotemporal walking information! / And the first information of the person included in the first image sequence.
  • a walking information matching unit that compares walking information by comparing the walking postures of the persons included in the first and second image sequences at the same time or position.
  • the walking sequence is, for example, an image on a cut surface when each image sequence is cut along the time axis. Specifically, both legs of a person included in each image sequence are displayed. It is an image obtained by arranging cut sections on the time axis. This makes it possible to extract the walking characteristics of a person in terms of time and space.
  • the image sequence input means may accept input of first and second image sequences acquired by different image sensors that photograph the same place. This makes it possible to identify a person in different image sequences obtained by photographing the same place where the blind spot exists from different angles.
  • the person determination device further includes correction information storage means for preliminarily storing correction information indicating a correspondence relationship between the position on the image and the position at the shooting location in each of the first and second image sequences. And correction means for performing a spatiotemporal correction process in the extraction of the first and second walking information by the walking information extraction means based on the correction information stored in the correction information storage means. Good. As a result, even when images are acquired by different image sensors, inconsistencies between images based on differences in image sensor placement position, shooting direction, etc. are corrected. Is possible.
  • the walking surface at the shooting location is set at 2 intervals. It may be information that identifies grid lines that are dimensionally separated.
  • a person search / tracking apparatus is a person search / tracking apparatus that searches for or tracks a specific person in an image sequence in which a person is captured.
  • the first and second walking information corresponding to the first and second walking information when the first and second walking information are matched by the person determination device and the walking information matching means provided in the person determination device.
  • walking sequence storage means for storing the second walking sequences in association with each other.
  • a person search / tracking apparatus is a person search / tracking apparatus that searches or tracks a specific person in an image sequence in which a person is captured.
  • a person determination device ; and display means for displaying the first and second image sequences received by the image sequence input means included in the person determination device, wherein the display means includes the first and second image sequences.
  • highlighting is performed to distinguish a person determined to be the same person by a determination unit included in the person determination apparatus from other persons. As a result, even when different images are displayed at the same time, the same person can be immediately known by highlighting, and the search / tracking of the person is facilitated.
  • a person determination device is a person determination device that determines whether or not persons included in different image sequences have the same power, and includes a first determination unit included in the image sequence. And a walking sequence detection means for detecting the first and second walking sequences, which are image sequences showing the walking state of the second person, and a time different from the walking sequence from the walking sequence of the first person or A walking posture transition estimating means for estimating information indicating the transition of the walking posture in the periodic walking motion of the first person at the position, the information indicating the estimated walking posture transition of the first person, and the first A determination means for determining consistency with information indicating the transition of the walking posture of the second person, and determining that the first person and the second person are the same when having consistency; Is provided.
  • the same person is determined by paying attention to the walking of the person. Therefore, it is determined that the person close to the frame is the same person, or the same person is determined by the color and the image pattern.
  • the present invention makes use of the fact that walking characteristics such as the walking cycle and step length differ for different people, and that the same person walks with constant walking characteristics.
  • the same person can be determined without depending on the spatial and spatial positions, and the same person can be determined between frames that are separated in time or frames taken by different cameras.
  • the present invention can be realized as a person determination method and a person search tracking method that can only be realized as the person determination device and the person search tracking device as described above, or cause the computer to execute the method. It can be realized as a program or a computer-readable recording medium on which the program is recorded.
  • FIG. 2 is a functional block diagram showing a configuration of person determination device 10 in the present embodiment.
  • This person determination apparatus 10 is an apparatus that determines whether or not the persons included in different sequences are the same person by paying attention to the continuity of the person's walking sequence.
  • the state estimation unit 180 and the determination unit 190 are configured.
  • the walking posture detection unit 200 is a processing unit that detects a walking sequence including a predetermined walking posture of the first person from a moving image.
  • the walking state estimation unit 180 estimates the walking state of the first person at different time or position from the walking sequence of the first person (the transition state of the posture in the walking cycle movement). It is a processing unit.
  • the determination unit 190 determines the consistency between the walking state of the first person and the walking state of the second person, and if there is consistency, the first person and the second person are the same. It is a processing unit that determines that
  • the walking posture detection unit 200 includes an image sequence input unit 100 and a walking sequence extraction unit 1 Consists of ten.
  • the walking state estimation unit 180 includes a spatiotemporal period information extraction unit 120, a spatiotemporal phase information extraction unit 121, and a spatiotemporal position information extraction unit 122.
  • the determination unit 190 includes a spatio-temporal period information storage unit 130, a spatio-temporal phase information storage unit 131, a spatio-temporal position information storage unit 132, a spatio-temporal period verification unit 140, a spatio-temporal phase verification unit 141, and a spatio-temporal difference extraction. Part 142, coincidence determination part 150, and control part 160.
  • the walking posture detection unit 200 is an example of a walking sequence detection unit that detects a walking sequence that is an image sequence indicating a walking state of a person included in the image sequence.
  • the walking state estimation unit 180 is an example of a walking posture transition estimation unit that estimates information indicating a transition of a walking posture in a periodic walking motion of a person at a time or position different from the walking sequence from the walking sequence.
  • the determination unit 190 determines the consistency of information indicating the transition of the walking posture of two persons captured at different times or different image sensors, and determines whether the two persons are the same person or not. This is an example of the judgment means.
  • the “information indicating the transition of the walking posture” is information including period information and phase information described later.
  • the image sequence input unit 100 is an example of an image sequence input unit that accepts input of first and second image sequences acquired at different times or different image sensors.
  • the walking sequence extraction unit 110 is a walking sequence extraction unit that extracts the first and second walking sequences, which are image sequences indicating the walking state of the person, from the first and second image sequences, respectively. It is an example.
  • the spatio-temporal phase information extraction unit 121, the spatio-temporal position information extraction unit 122, and the spatio-temporal period information extraction unit 120 respectively perform periodic movements regarding the walking of the person from the first and second walking sequences. It is an example of walking information extracting means for extracting first and second walking information that is information to be specified.
  • the spatiotemporal phase matching unit 141, the spatiotemporal difference extracting unit 142, and the spatiotemporal period matching unit 140 are an example of walking information matching means for matching the extracted first and second walking information.
  • Match determination section 150 is included in the first and second image sequences based on the collation result. It is an example of the determination means which determines whether the persons to be read are the same person.
  • the image sequence input unit 100 is a signal interface or the like for acquiring an image sequence by using a camera or an image recording apparatus.
  • An “image sequence” is an array in which frame images taken as shown in FIG. 3 are arranged in time order.
  • the walking sequence extraction unit 110 is a processing unit that also extracts the walking sequence from the image sequence acquired by the image sequence input unit 100.
  • the “walking sequence” is a sequence of walking states in which the walking motion region force in each frame image is also obtained.
  • Figure 4B shows an example of a walking sequence.
  • Figure 4A shows an array of human lower body regions extracted from each frame and arranged in chronological order.
  • Fig. 4B shows the frames of each frame image arranged in chronological order at the position of the broken line B10!
  • the black band in Fig. 4B shows the movement trajectory of the foottips (images taken along the time axis of sections that cut both legs of the person). A specific method for calculating each walking sequence will be described later.
  • the spatiotemporal period information extraction unit 120 is a processing unit that extracts the period information of the spatiotemporal change of the walking sequence force walking extracted by the walking sequence extraction unit 110.
  • Period information refers to the number of steps per fixed time, a result obtained by performing frequency analysis on the spatio-temporal position change of a specific part of a foot or hand, This means the shape of the minimum pattern that is repeated.
  • An example of spatiotemporal period information is illustrated in Figure 4B. In Fig. 4B, black triangle marks and white triangle marks are displayed at spatio-temporal points where the toes intersect on the time axis and the horizontal axis of the image (corresponding to the spatial axis).
  • the spatio-temporal period information is an example of the spatio-temporal period information based on the spatial interval between adjacent black triangles and the time interval between adjacent white triangles, which is a fixed time period.
  • the shape of the walking pattern surrounded by the broken line at the adjacent black triangle position and the broken line at the adjacent white triangle position may be used, or the step length of time as shown by curve B11 in Fig. 4B.
  • Frequency characteristics (such as spectrum intensity in a specific frequency band) obtained by performing frequency analysis on stride spatial changes such as curve B12.
  • the spatiotemporal cycle information storage unit 130 is a memory or the like that stores the spatiotemporal cycle information extracted by the spatiotemporal cycle information extraction unit 120 together with the detected time, the position in the image, and the like.
  • the spatio-temporal period verification unit 140 includes the spatio-temporal period information extracted by the spatio-temporal period information extraction unit 120. This is a processing unit that collates the information with the spatiotemporal cycle information stored in the spatiotemporal cycle information storage unit 130.
  • the spatiotemporal phase information extraction unit 121 is a processing unit that extracts the phase information of the spatiotemporal change of the walking sequence force walking extracted by the walking sequence extraction unit 110.
  • Phase information means a transition state during a walking motion that is a periodic motion (a position and time at which a predetermined walking posture is taken, or a walking posture at a specific position and time). For example, even in a walking sequence having the same spatiotemporal period, information on which spatiotemporal position the foot is on the ground (predetermined walking posture) is spatiotemporal phase information. The difference in walking posture in two walking sequences compared at the same time or at the same position is also spatiotemporal phase information. Examples of spatiotemporal phase information will be described with reference to FIGS.
  • FIG. 5 shows the walking trajectory of the foot position as in FIG. 4B, but shows two walking trajectories A010 and A011 having the same spatiotemporal period and different spatiotemporal phases.
  • the walking trajectories A010 and A011 have the same step length and walking cycle, but the position and time at which the foot touches the ground, or the position and time at which both feet cross each other are different.
  • Fig. 6A shows two walking loci (discontinuous detection of the first person, 1802 (dashed line) and second person's walking loci 1801 (solid line), which are detected discontinuously due to the presence of the obstacle 1800 (shaded area).
  • phase information is a position and time at which a predetermined walking posture is taken, or a walking posture at a predetermined position and time, and the second person's walking track 1801 and the first person's walking trajectory.
  • the spatio-temporal phase information extraction unit 121 determines the position / time of the predetermined posture (eg, crossing of legs) of the first person's walking information 1802 and its periodic force. Estimate the posture (dashed line 1803 in Figure 6B).
  • the spatiotemporal phase information extraction unit 121 estimates the walking posture (dashed line 1805) at another time position from the walking trajectory 1804 (dashed line) on the right side of the obstacle 1800.
  • the spatiotemporal phase information extraction unit 121 obtains the time and position at which the predetermined walking posture is reached.
  • a state where the legs cross each other as a predetermined posture (a state where the size between the legs is minimized).
  • Figure 7A shows the time or position change between legs. Between the legs in the walking trajectory The width of the trajectory of both legs can be obtained from the image.
  • the spatio-temporal phase information extraction unit 121 at the time and position where the first person's inter-leg information 1902a (broken line) is not photographed due to the presence of obstacles 1900a (hatched area) as shown in FIG. 7B. Estimate the state between legs (posture state) 1 903a (dashed line).
  • the spatio-temporal phase information extraction unit 121 first obtains, as phase information, the time or position at which a predetermined posture is first obtained on the left side of the image as the first region or position in time as the imaged region.
  • the time or position 1905 is obtained as phase information for the estimated walking state 1903a of the first person
  • the time or position 1906 is obtained for the walking state 1901a of the second person.
  • phase information 1910 is obtained for the walking state 1909a (broken line) estimated for the walking state 1908a (broken line)
  • phase information 1911 is obtained for the walking state 1907a (solid line).
  • the spatiotemporal phase information extraction unit 121 similarly obtains the walking state or the estimated walking state at the predetermined time or position.
  • the spatio-temporal phase information extraction unit 121 obtains a leg interval (walking posture) at a predetermined time or position 1904.
  • the phase information for the first person is a value at the predetermined time or position 1904 of the estimated walking state 1903a (dashed line)
  • the phase information for the second person is the predetermined time or position of the walking state 1901a (solid line) 1904. The value in Similarly, in FIG.
  • the value at the predetermined time or position 1904 of the estimated walking state 1909a estimated based on the walking state 1908a and the value at the predetermined time or position 1904 of the walking state 1907a are respectively the first person and It becomes the phase information of the second person.
  • the estimated posture is used only for the first person, but the estimated posture is also obtained for the second person, and the phase information is obtained from the estimated posture for both the first person and the second person. You may make it do.
  • the position of the obstacle in FIGS. 6A to 6C and FIGS. 7A to 7C and the out-of-range shown in the figure are regarded as common positions, and after estimating the estimated state at the common position, the phase information is obtained. Also good.
  • a position where the distance between the legs may be maximized or a change between the legs may be maximized may be used.
  • the spatio-temporal phase information storage unit 131 includes the spatio-temporal position extracted by the spatio-temporal phase information extraction unit 121.
  • the spatiotemporal phase collation unit 141 is a processing unit that collates the spatiotemporal phase information extracted by the spatiotemporal phase information extraction unit 121 with the spatiotemporal phase information stored in the spatiotemporal phase information storage unit 131. is there.
  • the spatiotemporal position information extraction unit 122 extracts a spatiotemporal position from which the walking sequence is extracted from the walking sequence extracted by the walking sequence extraction unit 110, and generates a spatiotemporal position information. It is. “Spatio-temporal position information” means the time and place where the walking sequence was detected. An example of spatio-temporal position information will be described with reference to FIG. In Fig. 5, the time-spatial position where both feet crossed first in time for each of the two walking trajectories is represented by a dashed cross. Thus, information indicating the position of absolute temporal 'spatial walking is spatio-temporal position information.
  • the spatio-temporal position information storage unit 132 is a memory or the like that stores the spatio-temporal position information generated from the spatio-temporal position information extraction unit 122.
  • the spatio-temporal difference extraction unit 142 is a processing unit that obtains a difference between the spatio-temporal position information generated by the spatio-temporal position information extraction unit 122 and the spatio-temporal position information stored in the spatio-temporal position information storage unit 132. is there.
  • the coincidence determination unit 150 is a processing unit that determines coincidence / mismatch between different walking sequences based on the results of the spatiotemporal period collation unit 140, the spatiotemporal phase collation unit 141, and the spatiotemporal difference extraction unit 142. . That is, the coincidence determination unit 150 determines whether or not the walking sequence is the same person.
  • An example of a method for determining coincidence / non-coincidence is described as follows for spatio-temporal period information.
  • the coincidence determination unit 150 determines that the two walking sequences coincide. That is, the coincidence determination unit 150 determines that the walking sequence is the same person.
  • the coincidence determination unit 150 determines the spatio-temporal phase information and the spatio-temporal position information in the same manner as the spatio-temporal periodic information. If all items match or the specified number of items match, If you do, you can determine that the two walking sequences match.
  • the determination method is not limited to the above, and a method generally used for pattern recognition or the like can be applied.
  • temporal phase information tpl and spatial phase information (positional phase information) spl obtained from the walking sequence of the first person in the moving image, and these phase information
  • the temporal phase information tp2 and the spatial phase information (positional phase information) sp2 obtained from the walking sequence of the second person at a different time or position from the obtained time or position are compared.
  • the coincidence determination unit 150 performs I tpl—tp2 I ⁇ 0 t (0 t is a predetermined threshold value) and I spl—sp2 I ⁇ 0 s (0 t is a predetermined threshold value).
  • the coincidence determination unit 150 matches the spatiotemporal phase information of the walking state 1801 and the walking state 1803, and the first person And the second person are determined to be the same.
  • the coincidence determination unit 150 determines that the walking state 1806 and the walking state 1805 have different spatiotemporal phase information, and the first person and the second person are different.
  • the coincidence determination unit 150 determines that the walking state 1901a and the walking state 1903a in FIG. 7B have the same spatio-temporal phase information, and the first person and the second person are the same.
  • the coincidence determination unit 150 determines that the walking state 1907a and the walking state 1909a in FIG. 7C have different spatiotemporal phase information and the first person and the second person are different.
  • the control unit 160 is a processing unit that displays an image sequence used for matching as control based on the result of matching determination by the matching determination unit 150.
  • Figures 8A to 8C show display examples.
  • FIG. 8A shows an example in which two compared image sequences are displayed with the person's area enlarged to the left and right, and the shooting time and location of each image sequence are displayed together.
  • FIG. 8B shows an example in which the same result as in FIG. 8A is displayed together with the movement locus of the person (arrow in the figure).
  • the shooting time and location are displayed in text in accordance with the image sequence. However, for the location, a map is displayed and the shooting position and movement trajectory are superimposed and displayed. May be.
  • FIG. 8A shows an example in which two compared image sequences are displayed with the person's area enlarged to the left and right, and the shooting time and location of each image sequence are displayed together.
  • FIG. 8B shows an example in which the same result as in FIG. 8A is displayed together with the movement locus of the
  • the control unit 160 In addition to the display, the contents of the control by means of may include storing, in an external storage device (location information storage device), connection information between the walking sequences indicating that different walking sequences match. In this way, by storing the correspondence relationship where different walking sequences match and do not match, it can be used when searching and tracking human walking images.
  • an external storage device location information storage device
  • Fig. 9 shows an example of the storage format of the result of searching and tracking the walking sequence by the above procedure.
  • Figure 9 shows information for three walking sequences, including five items of information for one walking sequence.
  • the five items are the sequence number, spatiotemporal period information, spatiotemporal phase information, spatiotemporal position information, and coincidence sequence number.
  • the sequence number is an ID number assigned to each walking sequence with different shooting times and shooting cameras.
  • the spatiotemporal period information expresses the number of steps X within a certain time and the number of steps y within a certain distance as (x, y).
  • the spatio-temporal phase information indicates the amount of movement from the reference time or space position to the time at which the legs first crossed each other's space position. And expressed as a ratio when 1.0. For example, in the case of sequence number 1, it means that the legs cross at a time of 0.5 steps from the reference time and the legs cross at a distance of 0.1 steps from the reference position. .
  • the spatio-temporal position information indicates the time and place where the walking sequence is first detected.
  • the location shows the pixel coordinate values in the vertical and horizontal directions on the image.
  • the matching sequence number indicates the sequence number of the walking sequence determined to match with respect to the different walking sequences by the search and tracking. If there is no matching sequence, it may be set to 0, and if there are a plurality of sequences, a plurality may be written together. By storing the result of “search once” and tracking, it is possible to omit the match determination by referring to the information when the same search and tracking is performed again.
  • sequence number may be associated with the reference destination (file name, storage address, etc.) of the captured image.
  • the spatial location information in the spatio-temporal position information may be expressed in a dedicated coordinate system as shown in Fig. 9, or may be expressed in a general-purpose coordinate system such as latitude and longitude. ⁇ .
  • FIG. 10 is a block diagram showing a configuration of a person search / tracking apparatus 20 to which the person determination apparatus 10 is applied.
  • This person search / tracking apparatus 20 is a specific example of a system or apparatus that realizes a method for searching and tracking an image sequence person in the present embodiment, and includes a camera 1 010 and 1020, a clock 1030, a storage device 1040, a processing The apparatus includes a device 1050, a display device 1060, an input unit 1070, and a pointing device 1080.
  • the cameras 1010 and 1020 are an example of the image sequence input unit 100 and take an image including the person 1000.
  • the clock 1030 is a timer for obtaining the shooting time.
  • the storage device 1040 is a hard disk or the like that stores images taken by the cameras 1010 and 1020, a shooting time obtained from the clock 1030, and a person search / tracking result.
  • the processing device 1050 is a device that performs processing for searching and tracking an image sequence person obtained from the cameras 1010 and 1020 or the storage device 1040, and corresponds to the person determination device 10 shown in FIG.
  • the display device 1060 is a display that displays the processing result of the processing device 1050
  • the input unit 1070 is a keyboard used for searching and tracking instructions
  • the pointing device 1080 is a mouse and the like used for searching and tracking instructions. is there.
  • Figure 11 shows an example of pointing.
  • searching or tracking the target person 1091 on the image is designated using the pointer 1090 as shown in FIG. 11, and the same walking sequence as the person 1091 is searched and tracked.
  • Each component is connected through a communication path.
  • the communication path may include a dedicated line or a public line, which may be wired or wireless.
  • FIGS. 13A and 13B Examples of image sequence 1 and image sequence 2 are shown in FIGS. 13A and 13B, respectively.
  • FIG. 13A shows an image sequence 1 and shows a sequence in which a person 502 is walking in the right direction on the left side of the obstacle 501.
  • FIG. 13B shows an image sequence 2 and shows an image sequence taken at the same place as the image sequence 1 after 10 seconds with the same camera.
  • the image sequence 2 includes an obstacle 501, a person walking in the right direction, and a person 503 and a person 504.
  • the image sequence input unit 100 inputs the image sequence 1 (step S401).
  • the walking sequence (walking sequence 1) is extracted from image sequence 1 (step S402).
  • a walking sequence the case of using the sequence of the lower body area as shown in Fig. 4A will be described.
  • the walking sequence extraction unit 110 extracts a walking sequence as well as an image sequence force.
  • the walking sequence extraction unit 110 reads one frame image from the image sequence (step S601). Frame images to be read are processed in chronological order from unread frame images.
  • the walking sequence extraction unit 110 detects a human region from the read frame image (step S602).
  • a human area detection method a difference method between frames generally used for detecting a moving object or a background difference method in which a background image without a person is prepared in advance and a difference from the background image is calculated is used.
  • the human region can be detected by extracting a region having a high height.
  • the walking sequence extraction unit 110 extracts information representing the walking state from the image of the human region (step S603).
  • the information representing the walking state is information representing the temporal transition of the walking state, such as the track information of the toe part in FIG. 4B.
  • step S602 and step S603 may be performed simultaneously as a series of processing, or the processing result of step S602 may be used as it is as the processing result of step S603. Further, the processing may be performed so that the output in step S603 can be obtained directly without explicitly detecting the entire human region as in step S602. For example, in the case of the above-mentioned lower body image, the walking state information may be directly acquired using a template matching method using the lower body image as a template.
  • the walking sequence extraction unit 110 determines whether or not the currently read frame image is the last frame (step S604) .If the frame image is the last frame, the walking sequence extraction process ends and the frame image remains. If V, return to step S601.
  • the spatiotemporal period information extraction unit 120, the spatiotemporal phase information extraction unit 121, and the spatiotemporal position information extraction unit 122 respectively perform spatiotemporal period information, spatiotemporal information, and so on. Phase information and spatio-temporal position information are extracted (step S403).
  • the spatiotemporal period information extraction unit 120 and the like detect the position of the specific walking state from the information of the walking sequence (step S701).
  • the specific walking state will be explained using FIGS. 16A to 16C.
  • Fig. 16A shows the result of detecting the specific walking state position for the walking sequence of Fig. 4B.
  • the two black corrugated bands that intersect each other in Fig. 16A represent the temporal trajectory of the toes.
  • the horizontal axis represents the horizontal position of the image
  • the vertical axis represents time.
  • the position where two legs cross each other, that is, the position where both feet intersect is defined as the specific walking state position.
  • the position of the intersection can be detected by preparing the shape pattern of the intersection as shown in FIG. 16B and performing the template matching to perform correlation calculation.
  • Figure 16C shows an example of the detection process.
  • the degree of coincidence of the shape is calculated while shifting the position of the detection template 801 with respect to the walking locus 800. If the matching degree by matching is equal to or greater than a predetermined value, it is determined that the user is in a specific walking state. In this way, the intersection position of the broken line in FIG. 16A is obtained.
  • the specific walking state is not limited to when the legs cross, but may be the state where the legs are most widened.
  • the state where the legs are most widened corresponds to the position of the widest interval between the intersecting bands on the walking locus in FIG. 16A (the dashed line in the figure).
  • Step S701 is performed until all the specific walking states are detected, and then the process proceeds to step S703 (step S702).
  • the spatiotemporal period information extraction unit 120 generates spatiotemporal period information by calculating the interval between the detected specific walking state positions (step S703).
  • the period information may be calculated separately without obtaining the position of the specific walking state using Fourier analysis, wavelet analysis, or autocorrelation method.
  • the Fourier transform, wavelet transform, or autocorrelation method may be applied to the temporal change in the position of the corrugated band in FIG. 16A and the spatiotemporal change in the width of the two bands.
  • the shape of the minimum unit of the periodic walking locus in FIG. 16A may be used as a pattern. In this case, the pattern has one wave shape of two bands in the range surrounded by vertical and horizontal broken lines in FIG. 16A.
  • the spatiotemporal phase information extraction unit 121 calculates spatiotemporal phase information (step S704).
  • Spatio-temporal phase information is the force past the reference time and space position. It represents the amount of temporal and spatial movement up to the time 'space position (when a specific walking state appears).
  • time or position for a given posture is minimized in the example of Fig. 7B.
  • the value of 1906 becomes temporal phase information or spatial phase information, and for a 190 la walk, the value of 1906 becomes temporal phase information or spatial phase information.
  • the value at 1904 of the estimated walking state 1903a (the value between the legs) becomes the temporal phase information or the spatial phase information for the walking of 1902a,
  • the value in 1904 is the temporal phase information or spatial phase information.
  • the time information from the upper end to the position where both feet are first crossed is time phase information.
  • the reference of the spatial position is the vertical line A013 of the walking trajectory map
  • the distance between the vertical line A013 on the right side of the vertical line A013 and the position closest to the vertical line A013 and the vertical line A013 is the phase information of the space .
  • the method of expressing the amount of movement is not limited to the above, and it may be expressed in a relative size based on the time and amount of movement used for the sequence of one step.
  • spatiotemporal phase information means phase information in which the specific walking state appears in the image, and even if the walking sequence has the same spatiotemporal cycle, it is possible to spatially and temporally put a foot on the ground or both feet. Walking with different spatiotemporal timing, such as crossing, has different values. In Fig. 5, the spatio-temporal period of walking is the same in walking sequences AO 11 and AO 12, but the spatiotemporal phase information defined above has different values.
  • the spatiotemporal position information extraction unit 122 calculates spatiotemporal position information (step S705).
  • the spatio-temporal position information is the time when the first specific walking state is detected and the position on the image.
  • the spatio-temporal position information is information indicating the absolute position coordinates in the spatio-temporal position of the walking detection position, and the detection position of the second step or the last detection position may be used.
  • the spatiotemporal period information, spatiotemporal phase information, and spatiotemporal position information obtained in step S403 are respectively the spatiotemporal period information storage unit 130, the spatiotemporal phase information storage unit 131, and the spatiotemporal phase information storage unit 131. And the spatio-temporal position information storage unit 132 (step S404).
  • the image sequence input unit 100 acquires an image sequence 2 for searching for a person in the same manner as in step S401 (step S405). Then, the walking sequence extraction unit 110 extracts the walking sequence 2 from the image sequence 2 (step S406). Subsequently, the walking sequence extraction unit 110 determines whether or not there is another walking sequence as a result of the processing in step S406 (step S407). If no other walking sequence exists (No in step S407), the process ends. If it exists (Yes in step S407), the spatio-temporal period information extraction unit 120, spatio-temporal phase information extraction unit 121, and spatio-temporal position information extraction unit 122 start from the walking sequence 2 as in the case of the walking sequence 1. The spatiotemporal periodic information, spatiotemporal phase information, and spatiotemporal position information are extracted (step S408).
  • the spatio-temporal period verification unit 140, the spatio-temporal phase verification unit 141, and the spatio-temporal difference extraction unit 142 each of the spatio-temporal period information stored in step S404 'spatio-temporal phase information
  • the spatiotemporal position information is compared with the spatiotemporal period information, spatiotemporal phase information, and spatiotemporal position information extracted in step S408 (step S409).
  • all three types of information may be used, or the verification can be performed using only one of the spatiotemporal period information or the spatiotemporal phase information.
  • the spatio-temporal position information is tl, (xxl, yyl) and t3, (xx3, yy3)
  • 0 t and 0 d are set to predetermined threshold values.
  • the above three pieces of information may be associated with each other to make a match determination. For example, the difference between the spatio-temporal period information Dx, Dy and the spatio-temporal phase information difference Dw, Dz and the spatio-temporal position information difference D t, Dxy
  • the product or sum may be compared with a standard of coincidence.
  • ⁇ mul is a threshold value determined in advance. Further, based on the magnitude of the difference in the spatiotemporal position information, the reference for the difference in the spatiotemporal period information and the difference in the spatiotemporal phase information may be changed. The spatio-temporal period value and spatio-temporal phase value can change as the time and space increase, so if the spatio-temporal position information difference increases, the standard for matching the spatio-temporal period information difference and spatio-temporal phase information difference By loosening, detection omission can be reduced.
  • spatio-temporal periodic information When spatio-temporal periodic information is used, the value of spatio-temporal periodic information is unlikely to change even if the orientation of the person with respect to the camera changes. Therefore, search and tracking are performed between temporally distant image sequences. The effect is easy.
  • the coincidence determination unit 150 determines whether or not the walking sequence 1 and the walking sequence 2 match based on the collation result in step S409 (step S410). If they do not match (No in step S411), the process returns to step S406 to acquire a new walking sequence (step S406). If they match (Yes in step S411), the control unit 160 displays the image sequence 1 and the image sequence 2 on the display device 1060 and highlights the human region of the matched walking sequence. An example of display by the control unit 160 is shown in FIG. In Fig. 17, image sequence 1 is displayed in area 1130, image sequence 2 is displayed in area 1140, and circumscribed rectangle 1 is displayed for the human area corresponding to the matching walking sequence. 110 and 1120 are added for cooperative display.
  • spatio-temporal periodic information is based on personality (eg, how to walk), personal situations (such as sudden, on, slow walking, on, etc.) and the type of footwear. (Heel height, ankle movement range, etc.), belongings (heavy weight on one side, holding force, etc.), clothes (leg movement range, etc.), road surface conditions (slipperiness, inclination, etc.) It is difficult to identify individuals because they change under the influence of various factors.
  • a space-time position difference between two walking sequences to be collated using space-time position information is obtained, and by changing the matching criteria based on the space-time position difference, place, footwear, clothes' belongings, etc.
  • the spatio-temporal difference is about 10 seconds as shown in FIG. 13A and FIG. 13B, the difference in spatio-temporal period information and the difference in spatio-temporal phase information are small!
  • the above determination threshold values 0 X, ⁇ ⁇ , 0 w, and 0 z are multiplied by j8 (j8 is a constant less than 1.0), and a match determination is performed.
  • the spatiotemporal period information obtained from the walking sequence force, the spatiotemporal phase information, and the spatiotemporal position information are detected, and on the basis of these information, the walking sequence is detected.
  • the walking sequence is collated using both the spatiotemporal period information and the spatiotemporal phase information.
  • only one of the spatiotemporal period information and the spatiotemporal phase information is used.
  • the walking sequence can be verified, and the effects of the present invention can be obtained. By combining the two, detailed collation is possible, and the accuracy of search and tracking can be improved.
  • the image sequence input to the image sequence input unit 100 has a time length or the number of frames including a walking process of at least one step or more. An improvement in accuracy can be expected. With a length of time that includes one or more steps Therefore, it is desirable to be able to detect a specific gait state that is desired to be an image sequence with a length of about 0.5 seconds or more (about 15 frames for 30 frames Z seconds) at least twice.
  • Embodiment 2 of the present invention will be described with reference to FIG. 18A, FIG. 18B, and FIG.
  • FIGS. 18A and 18B show images 1 and the image sequence 2, respectively. 'To track. Examples of images are shown in FIGS. 18A and 18B.
  • FIG. 18A shows image sequence 1
  • FIG. 18B shows image sequence 2.
  • 18A and 18B a rectangular parallelepiped obstacle 900 is displayed.
  • image sequence 1 shown in FIG. 18A person 922 is hidden by obstacle 900, and only person 912 is shown.
  • image sequence 2 shown in FIG. 18B person 921 and person 922 and force S are shown.
  • the person 912 is the force corresponding to the person 922.
  • the two people in image sequence 2 are walking close to each other and have the same appearance and clothes, and whether the person corresponding to the person 912 is person 921 or person 922 is A texture motion vector is indistinguishable.
  • the grid-like broken lines in FIGS. 18A and 18B are displayed by superimposing the position coordinates on the ground, and are displayed for explaining the correspondence between the position information of the two image sequences.
  • the dashed grid can be obtained by measuring the correspondence between the position in the camera image and the position of the shooting location (spatiotemporal correction information) by actual measurement or geometric calculation based on the camera layout and the optical system specifications. It is done.
  • the lattice in Fig. 18A and the lattice in Fig. 18B represent the corresponding positions.
  • FIG. 19 is a functional block diagram showing a configuration of the person determination device 15 in the present embodiment.
  • This person determination device 15 further includes a spatiotemporal correction unit 170 in addition to the configuration included in the person determination device 10 in the first embodiment.
  • the spatio-temporal correction unit 170 performs correction using the spatio-temporal correction information when extracting a walking sequence or calculating spatio-temporal periodic information, spatio-temporal phase information, and spatio-temporal position information. It is a processing part which compensates for inconsistency.
  • the spatiotemporal correction unit 170 is an example of a correction unit that performs a spatiotemporal correction process in extracting walking information.
  • the person determination device 15 performs processing on the video of different cameras in the same procedure as in the first embodiment! ⁇ , and identifies the person in the image sequence 2 corresponding to the person in the image sequence 1 be able to. Since the arrangement in the target image is different due to the difference in camera arrangement, the grid lines are stored as spatio-temporal correction information for each camera (or for each image sequence), and the walking sequence is extracted. It is used as correction information for the spatial position coordinates. That is, the spatio-temporal correction unit 170 stores information for specifying grid lines that two-dimensionally divide the walking surface at the shooting location at a fixed distance as correction information.
  • the spatiotemporal correction unit 170 performs correction processing using the spatiotemporal correction information, thereby collating spatiotemporal periodic information, spatiotemporal phase information, and spatiotemporal position information between images of different cameras. It becomes possible to do.
  • the spatiotemporal correction unit 170 corrects spatiotemporal periodic information, spatiotemporal phase information, and spatiotemporal position information in a spatiotemporal manner according to the ratio of each side or area of the small region surrounded by the grid lines. (Multiply by proportionality factor).
  • the spatiotemporal phase information the spatiotemporal position at which a specific walking state is first reached after crossing a specific grid line may be used. With such a configuration, a person (not shown) hidden in the obstacle 900 can be associated with the person 921, and the person 912 and the person 922 can be associated with each other.
  • the image when extracting the walking sequence, the image is converted so that one image sequence matches the position of the other image sequence in the state of the force image sequence using the correspondence relationship of the positions. You can do further processing.
  • image conversion by using the above-mentioned plane projection matrix H, by applying the matrix H to the pixel position on the walking plane (ground), the corresponding plane in the other image sequence (ground )upper Can be converted to a position. For this reason, it is possible to convert an image by performing the same conversion for all the pixels.
  • Spatio-temporal information ⁇ Spatio-temporal phase information ⁇ Spatio-temporal position information can be calculated by performing correction using the positional relation to eliminate the effects of camera placement. .
  • the spatio-temporal correction unit 170 performs frame rate conversion on one side so as to align the frame rates in advance or extracts a walking sequence. Searching for people between image sequences with different frame rates by converting the frame rate to time-space periodic information or 'time-time phase information ⁇ time information correction when calculating space-time position information' Tracking is possible. For example, compare
  • the image sequence of 15 frames Z seconds is generated by thinning out frames every other frame from the latter image sequence. Detect walking sequence between sequences.
  • the information spatiotemporal correction information of the frame rate required for force correction may be held in a storage device or the like in a state associated with the image sequence.
  • the force used to correlate the positions between the camera images is not used if the time period or time phase is mainly used. It is possible to obtain the effect of the present invention by performing collation.
  • Part or all of the processing in the above embodiment may be performed by a dedicated device.
  • the processing may be performed by a CPU built in a communication device such as a terminal or a base station, or a computer executing the processing program.
  • the present invention is a person determination device that determines whether or not persons included in different image sequences are the same person, and a person search and tracking device that searches and tracks a person from an image sequence. Can be used as a monitoring system etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Psychiatry (AREA)
  • Social Psychology (AREA)
  • Multimedia (AREA)
  • Image Analysis (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Processing (AREA)
  • Closed-Circuit Television Systems (AREA)

Abstract

 時間的に離れたフレーム間や異なるカメラで撮影したフレーム間においても、同一の判定をすることができる人物判定装置は、異なる画像シーケンスに含まれる人物同士が同一であるか否かを判定する人物判定装置であって、画像シーケンス中に含まれる第1及び第2の人物の歩行状態を示す画像シーケンスである第1及び第2の歩行シーケンスを検出する歩行姿勢検出部200と、前記第1の人物の歩行シーケンスから当該歩行シーケンスとは異なる時刻または位置における第1の人物の周期的な歩行運動における歩行姿勢の遷移状態を推定する歩行状態推定部180と、推定された前記第1の人物の歩行姿勢の遷移状態と、前記第2の人物の歩行姿勢の遷移状態との整合性を判定し、整合性を有する場合に、前記第1の人物と前記第2の人物とが同一であると判定する判定部190とを備える。                                                                                 

Description

人物判定装置及び人物検索追跡装置
技術分野
[0001] 本発明は、異なる画像シーケンスに含まれる人物同士が同一人物であるか否かを 判定する人物判定装置、及び、それを応用した人物の検索'追跡をする装置に関す る。
背景技術
[0002] 監視カメラ等で得られた画像シーケンスカゝら特定の人物を検索 ·追跡するためには
、人物の同定、つまり、異なる画像や画像シーケンスに写っている人物が同一人物で ある力否かを判定することが必要とされる。
[0003] 従来、画像シーケンスにおける人の検索 ·追跡を目的とした同一人物の判定方法と して、隣り合うフレーム間で近接した人物領域同士を対応付ける手法がある(例えば
、特許文献 1参照)。
[0004] 図 1A〜図 1Cは、特許文献 1に記載された人の検索 ·追跡方法を説明する図であ る。図 1A及び図 1Bは、同一人物を撮影した時間的に連続するフレーム画像を表し ている。図 1 Aに示されるフレーム画像 A10は、右方向に移動する人 Al lを写した画 像を示す。矩形 A12は、動きベクトルを用いて人体中で動きが小さい領域 (人物安定 領域)として検出された頭部及び胴体部分を含む外接矩形である。図 1Bに示される フレーム画像 A20においても、同様に、人 A21から検出した人物安定領域の外接矩 形 A22が破線で示されている。図 1Cに示されるフレーム画像 A30には、フレーム画 像 A10及び A20から得た人物安定領域の外接矩形 A12及び A22が重ねて同時に 表示されている。この従来の手法では、フレーム画像 A30に示されるように、外接矩 形 A12と外接矩形 A22との重なり、及び、両者の動きベクトルの連続性から、人 Al l と人 A21とを同一人物として対応付け、検索 ·追跡を行って!/、る。
特許文献 1 :特開 2003— 346159号公報 (第 3及び第 6頁、図 2及び図 9) 発明の開示
発明が解決しょうとする課題 [0005] し力しながら、上記従来の手法では、フレーム間で近接した位置力も人を検索して いくため、あるフレームで 1度人物検出を失敗すると、失敗したフレームの前のフレー ムの人物と後のフレームの人物との対応付けができなくなり、人の追跡ができなくなる t 、う t 、う課題を有して 、る。
[0006] また、同様の手法で、人領域の色や画像パタンを用いて異なるフレーム間の人を対 応付けることも考えられるが、離れたフレーム間では、人の移動による位置の変化が 大きくなることや、同一人物であっても、カメラに対する向き'姿勢 ·照明条件が変化 することで対応付けが困難になると 、う課題を有して 、る。
[0007] 従って、画像内に複数人が写って 、る場合に、検索 ·追跡した 、人が他の人や物 の陰に一時的にでも入ったり、照明変化などの影響で一時的に人の検出が正常に 行えないフレームが発生すると、もはや検索 ·追跡が継続できなくなるという問題があ る。
[0008] そこで、本発明は、上記従来の課題を解決するもので、時間的に離れたフレーム間 や異なるカメラで撮影したフレーム間においても、同一人物の判定をすることができる 人物判定装置、及び、その人物判定装置を利用して人物を検索'追跡する人物検索 追跡装置を提供することを目的とする。
課題を解決するための手段
[0009] 上記目的を達成するために、本発明に係る人物判定装置は、異なる画像シーケン スに含まれる人物同士が同一であるか否かを判定する人物判定装置であって、第 1 の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィメー ジセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケンス 入力手段と、入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の 歩行状態を示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩 行シーケンス抽出手段と、抽出された前記第 1及び第 2の歩行シーケンスから、それ ぞれ、人物の歩行についての周期的な動きを特定する情報である第 1及び第 2の歩 行情報を抽出する歩行情報抽出手段と、抽出された前記第 1及び第 2の歩行情報を 照合する歩行情報照合手段と、前記歩行情報照合手段による照合結果に基づ 、て 、前記第 1及び第 2の画像シーケンスに含まれる人物同士が同一である力否かを判 定する判定手段とを備えることを特徴とする。ここで、歩行情報としては、例えば、人 物の時間的又は空間的な歩行周期を示す情報であったり、人物の周期的な歩行動 作における時間的又は空間的な位相情報であったり、人物の周期的な歩行動作を 示す時間的又は空間的な位置情報であってもよい。
発明の効果
[0010] 本発明によれば、人の歩行力も得られる時空間周期情報、時空間位相情報及び時 空間位置情報を利用することで、離れたフレーム間や異なるセンサより得られる人物 画像シーケンスを対応付けることができる。
[0011] つまり、時間的に離れたフレーム間や異なるカメラで撮影したフレーム間においても
、同一人物の判定をすることができる人物判定装置、及び、その人物判定装置を利 用して人物を検索 ·追跡する人物検索追跡装置が実現される。
図面の簡単な説明
[0012] [図 1A]図 1Aは、従来の人物検索追跡装置における検出矩形の一例を示す図である
[図 1B]図 1Bは、従来の人物検索追跡装置における検出矩形の一例を示す図である
[図 1C]図 1Cは、従来の人物検索追跡装置における検出矩形の移動を示す図である
[図 2]図 2は、本発明の実施の形態 1における人物判定装置の構成を示す機能ブロッ ク図である。
[図 3]図 3は、本発明の実施の形態 1における画像シーケンスの一例を示す図である
[図 4A]図 4Aは、人の下半身画像のシーケンスの一例を示す図である。
[図 4B]図 4Bは、本発明の実施の形態 1における歩行シーケンスの一例を示す図で ある。
[図 4C]図 4Cは、歩行シーケンスの最小パタンの形状の一例を示す図である。
[図 5]本発明の実施の形態 1における時空間位相情報及び時空間位置情報を示す 図である。 [図 6A]図 6Aは、本発明の実施の形態 1における歩行軌跡の一例を示す図である。 圆 6B]図 6Bは、本発明の実施の形態 1における推定歩行状態の一例を示す図であ る。
圆 6C]図 6Cは、本発明の実施の形態 1における位相状態の異なる歩行状態の一例 を示す図である。
圆 7A]図 7Aは、本発明の実施の形態 1における歩行軌跡と脚間の変化との関係の 一例を示す図である。
圆 7B]図 7Bは、本発明の実施の形態 1における脚間変化の一例を示す図である。 圆 7C]図 7Cは、本発明の実施の形態 1における脚間変化の一例を示す図である。
[図 8A]図 8Aは、本発明の実施の形態 1における歩行シーケンスの表示の一例を示 す図である。
[図 8B]図 8Bは、本発明の実施の形態 1における歩行シーケンスの表示の一例を示 す図である。
[図 8C]図 8Cは、本発明の実施の形態 1における歩行シーケンスの表示の一例を示 す図である。
[図 9]図 9は、本発明の実施の形態 1における歩行シーケンスの検索 ·追跡を行った 結果の記憶書式の例を示す図である。
[図 10]図 10は、本発明の実施の形態 1における人物検索追跡装置の構成を示すブ ロック図である。
[図 11]図 11は、本発明の実施の形態 1における検索 '追跡の指示を行う画面の例を 示す図である。
[図 12]図 12は、本発明の実施の形態 1における照合手続きの一例を示すフローチヤ ートである。
[図 13A]図 13Aは、本発明の実施の形態 1における画像シーケンス 1の一例を示す 図である。
[図 13B]図 13Bは、本発明の実施の形態 1における画像シーケンス 2の一例を示す図 である。
[図 14]図 14は、本発明の実施の形態 1における歩行シーケンス抽出手続きの一例を 示すフローチャートである。
[図 15]図 15は、本発明の実施の形態 1における時空間周期情報 '時空間位相情報- 時空間位置情報の抽出手続きの一例を示すフローチャートである。
[図 16A]図 16Aは、本発明の実施の形態 1における特定歩行状態の検出の一例を示 す図である。
[図 16B]図 16Bは、本発明の実施の形態 1における特定歩行状態の検出テンプレー トの一例を示す図である。
[図 16C]図 16Cは、本発明の実施の形態 1における特定歩行状態の検出過程の一 例を示す図である。
[図 17]本発明の実施の形態 1における制御部による表示の一例を示す図である。
[図 18A]図 18Aは、本発明の実施の形態 2における画像シーケンス 1の一例を示す 図である。
[図 18B]図 18Bは、本発明の実施の形態 2における画像シーケンス 2の一例を示す図 である。
[図 19]図 19は、本発明の実施の形態 2における人物判定装置の構成を示す機能ブ ロック図である。
符号の説明
10、 15 人物判定装置
20 人物検索追跡装置
100 画像シーケンス入力部
110 歩行シーケンス抽出部
120 時空間周期情報抽出部
121 時空間位相情報抽出部
122 時空間位置情報抽出部
130 時空間周期情報記憶部
131 時空間位相情報記憶部
132 時空間位置情報記憶部
140 時空間周期照合部 141 時空間位相照合部
142 時空間差抽出部
150 —致判定部
160 制御部
170 時空間補正部
180 歩行状態推定部
190 判定部
200 歩行姿勢検出部
1010、 1020 カメラ(画像シーケンス入力部)
1030 時計
1040 記憶装置
1050 処理装置
1060 表示装置
1070 入力装置
1080 ポインティングデバイス
発明を実施するための最良の形態
本発明の実施の形態に係る人物判定装置は、異なる画像シーケンスに含まれる人 物同士が同一である力否かを判定する人物判定装置であって、第 1の画像シーケン ス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるイメージセンサにて取 得された第 2の画像シーケンスの入力を受け付ける画像シーケンス入力手段と、入力 された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を示す 画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス抽出 手段と、抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の歩行 についての周期的な動きを特定する情報である第 1及び第 2の歩行情報を抽出する 歩行情報抽出手段と、抽出された前記第 1及び第 2の歩行情報を照合する歩行情報 照合手段と、前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2 の画像シーケンスに含まれる人物同士が同一である力否かを判定する判定手段とを 備えることを特徴とする。ここで、歩行情報としては、例えば、人物の時間的又は空間 的な歩行周期を示す情報であったり、人物の周期的な歩行動作における時間的又 は空間的な位相情報であったり、人物の周期的な歩行動作を示す時間的又は空間 的な位置情報であってもよ 、。
[0015] これによつて、人物の歩行に着目して同一人物の判定が行われるので、フレーム間 で近接した位置にいる人物を同一人物と判定したり、色や画像パタンで同一人物を 判定する従来技術に比べ、検索'追跡したい人が他の人や物の陰に一時的にでも 入ったり、照明変化などの影響で一時的に人の検出が正常に行えない場合であって も、同一人物の判定が可能となる。つまり、本発明は、人が異なれば歩行周期や歩 幅等の歩行特性が異なること、及び、同一人物であれば一定の歩行特性で歩行する t 、うことを利用して 、るので、時間的 ·空間的な位置に依存することなく同一人物の 判定が可能であり、時間的に離れたフレーム間や異なるカメラで撮影したフレーム間 においても、同一人物の判定をすることができる。
[0016] また、前記歩行情報照合手段は、前記第 1及び第 2の歩行情報にそれぞれ含まれ る第 1及び第 2の時空間位相情報に基づいて、前記第 1及び第 2の画像シーケンス に含まれる人物が所定の歩行姿勢となる時刻または位置を比較することにより歩行 情報を照合するようにしてもよい。具体的には、前記歩行情報照合手段は、前記第 1 の歩行情報に含まれる第 1の時空間位相情報に基づいて、前記第 1の画像シーケン スに含まれる人物の、前記第 1の画像シーケンスと異なる時刻または位置における時 空間位相情報を推定する位相情報推定部と、前記位相情報推定手段で推定された 前記時空間位相情報および前記第 2の時空間位相情報に基づ 、て、前記第 1及び 第 2の画像シーケンスに含まれる人物が所定の歩行姿勢となる時刻または位置を比 較することにより歩行情報を照合する歩行情報照合部とを有する。
[0017] これによつて、時空間周期情報のみを用いて人物同士が同一人物であるか否かを 判定する場合に比べ、判定の精度を向上させることができる。例えば、歩幅及び歩速 が同一である二人の人物が同一の画像シーケンスに撮像されているような場合には 、これら二人の時空間周期情報は同一であるため、判別がつかない。しかし、時空間 周期情報が同一であったとしても、脚を交差するタイミングまたは位置が異なれば、 時空間位相情報が異なる。したがって、時空間位相情報を用いることにより、より正確 な判定を行なうことができるようになる。
[0018] なお、前記歩行情報照合手段は、前記第 1及び第 2の歩行情報にそれぞれ含まれ る第 1及び第 2の時空間位相情報に基づ 、て、同一の時刻または位置における前記 第 1及び第 2の画像シーケンスに含まれる人物の歩行姿勢を比較することにより歩行 情報を照合するようにしてもよい。具体的には、前記歩行情報照合手段は、前記第 1 の時空間歩行情報に含まれる位相情報に基づ!/、て、前記第 1の画像シーケンスに含 まれる人物の、前記第 1の画像シーケンスと異なる時刻または位置における時空間 位相情報を推定する位相情報推定部と、前記位相情報推定手段で推定された前記 時空間位相情報および前記第 2の時空間位相情報に基づ 、て、同一の時刻または 位置における前記第 1及び第 2の画像シーケンスに含まれる人物の歩行姿勢を比較 することにより歩行情報を照合する歩行情報照合部とを有する。
[0019] また、歩行シーケンスとしては、例えば、画像シーケンスそれぞれを時間軸に沿つ て切断した場合の切断面における画像であり、具体的には、画像シーケンスそれぞ れに含まれる人物の両脚を切断した切片を時間軸に並べて得られる画像等である。 これによつて、時間的及び空間的に、人物の歩行特性を抽出することが可能となる。
[0020] また、前記画像シーケンス入力手段は、同一場所を撮影する異なるイメージセンサ にて取得された第 1及び第 2の画像シーケンスの入力を受け付けてもよい。これによ つて、死角が存在する同一場所を異なる角度から撮影して得られる異なる画像シー ケンスにおける人物の同定が可能となる。
[0021] また、前記人物判定装置はさらに、前記第 1及び第 2の画像シーケンスそれぞれに おける画像上の位置と撮影場所における位置との対応関係を示す補正情報を予め 記憶する補正情報記憶手段と、前記補正情報記憶手段に記憶された補正情報に基 づいて、前記歩行情報抽出手段による前記第 1及び第 2の歩行情報の抽出における 時空間的な補正処理を行う補正手段とを備えてもよい。これによつて、異なるイメージ センサで取得される場合であっても、イメージセンサの配置位置や撮影方向等の相 違に基づく画像同士の不整合が補正されるので、異なるイメージセンサによる人物判 定が可能となる。
[0022] ここで、補正情報として、例えば、撮影場所における歩行面を一定距離の間隔で 2 次元的に区切る格子線を特定する情報であってもよ 、。
[0023] また、上記目的を達成するために、本発明に係る人物検索追跡装置は、人物が撮 像された画像シーケンスにおいて特定の人物を検索又は追跡する人物検索追跡装 置であって、上記人物判定装置と、前記人物判定装置が備える歩行情報照合手段 によって前記第 1及び第 2の歩行情報が一致すると照合された場合に、前記第 1及 び第 2の歩行情報に対応する前記第 1及び第 2の歩行シーケンス同士を対応づけて 記憶する歩行シーケンス記憶手段とを備えることを特徴とする。これによつて、歩行シ 一ケンスごとの同一性を予め解析して記憶しておき、人物の検索 ·追跡時に読み出し て利用することで、画像シーケンスを表示させながら人物の検索 ·追跡を行うことがで き、処理が高速化される。
[0024] また、上記目的を達成するために、本発明に係る人物検索追跡装置は、人物が撮 像された画像シーケンスにおいて特定の人物を検索又は追跡する人物検索追跡装 置であって、上記人物判定装置と、前記人物判定装置が備える画像シーケンス入力 手段が受け付ける前記第 1及び第 2の画像シーケンスを表示する表示手段とを備え 、前記表示手段は、前記第 1及び第 2の画像シーケンスに含まれる人物のうち、前記 人物判定装置が備える判定手段によって同一人物と判定された人物を他の人物と 区別するための強調表示をすることを特徴とする。これによつて、異なる画像が同時 に表示されている場合であっても強調表示によって同一人物を即座を知ることができ 、人物の検索 *追跡が容易となる。
[0025] 本発明の他の局面に係る人物判定装置は、異なる画像シーケンスに含まれる人物 同士が同一である力否かを判定する人物判定装置であって、画像シーケンス中に含 まれる第 1及び第 2の人物の歩行状態を示す画像シーケンスである第 1及び第 2の歩 行シーケンスを検出する歩行シーケンス検出手段と、前記第 1の人物の歩行シーケ ンスから当該歩行シーケンスとは異なる時刻または位置における第 1の人物の周期 的な歩行運動における歩行姿勢の遷移を示す情報を推定する歩行姿勢遷移推定 手段と、推定された前記第 1の人物の歩行姿勢の遷移を示す情報と、前記第 2の人 物の歩行姿勢の遷移を示す情報との整合性を判定し、整合性を有する場合に、前 記第 1の人物と前記第 2の人物とが同一であると判断する判断手段とを備える。 [0026] これによつて、人物の歩行に着目して同一人物の判定が行われるので、フレーム間 で近接した位置にいる人物を同一人物と判定したり、色や画像パタンで同一人物を 判定する従来技術に比べ、検索'追跡したい人が他の人や物の陰に一時的にでも 入ったり、照明変化などの影響で一時的に人の検出が正常に行えない場合であって も、同一人物の判定が可能となる。つまり、本発明は、人が異なれば歩行周期や歩 幅等の歩行特性が異なること、及び、同一人物であれば一定の歩行特性で歩行する t 、うことを利用して 、るので、時間的 ·空間的な位置に依存することなく同一人物の 判定が可能であり、時間的に離れたフレーム間や異なるカメラで撮影したフレーム間 においても、同一人物の判定をすることができる。
[0027] なお、本発明は、上記のような人物判定装置及び人物検索追跡装置として実現す ことができるだけでなぐ人物判定方法及び人物検索追跡方法として実現したり、そ の方法をコンピュータに実行させるプログラムとして実現したり、そのプログラムが記 録されたコンピュータ読み取り可能な記録媒体として実現することもできる。
[0028] 以下、本発明の実施の形態について、図面を参照しながら説明する。
[0029] (実施の形態 1)
図 2は、本実施の形態における人物判定装置 10の構成を示す機能ブロック図であ る。この人物判定装置 10は、人物の歩行シーケンスの連続性に着目して、異なるシ 一ケンスに含まれる人物同士が同一人物である力否かを判定する装置であり、歩行 姿勢検出部 200、歩行状態推定部 180及び判定部 190から構成される。
[0030] 歩行姿勢検出部 200は、動画像中から第一の人の所定の歩行姿勢を含む歩行シ 一ケンスを検出する処理部である。
[0031] 歩行状態推定部 180は、第一の人の歩行シーケンスから、当該歩行シーケンスと は異なる時間または位置の第一の人の歩行状態 (歩行周期運動における姿勢の遷 移状態)を推定する処理部である。
[0032] 判定部 190は、第一の人の歩行状態と第二の人の歩行状態との整合性を判定し、 整合性を有する場合には第一の人と第二の人とが同一であると判定する処理部であ る。
[0033] 歩行姿勢検出部 200は、画像シーケンス入力部 100及び歩行シーケンス抽出部 1 10から構成される。
[0034] 歩行状態推定部 180は、時空間周期情報抽出部 120、時空間位相情報抽出部 12 1及び時空間位置情報抽出部 122から構成される。
[0035] 判定部 190は、時空間周期情報記憶部 130、時空間位相情報記憶部 131、時空 間位置情報記憶部 132、時空間周期照合部 140、時空間位相照合部 141、時空間 差抽出部 142、一致判定部 150及び制御部 160から構成される。
[0036] ここで、歩行姿勢検出部 200は、画像シーケンス中に含まれる人物の歩行状態を 示す画像シーケンスである歩行シーケンスを検出する歩行シーケンス検出手段の一 例である。また、歩行状態推定部 180は、歩行シーケンスから当該歩行シーケンスと は異なる時刻または位置における人物の周期的な歩行運動における歩行姿勢の遷 移を示す情報を推定する歩行姿勢遷移推定手段の一例である。さらに、判定部 190 は、異なる時刻または異なるイメージセンサにて撮像された二人の人物の歩行姿勢 の遷移を示す情報の整合性を判定し、二人の人物が同一人物カゝ否かを判断する判 断手段の一例である。なお、「歩行姿勢の遷移を示す情報」とは、後述する周期情報 および位相情報を含む情報である。
[0037] 画像シーケンス入力部 100は、異なる時刻または異なるイメージセンサにて取得さ れた第 1及び第 2の画像シーケンスの入力を受け付ける画像シーケンス入力手段の 一例である。
[0038] 歩行シーケンス抽出部 110は、第 1及び第 2の画像シーケンスから、それぞれ、人 物の歩行状態を示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出す る歩行シーケンス抽出手段の一例である。
[0039] 時空間位相情報抽出部 121、時空間位置情報抽出部 122及び時空間周期情報 抽出部 120は、第 1及び第 2の歩行シーケンスから、それぞれ、人物の歩行について の周期的な動きを特定する情報である第 1及び第 2の歩行情報を抽出する歩行情報 抽出手段の一例である。
[0040] 時空間位相照合部 141、時空間差抽出部 142及び時空間周期照合部 140は、抽 出された第 1及び第 2の歩行情報を照合する歩行情報照合手段の一例である。
[0041] 一致判定部 150は、照合結果に基づいて、第 1及び第 2の画像シーケンスに含ま れる人物同士が同一人物であるか否かを判定する判定手段の一例である。
[0042] 画像シーケンス入力部 100は、カメラや画像記録装置力も画像シーケンスを取得 する信号インターフェース等である。「画像シーケンス」とは、図 3のように撮影したフ レーム画像を時間順に並べた配列である。
[0043] 歩行シーケンス抽出部 110は、画像シーケンス入力部 100が取得した画像シーケ ンスカも歩行シーケンスを抽出する処理部である。「歩行シーケンス」とは、各フレー ム画像中の歩行動作領域力も得た歩行状態のシーケンスである。図 4Bに歩行シー ケンスの例を示す。図 4Aは各フレームでの人の下半身の領域を抽出して時間順に 並べた配列である。図 4Bは図 4Aにお!/、て破線 B10の位置で各フレーム画像の切 片を時間順に並べたものである。図 4Bの黒色の帯は足先の移動軌跡 (人物の両脚 を切断する切片における画像を時間軸に並べたもの)を示している。各歩行シーケン スの具体的算出方法は後述する。
[0044] 時空間周期情報抽出部 120は、歩行シーケンス抽出部 110が抽出した歩行シーケ ンス力 歩行の時空間的変化の周期情報を抽出する処理部である。「周期情報」とは 、一定時間'一定距離あたりの歩数や、足や手の特定部位の時空間的な位置変化に 対して周波数分析を行って得た結果や、時空間的に周期的に繰り返される最小バタ ンの形状などを意味する。時空間周期情報の例を図 4Bで説明する。図 4Bにおいて 、時間軸及び画像の横軸 (空間軸に対応する)において足先が交差する時空間的点 に、黒三角印ならびに白三角印を表示している。時空間周期情報は隣り合う黒三角 印同士の空間的間隔ならびに隣あう白三角印同士の時間的間隔に基づいて得る一 定時間'一定距離あたりの歩数が時空間周期情報の例となる。また、隣り合う黒三角 位置の破線と隣り合う白三角位置の破線とに囲まれる歩行パタンの形状(図 4C)その ものを用いてもよいし、図 4Bの曲線 B11のように歩幅の時間的な変化や曲線 B12の ように歩幅の空間的変化に対して周波数分析を行って得た周波数特性 (特定周波数 帯のスペクトル強度など)などを用いることができる。
[0045] 時空間周期情報記憶部 130は、時空間周期情報抽出部 120で抽出された時空間 周期情報を、検出した時間や画像中の位置などと共に記憶しておくメモリ等である。 時空間周期照合部 140は、時空間周期情報抽出部 120で抽出された時空間周期情 報と、時空間周期情報記憶部 130に記憶されている時空間周期情報との照合を行う 処理部である。
[0046] 時空間位相情報抽出部 121は、歩行シーケンス抽出部 110が抽出した歩行シーケ ンス力 歩行の時空間的変化の位相情報を抽出する処理部である。「位相情報」とは 、周期運動である歩行運動中の遷移状態 (所定の歩行姿勢をとる位置や時間、また は特定の位置や時間における歩行姿勢など)を意味する。例えば、同じ時空間周期 を持った歩行シーケンスでも、どの時空間位置で足を地面にっ 、た (所定の歩行姿 勢)かという情報が時空間位相情報となる。また、同一時間または同一位置で比較し た 2つの歩行シーケンス中の歩行姿勢の差異も時空間位相情報となる。時空間位相 情報の例を図 5、図 6A〜図 6C及び図 7A〜図 7Cを用いて説明する。図 5は図 4Bと 同様に足位置の歩行軌跡を示しているが、時空間周期が同じで時空間位相が異な る 2名の歩行軌跡 A010、 A011を示している。歩行軌跡 A010と A011では歩幅や 歩行周期は同じであるが、足が地面についた位置や時間、又は両足が交差する位 置や時間が異なっている。また図 6Aは障害物 1800 (斜線の領域)の存在により不連 続に検出されている 2つの歩行軌跡 (第一の人の歩行軌跡 1802 (破線)と第二の人 の歩行軌跡 1801 (実線) )を表して 、る。ここでそれぞれの歩行軌跡から位相情報を 検出する場合を考える。位相情報とは、上述したように、所定の歩行姿勢をとる位置 や時間、または所定の位置や時間における歩行姿勢などであり、第二の人の歩行軌 跡 1801及び第一の人の歩行軌跡 1802のように異なる時間や位置における歩行軌 跡については、同一の基準に基づいて位相情報が求められる。この場合、時空間位 相情報抽出部 121は、第一の人の歩行情報 1802の所定の姿勢 (足の交差など)の 位置 ·時間やその周期性力 撮影された時間や位置以外での歩行姿勢を推定する( 図 6Bの破線 1803)。同様に、図 6Cでは、時空間位相情報抽出部 121は、障害物 1 800の右側の歩行軌跡 1804 (破線)から他の時間'位置での歩行姿勢 (破線 1805) を推定する。
[0047] 次に、時空間位相情報抽出部 121は、所定の歩行姿勢となる時間や位置を求める 。ここでは所定の姿勢として脚が交差した状態 (脚間の大きさが極小になった状態)を 考える。図 7Aに脚間の時間変化または位置変化を示す。脚間は歩行軌跡において 両脚の軌跡の幅として画像より求めることができる。ここで、時空間位相情報抽出部 1 21は、図 7Bのように第一の人の脚間情報 1902a (破線)から障害物等 1900a (斜線 領域)の存在により撮影されていない時間や位置における脚間の状態 (姿勢状態) 1 903a (破線)を推定する。ここで、時空間位相情報抽出部 121は、撮影されている領 域として時間的に最初あるいは位置として画像の左側で、最初に所定の姿勢となる 時間または位置を位相情報として求める。図 7Bでは第一の人の推定歩行状態 190 3aに対しては時間または位置 1905が、第二の人の歩行状態 1901aに対しては時 間または位置 1906が、位相情報として得られる。同様に図 7Cでは歩行状態 1908a (破線)に対して推定した歩行状態 1909a (破線)に対して位相情報 1910が得られ、 歩行状態 1907a (実線)に対しては位相情報 1911が得られる。
[0048] また、位相情報として所定の時間や位置における姿勢を用いる場合も同様に、時 空間位相情報抽出部 121は、所定の時間や位置における歩行状態または推定歩行 状態を求める。図 7Bの場合、時空間位相情報抽出部 121は、所定の時間または位 置 1904における脚間(歩行姿勢)を求める。ここで第一の人に対する位相情報は推 定歩行状態 1903a (破線)の所定の時間または位置 1904における値とし、第二の人 に対する位相情報は歩行状態 1901a (実線)の所定の時間または位置 1904におけ る値とする。同様に、図 7Cでは歩行状態 1908aに基づいて推定された推定歩行状 態 1909aの所定の時間または位置 1904における値、歩行状態 1907aの所定の時 間または位置 1904における値がそれぞれ第一の人および第二の人の位相情報とな る。
[0049] 上述の説明では、第一の人のみについて推定姿勢を用いたが、第二の人につい ても推定姿勢を求め、第一の人および第二の人ともに推定姿勢から位相情報を求め るようにしてもよい。例えば図 6A〜図 6Cや図 7A〜図 7Cにおける障害物の位置や 図示している範囲外などを共通の位置として、当該共通の位置における推定状態を 求めた後、位相情報を求めるようにしてもよい。
[0050] なお、所定の姿勢としては他の状態を用いてもよぐ脚間が極大になる位置や脚間 の変化が極大になる状態などを用いてもよい。
[0051] 時空間位相情報記憶部 131は、時空間位相情報抽出部 121が抽出した時空間位 相情報を、検出した時間や画像中の位置などと共に記憶しておくメモリ等である。時 空間位相照合部 141は、時空間位相情報抽出部 121で抽出された時空間位相情報 と、時空間位相情報記憶部 131に記憶されている時空間位相情報との照合を行う処 理部である。
[0052] 時空間位置情報抽出部 122は、歩行シーケンス抽出部 110が抽出した歩行シーケ ンスについて、その歩行シーケンスが抽出された時空間的位置を抽出し、時空間位 置情報として生成する処理部である。「時空間位置情報」とは、歩行シーケンスの検 出を行った時間や場所を意味する。時空間位置情報の例を図 5を用いて説明する。 図 5では 2つの歩行軌跡それぞれについて時間的に最初に両足が交差した時間-空 間的位置を破線の十字で表している。このように、絶対的な時間的'空間的歩行の位 置を示す情報が時空間位置情報である。
[0053] 時空間位置情報記憶部 132は、時空間位置情報抽出部 122から生成された時空 間位置情報を記憶しておくメモリ等である。時空間差抽出部 142は、時空間位置情 報抽出部 122で生成された時空間位置情報と、時空間位置情報記憶部 132に記憶 されている時空間位置情報との差異を求める処理部である。
[0054] 一致判定部 150は、時空間周期照合部 140及び時空間位相照合部 141及び時空 間差抽出部 142の結果に基づいて、異なる歩行シーケンス同士の一致不一致を判 定する処理部である。つまり、一致判定部 150は、同一人物の歩行シーケンスである か否かを判定する。一致不一致の判定方法の例を時空間周期情報について説明す ると次の通りである。つまり、時空間周期情報として一定時間内の歩数 X及び一定距 離内の歩数 yが用いられる場合、照合の対象となる歩行シーケンスの一方力 得られ た X, yの組のベクトル Zl = (xl, yl)と他方のシーケンスから得られるベクトル Z2= (x 2, y2)との差 I Zl— Z2 | < θ ( Θはあらかじめ定めたしきい値)や、 | xl— x2 | < θ χ, I yl -y2 | < 0 y( 0 x, 0 yはあら力じめ定めたしきい値)を共に満たす場合に 、一致判定部 150は、 2つの歩行シーケンスが一致すると判定する。つまり、一致判 定部 150は、同一人物の歩行シーケンスであると判定する。
[0055] 一致判定部 150は、時空間位相情報や時空間位置情報についても時空間周期情 報と同様に、判定を行い、全ての項目で一致した場合や、指定した数の項目が一致 した場合に、 2つの歩行シーケンスが一致すると判断することができる。なお、判定手 法は上記に限らず、一般的にパタン認識などに用いられる手法を適用することが可 能である。
[0056] 例えば、時空間位相情報を用いる場合、動画像中の第一の人の歩行シーケンスか ら得た時間位相情報 tpl及び空間位相情報 (位置の位相情報) splと、これらの位相 情報が得られる時間または位置とは異なる時間または位置における第二の人の歩行 シーケンスから得られる時間位相情報 tp2及び空間位相情報 (位置の位相情報) sp2 とが比較される。この場合、一致判定部 150は、 I tpl— tp2 I < 0 t ( 0 tはあらかじ め定めたしきい値)及び I spl— sp2 I < 0 s ( 0 tはあらかじめ定めたしきい値)のど ちらか一方が満たされる場合、または両方が同時に満たされる場合に、第一の人と第 二の人とが同一であると判定する。例えば、 Θ tや Θ sを適切に設定しておくことで、 図 6Bの場合には、一致判定部 150は、歩行状態 1801と歩行状態 1803の時空間 位相情報が一致し、第一の人と第二の人とが同一であると判定する。かつ、図 6Cの 場合には、一致判定部 150は、歩行状態 1806と歩行状態 1805とは時空間位相情 報が異なり、第一の人と第二の人とが異なると判定する。同様に、一致判定部 150は 、図 7Bの歩行状態 1901aと歩行状態 1903aとは時空間位相情報が一致し、第一の 人と第二の人とが同一であると判定する。かつ、一致判定部 150は、図 7Cの歩行状 態 1907aと歩行状態 1909aとは時空間位相情報が異なり、第一の人と第二の人とが 異なると判定する。
[0057] 制御部 160は、一致判定部 150による一致判定の結果に基づいた制御として、照 合に用いた画像シーケンスの表示等を行う処理部である。図 8A〜図 8Cに表示の例 を示す。図 8Aは、比較した 2つの画像シーケンスを人の領域を拡大して左右に表示 し、各画像シーケンスの撮影時刻と場所とを合せて表示した例を示している。図 8Bは 、図 8Aと同様の結果を人の移動軌跡(図中の矢印)と共に表示した例を示している。 なお、これらの図では、画像シーケンスに合せて撮影した時刻や場所が文字で表示 されているが、場所については地図を表示した上で、撮影位置や移動軌跡を重畳し て表示するよう〖こしてもよい。図 8Cは、複数の人が画像内に含まれる場合に、一致し た人の領域を破線の矩形を用いて強調表示した例を示している。なお、制御部 160 による制御の内容としては、表示以外にも、異なる歩行シーケンスが一致したという歩 行シーケンス同士の接続情報を外部の記憶装置 (位置情報記憶装置)に記憶してお くことなどでもよい。このように、異なる歩行シーケンスが一致する一致しないの対応 関係を記憶しておくことで、人の歩行画像の検索や追跡を行う際に利用することがで きる。
[0058] 上記のような手続きで歩行シーケンスの検索 ·追跡を行った結果の記憶書式の例を 図 9に示す。図 9は、 3つの歩行シーケンスの情報を示しており、 1つの歩行シーケン スについて 5つの項目の情報が含まれる。 5つの項目はそれぞれシーケンス番号、時 空間周期情報、時空間位相情報、時空間位置情報、一致シーケンス番号である。シ 一ケンス番号は撮影時間や撮影カメラの異なる個々の歩行シーケンスに個々に付与 する ID番号である。時空間周期情報は一定時間内の歩数 X及び一定距離内の歩数 yを (x、 y)と表している。時空間位相情報は基準となる時間や空間位置を過ぎてから 最初に両足を交差した時間'空間位置までの移動量を、一歩分のシーケンスにかか る時間と移動量とをそれぞれ 1. 0と 1. 0とした時の割合で表現したものである。例え ばシーケンス番号 1の場合、基準となる時間から 0. 5歩分の時間で足を交差し、基準 となる位置から 0. 1歩分の距離で足を交差して 、ることを意味する。
[0059] 時空間位置情報は最初に歩行シーケンスを検出した時刻と場所とを示している。場 所にっ ヽては画像上での縦横方向の画素座標値を示して 、る。
[0060] 一致シーケンス番号は検索.追跡によって異なる歩行シーケンスに対して一致する と判定された歩行シーケンスのシーケンス番号を示して 、る。一致するシーケンスが ない場合には 0とし、複数ある場合には複数個併記するようにしてもよい。一度検索' 追跡した結果を保存しておくことで、同じ検索 ·追跡を再度行う場合に、前記情報を 参照することで、一致判定を省略することが可能となる。
[0061] なお、シーケンス番号は撮影された画像の参照先 (ファイル名や格納アドレスなど) と対応付けられていてもよい。時空間位置情報における空間的な場所の情報は、図 9に示される様に、専用に設けた座標系で表現してもよいし、緯度経度などの汎用的 な座標系で表現してもよ ヽ。
[0062] 図 10は、上記人物判定装置 10を応用した人物検索追跡装置 20の構成を示すブ ロック図である。この人物検索追跡装置 20は、本実施の形態における画像シーケン ス力 人を検索 ·追跡する方法を実現するシステム又は装置の具体例であり、カメラ 1 010及び 1020、時計 1030、記憶装置 1040、処理装置 1050、表示装置 1060、入 力部 1070並びにポインティングデバイス 1080から構成される。
[0063] カメラ 1010及び 1020は、画像シーケンス入力部 100の一例であり、人 1000を含 む画像を撮影する。時計 1030は、撮影時刻を得るためのタイマーである。記憶装置 1040は、カメラ 1010及び 1020で撮影した画像、時計 1030から得られる撮影時刻 並びに人の検索'追跡結果等を記憶するハードディスク等である。処理装置 1050は 、カメラ 1010及び 1020又は記憶装置 1040から得られる画像シーケンス力 人を検 索 ·追跡する処理を行う装置であり、図 2に示される人物判定装置 10に相当する。表 示装置 1060は、処理装置 1050の処理結果を表示するディスプレイであり、入力部 1070は、検索'追跡の指示に用いるキーボードであり、ポインティングデバイス 1080 は、検索'追跡の指示に用いるマウス等である。図 11は、ポインティングの例を示す。 検索や追跡を行う場合には図 11のように画像上で対象となる人 1091をポインタ 109 0を用いて指定し、人 1091と同じ歩行シーケンスを検索 ·追跡する。
[0064] 各構成要素は、通信路を通じて接続されて!ヽる。通信路は有線であっても、無線で あってもよぐ専用回線、公衆回線を含んでいてもよい。
[0065] 次に、以上のように構成された本実施の形態における人物判定装置 10の動作に ついて、図 12のフローチャートを用いて説明する。なお、本実施の形態では単一の カメラで異なる時間に得た画像シーケンス 2から画像シーケンス 1に含まれる人の検 索 ·追跡を行う。図 13Aおよび図 13Bに画像シーケンス 1及び画像シーケンス 2の例 をそれぞれ示す。図 13Aは、画像シーケンス 1を示し、障害物 501の左側を人 502が 右方向に歩いているシーケンスを示している。一方、図 13Bは、画像シーケンス 2を 示し、画像シーケンス 1と同じ場所を同じカメラで 10秒後に撮影した画像シーケンス を示して 、る。画像シーケンス 2では障害物 501と右方向に歩 、て 、る人 503と人 50 4が含まれている。
[0066] 最初に画像シーケンス入力部 100が画像シーケンス 1を入力する(ステップ S401) 。次に画像シーケンス 1から歩行シーケンス (歩行シーケンス 1)を抽出する (ステップ S402)。歩行シーケンスとしては図 4Aのように人の下半身の領域のシーケンスを用 いる場合を説明する。
[0067] 歩行シーケンス抽出部 110が画像シーケンス力も歩行シーケンスを抽出する例を 図 14を用いて説明する。最初に、歩行シーケンス抽出部 110は、画像シーケンスか らフレーム画像を 1枚読み込む (ステップ S601)。読み込むフレーム画像は未読のフ レーム画像の中から時間順に行う。次に、歩行シーケンス抽出部 110は、読み込ん だフレーム画像の中から人領域を検出する (ステップ S602)。人領域の検出手法は 一般的に動物体の検出に用いられるフレーム間差分法や人が写っていない背景画 像をあらかじめ用意しておき、前記背景画像との差分を算出する背景差分法を用い る。また、静止画の場合でもあら力じめ人のテンプレート画像を用意しておき、テンプ レート画像との類似度計算 (単純な差分の計算や正規化相関演算などのテンプレー トマッチング法)で類似度の高い領域を抽出することで人領域の検出が可能である。 次に、歩行シーケンス抽出部 110は、前記人領域の画像から歩行状態を表す情報を 抽出する (ステップ S603)。歩行状態を表す情報としては、図 4Bの足先の部位の軌 跡情報のように歩行状態の時間推移を表す情報である。
[0068] なお、ステップ S602とステップ S603との処理は一連の処理として同時に行っても ょ 、し、ステップ S602の処理結果をそのままステップ S603の処理結果としてもよ 、。 また、ステップ S602のように明示的に人の領域全体を検出せずに、直接、ステップ S 603での出力が得られるように処理を行ってもよい。例えば、上記の下半身の画像で あれば、下半身画像をテンプレートとしたテンプレートマッチング手法を用いて直接 的に歩行状態情報を取得してもよい。最後に、歩行シーケンス抽出部 110は、現在 読み込んだフレーム画像が最後のフレームか否かの判断を行 、 (ステップ S604)、 最後のフレームであれば歩行シーケンス抽出処理を終了し、フレーム画像が残って V、る場合にはステップ S601に戻る。
[0069] 次に、ステップ S402で得た歩行シーケンス 1から、時空間周期情報抽出部 120、 時空間位相情報抽出部 121及び時空間位置情報抽出部 122は、それぞれ、時空間 周期情報、時空間位相情報及び時空間位置情報を抽出する (ステップ S403)。
[0070] 図 4Bに示される歩行シーケンスから、時空間周期情報と時空間位相情報と時空間 位置情報を抽出する方法の一例を図 15と図 16A〜図 16Cを用いて説明する。
[0071] 最初に、時空間周期情報抽出部 120等は、歩行シーケンスの情報から、特定歩行 状態の位置を検出する (ステップ S701)。特定歩行状態の説明を図 16A〜図 16Cを 用 、て行う。図 16 Aは図 4Bの歩行シーケンスに対して特定歩行状態位置の検出を 行った結果を示している。図 16Aの 2本の互いに交差する黒色の波型の帯は足先の 時間的な移動軌跡を表している。ここで横軸は画像の横方向の位置を表し、縦軸は 時間を表す。ここで、 2本の互いに交差する位置すなわち両足が交差する状態の位 置(図の破線位置)を特定歩行状態位置とする。ここで、交差する位置の検出は図 1 6Bのような交差部分の形状パタンをあら力じめ用意しておき、テンプレートマツチン グゃ相関演算を行うことで、検出することが可能である。図 16Cに検出過程の一例を 示す。図 16Cでは歩行軌跡 800に対して検出テンプレート 801の位置をずらしなが ら形状の一致度合 、を算出して 、る。マッチングによる一致度合 、があらかじめ定め た値以上であれば、特定歩行状態であるとする。このようにして、図 16Aの破線の交 点位置が求められる。
[0072] なお、特定歩行状態としては足の交差時に限らず、足を最も広げた状態としてもよ い。足を最も広げた状態は図 16Aの歩行軌跡上では交差する帯の間隔が最も広い 位置(図の一点鎖線)の位置に相当する。特定歩行状態を全て検出するまでステツ プ S701を行い、その後ステップ S703に進む(ステップ S702)。
[0073] 次に、時空間周期情報抽出部 120は、検出した特定歩行状態位置同士の間隔を 算出することで、時空間周期情報を生成する (ステップ S703)。周期情報については 、別途、フーリエ解析やウェーブレット解析や自己相関法を用いて特定歩行状態の 位置を得ずとも算出してもよい。この場合、図 16Aの波型の帯の位置の時間的変化 や、 2本の帯の幅の時空間的変化に対してフーリエ変換やウェーブレット変換や自己 相関法を適用すればよい。また、時空間周期情報としては図 16Aの周期的な歩行の 軌跡の最小単位の形状そのものをパタンとして利用してもよい。この場合、図 16Aの 縦横の破線で囲まれた範囲の 2本の帯の波形状 1つ分をパタンとして持つ。
[0074] 次に、時空間位相情報抽出部 121は、時空間位相情報を算出する (ステップ S704 )。時空間位相情報は基準となる時間や空間位置を過ぎて力 最初に両足を交差し た (特定歩行状態が出現する)時間'空間位置までの時空間的移動量を表している。 時空間位相情報として所定の姿勢になる時間または位置を用いる場合、図 7Bの例 では脚間の間が極小になる時間または位置とし、 1902aの歩行に対しては推定歩行 状態 1903aからもとめた 1905の値が時間位相情報または空間位相情報となり、 190 laの歩行に対しては 1906の値が時間位相情報または空間位相情報となる。また、 時空間位相情報として所定の時間また位置における姿勢を用いる場合、 1902aの歩 行に対しては推定歩行状態 1903aの 1904における値 (脚間の値)が時間位相情報 または空間位相情報となり、 190 laの歩行に対しては 1904における値が時間位相 情報または空間位相情報となる。
[0075] また、図 5の例で説明すると、時間軸の基準を歩行軌跡図の上端とした場合、上端 から最初に両足を交差する位置 (破線の交差位置)までの時間が時間の位相情報と なり、空間位置の基準を歩行軌跡図の縦線 A013とすると、縦線 A013より右側で最 も縦線 A013に近い両足を交差した位置と縦線 A013との距離が空間の位相情報と なる。移動量の表現方法は上記に限らず、一歩分のシーケンスに力かる時間と移動 量を基準として相対的な大きさで表現してもよ 、。
[0076] なお、時空間位相情報は画像内で前記特定歩行状態が出現する位相情報を意味 し、同じ時空間周期の歩行シーケンスであっても、時空間的に足を地面に着けること や両足を交差するなどの状態の時空間的タイミングの異なる歩行は異なる値となる。 図 5では歩行シーケンス AO 11と AO 12では歩行の時空間周期は同じであるが、上記 のように定義した時空間位相情報は異なる値となる。
[0077] 次に、時空間位置情報抽出部 122は、時空間位置情報を算出する (ステップ S705 )。時空間位置情報は最初の特定歩行状態を検出した時間と画像上での位置とする 。時空間位置情報は、歩行の検出位置の時空間での絶対的な位置座標を表す情報 であり、 2歩目の検出位置や最後の検出位置を用いてもよい。
[0078] 特定歩行状態を検出することで、歩行の時空間周期のみならずに歩行の時空間位 相情報や時空間位置情報を得ることができる。
[0079] 次に、ステップ S403で得られた時空間周期情報、時空間位相情報及び時空間位 置情報は、それぞれ、時空間周期情報記憶部 130、時空間位相情報記憶部 131及 び時空間位置情報記憶部 132に格納される (ステップ S404)。
[0080] 次に、画像シーケンス入力部 100は、人を検索する画像シーケンス 2をステップ S4 01と同様に取得する (ステップ S405)。そして、歩行シーケンス抽出部 110は、その 画像シーケンス 2から歩行シーケンス 2を抽出する (ステップ S406)。続いて、歩行シ 一ケンス抽出部 110は、ステップ S406での処理の結果、歩行シーケンスが他に存在 する力否かの判断を行う(ステップ S407)。歩行シーケンスが他に存在しない場合は (ステップ S407で No)、処理を終了する。存在する場合は(ステップ S407で Yes)、 時空間周期情報抽出部 120、時空間位相情報抽出部 121及び時空間位置情報抽 出部 122は、歩行シーケンス 1の場合と同様に、歩行シーケンス 2から時空間周期情 報、時空間位相情報及び時空間位置情報を抽出する (ステップ S408)。
[0081] 次に、時空間周期照合部 140、時空間位相照合部 141及び時空間差抽出部 142 は、それぞれ、ステップ S404で記憶された歩行シーケンス 1の時空間周期情報'時 空間位相情報 ·時空間位置情報とステップ S408で抽出された時空間周期情報 ·時 空間位相情報 ·時空間位置情報とをそれぞれ照合する (ステップ S409)。照合にお いては、 3つの情報全てを用いてもよいし、時空間周期情報か時空間位相情報の一 方のみを用いても照合を行うことができる。
[0082] 照合方法としては、時空間周期情報、時空間位相情報、時空間位置情報それぞれ につ 、てあら力じめ一致度合 、の基準を設け、 3つの情報全てが基準を満たす場合 に一致すると判断してもよい。例えば、個々の判定方法は図 9のような表現の異なる シーケンス同士を比較する場合、各時空間周期情報を (xl、yl)、 (x3、y3)とおくと | xl -x3 I =Dx< θ χ, I yl -y3 | =Dy< 0 yを共に満たす場合に両者が一致する と判定する。ここで θ Xと Θ yはあら力じめ定めたしきい値とする。同様に各自空間位 相情報を (wl, zl)、 (w3、 z3)とおいた時、 I wl -w3 | =Dw< Θ w、 | zl— z3 | = Dz< Θ zを共に満たす場合に両者が一致すると判定する。ここで Θ wと Θ zはあらかじ め定めたしきい値とする。同様に、各時空間位置情報を tl, (xxl, yyl)と t3, (xx3, yy3)とおいた場合、 I tl— 13 | =Dt< 0 t、(xxl— xx3) * (xxl— xx3) + (yyl— y y3) * (yyl -yy3) =Dxy< Θ dを共に満たす場合に両者が一致すると判定する。こ こで 0 tと 0 dはあらかじめ定めたしきい値とする。 [0083] また、上記の 3つの情報を相互に関連付けて一致判定を行ってもよい。例えば、時 空間周期情報の差 Dx, Dyと時空間位相情報の差 Dw, Dzと時空間位置情報の差 D t, Dxyの
積や和をあら力じめ定めた一致の基準と比較してしてもよい。例えば、(Dx+Dy+D w
+ Dz + Dt + Dxy) < Θ sumを満たす場合や(Dx X Dy X Dw X Dz X Dt X Dxy) < Θ m ul
に両者が一致すると判定する。ここで Θ mulはあら力じめ定めたしきい値とする。また 、時空間位置情報の差の大きさに基づいて、時空間周期情報の差や時空間位相情 報の差の基準を変更するようにしてもよい。時空間的に離れるに従って、時空間周期 の値や時空間位相の値が変化し得るため、時空間位置情報の差が大きくなると時空 間周期情報の差や時空間位相情報の差の一致の基準を緩くすることで、検出漏れ を低減させることが可能となる。例えば、時空間位置情報の差 Dt、 Dxyが Dt> Θ t又 は Dxy> Θ xyを満たす場合には、上記の判定しきい値 0 x, 0 y, 0 w、 0 zの値を a 倍 は 1. 0以上の定数)して一致判定を行う。
[0084] 時空間周期情報を用いた場合、時空間周期情報はカメラに対する人の向きが変化 しても値が変化しにく 、為、時間的に離れた画像シーケンス間で検索 ·追跡が行 、 やすいという効果がある。
[0085] また、時空間位相情報を用いた場合、同じような時空間周期で歩行する他者の歩 行シーケンスとの区別をつけやす ヽと 、う効果がある。
[0086] 続いて、一致判定部 150は、ステップ S409における照合結果に基づいて、歩行シ 一ケンス 1と歩行シーケンス 2とが一致するか否かを判定する(ステップ S410)。不一 致の場合には (ステップ S411で No)、ステップ S406に戻り、新たな歩行シーケンス を取得する (ステップ S406)。一致した場合には (ステップ S411で Yes)、制御部 16 0は、画像シーケンス 1と画像シーケンス 2とを表示装置 1060に表示すると共に、一 致した歩行シーケンスの人領域を強調表示する。制御部 160による表示の例を図 17 に示す。図 17において領域 1130では画像シーケンス 1を表示し、領域 1140では画 像シーケンス 2を表示し、一致した歩行シーケンスに対応する人領域には外接矩形 1 110、 1120を付加して協調表示する。
[0087] 一般に、時空間周期情報 (歩行パタン)は、個人性 (歩き方の癖など)や個人のその 場の状況 (急 、で 、る、ゆっくり歩 、て 、るなど)や履物の種類 (ヒールの高さや足首 の可動範囲など)、持ち物 (片側に重 、ものを持って 、る力など)や服装 (脚部の可動 範囲など)、路面の状態 (滑りやすさや傾斜など)など様々な要素の影響を受けて変 化する為、個人を特定することは困難である。ここで、時空間位置情報を用いて照合 する 2つの歩行シーケンス間の時空間位置差を求め、前記時空間位置差によって一 致判定の基準を変化させることで、場所や履物,服装'持ち物などが時空間的に変化 し得る度合いを反映させることができ、誤った照合を行わないようにすることが可能と なる。例えば図 13A及び図 13Bのように 10秒程度の時空間差であれば、時空間周 期情報の差や時空間位相情報の差が小さ!、歩行シーケンスを検索 ·追跡すればよ い。例えば、 Dt< 10秒の場合には、上記の判定しきい値 0 X, θ γ, 0 w、 0 zの値を j8倍(j8は 1. 0未満の定数)して一致判定を行う。上記のような方法を用いることで、 図 13 Aの画像シーケンス中の人 502に対して、図 13Bの画像シーケンス中の 2人の うち歩行シーケンスの情報が一致する人 503を適切に選択することなどが可能となる
[0088] 以上のように、本実施の形態によれば、歩行シーケンス力 得た時空間周期情報と 、時空間位相情報と、時空間位置情報とを検出し、これらの情報に基づいて歩行シ 一ケンスの一致判定を行うことで、画像中の人の大きさや向きなどの影響を抑えて、 異なる時間の画像シーケンスに含まれる人の検索 '追跡が可能となる。
[0089] なお、本実施の形態では、時空間周期情報と時空間位相情報とを共に用いて歩行 シーケンスの照合を行ったが、時空間周期情報又は時空間位相情報のどちらか一 方のみでも歩行シーケンスの照合は可能であり、本発明の効果を得ることができる。 両者を組合わせることでより、詳細な照合が可能となり、検索'追跡の精度を向上させ ることがでさる。
[0090] また、画像シーケンス入力部 100へ入力する画像シーケンスは少なくとも 1歩以上 の歩行過程を含む時間長又はフレーム数であることが望ましぐ含まれる歩数は 1歩 よりも多い方が照合の精度向上が期待できる。 1歩以上の歩行過程を含む時間長と してはおよそ 0. 5秒以上(30フレーム Z秒でおよそ 15フレーム以上)の長さの画像 シーケンスであることが望ましぐ特定歩行状態が少なくとも 2回以上検出できることが 望ましい。
[0091] なお、実施の形態 1では画像シーケンスをカメラから直接得る例を示した力 記憶 装置 1040などに録画された画像シーケンスを読み出して用 、ても同様の効果が得 られる。
[0092] (実施の形態 2)
次に、本発明の実施の形態 2について、図 18A、図 18B及び図 19を用いて説明す る。
[0093] 実施の形態 2は、基本的な構成は実施の形態 1と同じであるが、 2つの異なるカメラ 力 得られた画像シーケンスをそれぞれ画像シーケンス 1及び画像シーケンス 2とし て扱い、人の検索'追跡を行うものである。画像の例を図 18A及び図 18Bに示す。図 18 Aは画像シーケンス 1を示し、図 18Bは画像シーケンス 2を示す。図 18A及び図 1 8Bには、直方体形状の障害物 900が表示されている。図 18Aに示される画像シー ケンス 1では、障害物 900で人 922が隠されており、人 912だけが写っている。一方、 図 18Bに示される画像シーケンス 2では、人 921と人 922と力 S写っている。人 912は 人 922に対応する力 画像シーケンス 2の 2人の人は互いに近くを歩いており背格好 や服装は同じであり、人 912に対応する人が人 921か人 922なのかは色やテクスチ ャゃ動きベクトルでは区別がつかない。ここで、図 18A及び図 18Bの格子状の破線 は地面上の位置座標を重畳して表示したものであり、 2つの画像シーケンスの位置情 報の対応付けの説明のために表示している。破線の格子は、あら力じめカメラ画像内 の位置と撮影場所の位置との対応関係 (時空間補正情報)を実測又は、カメラ配置と 光学系の仕様に基づいた幾何学計算することで得られる。図 18Aの格子と図 18Bの 格子とは対応する位置を表している。このような画像中の異なる平面上の対応する点 間の座標変換は 3 X 3の平面射影行列 Hで表現できる為、行列 Hを算出し、保持して おけばよい。平面射影行列の求め方は K. Kanatani, N. Ohta and Y. Kanazawa, "Op timal homography computation with a reliability measure," IEICti, frans actions on In formation and Systems, Vol. E83— D, No.7, pp.1369— 1374 (July 2000).などの既存の 手法を用いることができる。
[0094] 図 19は、本実施の形態における人物判定装置 15の構成を示す機能ブロック図で ある。この人物判定装置 15は、実施の形態 1における人物判定装置 10が備える構 成に加えて、さらに、時空間補正部 170を備える。時空間補正部 170は、歩行シーケ ンスの抽出又は時空間的周期情報や時空間的位相情報や時空間位置情報の算出 時に、時空間補正情報を用いて補正を行い、異なる画像シーケンスにおける時空間 的不整合性を補償する処理部である。ここで、時空間補正部 170は、歩行情報の抽 出における時空間的な補正処理を行う補正手段の一例である。
[0095] 人物判定装置 15は、異なるカメラの映像に対しても実施の形態 1と同様の手続で 処理を行!ヽ、画像シーケンス 1中の人に対応する画像シーケンス 2中の人を特定する ことができる。カメラの配置の違 、から撮影される対象の画像内の配置が異なる為、 前記格子線をカメラ毎 (又は画像シーケンス毎)に時空間補正情報として保持してお き、歩行シーケンスを抽出する際の空間的な位置座標の補正情報として利用する。 つまり、時空間補正部 170は、撮影場所における歩行面を一定距離の間隔で 2次元 的に区切る格子線を特定する情報を補正情報として記憶しておく。
[0096] そして、時空間補正部 170が前記時空間補正情報を用いて補正処理を行うことで 、時空間的周期情報や時空間的位相情報や時空間位置情報を異なるカメラの映像 間で照合することが可能となる。たとえば、時空間補正部 170は、格子線で囲まれる 小領域の各辺や面積の比率に応じて、時空間的周期情報、時空間的位相情報及び 時空間位置情報を時空間的に補正する (比例係数を乗じる)。このとき、時空間位相 情報としては特定の格子線を越えた後に最初に特定歩行状態になる時空間的位置 を用いればよい。このような構成により、障害物 900に隠れている人(図示せず)と人 921を対応付け、人 912と人 922とを対応付けることが可能となる。
[0097] また、上記例では歩行シーケンスを抽出する際に、前記位置の対応関係を用いた 力 画像シーケンスの状態で一方の画像シーケンスを他方の画像シーケンスの位置 に合うように画像を変換してカゝらその後の処理を行ってもょ ヽ。画像変換を行う場合 にも上記の平面射影行列 Hを用いることで歩行している平面 (地面)上の画素位置に 行列 Hを作用させることで、対応するもう一方の画像シーケンス内の平面 (地面)上の 位置に変換できる。このため、全ての画素について同様の変換を行うことで画像の変 換が可能となる。時空間周期情報 ·時空間位相情報 ·時空間位置情報を算出する際 に、位置関係を用いて補正を行って算出することでもカメラ配置の影響を除いて歩行 シーケンスを照合することが可能となる。
[0098] また、 2つの画像シーケンス間でフレームレートが異なる場合にも予めフレームレー トがそろうように時空間補正部 170がー方に対してフレームレート変換を行うか、歩行 シーケンスを抽出する際にフレームレートを変換するか、時空間周期情報'時空間位 相情報《時空間位置情報を算出する際に時間情報の補正を行うことで、異なるフレー ムレートの画像シーケンス間での人の検索'追跡が可能となる。例えば、比較すべき
2つの画像シーケンスのフレームレートがそれぞれ 15フレーム Z秒と 30フレーム Z 秒との場合、後者の画像シーケンスから 1フレームおきにフレームを間引くことで 15フ レーム Z秒の画像シーケンスを生成したのち、画像シーケンス間の歩行シーケンス の検出'照合を行う。
[0099] この場合、あら力じめ補正に必要なフレームレートの情報時空間補正情報を画像シ 一ケンスと対応付けられた状態で記憶装置などに保持しておけばよい。
[0100] 一般的に、異なるカメラでは対象の向きや照明条件の違いやカメラの特性の違いか ら、画像上の人の見かけは大きく変わることが多いため、色や動きベクトルの連続性 や人領域の画像パタンそのものを用いた追跡手法では適切に同じ人を検索 '追跡す ることは困難である。しかしながら、本実施の形態における手法を用いることで、異な る向きや色や見た目の人であっても、同一人物の歩行シーケンス力も得た時空間周 期情報や時空間位相情報を用いることで異なる画像シーケンス中の人を検索,追跡 することが可能となる。特に、異なるカメラの視野が同一場所を含み、同じ人を異なる 方位力も撮影できる場合には、時間位相情報を用いることで、より効果的な人のシー ケンスの対応付けが可能になる。
[0101] なお、上記例ではカメラ画像間の位置の対応付けをあら力じめ行った力 時間周期 や時間位相を主に用いる場合には対応付けを行わな 、場合にでも、歩行シーケンス 間の照合を行い、本発明の効果を得ることは可能である。
[0102] なお、上記実施の形態における処理の一部又は全部は専用の機器で行われても よいし、端末や基地局等の通信機器やコンピュータに内蔵される CPUが処理プログ ラムを実行することによって、行われてもよい。
産業上の利用可能性
本発明は、異なる画像シーケンスに含まれる人物同士が同一人物であるか否かを 判定する人物判定装置、画像シーケンスから人物を検索 ·追跡する人物検索追跡装 置等として、例えば、街頭等に設置される監視システム等として利用することができる

Claims

請求の範囲
[1] 異なる画像シーケンスに含まれる人物同士が同一である力否かを判定する人物判 定装置であって、
第 1の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィ メージセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケン ス入力手段と、
入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を 示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス 抽出手段と、
抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の時間的又は 空間的な歩行周期を示す情報である第 1及び第 2の時空間周期情報と人物の周期 的な歩行動作における時間的又は空間的な位相情報である第 1及び第 2の時空間 位相情報とを、人物の歩行についての周期的な動きを特定する情報である第 1及び 第 2の歩行情報として抽出する歩行情報抽出手段と、
抽出された前記第 1及び第 2の歩行情報を照合する歩行情報照合手段と、 前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2の画像シー ケンスに含まれる人物同士が同一である力否かを判定する判定手段と
を備えることを特徴とする人物判定装置。
[2] 前記歩行情報照合手段は、前記第 1及び第 2の歩行情報にそれぞれ含まれる第 1 及び第 2の時空間位相情報に基づいて、前記第 1及び第 2の画像シーケンスに含ま れる人物が所定の歩行姿勢となる時刻または位置を比較することにより歩行情報を 照合する
ことを特徴とする請求項 1に記載の人物判定装置。
[3] 前記歩行情報照合手段は、
前記第 1の歩行情報に含まれる第 1の時空間位相情報に基づいて、前記第 1の画 像シーケンスに含まれる人物の、前記第 1の画像シーケンスと異なる時刻または位置 における時空間位相情報を推定する位相情報推定部と、
前記位相情報推定手段で推定された前記時空間位相情報および前記第 2の時空 間位相情報に基づいて、前記第 1及び第 2の画像シーケンスに含まれる人物が所定 の歩行姿勢となる時刻または位置を比較することにより歩行情報を照合する歩行情 報照合部とを有する
ことを特徴とする請求項 2に記載の人物判定装置。
[4] 前記歩行情報照合手段は、前記第 1及び第 2の歩行情報にそれぞれ含まれる第 1 及び第 2の時空間位相情報に基づいて、同一の時刻または位置における前記第 1 及び第 2の画像シーケンスに含まれる人物の歩行姿勢を比較することにより歩行情 報を照合する
ことを特徴とする請求項 1に記載の人物判定装置。
[5] 前記歩行情報照合手段は、
前記第 1の時空間歩行情報に含まれる位相情報に基づいて、前記第 1の画像シー ケンスに含まれる人物の、前記第 1の画像シーケンスと異なる時刻または位置におけ る時空間位相情報を推定する位相情報推定部と、
前記位相情報推定手段で推定された前記時空間位相情報および前記第 2の時空 間位相情報に基づ 、て、同一の時刻または位置における前記第 1及び第 2の画像シ 一ケンスに含まれる人物の歩行姿勢を比較することにより歩行情報を照合する歩行 情報照合部とを有する
ことを特徴とする請求項 4に記載の人物判定装置。
[6] 前記歩行情報抽出手段は、さらに、抽出された前記第 1及び第 2の歩行シーケンス から、それぞれ、人物の周期的な歩行動作を示す時間的又は空間的な位置情報で ある第 1及び第 2の時空間位置情報を前記歩行情報として抽出する
ことを特徴とする請求項 1記載の人物判定装置。
[7] 前記歩行シーケンス抽出手段は、前記第 1及び第 2の画像シーケンスそれぞれを 時間軸に沿って切断した場合の切断面における画像を前記歩行シーケンスとして抽 出する
ことを特徴とする請求項 1記載の人物判定装置。
[8] 前記歩行シーケンス抽出手段は、前記第 1及び第 2の画像シーケンスそれぞれに 含まれる人物の両脚を切断した切片を時間軸に並べて得られる画像を前記歩行シ 一ケンスとして抽出する
ことを特徴とする請求項 5記載の人物判定装置。
[9] 前記歩行情報抽出手段は、前記第 1及び第 2の歩行シーケンスに含まれる人物の 両脚の間隔に基づいて、前記歩行情報を抽出する
ことを特徴とする請求項 8に記載の人物判定装置。
[10] 前記画像シーケンス入力手段は、同一場所を撮影する異なるイメージセンサにて 取得された第 1及び第 2の画像シーケンスの入力を受け付ける
ことを特徴とする請求項 1記載の人物判定装置。
[11] 前記人物判定装置はさらに、
前記第 1及び第 2の画像シーケンスそれぞれにおける画像上の位置と撮影場所に おける位置との対応関係を示す補正情報を予め記憶する補正情報記憶手段と、 前記補正情報記憶手段に記憶された補正情報に基づ!、て、前記歩行情報抽出手 段による前記第 1及び第 2の歩行情報の抽出における時空間的な補正処理を行う補 正手段とを備える
ことを特徴とする請求項 1記載の人物判定装置。
[12] 前記補正情報記憶手段は、前記撮影場所における歩行面を一定距離の間隔で 2 次元的に区切る格子線を特定する情報を前記補正情報として記憶する
ことを特徴とする請求項 11記載の人物判定装置。
[13] 異なる画像シーケンスに含まれる人物同士が同一である力否かを判定する人物判 定装置であって、
画像シーケンス中に含まれる第 1及び第 2の人物の歩行状態を示す画像シーケン スである第 1及び第 2の歩行シーケンスを検出する歩行シーケンス検出手段と、 前記第 1の人物の歩行シーケンスから当該歩行シーケンスとは異なる時刻または位 置における第 1の人物の周期的な歩行運動における歩行姿勢の遷移を示す情報を 推定する歩行姿勢遷移推定手段と、
推定された前記第 1の人物の歩行姿勢の遷移を示す情報と、前記第 2の人物の歩 行姿勢の遷移を示す情報との整合性を判定し、整合性を有する場合に、前記第 1の 人物と前記第 2の人物とが同一であると判断する判断手段とを備える ことを特徴とする人物判定装置。
[14] 人物が撮像された画像シーケンスにお 、て特定の人物を検索又は追跡する人物 検索追跡装置であって、
第 1の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィ メージセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケン ス入力手段と、
入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を 示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス 抽出手段と、
抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の時間的又は 空間的な歩行周期を示す情報である第 1及び第 2の時空間周期情報と人物の周期 的な歩行動作における時間的又は空間的な位相情報である第 1及び第 2の時空間 位相情報とを、人物の歩行についての周期的な動きを特定する情報である第 1及び 第 2の歩行情報として抽出する歩行情報抽出手段と、
抽出された前記第 1及び第 2の歩行情報を照合する歩行情報照合手段と、 前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2の画像シー ケンスに含まれる人物同士が同一である力否かを判定する判定手段とを備える人物 判定装置と、
前記人物判定装置が備える歩行情報照合手段によって前記第 1及び第 2の歩行 情報が一致すると照合された場合に、前記第 1及び第 2の歩行情報に対応する前記 第 1及び第 2の歩行シーケンス同士を対応づけて記憶する歩行シーケンス記憶手段 と
を備えることを特徴とする人物検索追跡装置。
[15] 人物が撮像された画像シーケンスにお 、て特定の人物を検索又は追跡する人物 検索追跡装置であって、
第 1の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィ メージセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケン ス入力手段と、 入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を 示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス 抽出手段と、
抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の時間的又は 空間的な歩行周期を示す情報である第 1及び第 2の時空間周期情報と人物の周期 的な歩行動作における時間的又は空間的な位相情報である第 1及び第 2の時空間 位相情報とを、人物の歩行についての周期的な動きを特定する情報である第 1及び 第 2の歩行情報として抽出する歩行情報抽出手段と、
抽出された前記第 1及び第 2の歩行情報を照合する歩行情報照合手段と、 前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2の画像シー ケンスに含まれる人物同士が同一である力否かを判定する判定手段とを備える人物 判定装置と、
前記人物判定装置が備える画像シーケンス入力手段が受け付ける前記第 1及び第 2の画像シーケンスを表示する表示手段とを備え、
前記表示手段は、前記第 1及び第 2の画像シーケンスに含まれる人物のうち、前記 人物判定装置が備える判定手段によって同一と判定された人物を他の人物と区別 するための強調表示をする
ことを特徴とする人物検索追跡装置。
異なる画像シーケンスに含まれる人物同士が同一である力否かを判定する人物判 定方法であって、
第 1の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィ メージセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケン ス入力ステップと、
入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を 示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス 抽出ステップと、
抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の時間的又は 空間的な歩行周期を示す情報である第 1及び第 2の時空間周期情報と人物の周期 的な歩行動作における時間的又は空間的な位相情報である第 1及び第 2の時空間 位相情報とを、人物の歩行についての周期的な動きを特定する第 1及び第 2の歩行 情報として抽出する歩行情報抽出ステップと、
抽出された前記第 1及び第 2の歩行情報を照合する歩行情報照合ステップと、 前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2の画像シー ケンスに含まれる人物同士が同一である力否かを判定する判定ステップと
を含むことを特徴とする人物判定方法。
異なる画像シーケンスに含まれる人物同士が同一である力否かを判定する人物判 定装置のためのプログラムであって、
第 1の画像シーケンス、及び、前記第 1の画像シーケンスと異なる時刻又は異なるィ メージセンサにて取得された第 2の画像シーケンスの入力を受け付ける画像シーケン ス入力ステップと、
入力された前記第 1及び第 2の画像シーケンスから、それぞれ、人物の歩行状態を 示す画像シーケンスである第 1及び第 2の歩行シーケンスを抽出する歩行シーケンス 抽出ステップと、
抽出された前記第 1及び第 2の歩行シーケンスから、それぞれ、人物の時間的又は 空間的な歩行周期を示す情報である第 1及び第 2の時空間周期情報と人物の周期 的な歩行動作における時間的又は空間的な位相情報である第 1及び第 2の時空間 位相情報とを、人物の歩行についての周期的な動きを特定する第 1及び第 2の歩行 情報として抽出する歩行情報抽出ステップと、
抽出された前記第 1及び第 2の歩行情報を照合する歩行情報照合ステップと、 前記歩行情報照合手段による照合結果に基づいて、前記第 1及び第 2の画像シー ケンスに含まれる人物同士が同一である力否かを判定する判定ステップとをコンビュ ータに実行させる
ことを特徴とするプログラム。
PCT/JP2005/013769 2004-08-03 2005-07-27 人物判定装置及び人物検索追跡装置 WO2006013765A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006531421A JP3910629B2 (ja) 2004-08-03 2005-07-27 人物判定装置及び人物検索追跡装置
US11/342,651 US7397931B2 (en) 2004-08-03 2006-01-31 Human identification apparatus and human searching/tracking apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-227083 2004-08-03
JP2004227083 2004-08-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/342,651 Continuation US7397931B2 (en) 2004-08-03 2006-01-31 Human identification apparatus and human searching/tracking apparatus

Publications (1)

Publication Number Publication Date
WO2006013765A1 true WO2006013765A1 (ja) 2006-02-09

Family

ID=35787054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013769 WO2006013765A1 (ja) 2004-08-03 2005-07-27 人物判定装置及び人物検索追跡装置

Country Status (4)

Country Link
US (1) US7397931B2 (ja)
JP (1) JP3910629B2 (ja)
CN (5) CN101398892B (ja)
WO (1) WO2006013765A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033445A (ja) * 2008-07-30 2010-02-12 Fujitsu Ltd 携帯端末装置及び認証管理方法
JP2011053952A (ja) * 2009-09-02 2011-03-17 Canon Inc 画像検索装置及び画像検索方法
JP2012209732A (ja) * 2011-03-29 2012-10-25 Secom Co Ltd 画像監視装置およびプログラム
WO2013103151A1 (ja) * 2012-01-04 2013-07-11 株式会社ニコン 電子機器、情報生成方法、及び位置推定方法
JP2016057998A (ja) * 2014-09-12 2016-04-21 株式会社日立国際電気 物体識別方法
JP2019074819A (ja) * 2017-10-12 2019-05-16 株式会社コンピュータシステム研究所 監視装置、監視プログラム、記憶媒体、および、監視方法
JP2020077017A (ja) * 2018-11-05 2020-05-21 公立大学法人大阪 歩容解析装置
WO2020115910A1 (ja) 2018-12-07 2020-06-11 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
WO2020115890A1 (ja) 2018-12-07 2020-06-11 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
WO2020136795A1 (ja) 2018-12-27 2020-07-02 日本電気株式会社 情報処理装置、情報処理方法、およびプログラム
WO2020136794A1 (ja) 2018-12-27 2020-07-02 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
JPWO2022030179A1 (ja) * 2020-08-05 2022-02-10
JP2022049568A (ja) * 2020-09-16 2022-03-29 株式会社シンギュラリティテック 人工知能による歩容認証のためのデータ前処理システム、方法、および、プログラム
JP2022064719A (ja) * 2020-10-14 2022-04-26 富士通クライアントコンピューティング株式会社 情報処理装置、情報処理システムおよび情報処理プログラム
JPWO2022201987A1 (ja) * 2021-03-23 2022-09-29
JP7193104B1 (ja) 2021-11-25 2022-12-20 株式会社アジラ 行動体同定システム
US12020510B2 (en) 2018-12-28 2024-06-25 Nec Corporation Person authentication apparatus, control method, and non-transitory storage medium
US12136289B2 (en) 2023-07-24 2024-11-05 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006013765A1 (ja) * 2004-08-03 2006-02-09 Matsushita Electric Industrial Co., Ltd. 人物判定装置及び人物検索追跡装置
US8131022B2 (en) * 2004-08-31 2012-03-06 Panasonic Corporation Surveillance recorder and its method
JP4290164B2 (ja) * 2006-01-31 2009-07-01 キヤノン株式会社 識別領域を示す表示を画像と共に表示させる表示方法、コンピュータ装置に実行させるプログラム、および、撮像装置
JP4665933B2 (ja) * 2006-07-04 2011-04-06 セイコーエプソン株式会社 文書編集支援装置、プログラムおよび記憶媒体
JP4257615B2 (ja) * 2006-07-14 2009-04-22 ソニー株式会社 画像処理装置および方法、並びにプログラム
JP4263737B2 (ja) * 2006-11-09 2009-05-13 トヨタ自動車株式会社 歩行者検知装置
JP4337867B2 (ja) * 2006-12-01 2009-09-30 セイコーエプソン株式会社 文書編集支援装置、文書編集装置、プログラムおよび記憶媒体
JP4315991B2 (ja) * 2007-04-20 2009-08-19 本田技研工業株式会社 車両周辺監視装置、車両周辺監視方法、車両周辺監視プログラム
US8432449B2 (en) * 2007-08-13 2013-04-30 Fuji Xerox Co., Ltd. Hidden markov model for camera handoff
JP2009053815A (ja) * 2007-08-24 2009-03-12 Nikon Corp 被写体追跡プログラム、および被写体追跡装置
JP4921335B2 (ja) * 2007-12-10 2012-04-25 キヤノン株式会社 ドキュメント処理装置及び検索方法
CN101350064B (zh) * 2008-08-29 2012-06-13 北京中星微电子有限公司 二维人体姿态估计方法及装置
CN101388114B (zh) * 2008-09-03 2011-11-23 北京中星微电子有限公司 一种人体姿态估计的方法和系统
JP4760918B2 (ja) * 2009-01-23 2011-08-31 カシオ計算機株式会社 撮像装置、被写体追従方法、及びプログラム
JP5029647B2 (ja) * 2009-04-08 2012-09-19 株式会社ニコン 被写体追尾装置、およびカメラ
US11080513B2 (en) * 2011-01-12 2021-08-03 Gary S. Shuster Video and still image data alteration to enhance privacy
CN102999152B (zh) * 2011-09-09 2016-06-29 康佳集团股份有限公司 一种手势动作识别方法和系统
US9092675B2 (en) 2012-03-29 2015-07-28 The Nielsen Company (Us), Llc Methods and apparatus to count people in images
US9275285B2 (en) 2012-03-29 2016-03-01 The Nielsen Company (Us), Llc Methods and apparatus to count people in images
US8761442B2 (en) * 2012-03-29 2014-06-24 The Nielsen Company (Us), Llc Methods and apparatus to count people in images
US8660307B2 (en) 2012-03-29 2014-02-25 The Nielsen Company (Us), Llc Methods and apparatus to count people in images
JP5912062B2 (ja) * 2012-05-24 2016-04-27 オリンパス株式会社 撮影機器及び動画像データの記録方法
KR102120864B1 (ko) * 2013-11-06 2020-06-10 삼성전자주식회사 영상 처리 방법 및 장치
CN104639517B (zh) * 2013-11-15 2019-09-17 阿里巴巴集团控股有限公司 利用人体生物特征进行身份验证的方法和装置
US10026019B2 (en) * 2014-03-11 2018-07-17 Mitsubishi Electric Corporation Person detecting device and person detecting method
KR102015588B1 (ko) * 2015-07-16 2019-08-28 한화테크윈 주식회사 배회 경보 방법 및 장치
KR101732981B1 (ko) * 2015-10-29 2017-05-08 삼성에스디에스 주식회사 개인화 특성 분석 시스템 및 방법
US9911198B2 (en) 2015-12-17 2018-03-06 Canon Kabushiki Kaisha Method, system and apparatus for matching moving targets between camera views
JP6879296B2 (ja) 2016-03-31 2021-06-02 日本電気株式会社 画像検出装置、画像検出方法、及びプログラム
CN109477951B (zh) * 2016-08-02 2021-10-22 阿特拉斯5D公司 在保护隐私的同时识别人及/或识别并量化疼痛、疲劳、情绪及意图的系统及方法
JP6888950B2 (ja) * 2016-12-16 2021-06-18 フォルシアクラリオン・エレクトロニクス株式会社 画像処理装置、外界認識装置
JP6800820B2 (ja) * 2017-07-14 2020-12-16 パナソニック株式会社 人流分析方法、人流分析装置、及び人流分析システム
CN107730686A (zh) * 2017-11-01 2018-02-23 桐乡守敬应用技术研究院有限公司 一种生物特征解锁方法
TWI697914B (zh) * 2018-11-29 2020-07-01 宏碁股份有限公司 監測系統及其方法
CN109859322B (zh) * 2019-01-22 2022-12-06 广西大学 一种基于变形图的谱姿态迁移方法
JP7218820B2 (ja) * 2019-12-25 2023-02-07 日本電気株式会社 推定装置、推定システム、推定方法、およびプログラム
JP7198196B2 (ja) * 2019-12-26 2022-12-28 株式会社日立ハイテク 計測装置及び計測方法
US11315363B2 (en) * 2020-01-22 2022-04-26 Board Of Trustees Of Michigan State University Systems and methods for gait recognition via disentangled representation learning

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433066A (ja) * 1990-05-24 1992-02-04 Nippon Telegr & Teleph Corp <Ntt> 個人識別装置
JP2000182060A (ja) * 1998-12-21 2000-06-30 Nec Corp 個人識別装置及び個人識別方法
JP2003346159A (ja) * 2002-05-28 2003-12-05 Oki Electric Ind Co Ltd 人物追跡方法及び人物追跡装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205231B1 (en) * 1995-05-10 2001-03-20 Identive Corporation Object identification in a moving video image
US5885229A (en) * 1995-07-19 1999-03-23 Nippon Telegraph & Telephone Corp. Walking pattern processing method and system for embodying the same
US6263088B1 (en) * 1997-06-19 2001-07-17 Ncr Corporation System and method for tracking movement of objects in a scene
US7116323B2 (en) * 1998-05-27 2006-10-03 In-Three, Inc. Method of hidden surface reconstruction for creating accurate three-dimensional images converted from two-dimensional images
US6542621B1 (en) * 1998-08-31 2003-04-01 Texas Instruments Incorporated Method of dealing with occlusion when tracking multiple objects and people in video sequences
JP2002197437A (ja) * 2000-12-27 2002-07-12 Sony Corp 歩行検出システム、歩行検出装置、デバイス、歩行検出方法
US6525663B2 (en) * 2001-03-15 2003-02-25 Koninklijke Philips Electronics N.V. Automatic system for monitoring persons entering and leaving changing room
US20030123703A1 (en) * 2001-06-29 2003-07-03 Honeywell International Inc. Method for monitoring a moving object and system regarding same
US7035431B2 (en) * 2002-02-22 2006-04-25 Microsoft Corporation System and method for probabilistic exemplar-based pattern tracking
TW582168B (en) * 2002-03-01 2004-04-01 Huper Lab Co Ltd Method for abstracting multiple moving objects
JP4187448B2 (ja) * 2002-03-07 2008-11-26 富士通マイクロエレクトロニクス株式会社 画像における移動体追跡方法及び装置
US7113185B2 (en) * 2002-11-14 2006-09-26 Microsoft Corporation System and method for automatically learning flexible sprites in video layers
JP3947973B2 (ja) * 2003-02-14 2007-07-25 ソニー株式会社 画像処理装置および方法、プログラム、並びに記録媒体
WO2006013765A1 (ja) * 2004-08-03 2006-02-09 Matsushita Electric Industrial Co., Ltd. 人物判定装置及び人物検索追跡装置
JP2007241500A (ja) * 2006-03-07 2007-09-20 Toshiba Corp 顔認証装置および顔認証方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433066A (ja) * 1990-05-24 1992-02-04 Nippon Telegr & Teleph Corp <Ntt> 個人識別装置
JP2000182060A (ja) * 1998-12-21 2000-06-30 Nec Corp 個人識別装置及び個人識別方法
JP2003346159A (ja) * 2002-05-28 2003-12-05 Oki Electric Ind Co Ltd 人物追跡方法及び人物追跡装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIYOGI A. ET AL.: "Analyzing and Recognizing Walking Figures in XYT.M.I.T. Media Lab Vision and Modeling Group.", TECHNICAL REPORT., no. 223, 1994, XP002904545 *

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010033445A (ja) * 2008-07-30 2010-02-12 Fujitsu Ltd 携帯端末装置及び認証管理方法
JP2011053952A (ja) * 2009-09-02 2011-03-17 Canon Inc 画像検索装置及び画像検索方法
JP2012209732A (ja) * 2011-03-29 2012-10-25 Secom Co Ltd 画像監視装置およびプログラム
WO2013103151A1 (ja) * 2012-01-04 2013-07-11 株式会社ニコン 電子機器、情報生成方法、及び位置推定方法
JP2016057998A (ja) * 2014-09-12 2016-04-21 株式会社日立国際電気 物体識別方法
JP2019074819A (ja) * 2017-10-12 2019-05-16 株式会社コンピュータシステム研究所 監視装置、監視プログラム、記憶媒体、および、監視方法
JP7325745B2 (ja) 2017-10-12 2023-08-15 株式会社コンピュータシステム研究所 監視装置、監視プログラム、記憶媒体、および、監視方法
JP2020077017A (ja) * 2018-11-05 2020-05-21 公立大学法人大阪 歩容解析装置
JP7182778B2 (ja) 2018-11-05 2022-12-05 公立大学法人大阪 歩容解析装置
WO2020115890A1 (ja) 2018-12-07 2020-06-11 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
US12087075B2 (en) 2018-12-07 2024-09-10 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US12087076B2 (en) 2018-12-07 2024-09-10 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US12046075B2 (en) 2018-12-07 2024-07-23 Nec Corporation Information processing apparatus, information processing method, and program
US12112565B2 (en) 2018-12-07 2024-10-08 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US11847848B2 (en) 2018-12-07 2023-12-19 Nec Corporation Information processing apparatus, information processing method, and program
WO2020115910A1 (ja) 2018-12-07 2020-06-11 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
US11971952B2 (en) 2018-12-27 2024-04-30 Nec Corporation Information processing apparatus, information processing method, and program
US11928181B2 (en) 2018-12-27 2024-03-12 Nec Corporation Information processing apparatus, information processing method, and program
WO2020136795A1 (ja) 2018-12-27 2020-07-02 日本電気株式会社 情報処理装置、情報処理方法、およびプログラム
WO2020136794A1 (ja) 2018-12-27 2020-07-02 日本電気株式会社 情報処理システム、情報処理装置、情報処理方法、およびプログラム
US11934483B2 (en) 2018-12-27 2024-03-19 Nec Corporation Information processing apparatus, information processing method, and program
US11704933B2 (en) 2018-12-27 2023-07-18 Nec Corporation Information processing apparatus, information processing method, and program
US11704934B2 (en) 2018-12-27 2023-07-18 Nec Corporation Information processing apparatus, information processing method, and program
US11710347B2 (en) 2018-12-27 2023-07-25 Nec Corporation Information processing apparatus, information processing method, and program
US11361588B2 (en) 2018-12-27 2022-06-14 Nec Corporation Information processing apparatus, information processing method, and program
US12020510B2 (en) 2018-12-28 2024-06-25 Nec Corporation Person authentication apparatus, control method, and non-transitory storage medium
WO2022030179A1 (ja) * 2020-08-05 2022-02-10 国立大学法人大阪大学 周期画像復元装置及び方法、識別装置及び方法、検証装置及び方法、特徴抽出装置、訓練方法、位相推定装置、並びに記憶媒体
JP7353686B2 (ja) 2020-08-05 2023-10-02 国立大学法人大阪大学 周期画像復元装置及び方法、識別装置及び方法、検証装置及び方法、特徴抽出装置、訓練方法、位相推定装置、並びに記憶媒体
JPWO2022030179A1 (ja) * 2020-08-05 2022-02-10
JP7296538B2 (ja) 2020-09-16 2023-06-23 株式会社シンギュラリティテック 人工知能による歩容認証のためのデータ前処理システム、方法、および、プログラム
JP2022049568A (ja) * 2020-09-16 2022-03-29 株式会社シンギュラリティテック 人工知能による歩容認証のためのデータ前処理システム、方法、および、プログラム
JP2022064719A (ja) * 2020-10-14 2022-04-26 富士通クライアントコンピューティング株式会社 情報処理装置、情報処理システムおよび情報処理プログラム
JP7525055B2 (ja) 2021-03-23 2024-07-30 日本電気株式会社 画像解析装置、画像解析方法及びプログラム
WO2022201987A1 (ja) * 2021-03-23 2022-09-29 日本電気株式会社 画像解析装置、画像解析システム、画像解析方法及びプログラム
JPWO2022201987A1 (ja) * 2021-03-23 2022-09-29
JP2023078062A (ja) * 2021-11-25 2023-06-06 株式会社アジラ 行動体同定システム
JP7193104B1 (ja) 2021-11-25 2022-12-20 株式会社アジラ 行動体同定システム
US12141232B2 (en) 2023-07-14 2024-11-12 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US12141231B2 (en) 2023-07-14 2024-11-12 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium
US12136289B2 (en) 2023-07-24 2024-11-05 Nec Corporation Information processing apparatus, information processing method, and non-transitory computer-readable storage medium

Also Published As

Publication number Publication date
CN101398891A (zh) 2009-04-01
CN1842824A (zh) 2006-10-04
CN101398892B (zh) 2010-12-22
US20060120564A1 (en) 2006-06-08
JP3910629B2 (ja) 2007-04-25
CN101398890A (zh) 2009-04-01
JPWO2006013765A1 (ja) 2008-05-01
CN101398891B (zh) 2010-12-08
CN101398890B (zh) 2010-12-08
CN101344923B (zh) 2012-05-23
CN101344923A (zh) 2009-01-14
CN101398892A (zh) 2009-04-01
CN100474339C (zh) 2009-04-01
US7397931B2 (en) 2008-07-08

Similar Documents

Publication Publication Date Title
WO2006013765A1 (ja) 人物判定装置及び人物検索追跡装置
US9384563B2 (en) Image processing device, method, and computer program product
KR101118654B1 (ko) 모션캡쳐 기반의 자세분석을 통한 재활 장치 및 이에 따른 재활 방법
US9275276B2 (en) Posture estimation device and posture estimation method
JP6847254B2 (ja) 歩行者追跡の方法および電子デバイス
JP5148669B2 (ja) 位置検出装置、位置検出方法、及び位置検出プログラム
Ning et al. People tracking based on motion model and motion constraints with automatic initialization
CN108875507B (zh) 行人跟踪方法、设备、系统和计算机可读存储介质
CN114556268A (zh) 一种姿势识别方法及装置、存储介质
JP2015052999A (ja) 個人特徴抽出プログラム、個人特徴抽出装置、および個人特徴抽出方法
EP3438601A1 (en) Measurement device, measurement method, and computer readable recording medium
US20200226787A1 (en) Information processing apparatus, information processing method, and program
JPH0792369B2 (ja) 画像計測装置
CN115527265A (zh) 一种基于体育训练的动作捕捉方法及系统
JP7287686B2 (ja) 関節位置取得装置及び方法
KR20140123399A (ko) 사용자 영상의 신체 부위를 검출하는 장치 및 방법
JP5246946B2 (ja) 全身領域推定装置
JP6944144B2 (ja) スイング解析装置、方法及びプログラム
JP7554245B2 (ja) 人物追跡方法及び人物追跡装置
US20240119087A1 (en) Image processing apparatus, image processing method, and non-transitory storage medium
US20240119620A1 (en) Posture estimation apparatus, posture estimation method, and computer-readable recording medium
Akhavizadegan et al. REAL-TIME AUTOMATED CONTOUR BASED MOTION TRACKING USING A SINGLE-CAMERA FOR UPPER LIMB ANGULAR MOTION MEASUREMENT
WO2021130913A1 (ja) 相対位置検出装置、相対位置検出方法、及び相対位置検出プログラム
JP2023046566A (ja) 選定プログラム、選定方法および情報処理装置
CN116563576A (zh) 姿态比对方法、估计方法、装置及电子设备

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000892.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006531421

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11342651

Country of ref document: US

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11342651

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase