Nothing Special   »   [go: up one dir, main page]

WO2006003827A1 - Optical film having pressure-sensitive adhesive attached thereto and image display device - Google Patents

Optical film having pressure-sensitive adhesive attached thereto and image display device Download PDF

Info

Publication number
WO2006003827A1
WO2006003827A1 PCT/JP2005/011494 JP2005011494W WO2006003827A1 WO 2006003827 A1 WO2006003827 A1 WO 2006003827A1 JP 2005011494 W JP2005011494 W JP 2005011494W WO 2006003827 A1 WO2006003827 A1 WO 2006003827A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical film
polarizing plate
pressure
sensitive adhesive
Prior art date
Application number
PCT/JP2005/011494
Other languages
French (fr)
Japanese (ja)
Inventor
Yuusuke Toyama
Masayuki Satake
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Publication of WO2006003827A1 publication Critical patent/WO2006003827A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering

Definitions

  • the present invention relates to an optical film with an adhesive having an adhesive layer on at least one surface of an optical film. Furthermore, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, or a PDP using the optical film with an adhesive.
  • the optical film with a pressure-sensitive adhesive of the present invention is suitable for a film containing a stretched film as an optical film, for example, a polarizing plate, a phase difference plate, an optical compensation film, a brightness enhancement film, and those in which these are laminated. Etc.
  • a liquid crystal display device is used for a clock, a television, a monitor, etc., as well as a calculator.
  • optical films such as a polarizing plate and a retardation plate are used for the liquid crystal display device. These optical films are used as an optical film with an adhesive in order to bond them to various optical members. Therefore, durability is also required for optical films with adhesives.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-52349
  • optical films with adhesives are required to have durability not only at high temperatures and high temperatures and high humidity but also at low temperatures such as 30 ° C.
  • conventional optical films with pressure-sensitive adhesives using acrylic pressure-sensitive adhesives have satisfactory durability under high temperature and high temperature and high temperature conditions, even at room temperature (23 ° C).
  • the optical film with pressure-sensitive adhesive that is not sufficiently durable under the following low temperature conditions caused a large warp when it was exposed to low temperature conditions while being adhered to a glass plate or the like.
  • An object of the present invention is to provide an optical film with a pressure-sensitive adhesive that can suppress warping of the optical film even when placed in a low temperature environment of room temperature or lower.
  • Another object of the present invention is to provide an image display device using the optical film with an adhesive.
  • the present invention relates to an optical film with an adhesive having an adhesive layer on at least one side of the optical film,
  • the present invention relates to an optical film with an adhesive, wherein the adhesive layer has a Tg of ⁇ 35 ° C. or lower.
  • the pressure-sensitive adhesive has a Tg of room temperature or lower.
  • the temperature region near Tg is a transition region between the glassy state and the rubbery state.
  • Tg room temperature
  • the glassy state is exceeded beyond Tg, the elasticity of the adhesive increases rapidly, resulting in an optical film. Even small dimensional changes such as heat shrinkage cannot be sufficiently followed, resulting in large warpage.
  • warping in a low temperature region differs from warping in a heating or humidified state that is usually tested, and in optical films (especially stretched films), a strong warp occurs in the direction of 90 ° with the stretching axis and returns to room temperature And there is a characteristic that the warp disappears and it returns to the original.
  • This is an optical film, especially a polarizing plate This is because the internal force that the coefficient of thermal expansion in the direction of the stretching axis and the 90 ° direction is larger than that in the direction of the stretching axis is also due to the larger force in the direction of the stretching axis and 90 °.
  • the phenomenon that the warp disappears when the temperature returns to room temperature indicates that the warp in the low temperature region largely depends only on the thermal stress of the optical film.
  • a pressure-sensitive adhesive layer having a Tg of not more than 35 ° C warpage caused by stress accompanying dimensional change of a member such as an optical film in a low temperature region is suppressed. .
  • the Tg of the pressure-sensitive adhesive layer is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 50 ° C. or lower. Note that if Tg is too low, durability under high temperature conditions decreases, so that it is preferably ⁇ 120 ° C. or higher, more preferably 100 ° C. or higher.
  • the optical film with pressure-sensitive adhesive has an internal force (F) caused by thermal stress of the optical film
  • is the coefficient of thermal expansion at -60 to 23 ° C
  • is the temperature difference when 23 ° C is the reference
  • E is the elastic modulus
  • 1 is the width
  • h is the thickness
  • This is effective for an optical film having a stretched film and an internal force (F) generated in the 90 ° direction with respect to the stretching axis of the stretched film at 0 ° C is 50 N or more.
  • the optical film having the internal force (F) force of 50 N or more the optical film with a pressure-sensitive adhesive of the present invention, which easily warps at a low temperature, can be suitably applied.
  • the optical film with pressure-sensitive adhesive of the present invention is suitable when the internal force (F) of the optical film has 70N or more, further 100N or more.
  • the optical film with pressure-sensitive adhesive can be suitably applied to an optical film containing a polarizing plate and Z or a retardation plate.
  • a film using a stretched film as a constituent element of a polarizing plate and Z or a retardation plate can be suitably applied to the optical film with an adhesive of the present invention as soon as warpage occurs at a low temperature.
  • the present invention also relates to an image display device using at least one optical film with an adhesive.
  • the optical film with an adhesive of the present invention has an adhesive layer on one side of the optical film.
  • the adhesive layer is formed of a material having a low Tg of ⁇ 35 ° C. or lower, and an appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited.
  • Adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, buralkyl ether-based adhesives, polybulal alcohol-based adhesives, polybulphine-lididone-based adhesives, and polyacrylamide-based adhesives. Agents, cellulosic adhesives, etc.
  • pressure-sensitive adhesives those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive properties, and excellent weather resistance and heat resistance are preferably used.
  • An acrylic pressure-sensitive adhesive is preferably used as a material exhibiting such characteristics.
  • the acrylic pressure-sensitive adhesive has an acrylic polymer mainly composed of a monomer unit of (meth) acrylic acid alkyl ester as a base polymer.
  • (meth) acrylic acid alkyl ester means acrylic acid alkyl ester and Z or methacrylic acid alkyl ester, and (meth) in the present invention has the same meaning.
  • Examples of the (meth) acrylic acid alkyl ester constituting the main skeleton of the acrylic polymer include linear or branched alkyl groups having 2 to 18 carbon atoms.
  • the (meth) acrylic acid alkyl ester an acrylic acid alkyl ester having a branched alkyl group is particularly suitable.
  • 2-ethylhexyl acrylate, isooctyl acrylate, isononyl acrylate, isomyristyl acrylate, and the like are preferably used.
  • copolymerization monomers can be introduced into the acrylic polymer by copolymerization for the purpose of improving adhesiveness and heat resistance.
  • copolymerization monomers include, for example, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 4-hydroxybutyl, and (meth) acrylic acid.
  • N-substituted amides such as (meth) acrylamide, N, N dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc.
  • monomers include succinimide monomers such as ethylene succinimide and N-atallyloylmorpholine.
  • a hydroxyl group-containing monomer and a carboxyl group-containing monomer are preferably used from the viewpoint of adhesion to a liquid crystal cell and durability for optical film applications. These monomers serve as reaction points with the crosslinking agent.
  • the proportion of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0 to 30%, more preferably about 0 to 15% in the weight ratio of all the constituent monomers.
  • the average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 300,000 to 2.5 million.
  • the acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected.
  • the radical polymerization initiator various known ones such as azo and peroxide can be used.
  • the reaction temperature is usually about 50-80 ° C, and the reaction time is 1-8 hours.
  • ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer for which the solution polymerization method is preferred.
  • the solution concentration is usually about 20 to 80% by weight.
  • Examples of the base polymer of the rubber-based adhesive include natural rubber, isoprene-based rubber, styrene-butadiene-based rubber, recycled rubber, polyisobutylene-based rubber, styrene-soprene-styrene-based rubber, styrene-butadiene-based rubber. Examples thereof include styrene rubber.
  • Examples of the base polymer for the silicone-based pressure-sensitive adhesive include dimethylpolysiloxane and diphenylpolysiloxane. These base polymers can also be used in which functional groups such as carboxyl groups are introduced.
  • the pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent.
  • the polyfunctional compound that can be added to the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates.
  • the organic crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, an imine crosslinking agent, and a peroxide crosslinking agent. These crosslinking agents can be used alone or in combination of two or more.
  • an isocyanate crosslinking agent is preferable.
  • a polyfunctional metal chelate is a polyvalent metal covalently bonded to an organic compound or It is a coordinate bond.
  • Multivalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. can give.
  • Examples of the atoms in the organic compound to be bonded or coordinated include an oxygen atom, and examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
  • the mixing ratio of the base polymer such as acrylic polymer and the crosslinking agent is not particularly limited! However, usually, about 0.01 to 20 parts by weight of the cross-linking agent (solid content) is preferable with respect to 100 parts by weight of the base polymer (solid content), and more preferably about 0.01 to 15 parts by weight.
  • Sarakuko has a tackifier, plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, and other fillers, pigments, colorants, Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, and the like, and various additives can be appropriately used within the range V and without departing from the object of the present invention. Moreover, it is good also as an adhesive layer etc. which contain microparticles
  • a silane coupling agent is suitable, and the silane coupling agent (solid content) is preferably about 0.001 to LO parts by weight with respect to 100 parts by weight of the base polymer (solid content). Further, it is preferable to add about 0.005 to 5 parts by weight.
  • the silane coupling agent those known in the past can be used without particular limitation.
  • epoxy groups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropinoletriethoxysilane, 3-glycidoxypropylmethyljetoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethylsilane Silane coupling agents, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3 dimethylbutylidene) propylamine, etc.
  • epoxy groups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropinoletriethoxysilane, 3-glycidoxypropylmethyljetoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethylsilane Silane coupling agents, 3-aminopropyltrimethoxysilane, N-2- (amino
  • Amino group-containing silane coupling agents 3-acryloylpropyltrimethoxysilane, 3-methacryloxypropyl (meth) acrylic group-containing silane coupling agents such as pyrtriethoxysilane, and isocyanates such as 3-isocyanatopropyltriethoxysilane Group-containing silane cup
  • a ring agent can be exemplified.
  • optical film used for the optical film with pressure-sensitive adhesive of the present invention those used for forming an image display device such as a liquid crystal display device are used, and the kind thereof is particularly limited. Absent.
  • the optical film is preferably applied to a film having a stretched film such as a polarizing plate or a retardation plate.
  • a polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used.
  • the polarizer is not particularly limited, and various types can be used.
  • polarizers include hydrophilic polymer films such as polybulal alcohol films, partially formalized polybulal alcohol films, and ethylene 'butyric acid copolymer copolymer ken-yi films, iodine and dichroism.
  • examples include uniaxially drawn dichroic substances adsorbed on dyes, and polyylene-oriented films such as polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products.
  • a polybulol alcohol film and a polarizer having a dichroic substance power such as iodine are preferable.
  • the thickness of these polarizers is not particularly limited, but is generally about 5 to 80 ⁇ m.
  • a polarizer obtained by uniaxially stretching a polyvinyl alcohol-based film dyed with iodine is prepared by, for example, dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it 3 to 7 times the original length. Can do. If necessary, it can also be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride and the like. Furthermore, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing.
  • the stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with strong iodine.
  • the film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
  • polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorelose-based polymers such as dicetinoresenorelose and triacetinoloselenolose, acrylic polymers such as polymethylmethacrylate, polystyrene and Styrene polymer such as styrene copolymer (AS resin), polycarbonate polymer One is given.
  • polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure polyolefin polymers such as ethylene / propylene copolymers, salt-and-bulb polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, Snorephone-based polymer, Polyetherenorenolephone-based polymer, Polyethylene-noreno-ketone-based polymer, Polyphenylene sulfide-based polymer, Vinyl alcohol-based polymer, Vinylidene chloride-based polymer, Vinyl butyral-based polymer, Arylate-based polymer, Polyoxymethylene-based Examples of the polymer that forms the transparent protective film include polymers, epoxy polymers, and blends of the above polymers.
  • the transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.
  • a polymer film described in JP-A-2001-343529 for example, (A) a thermoplastic resin having a substituted side chain and a Z or non-midamide group, and (B) side Examples thereof include a resin composition containing a thermoplastic resin having a substituted and Z or unsubstituted fullyl and -tolyl group in the chain.
  • a specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer.
  • a strong film such as a mixed extruded product of the resin composition can be used.
  • the thickness of the protective film can be determined as appropriate, but is generally about 1 to 500 m from the viewpoints of workability such as strength and handleability, and thin film properties. In particular, 5 to 200 m is preferable.
  • a protective film of ⁇ + 75 nm is preferably used.
  • the thickness direction retardation (Rth) is more preferably from 80 nm to +60 nm, particularly preferably from 70 nm to +45 nm.
  • the protective film triacetyl cellulose and the like from the viewpoint of polarization characteristics and durability.
  • Cellulosic polymers are preferred.
  • a triacetyl cellulose film is particularly preferable.
  • protective films having the same polymer material strength may be used on the front and back sides, or different protective films having the same polymer material strength may be used.
  • the polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like.
  • water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based, water-based polyurethane, water-based polyester, and the like.
  • the surface of the transparent protective film to which the polarizer is not bonded may be subjected to a hard coat layer, antireflection treatment, anti-sticking treatment, or treatment for diffusion or anti-glare.
  • the hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched.
  • curing with excellent UV hardness curable resin such as acrylic and silicone is excellent in hardness and sliding properties. It can be formed by a method of adding a film to the surface of the transparent protective film.
  • the antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art.
  • the sticking prevention treatment is performed for the purpose of preventing adhesion with an adjacent layer of another member.
  • the anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual recognition of the light transmitted through the polarizing plate. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles.
  • the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titanium dioxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle diameter of 0.5 to 50 ⁇ m.
  • Transparent fine particles such as inorganic fine particles that may have conductivity such as antimony and organic fine particles (including beads) that also have crosslinked or uncrosslinked polymer are used.
  • the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine concavo-convex structure, and 5 to 25 parts by weight preferable.
  • the anti-glare layer may also serve as a diffusion layer (such as a visual enlargement function) for diffusing the light transmitted through the polarizing plate to enlarge vision.
  • the antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, and the like can be provided on the transparent protective film itself, or separately from the transparent protective film as an optical layer. It can also be provided.
  • an optical film for example, it is used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a retardation plate (including wavelength plates such as 1Z2 and 1Z4), a visual compensation film, and a brightness enhancement film. And an optical layer that has a problem. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used in one or more layers.
  • a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflective plate or a semi-transmissive reflective plate, and an elliptical polarizing plate or a circular plate in which a retardation plate is further laminated on a polarizing plate.
  • a polarizing plate, a wide viewing angle polarizing plate in which a visual compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
  • the reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device of a type that reflects and displays incident light from the viewing side (display side).
  • a liquid crystal display device of a type that reflects and displays incident light from the viewing side (display side).
  • the reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a metal isotropic force is attached to one surface of the polarizing plate via a transparent protective layer or the like, if necessary.
  • a reflective layer is formed by attaching a foil vapor-deposited film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary.
  • the transparent protective film may include fine particles having a surface fine uneven structure, and a reflective layer having a fine uneven structure on the surface.
  • the reflective layer having the fine concavo-convex structure described above has the advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance, and to suppress unevenness in brightness and darkness.
  • the protective film containing fine particles has an advantage that incident light and its reflected light are diffused when passing through it and light and darkness can be further suppressed.
  • the reflective layer with a fine concavo-convex structure reflecting the fine concavo-convex structure on the surface of the transparent protective film is used to protect the metal transparently by an appropriate method such as a vacuum deposition method, an ion plating method, or a sputtering method. It can be performed by a method of attaching directly to the surface of the layer.
  • the reflecting plate can be used as a reflecting sheet in which a reflecting layer is provided on an appropriate film according to the transparent film.
  • the reflective layer usually has a metallic force
  • the usage state in which the reflective surface is covered with a transparent protective film or a polarizing plate is used to prevent the reflectance from being lowered by oxidation, and thus the long-term initial reflectance. It is more preferable in terms of sustainability and avoiding the separate provision of a protective layer.
  • the transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer.
  • Transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer.
  • the liquid crystal cell When using a liquid crystal display device etc. in a relatively bright atmosphere, it reflects the incident light from the viewing side (display side) and displays an image. Under the atmosphere, it is built in the back side of the transflective polarizing plate and can be used to form liquid crystal display devices that display images using a built-in power source such as a backlight.
  • the transflective polarizing plate can save energy when using a light source such as a knocklight in a bright atmosphere, and can be used with a built-in power supply even in a relatively low atmosphere. It is useful for the formation of
  • a phase difference plate or the like is used when changing linearly polarized light into elliptically or circularly polarized light, changing elliptically or circularly polarized light into linearly polarized light, or changing the polarization direction of linearly polarized light.
  • a so-called 1Z4 wavelength plate also called a ⁇ 4 plate
  • a 1Z2 wavelength plate (also referred to as ⁇ 2 plate) is usually used to change the polarization direction of linearly polarized light.
  • the elliptically polarizing plate compensates (prevents) coloring (blue or yellow) caused by double bending of the liquid crystal layer of the super twisted nematic (STN) type liquid crystal display device, and displays the above-mentioned coloring! It is used effectively in such cases. Further, the one having a controlled three-dimensional refractive index is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction.
  • the circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function.
  • Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by the film. It is done.
  • the thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 / ⁇ ⁇ .
  • polymer material examples include polybutyl alcohol, polybutyral, polymethyl vinylenoether, polyhydroxy ethino rare talylate, hydroxy ethinore cellulose, hydroxypropyl cellulose, methenorescenellose, polycarbonate, poly Arylate, Polysulfone, Polyethylene terephthalate, Polyethylene naphthalate, Polyetherolsulfone, Polyphenylene sulfide, Polyphenylene oxide, Polyallylsulfone, Polyamide, Polyimide, Polyolefin, Polychlorinated butyl, Cellulose polymer, Norbornene resin Or various types of these binary and ternary copolymers, graft copolymers, and blends. These polymer materials become an oriented product (stretched film) by stretching or the like.
  • liquid crystal polymer examples include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer.
  • main chain type liquid crystal polymer examples include a nematic orientation polyester liquid crystal polymer, a discotic polymer and a cholesteric polymer having a structure in which a mesogenic group is bonded at a spacer portion that imparts flexibility. It is done.
  • side-chain liquid crystal polymers include polysiloxane, polyacrylate, polymetatalylate, or polymalonate as the main chain skeleton, and nematic alignment imparted via a spacer unit consisting of conjugated atomic groups as side chains. And those having a mesogenic moiety that is a unit force of a para-substituted cyclic compound.
  • These liquid crystal polymers are, for example, liquid crystalline on the alignment surface such as those obtained by rubbing the surface of a thin film such as polyimide polybulal alcohol formed on a glass plate, or those obtained by obliquely vapor deposition of oxygen. This is done by developing and heat-treating the polymer solution.
  • the retardation plate may have an appropriate retardation according to the purpose of use, such as various wavelength plates and those for the purpose of coloration due to birefringence of the liquid crystal layer and compensation of vision, etc. 2 It is also possible to use a laminate of more than one kind of retardation plate to control optical properties such as retardation. Yes.
  • the elliptically polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination.
  • the elliptical polarizing plate or the like that can be formed can be formed by sequentially laminating them separately in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflection type) polarizing plate and a retardation plate.
  • an optical film such as an elliptically polarizing plate is advantageous in that it has excellent quality stability and lamination workability, and can improve the manufacturing efficiency of a liquid crystal display device.
  • the visual compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a slightly oblique direction rather than perpendicular to the screen.
  • a visual compensation phase difference plate for example, a phase difference plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate can be used.
  • a normal retardation plate uses a polymer film having birefringence that is uniaxially stretched in the plane direction, whereas a retardation plate used as a visual compensation film is biaxially stretched in the plane direction.
  • Birefringence such as a polymer film having a birefringence and a birefringence that has a controlled refractive index in the thickness direction that is uniaxially stretched in the plane direction and is also stretched in the thickness direction.
  • a film or the like is used.
  • the tilted alignment film include a film obtained by bonding a heat-shrink film to a polymer film and subjecting the polymer film to a stretch treatment or Z and shrink treatment under the action of the shrinkage force by heating, or a liquid crystal polymer that is obliquely oriented. Etc.
  • the raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference of the liquid crystal cell and expanding the viewing angle for good viewing. Anything suitable for the purpose can be used.
  • a liquid crystal polymer alignment layer is supported by a triacetyl cellulose film in order to achieve a wide viewing angle with good visibility.
  • the optically compensated retardation plate can be preferably used.
  • a polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of the liquid crystal cell.
  • the brightness enhancement film is a linearly polarized light with a predetermined polarization axis or a predetermined direction when natural light is incident on the backlight of a liquid crystal display device, etc.
  • the polarizing plate which reflects the circularly polarized light and transmits other light, is a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate. And light other than the predetermined polarization state is reflected without being transmitted.
  • the light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state.
  • a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state.
  • the light having a polarization direction that does not coincide with the polarization axis of the polarizer is It is almost absorbed by the polarizer and does not pass through the polarizer. That is, approximately 50% of the light that is different depending on the characteristics of the polarizer used is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display is reduced, and the image becomes dark.
  • the brightness enhancement film allows light having a polarization direction that is absorbed by the polarizer to be reflected once by the brightness enhancement film without being incident on the polarizer, and further through a reflective layer or the like provided on the back side thereof.
  • Inverting and re-entering the brightness enhancement film is repeated, and only the polarized light whose polarization direction is such that the polarization direction of the light reflected and inverted between the two can pass through the polarizer is obtained. Is transmitted to the polarizer so that light such as a backlight can be efficiently used for displaying images on the liquid crystal display device, and the screen can be brightened.
  • a diffusion plate may be provided between the brightness enhancement film and the reflective layer.
  • the polarized light reflected by the brightness enhancement film is directed to the reflection layer and the like, but the installed diffuser diffuses the light passing therethrough at the same time and simultaneously cancels the polarization state to become a non-polarized state. That is, the light in the natural light state is directed to the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and reenters the brightness enhancement film.
  • the brightness of the display screen is maintained, and at the same time, uneven brightness of the display screen is reduced. Can provide a uniform and bright screen.
  • the number of times the first incident light is repeatedly reflected increases moderately, coupled with the diffusion function of the diffuser. V. It seems that we were able to provide a display screen.
  • the brightness enhancement film for example, a dielectric multilayer thin film or a multilayer laminate of thin film films having different refractive index anisotropies
  • the linearly polarized light having a predetermined polarization axis is transmitted and other light is transmitted.
  • Reflecting one of the left-handed or right-handed circularly polarized light and transmitting the other light, such as those that show reflective properties, such as oriented films of cholesteric liquid crystal polymer and those oriented liquid crystal layers supported on a film substrate Appropriate things such as those showing the characteristics to be used can be used.
  • the transmission light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate.
  • it can be transmitted efficiently.
  • a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer
  • it can be directly incident on a polarizer.
  • the circularly polarized light is linearly polarized through a retardation plate in order to suppress absorption loss. It is preferable to make it light and make it enter into a polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a 1Z4 wavelength plate as the retardation plate.
  • a retardation plate that functions as a 1Z4 wavelength plate at a wide wavelength in the visible light region or the like exhibits, for example, a retardation plate that functions as a 1Z4 wavelength plate for light-colored light having a wavelength of 55 Onm and other retardation characteristics. It can be obtained by a method of superposing a retardation layer, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have a retardation layer force of one layer or two or more layers.
  • the cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light castle by combining two or more layers with different reflection wavelengths in an overlapping structure. Based on this, transmission circular polarization in a wide and wavelength range can be obtained.
  • the polarizing plate may be formed by laminating a polarizing plate such as the above-described polarization-separating polarizing plate and two or more optical layers. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.
  • the optical film in which the optical layer is laminated on a polarizing plate can be formed even in a method of laminating sequentially and separately in the manufacturing process of a liquid crystal display device or the like. These products have excellent quality stability and assembly work! /, And have the advantage of improving the manufacturing process of liquid crystal display devices.
  • an appropriate adhesive means such as an adhesive layer can be used.
  • the polarizing plate and the other optical layer are bonded, their optical axes can be arranged at an appropriate angle depending on the target retardation characteristics.
  • the optical film with pressure-sensitive adhesive of the present invention is produced by forming a pressure-sensitive adhesive layer on the optical film.
  • the forming method is not particularly limited, and examples thereof include a method of applying and drying a pressure-sensitive adhesive solution, and a method of transferring with a release sheet provided with a pressure-sensitive adhesive layer.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably about 3 to about LOO / zm, preferably about 10 to 40 / ⁇ ⁇ .
  • the pressure-sensitive adhesive layer may be formed after forming the antistatic layer.
  • Constituent materials of the release sheet include synthetic resin films such as paper, polyethylene, polypropylene, and polyethylene terephthalate, rubber sheets, paper, cloth, nonwoven fabric, nets, foam sheets, metal foils, laminates thereof, and the like. Appropriate thin leaves and the like can be mentioned.
  • the surface of the release sheet is subjected to low-adhesion release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary to improve the peelability of the adhesive layer! / OK!
  • each layer such as an optical film or an adhesive layer of the optical film with an adhesive of the present invention includes, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt.
  • a salicylic acid ester compound such as a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt.
  • Something that has UV absorption ability by a method such as a method of treating with a UV absorber such as a compound.
  • the optical film with an adhesive of the present invention can be preferably used for forming various image display devices such as a liquid crystal display device.
  • the liquid crystal display device can be formed according to the conventional method.
  • a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical film with an adhesive, and an illumination system as necessary, and incorporating a drive circuit.
  • the optical film according to the present invention is used.
  • the liquid crystal cell an arbitrary type such as an arbitrary type such as a vertical type, an STN type, or a ⁇ type can be used.
  • a liquid crystal display device in which an optical film with an adhesive is disposed on one side or both sides of a liquid crystal cell Appropriate liquid crystal display devices, such as those using a reflector, can be formed.
  • the optical film according to the present invention can be placed on one or both sides of the liquid crystal cell.
  • optical films are provided on both sides, they may be the same or different.
  • a single layer or an appropriate part such as a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusion plate, a knocklight, etc. Two or more layers can be arranged.
  • organic electroluminescence device organic EL display device
  • the optical film (polarizing plate or the like) of the present invention can also be applied to an organic EL display device.
  • a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter).
  • the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injecting layer having an isotropy such as a triphenylamine derivative and a light emitting layer having a fluorescent organic solid force such as anthracene. Or a laminate of such a light emitting layer and a perylene derivative or the like electron injection layer, or a stack of these hole injection layer, light emitting layer, and electron injection layer.
  • the composition is known.
  • an organic EL display device holes and electrons are injected into an organic light-emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons. Emits light on the principle that it excites the fluorescent material and emits light when the excited fluorescent material returns to the ground state.
  • the mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
  • the organic EL display device in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and is usually formed of a transparent conductor such as indium tin oxide (ITO).
  • ITO indium tin oxide
  • a transparent electrode is used as the anode.
  • metal electrodes such as Mg Ag and A1-Li are used.
  • the organic light emitting layer has a thickness of about lOnm. It is made of a thin film. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident on the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode again returns to the surface side of the transparent substrate. When viewed, the display surface of the OLED display looks like a mirror.
  • an organic EL display device including an organic electroluminescent light emitting device including a transparent electrode on a front surface side of an organic light emitting layer that emits light when a voltage is applied and a metal electrode on a back surface side of the organic light emitting layer
  • a polarizing plate can be provided on the surface side of the electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
  • the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, the effect of preventing the mirror surface of the metal electrode from being visually recognized by the polarization action. is there.
  • the retardation plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to ⁇ Z4, the mirror surface of the metal electrode can be completely shielded.
  • linearly polarized light is generally elliptically polarized by the retardation plate, but it is circularly polarized when the retardation plate is a 1Z4 wavelength plate and the angle between the polarization direction of the polarizing plate and the retardation plate is ⁇ ⁇ 4. .
  • This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and is linearly polarized again on the retardation plate. Become. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
  • the Tg of the adhesive layer was determined by the DSC method. Tg was the starting temperature.
  • the measuring device used was a DSC6220 type differential scanning calorimeter manufactured by Seiko Instruments Inc. [0080] (Measurement of internal force (F) caused by thermal stress of optical film)
  • is the coefficient of thermal expansion at -60 to 23 ° C
  • is the temperature difference when 23 ° C is the reference
  • E is the elastic modulus
  • 1 is the width
  • h is the thickness
  • the thermal expansion coefficient ⁇ was determined by the ⁇ ⁇ method.
  • the measuring device used is a TMAZS S6100 type thermomechanical analyzer manufactured by Seiko Insuno Rememb.
  • the elastic modulus E was determined by a tensile test using an autograph AG 1 manufactured by Shimadzu Corporation.
  • l ′ h is the cross-sectional area of the optical film.
  • the pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Then, the polarizing plate with the pressure-sensitive adhesive layer was 280 mm X
  • a pressure-sensitive adhesive layer having a thickness of 20 m was obtained in the same manner as in Example 1.
  • the adhesive layer is transferred to one side of a polarizing plate (NPF-TEG5465DU, manufactured by Nitto Denko Corporation). Obtained. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm ⁇ 280 mm non-alkali glass plate with a laminator, and allowed to stand in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
  • the amount of trimethylolpropane tolylene diisocyanate was 0.15 part per 100 parts of the solid content of the solution.
  • the acrylic pressure-sensitive adhesive was applied to a separator made of a polyester film surface-treated with a silicone-based release agent, and heat-treated at 150 ° C. for 5 minutes to obtain an adhesive layer having a thickness of 20 ⁇ m. As a result of measuring Tg of the pressure-sensitive adhesive layer, it was ⁇ 60 ° C.
  • the pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm ⁇ 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
  • a polarizing plate NPF-SEG5224DU, manufactured by Nitto Denko Corporation
  • the pressure-sensitive adhesive layer was transferred to one surface of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm ⁇ 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
  • a polarizing plate NPF-SEG5224DU, manufactured by Nitto Denko Corporation
  • the acrylic pressure-sensitive adhesive was coated on a polyester film-strength separator surface-treated with a silicone-based release agent, and heat-treated at 150 ° C. for 5 minutes to obtain a pressure-sensitive adhesive layer having a thickness of 20 m.
  • the Tg of the pressure-sensitive adhesive layer was measured and found to be 30 ° C.
  • the pressure-sensitive adhesive layer was transferred to one surface of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm ⁇ 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
  • a polarizing plate NPF-SEG5224DU, manufactured by Nitto Denko Corporation
  • a pressure-sensitive adhesive layer having a thickness of 20 m was obtained in the same manner as in Comparative Example 1.
  • the pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-TEG5465DU, manufactured by Nitto Denko Corporation) used in Example 2 to obtain an optical film with a pressure-sensitive adhesive.
  • the polarizing plate with the adhesive layer is attached to a 280 mm X 280 mm It was pasted on a non-alkali glass plate with a laminator and left in an autoclave at 50 ° C and 5 atm for 15 minutes for sufficient pressure bonding.
  • Glass warpage is less than 0.5 mm.
  • Glass warpage is 0.5 to 1. Omm.
  • the optical film with an adhesive of the present invention is suitable for containing a stretched film as an optical film, and can be suitably applied to image display devices such as liquid crystal display devices, organic EL display devices, and PDPs.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)

