Nothing Special   »   [go: up one dir, main page]

WO2006004099A1 - 残響調整装置、残響補正方法、および、音響再生システム - Google Patents

残響調整装置、残響補正方法、および、音響再生システム Download PDF

Info

Publication number
WO2006004099A1
WO2006004099A1 PCT/JP2005/012362 JP2005012362W WO2006004099A1 WO 2006004099 A1 WO2006004099 A1 WO 2006004099A1 JP 2005012362 W JP2005012362 W JP 2005012362W WO 2006004099 A1 WO2006004099 A1 WO 2006004099A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
reverberation
signal
field space
loud
Prior art date
Application number
PCT/JP2005/012362
Other languages
English (en)
French (fr)
Inventor
Takashi Mitsuhashi
Yoshiki Ohta
Teruo Baba
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to US11/631,493 priority Critical patent/US8023662B2/en
Priority to JP2006528896A priority patent/JP4167286B2/ja
Publication of WO2006004099A1 publication Critical patent/WO2006004099A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/305Electronic adaptation of stereophonic audio signals to reverberation of the listening space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/027Spatial or constructional arrangements of microphones, e.g. in dummy heads
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/301Automatic calibration of stereophonic sound system, e.g. with test microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation

Definitions

  • Reverberation adjustment device Reverberation adjustment device, reverberation correction method, and sound reproduction system
  • the present invention belongs to a technical field of a reverberation adjusting device and a sound reproduction system capable of correcting reverberation.
  • an acoustic reproduction system for analyzing such a sound field space is disposed at a listening position in the sound field space and a plurality of speakers arranged in the sound field space, and a predetermined test signal is amplified. And a microphone for collecting the loud sound of the test signal when the sound is recorded, and analyzing the characteristics of the loud sound at the listening position based on the test signal collected by the microphone. Based on the above, signal processing of a sound source to be reproduced is performed (for example, Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 3-255955
  • the test signal expanded from a plurality of speakers or one selected speaker is collected by a single microphone.
  • the present invention has been made in view of each of the above-mentioned problems.
  • As an example of the problem there is a direction characteristic of the reverberation component of the loud sound at the listening position in analyzing the reverberation characteristic.
  • the invention according to claim 1 is a speaker system including a plurality of speakers arranged in a sound field space, and a sound source is amplified by the speaker system.
  • a reverberation adjusting device that recognizes the reverberation characteristics of the sound field space and adjusts the reverberation component of the sound source output from the speaker system based on the recognized reverberation characteristics, and is disposed in the sound field space.
  • a microphone array that collects a loud sound at a specific listening position in the amplified sound field space, and the reverberation adjusting device serves as the sound source.
  • First acquisition means for acquiring a signal
  • generation means for generating a test signal for analyzing reverberation characteristics of the sound field space as the sound source, and at least one of the sound signal and the test signal Speaker system power Output control means for sound amplification
  • second acquisition means for acquiring a loud sound collected by the microphone array as a loud sound signal, and the listening position based on the acquired loud sound signal
  • Recognizing means for recognizing reverberation characteristics indicating temporal decay of the sound field space with respect to the intensity of the sound at the listening position of the loud sound; Based on the recognized reverberation characteristics, the remaining sound source to be amplified is acquired on the acquired speaker.
  • an adjusting means for adjusting the reverberation characteristics.
  • the invention according to claim 7 adjusts the reverberation component of the sound source output from the speaker system based on the reverberation characteristics of the sound field space that is amplified by the speaker system including a plurality of speakers.
  • the test signal amplified from the system to the sound field space is collected as a sound signal by a microphone array that is arranged in the sound field space and includes a plurality of microphones having the same characteristics.
  • the invention according to claim 8 adjusts the reverberation component of the sound source output from the speaker system based on the reverberation characteristics of the sound field space that is amplified by the speaker system including a plurality of speakers.
  • a reverberation adjusting device wherein the sound source is amplified from the speaker system to the sound field space by a microphone array that is disposed in the sound field space and also includes a plurality of microphone forces having the same characteristics.
  • a first acquisition means for acquiring a sound signal as the sound source and a test signal for analyzing the reverberation characteristics of the sound field space as the sound source
  • Generating means for generating sound
  • output control means for expanding the loudspeaker system power of at least one of the sound signal and the test signal
  • Second acquisition means for acquiring a loud sound signal collected by the microphone array, and directional characteristics indicating the arrival direction of the reverberation component of the loud sound at the listening position based on the acquired loud sound signal.
  • recognizing means for recognizing reverberation characteristics indicating temporal decay of the sound field space related to the intensity of the sound at the listening position of the loud sound, and based on the recognized reverberation characteristics! Reverberation characteristics of the sound source to be amplified in the acquired speaker system
  • adjusting means for adjusting.
  • the invention according to claim 9 is a speaker system including a plurality of speakers arranged in the sound field space, and the sound source space is amplified by the speaker system.
  • a reverberation adjusting device that recognizes the reverberation characteristics and adjusts the reverberation component of the sound source output from the speaker system based on the recognized reverberation characteristics;
  • a microphone that collects a loud sound at a specific listening position in the sound field space when the sound source is also amplified in the sound field space.
  • the reverberation adjusting device includes a first acquisition means for acquiring a sound signal as the sound source, and a test signal for analyzing the reverberation characteristics of the sound field space as the sound source.
  • Generating means for generating sound output control means for expanding the loudspeaker system power of at least one of the sound signal and the test signal, and second sound for acquiring the loud sound collected by the microphone array as a loud sound signal.
  • the acquisition means and the acquired loud sound signal there is a directional characteristic indicating the arrival direction of the reverberation component of the loud sound at the listening position, and the sound intensity of the loud sound at the listening position is Recognizing means for recognizing reverberation characteristics indicating temporal decay of the sound field space; and adjusting means for adjusting reverberation characteristics of a sound source to be amplified on the acquired speaker based on the recognized reverberation characteristics; It has the structure which has these.
  • FIG. 1 is a block diagram showing a configuration of a surround system according to an embodiment of the present application.
  • FIG. 2 is a diagram illustrating a configuration example of a microphone array in the embodiment, which is a configuration example of a microphone array configured by a linear array.
  • FIG. 3 is a diagram illustrating a configuration example of a microphone array in the embodiment, and is a configuration example of a microphone array configured by a cross array.
  • FIG. 4 is a diagram showing a configuration example of a microphone array in one embodiment, and is a configuration example of a microphone array configured by a square array.
  • FIG. 5 is a diagram showing a configuration example of a microphone array in the embodiment, which is a configuration example of a microphone array configured by a circular array.
  • FIG. 6 is a diagram showing a configuration example of a microphone array in the embodiment, and a radial array
  • FIG. 1 is a block diagram showing the configuration of the surround system of the present embodiment
  • FIGS. 2 to 7 are diagrams showing configuration examples of the microphone array of the present embodiment.
  • the surround system 100 of the present embodiment is installed in a listening room 10, that is, in a sound field space that provides sound to be played to a listener.
  • a sound source is reproduced or acquired, and predetermined signal processing is performed on the reproduced sound or the acquired sound.
  • This surround system 100 provides a sound field space with a sense of presence (surround feeling) for the listener by amplifying the signal-processed sound for each speaker by the 5.lch speaker system 130. It is like this.
  • the surround system 100 reproduces a sound source such as a recording medium, or acquires a sound source from the outside such as a television signal, so that a channel (also referred to as a channel) corresponding to each speaker is obtained.
  • the sound source output device 110 that outputs bit stream data in a certain format having components, and the bit stream output from the sound source output device 110 is decoded into an audio signal for each channel, and the signal is output for each audio signal of each channel.
  • a channel refers to a signal transmission path of an audio signal output to each speaker, and each channel basically transmits an audio signal different from other channels.
  • the signal processing device 120 of the present embodiment constitutes the reverberation adjusting device of the present invention
  • the speaker system 130 constitutes the speaker system 130 of the present invention
  • the microphone array 140 The inventive microphone array 140 is constructed.
  • the sound source output device 110 is, for example, a CD (Compact disc) or a DVD (Digital Versatile Disc). Such as media playback devices such as digital television broadcast receivers.
  • the sound source output device 110 reproduces a sound source such as a CD, or acquires a broadcast sound source, and outputs bit stream data having each channel component corresponding to 5.lch to the signal processing device 120. It becomes.
  • Bit stream data having each channel component output from the sound source output device 110 is input to the signal processing device 120, and the signal processing device 120 receives the input bit stream data. Are decoded into audio signals for each channel.
  • the signal processing device 120 includes:
  • Listening room Analyzes spatial characteristics such as frequency characteristics and reverberation characteristics at the listening position in 10 and adjusts the volume level by converting each processed audio signal to an analog signal. It is supposed to be.
  • the signal processing device 120 outputs each audio signal whose volume level is adjusted to each speaker of the speaker system 130.
  • the speaker system 130 includes a center speaker 131 disposed in front of the listener, and a front left speaker (hereinafter referred to as an FL speaker) disposed in front of the listener and disposed on the right or left side of the center speaker 131.
  • a front left speaker hereinafter referred to as an FL speaker
  • 132FL and front right speaker force hereinafter referred to as “FR ⁇ Pee force” are located behind the listener and at the right or left side of each of FL speaker force 132FL and FR speaker 132FR.
  • SL speaker Surround left speaker
  • SR ⁇ peak power 133SR
  • subwoofer speaker power for low frequency playback
  • center speaker 131, FL speaker 132FL and FR speaker 132F R, SL speaker 133SL and SR speaker 133SR are composed of all-band type speaker power with frequency characteristics that can be reproduced over almost the entire frequency band when the audio signal is amplified, and the radiation axis is the listening position. Each signal is loudened toward the.
  • the subwoofer 134 is used to amplify a predetermined low frequency band.
  • the microphone array 140 is arranged in the listening room 10 and also includes a plurality of microphones M force having the same characteristics.
  • the audio signal is also amplified in the listening system 10
  • the sound is amplified.
  • a loud sound is collected at a specific listening position.
  • the microphone port array 140 of the present embodiment collects a loud sound based on the test signal output from the speaker system 130 for each microphone M, and the collected loud sound is electrically collected.
  • the signal is converted into a signal and output to the signal processing device 120 as each sound collection signal (hereinafter also referred to as a loud sound signal).
  • the microphone array 140 has a configuration in which a plurality of microphones M are arranged on a plane parallel to the floor surface of the listening room 10.
  • the microphone array 140 has a loudspeak direction (hereinafter simply referred to as loudspeaker) recognized by the loudspeaker system 130 when the loudspeaker is loudened.
  • loudspeaker a loudspeak direction
  • a cross array composed of a second array in which a plurality of microphones M are arranged in parallel on an axis orthogonal to the array, and parallel to the floor surface with reference to the center of the listening position as shown in FIG. It is composed of a quadrangular array formed by arranging a plurality of microphones M on a flat surface.
  • the microphone array 140 is a circular array that forms a circle by arranging a plurality of microphones M on a plane parallel to the floor surface with respect to the center of the listening position. And as shown in Fig. 6 and Fig. 7, a radial array with multiple microphones M arranged in parallel on a plane parallel to the floor surface in 6 or 5 directions evenly based on the loudspeaker direction. It becomes like this. [0029] It should be noted that in microphone array 140, there is a difference in the detection result of the directivity of the loud sound in listening room 10, which will be described later, due to the increase or decrease in the number of microphones M and the arrangement shape thereof.
  • the more microphones M the more precisely the directivity of loud sound can be detected, and the directivity of loud sound from all directions with respect to the listening position.
  • the signal processing device 120 of this embodiment is used when bit stream data of a predetermined format having each channel component is input and decoded into an audio signal for each channel.
  • An input processing unit 121 that converts the audio data into signal format, and decodes the converted audio data into audio signals for each channel, and adjusts the reproduction characteristics including reverberation characteristics for loud sound for each channel, that is,
  • the signal processing unit 200 that performs signal processing
  • the DZA converter 122 that performs digital Z analog (hereinafter referred to as DZA) conversion on the audio signal of each channel, and the signal of each channel for each channel.
  • a power amplifier 123 for amplifying the reproduction level.
  • the signal processing device 120 includes a test signal generation unit 124 that generates a test signal used for analyzing the spatial characteristics of the listening room 10, in particular, reverberation characteristics in the present embodiment, and a microphone array 140.
  • a microphone amplifier 125 that amplifies the signal collected by the sound up to a preset signal level, and analog Z-digital (hereinafter referred to as AZD) conversion that converts the amplified sound collection signal from an analog signal to a digital signal.
  • AZD analog Z-digital
  • the spatial characteristic analysis unit 127 that analyzes the spatial characteristics of the listening room 10 and the operation unit 128 for operating each unit
  • a system control unit 129 that controls each unit based on the operation of the operation unit 128.
  • the input processing unit 121 of the present embodiment constitutes a first acquisition unit of the present invention
  • the signal processing unit 200 constitutes an adjustment unit of the present invention.
  • the power amplifier 123 of this embodiment constitutes the output control means of the present invention
  • the test signal generator 124 constitutes the generation means of the present invention.
  • the spatial characteristic analysis unit 127 of the present embodiment is This constitutes the second acquisition means and recognition means of the present invention.
  • the input processing unit 121 receives bit stream data in a predetermined format having each channel component.
  • the input processing unit 121 converts the input bit stream data into a predetermined format.
  • the converted audio data is output to the signal processing unit 200.
  • the signal processing unit 200 receives the audio data output from the input processing unit 121 and the test signal generated by the test signal generation unit 124, and this signal processing.
  • the unit 200 decodes the input audio data into audio signals for each channel, adjusts the reproduction characteristics by performing predetermined signal processing for each channel, and converts the audio signal for each channel to each DZA.
  • the data is output to the converter 122.
  • the signal processing unit 200 performs predetermined processing for amplifying the input test signal for each speaker under the control of the system control unit 129, and uses the test signal as an audio signal for each channel. Output to DZA change 122.
  • the signal processing unit 200 adjusts the frequency characteristics of the input signal based on the data of each parameter output from the spatial characteristic analysis unit 127. Determine the coefficients required for each signal processing such as delay time control, signal level control, and reverberation control, perform each signal processing based on the determined coefficients, and output to each DZA transformation 122 It is supposed to be.
  • Each audio signal subjected to signal processing for each channel is input to the DZ A converter 122.
  • the DZA converter 122 receives the input digital signal.
  • These audio signals and test signals are converted into analog signals and output to the respective power amplifiers 123.
  • An audio signal subjected to signal processing for each channel is input to the power amplifier 123.
  • This power amplifier 123 is designated by the operation unit 128 under the control of the system system control unit 129.
  • the signal level of the audio signal is amplified, and each amplified audio signal is output to each speaker corresponding to each channel.
  • the test signal generator 124 generates a test signal used for analyzing the spatial characteristics such as the frequency characteristic of the listening room 10, the level characteristic of the reproduction level, the delay time analysis, and the reverberation characteristic.
  • the test signal is output to the signal processing unit 200.
  • the test signal generation unit 124 generates a test signal such as white noise, pink noise, or a sweep signal that sweeps the frequency over a certain frequency range under the system control unit 129.
  • the generated test signal is output to the signal processing unit 200.
  • test signal generation unit 124 of the present embodiment generates a test signal in conjunction with the signal processing unit 200 and the spatial characteristic analysis unit 127 under the system control unit 129, which will be described later. It is used when processing for adding and generating reverberation components is executed.
  • the microphone amplifier 125 receives each sound collection signal output from the microphone array 140 for each microphone M, and this microphone amplifier 125 presets each input sound collection signal. The amplified signal level is amplified and output to the AZD converter 126.
  • the AZD converter 126 is configured to receive each sound collection signal for each microphone M output from the microphone amplifier 125.
  • the AZD converter 126 receives each sound collection signal input thereto.
  • the analog signal is converted into a digital signal, and each sound collection signal converted into the digital signal is output to the spatial characteristic analysis unit 127.
  • the sound collection signal converted into a digital signal is input to the spatial characteristic analysis unit 127, and the spatial characteristic analysis unit 127 performs each channel based on the input sound collection signal. Analysis of the frequency characteristics of the loud sound output for each channel, analysis of its playback level, analysis of its delay time, and analysis of its reverberation characteristics. In addition, the spatial characteristic analysis unit 127 calculates a predetermined parameter based on each analysis result in order to determine a coefficient required when each signal processing is performed in the signal processing unit 200, and calculates each calculated The parameter data is output to the signal processing unit 200. In particular, The spatial characteristic analysis unit 127 of this embodiment performs each analysis and calculates each parameter based on the collected sound signal based on the test signal output from the speaker system 130.
  • the operation unit 128 includes a remote control device including various keys such as various confirmation buttons, selection buttons, and numeric keys, or various key buttons. Instructions for analyzing the spatial characteristics of the listening room 10 are provided. Is now used to enter!
  • the operation unit 128 is used to perform operations related to processing for generating and adding a reverberation component to an audio signal to be amplified.
  • the system control unit 129 comprehensively controls general functions for amplifying the audio signal by amplifying the audio signal from each speaker.
  • the system control unit 129 has a directional characteristic indicating the arrival direction of the reverberation component of the loud sound at the listening position by performing a predetermined process on the collected signal collected by each microphone M.
  • Control of analysis processing (hereinafter referred to as reverberation characteristics analysis processing and! / ⁇ ⁇ ) that analyzes the reverberation characteristics indicating the temporal attenuation of the sound field space relating to the sound intensity at the listening position of the loud sound.
  • the reverberation characteristic is a characteristic indicating temporal decay of the amplitude level (intensity) of the loud sound that is heard at an arbitrary listening position in the listening room 10! ⁇ Specifically, based on the collected sound signal in the input test signal, the amplitude level based on the first loud sound (direct sound) that arrives at the listening position from any speaker for each frequency band.
  • the characteristic of the reverberation time indicating the attenuation ratio and the time at that time.
  • FIG. 8 is a block diagram showing the configuration of the signal processing unit 200 in this embodiment.
  • the signal processing unit 200 decodes the input audio data into audio signals for each channel, and outputs the decoded audio signal for each channel and the test signal generation unit 124.
  • the input to the test signal is switched.
  • the signal processing unit 200 adjusts the reproduction characteristics by performing predetermined signal processing on the input signal for each channel, and performs the input test under the control of the system control unit 129. Predetermined processing is performed to make the signal louder for each speaker.
  • the signal processing unit 200 receives a decoder 210 that decodes the audio signal for each channel based on the input audio data, and the audio signal of each channel output from the data.
  • Input switching section 220 for switching test signals, frequency characteristics adjustment circuit 230 that adjusts the frequency characteristics of audio signals or test signals for each channel, and the signal level between channels with other channels Based on the signal level Z delay adjustment unit 240 that delays the input signal every time and the reverberation control coefficient set as described later!
  • a reverberation control circuit 250 that generates a reverberation component of the audio signal or test signal for each channel and adds the reverberation component to the audio signal or the test signal
  • a signal processing control unit 260 for controlling each unit.
  • the signal processing unit 200 includes a frequency characteristic adjustment circuit 230, a signal level Z delay adjustment unit 240, and a reverberation control circuit 250 for each channel.
  • the signal processing control unit 260 and each unit are Connected by bus B.
  • the input audio data is input to the decoder 210.
  • the decoder 210 decodes the input audio data into an audio signal for each channel, and for each channel. Are output to the input switching unit 220.
  • the input switching unit 220 receives an audio signal decoded for each channel and a test signal output from the test signal generation unit 124. Under the control of the signal processing control unit 260, the switching unit 220 switches between the audio signal output from the decoder 210 and the test signal generated by the test signal generation unit 124 to each frequency characteristic adjustment circuit 230. It is designed to output. Further, the input switching unit 220 outputs the test signal to each channel or to one channel selected by the signal processing control unit 260 when outputting the test signal! / RU
  • each frequency characteristic adjustment circuit 230 a filter coefficient for adjusting the gain of the signal component is set for each frequency band under the control of the signal processing control unit 260. ing.
  • Each frequency characteristic adjusting circuit 230 receives an input audio signal or test signal for each channel, and is based on each set filter coefficient! / Adjust the frequency characteristics of the input signal! ⁇
  • Each signal level is output to the Z delay adjustment unit 240.
  • Each signal level Z delay adjustment unit 240 is a coefficient for adjusting an attenuation rate between channels for each channel under the control of the signal processing control unit 260 (hereinafter referred to as an attenuation coefficient). And a coefficient for adjusting the delay amount (delay time) in the audio signal or test signal corresponding to each channel (hereinafter referred to as a delay control coefficient) is set.
  • each signal level Z delay adjustment unit 240 is supplied with an audio signal or a test signal whose frequency characteristics are adjusted for each frequency band. Based on the set attenuation coefficient and delay control coefficient, the attenuation rate and delay amount between channels are adjusted for the input signal, and the audio signal or test signal with the adjusted attenuation rate and delay amount is adjusted.
  • the reverberation control circuit 250 outputs the signal.
  • the reverberation control circuit 250 is set with reverberation control coefficients determined as described later by the signal processing control unit 260, and the reverberation control circuit 250 has the signal level adjusted. Reverberation control is performed on the audio signal or test signal and output to each DZA converter 122.
  • the reverberation control circuit 250 is input with an audio signal or a test signal in which the signal level and the delay amount are adjusted, and the reverberation control circuit 250 includes each channel. Audio signal or test signal input for each frequency band It is designed to divide every region. The reverberation control circuit 250 generates a reverberation component for each frequency band in an audio signal or test signal input based on a reverberation control coefficient described later, and the generated reverberation component is input to the audio signal or test signal. The reverberation control is performed by adding to the test signal, and the reverberation-controlled signal is output to each D ZA converter 122.
  • the reverberation control circuit 250 When the reverberation control is performed by generating and adding a reverberation component to the input signal, the reverberation control circuit 250 performs the reverberation control including the direction characteristic of the reverberation component. Therefore, the reverberation component to be generated is adjusted between each channel. That is, the reverberation control circuit 250 of the present embodiment has a directional characteristic when the reverberation component is amplified, and for each speaker (hereinafter also referred to as a speaker system) with respect to the input signal for each channel. Reverberation control is performed.
  • the reverberation control circuit 250 in the present embodiment constitutes the adjusting means of the present invention.
  • the signal processing control unit 260 determines and sets each coefficient of each frequency characteristic adjustment circuit 230, each signal level Z delay adjustment unit 240, and the reverberation control circuit 250 under the instruction of the system control unit 129. It's like! /
  • the signal processing control unit 260 calculates a filter coefficient, an attenuation coefficient, and a delay control coefficient based on the data of each parameter analyzed by the spatial characteristic analysis unit 127, and outputs each unit.
  • the reverberation control coefficient for performing generation control of each reverberation component in the reverberation control circuit 250 is calculated based on the reverberation parameter, and the calculated reverberation control coefficient is respectively input to the reverberation control circuit 250. It is supposed to be set.
  • the signal processing control unit 260 in the present embodiment has a table for calculating each reverberation control coefficient in the reverberation control circuit 250 based on the input reverberation parameter, and when the reverberation parameter is input. Based on this table, a certain reverberation control coefficient is calculated.
  • a reverberation parameter for calculating a coefficient used when controlling a reverberation component having a directional characteristic is input to the signal processing control unit 260. Yes. Also, the signal processing control unit 260 applies the reverberation component level and its delay to the audio signal or test signal of each channel based on the reverberation parameter indicating the characteristics of the reverberation component analyzed as described later. In addition to adding time, the reverberation control coefficient for adjusting the reverberation component to be added is calculated so that the added reverberation component can be heard from the analyzed arrival direction. Become! /, Ru. The signal processing control unit 260 sets the calculated reverberation control coefficient in the reverberation control circuit 250.
  • the signal processing control unit 260 calculates a reverberation control coefficient for each channel, for each preset frequency band, and for each speaker system as described later. It comes to be.
  • FIG. 9 is a block diagram showing a configuration of the spatial characteristic analysis unit 127 in the present embodiment
  • FIG. 10 is a diagram for explaining reverberation characteristic analysis in the present embodiment.
  • the spatial characteristic analysis unit 127 receives a sound collection signal generated by collecting a loud sound that has been amplified based on the test signal. As described above, based on the input sound collection signal, analysis of the frequency characteristics of the loud sound output for each channel, analysis of its sound pressure level, delay time analysis, and analysis of its reverberation component Based on each analysis result, each data is output to the signal processing unit 200 via the system control unit 129.
  • the spatial characteristic analysis unit 127 includes a frequency characteristic analysis unit 127A that analyzes the frequency characteristic of the listening room 10, and a sound pressure level that analyzes a sound pressure level and a delay time that are amplified from each speaker in the listening room 10.
  • the Z delay time analysis unit 127B and a reverberation characteristic analysis unit 127C that analyzes the reverberation characteristics of the listening room 10 and calculates the reverberation parameters when the reverberation control coefficient setting process is executed.
  • the frequency characteristic analysis unit 127A is configured to analyze the frequency characteristic at the installation position (listening position) of the microphone array 140 in the listening room 10 based on the collected sound signal in the input test signal. Analyze results via system controller 129 The data is output to the signal processing control unit 260 as predetermined parameter data.
  • the sound pressure level Z delay time analysis unit 127B based on the sound collection signal in the input test signal, the sound pressure level and the sound pressure level amplified from each speaker at the installation position of the microphone array 140 in the listening room 10 The delay time is analyzed, and the analysis result is output to the signal processing control unit 260 as data of a predetermined parameter via the system control unit 129.
  • the reverberation characteristic analysis unit 127C performs the reverberation characteristic analysis of the listening room 10
  • the reverberation characteristic analysis unit 127C is based on the temporal change of the reverberation component of the collected test signal!
  • the reverberation characteristic having the directional characteristic of the reverberation component of the loud sound at the listening position of the listening room 10 is analyzed, and the analysis result is sent to the data of a predetermined reverberation parameter via the system control unit 129. Then, the signal is output to the signal processing control unit 260.
  • the reverberation characteristic analysis unit 127C of the present embodiment performs reverberation on a direct component that directly reaches the listening position with respect to the collected signals collected by each microphone M of the microphone array 140.
  • each microphone M in the preset microphone array 140 and other microphones M The reverberation characteristics are calculated for each predetermined angle at the listening position based on the distance at, that is, the distance between the microphones M in the microphone array 140.
  • the microphones M of the microphone array 140 are arranged on a plane parallel to the floor surface of the listening room 10, and the front of the listening room 10, that is, the radial axis of the center speaker 131.
  • the loud sound is reflected by the wall of the listening room and the predetermined direction force.
  • each microphone M A predetermined delay occurs with respect to the loud sound (hereinafter referred to as the direct component (direct sound)) directly reached from the speaker system 130 to the listening position, and each reverberation component is at a predetermined angle ( ⁇ ) with respect to the front.
  • a loud sound (hereinafter referred to as a reverberation component) is collected. Therefore, the loud sound reflected from the wall surface of the listening room 10 recognized by each microphone M is based on the arrival direction and the sound pressure level based on the direction of arrival at the microphone M as a reverberation component. An amplitude difference of.
  • an arrival time difference (dt) occurs with respect to the direct component, and based on this arrival time difference, A predetermined phase difference is generated at each frequency included in the sound.
  • the reverberation characteristic analysis unit 127C performs predetermined delay processing on a plurality of sound collection signals in each microphone M, and adds each sound collection signal subjected to the delay processing. As a result, the reverberation characteristic having the direction characteristic of the loud sound at the listening position can be analyzed.
  • the reverberation characteristic analysis unit 127C of the present embodiment performs the delay process according to the delay amount assumed based on the arrival direction in which each sound collection signal is to be analyzed, and adds each sound collection signal subjected to the delay process.
  • the reverberation characteristics are recognized for each direction of arrival to be analyzed based on the results obtained by the above, and as a result, the processing is performed in all the directions of arrival to be analyzed. As a result, it becomes possible to analyze the reverberation characteristic having the direction characteristic of the loud sound including the reverberation component!
  • the distance from the speaker system 130 to the listening position for example, the distance from the center speaker 131 to the center of the microphone array 140 is set in advance.
  • the reverberation characteristic analysis unit 127C sets each angle of the arrival direction based on the arrangement position of each microphone M based on the center of the listening position, that is, based on the center microphone M.
  • a delay time is calculated for each sound collection signal, and each sound collection signal is delayed for each preset angle in the direction of arrival, and the delayed sound collection signals are added to each other to obtain a listening position. Analyze the reverberation characteristics of each direction of arrival! / Speak.
  • the direction of arrival to be analyzed every 30 degrees is set in advance with the radial axis of the center speaker 131 as a reference, and the reverberation characteristic analysis unit 127C includes each microphone M in the microphone array 140. Based on the array position, a delay amount is calculated for each direction of arrival to be analyzed and stored internally. In addition, the reverberation characteristic analysis unit 127C imposes a delay calculated in advance on each collected signal collected by each microphone M for each predetermined arrival direction, and adds the collected signals. One data (hereinafter referred to as measurement data) is calculated for each predetermined direction of arrival.
  • measurement data is calculated for each predetermined direction of arrival.
  • the reverberation characteristic analysis unit 127C reduces the reverberation characteristic for each predetermined arrival direction, for example, the amplitude level to 6 OdB based on the direct component, based on the measurement data for each predetermined arrival direction.
  • the reverberation characteristics such as the reverberation time indicating the time at the time, the energy distribution of each reverberation component, or the time characteristic of the energy of each reverberation component are calculated.
  • the spatial characteristic analysis unit 127 of the present embodiment performs predetermined weighting in advance corresponding to the arrangement of the microphones M, and based on the collected sound signals collected by the microphones M, When the collected sound signals collected by the microphone array 140 are added, they are added based on a set weight. For example, by reducing the weight on the collected signal collected by the microphone M that is arranged as the central force of the listening position increases, the arrival direction of the reverberation component can be recognized more accurately. When analyzing reverberation characteristics, it is now possible to accurately analyze the direction of arrival of reverberation components!
  • the reverberation characteristic analysis unit 127C compares the reverberation characteristic including the arrival direction of the reverberation component with a desired reverberation characteristic, for example, the reverberation characteristic set via the operation unit 128. As a result of the comparison, in each signal processing control 260, a reverberation parameter for calculating a coefficient used when a reverberation component should be added in the reverberation control path 250 is calculated.
  • the reverberation characteristic analysis unit 127C uses the reverberation parameter for calculating the reverberation control coefficient required when the reverberation control circuit 250 controls the reverberation component in the signal processing control unit 260.
  • the parameter for generating the reverberation component indicating the directional characteristic is included, and the reverberation parameter is calculated! /.
  • FIG. 11 is a block diagram showing the configuration of the reverberation control circuit 250 of the signal processing unit 200 in the present embodiment.
  • the reverberation control circuit 250 is inputted with an audio signal or a test signal of each channel whose signal level is adjusted, and the reverberation control circuit 250 is inputted with the audio signal or the test signal. Then, the inputted audio signal or test signal is divided into the same number as the number of speakers of the speaker system 130. In addition, the reverberation control circuit 250 performs each divided signal for each divided audio signal or test signal (hereinafter referred to as a divided signal) based on the reverberation control coefficient set by the signal processing control unit 260.
  • the reverberation component adjustment for generating and adding the reverberation component is performed, and the signal generated and added to the reverberation component is added for each channel, that is, for each output channel of each speaker.
  • the signal of each added channel is output to the corresponding DZA converter 122.
  • the reverberation control circuit 250 includes a signal dividing unit 251 that divides an input audio signal or test signal into the same number as the speakers of the speaker system 130, and signal processing.
  • a reverberation control coefficient is set by the control unit 260 and an audio signal or a test signal is input, a reverberation component is generated for each divided signal divided based on the set reverberation control coefficient. It has a signal component generation unit 252 that adds a reverberation component to the original divided signal input, and a signal component synthesis unit 253 that synthesizes the divided signal to which each reverberation component is added for each power system.
  • this signal component generation unit 252 adds a reverberation component for each preset frequency band, and the reverberation control coefficient set in the signal component generation unit 252 is as described above. As you can see, each channel is set for each frequency band and for each speaker system! / Speak.
  • the signal divider 251 is provided for each channel, and the audio signal or test signal output from the signal level adjuster 240 is input to the signal divider 252 for each channel. It has become. In addition, when an audio signal or a test signal is input, the signal dividing unit 251 receives the input of each input channel for each channel. One audio signal or test signal is divided into a plurality of signals having the same number of components as the number of speakers, and each of the divided signals is output to each signal component generation unit 252.
  • the signal dividing unit 251 divides the input audio signal or test signal of each channel into the number of speaker systems “6”, and each divided signal has a signal component.
  • the data is output to the generation unit 252. That is, the signal dividing unit 251 of the present embodiment outputs the divided signal to the signal component generating unit 252 for each channel and for each speaker system.
  • the signal component generation unit 252 is provided for each speaker system for each channel, and each signal component generation unit 252 is set for each channel by the signal processing control unit 260 and for each speaker system. In addition, the reverberation control coefficient calculated as described above is set. In addition, each signal component generation unit 252 receives a divided signal divided into a plurality for each channel, and each signal component generation unit 252 receives the corresponding divided signal. Then, a reverberation component is generated and added to the input divided signal and output to the signal component synthesis unit 253 to the corresponding speaker system.
  • a reverberation control coefficient is set and input in advance for each channel, for each frequency band, and for each speaker system by the signal processing control unit 260. Delay processing based on the reverberation control coefficient of the divided signal
  • each signal component generation unit 252 performs filter processing in a FIR (Finite Impulse Response) filter for each frequency band and for each speaker power system. Based on the reverberation control coefficient set by the signal processing control unit 260, that is, the filter coefficient, when the divided signals inputted to each speaker are loudened, the desired reverberation time is obtained in the listening room 10. It is now possible to generate and add reverberation components!
  • FIR Finite Impulse Response
  • Each signal component synthesis section 253 is provided for each speaker system, and each signal component synthesis section 253 is added with the reverberation component output from the corresponding signal component generation section 252.
  • a plurality of divided signals are input.
  • Each signal component combining section 253 adds the divided signals for the corresponding speaker systems that have been input, and generates a signal for each speaker system (hereinafter referred to as a speaker signal). Then, the signal component synthesizing unit 253 outputs the generated speaker signal to the corresponding DZA converter 122.
  • FIG. 12 is a flowchart showing the operations of the reverberation characteristic analysis process and the reverberation control coefficient setting process based on it.
  • step S11 when the system control unit 129 detects an instruction to start reverberation characteristic analysis processing and reverberation control coefficient setting processing from the user via the operation unit 128 (step S11), Select one speaker that should be analyzed and set the reverberation control coefficient (step S12).
  • the system control unit 129 causes the test signal generation unit 124 to generate a selected test signal for the selected speaker power and to make the test signal louder from the selected speaker (step S13). Specifically, the system control unit 129 controls the signal processing control to stop the output of other speakers that are not selected, such as stopping output of the signal level in the power amplifier 123 or prohibiting input in the signal processing unit 200. Start louding the selected speaker power test signal.
  • the microphone array 140 collects loud sound from the speaker, and the system control unit 129 includes the spatial characteristic analysis unit.
  • the collected loud sound is collected at 127 and input through the microphone amplifying unit and the AZD transformation 126 to obtain each signal (step S 14).
  • the spatial characteristic analysis unit 127 temporarily stores the acquired sound collection signals therein. Further, the system control unit 129 may cause the spatial characteristic analysis unit 127 to acquire each collected sound signal once, but in order to improve the S / N ratio, the system control unit 129 repeats the operation a plurality of times to obtain a plurality of collected sound signals. A signal may be acquired. In this case, the spatial characteristic analysis unit 127 is described later. Before performing the reverberation characteristics analysis, the acquired sound collection signals are averaged for each microphone M to calculate the sound collection signal that is the basis of the analysis.
  • the system control unit 129 selects one preset arrival direction angle that has not yet been selected, and executes the following processing (step S 15).
  • the system control unit 129 executes the following processing every 30 degrees with the radial axis of the center speaker 131 as a reference.
  • the system control unit 129 delays the collected sound signals collected by the microphones M of the microphone array 140 in the spatial characteristic analysis unit 127 based on the delay amount at the selected arrival direction angle. In addition, the delay processing is performed, and each delay-collected signal is added to calculate one measurement data. (Step S16).
  • the spatial characteristic analysis unit 127 reads the delay amount corresponding to each microphone M calculated in advance inside, and based on each read delay amount! /, Then, delay processing is performed on the collected sound signal, and each delayed sound collection signal is added.
  • the system control unit 129 calculates the reverberation characteristic of the arrival direction based on the measurement data calculated by the spatial characteristic analysis unit 127 (step S17), and based on the calculated reverberation characteristic, Reverberation parameters are calculated (step S18).
  • the spatial characteristic analysis unit 127 of the present embodiment calculates the time characteristic of energy in the reverberation component based on the calculated measurement data, and calculates the time characteristic of the calculated energy. Calculated as a reverberation parameter depending on the direction of arrival.
  • the system control unit 129 determines the presence or absence of a single arrival direction angle that has not yet been calculated as a reverberation parameter (step S19), and has yet to be calculated as a reverberation parameter. If there is a direction angle, the process proceeds to step S15 and the calculation of the reverberation parameter is not yet performed. If there is no direction of arrival, the system control unit 129 still analyzes the reverberation characteristics and After setting the reverberation parameters, it is determined whether or not there is a spinning force (step S20).
  • the system control unit 129 still analyzes the reverberation characteristics and sets the reverberation parameters and determines that there is a speaker, the system control unit 129 Transition to processing.
  • the system control unit 129 performs signal processing control on each reverberation parameter calculated by the spatial characteristic analysis unit 127.
  • the signal processing control unit 260 calculates each reverberation control coefficient based on the reverberation parameter (step S21).
  • system control unit 129 sets each reverberation control coefficient calculated by the signal processing control unit 260 in the reverberation control circuit 250 (step S22), and ends this operation.
  • the reverberation-added component generation unit is based on the reverberation control coefficient set as described above. Then, the signal processing of the audio signal is performed, that is, the reverberation characteristic of the audio signal is adjusted, and the audio signal processed by the speaker system 130 is amplified!
  • the surround system 100 of the present embodiment includes a speaker system 130 configured with a plurality of speaker forces arranged in the listening room 10, and an audio signal as the speaker system 130.
  • the signal processing device 120 for recognizing the reverberation characteristics of the listening room 10 by adjusting the reverberation component of the audio signal output from the speaker system 130 based on the recognized reverberation characteristics;
  • the microphone array 140 is composed of a plurality of microphones M disposed in the training room 10 and having the same characteristics, and the arrangement distance between the microphones M is determined in advance, and audio signals are listened to from the speaker system 130.
  • the signal processing device 120 analyzes the reverberation characteristics of the listening room 10 as an audio signal and the input processing unit 121 that acquires the sound signal as an audio signal.
  • a loud sound signal and based on the obtained loud sound signal, has a directional characteristic indicating the arrival direction of the reverberation component of the loud sound at the listening position, and relates to the sound intensity of the loud sound at the listening position.
  • a reverberation control circuit 250 that adjusts the reverberation characteristics of the audio signal to be loudspeaked to the acquired speaker based on the recognized reverberation characteristics. ing.
  • the surround system 100 of the present embodiment includes a plurality of microphones M force having the same characteristics, and the microphone array 140 in which the arrangement distance between the microphones M is predetermined is collected.
  • the loudspeaker is acquired as a loudspeaker signal, and has a directional characteristic indicating the direction of arrival of the reverberation component of the loudspeaker at the listening position in the listening room 10 based on the acquired loudspeaker signal. Recognize reverberation characteristics indicating the temporal decay of listening room 10 regarding the sound intensity at the listening position. Then, the surround system 100 of the present embodiment adjusts the reverberation characteristics of the sound source to be amplified on the acquired speaker based on the recognized reverberation characteristics!
  • the surround system 100 of the present embodiment can recognize the arrival direction of the reverberation component when recognizing the reverberation characteristics of each loud sound, and therefore, the sound source such as a CD or DVD is used as a speaker system. It is possible to adjust the reverberation characteristics when the voice is increased from 130 based on the reverberation characteristics in the listening room 10 including the arrival direction of the reverberation component. As a result, the surround system 100 can provide a more natural and more realistic sound field based on the analyzed reverberation characteristics.
  • the surround system 100 of the present embodiment is configured such that the spatial characteristic analysis unit 127 collects sound collected by the microphone array 140 based on each collected sound signal collected by each microphone M. It may be configured to recognize reverberation characteristics having direction characteristics of reverberation components based on the phase difference in the sound signal.
  • the surround system 100 of the present embodiment can accurately estimate the arrival direction of the reverberation component, this surround system 100 can analyze the reverberation characteristics when reproducing the sound source. It is possible to accurately analyze the direction of arrival of reverberation components and provide a more natural and realistic sound field based on the analyzed reverberation characteristics.
  • the spatial characteristic analysis unit 127 sets predetermined weights in advance corresponding to the arrangements of the microphones M, and the microphones M Therefore, the reverberation characteristic having the direction characteristic of the reverberation component is recognized based on the phase difference in each collected sound signal and the set weighting.
  • the surround system 100 further accurately reduces the weight of the collected sound signal collected by the microphone M arranged as the central force of the listening position also increases. Since the direction of arrival of the reverberation component can be recognized, it is possible to accurately analyze the reverberation characteristics including the direction of arrival of the reverberation component.
  • the surround system 100 of the present embodiment is configured by arranging a plurality of microphones M on a plane parallel to the floor surface of the microphone array 140 force listening room 10.
  • a plurality of microphones M are arranged in the same direction as the loudness direction of the loud sound that is recognized when the loud sound is loudened in the listening room 10 by a plurality of spins.
  • the first array and the second array in which a plurality of microphones M are arranged in parallel on a plane orthogonal to the plane on which the first array is arranged are force-configured.
  • the surround system 100 of the present embodiment forms a polygon by arranging the plurality of microphones on a plane parallel to the floor surface of the listening room 10 with reference to the center of the microphone array 140 power listening position.
  • the microphone array 140 since the microphone array 140 is configured, it is possible to accurately estimate the arrival direction of the reverberation component.
  • lch surround system 100 Of course, 7.
  • the present invention can also be applied to other sound reproduction devices such as stereo sound reproduction devices.
  • the signal processing device 120 performs reverberation control and other signal processing based on the digital signal output from the sound source output device 110.
  • the processing device 120 may perform signal processing based on an analog signal output from the sound source output device 110 or an analog signal input by another external force.
  • a microphone array is formed by a microphone M having the same characteristics.
  • the microphone array may be configured by a directional microphone having directivity in a predetermined direction with respect to the microphone, or one directivity. It may be possible to collect the collected signal at a predetermined angle by changing the direction of the microphone.
  • the reverberation characteristic analyzer 127C calculates the reverberation parameters using the signals as they are without performing delay processing and calorie calculation processing on each collected sound signal. Therefore, even in this case, when recognizing the reverberation characteristics of each loud sound, the direction of arrival of the reverberation component can also be recognized, as described above. Therefore, based on the analyzed reverberation characteristics, It is possible to provide a natural and more realistic sound field.
  • the microphone array 140 of the present embodiment has a force that arranges a plurality of microphones M on a plane parallel to the floor surface of the listening room 10.
  • a plurality of microphones M are arranged on the parallel plane.
  • the spatial characteristic analysis unit 1270 calculates the reverberation characteristics of the two-dimensional plane that can be placed in the listening room 10, that is, the characteristics of the two-dimensional reverberation component in the same plane of the floor surface of the listening room 10.
  • the reverberation characteristics of the listening room 10 three-dimensionally by arranging the microphone array 140 three-dimensionally, for example, by forming a rectangular array into a rectangular parallelepiped array. May be
  • the signal processing control unit 260 calculates a reverberation control coefficient for generating a reverberation component three-dimensionally, and sets the calculated reverberation control coefficient in each reverberation control circuit 250. It becomes like this.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Abstract

 残響成分の到来方向を含めた拡声音の残響特性を的確に解析することができるとともに、より自然で、かつ、より臨場感のある音響再生システムを提供すること。  サラウンドシステム100は、スピーカシステム130と、リスニングルーム10の残響特性を認識し、当該認識された残響特性に基づいて拡声される音源の残響成分を調整する信号処理装置120と、リスニングルーム10に配設されるとともに同一の特性を有する複数のマイクロホンMから構成され、当該各マイクロホンM間の配列距離が予め定められるマイクロホンアレイ140と、を備え、マイクロホンアレイ140が、音源がスピーカシステム130からリスニングルーム10に拡声された場合に、当該拡声されたリスニングルーム10の特定の聴取位置にて拡声音を集音するようになっている。

Description

明 細 書
残響調整装置、残響補正方法、および、音響再生システム
技術分野
[0001] 本発明は、残響補正可能な残響調整装置および音響再生システムの技術分野に 属する。
背景技術
[0002] 近年、音楽などの音源を再生する際に、当該音源が再生される音場空間の音場補 正を行う AVアンプなどの再生装置が実用に供されており、また、最近では、音源が 再生される音場空間の特性に基づいて当該音源の残響特性を補正し、音場空間の 残響制御を行う技術が注目されている。この場合に、当該音源が再生される音場空 間の残響特性、すなわち、拡声音の聴取位置における音の強度に関する残響特性 を的確に解析することが重要になっている。特に、このような残響特性を解析する技 術としては、音場空間に当該音場空間にて拡声されたテスト信号を集音することによ つて、当該音場空間の残響特性を解析する方法が知られている。
[0003] 従来、このような音場空間の解析を行う音響再生システムは、音場空間に配置され た複数のスピーカと、当該音場空間の聴取位置に配置され、所定のテスト信号が拡 声された際に当該テスト信号の拡声音を集音するためのマイクロホンと、を有し、当該 マイクロホンによって集音されたテスト信号に基づいて、聴取位置における拡声音の 特性を解析し、当該解析結果に基づいて再生すべき音源の信号処理を行うようにな つている(例えば、特許文献 1)。
特許文献 1:特開 3— 255955号公報
発明の開示
発明が解決しょうとする課題
[0004] しかしながら、従来の音響再生システムにあっては、単一のマイクロホンによって、 複数のスピーカまたは選択された一のスピーカから拡声されたテスト信号を集音する ようになっているので、聴取位置における拡声音の残響成分の到来方向を示す方向 特性を有し、当該拡声音の当該聴取位置における残響特性を推定することができず 、音場空間の残響特性を的確に解析すること、すなわち、音場空間の残響特性を的 確に把握することができない。この結果、この音響再生システムにあっては、当該解 析結果に基づいて再生すべき音源の信号処理を行ったとしても、当該音源が音場空 間に再生される際に、聴感上の違和感、または、再生される音源に対する臨場感が 的確に表現できな 、場合もある。
[0005] 本発明は、上記の各問題点に鑑みて為されたもので、その課題の一例としては、残 響特性を解析する上で、聴取位置における拡声音の残響成分の方向特性を有し、 当該拡声音の当該聴取位置における残響特性を的確に解析することができるととも に、当該解析された残響特性に基づいてより自然で、かつ、より臨場感のある音響再 生システムおよび残響調整装置を提供することにある。
課題を解決するための手段
[0006] 上記の課題を解決するために、請求項 1に記載の発明は、音場空間に配置される 複数のスピーカから構成されるスピーカシステムと、音源を前記スピーカシステムによ つて拡声させることによって前記音場空間の残響特性を認識し、当該認識された残 響特性に基づいて当該スピーカシステムから出力される音源の残響成分を調整する 残響調整装置と、前記音場空間に配設されるとともに同一の特性を有する複数のマ イク口ホン力 構成され、当該各マイクロホン間の配列距離が予め定められるマイクロ ホンアレイであって、前記音源が前記スピーカシステムから前記音場空間に拡声され た場合に、当該拡声された音場空間の特定の聴取位置にて拡声音を集音するマイ クロホンアレイと、を備え、前記残響調整装置が、前記音源として音信号を取得する 第 1取得手段と、前記音源として前記音場空間の残響特性を解析するためのテスト 信号を発生させる発生手段と、前記音信号または前記テスト信号の少なくとも何れか 一方の信号を前記スピーカシステム力 拡声させる出力制御手段と、前記マイクロホ ンアレイによって集音された拡声音を拡声音信号として取得する第 2取得手段と、前 記取得された拡声音信号に基づ 、て、前記聴取位置における拡声音の残響成分の 到来方向を示す方向特性を有し、当該拡声音の当該聴取位置における音の強度に 関する前記音場空間の時間的な減衰を示す残響特性を認識する認識手段と、前記 認識された残響特性に基づいて、前記取得されたスピーカに拡声すべき音源の残 響特性を調整する調整手段と、を有する構成をしている。
[0007] また、請求項 7に記載の発明は、複数のスピーカから構成されるスピーカシステムに よって拡声される音場空間の残響特性に基づいて当該スピーカシステムから出力さ れる音源の残響成分を調整する残響調整方法であって、前記音源として前記音場 空間の残響特性を解析するためのテスト信号を発生させ、当該発生させたテスト信号 を前記スピーカシステムによって拡声させるテスト信号拡声工程と、前記スピーカシス テムから前記音場空間に拡声された前記テスト信号を、前記音場空間に配設される とともに同一の特性を有する複数のマイクロホンカゝら構成されるマイクロホンアレイに よって拡声音信号として集音させる集音工程と、前記取得された拡声音信号に基づ V、て、前記聴取位置における拡声音の残響成分の到来方向を示す方向特性を有し 、当該拡声音の当該聴取位置における音の強度に関する前記音場空間の時間的な 減衰を示す残響特性を認識する認識工程と、スピーカシステムよって拡声すべき音 源を取得して拡声する際に、認識された残響特性に基づいて、当該取得された音信 号の残響特性を調整する調整工程と、を含む構成を有して 、る。
[0008] また、請求項 8に記載の発明は、複数のスピーカから構成されるスピーカシステムに よって拡声される音場空間の残響特性に基づいて当該スピーカシステムから出力さ れる音源の残響成分を調整する残響調整装置であって、前記音場空間に配設され るとともに同一の特性を有する複数のマイクロホン力も構成されるマイクロホンアレイ によって、前記音源が前記スピーカシステムから前記音場空間に拡声された拡声音 を音場空間の特定の聴取位置にて集音する場合に、前記音源として音信号を取得 する第 1取得手段と、前記音源として前記音場空間の残響特性を解析するためのテ スト信号を発生させる発生手段と、前記音信号またはテスト信号の少なくとも何れか 一方の信号を前記スピーカシステム力 拡声させる出力制御手段と、前記マイクロホ ンアレイによって集音された拡声音信号を取得する第 2取得手段と、前記取得された 拡声音信号に基づいて、前記聴取位置における拡声音の残響成分の到来方向を示 す方向特性を有し、当該拡声音の当該聴取位置における音の強度に関する前記音 場空間の時間的な減衰を示す残響特性を認識する認識手段と、前記認識された残 響特性に基づ!/、て、前記取得されたスピーカシステムに拡声すべき音源の残響特性 を調整する調整手段と、を有する構成をしている。
[0009] また、請求項 9に記載の発明は、音場空間に配置される複数のスピーカから構成さ れるスピーカシステムと、音源を前記スピーカシステムによって拡声させることによつ て前記音場空間の残響特性を認識し、当該認識された残響特性に基づ 、て当該ス ピーカシステムから出力される音源の残響成分を調整する残響調整装置と、前記音 場空間に配設されるとともに所定の方向に指向特性を有するマイクロホンであって、 前記音源が前記スピーカシステム力も前記音場空間に拡声された場合に、当該拡声 された音場空間の特定の聴取位置にて拡声音を集音するマイクロホンと、を備え、前 記残響調整装置が、前記音源として音信号を取得する第 1取得手段と、前記音源と して前記音場空間の残響特性を解析するためのテスト信号を発生させる発生手段と 、前記音信号または前記テスト信号の少なくとも何れか一方の信号を前記スピーカシ ステム力 拡声させる出力制御手段と、前記マイクロホンアレイによって集音された拡 声音を拡声音信号として取得する第 2取得手段と、前記取得された拡声音信号に基 づ 、て、前記聴取位置における拡声音の残響成分の到来方向を示す方向特性を有 し、当該拡声音の当該聴取位置における音の強度に関する前記音場空間の時間的 な減衰を示す残響特性を認識する認識手段と、前記認識された残響特性に基づ ヽ て、前記取得されたスピーカに拡声すべき音源の残響特性を調整する調整手段と、 を有する構成をしている。
図面の簡単な説明
[0010] [図 1]本願に係る一実施形態のサラウンドシステムの構成を示すブロック図である。
[図 2]—実施形態におけるマイクロホンアレイの構成例を示す図であり、直線アレイに よって構成されるマイクロホンアレイの構成例である。
[図 3]—実施形態におけるマイクロホンアレイの構成例を示す図であり、十字アレイに よって構成されるマイクロホンアレイの構成例である。
[図 4]一実施形態におけるマイクロホンアレイの構成例を示す図であり、四角形アレイ によって構成されるマイクロホンアレイの構成例である。
[図 5]—実施形態におけるマイクロホンアレイの構成例を示す図であり、円形アレイに よって構成されるマイクロホンアレイの構成例である。 [図 6]—実施形態におけるマイクロホンアレイの構成例を示す図であり、放射状アレイ
Figure imgf000007_0001
120 ··· • 信号処理装置
130 ··· • スピーカシステム
140 ··· • マイクロホンアレイ
127 ··· • 空間特性解析部
127C … 残響特性解析部
129 ··· • システム制御部
200 ··· • 信号処理部
250 ··· • 残響制御回路
251 ··· • 信号分割部
252 ··· • 信号成分生成部
253 ··· • 信号成分合成部
発明を実施するための最良の形態
[0012] 次に、本願に好適な実施の形態について、図面に基づいて説明する。
[0013] なお、以下に説明する実施形態は、 5. lchのサラウンドシステム(以下、単に、サラ ゥンドシステムという。 )に対して本願の残響調整装置または音場再生システムを適用 した場合の実施形態である。
[0014] まず、図 1を用いて本実施形態におけるサラウンドシステムの構成について説明す る。なお、図 1は、本実施形態のサラウンドシステムの構成を示すブロック図であり、図 2〜図 7は、本実施形態のマイクロホンアレイの構成例を示す図である。
[0015] 本実施形態のサラウンドシステム 100は、図 1に示すように、リスニングルーム 10、 すなわち、聴取者に対して再生される音を提供する音場空間に設置されるようになつ ており、音源の再生または取得を行うとともに、当該再生された音または取得された 音に対して所定の信号処理を行うようになっている。そして、このサラウンドシステム 1 00は、 5. lchのスピーカシステム 130によって、信号処理された音を各スピーカ毎に 拡声し、聴取者に対して臨場感 (サラウンド感)のある音場空間を提供するようになつ ている。
[0016] このサラウンドシステム 100は、記録メディアなどの音源を再生することにより、また は、テレビジョン信号などの外部から音源を取得することにより、各スピーカに対応す るチャンネル(チャネルとも言う。 )成分を有する一定の形式のビットストリームデータを 出力する音源出力装置 110と、当該音源出力装置 110から出力されたビットストリー ムを各チャンネル毎のオーディオ信号にデコードし、各チャンネルのオーディオ信号 毎に信号処理を行うとともに、リスニングルーム 10の残響特性その他の空間特性を 解析する信号処理装置 120と、各チャンネルに対応する各種のスピーカからなるスピ 一力システム 130と、リスニングルーム 10の空間特性を解析する際に用いられるマイ クロホンアレイ 140と、から構成される。
[0017] なお、チャンネルとは、各スピーカに出力されるオーディオ信号の信号伝送路をい い、各チャンネルは、他のチャンネルと基本的には異なるオーディオ信号を伝送する ようになっている。
[0018] また、例えば、本実施形態の信号処理装置 120は、本発明の残響調整装置を構成 するとともに、スピーカシステム 130は、本発明のスピーカシステム 130を構成し、マイ クロホンアレイ 140は、本発明のマイクロホンアレイ 140を構成する。
[0019] 音源出力装置 110は、例えば、 CD (Compact disc)、 DVD (Digital Versatile Disc) などのメディア再生装置またはデジタルテレビジョン放送を受信する受信装置力 構 成される。この音源出力装置 110は、 CDなどの音源を再生することにより、または、 放送された音源を取得し、 5. lchに対応する各チャンネル成分を有するビットストリ ームデータを信号処理装置 120に出力するようになって 、る。
[0020] 信号処理装置 120には、音源出力装置 110から出力された各チャンネル成分を有 するビットストリームデータが入力されるようになっており、この信号処理装置 120は、 入力されたビットストリームデータを各チャンネル毎のオーディオ信号にデコードする ようになっている。
[0021] また、この信号処理装置 120は、
(1)デコードされた各オーディオ信号に対して周波数特性の調整、
(2)デコードされた各オーディオ信号に対して予め設定された残響成分の付加、
(3)デコードされた各オーディオ信号における信号レベルおよび遅延量の調整、
(4)リスニングルーム 10の聴取位置における周波数特性および残響特性などの空間 特性の解析を行うようになっており、当該信号処理された各オーディオ信号をアナ口 グ信号に変換して音量レベルを調整するようになっている。そして、この信号処理装 置 120は、音量レベルが調整された各オーディオ信号をスピーカシステム 130の各 スピーカに出力するようになって 、る。
[0022] なお、本実施形態における信号処理装置 120の構成およびその動作の詳細につ いては、後述する。
[0023] スピーカシステム 130は、聴取者の前方正面に配置されるセンタースピーカ 131と 、聴取者の前方に配置されるとともにセンタースピーカ 131の右側または左側に配置 されるフロント左スピーカ(以下、 FLスピーカという。 ) 132FLおよびフロント右スピー 力(以下、 FR^ピー力という。 ) 132FRと、聴取者の後方に配置されるとともに、 FLス ピー力 132FLおよび FRスピーカ 132FRのそれぞれの右側または左側に配置される サラウンド左スピーカ(以下、 SLスピーカという。) 133SLおよびサラウンド右スピーカ (以下、 SR^ピー力という。 ) 133SRと、任意の位置に配置される低域再生用スピー 力(以下、サブウーハという。) 134と、を有している。
[0024] 具体的には、センタースピーカ 131、 FLスピーカ 132FLおよび FRスピーカ 132F R、 SLスピーカ 133SLおよび SRスピーカ 133SRは、オーディオ信号を拡声する際 の周波数帯域のほぼ全域にわたって再生可能な周波数特性を有する全帯域型のス ピー力により構成されるとともに、その放射軸を聴取位置に向けて各信号を拡声する ようになつている。また、サブウーハ 134は、所定の低域の周波数帯域を拡声する際 に用いられるようになって 、る。
[0025] マイクロホンアレイ 140は、リスニングルーム 10に配設されるとともに同一の特性を 有する複数のマイクロホン M力も構成され、オーディオ信号がスピーカシステム 130 力もリスニングルーム 10に拡声された場合に、当該拡声されたリスニングルーム 10の 特定の聴取位置にて拡声音を集音するようになっている。特に、本実施形態のマイク 口ホンアレイ 140は、スピーカシステム 130から出力されたテスト信号に基づく拡声音 を各マイクロホン M毎に集音するようになっており、当該集音された各拡声音を電気 信号に変換して各集音信号 (以下、拡声音信号ともいう。)として信号処理装置 120 に出力するようになっている。
[0026] 具体的には、マイクロホンアレイ 140は、リスニングルーム 10の床面と平行な面上に 複数のマイクロホン Mが配列される構成を有して 、る。
[0027] 例えば、マイクロホンアレイ 140は、図 2に示すように、マイクロホンアレイ 140は、ス ピーカシステム 130によって拡声音が拡声されることより認識される当該拡声音の拡 声方向(以下、単に拡声方向という。)に対して直交する軸上にマイクロホン Mが配列 される直線アレイ、図 3に示すように、拡声方向と同一軸方向に複数のマイクロホン M が配列された第 1アレイと当該第 1アレイと直交する軸上に複数のマイクロホン Mが並 列に配列されている第 2アレイとから構成される十字アレイ、および、図 4に示すように 、聴取位置の中心を基準として床面と平行な面上に複数のマイクロホン Mが配列さ れることによって形成する四角形アレイから構成される。
[0028] また、マイクロホンアレイ 140は、図 5に示すように、聴取位置の中心を基準として床 面と平行な面上に複数のマイクロホン Mが配列されることによって円形を形成する円 形アレイ、および、図 6および図 7に示すように、拡声方向を基準に均等に 6方向また は 5方向に床面と平行な面上に複数のマイクロホン Mが並列に配列される放射状ァ レイカ 構成されるようになって 、る。 [0029] なお、マイクロホンアレイ 140において、マイクロホン Mの数の増減、および、その配 列形状によって、後述するリスニングルーム 10における拡声音の指向性の検出結果 に差異が生ずる。一般的には、マイクロホン Mが多ければ多いほど、拡声音の指向 性を厳密に検出することができるようになっており、また、聴取位置に対して全方向か らの拡声音の指向性を検出するためには、聴取位置の中心を基準として複数のマイ クロホン Mを配列させることが望まし 、。
[0030] 次に、本実施形態の信号処理装置 120の構成およびその動作について説明する。
[0031] 本実施形態の信号処理装置 120は、図 1に示すように、各チャンネル成分を有する 所定の形式のビットストリームデータが入力され、各チャンネル毎のオーディオ信号 にデコードする際に用 、る信号形式のオーディオデータに変換する入力処理部 121 と、変換されたオーディオデータを各チャンネル毎のオーディオ信号にデコードする とともに、各チャンネル毎に拡声音に対する残響特性を含む再生特性の調整、すな わち、信号処理を行う信号処理部 200と、各チャンネルのオーディオ信号に対してデ ジタル Zアナログ(以下、 DZAという。)変換を行う DZA変換器 122と、各チャンネ ル毎に各チャンネルの信号の再生レベルを増幅する電力増幅器 123と、を有してい る。
[0032] また、この信号処理装置 120は、リスニングルーム 10の空間特性、特に、本実施形 態では残響特性を解析する際に用いるテスト信号を発生させるテスト信号発生部 12 4と、マイクロホンアレイ 140によって集音された信号を予め設定された信号レベルま で増幅するマイク増幅器 125と、増幅された集音信号をアナログ信号からデジタル信 号に変換するアナログ Zデジタル (以下、 AZDという。)変換を行う AZD変翻 12 6と、デジタル信号に変換された集音信号に基づ!/、てリスニングルーム 10の空間特 性を解析する空間特性解析部 127と、各部を操作するための操作部 128と、操作部 128の操作に基づ 、て各部を制御するシステム制御部 129と、を有して 、る。
[0033] なお、例えば、本実施形態の入力処理部 121は、本発明の第 1取得手段を構成し 、信号処理部 200は、本発明の調整手段を構成する。また、例えば、本実施形態の 電力増幅器 123は、本発明の出力制御手段を構成し、テスト信号発生部 124は、本 発明の発生手段を構成する。さらに、例えば、本実施形態の空間特性解析部 127は 、本発明の第 2取得手段および認識手段を構成する。
[0034] 入力処理部 121には、各チャンネル成分を有する所定の形式のビットストリームデ ータが入力されるようになっており、この入力処理部 121は、入力されたビットストリー ムデータを所定形式のオーディオデータに変換し、当該変換されたオーディオデー タを信号処理部 200に出力するようになって 、る。
[0035] 信号処理部 200には、入力処理部 121から出力されたオーディオデータおよびテ スト信号発生部 124にお 、て発生されたテスト信号が入力されるようになっており、こ の信号処理部 200は、入力されたオーディオデータを各チャンネル毎のオーディオ 信号にデコードするとともに、各チャンネル毎に所定の信号処理を行うことによって再 生特性を調整し、各チャンネル毎にオーディオ信号をそれぞれ各 DZA変換器 122 に出力するようになっている。また、この信号処理部 200は、システム制御部 129の 制御の下、入力されたテスト信号を各スピーカ毎に拡声させるための所定の処理を 行 ヽ、テスト信号をオーディオ信号として各チャンネル毎に各 DZA変 122に出 力するようになっている。
[0036] 具体的には、信号処理部 200は、後述するように、空間特性解析部 127から出力さ れた各パラメータのデータに基づいて、入力された信号に対して、周波数特性の調 整、遅延時間制御、信号レベル制御および残響制御などの各信号処理を行う際に 必要となる係数を決定し、当該決定された各係数に基づいて各信号処理を行い、各 DZA変翻 122に出力するようになっている。
[0037] なお、本実施形態における信号処理部 200の構成およびその動作の詳細につい ては、後述する。
[0038] DZ A変換器 122には、各チャンネル毎にそれぞれ信号処理が行われた各オーデ ィォ信号が入力されるようになっており、この DZA変換器 122は、入力されたデジタ ル信号である各オーディオ信号およびテスト信号をアナログ信号に変換して各電力 増幅器 123にそれぞれ出力するようになっている。
[0039] 電力増幅器 123には、各チャンネル毎に信号処理されたオーディオ信号が入力さ れるようになっており、この電力増幅器 123は、システムシステム制御部 129の制御 の下、操作部 128よって指定された音量の指示に基づいて各チャンネル毎のオーデ ィォ信号の信号レベルを増幅し、増幅された各オーディオ信号を各チャンネルに対 応する各スピーカに出力するようになって 、る。
[0040] テスト信号発生部 124は、リスニングルーム 10の周波数特性、再生レベルのレベル 特性、遅延時間解析および残響特性などの空間特性を解析する際に用いるテスト信 号を発生させ、当該発生させたテスト信号を信号処理部 200に出力するようになって いる。具体的には、テスト信号発生部 124は、システム制御部 129の下、例えば、ホ ワイトノイズ、ピンクノイズまたは一定の周波数範囲にぉ ヽて周波数をスイープさせる スイープ信号などテスト信号を発生させ、当該発生させたテスト信号を信号処理部 20 0に出力するようになって 、る。
[0041] なお、本実施形態のテスト信号発生部 124は、システム制御部 129の下、信号処理 部 200および空間特性解析部 127と連動してテスト信号を発生するようになっており 、後述する残響成分の付加およびその生成を行うための処理を実行する際に用いら れるようになっている。
[0042] マイク増幅器 125には、マイクロホンアレイ 140からマイクロホン M毎に出力された 各集音信号が入力されるようになっており、このマイク増幅器 125は、入力された各 集音信号を予め設定された信号レベルまで増幅し、当該増幅された各集音信号を A ZD変翻126に出力するようになっている。
[0043] AZD変換器 126には、マイク増幅器 125から出力されたマイクロホン M毎の各集 音信号が入力されるようになっており、この AZD変換器 126は、入力された各集音 信号をアナログ信号からデジタル信号に変換し、当該デジタル信号に変換された各 集音信号を空間特性解析部 127に出力するようになっている。
[0044] 空間特性解析部 127には、デジタル信号に変換された集音信号が入力されるよう になっており、この空間特性解析部 127は、入力された集音信号に基づいて、各チ ヤンネル毎に出力された拡声音の周波数特性の解析、その再生レベルの解析、その 遅延時間の解析および、その残響特性の解析を行うようになっている。また、この空 間特性解析部 127は、信号処理部 200において各信号処理を行う際に必要となる 係数を決定するため所定のパラメータを、各解析結果に基づいて算出し、当該算出 された各パラメータのデータを信号処理部 200に出力するようになっている。特に、 本実施形態の空間特性解析部 127は、スピーカシステム 130から出力されたテスト 信号に基づく集音信号に基づ 、て各解析を行 、、各パラメータを算出するようになつ ている。
[0045] なお、本実施形態における空間特性解析部 127の構成およびその動作の詳細に ついては、後述する。
[0046] 操作部 128は、各種確認ボタン、選択ボタン及び数字キー等の多数のキーを含む リモートコントロール装置または各種キーボタンにより構成されており、リスニングルー ム 10の空間特性を解析する際の指示を入力するために用いられるようになって!/、る
。特に、本実施形態では、操作部 128は、拡声するためのオーディオ信号に対して 残響成分の生成およびその付加行う処理に関する操作を行うために用いられるよう になっている。
[0047] システム制御部 129は、各スピーカよりオーディオ信号を拡声してオーディオ信号 の拡声を行うための全般的な機能を総括的に制御するようになっている。特に、この システム制御部 129は、各マイクロホン Mによって集音された集音信号に対して所定 の処理を行わせ、聴取位置における拡声音の残響成分の到来方向を示す方向特性 を有し、当該拡声音の当該聴取位置における音の強度に関する前記音場空間の時 間的な減衰を示す残響特性を解析させる解析処理 (以下、残響特性解析処理と!/ヽぅ 。)の制御、当該解析されたリスニングルーム 10の残響特性に基づいて信号処理部 200において残響制御を行う際に必要なる係数 (以下、残響制御係数という。)の算 出処理およびその設定処理 (以下、当該算出処理および設定処理をまとめて残響制 御係数設定処理と 、う。)の制御を行うようになって!/、る。
[0048] なお、この残響特性とは、リスニングルーム 10における任意の聴取位置において聴 取する拡声音の振幅レベル (強度)の時間的な減衰を示す特性を! ヽ、具体的には 、入力されたテスト信号における集音信号に基づいて、各周波数帯域毎に、任意の スピーカから聴取位置において最初に到達した拡声音 (直接音)を基準としてその振 幅レベルの減衰比とその際の時間を示す残響時間の特性をいう。
[0049] また、本実施形態におけるシステム制御部 129の残響特性解析処理および残響制 御係数設定処理の動作の詳細については、後述する。 [0050] 次に、図 8を用いて本実施形態の信号処理部 200の構成およびその動作について 説明する。なお、図 8は、本実施形態における信号処理部 200の構成を示すブロック 図である。
[0051] 信号処理部 200は、上述のように、入力されたオーディオデータを各チャンネル毎 のオーディオ信号にデコードするとともに、デコードされた各チャンネル毎のオーディ ォ信号とテスト信号発生部 124から出力されたテスト信号との入力を切り替えるように なっている。そして、この信号処理部 200は、入力された信号に対して各チャンネル 毎に所定の信号処理を行うことによって再生特性の調整を行うとともに、システム制 御部 129の制御の下、入力されたテスト信号を各スピーカ毎に拡声させるための所 定の処理を行うようになって 、る。
[0052] 具体的には、この信号処理部 200は、入力されたオーディオデータに基づいて各 チャンネル毎のオーディオ信号にデコードするデコーダ 210と、データから出力され た各チャンネルのオーディオ信号と入力されたテスト信号を切り換える入力切換部 2 20と、各チャンネル毎のオーディオ信号またはテスト信号の周波数特性を調整する 周波数特性調整回路 230と、他のチャンネルとのチャンネル間における信号レベル を調整するとともに、各チャンネル毎に入力された信号を遅延させる信号レベル Z遅 延調整部 240と、後述するように設定された残響制御係数に基づ!ヽて各チャンネル 毎のオーディオ信号またはテスト信号の残響成分を生成し、当該オーディオ信号ま たはテスト信号に加算する残響制御回路 250と、システム制御部 129の制御の下、 信号処理部 200内の各部を制御する信号処理制御部 260と、を有している。
[0053] なお、この信号処理部 200は、各チャンネル毎に、周波数特性調整回路 230、信 号レベル Z遅延調整部 240および残響制御回路 250を有しており、信号処理制御 部 260と各部は、バス Bにより接続されている。
[0054] デコーダ 210には、入力されたオーディオデータが入力されるようになっており、こ のデコーダ 210は、入力されたオーディオデータを、各チャンネル毎のオーディオ信 号にデコードし、各チャンネル毎に入力切換部 220に出力するようになっている。
[0055] 入力切換部 220には、各チャンネル毎にデコードされたオーディオ信号およびテス ト信号発生部 124から出力されたテスト信号が入力されるようになっており、この入力 切換部 220は、信号処理制御部 260の制御の下、デコーダ 210から出力されたォー ディォ信号とテスト信号発生部 124にて発生されたテスト信号の入力を切り換えて各 周波数特性調整回路 230に出力するようになっている。また、入力切換部 220は、テ スト信号を出力する際に、各チャンネルに、または、信号処理制御部 260にて選択さ れた一のチャンネルに当該テスト信号を出力するようになって!/、る。
[0056] 各周波数特性調整回路 230には、信号処理制御部 260の制御の下、各周波数帯 域毎に、信号成分の利得 (ゲイン)を調整するためのフィルタ係数が設定されるように なっている。また、この各周波数特性調整回路 230には、入力された各チャンネル毎 のオーディオ信号またはテスト信号が入力されるようになっており、設定された各フィ ルタ係数に基づ!/ヽて入力された信号に対して周波数特性の調整を行!ヽ、各信号レ ベル Z遅延調整部 240に出力するようになって 、る。
[0057] 各信号レベル Z遅延調整部 240には、信号処理制御部 260の制御の下、各チヤ ンネル毎に、チャンネル間における減衰率を調整するための係数 (以下、減衰係数と いう。)と、各チャンネルに該当するオーディオ信号またはテスト信号における遅延量 (遅延時間)を調整するための係数 (以下、遅延制御係数という。)と、が設定されるよ うになつている。また、この各信号レベル Z遅延調整部 240には、各周波数帯域毎に 周波数特性が調整されたオーディオ信号またはテスト信号が入力されるようになって おり、この各信号レベル Z遅延調整部 240は、設定された減衰係数および遅延制御 係数に基づいて、入力された信号に対してチャンネル間における減衰率および遅延 量を調整し、当該減衰率および遅延量が調整されたオーディオ信号またはテスト信 号を残響制御回路 250に出力するようになって 、る。
[0058] 残響制御回路 250には、信号処理制御部 260によって後述するように決定された 残響制御係数がそれぞれ設定されるようになっており、当該残響制御回路 250は、 信号レベルが調整されたオーディオ信号またはテスト信号に対して残響制御を実行 して各 DZA変翻122に出力するようになっている。
[0059] 具体的には、残響制御回路 250には、信号レベルおよび遅延量が調整されたォー ディォ信号またはテスト信号が入力されるようになっており、この残響制御回路 250は 、各チャンネル毎に入力されたオーディオ信号またはテスト信号を複数の周波数帯 域毎に分割するようになっている。そして、この残響制御回路 250は、後述する残響 制御係数に基づいて入力されたオーディオ信号またはテスト信号に各周波数帯域毎 の残響成分を生成し、当該生成された残響成分を入力されたオーディオ信号または テスト信号に加算することによって残響制御を行い、当該残響制御された信号を各 D ZA変 l22に出力するようになって 、る。
[0060] また、残響制御回路 250は、入力された信号に対して残響成分の生成およびその 付加を行うことによって残響制御を行う際に、当該残響成分の方向特性も含めて残 響制御を行うため、生成すべき残響成分の各チャンネル間の調整を行うようになって いる。すなわち、本実施形態の残響制御回路 250は、残響成分が拡声される際に方 向特性を有するように、チャンネル毎の入力信号に対してそれぞれのスピーカ毎に( 以下、スピーカ系統ともいう。)残響制御を行うようになっている。
[0061] また、本実施形態における残響制御回路 250の構成およびその動作の詳細は、後 述する。また、例えば、本実施形態の残響制御回路 250は、本発明の調整手段を構 成する。
[0062] 信号処理制御部 260は、システム制御部 129の指示の下、各周波数特性調整回 路 230、各信号レベル Z遅延調整部 240および残響制御回路 250の各係数の決定 およびその設定を行うようになって!/、る。
[0063] 具体的には、この信号処理制御部 260は、空間特性解析部 127によって解析され た各パラメータのデータに基づいて、フィルタ係数、減衰係数、および、遅延制御係 数を算出して各部に設定する他に、残響パラメータに基づいて残響制御回路 250に おける各残響成分の生成制御を行うための残響制御係数を算出し、当該算出された 残響制御係数を、それぞれ、残響制御回路 250に設定するようになっている。
[0064] 特に、本実施形態における信号処理制御部 260は、入力された残響パラメータに 基づいて残響制御回路 250における各残響制御係数を算出するためのテーブルを 有し、残響パラメータが入力されると、当該テーブルに基づいて一定の残響制御係 数を算出するようになって 、る。
[0065] 例えば、信号処理制御部 260には、後述のように、方向特性を有する残響成分を 制御する際に用いる係数を算出するための残響パラメータが入力されるようになって いる。また、この信号処理制御部 260は、後述するように解析された残響成分の特性 を示す残響パラメータに基づ ヽて、各チャンネルのオーディオ信号またはテスト信号 に対して、残響成分のレベルおよびその遅延時間を付加するとともに、当該付加され る残響成分が解析された到来方向から聴取することができるように、付加する残響成 分のチャンネル間の調整を行うための当該残響制御係数を算出するようになって!/、 る。そして、信号処理制御部 260には、算出された残響制御係数を残響制御回路 25 0に設定するようになって 、る。
[0066] なお、本実施形態では、信号処理制御部 260は、チャンネル毎に、予め設定され ている周波数帯域毎に、かつ、後述するように各スピーカの系統毎に、残響制御係 数を算出するようになって 、る。
[0067] 次に、図 9および図 10を用いて本実施形態における空間特性解析部 127の構成 およびその動作について説明する。なお、図 9は、本実施形態における空間特性解 析部 127の構成を示すブロック図であり、図 10は、本実施形態における残響特性解 析を説明するための図である。
[0068] 空間特性解析部 127には、テスト信号に基づき拡声された拡声音を集音することに よって生成された集音信号が入力されるようになっており、この空間特性解析部 127 は、上述のように、入力された集音信号に基づいて、各チャンネル毎に出力された拡 声音の周波数特性の解析、その音圧レベルの解析、遅延時間解析、および、その残 響成分の解析を行 ヽ、各解析結果に基づ ヽてシステム制御部 129を介して信号処 理部 200に各データを出力するようになって 、る。
[0069] この空間特性解析部 127は、リスニングルーム 10の周波数特性を解析する周波数 特性解析部 127Aと、当該リスニングルーム 10における各スピーカから拡声された音 圧レベルおよび遅延時間を解析する音圧レベル Z遅延時間解析部 127Bと、残響 制御係数設定処理が実行される際に、当該リスニングルーム 10の残響特性を解析し 、残響パラメータを算出する残響特性解析部 127Cと、から構成される。
[0070] 周波数特性解析部 127Aは、入力されたテスト信号における集音信号に基づいて 、当該リスニングルーム 10のマイクロホンアレイ 140の設置位置(聴取位置)における 周波数特性を解析するようになっており、システム制御部 129を介して、解析結果を 所定のパラメータのデータとして信号処理制御部 260に出力するようになっている。 また、音圧レベル Z遅延時間解析部 127Bは、入力されたテスト信号における集音 信号に基づいて、当該リスニングルーム 10のマイクロホンアレイ 140の設置位置にお ける各スピーカから拡声された音圧レベルおよび遅延時間を解析するようになってお り、システム制御部 129を介して、解析結果を所定のパラメータのデータとして信号 処理制御部 260に出力するようになって 、る。
[0071] 残響特性解析部 127Cは、リスニングルーム 10の残響特性解析を行う際に、集音さ れたテスト信号の残響成分の時間的に変化に基づ!/、て、リスニングルーム 10の聴取 位置における拡声音の残響成分の方向特性を有する残響特性を解析するようになつ ており、システム制御部 129を介して、解析結果を所定の残響パラメータのデータと して信号処理制御部 260に出力するようになっている。
[0072] より具体的には、本実施形態の残響特性解析部 127Cは、マイクロホンアレイ 140 の各マイクロホン Mによって集音された集音信号に対して、聴取位置に直接到達す る直接成分に対する残響成分の時間的に減衰する振幅レベルの比の割合を算出す るとともに、当該残響成分の振幅レベル比を割合を算出する際に、予め設定された マイクロホンアレイ 140における各マイクロホン Mと他のマイクロホン Mにおける距離、 すなわち、マイクロホンアレイ 140におけるマイクロホン M間の距離に基づいて聴取 位置にお 、て、所定の角度毎に残響特性を算出するようになって!/、る。
[0073] 通常、聴取位置において、マイクロホンアレイ 140の各マイクロホン Mを、リスニング ルーム 10の床面と平行な面上に配列させるとともに、リスニングルーム 10の正面、す なわち、センタースピーカ 131の放射軸に対して垂直方向に配列させてある直線ァ レイを用いる場合に、拡声音がリスニングルームの壁面などにて反射して所定の方向 力 当該拡声音が聴取位置に到達すると、各マイクロホン Mには、スピーカシステム 130から直接聴取位置に到達された拡声音 (以下、直接成分 (直接音)という。)に対 して所定の遅延が生じ、各残響成分が正面に対して所定の角度( Θ )を有する拡声 音 (以下、残響成分という。)が集音される。したがって、当該各マイクロホン Mにおい て認識されるリスニングルーム 10の壁面にて反射された当該拡声音は、残響成分と して当該マイクロホン Mにおける到来方向に基づ 、て、到達時間および音圧レベル の振幅差が生ずることとなる。
[0074] 例えば、図 10に示すように、センタースピーカ 131の放射軸に対して所定の角度(
Θ )を有する Aの方向から壁面にて反射された拡声音が残響成分としてマイクロホン アレイ 140に到達すると、直接成分に対して到達時間差 (dt)が生ずるとともに、この 到達時間差に基づいて当該拡声音音に含まれる各周波数には所定の位相差が生 ずること〖こなる。
[0075] そこで、本実施形態では、残響特性解析部 127Cは、各マイクロホン Mにおける複 数の集音信号に対して所定の遅延処理を行うとともに、当該遅延処理された各集音 信号を加算することによって、聴取位置における拡声音の方向特性を有する残響特 性を解析することができるようになって 、る。
[0076] すなわち、本実施形態では、拡声音に含まれる残響成分が聴取位置に対してセン タースピーカ 131の放射軸を基準として所定の角度を有すると、当該残響成分には、 センタースピーカ 131から直接到達する直接成分の到達時からの到達時間差 (dt) およびそれに基づく位相差が生じることとなる。したがって、本実施形態の残響特性 解析部 127Cは、各集音信号を解析すべき到来方向に基づいて想定される遅延量 により遅延処理を行うとともに、当該遅延処理された各集音信号を加算することによつ て得られた結果に基づ 、て各解析すべき到来方向毎に残響特性を認識するように なっており、この結果、当該処理を解析すべき到来方向すべてにおいて当該処理を 行うことによって、残響成分を含む拡声音の方向特性を有する残響特性を解析する ことができるようになって!/、る。
[0077] 具体的には、本実施形態では、スピーカシステム 130から聴取位置までの距離、例 えば、センタースピーカ 131からマイクロホンアレイ 140の中心までの距離が予め設 定されるようになっており、残響特性解析部 127Cは、予め設定された到来方向の角 度毎に、聴取位置の中心を基準として、すなわち、中心のマイクロホン Mを基準とし て、各マイクロホン Mの配列位置に基づ 、て各集音信号に対してそれぞれ遅延時間 を算出し、予め設定された到来方向の角度毎に、各集音信号を遅延させて当該遅 延させた各集音信号を加算することによって、聴取位置に対する各到来方向の残響 特性を解析するようになって!/ヽる。 [0078] 例えば、本実施形態では、センタースピーカ 131の放射軸を基準として、 30度毎に 解析すべき到来方向を予め設定し、残響特性解析部 127Cは、マイクロホンアレイ 1 40における各マイクロホン Mの配列位置に基づ 、て、各解析すべき到来方向毎に 遅延量を算出して内部に格納しておくようになっている。また、この残響特性解析部 1 27Cは、各マイクロホン Mによって集音された各集音信号を、所定の到来方向毎に、 予め算出された遅延を課し、各集音信号を加算することによって、所定の到来方向 毎に一のデータ(以下、測定データという。)を算出するようになっている。そして、こ の残響特性解析部 127Cは、当該所定の到来方向毎の測定データに基づいて、当 該所定の到来方向毎に残響特性、例えば、直接成分を基準として振幅レベルが 6 OdBまで低下する際の時間を示す残響時間、各残響成分のエネルギ分布、または、 各残響成分のエネルギの時間特性などの残響特性を算出するようになって 、る。
[0079] なお、本実施形態の空間特性解析部 127は、各マイクロホン Mの配列に対応して 所定の重み付け予め設定するとともに、各マイクロホン Mによって集音された各集音 信号に基づいて、当該マイクロホンアレイ 140によって集音された各集音信号を加算 する際に、設定された重み付けに基づいて加算するようになっている。例えば、聴取 位置の中心力 離れるにしたがって配置されたマイクロホン Mによって集音された集 音信号に対する重みを小さくすることによって、さらに、的確に、残響成分の到来方 向を認識することができるので、残響特性を解析する上で、残響成分の到来方向を 含めて的確に解析することができるようになって!/、る。
[0080] また、この残響特性解析部 127Cは、残響成分の到来方向を含めた残響特性と、 所望する残響特性、例えば、操作部 128を介して設定された残響特性と、を比較す るようになっており、当該比較した結果、各信号処理制御 260おいて、残響制御経路 250にて残響成分を付加すべき際に用いる係数を算出するための残響パラメータを 算出するようになっている。
[0081] 具体的には、この残響特性解析部 127Cは、信号処理制御部 260において、残響 制御回路 250にて残響成分を制御する際に必要となる残響制御係数を算出するた めの残響パラメータを算出するようになっており、方向特性を示す残響成分を生成す るためのパラメータが包含されて 、る残響パラメータを算出するようになって!/、る。 [0082] 次に、図 11を用いて本実施形態における残響制御回路 250の構成およびその動 作について説明する。なお、図 11は、本実施形態における信号処理部 200の残響 制御回路 250の構成を示すブロック図である。
[0083] 残響制御回路 250には、信号レベルが調整された各チャンネルのオーディオ信号 またはテスト信号が入力されるようになっており、この残響制御回路 250は、オーディ ォ信号またはテスト信号が入力されると、当該入力されたオーディオ信号またはテス ト信号をスピーカシステム 130のスピーカ数と同数に分割するようになっている。また 、この残響制御回路 250は、信号処理制御部 260によって設定された残響制御係数 に基づいて、各分割されたオーディオ信号またはテスト信号 (以下、分割信号という。 )に対して、各分割信号毎に、残響成分の生成およびその付加を行う残響成分調整 を行うようになっており、当該残響成分の生成およびその付加がなされた信号を各チ ヤンネル毎に加算、すなわち、各スピーカの出力チャンネル毎に加算し、当該加算さ れた各チャンネルの信号を該当する DZA変換器 122に出力するようになっている。
[0084] 具体的には、この残響制御回路 250は、図 11に示すように、入力されたオーディ信 号またはテスト信号をスピーカシステム 130のスピーカと同数に分割する信号分割部 251と、信号処理制御部 260によって残響制御係数が設定され、オーディ信号また はテスト信号が入力された場合に当該設定された残響制御係数に基づいて分割さ れた分割信号毎に残響成分を生成し、生成された残響成分を入力された元の分割 信号に付加する信号成分生成部 252と、各残響成分が付加された分割信号をスピ 一力系統毎に合成する信号成分合成部 253と、を有して ヽる。
[0085] なお、この信号成分生成部 252は、予め設定された周波数帯域毎に、残響成分を 付加するようになっており、信号成分生成部 252に設定される残響制御係数は、上 述のように、各チャンネル毎に、周波数帯域毎に、かつ、スピーカ系統毎に、それぞ れ設定されるようになって!/ヽる。
[0086] 信号分割部 251は、各チャンネル毎に設けられており、当該信号分割部 252には、 各チャンネル毎に信号レベル調整部 240から出力されたオーディオ信号またはテス ト信号が入力されるようになっている。また、この信号分割部 251は、オーディオ信号 またはテスト信号が入力されると、各チャンネル毎に、入力された各チャンネルのォ 一ディォ信号またはテスト信号をスピーカ数と同数の同一成分を有する複数の信号 に分割し、当該分割された各信号をそれぞれ各信号成分生成部 252に出力するよう になっている。
[0087] 例えば、本実施形態では、この信号分割部 251は、入力された各チャンネルのォ 一ディォ信号またはテスト信号をスピーカ系統数「6」に分割し、各分割信号をそれぞ れ信号成分生成部 252に出力するようになっている。すなわち、本実施形態の信号 分割部 251は、各チャンネル毎に、かつ、各スピーカ系統毎に、分割信号を信号成 分生成部 252に出力するようになって 、る。
[0088] 信号成分生成部 252は、各チャンネル毎に、各スピーカ系統毎に設けられており、 各信号成分生成部 252は、信号処理制御部 260によって各チャンネル毎に、かつ、 各スピーカ系統毎に、上述のように算出された残響制御係数が設定されるようになつ ている。また、この各信号成分生成部 252には、各チャンネル毎に、複数に分割され た分割信号が入力されるようになっており、この各信号成分生成部 252は、該当する 分割信号が入力されると、入力された分割信号に対して残響成分の生成およびその 付加を行い、該当するスピーカ系統に、信号成分合成部 253に出力するようになつ ている。
[0089] 具体的には、信号成分生成部 252は、予め信号処理制御部 260によって各チャン ネル毎に、周波数帯域毎に、かつ、スピーカ系統毎に残響制御係数が設定され、入 力された分割信号を当該残響制御係数に基づ ヽて遅延処理を行うようになって ヽる
[0090] 例えば、本実施形態では、各信号成分生成部 252は、周波数帯域毎に、かつ、ス ピー力系統毎に、 FIR (Finite Impulse Response)フィルタにおけるフィルタ処理を行う ようになっており、信号処理制御部 260によって設定された残響制御係数、すなわち 、フィルタ係数に基づいて、入力された各分割信号を各スピーカに対して拡声する際 に、リスニングルーム 10において所望する残響時間となるように残響成分の生成およ びその付カ卩を行うようになって!/、る。
[0091] 各信号成分合成部 253は、スピーカ系統毎に設けられており、この各信号成分合 成部 253は、該当する信号成分生成部 252から出力された残響成分が付加された 複数の分割信号が入力されるようになっている。また、この各信号成分合成部 253は 、入力された該当するスピーカ系統毎の分割信号を加算して、各スピーカ系統毎の 信号 (以下、スピーカ信号という。)を生成するようになっている。そして、この信号成 分合成部 253は、生成されたスピーカ信号を該当する DZA変換器 122に出力する ようになっている。
[0092] 次に、図 12を用いて本実施形態の残響特性解析処理およびそれに基づく残響制 御係数設定処理の動作について説明する。なお、図 12は、本実施形態の残響特性 解析処理およびそれに基づく残響制御係数設定処理の動作を示すフローチャート である。
[0093] まず、システム制御部 129は、操作部 128を介してユーザからの残響特性解析処 理および残響制御係数設定処理を開始する旨の指示を検出すると (ステップ S 11)、 未だ残響特性の解析および残響制御係数の設定を行って ヽな 、一のスピーカを選 択する (ステップ S 12)。
[0094] 次いで、システム制御部 129は、テスト信号発生部 124に当該選択されたスピーカ 力 所定のテスト信号を発生させて選択させたスピーカからテスト信号を拡声させる( ステップ S 13)。具体的には、システム制御部 129は、信号処理制御を制御して電力 増幅器 123における信号レベルの出力の停止または信号処理部 200における入力 の禁止など選択されていない他のスピーカの出力を停止させ、選択されたスピーカ 力 テスト信号の拡声を開始させる。
[0095] 次いで、システム制御部 129がテスト信号を選択されたスピーカから拡声させると、 マイクロホンアレイ 140によってスピーカから拡声された拡声音が集音されるとともに 、システム制御部 129は、空間特性解析部 127に当該集音された拡声音が集音信 号してマイク増幅部および AZD変翻126を介して入力され各信号を取得させる( ステップ S 14)。
[0096] なお、空間特性解析部 127は、取得された各集音信号を内部に一時的に格納する ようになつている。また、システム制御部 129は、空間特性解析部 127に、各集音信 号を一度取得させればよいが、 SN比を向上させるために、複数回当該動作を繰り返 し、複数の各集音信号を取得させてもよい。この場合、空間特性解析部 127は、後述 する残響特性解析を行う前に、取得された各集音信号をマイクロホン M毎に平均化 して解析の基になる集音信号を算出する。
[0097] 次 、で、システム制御部 129は、未だ選択されて 、な 、予め設定された一の到来 方向角度を選択し、以下の処理を実行する (ステップ S 15)。なお、本実施形態では 、システム制御部 129は、上述のように、センタースピーカ 131の放射軸を基準として 、 30度毎に、以下の処理を実行する。
[0098] まず、システム制御部 129は、空間特性解析部 127にマイクロホンアレイ 140の各 マイクロホン Mによって集音された各集音信号に対して、選択された到来方向角度 における遅延量に基づいて遅延させる遅延処理を行うとともに、当該遅延処理された 各集音信号を加算して一の測定データを算出する。 (ステップ S16)。
[0099] 具体的には、空間特性解析部 127は、上述のように、内部に予め算出されている 各マイクロホン Mに対応する遅延量を読み出し、当該読み出した各遅延量に基づ!/、 て集音信号に対して遅延処理を行 、、遅延処理された各集音信号を加算する。
[0100] 次いで、システム制御部 129は、空間特性解析部 127に算出された測定データに 基づいて当該到来方向の残響特性を算出し (ステップ S17)、当該算出された残響 特性に基づ 、て残響パラメータを算出する (ステップ S 18)。
[0101] 具体的には、本実施形態の空間特性解析部 127は、算出された測定データに基 づいて、残響成分におけるエネルギの時間特性を算出し、この算出されたエネルギ の時間特性を当該到来方向による残響パラメータとして算出する。
[0102] 次いで、システム制御部 129は、未だ残響パラメータの算出の対象となっていない 一の到来方向角度の有無を判断し (ステップ S19)、未だ残響パラメータの算出の対 象となっていない到来方向角度がある場合にはステップ S15の処理に移行し、未だ 残響パラメータの算出の対象となって 、な 、到来方向がな 、場合には、システム制 御部 129は、未だ残響特性の解析および残響パラメータの設定を行って 、な 、スピ 一力の有無を判断する (ステップ S 20)。
[0103] このとき、システム制御部 129が、未だ残響特性の解析および残響パラメータの設 定を行つて ヽな 、スピーカがあると判断した場合には、当該システム制御部 129は、 ステップ S 12の処理に移行する。 [0104] 一方、全てのスピーカの残響特性の解析および残響制御パラメータが算出されたと 判断された場合には、システム制御部 129は、空間特性解析部 127に算出された各 残響パラメータを信号処理制御部 260に出力させるとともに、信号処理制御部 260 に当該残響パラメータに基づいて各残響制御係数を算出させる (ステップ S21)。
[0105] 最後に、システム制御部 129は、信号処理制御部 260に算出させた各残響制御係 数を残響制御回路 250に設定させ (ステップ S22)、本動作を終了する。
[0106] なお、この後に、音源出力装置 110から音源再生され、オーディオ信号が信号処 理装置 120に入力されると、残響付加成分生成部において、上述のように設定され た残響制御係数に基づ 、て当該オーディオ信号の信号処理が行われ、すなわち、 当該オーディオ信号の残響特性が調整され、スピーカシステム 130から信号処理さ れたオーディオ信号が拡声されるようになって!/ヽる。
[0107] 以上、本実施形態によれば、本実施形態のサラウンドシステム 100は、リスニングル ーム 10に配置される複数のスピーカ力 構成されるスピーカシステム 130と、オーデ ィォ信号をスピーカシステム 130によって拡声させることによってリスニングルーム 10 の残響特性を認識し、当該認識された残響特性に基づ 、て当該スピーカシステム 1 30から出力されるオーディオ信号の残響成分を調整する信号処理装置 120と、リス ニングルーム 10に配設されるとともに同一の特性を有する複数のマイクロホン Mから 構成され、当該各マイクロホン M間の配列距離が予め定められるマイクロホンアレイ 1 40であって、オーディオ信号がスピーカシステム 130からリスニングルーム 10に拡声 された場合に、当該拡声されたリスニングルーム 10の特定の聴取位置にて拡声音を 集音するマイクロホンアレイ 140と、を備え、信号処理装置 120が、オーディオ信号と して音信号を取得する入力処理部 121と、オーディオ信号としてリスニングルーム 10 の残響特性を解析するためのテスト信号を発生させるテスト信号発生部 124と、音信 号または前記テスト信号の少なくとも何れか一方の信号をスピーカシステム 130から 拡声させる電力増幅器 123と、マイクロホンアレイ 140によって集音された拡声音を 拡声音信号として取得するとともに、取得された拡声音信号に基づいて、聴取位置 における拡声音の残響成分の到来方向を示す方向特性を有し、当該拡声音の当該 聴取位置における音の強度に関するリスニングルーム 10の時間的な減衰を示す残 響特性を認識する空間特性解析部 127と、前記認識された残響特性に基づいて、 取得されたスピーカに拡声すべきオーディオ信号の残響特性を調整する残響制御 回路 250と、を有する構成を有している。
[0108] この構成より、本実施形態のサラウンドシステム 100は、同一の特性を有する複数 のマイクロホン M力 構成され、当該各マイクロホン M間の配列距離が予め定められ るマイクロホンアレイ 140によって集音された拡声音を拡声音信号として取得するとと もに、取得された拡声音信号に基づいて、リスニングルーム 10の聴取位置における 拡声音の残響成分の到来方向を示す方向特性を有し、当該拡声音の当該聴取位 置における音の強度に関するリスニングルーム 10の時間的な減衰を示す残響特性 を認識する。そして、本実施形態のサラウンドシステム 100は、認識された残響特性 に基づ!/ヽて、取得されたスピーカに拡声すべき音源の残響特性を調整する。
[0109] したがって、本実施形態のサラウンドシステム 100は、各拡声音の残響特性を認識 する際に、残響成分の到来方向をも認識することができるので、 CDや DVDなどの音 源をスピーカシステム 130から拡声させる際の残響特性を、残響成分の到来方向を 含めたリスニングルーム 10における残響特性に基づいて調整することができる。この 結果、このサラウンドシステム 100は、当該解析された残響特性に基づいて、より自 然で、かつ、より臨場感のある音場を提供することができる。
[0110] また、本実施形態のサラウンドシステム 100は、空間特性解析部 127が、各マイクロ ホン Mによって集音された各集音信号に基づいて、当該マイクロホンアレイ 140によ つて集音された集音信号における位相差に基づいて残響成分の方向特性を有する 残響特性を認識する構成を有して ヽる。
[0111] したがって、本実施形態のサラウンドシステム 100は、的確に残響成分の到来方向 を推定することができるので、このサラウンドシステム 100は、音源を再生する際に、 残響特性を解析する上で、残響成分の到来方向を含めて的確に解析することができ るとともに、当該解析された残響特性に基づいて、より自然で、かつ、より臨場感のあ る音場を提供することができる。
[0112] また、本実施形態のサラウンドシステム 100は、空間特性解析部 127が、各マイクロ ホン Mの配列に対応して所定の重み付け予め設定するとともに、各マイクロホン Mに よって集音された各集音信号における位相差と設定された重み付けとに基づいて残 響成分の方向特性を有する残響特性を認識する構成を有している。
[0113] この構成より、本実施形態のサラウンドシステム 100は、聴取位置の中心力も離れる にしたがって配置されたマイクロホン Mによって集音された集音信号に対する重みを 小さくすることによって、さらに、的確に、残響成分の到来方向を認識することができ るので、残響特性を解析する上で、残響成分の到来方向を含めて的確に解析するこ とがでさる。
[0114] なお、本実施形態のサラウンドシステム 100は、マイクロホンアレイ 140力 リスニン グルーム 10の床面と平行な面上に複数のマイクロホン Mを配列することによって構 成される。本実施形態のサラウンドシステム 100は、リスニングルーム 10に複数のスピ 一力によって拡声音が拡声されることより認識される当該拡声音の拡声方向と同一方 向面に複数のマイクロホン Mが配列された第 1アレイと、第 1アレイが配列された面と 直交する面上に複数のマイクロホン Mが並列に配列されている第 2アレイと、力 構 成される。本実施形態のサラウンドシステム 100は、マイクロホンアレイ 140力 聴取 位置の中心を基準としてリスニングルーム 10の床面と平行な面上に前記複数のマイ クロホンが配列されることによって多角形を構成する。このように、本実施形態では、 マイクロホンアレイ 140が構成されるので、的確に残響成分の到来方向を推定するこ とがでさる。
[0115] なお、本実施形態では、 5. lchのサラウンドシステム 100を用いて残響時間の設定 処理について説明している力 勿論、 7. lchやそれ以上のチャンネルを持つマルチ チャンネルシステム、 AVアンプなどのステレオ用音響再生装置などの他の音響再生 装置につ ヽても適用することができる。
[0116] また、本実施形態では、信号処理装置 120において、音源出力装置 110において 出力されたデジタル信号に基づ ヽて残響制御その他の信号処理を行うようになって いるが、勿論、当該信号処理装置 120において、音源出力装置 110から出力された アナログ信号またはその他の外部力 入力されたアナログ信号に基づいて信号処理 を行うようにしてもよい。
[0117] また、本実施形態は、同一の特性を有するマイクロホン Mによってマイクロホンァレ ィ 140を構成するようになって 、るが、当該マイクロホンに対して所定の方向に対して 指向性を有する指向性マイクロホンによって当該マイクロホンアレイを構成するように してもよいし、一の指向性マイクロホンの向きを変えることによって所定の角度毎に集 音信号を集音するようにしてもょ ヽ。
[0118] この場合は、残響特性解析部 127Cは、各集音信号に対して、遅延処理およびカロ 算処理を行うことなぐそのままの信号を測定データとして残響パラメータを算出する ようになつている。したがって、この場合であっても、上述と同様に、各拡声音の残響 特性を認識する際に、残響成分の到来方向をも認識することができるので、解析され た残響特性に基づいて、より自然で、かつ、より臨場感のある音場を提供することが できる。
[0119] また、本実施形態のマイクロホンアレイ 140は、リスニングルーム 10の床面と平行な 面上に複数のマイクロホン Mを配列させるようになつている力 勿論、当該平行面に 複数のマイクロホン Mを配列させるとともに、当該リスニングルーム 10の床面と直交す る面にも複数のマイクロホンを配列させることにより、リスニングルーム 10の残響成分 を含めた拡声音の残響特性を 3次元に解析するようにしてもょ 、。
[0120] また、本実施形態では、空間特性解析部 1270は、リスニングルーム 10に置ける 2 次元平面の残響特性、すなわち、リスニングルーム 10の床面の同一平面内の 2次元 の残響成分の特性を解析するようになっている力 勿論、マイクロホンアレイ 140を 3 次元的に配列させることによって、例えば、四角形アレイを直方体アレイに構成する ことによって、リスニングルーム 10の残響特性を 3次元的に解析するようにしてもよい
[0121] この場合には、信号処理制御部 260は、 3次元的に残響成分を発生させるための 残響制御係数を算出し、当該算出された各残響制御係数を各残響制御回路 250に 設定するようになる。

Claims

請求の範囲
[1] 音場空間に配置される複数のスピーカから構成されるスピーカシステムと、
音源を前記スピーカシステムによって拡声させることによって前記音場空間の残響 特性を認識し、当該認識された残響特性に基づ ヽて当該スピーカシステムから出力 される音源の残響成分を調整する残響調整装置と、
前記音場空間に配設されるとともに同一の特性を有する複数のマイクロホン力 構 成され、当該各マイクロホン間の配列距離が予め定められるマイクロホンアレイであつ て、前記音源が前記スピーカシステム力も前記音場空間に拡声された場合に、当該 拡声された音場空間の特定の聴取位置にて拡声音を集音するマイクロホンアレイと、 を備え、
前記残響調整装置が、
前記音源として音信号を取得する第 1取得手段と、
前記音源として前記音場空間の残響特性を解析するためのテスト信号を発生させ る発生手段と、
前記音信号または前記テスト信号の少なくとも何れか一方の信号を前記スピーカシ ステム力 拡声させる出力制御手段と、
前記マイクロホンアレイによって集音された拡声音を拡声音信号として取得する第 2 取得手段と、
前記取得された拡声音信号に基づ!、て、前記聴取位置における拡声音の残響成 分の到来方向を示す方向特性を有し、当該拡声音の当該聴取位置における音の強 度に関する前記音場空間の時間的な減衰を示す残響特性を認識する認識手段と、 前記認識された残響特性に基づ!ヽて、前記取得されたスピーカに拡声すべき音源 の残響特性を調整する調整手段と、
を有することを特徴とする音響再生システム。
[2] 請求項 1に記載の音響再生システムにお 、て、
前記マイクロホンアレイが、前記音場空間の床面と平行な面上に前記複数のマイク 口ホンを配列することによって構成されていることを特徴とする音響再生システム。
[3] 請求項 2に記載の音響再生システムにお 、て、 前記マイクロホンアレイが、
前記音場空間に前記複数のスピーカによって拡声音が拡声されることより認識され る当該拡声音の拡声方向と同一方向面に前記複数のマイクロホンが配列された第 1 アレイと、
前記第 1アレイが配列された面と直交する軸方向に前記複数のマイクロホンが並列 に配列されて 、る第 2アレイと、
カゝら構成されることを特徴とする音響再生システム。
[4] 請求項 2に記載の音響再生システムにお 、て、
前記マイクロホンアレイが、
前記聴取位置の中心を基準として前記音場空間の床面と平行な面上に前記複数 のマイクロホンが配列されることによって多角形を構成することを特徴とする音響再生 システム。
[5] 請求項 1乃至 4の何れか一項に記載の音響再生システムにおいて、
前記認識手段が、
前記各マイクロホンによって集音された各集音信号に基づいて、当該マイクロホン アレイによって集音された集音信号における位相差に基づいて前記残響成分の方 向特性を有する残響特性を認識することを特徴とする音響再生システム。
[6] 請求項 4に記載の音響再生システムにお 、て、
前記認識手段が、各マイクロホンの配列に対応して所定の重み付け予め設定する とともに、前記マイクロホンアレイによって集音された集音信号における位相差と前記 設定された重み付けとに基づいて前記残響成分の方向特性を有する残響特性を認 識することを特徴とする音響再生システム。
[7] 複数のスピーカから構成されるスピーカシステムによって拡声される音場空間の残 響特性に基づいて当該スピーカシステムから出力される音源の残響成分を調整する 残響調整方法であって、
前記音源として前記音場空間の残響特性を解析するためのテスト信号を発生させ 、当該発生させたテスト信号を前記スピーカシステムによって拡声させるテスト信号拡 声工程と、 前記スピーカシステムから前記音場空間に拡声された前記テスト信号を、前記音場 空間に配設されるとともに同一の特性を有する複数のマイクロホンカゝら構成されるマ イク口ホンアレイによって拡声音信号として集音させる集音工程と、
前記取得された拡声音信号に基づ!、て、前記聴取位置における拡声音の残響成 分の到来方向を示す方向特性を有し、当該拡声音の当該聴取位置における音の強 度に関する前記音場空間の時間的な減衰を示す残響特性を認識する認識工程と、 スピーカシステムよって拡声すべき音源を取得して拡声する際に、認識された残響 特性に基づ!/ヽて、当該取得された音信号の残響特性を調整する調整工程と、 を含むことを特徴とする残響調整方法。
[8] 複数のスピーカから構成されるスピーカシステムによって拡声される音場空間の残 響特性に基づいて当該スピーカシステムから出力される音源の残響成分を調整する 残響調整装置であって、
前記音場空間に配設されるとともに同一の特性を有する複数のマイクロホン力 構 成されるマイクロホンアレイによって、前記音源が前記スピーカシステムから前記音場 空間に拡声された拡声音を音場空間の特定の聴取位置にて集音する場合に、 前記音源として音信号を取得する第 1取得手段と、
前記音源として前記音場空間の残響特性を解析するためのテスト信号を発生させ る発生手段と、
前記音信号またはテスト信号の少なくとも何れか一方の信号を前記スピーカシステ ム力 拡声させる出力制御手段と、
前記マイクロホンアレイによって集音された拡声音信号を取得する第 2取得手段と、 前記取得された拡声音信号に基づ!、て、前記聴取位置における拡声音の残響成 分の到来方向を示す方向特性を有し、当該拡声音の当該聴取位置における音の強 度に関する前記音場空間の時間的な減衰を示す残響特性を認識する認識手段と、 前記認識された残響特性に基づ ヽて、前記取得されたスピーカシステムに拡声す べき音源の残響特性を調整する調整手段と、
を有することを特徴とする残響調整装置。
[9] 音場空間に配置される複数のスピーカから構成されるスピーカシステムと、 音源を前記スピーカシステムによって拡声させることによって前記音場空間の残響 特性を認識し、当該認識された残響特性に基づ ヽて当該スピーカシステムから出力 される音源の残響成分を調整する残響調整装置と、
前記音場空間に配設されるとともに所定の方向に指向特性を有するマイクロホンで あって、前記音源が前記スピーカシステムから前記音場空間に拡声された場合に、 当該拡声された音場空間の特定の聴取位置にて拡声音を集音するマイクロホンと、 を備え、
前記残響調整装置が、
前記音源として音信号を取得する第 1取得手段と、
前記音源として前記音場空間の残響特性を解析するためのテスト信号を発生させ る発生手段と、
前記音信号または前記テスト信号の少なくとも何れか一方の信号を前記スピーカシ ステム力 拡声させる出力制御手段と、
前記マイクロホンアレイによって集音された拡声音を拡声音信号として取得する第 2 取得手段と、
前記取得された拡声音信号に基づ!、て、前記聴取位置における拡声音の残響成 分の到来方向を示す方向特性を有し、当該拡声音の当該聴取位置における音の強 度に関する前記音場空間の時間的な減衰を示す残響特性を認識する認識手段と、 前記認識された残響特性に基づ!ヽて、前記取得されたスピーカに拡声すべき音源 の残響特性を調整する調整手段と、
を有することを特徴とする音響再生システム。
PCT/JP2005/012362 2004-07-05 2005-07-05 残響調整装置、残響補正方法、および、音響再生システム WO2006004099A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/631,493 US8023662B2 (en) 2004-07-05 2005-07-05 Reverberation adjusting apparatus, reverberation correcting method, and sound reproducing system
JP2006528896A JP4167286B2 (ja) 2004-07-05 2005-07-05 残響調整装置、残響補正方法、および、音響再生システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004198295 2004-07-05
JP2004-198295 2004-07-05

Publications (1)

Publication Number Publication Date
WO2006004099A1 true WO2006004099A1 (ja) 2006-01-12

Family

ID=35782899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/012362 WO2006004099A1 (ja) 2004-07-05 2005-07-05 残響調整装置、残響補正方法、および、音響再生システム

Country Status (3)

Country Link
US (1) US8023662B2 (ja)
JP (1) JP4167286B2 (ja)
WO (1) WO2006004099A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294620A (ja) * 2007-05-23 2008-12-04 Yamaha Corp 音場補正装置
EP2192791A1 (en) * 2007-09-21 2010-06-02 Yamaha Corporation Sound emission/collection device
JP2015207959A (ja) * 2014-04-23 2015-11-19 ヤマハ株式会社 音響処理装置
KR20170001023A (ko) * 2015-06-25 2017-01-04 한국전자통신연구원 실내의 반사 특성을 추출하는 오디오 시스템 및 방법

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7565288B2 (en) * 2005-12-22 2009-07-21 Microsoft Corporation Spatial noise suppression for a microphone array
KR101365988B1 (ko) * 2007-01-05 2014-02-21 삼성전자주식회사 지향성 스피커 시스템의 자동 셋-업 방법 및 장치
KR100905586B1 (ko) * 2007-05-28 2009-07-02 삼성전자주식회사 로봇에서의 원거리 음성 인식을 위한 마이크의 성능 평가시스템 및 방법
WO2009131658A2 (en) * 2008-04-21 2009-10-29 Snap Networks, Inc. An electrical system for a speaker and its control
JP2010021982A (ja) * 2008-06-09 2010-01-28 Mitsubishi Electric Corp 音響再生装置
US20100119075A1 (en) * 2008-11-10 2010-05-13 Rensselaer Polytechnic Institute Spatially enveloping reverberation in sound fixing, processing, and room-acoustic simulations using coded sequences
US8442198B2 (en) * 2009-10-20 2013-05-14 Broadcom Corporation Distributed multi-party conferencing system
US9331656B1 (en) 2010-06-17 2016-05-03 Steven M. Gottlieb Audio systems and methods employing an array of transducers optimized for particular sound frequencies
US9031268B2 (en) 2011-05-09 2015-05-12 Dts, Inc. Room characterization and correction for multi-channel audio
DE102011082310A1 (de) * 2011-09-07 2013-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Vorrichtung, Verfahren und elektroakustisches System zur Nachhallzeitverlängerung
WO2014091375A1 (en) * 2012-12-14 2014-06-19 Koninklijke Philips N.V. Reverberation processing in an audio signal
KR102226817B1 (ko) * 2014-10-01 2021-03-11 삼성전자주식회사 콘텐츠 재생 방법 및 그 방법을 처리하는 전자 장치
US9558747B2 (en) * 2014-12-10 2017-01-31 Honeywell International Inc. High intelligibility voice announcement system
US10393571B2 (en) 2015-07-06 2019-08-27 Dolby Laboratories Licensing Corporation Estimation of reverberant energy component from active audio source
CN110881156A (zh) * 2019-11-14 2020-03-13 孟闯 一种音乐全景声音效系统及实现方法
EP4435389A1 (en) * 2023-03-24 2024-09-25 Nokia Technologies Oy Apparatus, method, and computer program for adjusting noise control processing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764582A (ja) * 1993-08-27 1995-03-10 Matsushita Electric Ind Co Ltd 車載用音場補正装置
JP2001224092A (ja) * 2000-02-14 2001-08-17 Pioneer Electronic Corp 自動音場補正システム
JP2003195859A (ja) * 2001-12-27 2003-07-09 Yamaha Corp 電子楽音発生装置および信号処理特性調整方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5737431A (en) * 1995-03-07 1998-04-07 Brown University Research Foundation Methods and apparatus for source location estimation from microphone-array time-delay estimates
JP4059478B2 (ja) 2002-02-28 2008-03-12 パイオニア株式会社 音場制御方法及び音場制御システム
EP1482763A3 (en) * 2003-05-26 2008-08-13 Matsushita Electric Industrial Co., Ltd. Sound field measurement device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0764582A (ja) * 1993-08-27 1995-03-10 Matsushita Electric Ind Co Ltd 車載用音場補正装置
JP2001224092A (ja) * 2000-02-14 2001-08-17 Pioneer Electronic Corp 自動音場補正システム
JP2003195859A (ja) * 2001-12-27 2003-07-09 Yamaha Corp 電子楽音発生装置および信号処理特性調整方法

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008294620A (ja) * 2007-05-23 2008-12-04 Yamaha Corp 音場補正装置
EP2192791A1 (en) * 2007-09-21 2010-06-02 Yamaha Corporation Sound emission/collection device
EP2192791A4 (en) * 2007-09-21 2011-05-25 Yamaha Corp TONEMISSIONS- / CRADLE
US8559647B2 (en) 2007-09-21 2013-10-15 Yamaha Corporation Sound emitting and collecting apparatus
JP2015207959A (ja) * 2014-04-23 2015-11-19 ヤマハ株式会社 音響処理装置
KR20170001023A (ko) * 2015-06-25 2017-01-04 한국전자통신연구원 실내의 반사 특성을 추출하는 오디오 시스템 및 방법
KR102340202B1 (ko) * 2015-06-25 2021-12-17 한국전자통신연구원 실내의 반사 특성을 추출하는 오디오 시스템 및 방법

Also Published As

Publication number Publication date
US8023662B2 (en) 2011-09-20
US20080019535A1 (en) 2008-01-24
JP4167286B2 (ja) 2008-10-15
JPWO2006004099A1 (ja) 2008-04-24

Similar Documents

Publication Publication Date Title
JP4167286B2 (ja) 残響調整装置、残響補正方法、および、音響再生システム
JP4177413B2 (ja) 音響再生装置および音響再生システム
JP4234174B2 (ja) 残響調整装置、残響調整方法、残響調整プログラムおよびそれを記録した記録媒体、並びに、音場補正システム
JP2004056527A (ja) 周波数特性調整装置および周波数特性調整方法
JP4435232B2 (ja) オーディオシステム
JP2006005902A (ja) 増幅装置及び振幅周波数特性調整方法
JP2007043295A (ja) 増幅装置及び振幅周波数特性調整方法
JP4150749B2 (ja) 立体音響再生システムおよび立体音響再生装置
CN117882394A (zh) 通过使用线性化和/或带宽扩展产生第一控制信号和第二控制信号的装置和方法
US20050053246A1 (en) Automatic sound field correction apparatus and computer program therefor
JP4347153B2 (ja) 音響特性調整装置
JP4791613B2 (ja) 音声調整装置
JP2009077378A (ja) 音声信号処理装置及び方法
JP4430105B2 (ja) 音響再生装置
JP2006042027A (ja) 音量制御装置
JP2010068175A (ja) 音響調整装置及びそれを用いた音響装置
KR20160128015A (ko) 오디오 재생 장치 및 방법
KR101721406B1 (ko) 적응형 음장 제어 방법 및 이를 위한 장치
JP4241828B2 (ja) テスト信号発生装置および音響再生システム
TWI859524B (zh) 通過使用線性化及/或頻寬擴展產生第一控制信號和第二控制信號的裝置和方法
JP2006094149A (ja) 増幅装置
JP4737758B2 (ja) オーディオ信号処理方法および再生装置
JPH05268700A (ja) ステレオ聴覚補助装置
EP1416768A2 (en) Audio apparatus
JP2006093767A (ja) 増幅装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006528896

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11631493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 11631493

Country of ref document: US