Abstract

An optical film having a pressure-sensitive adhesive layer on at least one surface thereof, characterized in that the pressure-sensitive adhesive layer has a Tg of -35°C or lower. The above optical film with a pressure-sensitive adhesive exhibits such durability that the curvature thereof can be inhibited even when exposed to a low temperature circumstance of room temperature or lower.

Description

明 細 書  Specification
粘着剤付き光学フィルムおよび画像表示装置  Optical film with adhesive and image display device
技術分野  Technical field
[0001] 本発明は、光学フィルムの少なくとも片面に粘着剤層を有する粘着剤付き光学フィ ルムに関する。さらには前記粘着剤付き光学フィルムを用いた液晶表示装置、有機 E L表示装置、 PDP等の画像表示装置に関する。本発明の粘着剤付き光学フィルムは 、光学フィルムとして延伸フィルムを含有するものに好適であり、例えば、偏光板、位 相差板、光学補償フィルム、輝度向上フィルム、さらにはこれらが積層されているもの などがあげられる。  [0001] The present invention relates to an optical film with an adhesive having an adhesive layer on at least one surface of an optical film. Furthermore, the present invention relates to an image display device such as a liquid crystal display device, an organic EL display device, or a PDP using the optical film with an adhesive. The optical film with a pressure-sensitive adhesive of the present invention is suitable for a film containing a stretched film as an optical film, for example, a polarizing plate, a phase difference plate, an optical compensation film, a brightness enhancement film, and those in which these are laminated. Etc.
背景技術  Background art
[0002] 液晶表示装置は、電卓にはじまり、時計やテレビ、モニターなどに利用されている。  A liquid crystal display device is used for a clock, a television, a monitor, etc., as well as a calculator.
これら製品は、様々な環境において、種々の条件下で用いられるため、各種の耐久 性が要求されている。また液晶表示装置には、偏光板、位相差板等の各種の光学フ イルムが用いられる。これら光学フィルムは、各種光学部材と貼り合わせるために粘 着剤付き光学フィルムとして用いられる。したがって、粘着剤付き光学フィルムについ ても耐久性が求められる。  Since these products are used under various conditions in various environments, various durability is required. Various optical films such as a polarizing plate and a retardation plate are used for the liquid crystal display device. These optical films are used as an optical film with an adhesive in order to bond them to various optical members. Therefore, durability is also required for optical films with adhesives.
[0003] 粘着剤付き光学フィルムの耐久性を向上するために、粘着剤層につ 、て種々の検 討がなされている。たとえば、粘着剤に用いるベースポリマーの分子量を上げたり、 ベースポリマーに高 Tgのモノマーを共重合したり、架橋度を上げたりする方法がある 。上記粘着剤としては、その優れた接着性、透明性等のためにアクリル系粘着剤が 賞用されている(特許文献 1参照)。しかし、これらの方法により粘着剤付き光学フィル ムに耐久性を持たせると粘着剤層の残存応力が強くなる。その結果、これが光学フィ ルムに作用して、光学フィルムに反りが生じ、液晶表示装置の表示品位を損なうと大 きな問題を起こしてしまう。  [0003] In order to improve the durability of an optical film with an adhesive, various studies have been made on the adhesive layer. For example, there are methods such as increasing the molecular weight of the base polymer used for the pressure-sensitive adhesive, copolymerizing a high Tg monomer with the base polymer, and increasing the degree of crosslinking. As the above-mentioned pressure-sensitive adhesive, an acrylic pressure-sensitive adhesive is used for its excellent adhesion, transparency and the like (see Patent Document 1). However, if the optical film with adhesive is made durable by these methods, the residual stress of the adhesive layer becomes stronger. As a result, this acts on the optical film, causing the optical film to warp, causing a serious problem if the display quality of the liquid crystal display device is impaired.
特許文献 1:特開平 11― 52349号公報  Patent Document 1: Japanese Patent Laid-Open No. 11-52349
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0004] また、粘着剤付き光学フィルムの耐久性につ!、ては、高温および高温高温条件下 における耐久性を改善することが主に行なわれていた。近年では、液晶表示装置の 用途として、テレビや車載などの用途が増え始めている。それに伴い、粘着剤付き光 学フィルムには、高温および高温高湿条件下はもちろん、 30°C等の低温条件下に おいても耐久性が要求されている。しかし、従来のアクリル系粘着剤を用いた粘着剤 付き光学フィルム (たとえば粘着剤層付き偏光板)は、高温および高温高温条件下に おける耐久性は満足できて 、ても、室温(23°C)以下の低温条件下における耐久性 が十分ではなぐ粘着剤付き光学フィルムはガラス板等に貼着した状態で低温条件 下にさらされると、大きな反りを生じていた。 Problems to be solved by the invention [0004] Further, with respect to the durability of the optical film with an adhesive, it has been mainly carried out to improve the durability under high temperature and high temperature / high temperature conditions. In recent years, the use of liquid crystal display devices such as televisions and in-cars has begun to increase. As a result, optical films with adhesives are required to have durability not only at high temperatures and high temperatures and high humidity but also at low temperatures such as 30 ° C. However, conventional optical films with pressure-sensitive adhesives using acrylic pressure-sensitive adhesives (for example, polarizing plates with pressure-sensitive adhesive layers) have satisfactory durability under high temperature and high temperature and high temperature conditions, even at room temperature (23 ° C). ) The optical film with pressure-sensitive adhesive that is not sufficiently durable under the following low temperature conditions caused a large warp when it was exposed to low temperature conditions while being adhered to a glass plate or the like.
[0005] 本発明は、室温以下の低温環境下に置かれた場合にも、光学フィルムの反りを抑 制することができる耐久性を有する粘着剤付き光学フィルムを提供することを目的と する。  [0005] An object of the present invention is to provide an optical film with a pressure-sensitive adhesive that can suppress warping of the optical film even when placed in a low temperature environment of room temperature or lower.
[0006] また本発明は、前記粘着剤付き光学フィルムを用いた画像表示装置を提供するこ とを目的とする。  [0006] Another object of the present invention is to provide an image display device using the optical film with an adhesive.
課題を解決するための手段  Means for solving the problem
[0007] 本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、下記粘着剤付き光 学フィルム等により上記目的を達成できることを見出し、本発明を完成するに至った。 [0007] As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following optical film with an adhesive, etc., and have completed the present invention.
[0008] すなわち本発明は、光学フィルムの少なくとも片面に粘着剤層を有する粘着剤付き 光学フィルムにおいて、 That is, the present invention relates to an optical film with an adhesive having an adhesive layer on at least one side of the optical film,
粘着剤層の Tgが、—35°C以下であることを特徴とする粘着剤付き光学フィルム、に 関する。  The present invention relates to an optical film with an adhesive, wherein the adhesive layer has a Tg of −35 ° C. or lower.
[0009] 一般に粘着剤は、室温以下の Tgを有する。 Tg付近の温度領域は、ガラス状態とゴ ム状態の遷移域であり、 Tgを超えガラス状態となると、それに伴って粘着剤の持つ弾 性率が急激に上昇していき、その結果、光学フィルムの熱収縮程度の小さな寸法変 化にも充分に追従することができなくなって、大きな反りを生じる。  [0009] Generally, the pressure-sensitive adhesive has a Tg of room temperature or lower. The temperature region near Tg is a transition region between the glassy state and the rubbery state. When the glassy state is exceeded beyond Tg, the elasticity of the adhesive increases rapidly, resulting in an optical film. Even small dimensional changes such as heat shrinkage cannot be sufficiently followed, resulting in large warpage.
[0010] 一方、低温領域での反りは、通常試験される加熱や加湿状態での反りとは異なり、 光学フィルム (特に延伸フィルム)では延伸軸と 90° 方向に強い反りを生じ、室温に 戻ると反りは無くなり元に戻るという特徴がある。これは光学フィルム、特に偏光板で の延伸軸と 90° 方向における熱膨張係数が延伸軸方向と比べ大きぐ生じる内力も 延伸軸と 90° 方向の方が大きいことによる。室温に戻ると反りが無くなるという現象は 、低温領域での反りが光学フィルムの熱応力のみに依存するところが大きいことを示 す。 [0010] On the other hand, warping in a low temperature region differs from warping in a heating or humidified state that is usually tested, and in optical films (especially stretched films), a strong warp occurs in the direction of 90 ° with the stretching axis and returns to room temperature And there is a characteristic that the warp disappears and it returns to the original. This is an optical film, especially a polarizing plate This is because the internal force that the coefficient of thermal expansion in the direction of the stretching axis and the 90 ° direction is larger than that in the direction of the stretching axis is also due to the larger force in the direction of the stretching axis and 90 °. The phenomenon that the warp disappears when the temperature returns to room temperature indicates that the warp in the low temperature region largely depends only on the thermal stress of the optical film.
[0011] そこで、本発明では、粘着剤層として、 Tgが一 35°C以下のものを用いることにより、 低温領域における光学フィルム等の部材の寸法変化に伴う応力により生ずる反りを 抑制している。これにより、高温領域のみならず、低温領域においても、耐久性の良 好な粘着剤付き光学フィルムを提供できる。粘着剤層の Tgは、好ましくは— 40°C以 下、さらに好ましくは— 50°C以下である。なお、 Tgは、低すぎると高温条件下での耐 久性が低下するため、—120°C以上、さらには 100°C以上であるのが好ましい。  [0011] Therefore, in the present invention, by using a pressure-sensitive adhesive layer having a Tg of not more than 35 ° C, warpage caused by stress accompanying dimensional change of a member such as an optical film in a low temperature region is suppressed. . Thereby, it is possible to provide an optical film with a pressure-sensitive adhesive having excellent durability not only in a high temperature region but also in a low temperature region. The Tg of the pressure-sensitive adhesive layer is preferably −40 ° C. or lower, more preferably −50 ° C. or lower. Note that if Tg is too low, durability under high temperature conditions decreases, so that it is preferably −120 ° C. or higher, more preferably 100 ° C. or higher.
[0012] 上記粘着剤付き光学フィルムは、前記光学フィルムの熱応力に起因する内力(F) を、  [0012] The optical film with pressure-sensitive adhesive has an internal force (F) caused by thermal stress of the optical film,
F= a - ΔΤ-Ε -1-h  F = a-ΔΤ-Ε -1-h
(ただし、 αは— 60〜23°Cにおける熱膨張係数, ΔΤは 23°Cを基準としたときの温 度差、 Eは弾性率、 1は幅、 hは厚み、である。 )とした場合に、  (Where α is the coefficient of thermal expansion at -60 to 23 ° C, ΔΤ is the temperature difference when 23 ° C is the reference, E is the elastic modulus, 1 is the width, and h is the thickness). In case,
光学フィルムが延伸フィルムを有し、 0°Cにおいて、前記延伸フィルムの延伸軸に対 して 90° 方向に生じる内力(F)が 50N以上であるものに対して有効である。  This is effective for an optical film having a stretched film and an internal force (F) generated in the 90 ° direction with respect to the stretching axis of the stretched film at 0 ° C is 50 N or more.
[0013] 前記内力(F)力 50N以上を有する光学フィルムは、低温において反りを生じやす ぐ本発明の粘着剤付き光学フィルムを好適に適用できる。光学フィルムの前記内力 (F)が、 70N以上、さらには 100N以上を有する場合に、本発明の粘着剤付き光学 フィルムは好適である。 [0013] As the optical film having the internal force (F) force of 50 N or more, the optical film with a pressure-sensitive adhesive of the present invention, which easily warps at a low temperature, can be suitably applied. The optical film with pressure-sensitive adhesive of the present invention is suitable when the internal force (F) of the optical film has 70N or more, further 100N or more.
[0014] 上記粘着剤付き光学フィルムは、光学フィルムが、偏光板および Zまたは位相差板 を含有するものに好適に適用できる。偏光板および Zまたは位相差板の構成要素と して、延伸フィルムを用いたものは、低温において反りが生じやすぐ本発明の粘着 剤付き光学フィルムを好適に適用できる。  [0014] The optical film with pressure-sensitive adhesive can be suitably applied to an optical film containing a polarizing plate and Z or a retardation plate. A film using a stretched film as a constituent element of a polarizing plate and Z or a retardation plate can be suitably applied to the optical film with an adhesive of the present invention as soon as warpage occurs at a low temperature.
[0015] また本発明は、上記粘着剤付き光学フィルムを少なくとも 1枚用いた画像表示装置 、に関する。  [0015] The present invention also relates to an image display device using at least one optical film with an adhesive.
発明を実施するための最良の形態 [0016] 本発明の粘着剤付き光学フィルムは、光学フィルムの片面に粘着剤層を有する。粘 着剤層は、— 35°C以下の低 Tgを有するもので形成されるが、その粘着剤層の形成 には適宜な粘着剤を用いることができ、その種類について特に制限はない。粘着剤 としては、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤 、ビュルアルキルエーテル系粘着剤、ポリビュルアルコール系粘着剤、ポリビュルピ 口リドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤などがあげられる BEST MODE FOR CARRYING OUT THE INVENTION [0016] The optical film with an adhesive of the present invention has an adhesive layer on one side of the optical film. The adhesive layer is formed of a material having a low Tg of −35 ° C. or lower, and an appropriate pressure-sensitive adhesive can be used for forming the pressure-sensitive adhesive layer, and the type thereof is not particularly limited. Adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, buralkyl ether-based adhesives, polybulal alcohol-based adhesives, polybulphine-lididone-based adhesives, and polyacrylamide-based adhesives. Agents, cellulosic adhesives, etc.
[0017] これら粘着剤のなかでも、光学的透明性に優れ、適宜な濡れ性と凝集性と接着性 の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく使用される。この ような特徴を示すものとしてアクリル系粘着剤が好ましく使用される。 Among these pressure-sensitive adhesives, those having excellent optical transparency, suitable wettability, cohesiveness, and adhesive properties, and excellent weather resistance and heat resistance are preferably used. An acrylic pressure-sensitive adhesive is preferably used as a material exhibiting such characteristics.
[0018] アクリル系粘着剤は、(メタ)アクリル酸アルキルエステルのモノマーユニットを主骨 格とするアクリル系ポリマーをベースポリマーとする。なお、(メタ)アクリル酸アルキル エステルはアクリル酸アルキルエステルおよび Zまたはメタクリル酸アルキルエステル をいい、本発明の (メタ)とは同様の意味である。アクリル系ポリマーの主骨格を構成 する、(メタ)アクリル酸アルキルエステルとしては、直鎖状または分岐鎖状のアルキル 基の炭素数 2〜18のものを例示できる。例えば、(メタ)アクリル酸ェチル、(メタ)ァク リル酸ブチル、(メタ)アクリル酸 2—ェチルへキシル、(メタ)アクリル酸イソオタチル、( メタ)アクリル酸イソノエル、(メタ)アクリル酸イソミリスチル、(メタ)アクリル酸ラウリル等 を例示できる。(メタ)アクリル酸アルキルエステルとしては、特に分岐状のアルキル基 を有するアクリル酸アルキルエステルが好適である。たとえば、アクリル酸 2—ェチル へキシル、アクリル酸イソオタチル、アクリル酸イソノニル、アクリル酸イソミリスチル等 が好適に用いられる。  [0018] The acrylic pressure-sensitive adhesive has an acrylic polymer mainly composed of a monomer unit of (meth) acrylic acid alkyl ester as a base polymer. In addition, (meth) acrylic acid alkyl ester means acrylic acid alkyl ester and Z or methacrylic acid alkyl ester, and (meth) in the present invention has the same meaning. Examples of the (meth) acrylic acid alkyl ester constituting the main skeleton of the acrylic polymer include linear or branched alkyl groups having 2 to 18 carbon atoms. For example, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethyl hexyl (meth) acrylate, isooctyl (meth) acrylate, isonoyl (meth) acrylate, isomristyl (meth) acrylate And lauryl (meth) acrylate. As the (meth) acrylic acid alkyl ester, an acrylic acid alkyl ester having a branched alkyl group is particularly suitable. For example, 2-ethylhexyl acrylate, isooctyl acrylate, isononyl acrylate, isomyristyl acrylate, and the like are preferably used.
[0019] 前記アクリル系ポリマー中には、接着性や耐熱性の改善を目的に、 1種類以上の共 重合モノマーを共重合により導入することができる。そのような共重合モノマーの具体 例としては、例えば、(メタ)アクリル酸 2—ヒドロキシェチル、(メタ)アクリル酸 2—ヒドロキ シプロピル、(メタ)アクリル酸 4ーヒドロキシブチル、(メタ)アクリル酸 6—ヒドロキシへキ シル、(メタ)アクリル酸 8—ヒドロキシォクチル、(メタ)アクリル酸 10—ヒドロキシデシル、 (メタ)アクリル酸 12 -ヒドロキシラウリルや(4 -ヒドロキシメチルシクロへキシル)一メチ ルアタリレートなどのヒドロキシル基含有モノマー; (メタ)アクリル酸、カルボキシェチル (メタ)アタリレート、カルボキシペンチル (メタ)アタリレート、ィタコン酸、マレイン酸、フマ ール酸、クロトン酸などのカルボキシル基含有モノマー;無水マレイン酸、無水イタコ ン酸などの酸無水物基含有モノマー;アクリル酸の力プロラタトン付カ卩物;スチレンス ルホン酸ゃァリルスルホン酸、 2— (メタ)アクリルアミド— 2—メチルプロパンスルホン 酸、(メタ)アクリルアミドプロパンスルホン酸、スルホプロピル (メタ)アタリレート、(メタ) アタリロイルォキシナフタレンスルホン酸などのスルホン酸基含有モノマー; 2—ヒドロ キシェチルアタリロイルホスフェートなどの燐酸基含有モノマーなどがあげられる。 [0019] One or more kinds of copolymerization monomers can be introduced into the acrylic polymer by copolymerization for the purpose of improving adhesiveness and heat resistance. Specific examples of such copolymerization monomers include, for example, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 2-hydroxypropyl, (meth) acrylic acid 4-hydroxybutyl, and (meth) acrylic acid. 6-hydroxyhexyl, (meth) acrylic acid 8-hydroxyoctyl, (meth) acrylic acid 10-hydroxydecyl, (meth) acrylic acid 12-hydroxylauryl and (4-hydroxymethylcyclohexyl) monomethyl Hydroxyl group-containing monomers such as ruatrate; Carboxyl groups such as (meth) acrylic acid, carboxyethyl (meth) acrylate, carboxypentyl (meth) acrylate, itaconic acid, maleic acid, fumaric acid, crotonic acid Containing monomer; Maleic anhydride, Itaconic anhydride and other acid anhydride group-containing monomer; Acrylic acid power product with prolatathone; Styrene sulfonic acid gallic sulfonic acid, 2- (meth) acrylamide-2-methylpropane sulfonic acid Sulfonic acid group-containing monomers such as, (meth) acrylamide propane sulfonic acid, sulfopropyl (meth) acrylate, (meth) ateroyloxynaphthalene sulfonic acid; 2-phosphoric acid group-containing monomers such as hydroxychetyl attalyloyl phosphate Etc.
[0020] また、(メタ)アクリルアミド、 N, N ジメチル (メタ)アクリルアミド、 N ブチル (メタ) アクリルアミドゃ N—メチロール (メタ)アクリルアミド、 N—メチロールプロパン (メタ)ァ クリルアミドなどの(N 置換)アミド系モノマー;(メタ)アクリル酸アミノエチル、(メタ) アクリル酸お N ジメチルアミノエチル、(メタ)アクリル酸 t ブチルアミノエチルなど の(メタ)アクリル酸アルキルアミノアルキル系モノマー;(メタ)アクリル酸メトキシェチ ル、(メタ)アクリル酸エトキシェチルなどの(メタ)アクリル酸アルコキシアルキル系モノ マー; N— (メタ)アタリロイルォキシメチレンスクシンイミドゃ N— (メタ)アタリロイル一 6 ーォキシへキサメチレンスクシンイミド、 N- (メタ)アタリロイルー 8—ォキシオタタメチ レンスクシンイミド、 N アタリロイルモルホリンなどのスクシンイミド系モノマーなどもモ ノマ一例としてあげられる。  [0020] (N-substituted) amides such as (meth) acrylamide, N, N dimethyl (meth) acrylamide, N-butyl (meth) acrylamide, N-methylol (meth) acrylamide, N-methylolpropane (meth) acrylamide, etc. (Meth) acrylic acid aminoethyl, (meth) acrylic acid and N dimethylaminoethyl, (meth) acrylic acid t-butylaminoethyl and other (meth) acrylic acid alkylaminoalkyl monomers; (meth) acrylic acid methoxy ester And (meth) acrylic acid alkoxyalkyl monomers such as (meth) acrylic acid ethoxyethyl; N— (meth) acryloyloxymethylene succinimide N— (meth) acryloyl 1-6-oxyhexamethylene succinimide, N— ( Meta) Atari Roy Roux 8-Oxiotame Examples of monomers include succinimide monomers such as ethylene succinimide and N-atallyloylmorpholine.
[0021] さらに改質モノマーとして、酢酸ビュル、プロピオン酸ビュル、 N—ビュルピロリドン 、メチルビニルピロリドン、ビニルピリジン、ビニルピペリドン、ビニルピリミジン、ビニル ピぺラジン、ビュルピラジン、ビュルピロール、ビュルイミダゾール、ビュルォキサゾー ル、ビュルモルホリン、 N ビ-ルカルボン酸アミド類、スチレン、 α—メチルスチレン 、 Ν ビュル力プロラタタムなどのビュル系モノマー;アクリロニトリル、メタタリロニトリ ルなどのシァノアクリレート系モノマー;(メタ)アクリル酸グリシジルなどのエポキシ基 含有アクリル系モノマー;(メタ)アクリル酸ポリエチレングリコール、(メタ)アクリル酸ポ リプロピレングリコール、(メタ)アクリル酸メトキシエチレングリコール、(メタ)アクリル酸 メトキシポリプロピレングリコールなどのグリコール系アクリルエステルモノマー;(メタ) アクリル酸テトラヒドロフルフリル、フッ素(メタ)アタリレート、シリコーン (メタ)アタリレー トゃ 2—メトキシェチルアタリレートなどのアクリル酸エステル系モノマーなども使用す ることがでさる。 [0021] Further, as modifying monomers, butyl acetate, butyl propionate, N-butyl pyrrolidone, methyl vinyl pyrrolidone, vinyl pyridine, vinyl piperidone, vinyl pyrimidine, vinyl piperazine, bulpyrazine, bur pyrrole, bur imidazole, buroxazol, Bull morpholine, N-vinyl carboxylic acid amides, styrene, α-methyl styrene, ビ ュ Bull monomers such as buler force prolatatum; Cyanacrylate monomers such as acrylonitrile and methatalonitrile; Epoxy groups such as glycidyl (meth) acrylate Containing acrylic monomer; polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, methoxyethylene glycol (meth) acrylate, (meth) acrylic acid Glycol acrylic ester monomers such as methoxypolypropylene glycol; (meth) tetrahydrofurfuryl acrylate, fluorine (meth) acrylate, silicone (meth) ate relay It is also possible to use acrylic acid ester monomers such as 2-methoxyethyl acrylate.
[0022] これらの中でも、光学フィルム用途として液晶セルへの接着性、耐久性の点から、ヒ ドロキシル基含有モノマー、カルボキシル基含有モノマーが好ましく用いられる。これ らモノマーは、架橋剤との反応点になる。  Among these, a hydroxyl group-containing monomer and a carboxyl group-containing monomer are preferably used from the viewpoint of adhesion to a liquid crystal cell and durability for optical film applications. These monomers serve as reaction points with the crosslinking agent.
[0023] アクリル系ポリマー中の前記共重合モノマーの割合は、特に制限されないが、全構 成モノマーの重量比率において、 0〜30%程度、さらには 0〜15%程度であるのが 好ましい。 [0023] The proportion of the copolymerization monomer in the acrylic polymer is not particularly limited, but is preferably about 0 to 30%, more preferably about 0 to 15% in the weight ratio of all the constituent monomers.
[0024] アクリル系ポリマーの平均分子量は特に制限されないが、重量平均分子量は、 30 万〜 250万程度であるのが好ましい。前記アクリル系ポリマーの製造は、各種公知の 手法により製造でき、たとえば、バルタ重合法、溶液重合法、懸濁重合法等のラジカ ル重合法を適宜選択できる。ラジカル重合開始剤としては、ァゾ系、過酸化物系の各 種公知のものを使用できる。反応温度は通常 50〜80°C程度、反応時間は 1〜8時 間とされる。また、前記製造法の中でも溶液重合法が好ましぐアクリル系ポリマーの 溶媒としては一般に酢酸ェチル、トルエン等が用いられる。溶液濃度は通常 20〜80 重量%程度とされる。  [0024] The average molecular weight of the acrylic polymer is not particularly limited, but the weight average molecular weight is preferably about 300,000 to 2.5 million. The acrylic polymer can be produced by various known methods. For example, a radical polymerization method such as a Balta polymerization method, a solution polymerization method, or a suspension polymerization method can be appropriately selected. As the radical polymerization initiator, various known ones such as azo and peroxide can be used. The reaction temperature is usually about 50-80 ° C, and the reaction time is 1-8 hours. Among the above production methods, ethyl acetate, toluene and the like are generally used as the solvent for the acrylic polymer for which the solution polymerization method is preferred. The solution concentration is usually about 20 to 80% by weight.
[0025] ゴム系粘着剤のベースポリマーとしては、たとえば、天然ゴム、イソプレン系ゴム、ス チレン一ブタジエン系ゴム、再生ゴム、ポリイソブチレン系ゴム、さらにはスチレンーィ ソプレン一スチレン系ゴム、スチレン一ブタジエン一スチレン系ゴム等があげられる。 シリコーン系粘着剤のベースポリマーとしては、たとえば、ジメチルポリシロキサン、ジ フエ-ルポリシロキサン等があげられ、これらベースポリマーもカルボキシル基等の官 能基が導入されたものを使用することができる。  [0025] Examples of the base polymer of the rubber-based adhesive include natural rubber, isoprene-based rubber, styrene-butadiene-based rubber, recycled rubber, polyisobutylene-based rubber, styrene-soprene-styrene-based rubber, styrene-butadiene-based rubber. Examples thereof include styrene rubber. Examples of the base polymer for the silicone-based pressure-sensitive adhesive include dimethylpolysiloxane and diphenylpolysiloxane. These base polymers can also be used in which functional groups such as carboxyl groups are introduced.
[0026] また前記粘着剤は、架橋剤を含有する粘着剤組成物とするのが好ま ヽ。粘着剤 に配合できる多官能化合物としては、有機系架橋剤や多官能性金属キレートがあげ られる。有機系架橋剤としては、エポキシ系架橋剤、イソシァネート系架橋剤、ィミン 系架橋剤、過酸化物系架橋剤、などがあげられる。これら架橋剤は 1種または 2種以 上を組み合わせて用いることができる。有機系架橋剤としてはイソシァネート系架橋 剤が好ましい。多官能性金属キレートは、多価金属が有機化合物と共有結合または 配位結合しているものである。多価金属原子としては、 Al、 Cr、 Zr、 Co、 Cu、 Fe、 Ni 、 V、 Zn、 In、 Ca、 Mg、 Mn、 Y、 Ce、 Sr、 Ba、 Mo、 La、 Sn、 Ti等力あげられる。共 有結合または配位結合する有機化合物中の原子としては酸素原子等があげられ、 有機化合物としてはアルキルエステル、アルコール化合物、カルボン酸化合物、エー テル化合物、ケトン化合物等があげられる。 [0026] The pressure-sensitive adhesive is preferably a pressure-sensitive adhesive composition containing a crosslinking agent. Examples of the polyfunctional compound that can be added to the pressure-sensitive adhesive include organic crosslinking agents and polyfunctional metal chelates. Examples of the organic crosslinking agent include an epoxy crosslinking agent, an isocyanate crosslinking agent, an imine crosslinking agent, and a peroxide crosslinking agent. These crosslinking agents can be used alone or in combination of two or more. As the organic crosslinking agent, an isocyanate crosslinking agent is preferable. A polyfunctional metal chelate is a polyvalent metal covalently bonded to an organic compound or It is a coordinate bond. Multivalent metal atoms include Al, Cr, Zr, Co, Cu, Fe, Ni, V, Zn, In, Ca, Mg, Mn, Y, Ce, Sr, Ba, Mo, La, Sn, Ti, etc. can give. Examples of the atoms in the organic compound to be bonded or coordinated include an oxygen atom, and examples of the organic compound include alkyl esters, alcohol compounds, carboxylic acid compounds, ether compounds, and ketone compounds.
[0027] アクリル系ポリマー等のベースポリマーと架橋剤の配合割合は特に限定されな!、が 、通常、ベースポリマー(固形分) 100重量部に対して、架橋剤(固形分) 0. 001〜2 0重量部程度が好ましぐさらには 0. 01〜 15重量部程度が好ましい。  [0027] The mixing ratio of the base polymer such as acrylic polymer and the crosslinking agent is not particularly limited! However, usually, about 0.01 to 20 parts by weight of the cross-linking agent (solid content) is preferable with respect to 100 parts by weight of the base polymer (solid content), and more preferably about 0.01 to 15 parts by weight.
[0028] さら〖こは、前記粘着剤には、必要に応じて、粘着付与剤、可塑剤、ガラス繊維、ガラ スビーズ、金属粉、その他の無機粉末等力 なる充填剤、顔料、着色剤、充填剤、酸 化防止剤、紫外線吸収剤、シランカップリング剤等を、また本発明の目的を逸脱しな V、範囲で各種の添加剤を適宜に使用することもできる。また微粒子を含有して光拡 散性を示す粘着剤層などとしても良い。  [0028] Sarakuko has a tackifier, plasticizer, glass fiber, glass beads, metal powder, other inorganic powders, and other fillers, pigments, colorants, Fillers, antioxidants, ultraviolet absorbers, silane coupling agents, and the like, and various additives can be appropriately used within the range V and without departing from the object of the present invention. Moreover, it is good also as an adhesive layer etc. which contain microparticles | fine-particles and show light diffusibility.
[0029] 添加剤としては、シランカップリング剤が好適であり、ベースポリマー(固形分) 100 重量部に対して、シランカップリング剤(固形分) 0. 001〜: LO重量部程度が好ましく 、さらには 0. 005〜5重量部程度を配合するのが好ましい。シランカップリング剤とし ては、従来力も知られているものを特に制限なく使用できる。たとえば、 3—グリシドキ シプロピルトリメトキシシラン、 3—グリシドキシプロピノレトリエトキシシラン、 3—グリシド キシプロピルメチルジェトキシシラン、 2—(3, 4エポキシシクロへキシル)ェチルトリメ トキシシランなどのエポキシ基含有シランカップリング剤、 3—ァミノプロピルトリメトキ シシラン、 N- 2- (アミノエチル) 3—ァミノプロピルメチルジメトキシシラン、 3—トリ エトキシシリル— N— (1, 3 ジメチルブチリデン)プロピルァミンなどのアミノ基含有 シランカップリング剤、 3—アタリロキシプロピルトリメトキシシラン、 3—メタクリロキシプ 口ピルトリエトキシシランなどの (メタ)アクリル基含有シランカップリング剤、 3—イソシ ァネートプロピルトリエトキシシラン等のイソシァネート基含有シランカップリング剤を 例示できる。  [0029] As the additive, a silane coupling agent is suitable, and the silane coupling agent (solid content) is preferably about 0.001 to LO parts by weight with respect to 100 parts by weight of the base polymer (solid content). Further, it is preferable to add about 0.005 to 5 parts by weight. As the silane coupling agent, those known in the past can be used without particular limitation. For example, containing epoxy groups such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropinoletriethoxysilane, 3-glycidoxypropylmethyljetoxysilane, 2- (3,4 epoxycyclohexyl) ethyltrimethylsilane Silane coupling agents, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1,3 dimethylbutylidene) propylamine, etc. Amino group-containing silane coupling agents, 3-acryloylpropyltrimethoxysilane, 3-methacryloxypropyl (meth) acrylic group-containing silane coupling agents such as pyrtriethoxysilane, and isocyanates such as 3-isocyanatopropyltriethoxysilane Group-containing silane cup A ring agent can be exemplified.
[0030] 本発明の粘着剤付き光学フィルムに使用される光学フィルムとしては、液晶表示装 置等の画像表示装置の形成に用いられるものが使用され、その種類は特に制限され ない。光学フィルムとしては偏光板、位相差板等の延伸フィルムを有するものへの適 用が好適である。 [0030] As the optical film used for the optical film with pressure-sensitive adhesive of the present invention, those used for forming an image display device such as a liquid crystal display device are used, and the kind thereof is particularly limited. Absent. The optical film is preferably applied to a film having a stretched film such as a polarizing plate or a retardation plate.
[0031] 偏光板は偏光子の片面または両面には透明保護フィルムを有するものが一般に用 いられる。偏光子は、特に限定されず、各種のものを使用できる。偏光子としては、た とえば、ポリビュルアルコール系フィルム、部分ホルマール化ポリビュルアルコール系 フィルム、エチレン '酢酸ビュル共重合体系部分ケンィ匕フィルム等の親水性高分子フ イルムに、ヨウ素や二色性染料の二色性物質を吸着させて一軸延伸したもの、ポリビ ニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリェン系配向フ イルム等があげられる。これらの中でも、ポリビュルアルコール系フィルムとヨウ素など の二色性物質力もなる偏光子が好適である。これらの偏光子の厚さは特に制限され ないが、一般的に 5〜80 μ m程度である。  [0031] A polarizing plate having a transparent protective film on one or both sides of a polarizer is generally used. The polarizer is not particularly limited, and various types can be used. Examples of polarizers include hydrophilic polymer films such as polybulal alcohol films, partially formalized polybulal alcohol films, and ethylene 'butyric acid copolymer copolymer ken-yi films, iodine and dichroism. Examples include uniaxially drawn dichroic substances adsorbed on dyes, and polyylene-oriented films such as polyvinyl alcohol dehydrated products and polyvinyl chloride dehydrochlorinated products. Among these, a polybulol alcohol film and a polarizer having a dichroic substance power such as iodine are preferable. The thickness of these polarizers is not particularly limited, but is generally about 5 to 80 μm.
[0032] ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば 、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の 3〜 7倍に延伸することで作成することができる。必要に応じてホウ酸や硫酸亜鉛、塩ィ匕 亜鉛等を含んでいても良いヨウ化カリウムなどの水溶液に浸漬することもできる。さら に必要に応じて染色前にポリビニルアルコール系フィルムを水に浸漬して水洗しても よ 、。ポリビュルアルコール系フィルムを水洗することでポリビュルアルコール系フィ ルム表面の汚れやブロッキング防止剤を洗浄することができるほ力に、ポリビニルァ ルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もあ る。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸しても良いし、ま た延伸して力 ヨウ素で染色しても良い。ホウ酸やヨウ化カリウムなどの水溶液や水浴 中でも延伸することができる。 [0032] A polarizer obtained by uniaxially stretching a polyvinyl alcohol-based film dyed with iodine is prepared by, for example, dyeing polyvinyl alcohol by immersing it in an aqueous solution of iodine and stretching it 3 to 7 times the original length. Can do. If necessary, it can also be immersed in an aqueous solution of potassium iodide or the like which may contain boric acid, zinc sulfate, zinc chloride and the like. Furthermore, if necessary, the polyvinyl alcohol film may be immersed in water and washed before dyeing. By washing the polybulal alcohol-based film with water, it is possible to clean the surface of the polybulal alcohol-based film and the anti-blocking agent, and by swelling the polyvinyl alcohol-based film, unevenness such as uneven dyeing can be achieved. There is also an effect to prevent. The stretching may be performed after dyeing with iodine, may be performed while dyeing, or may be stretched and dyed with strong iodine. The film can be stretched even in an aqueous solution of boric acid or potassium iodide or in a water bath.
[0033] 前記偏光子の片面または両面に設けられる透明保護フィルムを形成する材料とし ては、透明性、機械的強度、熱安定性、水分遮断性、等方性などに優れるものが好 ましい。例えば、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエス テノレ系ポリマー、ジァセチノレセノレロースやトリァセチノレセノレロース等のセノレロース系 ポリマー、ポリメチルメタタリレート等のアクリル系ポリマー、ポリスチレンやアタリ口-トリ ル 'スチレン共重合体 (AS榭脂)等のスチレン系ポリマー、ポリカーボネート系ポリマ 一などがあげられる。また、ポリエチレン、ポリプロピレン、シクロ系ないしはノルボルネ ン構造を有するポリオレフイン、エチレン ·プロピレン共重合体の如きポリオレフイン系 ポリマー、塩ィ匕ビュル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー、 イミド系ポリマー、スノレホン系ポリマー、ポリエーテノレスノレホン系ポリマー、ポリエーテ ノレエーテノレケトン系ポリマー、ポリフエ二レンスルフイド系ポリマー、ビニルアルコール 系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、ァリレート系ポ リマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマー、または前記ポリマーのブ レンド物なども前記透明保護フィルムを形成するポリマーの例としてあげられる。透明 保護フィルムは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン 系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。 [0033] As a material for forming a transparent protective film provided on one or both sides of the polarizer, a material excellent in transparency, mechanical strength, thermal stability, moisture barrier property, isotropy, and the like is preferable. . For example, polyester-based polymers such as polyethylene terephthalate and polyethylene naphthalate, cenorelose-based polymers such as dicetinoresenorelose and triacetinoloselenolose, acrylic polymers such as polymethylmethacrylate, polystyrene and Styrene polymer such as styrene copolymer (AS resin), polycarbonate polymer One is given. In addition, polyethylene, polypropylene, polyolefins having a cyclo or norbornene structure, polyolefin polymers such as ethylene / propylene copolymers, salt-and-bulb polymers, amide polymers such as nylon and aromatic polyamide, imide polymers, Snorephone-based polymer, Polyetherenorenolephone-based polymer, Polyethylene-noreno-ketone-based polymer, Polyphenylene sulfide-based polymer, Vinyl alcohol-based polymer, Vinylidene chloride-based polymer, Vinyl butyral-based polymer, Arylate-based polymer, Polyoxymethylene-based Examples of the polymer that forms the transparent protective film include polymers, epoxy polymers, and blends of the above polymers. The transparent protective film can also be formed as a cured layer of thermosetting or ultraviolet curable resin such as acrylic, urethane, acrylurethane, epoxy, and silicone.
[0034] また、特開 2001— 343529号公報(WO01Z37007)に記載のポリマーフィルム、 たとえば、(A)側鎖に置換および Zまたは非置^ミド基を有する熱可塑性榭脂と、 (B)側鎖に置換および Zまたは非置換フ -ルならびに-トリル基を有する熱可塑 性榭脂を含有する榭脂組成物があげられる。具体例としてはイソブチレンと N—メチ ルマレイミドからなる交互共重合体とアクリロニトリル 'スチレン共重合体とを含有する 榭脂組成物のフィルムがあげられる。フィルムは榭脂組成物の混合押出品など力ゝらな るフィルムを用いることができる。  [0034] Also, a polymer film described in JP-A-2001-343529 (WO01Z37007), for example, (A) a thermoplastic resin having a substituted side chain and a Z or non-midamide group, and (B) side Examples thereof include a resin composition containing a thermoplastic resin having a substituted and Z or unsubstituted fullyl and -tolyl group in the chain. A specific example is a film of a resin composition containing an alternating copolymer of isobutylene and N-methylmaleimide and an acrylonitrile / styrene copolymer. As the film, a strong film such as a mixed extruded product of the resin composition can be used.
[0035] 保護フィルムの厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、 薄膜性などの点より 1〜500 m程度である。特に、 5〜200 mが好ましい。  [0035] The thickness of the protective film can be determined as appropriate, but is generally about 1 to 500 m from the viewpoints of workability such as strength and handleability, and thin film properties. In particular, 5 to 200 m is preferable.
[0036] また、保護フィルムは、できるだけ色付きがな 、ことが好まし 、。従って、 Rth= [ (n x+ny) /2-nz] . d (ただし、 nx、 nyはフィルム平面内の主屈折率、 nzはフィルム厚 方向の屈折率、 dはフィルム厚みである)で表されるフィルム厚み方向の位相差が 90ηπ!〜 + 75nmである保護フィルムが好ましく用いられる。かかる厚み方向の位相 差値 (Rth)が 90nm〜 + 75nmのものを使用することにより、保護フィルムに起因 する偏光板の着色 (光学的な着色)はほぼ解消することができる。厚み方向位相差( Rth)は、さらに好ましくは一 80nm〜 + 60nm、特に一 70nm〜+45nmが好ましい  [0036] Further, it is preferable that the protective film is as colored as possible. Therefore, Rth = [(n x + ny) / 2-nz]. D (where nx and ny are the main refractive index in the film plane, nz is the refractive index in the film thickness direction, and d is the film thickness). Represents 90ηπ phase difference in the film thickness direction! A protective film of ~ + 75 nm is preferably used. By using a film having a retardation value (Rth) in the thickness direction of 90 nm to +75 nm, the coloring (optical coloring) of the polarizing plate caused by the protective film can be almost eliminated. The thickness direction retardation (Rth) is more preferably from 80 nm to +60 nm, particularly preferably from 70 nm to +45 nm.
[0037] 保護フィルムとしては、偏光特性や耐久性などの点より、トリァセチルセルロース等 のセルロース系ポリマーが好まし 、。特にトリァセチルセルロースフィルムが好適であ る。なお、偏光子の両側に保護フィルムを設ける場合、その表裏で同じポリマー材料 力もなる保護フィルムを用いても良ぐ異なるポリマー材料等力もなる保護フィルムを 用いても良い。前記偏光子と保護フィルムとは通常、水系接着剤等を介して密着して いる。水系接着剤としては、イソシァネート系接着剤、ポリビニルアルコール系接着剤 、ゼラチン系接着剤、ビニル系ラテックス系、水系ポリウレタン、水系ポリエステル等を 例示できる。 [0037] As the protective film, triacetyl cellulose and the like from the viewpoint of polarization characteristics and durability. Cellulosic polymers are preferred. A triacetyl cellulose film is particularly preferable. In the case where protective films are provided on both sides of the polarizer, protective films having the same polymer material strength may be used on the front and back sides, or different protective films having the same polymer material strength may be used. The polarizer and the protective film are usually in close contact with each other through an aqueous adhesive or the like. Examples of water-based adhesives include isocyanate-based adhesives, polyvinyl alcohol-based adhesives, gelatin-based adhesives, vinyl-based latex-based, water-based polyurethane, water-based polyester, and the like.
[0038] 前記透明保護フィルムの偏光子を接着させない面には、ハードコート層や反射防 止処理、ステイツキング防止や、拡散ないしアンチグレアを目的とした処理を施したも のであっても良い。  [0038] The surface of the transparent protective film to which the polarizer is not bonded may be subjected to a hard coat layer, antireflection treatment, anti-sticking treatment, or treatment for diffusion or anti-glare.
[0039] ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例 えばアクリル系、シリコーン系などの適宜な紫外線硬化型榭脂による硬度や滑り特性 等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成するこ とができる。反射防止処理は偏光板表面での外光の反射防止を目的に施されるもの であり、従来に準じた反射防止膜などの形成により達成することができる。また、ステ イツキング防止処理は他の部材の隣接層との密着防止を目的に施される。  [0039] The hard coat treatment is performed for the purpose of preventing the surface of the polarizing plate from being scratched. For example, curing with excellent UV hardness curable resin such as acrylic and silicone is excellent in hardness and sliding properties. It can be formed by a method of adding a film to the surface of the transparent protective film. The antireflection treatment is performed for the purpose of preventing reflection of external light on the surface of the polarizing plate, and can be achieved by forming an antireflection film or the like according to the conventional art. In addition, the sticking prevention treatment is performed for the purpose of preventing adhesion with an adjacent layer of another member.
[0040] また、アンチグレア処理は偏光板の表面で外光が反射して偏光板透過光の視認を 阻害することの防止等を目的に施されるものであり、例えばサンドブラスト方式ゃェン ボス加工方式による粗面化方式や透明微粒子の配合方式などの適宜な方式にて透 明保護フィルムの表面に微細凹凸構造を付与することにより形成することができる。 前記表面微細凹凸構造の形成に含有させる微粒子としては、例えば平均粒径が 0. 5〜50 μ mのシリカ、アルミナ、チタ二了、ジルコユア、酸化スズ、酸化インジウム、酸 化カドミウム、酸ィ匕アンチモン等力もなる導電性の場合もある無機系微粒子、架橋又 は未架橋のポリマー等力もなる有機系微粒子 (ビーズを含む)などの透明微粒子が 用いられる。表面微細凹凸構造を形成する場合、微粒子の使用量は、表面微細凹 凸構造を形成する透明榭脂 100重量部に対して一般的に 2〜50重量部程度であり 、 5〜25重量部が好ましい。アンチグレア層は、偏光板透過光を拡散して視覚などを 拡大するための拡散層 (視覚拡大機能など)を兼ねるものであっても良い。 [0041] なお、前記反射防止層、ステイツキング防止層、拡散層やアンチグレア層等は、透 明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィル ムとは別体のものとして設けることもできる。 [0040] The anti-glare treatment is performed for the purpose of preventing external light from being reflected on the surface of the polarizing plate and obstructing the visual recognition of the light transmitted through the polarizing plate. It can be formed by imparting a fine concavo-convex structure to the surface of the transparent protective film by an appropriate method such as a surface roughening method or a method of blending transparent fine particles. Examples of the fine particles to be included in the formation of the surface fine concavo-convex structure include silica, alumina, titanium dioxide, zirconium oxide, tin oxide, indium oxide, cadmium oxide, and acid oxide having an average particle diameter of 0.5 to 50 μm. Transparent fine particles such as inorganic fine particles that may have conductivity such as antimony and organic fine particles (including beads) that also have crosslinked or uncrosslinked polymer are used. In the case of forming a surface fine concavo-convex structure, the amount of fine particles used is generally about 2 to 50 parts by weight with respect to 100 parts by weight of the transparent resin forming the surface fine concavo-convex structure, and 5 to 25 parts by weight preferable. The anti-glare layer may also serve as a diffusion layer (such as a visual enlargement function) for diffusing the light transmitted through the polarizing plate to enlarge vision. [0041] The antireflection layer, the anti-sticking layer, the diffusion layer, the antiglare layer, and the like can be provided on the transparent protective film itself, or separately from the transparent protective film as an optical layer. It can also be provided.
[0042] また光学フィルムとしては、例えば反射板や反透過板、位相差板(1Z2や 1Z4等 の波長板を含む)、視覚補償フィルム、輝度向上フィルムなどの液晶表示装置等の 形成に用いられることのある光学層となるものがあげられる。これらは単独で光学フィ ルムとして用いることができる他、前記偏光板に、実用に際して積層して、 1層または 2層以上用いることができる。  [0042] Further, as an optical film, for example, it is used for forming a liquid crystal display device such as a reflection plate, an anti-transmission plate, a retardation plate (including wavelength plates such as 1Z2 and 1Z4), a visual compensation film, and a brightness enhancement film. And an optical layer that has a problem. These can be used alone as an optical film, or can be laminated on the polarizing plate for practical use and used in one or more layers.
[0043] 特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板 または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板また は円偏光板、偏光板に更に視覚補償フィルムが積層されてなる広視野角偏光板、あ るいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。  [0043] In particular, a reflective polarizing plate or a semi-transmissive polarizing plate in which a polarizing plate is further laminated with a reflective plate or a semi-transmissive reflective plate, and an elliptical polarizing plate or a circular plate in which a retardation plate is further laminated on a polarizing plate. A polarizing plate, a wide viewing angle polarizing plate in which a visual compensation film is further laminated on the polarizing plate, or a polarizing plate in which a brightness enhancement film is further laminated on the polarizing plate are preferable.
[0044] 反射型偏光板は、偏光板に反射層を設けたもので、視認側 (表示側)からの入射光 を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バッ クライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利 点を有する。反射型偏光板の形成は、必要に応じ透明保護層等を介して偏光板の 片面に金属等力 なる反射層を付設する方式などの適宜な方式にて行うことができ る。  [0044] The reflective polarizing plate is a polarizing plate provided with a reflective layer, and is used to form a liquid crystal display device of a type that reflects and displays incident light from the viewing side (display side). In addition, there is an advantage that the built-in light source such as a backlight can be omitted and the liquid crystal display device can be thinned easily. The reflective polarizing plate can be formed by an appropriate method such as a method in which a reflective layer having a metal isotropic force is attached to one surface of the polarizing plate via a transparent protective layer or the like, if necessary.
[0045] 反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片 面に、アルミニウム等の反射性金属からなる箔ゃ蒸着膜を付設して反射層を形成し たものなどがあげられる。また、前記透明保護フィルムに微粒子を含有させて表面微 細凹凸構造とし、その上に微細凹凸構造の反射層を有するものなどもあげられる。前 記した微細凹凸構造の反射層は、入射光を乱反射により拡散させて指向性やギラギ ラした見栄えを防止し、明暗のムラを抑制しうる利点などを有する。また微粒子含有 の保護フィルムは、入射光及びその反射光がそれを透過する際に拡散されて明暗ム ラをより抑制しうる利点なども有している。透明保護フィルムの表面微細凹凸構造を 反映させた微細凹凸構造の反射層の形成は、例えば真空蒸着方式、イオンプレー ティング方式、スパッタリング方式ゃメツキ方式などの適宜な方式で金属を透明保護 層の表面に直接付設する方法などにより行うことができる。 [0045] As a specific example of the reflective polarizing plate, a reflective layer is formed by attaching a foil vapor-deposited film made of a reflective metal such as aluminum on one side of a transparent protective film matted as necessary. Etc. In addition, the transparent protective film may include fine particles having a surface fine uneven structure, and a reflective layer having a fine uneven structure on the surface. The reflective layer having the fine concavo-convex structure described above has the advantage that incident light is diffused by irregular reflection to prevent directivity and glaring appearance, and to suppress unevenness in brightness and darkness. In addition, the protective film containing fine particles has an advantage that incident light and its reflected light are diffused when passing through it and light and darkness can be further suppressed. The reflective layer with a fine concavo-convex structure reflecting the fine concavo-convex structure on the surface of the transparent protective film is used to protect the metal transparently by an appropriate method such as a vacuum deposition method, an ion plating method, or a sputtering method. It can be performed by a method of attaching directly to the surface of the layer.
[0046] 反射板は前記の偏光板の透明保護フィルムに直接付与する方式に代えて、その透 明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いる こともできる。なお反射層は、通常、金属力 なるので、その反射面が透明保護フィル ムゃ偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひ いては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ま しい。  [0046] Instead of the method of directly applying the reflecting plate to the transparent protective film of the polarizing plate, the reflecting plate can be used as a reflecting sheet in which a reflecting layer is provided on an appropriate film according to the transparent film. In addition, since the reflective layer usually has a metallic force, the usage state in which the reflective surface is covered with a transparent protective film or a polarizing plate is used to prevent the reflectance from being lowered by oxidation, and thus the long-term initial reflectance. It is more preferable in terms of sustainability and avoiding the separate provision of a protective layer.
[0047] なお、半透過型偏光板は、上記にお!、て反射層で光を反射し、かつ透過するハー フミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は [0047] The transflective polarizing plate can be obtained by using a transflective reflective layer such as a half mirror that reflects and transmits light by the reflective layer. Transflective polarizing plate
、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使 用する場合には、視認側 (表示側)からの入射光を反射させて画像を表示し、比較的 喑 、雰囲気にぉ 、ては、半透過型偏光板のバックサイドに内蔵されて 、るバックライ ト等の内蔵電源を使用して画像を表示するタイプの液晶表示装置などを形成できるNormally, it is provided on the back side of the liquid crystal cell, and when using a liquid crystal display device etc. in a relatively bright atmosphere, it reflects the incident light from the viewing side (display side) and displays an image. Under the atmosphere, it is built in the back side of the transflective polarizing plate and can be used to form liquid crystal display devices that display images using a built-in power source such as a backlight.
。すなわち、半透過型偏光板は、明るい雰囲気下では、ノ ックライト等の光源使用の エネルギーを節約でき、比較的喑 、雰囲気下にお ヽても内蔵電源を用いて使用でき るタイプの液晶表示装置などの形成に有用である。 . In other words, the transflective polarizing plate can save energy when using a light source such as a knocklight in a bright atmosphere, and can be used with a built-in power supply even in a relatively low atmosphere. It is useful for the formation of
[0048] 偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説 明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直 線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが 用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相 差板としては、いわゆる 1Z4波長板(λ Ζ4板とも言う)が用いられる。 1Z2波長板( λ Ζ2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。  [0048] An elliptically polarizing plate or a circularly polarizing plate in which a retardation plate is further laminated on a polarizing plate will be described. A phase difference plate or the like is used when changing linearly polarized light into elliptically or circularly polarized light, changing elliptically or circularly polarized light into linearly polarized light, or changing the polarization direction of linearly polarized light. In particular, a so-called 1Z4 wavelength plate (also called a λλ4 plate) is used as a phase difference plate that changes linearly polarized light into circularly polarized light or changes circularly polarized light into linearly polarized light. A 1Z2 wavelength plate (also referred to as λ 2 plate) is usually used to change the polarization direction of linearly polarized light.
[0049] 楕円偏光板はスーパーツイストネマチック(STN)型液晶表示装置の液晶層の複屈 折により生じた着色 (青又は黄)を補償 (防止)して、前記着色のな!、白黒表示する場 合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装 置の画面を斜め方向から見た際に生じる着色も補償 (防止)することができて好まし い。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色 調を整える場合などに有効に用いられ、また、反射防止の機能も有する。 [0050] 位相差板としては、高分子素材を一軸または二軸延伸処理してなる複屈折性フィ ルム、液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したも のなどがあげられる。位相差板の厚さも特に制限されないが、 20〜150 /ζ πι程度が 一般的である。 [0049] The elliptically polarizing plate compensates (prevents) coloring (blue or yellow) caused by double bending of the liquid crystal layer of the super twisted nematic (STN) type liquid crystal display device, and displays the above-mentioned coloring! It is used effectively in such cases. Further, the one having a controlled three-dimensional refractive index is preferable because it can compensate (prevent) coloring that occurs when the screen of the liquid crystal display device is viewed from an oblique direction. The circularly polarizing plate is effectively used, for example, when adjusting the color tone of an image of a reflective liquid crystal display device in which an image is displayed in color, and also has an antireflection function. [0050] Examples of the retardation plate include a birefringent film obtained by uniaxially or biaxially stretching a polymer material, a liquid crystal polymer alignment film, and a liquid crystal polymer alignment layer supported by the film. It is done. The thickness of the retardation plate is not particularly limited, but is generally about 20 to 150 / ζ πι.
[0051] 高分子素材としては、たとえば、ポリビュルアルコール、ポリビュルブチラール、ポリ メチルビ二ノレエーテル、ポリヒドロキシェチノレアタリレート、ヒドロキシェチノレセルロース 、ヒドロキシプロピルセルロース、メチノレセノレロース、ポリカーボネート、ポリアリレート、 ポリスルホン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリエーテノレス ルホン、ポリフエ-レンスルファイド、ポリフエ-レンオキサイド、ポリアリルスルホン、ポ リアミド、ポリイミド、ポリオレフイン、ポリ塩化ビュル、セルロース系重合体、ノルボルネ ン系榭脂、またはこれらの二元系、三元系各種共重合体、グラフト共重合体、プレン ド物などがあげられる。これらの高分子素材は延伸等により配向物 (延伸フィルム)と なる。  [0051] Examples of the polymer material include polybutyl alcohol, polybutyral, polymethyl vinylenoether, polyhydroxy ethino rare talylate, hydroxy ethinore cellulose, hydroxypropyl cellulose, methenorescenellose, polycarbonate, poly Arylate, Polysulfone, Polyethylene terephthalate, Polyethylene naphthalate, Polyetherolsulfone, Polyphenylene sulfide, Polyphenylene oxide, Polyallylsulfone, Polyamide, Polyimide, Polyolefin, Polychlorinated butyl, Cellulose polymer, Norbornene resin Or various types of these binary and ternary copolymers, graft copolymers, and blends. These polymer materials become an oriented product (stretched film) by stretching or the like.
[0052] 液晶ポリマーとしては、たとえば、液晶配向性を付与する共役性の直線状原子団( メソゲン)がポリマーの主鎖や側鎖に導入された主鎖型や側鎖型の各種のものなどを あげられる。主鎖型の液晶ポリマーの具体例としては、屈曲性を付与するスぺーサー 部でメソゲン基を結合した構造の、例えばネマチック配向性のポリエステル系液晶性 ポリマー、ディスコティックポリマーゃコレステリックポリマーなどがあげられる。側鎖型 の液晶ポリマーの具体例としては、ポリシロキサン、ポリアタリレート、ポリメタタリレート 又はポリマロネートを主鎖骨格とし、側鎖として共役性の原子団からなるスぺーサー 部を介してネマチック配向付与性のパラ置換環状ィ匕合物単位力 なるメソゲン部を 有するものなどがあげられる。これらの液晶ポリマーは、たとえば、ガラス板上に形成 したポリイミドゃポリビュルアルコール等の薄膜の表面をラビング処理したもの、酸ィ匕 ケィ素を斜方蒸着したものなどの配向処理面上に液晶性ポリマーの溶液を展開して 熱処理することにより行われる。  [0052] Examples of the liquid crystal polymer include various main chain types and side chain types in which a conjugated linear atomic group (mesogen) imparting liquid crystal alignment is introduced into the main chain or side chain of the polymer. Can be given. Specific examples of the main chain type liquid crystal polymer include a nematic orientation polyester liquid crystal polymer, a discotic polymer and a cholesteric polymer having a structure in which a mesogenic group is bonded at a spacer portion that imparts flexibility. It is done. Specific examples of side-chain liquid crystal polymers include polysiloxane, polyacrylate, polymetatalylate, or polymalonate as the main chain skeleton, and nematic alignment imparted via a spacer unit consisting of conjugated atomic groups as side chains. And those having a mesogenic moiety that is a unit force of a para-substituted cyclic compound. These liquid crystal polymers are, for example, liquid crystalline on the alignment surface such as those obtained by rubbing the surface of a thin film such as polyimide polybulal alcohol formed on a glass plate, or those obtained by obliquely vapor deposition of oxygen. This is done by developing and heat-treating the polymer solution.
[0053] 位相差板は、例えば各種波長板や液晶層の複屈折による着色や視覚等の補償を 目的としたものなどの使用目的に応じた適宜な位相差を有するものであって良ぐ 2 種以上の位相差板を積層して位相差等の光学特性を制御したものなどであっても良 い。 [0053] The retardation plate may have an appropriate retardation according to the purpose of use, such as various wavelength plates and those for the purpose of coloration due to birefringence of the liquid crystal layer and compensation of vision, etc. 2 It is also possible to use a laminate of more than one kind of retardation plate to control optical properties such as retardation. Yes.
[0054] また、上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位 相差板を適宜な組合せで積層したものである。カゝかる楕円偏光板等は、(反射型)偏 光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個 に積層することによつても形成しうる力 前記の如く予め楕円偏光板等の光学フィル ムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造 効率を向上させうる利点がある。  [0054] The elliptically polarizing plate and the reflective elliptical polarizing plate are obtained by laminating a polarizing plate or a reflective polarizing plate and a retardation plate in an appropriate combination. The elliptical polarizing plate or the like that can be formed can be formed by sequentially laminating them separately in the manufacturing process of the liquid crystal display device so as to be a combination of a (reflection type) polarizing plate and a retardation plate. As described above, an optical film such as an elliptically polarizing plate is advantageous in that it has excellent quality stability and lamination workability, and can improve the manufacturing efficiency of a liquid crystal display device.
[0055] 視覚補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向 力 見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルム である。このような視覚補償位相差板としては、例えば位相差板、液晶ポリマー等の 配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなど力もなる。 通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィル ムが用いられるのに対し、視覚補償フィルムとして用いられる位相差板には、面方向 に二軸に延伸された複屈折を有するポリマーフィルムと力、面方向に一軸に延伸され 厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマーや傾 斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとし ては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の 作用下にポリマーフィルムを延伸処理又は Z及び収縮処理したものや、液晶ポリマ 一を斜め配向させたものなどがあげられる。位相差板の素材原料ポリマーは、先の位 相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく 視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜 なものを用いうる。  [0055] The visual compensation film is a film for widening the viewing angle so that the image can be seen relatively clearly even when the screen of the liquid crystal display device is viewed in a slightly oblique direction rather than perpendicular to the screen. As such a visual compensation phase difference plate, for example, a phase difference plate, an alignment film such as a liquid crystal polymer, or a support in which an alignment layer such as a liquid crystal polymer is supported on a transparent substrate can be used. A normal retardation plate uses a polymer film having birefringence that is uniaxially stretched in the plane direction, whereas a retardation plate used as a visual compensation film is biaxially stretched in the plane direction. Birefringence, such as a polymer film having a birefringence and a birefringence that has a controlled refractive index in the thickness direction that is uniaxially stretched in the plane direction and is also stretched in the thickness direction. A film or the like is used. Examples of the tilted alignment film include a film obtained by bonding a heat-shrink film to a polymer film and subjecting the polymer film to a stretch treatment or Z and shrink treatment under the action of the shrinkage force by heating, or a liquid crystal polymer that is obliquely oriented. Etc. The raw material polymer for the phase difference plate is the same as the polymer described in the previous phase difference plate, preventing coloration due to a change in the viewing angle based on the phase difference of the liquid crystal cell and expanding the viewing angle for good viewing. Anything suitable for the purpose can be used.
[0056] また、良視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にデ イスコチック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセル ロースフィルムにて支持した光学補償位相差板が好ましく用いうる。  [0056] In addition, a liquid crystal polymer alignment layer, particularly an optically anisotropic layer composed of a discotic liquid crystal polymer gradient alignment layer, is supported by a triacetyl cellulose film in order to achieve a wide viewing angle with good visibility. The optically compensated retardation plate can be preferably used.
[0057] 偏光板と輝度向上フィルムを貼り合せた偏光板は、通常液晶セルの裏側サイド〖こ 設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏 側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向 の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光 板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の 透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝 度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転 させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態の光とし て透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収さ せにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることに より輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バッ クライトなどで液晶セルの裏側カゝら偏光子を通して光を入射した場合には、偏光子の 偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしま い、偏光子を透過してこない。すなわち、用いた偏光子の特性よつても異なる力 お よそ 50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる 光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏 光方向を有する光を偏光子に入射させずに輝度向上フィルムで一反反射させ、更に その後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射さ せることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過 し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に 供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用 でき、画面を明るくすることができる。 [0057] A polarizing plate obtained by bonding a polarizing plate and a brightness enhancement film is usually used by being provided on the back side of the liquid crystal cell. The brightness enhancement film is a linearly polarized light with a predetermined polarization axis or a predetermined direction when natural light is incident on the backlight of a liquid crystal display device, etc. The polarizing plate, which reflects the circularly polarized light and transmits other light, is a polarizing plate in which a brightness enhancement film is laminated with a polarizing plate. And light other than the predetermined polarization state is reflected without being transmitted. The light reflected on the surface of the brightness enhancement film is further inverted through a reflective layer provided behind the brightness enhancement film and re-incident on the brightness enhancement film, and part or all of the light is transmitted as light having a predetermined polarization state. In addition to increasing the amount of light transmitted through the brightness enhancement film, it is possible to improve the brightness by supplying polarized light that is not easily absorbed by the polarizer and increasing the amount of light that can be used for liquid crystal display image display, etc. is there. That is, when light is incident through the polarizer behind the liquid crystal cell without using a brightness enhancement film, the light having a polarization direction that does not coincide with the polarization axis of the polarizer is It is almost absorbed by the polarizer and does not pass through the polarizer. That is, approximately 50% of the light that is different depending on the characteristics of the polarizer used is absorbed by the polarizer, and the amount of light that can be used for liquid crystal image display is reduced, and the image becomes dark. The brightness enhancement film allows light having a polarization direction that is absorbed by the polarizer to be reflected once by the brightness enhancement film without being incident on the polarizer, and further through a reflective layer or the like provided on the back side thereof. Inverting and re-entering the brightness enhancement film is repeated, and only the polarized light whose polarization direction is such that the polarization direction of the light reflected and inverted between the two can pass through the polarizer is obtained. Is transmitted to the polarizer so that light such as a backlight can be efficiently used for displaying images on the liquid crystal display device, and the screen can be brightened.
輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フ イルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散 板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。 すなわち、自然光状態の光が反射層等に向力ぃ、反射層等を介して反射し、再び拡 散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上 フィルムと上記反射層等の間に、偏光を元の自然光にもどす拡散板を設けることによ り表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一 で明るい画面を提供することができる。力かる拡散板を設けることにより、初回の入射 光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明る V、表示画面を提供することができたものと考えられる。 A diffusion plate may be provided between the brightness enhancement film and the reflective layer. The polarized light reflected by the brightness enhancement film is directed to the reflection layer and the like, but the installed diffuser diffuses the light passing therethrough at the same time and simultaneously cancels the polarization state to become a non-polarized state. That is, the light in the natural light state is directed to the reflection layer and the like, is reflected through the reflection layer and the like, passes through the diffusion plate again, and reenters the brightness enhancement film. In this way, by providing a diffuser plate that returns polarized light to the original natural light between the brightness enhancement film and the reflective layer, the brightness of the display screen is maintained, and at the same time, uneven brightness of the display screen is reduced. Can provide a uniform and bright screen. By providing a powerful diffuser, the number of times the first incident light is repeatedly reflected increases moderately, coupled with the diffusion function of the diffuser. V. It seems that we were able to provide a display screen.
[0059] 前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相 違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光 は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向 液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方 の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。  [0059] As the brightness enhancement film, for example, a dielectric multilayer thin film or a multilayer laminate of thin film films having different refractive index anisotropies, the linearly polarized light having a predetermined polarization axis is transmitted and other light is transmitted. Reflecting one of the left-handed or right-handed circularly polarized light and transmitting the other light, such as those that show reflective properties, such as oriented films of cholesteric liquid crystal polymer and those oriented liquid crystal layers supported on a film substrate Appropriate things such as those showing the characteristics to be used can be used.
[0060] 従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムで は、その透過光をそのまま偏光板に偏光軸を揃えて入射させることにより、偏光板に よる吸収ロスを抑制しつつ効率よく透過させることができる。一方、コレステリック液晶 層の如く円偏光を透過するタイプの輝度向上フィルムでは、そのまま偏光子に入射さ せることもできるが、吸収ロスを抑制する点よりその円偏光を、位相差板を介し直線偏 光化して偏光板に入射させることが好ましい。なお、その位相差板として 1Z4波長板 を用いることにより、円偏光を直線偏光に変換することができる。  [0060] Therefore, in the above-described brightness enhancement film that transmits linearly polarized light having a predetermined polarization axis, the transmission light is directly incident on the polarizing plate with the polarization axis aligned, thereby suppressing absorption loss due to the polarizing plate. However, it can be transmitted efficiently. On the other hand, in a brightness enhancement film of a type that transmits circularly polarized light such as a cholesteric liquid crystal layer, it can be directly incident on a polarizer. However, the circularly polarized light is linearly polarized through a retardation plate in order to suppress absorption loss. It is preferable to make it light and make it enter into a polarizing plate. Note that circularly polarized light can be converted to linearly polarized light by using a 1Z4 wavelength plate as the retardation plate.
[0061] 可視光域等の広い波長で 1Z4波長板として機能する位相差板は、例えば波長 55 Onmの淡色光に対して 1Z4波長板として機能する位相差板と他の位相差特性を示 す位相差層、例えば 1Z2波長板として機能する位相差層とを重畳する方式などによ り得ることができる。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、 1層または 2層以上の位相差層力 なるものであってよい。  [0061] A retardation plate that functions as a 1Z4 wavelength plate at a wide wavelength in the visible light region or the like exhibits, for example, a retardation plate that functions as a 1Z4 wavelength plate for light-colored light having a wavelength of 55 Onm and other retardation characteristics. It can be obtained by a method of superposing a retardation layer, for example, a retardation layer functioning as a 1Z2 wavelength plate. Therefore, the retardation plate disposed between the polarizing plate and the brightness enhancement film may have a retardation layer force of one layer or two or more layers.
[0062] なお、コレステリック液晶層についても、反射波長が相違するものの組合せにして 2 層又は 3層以上重畳した配置構造とすることにより、可視光城等の広い波長範囲で 円偏光を反射するものを得ることができ、それに基づ 、て広 、波長範囲の透過円偏 光を得ることができる。  [0062] It should be noted that the cholesteric liquid crystal layer also reflects circularly polarized light in a wide wavelength range such as a visible light castle by combining two or more layers with different reflection wavelengths in an overlapping structure. Based on this, transmission circular polarization in a wide and wavelength range can be obtained.
[0063] また、偏光板は、上記の偏光分離型偏光板の如ぐ偏光板と 2層又は 3層以上の光 学層とを積層したものからなっていても良い。従って、上記の反射型偏光板や半透過 型偏光板と位相差板を組み合わせた反射型楕円偏光板や半透過型楕円偏光板な どであっても良い。  [0063] The polarizing plate may be formed by laminating a polarizing plate such as the above-described polarization-separating polarizing plate and two or more optical layers. Therefore, a reflective elliptical polarizing plate or a semi-transmissive elliptical polarizing plate in which the above-mentioned reflective polarizing plate or semi-transmissive polarizing plate and a retardation plate are combined may be used.
[0064] 偏光板に前記光学層を積層した光学フィルムは、液晶表示装置等の製造過程で 順次別個に積層する方式にても形成することができる力 予め積層して光学フィルム としたものは、品質の安定性や組立作業等に優れて!/、て液晶表示装置などの製造 工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いうる。前 記の偏光板と他の光学層の接着に際し、それらの光学軸は目的とする位相差特性な どにおうじて適宜な配置角度とすることができる。 [0064] The optical film in which the optical layer is laminated on a polarizing plate can be formed even in a method of laminating sequentially and separately in the manufacturing process of a liquid crystal display device or the like. These products have excellent quality stability and assembly work! /, And have the advantage of improving the manufacturing process of liquid crystal display devices. For the lamination, an appropriate adhesive means such as an adhesive layer can be used. When the polarizing plate and the other optical layer are bonded, their optical axes can be arranged at an appropriate angle depending on the target retardation characteristics.
[0065] 本発明の粘着剤付き光学フィルムの製造は、上記光学フィルムに粘着剤層を形成 することにより行なう。形成方法としては、特に制限されず、粘着剤溶液を塗布し乾燥 する方法、粘着剤層を設けた離型シートにより転写する方法等があげられる。粘着剤 層の厚さは特に限定されないが、 3〜: LOO /z m程度、好ましくは 10〜40 /ζ πι程度と するのがよい。なお、粘着剤層に形成にあたり、帯電防止層を形成した後に粘着剤 層を形成してもよい。  [0065] The optical film with pressure-sensitive adhesive of the present invention is produced by forming a pressure-sensitive adhesive layer on the optical film. The forming method is not particularly limited, and examples thereof include a method of applying and drying a pressure-sensitive adhesive solution, and a method of transferring with a release sheet provided with a pressure-sensitive adhesive layer. The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably about 3 to about LOO / zm, preferably about 10 to 40 / ζ πι. In forming the pressure-sensitive adhesive layer, the pressure-sensitive adhesive layer may be formed after forming the antistatic layer.
[0066] 離型シートの構成材料としては、紙、ポリエチレン、ポリプロピレン、ポリエチレンテレ フタレート等の合成樹脂フィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや 金属箔、それらのラミネート体等の適宜な薄葉体等があげられる。離型シートの表面 には、粘着剤層力ゝらの剥離性を高めるため、必要に応じてシリコーン処理、長鎖アル キル処理、フッ素処理などの低接着性の剥離処理が施されて!/、ても良!、。  [0066] Constituent materials of the release sheet include synthetic resin films such as paper, polyethylene, polypropylene, and polyethylene terephthalate, rubber sheets, paper, cloth, nonwoven fabric, nets, foam sheets, metal foils, laminates thereof, and the like. Appropriate thin leaves and the like can be mentioned. The surface of the release sheet is subjected to low-adhesion release treatment such as silicone treatment, long-chain alkyl treatment, and fluorine treatment as necessary to improve the peelability of the adhesive layer! / OK!
[0067] なお、本発明の粘着剤付き光学フィルムの光学フィルムや粘着剤層などの各層に は、例えばサリチル酸エステル系化合物やべンゾフエノール系化合物、ベンゾトリア ゾール系化合物ゃシァノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線 吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであって ちょい。 [0067] In addition, each layer such as an optical film or an adhesive layer of the optical film with an adhesive of the present invention includes, for example, a salicylic acid ester compound, a benzophenol compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt. Something that has UV absorption ability by a method such as a method of treating with a UV absorber such as a compound.
[0068] 本発明の粘着剤付き光学フィルムは液晶表示装置等の各種画像表示装置の形成 などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。 すなわち液晶表示装置は一般に、液晶セルと粘着剤付き光学フィルム、及び必要に 応じての照明システム等の構成部品を適宜に組み立てて駆動回路を組み込むことな どにより形成されるが、本発明にお 、ては本発明による光学フィルムを用いる点を除 いて特に限定は無ぐ従来に準じうる。液晶セルについても、例えば ΤΝ型や STN型 、 π型などの任意なタイプなどの任意なタイプのものを用いうる。  The optical film with an adhesive of the present invention can be preferably used for forming various image display devices such as a liquid crystal display device. The liquid crystal display device can be formed according to the conventional method. In other words, a liquid crystal display device is generally formed by appropriately assembling components such as a liquid crystal cell, an optical film with an adhesive, and an illumination system as necessary, and incorporating a drive circuit. There is no particular limitation except that the optical film according to the present invention is used. As the liquid crystal cell, an arbitrary type such as an arbitrary type such as a vertical type, an STN type, or a π type can be used.
[0069] 液晶セルの片側又は両側に粘着剤付き光学フィルムを配置した液晶表示装置や、 照明システムにバックライトある!/、は反射板を用いたものなどの適宜な液晶表示装置 を形成することができる。その場合、本発明による光学フィルムは液晶セルの片側又 は両側に設置することができる。両側に光学フィルムを設ける場合、それらは同じもの であっても良いし、異なるものであっても良い。さらに、液晶表示装置の形成に際して は、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズァ レイシート、光拡散板、ノ ックライトなどの適宜な部品を適宜な位置に 1層又は 2層以 上配置することができる。 [0069] A liquid crystal display device in which an optical film with an adhesive is disposed on one side or both sides of a liquid crystal cell, Appropriate liquid crystal display devices, such as those using a reflector, can be formed. In that case, the optical film according to the present invention can be placed on one or both sides of the liquid crystal cell. When optical films are provided on both sides, they may be the same or different. Further, when forming a liquid crystal display device, for example, a single layer or an appropriate part such as a diffusion plate, an antiglare layer, an antireflection film, a protective plate, a prism array, a lens array sheet, a light diffusion plate, a knocklight, etc. Two or more layers can be arranged.
[0070] 次 、で有機エレクトロルミネセンス装置 (有機 EL表示装置)につ 、て説明する。本 発明の光学フィルム (偏光板等)は、有機 EL表示装置においても適用できる。一般 に、有機 EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に 積層して発光体 (有機エレクトロルミネセンス発光体)を形成している。ここで、有機発 光層は、種々の有機薄膜の積層体であり、例えばトリフエニルァミン誘導体等力 な る正孔注入層と、アントラセン等の蛍光性の有機固体力 なる発光層との積層体や、 あるいはこのような発光層とペリレン誘導体等力 なる電子注入層の積層体や、また あるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組合 せをもった構成が知られて 、る。  Next, an organic electroluminescence device (organic EL display device) will be described. The optical film (polarizing plate or the like) of the present invention can also be applied to an organic EL display device. In general, in an organic EL display device, a transparent electrode, an organic light emitting layer, and a metal electrode are sequentially laminated on a transparent substrate to form a light emitter (organic electroluminescent light emitter). Here, the organic light emitting layer is a laminate of various organic thin films, for example, a laminate of a hole injecting layer having an isotropy such as a triphenylamine derivative and a light emitting layer having a fluorescent organic solid force such as anthracene. Or a laminate of such a light emitting layer and a perylene derivative or the like electron injection layer, or a stack of these hole injection layer, light emitting layer, and electron injection layer. The composition is known.
[0071] 有機 EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機 発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネ ルギ一が蛍光物資を励起し、励起された蛍光物質が基底状態に戻るときに光を放射 する、という原理で発光する。途中の再結合というメカニズムは、一般のダイオードと 同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整 流性を伴う強!ゝ非線形性を示す。  [0071] In an organic EL display device, holes and electrons are injected into an organic light-emitting layer by applying a voltage to a transparent electrode and a metal electrode, and energy generated by recombination of these holes and electrons. Emits light on the principle that it excites the fluorescent material and emits light when the excited fluorescent material returns to the ground state. The mechanism of recombination in the middle is the same as that of a general diode, and as can be expected from this, the current and emission intensity show strong nonlinearity with rectification with respect to the applied voltage.
[0072] 有機 EL表示装置においては、有機発光層での発光を取り出すために、少なくとも 一方の電極が透明でなくてはならず、通常酸化インジウムスズ (ITO)などの透明導 電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発 光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常 Mg Ag、 A1— Liなどの金属電極を用いている。  [0072] In the organic EL display device, in order to extract light emitted from the organic light emitting layer, at least one of the electrodes must be transparent, and is usually formed of a transparent conductor such as indium tin oxide (ITO). A transparent electrode is used as the anode. On the other hand, in order to facilitate electron injection and increase luminous efficiency, it is important to use a material with a low work function for the cathode, and usually metal electrodes such as Mg Ag and A1-Li are used.
[0073] このような構成の有機 EL表示装置において、有機発光層は、厚さ lOnm程度とき わめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ 完全に透過する。その結果、非発光時に透明基板の表面カゝら入射し、透明電極と有 機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るた め、外部から視認したとき、有機 EL表示装置の表示面が鏡面のように見える。 [0073] In the organic EL display device having such a configuration, the organic light emitting layer has a thickness of about lOnm. It is made of a thin film. For this reason, the organic light emitting layer transmits light almost completely like the transparent electrode. As a result, light that is incident on the surface of the transparent substrate when not emitting light, passes through the transparent electrode and the organic light emitting layer, and is reflected by the metal electrode again returns to the surface side of the transparent substrate. When viewed, the display surface of the OLED display looks like a mirror.
[0074] 電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、 有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネセンス発光体を 含む有機 EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これ ら透明電極と偏光板との間に位相差板を設けることができる。  [0074] In an organic EL display device including an organic electroluminescent light emitting device including a transparent electrode on a front surface side of an organic light emitting layer that emits light when a voltage is applied and a metal electrode on a back surface side of the organic light emitting layer, A polarizing plate can be provided on the surface side of the electrode, and a retardation plate can be provided between the transparent electrode and the polarizing plate.
[0075] 位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光す る作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させな いという効果がある。特に、位相差板を 1Z4波長板で構成し、かつ偏光板と位相差 板との偏光方向のなす角を π Z4に調整すれば、金属電極の鏡面を完全に遮蔽す ることがでさる。  [0075] Since the retardation plate and the polarizing plate have a function of polarizing light incident from the outside and reflected by the metal electrode, the effect of preventing the mirror surface of the metal electrode from being visually recognized by the polarization action. is there. In particular, if the retardation plate is a 1Z4 wavelength plate and the angle between the polarization directions of the polarizing plate and the retardation plate is adjusted to π Z4, the mirror surface of the metal electrode can be completely shielded.
[0076] すなわち、この有機 EL表示装置に入射する外部光は、偏光板により直線偏光成分 のみが透過する。この直線偏光は位相差板により一般に楕円偏光となるが、とく〖こ位 相差板が 1Z4波長板でし力も偏光板と位相差板との偏光方向のなす角が π Ζ4の ときには円偏光となる。  That is, only the linearly polarized light component of the external light incident on the organic EL display device is transmitted by the polarizing plate. This linearly polarized light is generally elliptically polarized by the retardation plate, but it is circularly polarized when the retardation plate is a 1Z4 wavelength plate and the angle between the polarization direction of the polarizing plate and the retardation plate is π Ζ4. .
[0077] この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再 び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そ して、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できな い。その結果、金属電極の鏡面を完全に遮蔽することができる。  [0077] This circularly polarized light is transmitted through the transparent substrate, the transparent electrode, and the organic thin film, is reflected by the metal electrode, is again transmitted through the organic thin film, the transparent electrode, and the transparent substrate, and is linearly polarized again on the retardation plate. Become. And since this linearly polarized light is orthogonal to the polarization direction of the polarizing plate, it cannot be transmitted through the polarizing plate. As a result, the mirror surface of the metal electrode can be completely shielded.
実施例  Example
[0078] 以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例に よって限定されるものではない。なお、各例中の部および%はいずれも重量基準で ある。  [0078] The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. In the examples, all parts and percentages are based on weight.
[0079] (粘着剤層の Tgの測定)  [0079] (Measurement of Tg of adhesive layer)
粘着剤層の Tgは、 DSC法によって求めた。 Tgは開始温度とした。用いた測定装置 は、セイコーインスツルメンッ社製の DSC6220型示差走査熱量計である。 [0080] (光学フィルムの熱応力に起因する内力(F)の測定) The Tg of the adhesive layer was determined by the DSC method. Tg was the starting temperature. The measuring device used was a DSC6220 type differential scanning calorimeter manufactured by Seiko Instruments Inc. [0080] (Measurement of internal force (F) caused by thermal stress of optical film)
F= a - ΔΤ- Ε - 1 - h  F = a-ΔΤ- Ε-1-h
(ただし、 αは— 60〜23°Cにおける熱膨張係数, ΔΤは 23°Cを基準としたときの温 度差、 Eは弾性率、 1は幅、 hは厚み、である。 )により求めた。熱膨張係数 αは、 ΤΜ Α法によって求めた。用いた測定装置は、セイコーインスッノレメンッ社製の TMAZS S6100型熱機械的分析装置である。弾性率 Eは、島津製作所製のオートグラフ AG 1による引張り試験により求めた。 l' hは、光学フィルムの断面積である。  (Where α is the coefficient of thermal expansion at -60 to 23 ° C, ΔΤ is the temperature difference when 23 ° C is the reference, E is the elastic modulus, 1 is the width, and h is the thickness). It was. The thermal expansion coefficient α was determined by the ΤΜ ΤΜ method. The measuring device used is a TMAZS S6100 type thermomechanical analyzer manufactured by Seiko Insuno Rememb. The elastic modulus E was determined by a tensile test using an autograph AG 1 manufactured by Shimadzu Corporation. l ′ h is the cross-sectional area of the optical film.
[0081] 実施例 1 [0081] Example 1
冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸イソォ クチル 99. 9部、アクリル酸 2 ヒドロキシェチル 0. 1部、及び 2, 2' —ァゾビスイソブ チ口-トリル 0. 3部を酢酸ェチルと共にカ卩えて窒素ガス気流下、 60°Cで 4時間反応さ せた後、その反応液に酢酸ェチルを加えて、固形分濃度 30%のアクリル系重合体 溶液 (アクリル系ポリマーの重量平均分子量 160万)を得た。当該溶液の固形分 100 部あたり 0. 15部のトリメチロールプロパントリレンジイソシァネートと 0. 01部の 3 グ 記アクリル系粘着剤をシリコーン系剥離剤で表面処理したポリエステルフィルムから なるセパレータに塗工し 150°Cで 5分間加熱処理して厚さ 20 μ mの粘着剤層を得た In a reaction vessel equipped with a condenser, a nitrogen inlet, a thermometer and a stirrer, 99.9 parts of isooctyl acrylate, 0.1 part of 2-hydroxyethyl acrylate, and 2,2'-azobisisobutyrate-tolyl 0. 3 parts were added together with ethyl acetate, and reacted at 60 ° C for 4 hours under a nitrogen gas stream. Ethyl acetate was added to the reaction solution, and an acrylic polymer solution with a solid content concentration of 30% ( The weight average molecular weight of the acrylic polymer was 1.6 million). Apply 0.15 parts of trimethylolpropane tolylene diisocyanate per 100 parts of the solid content of the solution and 0.01 parts of a 3-g acrylic adhesive to a separator made of a polyester film surface-treated with a silicone release agent. And heat-treated at 150 ° C for 5 minutes to obtain a 20 μm thick adhesive layer
。上記粘着剤層の Tgを測定した結果、—62°Cであった。 . As a result of measuring Tg of the pressure-sensitive adhesive layer, it was -62 ° C.
[0082] 当該粘着剤層を偏光板(日東電工社製, NPF— SEG5224DU)の片面に移着し て粘着剤付き光学フィルムを得た。その後、前記粘着剤層付き偏光板を、 280mm X[0082] The pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Then, the polarizing plate with the pressure-sensitive adhesive layer was 280 mm X
280mmサイズの無アルカリガラス板にラミネーターで貼合し、 50°C、 5気圧のオート クレープ中に 15分間放置して十分に圧着処理した。 It was bonded to a 280 mm size non-alkali glass plate with a laminator and allowed to stand for 15 minutes in an autoclave at 50 ° C and 5 atm.
[0083] なお、偏光板の延伸軸に対して 90° 方向の熱膨張係数 α = 5. 3 X 10"5 ( 1/°C)[0083] The coefficient of thermal expansion in the direction of 90 ° with respect to the stretching axis of the polarizing plate α = 5.3 X 10 " 5 (1 / ° C)
、弾'性率 = 3. 05 X 109Pa、厚み = 185 /ζ πι、幅 = 270mmであり、 0°Cにおける熱 収縮による内力 (F)を計算した結果、 F = 186N、であった。 Elasticity ratio = 3.05 X 10 9 Pa, thickness = 185 / ζ πι, width = 270 mm, calculation of internal force (F) due to thermal contraction at 0 ° C, F = 186 N .
[0084] 実施例 2 [0084] Example 2
実施例 1と同様にして厚さ 20 mの粘着剤層を得た。当該粘着剤層を偏光板(日 東電工社製, NPF -TEG5465DU)の片面に移着して粘着剤付き光学フィルムを 得た。その後、前記粘着剤層付き偏光板を、 280mm X 280mmサイズの無アルカリ ガラス板にラミネーターで貼合し、 50°C、 5気圧のオートクレープ中に 15分間放置し て十分に圧着処理した。 A pressure-sensitive adhesive layer having a thickness of 20 m was obtained in the same manner as in Example 1. The adhesive layer is transferred to one side of a polarizing plate (NPF-TEG5465DU, manufactured by Nitto Denko Corporation). Obtained. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm × 280 mm non-alkali glass plate with a laminator, and allowed to stand in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
[0085] なお、偏光板の延伸軸に対して 90° 方向の熱膨張係数 α = 5. 3 X 10"5 ( 1/°C)[0085] The coefficient of thermal expansion in the 90 ° direction with respect to the stretching axis of the polarizing plate α = 5.3 X 10 " 5 (1 / ° C)
、弾性率 = 3. 6 X 109Pa、厚み = 105 /ζ πι、幅 = 270mmであり、 0°Cにおける熱収 縮による内力 (F)を計算した結果、 F = 124N、であった。 The elastic modulus was 3.6 × 10 9 Pa, the thickness was 105 / ζ πι, the width was 270 mm, and the internal force (F) due to thermal contraction at 0 ° C. was calculated. As a result, F = 124N.
[0086] 実施例 3 [0086] Example 3
冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸 2— ェチルへキシル 99. 9部、アクリル酸 2—ヒドロキシェチル 0. 1部、及び 2, 2' —ァゾ ビスイソブチ口-トリル 0. 3部を酢酸ェチルと共に加えて窒素ガス気流下、 60°Cで 4 時間反応させた後、その反応液に酢酸ェチルを加えて、固形分濃度 30重量%のァ クリル系重合体溶液 (アクリル系ポリマーの重量平均分子量 170万)を得た。当該溶 液の固形分 100部あたり 0. 15部のトリメチロールプロパントリレンジイソシァネートと 0 た。次いで、前記アクリル系粘着剤をシリコーン系剥離剤で表面処理したポリエステ ルフィルムからなるセパレータに塗工し 150°Cで 5分間加熱処理して厚さ 20 μ mの粘 着剤層を得た。上記粘着剤層の Tgを測定した結果、—60°Cであった。  In a reaction vessel equipped with a condenser, a nitrogen inlet tube, a thermometer and a stirrer, 99.9 parts of 2-ethylhexyl acrylate, 0.1 part of 2-hydroxyethyl acrylate, and 2, 2 ' After adding 0.3 parts of zobisisobutyric-tolyl with ethyl acetate and reacting at 60 ° C for 4 hours under a nitrogen gas stream, ethyl acetate was added to the reaction mixture, and 30% by weight of acrylic acid was added. A polymer solution (weight average molecular weight of acrylic polymer 1.7 million) was obtained. The amount of trimethylolpropane tolylene diisocyanate was 0.15 part per 100 parts of the solid content of the solution. Next, the acrylic pressure-sensitive adhesive was applied to a separator made of a polyester film surface-treated with a silicone-based release agent, and heat-treated at 150 ° C. for 5 minutes to obtain an adhesive layer having a thickness of 20 μm. As a result of measuring Tg of the pressure-sensitive adhesive layer, it was −60 ° C.
[0087] 当該粘着剤層を偏光板(日東電工社製, NPF— SEG5224DU)の片面に移着し て粘着剤付き光学フィルムを得た。その後、前記粘着剤層付き偏光板を、 280mm X 280mmサイズの無アルカリガラス板にラミネーターで貼合し、 50°C、 5気圧のオート クレープ中に 15分間放置して十分に圧着処理した。  The pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm × 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
[0088] 実施例 4  [0088] Example 4
冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸プチ ル 99部、アクリル酸 4ーヒドロキシェチル 1部、及び 2, 2' ーァゾビスイソブチ口-トリ ル 0. 3部を酢酸ェチルと共に加えて窒素ガス気流下、 60°Cで 4時間反応させた後、 その反応液に酢酸ェチルを加えて、固形分濃度 30重量%のアクリル系重合体溶液 ( アクリル系ポリマーの重量平均分子量 165万)を得た。当該溶液の固形分 100部あ たり 0. 3部のジベンゾィルパーォキシドと 0. 02部のトリメチロールプロパンキシリレン ジイソシァネートおよび 0. 2部の 3 グリシドキシプロピルトリメトキシシランを配合して アクリル系粘着剤を得た。次いで、前記アクリル系粘着剤をシリコーン系剥離剤で表 面処理したポリエステルフィルム力もなるセパレータに塗工し 155°Cで 3分間加熱処 理して厚さ 20 mの粘着剤層を得た。上記粘着剤層の Tgを測定した結果、 38°C であった。 In a reaction vessel equipped with a condenser tube, nitrogen inlet tube, thermometer and stirrer, 99 parts of acrylate, 1 part of 4-hydroxyethyl acrylate, and 2,2'-azobisisobuty After adding 0.3 parts of ethyl acetate together with ethyl acetate and reacting in a nitrogen gas stream at 60 ° C for 4 hours, ethyl acetate was added to the reaction mixture to obtain an acrylic polymer solution having a solid content concentration of 30% by weight ( The weight average molecular weight of the acrylic polymer was 1.65 million. Per 100 parts solids of the solution 0.3 parts dibenzoyl peroxide and 0.02 parts trimethylolpropan xylylene An acrylic adhesive was obtained by blending diisocyanate and 0.2 part of 3 glycidoxypropyltrimethoxysilane. Next, the acrylic pressure-sensitive adhesive was coated on a separator having a polyester film surface that was surface-treated with a silicone-based release agent, and heat-treated at 155 ° C. for 3 minutes to obtain a pressure-sensitive adhesive layer having a thickness of 20 m. The Tg of the pressure-sensitive adhesive layer was measured and found to be 38 ° C.
[0089] 当該粘着剤層を偏光板(日東電工社製, NPF— SEG5224DU)の片面に移着し て粘着剤付き光学フィルムを得た。その後、前記粘着剤層付き偏光板を、 280mm X 280mmサイズの無アルカリガラス板にラミネーターで貼合し、 50°C、 5気圧のオート クレープ中に 15分間放置して十分に圧着処理した。  The pressure-sensitive adhesive layer was transferred to one surface of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm × 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
[0090] 比較例 1  [0090] Comparative Example 1
冷却管、窒素導入管、温度計及び撹拌装置を備えた反応容器に、アクリル酸プチ ル 95部、アクリル酸 5部、及び 2, 2' ーァゾビスイソブチ口-トリル 0. 3部を酢酸ェチ ルと共に加えて窒素ガス気流下、 60°Cで 4時間反応させた後、その反応液に酢酸ェ チルを加えて、固形分濃度 30重量%のアクリル系重合体溶液 (アクリル系ポリマーの 重量平均分子量 200万)を得た。当該溶液の固形分 100部あたり 0. 6部のトリメチロ シシランを配合してアクリル系粘着剤を得た。次いで、前記アクリル系粘着剤をシリコ ーン系剥離剤で表面処理したポリエステルフィルム力もなるセパレータに塗工し 150 °Cで 5分間加熱処理して厚さ 20 mの粘着剤層を得た。上記粘着剤層の Tgを測定 した結果、 30°Cであった。  In a reaction vessel equipped with a condenser, a nitrogen inlet tube, a thermometer, and a stirrer, 95 parts of acrylic acid propyl, 5 parts of acrylic acid, and 0.3 part of 2,2'-azobisisobutyric-tolyl After adding together with ethyl acetate and reacting at 60 ° C for 4 hours under a nitrogen gas stream, ethyl acetate was added to the reaction solution, and an acrylic polymer solution (acrylic polymer with a solid content concentration of 30% by weight) was added. The weight average molecular weight was 2 million). An acrylic pressure-sensitive adhesive was obtained by blending 0.6 part of trimethyloxysilane per 100 parts of the solid content of the solution. Next, the acrylic pressure-sensitive adhesive was coated on a polyester film-strength separator surface-treated with a silicone-based release agent, and heat-treated at 150 ° C. for 5 minutes to obtain a pressure-sensitive adhesive layer having a thickness of 20 m. The Tg of the pressure-sensitive adhesive layer was measured and found to be 30 ° C.
[0091] 当該粘着剤層を偏光板(日東電工社製, NPF— SEG5224DU)の片面に移着し て粘着剤付き光学フィルムを得た。その後、前記粘着剤層付き偏光板を、 280mm X 280mmサイズの無アルカリガラス板にラミネーターで貼合し、 50°C、 5気圧のオート クレープ中に 15分間放置して十分に圧着処理した。  The pressure-sensitive adhesive layer was transferred to one surface of a polarizing plate (NPF-SEG5224DU, manufactured by Nitto Denko Corporation) to obtain an optical film with a pressure-sensitive adhesive. Thereafter, the polarizing plate with the pressure-sensitive adhesive layer was bonded to a 280 mm × 280 mm non-alkali glass plate with a laminator and left in an autoclave at 50 ° C. and 5 atm for 15 minutes for sufficient pressure-bonding treatment.
[0092] 比較例 2  [0092] Comparative Example 2
比較例 1と同様にして厚さ 20 mの粘着剤層を得た。当該粘着剤層を実施例 2で 用いた偏光板(日東電工社製, NPF-TEG5465DU)の片面に移着して粘着剤付 き光学フィルムを得た。その後、前記粘着剤層付き偏光板を、 280mm X 280mmサ ィズの無アルカリガラス板にラミネーターで貼合し、 50°C、 5気圧のオートクレープ中 に 15分間放置して十分に圧着処理した。 A pressure-sensitive adhesive layer having a thickness of 20 m was obtained in the same manner as in Comparative Example 1. The pressure-sensitive adhesive layer was transferred to one side of a polarizing plate (NPF-TEG5465DU, manufactured by Nitto Denko Corporation) used in Example 2 to obtain an optical film with a pressure-sensitive adhesive. Then, the polarizing plate with the adhesive layer is attached to a 280 mm X 280 mm It was pasted on a non-alkali glass plate with a laminator and left in an autoclave at 50 ° C and 5 atm for 15 minutes for sufficient pressure bonding.
[0093] 実施例および比較例で得られた粘着剤付き光学フィルム (無アルカリガラス板に貼 合したサンプル)について下記評価を行なった。結果を表 1に示す。 [0093] The following evaluations were performed on the optical films with pressure-sensitive adhesives obtained in Examples and Comparative Examples (samples bonded to non-alkali glass plates). The results are shown in Table 1.
[0094] <反り量 > [0094] <Warpage amount>
上記サンプルを表 1に示す 0°C以下の低温領域で 30分間処理した後、 23°C、 55 After the above sample was treated for 30 minutes in the low temperature range of 0 ° C or below shown in Table 1, it was 23 ° C, 55 ° C.
%RHの雰囲気下において、水平で凹凸のない台の上へ設置し、面内 4点の反り量 を隙間ゲージを用いて測定した。反り量はその 4点の平均値とした。評価基準は次の とおりである。 In an atmosphere of% RH, it was placed on a level and uneven surface, and the amount of warpage at four points in the surface was measured using a gap gauge. The amount of warpage was the average of the four points. The evaluation criteria are as follows.
〇:ガラスの反りが 0. 5mm未満。  ◯: Glass warpage is less than 0.5 mm.
△:ガラスの反りが 0. 5〜1. Omm。  Δ: Glass warpage is 0.5 to 1. Omm.
X:ガラスの反りが 1. Ommを超える。  X: Warpage of glass exceeds 1. Omm.
[0095] [表 1] [0095] [Table 1]
Figure imgf000024_0001
産業上の利用可能性
Figure imgf000024_0001
Industrial applicability
本発明の粘着剤付き光学フィルムは、光学フィルムとして延伸フィルムを含有するも のに好適であり、液晶表示装置、有機 EL表示装置、 PDP等の画像表示装置に好適 に適用できる。  The optical film with an adhesive of the present invention is suitable for containing a stretched film as an optical film, and can be suitably applied to image display devices such as liquid crystal display devices, organic EL display devices, and PDPs.

Claims

請求の範囲 The scope of the claims
[1] 光学フィルムの少なくとも片面に粘着剤層を有する粘着剤付き光学フィルムにおい て、  [1] In an optical film with an adhesive having an adhesive layer on at least one side of the optical film,
粘着剤層の Tgが、 - 35°C以下であることを特徴とする粘着剤付き光学フィルム。  An optical film with an adhesive, wherein the adhesive layer has a Tg of −35 ° C. or lower.
[2] 前記光学フィルムの熱応力に起因する内力(F)を、 [2] Internal force (F) resulting from thermal stress of the optical film,
F= a - ΔΤ-Ε -1-h  F = a-ΔΤ-Ε -1-h
(ただし、 αは— 60〜23°Cにおける熱膨張係数, ΔΤは 23°Cを基準としたときの温 度差、 Eは弾性率、 1は幅、 hは厚み、である。 )とした場合に、  (Where α is the coefficient of thermal expansion from –60 to 23 ° C, ΔΤ is the temperature difference when 23 ° C is the reference, E is the elastic modulus, 1 is the width, and h is the thickness). In case,
光学フィルムが延伸フィルムを有し、 0°Cにおいて、前記延伸フィルムの延伸軸に対 して 90° 方向に生じる内力(F)が 50N以上であることを特徴とする請求項 1記載の 粘着剤付き光学フィルム。  The pressure-sensitive adhesive according to claim 1, wherein the optical film has a stretched film, and an internal force (F) generated in a 90 ° direction with respect to the stretch axis of the stretched film at 0 ° C is 50 N or more. With optical film.
[3] 光学フィルムが、偏光板および Zまたは位相差板を含有することを特徴とする請求 項 1記載の粘着剤付き光学フィルム。 [3] The optical film with an adhesive according to [1], wherein the optical film contains a polarizing plate and Z or a retardation plate.
[4] 光学フィルムが、偏光板および Zまたは位相差板を含有することを特徴とする請求 項 2記載の粘着剤付き光学フィルム。 4. The optical film with an adhesive according to claim 2, wherein the optical film contains a polarizing plate and Z or a retardation plate.
[5] 請求項 1〜4のいずれかに記載の粘着剤付き光学フィルムを少なくとも 1枚用いた 画像表示装置。 [5] An image display device using at least one optical film with an adhesive according to any one of claims 1 to 4.
PCT/JP2005/011494 2004-07-01 2005-06-23 Optical film having pressure-sensitive adhesive attached thereto and image display device WO2006003827A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004195412 2004-07-01
JP2004-195412 2004-07-01

Publications (1)

Publication Number Publication Date
WO2006003827A1 true WO2006003827A1 (en) 2006-01-12

Family

ID=35782638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011494 WO2006003827A1 (en) 2004-07-01 2005-06-23 Optical film having pressure-sensitive adhesive attached thereto and image display device

Country Status (5)

Country Link
JP (1) JP2011017009A (en)
KR (1) KR100724323B1 (en)
CN (1) CN100390582C (en)
TW (1) TWI261125B (en)
WO (1) WO2006003827A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4673344B2 (en) * 2007-06-07 2011-04-20 日東電工株式会社 Method for producing pressure-sensitive adhesive sheet for optical film
JP2011203641A (en) * 2010-03-26 2011-10-13 Sumitomo Chemical Co Ltd Polarizing plate
JP2013001761A (en) * 2011-06-14 2013-01-07 Nitto Denko Corp Self-adhesive composition, self-adhesive layer, and self-adhesive sheet
JP6325538B2 (en) 2013-06-19 2018-05-16 綜研化学株式会社 Adhesive composition for polarizing plate, adhesive sheet for polarizing plate, polarizing plate with adhesive layer, laminate and flat panel display
CN106707384B (en) * 2015-11-13 2019-05-24 宁波长阳科技股份有限公司 A kind of warpage preventing reflectance coating and preparation method thereof
JP6755089B2 (en) 2015-11-27 2020-09-16 三星エスディアイ株式会社SAMSUNG SDI Co., LTD. Adhesive composition, adhesive layer, adhesive sheet, and image display device
CN107229091B (en) * 2016-03-24 2020-10-13 深超光电(深圳)有限公司 Polaroid, display panel and display
KR102084113B1 (en) 2017-05-22 2020-03-04 삼성에스디아이 주식회사 Adhesive film, optical member comprising the same and optical display apparatus comprising the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188103A (en) * 1999-01-14 2001-07-10 Sumitomo Chem Co Ltd Antireflection film
JP2002275296A (en) * 2001-01-11 2002-09-25 Teijin Ltd Laminated polyester film for surface-protected film and surface-protected film
JP2003154616A (en) * 2001-11-20 2003-05-27 Teijin Dupont Films Japan Ltd Laminated film and surface protective film
JP2004010647A (en) * 2002-06-04 2004-01-15 Hitachi Chem Co Ltd Pressure sensitive adhesive sheet with separator, and optical component assembly as well as assembling method thereof
JP2004145139A (en) * 2002-10-25 2004-05-20 Nitto Denko Corp Optical compensation plate, polarizing plate with optical compensation layer using the same, method for manufacturing the same optical compensation plate, and liquid crystal display device using them
JP2004163924A (en) * 2002-10-24 2004-06-10 Toray Ind Inc Polarizing plate and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05196812A (en) * 1992-01-20 1993-08-06 Nippon Synthetic Chem Ind Co Ltd:The Polarizing plate having tacky adhesive layer
TWI246460B (en) * 1999-01-14 2006-01-01 Sumitomo Chemical Co Anti-reflection film
JP2004078171A (en) * 2002-06-18 2004-03-11 Nitto Denko Corp Polarizing plate with optical compensating layer and image display device using same
JP4092152B2 (en) * 2002-07-25 2008-05-28 日東電工株式会社 Adhesive optical film, optical film adhesive composition and image display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001188103A (en) * 1999-01-14 2001-07-10 Sumitomo Chem Co Ltd Antireflection film
JP2002275296A (en) * 2001-01-11 2002-09-25 Teijin Ltd Laminated polyester film for surface-protected film and surface-protected film
JP2003154616A (en) * 2001-11-20 2003-05-27 Teijin Dupont Films Japan Ltd Laminated film and surface protective film
JP2004010647A (en) * 2002-06-04 2004-01-15 Hitachi Chem Co Ltd Pressure sensitive adhesive sheet with separator, and optical component assembly as well as assembling method thereof
JP2004163924A (en) * 2002-10-24 2004-06-10 Toray Ind Inc Polarizing plate and its manufacturing method
JP2004145139A (en) * 2002-10-25 2004-05-20 Nitto Denko Corp Optical compensation plate, polarizing plate with optical compensation layer using the same, method for manufacturing the same optical compensation plate, and liquid crystal display device using them

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9960389B1 (en) 2017-05-05 2018-05-01 3M Innovative Properties Company Polymeric films and display devices containing such films
US10797269B2 (en) 2017-05-05 2020-10-06 3M Innovative Properties Company Polymeric films and display devices containing such films
US11472909B2 (en) 2017-05-05 2022-10-18 3M Innovative Properties Company Polymeric films and display devices containing such films

Also Published As

Publication number Publication date
TW200613778A (en) 2006-05-01
CN100390582C (en) 2008-05-28
KR20060033713A (en) 2006-04-19
JP2011017009A (en) 2011-01-27
KR100724323B1 (en) 2007-06-04
TWI261125B (en) 2006-09-01
CN1820217A (en) 2006-08-16

Similar Documents

Publication Publication Date Title
JP5231157B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP5231181B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP4714452B2 (en) Antistatic adhesive optical film and image display device
JP4007502B2 (en) Adhesive optical film and image display device
JP4007920B2 (en) Adhesive optical film and image display device
JP2004263165A (en) Adhesive composition for optical material, adhesive layer for optical material, adherent type optical material, and image display
WO2008001601A1 (en) Adhesive optical film and image display device
JP2004264333A (en) Polarizing plate with adherent type optical compensating layer and image display device
JP2003329838A (en) Pressure-sensitive adhesive optical film, pressure- sensitive adhesive composition for optical film and image display device
JP2004323543A (en) Pressure-sensitive adhesive composition for optical member, pressure-sensitive adhesive layer for optical member, adherent optical member and image display device
JP4721368B2 (en) Antistatic adhesive optical film and image display device
JP5167083B2 (en) Polarizing plate, manufacturing method thereof, optical film, and image display device
JP4410055B2 (en) Retardation pressure-sensitive adhesive layer, method for producing the same, pressure-sensitive adhesive optical film, method for producing the same, and image display device
JP2011017009A (en) Optical adhesive layer, optical film with adhesive, and image display device
WO2004061805A1 (en) Image display manufacturing method, image display, adhesive optical film
WO2006080185A1 (en) Pressure-sensitive adhesive composition for optical member, pressure-sensitive adhesive layer for optical member, pressure-sensitive adhesion type optical member, and image display device
WO2006043451A1 (en) Charge-preventing optical film, charge-preventing adhesive optical film, manufacturing method thereof, and image display device
JP4832748B2 (en) Antistatic adhesive optical film, method for producing the same, and image display device
JP4092152B2 (en) Adhesive optical film, optical film adhesive composition and image display device
JP4527012B2 (en) Optical film with adhesive and image display device
JP4062668B2 (en) Adhesive optical film, optical film adhesive composition and image display device
WO2006098138A1 (en) Pressure-sensitive adhesive agent for optical use, pressure-sensitive adhesive optical film, image display device and method for peeling pressure-sensitive adhesive optical film
WO2006043449A1 (en) Antistatic adhesive optical film and image display
JP4780647B2 (en) Optical film pressure-sensitive adhesive, optical film pressure-sensitive adhesive layer and production method thereof, pressure-sensitive adhesive optical film, and image display device
JP2009139660A (en) Polarizing plate, its manufacturing method, optical film, and image display device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580000616.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020057020769

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020057020769

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWG Wipo information: grant in national office

Ref document number: 1020057020769

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP