Nothing Special   »   [go: up one dir, main page]

WO2006098167A1 - Iii族窒化物半導体素子およびエピタキシャル基板 - Google Patents

Iii族窒化物半導体素子およびエピタキシャル基板 Download PDF

Info

Publication number
WO2006098167A1
WO2006098167A1 PCT/JP2006/304095 JP2006304095W WO2006098167A1 WO 2006098167 A1 WO2006098167 A1 WO 2006098167A1 JP 2006304095 W JP2006304095 W JP 2006304095W WO 2006098167 A1 WO2006098167 A1 WO 2006098167A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
epitaxial
layer
algan
epitaxial layer
Prior art date
Application number
PCT/JP2006/304095
Other languages
English (en)
French (fr)
Inventor
Tatsuya Tanabe
Makoto Kiyama
Kouhei Miura
Takashi Sakurada
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to EP06715178A priority Critical patent/EP1746641B1/en
Priority to US11/569,066 priority patent/US20080265258A1/en
Priority to CA002564423A priority patent/CA2564423A1/en
Publication of WO2006098167A1 publication Critical patent/WO2006098167A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/015Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/40FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
    • H10D30/47FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
    • H10D30/471High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
    • H10D30/475High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
    • H10D30/4755High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs having wide bandgap charge-carrier supplying layers, e.g. modulation doped HEMTs such as n-AlGaAs/GaAs HEMTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure

Definitions

  • the present invention relates to a group III nitride semiconductor device and an epitaxial substrate.
  • Non-Patent Document 1 describes a high electron mobility transistor (HEMT).
  • This high electron mobility transistor has an AlGaN / GaN heterostructure grown epitaxially on a sapphire substrate.
  • a low-temperature GaN layer formed on a sapphire substrate is formed, and then an i-type GaN film of 2 to 3 micrometers is formed.
  • a 7 nm i-type AlGaN layer, a 15 nm n-type AlGaN layer, and a 3 nm i-type AlGaN layer are sequentially formed on the GaN film.
  • the Schottky electrode consists of Ni (3nm) / Pt (30nm) / Au (300nm).
  • Patent Document 1 "Improvement of DC Characteristics of AlGaN / GaN High Electron Mobility Transistors Thermally Annealed Ni / Pt / Au Schottky Gate" Japanese Journal of A pplied Physics Vol.43, No.4B, 2004, pp.1925-1929
  • the Schottky gate is formed on the outermost AlGaN film. If a high electron mobility transistor is fabricated using this epitaxial substrate, high output with low gate-drain breakdown voltage cannot be achieved. This is thought to be due to the large leakage current from the gate electrode.
  • this AlGaN film has not only a large number of threading dislocations but also grooves. When a gate electrode is formed on the surface of this AlGaN film, interface states are formed due to these threading dislocations and grooves, and the Schottky barrier is lowered. As a result, the leakage current from the gate electrode increases.
  • the present invention aims to provide a group III nitride semiconductor device in which leakage current from the gate electrode is reduced, and also provides an epitaxial substrate for producing this group III nitride semiconductor device The purpose is to do.
  • a group III nitride semiconductor device includes: (a) an AlGaN support base (0
  • a GaN epitaxial layer provided between the N epitaxial layer and (d) the Al Ga
  • a Schottky electrode provided on the N epitaxy layer; and (e) the Al Ga N epitaxy
  • a group III nitride semiconductor device includes: (a) an Al Ga N supporting substrate (0
  • a GaN epitaxial layer provided between the N epitaxial layer and (d) the Al Ga
  • a Schottky electrode provided on the N epitaxial layer (e) a source electrode provided on the GaN epitaxial layer; and (f) a drain electrode provided on the GaN epitaxial layer.
  • the leakage current from the tucked electrode is related to the surface roughness (Rms) of the l x m square area. According to the present invention, since the surface roughness is 0.25 nm or less, the leakage current of the Schottky electrode is reduced.
  • the Al Ga N epitaxial layer has a key.
  • the norremium composition Y is preferably 0.1 or more and 0.7 or less.
  • the band offset becomes small, and a two-dimensional electron gas having a sufficient density cannot be formed at the AlGaN / GaN interface.
  • Aluminum composition Y is 0.7 If it is large, there is a high possibility that the AlGaN layer will crack. A two-dimensional electron gas is not generated at the IGaN / GaN interface due to the occurrence of cracks.
  • the thickness is preferably 5 nm or more and 50 nm or less.
  • the thickness of the Al Ga N epitaxial layer is less than 5 nm, the AlGaN / GaN interface
  • the thickness of the AlGaN layer is larger than 50 nm, the possibility of cracking in the AlGaN layer increases. Due to the generation of cracks, two-dimensional electron gas is not formed at the AlGaNZGaN interface.
  • the support base is preferably made of gallium nitride.
  • a group III nitride semiconductor device using a support substrate having a low dislocation density is provided.
  • Epitaxial substrates are (a) Al Ga N substrate (0 ⁇ X ⁇ 1) and (b) 0.25 ⁇ m ⁇ ⁇ ⁇
  • the leakage current from the tacky electrode is related to the surface roughness (Rms) of the 1 ⁇ angle area.
  • the surface roughness (Rms) of the area of 1 / i m square is 0.25 nm or less, it is formed in this Al Ga N epitaxial layer.
  • Schottky electrodes exhibit a small leakage current. Therefore, for example, an epitaxial substrate suitable for a high electron mobility transistor is provided.
  • the Al Ga N epitaxial film is made of aluminum.
  • the nitrogen composition Y is preferably not less than 0.1 and not more than 0.7.
  • the set becomes smaller and a two-dimensional electron gas with sufficient density is not formed at the AlGaN / GaN interface.
  • the Al composition of the Al Ga N epitaxial layer Y is greater than 0.7, AlGaN
  • the thickness of the Al Ga N epitaxial film is the thickness of the Al Ga N epitaxial film.
  • It is preferably 5 nm or more and 50 nm or less.
  • the thickness of the Al Ga N epitaxial layer is less than 5 nm, the AlGaN / GaN interface
  • the thickness of the AlGaN layer is larger than 50 nm, the possibility of cracking in the AlGaN layer increases. Due to the generation of cracks, two-dimensional electron gas is not formed at the AlGaNZGaN interface.
  • the substrate is preferably a gallium nitride substrate.
  • An epitaxial substrate for a group III nitride semiconductor device using a substrate having a low dislocation density is provided.
  • a group IV nitride semiconductor device is provided in which leakage current from a Schottky electrode is reduced.
  • an epitaxial substrate for producing a group III nitride semiconductor device.
  • FIG. 1 is a drawing showing a high electron mobility transistor according to a first embodiment.
  • FIG. 2A is a diagram showing a structure of a high electron mobility transistor (HEMT) according to an example.
  • HEMT high electron mobility transistor
  • FIG. 2B is a drawing showing the structure of a HEMT according to an experimental example.
  • FIG. 3A is a drawing showing an atomic force microscope (AFM) image on the surface of an AlGaN layer of an epitaxial substrate (sample A) manufactured for a high electron mobility transistor.
  • AFM atomic force microscope
  • FIG. 3B is a drawing showing an atomic force microscope (AFM) image on the surface of the AlGaN layer of the epitaxial substrate (sample B).
  • AFM atomic force microscope
  • FIG. 4 is a drawing showing the correspondence between the surface roughness (Rms) of the AlGaN layer and the leakage current density.
  • FIG. 5A is a drawing showing the fabrication of an epitaxial substrate according to a second embodiment.
  • FIG. 5B is a drawing showing the fabrication of an epitaxial substrate according to the second embodiment.
  • FIG. 5C is a drawing showing fabrication of an epitaxial substrate according to the second embodiment.
  • FIG. 6 is a drawing showing an arrangement of a high dislocation region and a low dislocation region in a gallium nitride free-standing substrate for the first and second embodiments.
  • FIG. 7 is a drawing showing another arrangement of the high dislocation regions and the low dislocation regions in the gallium nitride free-standing substrate for the first and second embodiments.
  • FIG. 8 is a drawing showing a high electron mobility transistor according to a modification of the first embodiment.
  • FIG. 9 is a drawing showing a high electron mobility transistor according to another variation of the first embodiment.
  • FIG. 10 is a drawing showing a high electron mobility transistor according to another variation of the first embodiment.
  • FIG. 11 is a drawing showing a high electron mobility transistor according to another variation of the first embodiment.
  • FIG. 1 is a drawing showing a high electron mobility transistor according to a first embodiment.
  • the high-electron mobility transistor 1 includes a support base 3 and an Al Ga N epitaxial layer (0 ⁇ Y ⁇ 1) 5
  • the support substrate 3 is made of Al Ga N (0 ⁇ X ⁇ 1)
  • Al Ga N epitaxial layer 5 is 0.25 nm
  • the GaN epitaxial layer 7 is composed of the Al Ga N support base 3 and the Al Ga N
  • Schottky electrode 9 is an Al Ga Nepita
  • the first ohmic electrode 11 is an Al Ga N epitaxial layer.
  • the second ohmic electrode 13 is formed on the Al Ga N epitaxial layer 5
  • One of the first and second ohmic electrodes 11 and 13 is a source electrode, and the other is a drain electrode.
  • the Schottky electrode 9 is a gate electrode of the high electron mobility transistor 1.
  • the inventors have used a Schottky electrode in contact with the Al Ga N epitaxial layer (0 ⁇ Y ⁇ 1) 5 9
  • the force leakage current is related to the surface roughness (Rms) of the 1 / i m square area. According to the present invention, since the surface roughness is 0.25 nm or less, the leakage current from the Schottky electrode 9 is reduced.
  • FIG. 2A is a diagram illustrating a structure of a high electron mobility transistor (HEMT) according to an embodiment.
  • FIG. 2B is a drawing showing the structure of the HEMT according to the experimental example.
  • HEMT high electron mobility transistor
  • the gallium nitride substrate 21 is placed in the reactor of the MOVPE apparatus.
  • the gallium nitride substrate 21 is heat-treated while supplying a gas containing hydrogen, nitrogen, and ammonia into the reactor. This heat treatment is performed, for example, for about 20 minutes at 1100 degrees Celsius.
  • the temperature of the gallium nitride substrate 21 is raised to, for example, 1130 degrees Celsius.
  • Ammonia and trimethylgallium (TMG) were supplied to the reactor, and a gallium nitride layer 23 with a thickness of 1.5 ⁇ was formed on the gallium nitride substrate. Grows on 21.
  • the thickness of the gallium nitride layer 23 is, for example, 1.5 / im.
  • Trimethyl aluminum (TMA), TMG, and ammonia are supplied to the reactor, and an AlGaN layer 25 is grown on the gallium nitride layer 23.
  • the thickness of the AlGaN layer 25 is, for example, 30 nm.
  • the epitaxial substrate A is manufactured by these processes.
  • a source electrode 27a and a drain electrode 27b having a TiZ Al / Ti / Au force are formed on the surface of the epitaxial substrate A, and a gate electrode 29 made of Au / Ni is formed on the surface of the epitaxial substrate A.
  • HEMT-1 shown in Fig. 2A is fabricated.
  • a sapphire substrate 31 is placed in the reactor of the MOVPE apparatus.
  • a gas containing hydrogen, nitrogen, and ammonia is supplied into the reactor, and the sapphire substrate 31 is heat-treated.
  • the temperature of this heat treatment is, for example, 1170 degrees Celsius, and the heat treatment time is, for example, 10 minutes.
  • a seed layer 32 is grown on the sapphire substrate 31.
  • a gallium nitride layer 33 and an AlGaN layer 35 are grown to produce an epitaxial substrate B.
  • a source electrode 37a and a drain electrode 37b made of Ti / Al / Ti / Au are formed, and a gate electrode 39 made of Au / Ni is formed.
  • HEMT-2 shown in Fig. 2B is manufactured.
  • Figures 3A and 3B show the atomic force microscope (AFM) on the surface of the AlGaN layer of the epitaxial substrate (sample A) and the epitaxial substrate (sample B) fabricated for the high electron mobility transistor. It is drawing which shows an image. The figure shows an image of an lxm square area.
  • Sample A has a GaN film and an AlGaN film sequentially formed on a gallium nitride substrate.
  • Sample B has a seeding film, a GaN film, and an A1GaN film formed in order on a sapphire substrate.
  • the surface of Sample A is very flat so that atomic layer steps are observed, while Sample B has many grooves.
  • a Schottky electrode is provided on each A1G aN film to measure the leakage current. Area of the Schottky electrodes, for example 7. a 85 X 10- 5 cm 2, the applied voltage, for example - is 5 volts.
  • Leakage current density 1. 79 X 10— 2 (A / cm 2 )
  • the leakage current of sample A is greatly reduced compared to the leakage current of sample B. This is because the surface roughness of sample A is smaller than that of sample B for the AlGaN layer.
  • FIG. 4 is a drawing showing the correspondence between the surface roughness (Rms) of the AlGaN layer and the leakage current density.
  • Symbols indicated by reference numerals 41a to 41d indicate values obtained by measuring a structure in which a Schottky electrode is formed on an AlGaN layer formed using a gallium nitride substrate.
  • Reference sign 43a
  • Symbols indicated by ⁇ 43c indicate values obtained by measuring a structure in which a Schottky electrode is formed on an AlGaN layer formed using a sapphire substrate.
  • Leakage current density 2. 72 X 10— 8 A / cm 2
  • Schottky diode structure with reference number 43a (least surface roughness) Surface roughness: 0.493nm
  • the support base 3 made of nitride is made of gallium nitride having conductivity or semi-insulation.
  • the gallium nitride region is homoepitaxially grown on the gallium nitride support substrate.
  • the carrier concentration of the gallium nitride support base is 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the thickness of the GaN layer 7 is 0.1 ⁇ m or more and 1000 ⁇ m or less, and the carrier concentration of the GaN layer 7 is 1 ⁇ 10 17 or less.
  • the thickness of the AlGaN layer 5 is 5 nm or more and 50 nm or less, and the carrier concentration of the AlGaN layer 5 is 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the aluminum group of the Al Ga N epitaxial layer 5 is used.
  • the composition Y is preferably 0.1 or more. If the aluminum composition Y is less than 0 ⁇ 1, the band offset becomes small, and a two-dimensional electron gas with sufficient density is not formed at the AlGaN / GaN interface.
  • the aluminum composition Y is preferably 0.7 or less. If the aluminum composition Y is greater than 0.7, the possibility of cracking in the AlGaN layer increases. Due to the occurrence of cracks, two-dimensional electron gas is not formed at the AlGaN / GaN interface.
  • the thickness of the AlGaN epitaxial layer 5 is 5 nm or more.
  • the thickness of the Al Ga N epitaxial layer 5 is less than 5 nm, Al
  • the strain at the GaN / GaN interface is reduced and no two-dimensional electron gas is formed.
  • the thickness of the Al Ga N epitaxial layer 5 is preferably 50 nm or less.
  • the thickness of the N epitaxy layer 5 is greater than 50 nm, the possibility of cracks occurring in the AlGaN layer increases. Due to the occurrence of cracks, the two-dimensional electron gas is not formed at the AlGaNZGaN interface.
  • gallium nitride is used as the Al Ga N support substrate for the high electron mobility transistor 1.
  • FIG. 5A, FIG. 5B, and FIG. 5C are drawings showing the fabrication of the epitaxial substrate according to the second embodiment.
  • a conductive gallium nitride free-standing substrate 83 is placed in a reactor 80.
  • the subsequent crystal growth is preferably performed by the MOVPE method.
  • the gallium nitride free-standing substrate 83 has a carrier concentration of IX 10 19 cm 3 or less.
  • TMG and NH are supplied to make the GaN epitaxial film 85 gallium nitride.
  • the GaN epitaxial film 85 is preferably undoped.
  • the deposition temperature of the GaN epitaxial film 85 is not less than 600 ° C and not more than 1200 ° C, and the pressure in the furnace is not less than lkPa and not more than 120 kPa.
  • the thickness of the gallium nitride epitaxy film 85 is not less than 0.5 micrometers and not more than 1000 micrometers.
  • the carrier concentration of the GaN epitaxial film 85 is 1 ⁇ 10 17 cm ⁇ 3 or less. If necessary, a buffer layer can be grown prior to the growth of the GaN epitaxial film 85.
  • the buffer layer can be made of any one of A1N, GaN, AlGaN, InGaN, and AlInGaN.
  • the buffer layer can suppress the influence of defects and impurities of the gallium nitride free-standing substrate 83 on the GaN epitaxial layer 85, and can improve the quality of the GaN epitaxial layer 85.
  • an n-type AlGaN epitaxial film 87 is deposited on the undoped GaN epitaxial film 85.
  • the deposition temperature of the AlGaN epitaxial film 87 is not less than 600 ° C and not more than 1200 ° C, and the pressure in the furnace is not less than lkPa and not more than 120 kPa.
  • the aluminum composition of the AlGaN epitaxial film 87 is not less than 0.1 and not more than 0.7.
  • the thickness of the AlGaN epitaxial film 87 is not less than 5 nm and not more than 50 nm.
  • the carrier concentration of the AlGaN epitaxial film 87 is 1 ⁇ 10 19 cm ⁇ 3 or less.
  • the inventors have introduced a Schottky electrode in contact with the Al Ga N epitaxial film 87 (0 ⁇ Y ⁇ 1).
  • the force leakage current is related to the surface roughness (Rms) measured using an atomic force microscope. Since the area of 1 micrometer angle is sufficiently large relative to the surface structure of the epitaxial layer such as atomic layer steps and grooves, The surface roughness (Rms) can be used as an index of the flatness of the surface of the epitaxial layer.
  • Forward current of the gate electrode of the HEMT is approximately 1A / cm 2, the leak current must be suppressed compared to the 1/100000 following 1 X 10- 4 A / cm 2 or less and the forward current. As shown in Fig. 4, the surface roughness (Rms) of the Al Ga N epitaxial layer should be 0.25 nm or less.
  • a Schottky electrode film for the gate electrode and an ohmic electrode film for the source and drain electrodes are deposited on the surface of the AlGaN epitaxial film 87 of the epitaxial substrate 81.
  • a Schottky electrode and an ohmic electrode are formed from the Schottky electrode film and the ohmic electrode film, respectively.
  • the Schottky electrode may be formed on the portion. This can improve source resistance, mutual conductance, and normally off. Further, an n-type dopant may be added to form an n-type semiconductor region immediately below the source electrode and the drain electrode.
  • an n-type semiconductor region to which an n-type dopant is added may be used as a contact layer, grown on the surface of the AlGaN epitaxial film 87, and a source electrode and / or a drain electrode may be formed on the contact layer.
  • a source electrode and / or a drain electrode may be formed on the contact layer.
  • the AlGaN layer may be partially thinned, and the source and / or drain electrode may be formed on the portion.
  • contact resistance can also be reduced.
  • the source and / or drain electrode may be formed by removing the AlGaN layer and contacting the GaN layer having a band gap smaller than that of AlGaN. Thereby, the contact resistance can also be reduced.
  • the Schottky electrode forms a Schottky junction.
  • the voltage flows between the Schottky electrode and the ohmic electrode and flows to the Schottky junction.
  • An epitaxial substrate for a semiconductor device capable of reducing reverse leakage current is provided.
  • FIG. 6 is a drawing showing one arrangement of a high dislocation region and a low dislocation region in the gallium nitride free-standing substrate for the first and second embodiments.
  • the first surface 82a of the gallium nitride free-standing substrate 82 for the epitaxial substrate 81 includes a first area where a high dislocation region 82c having a relatively high threading dislocation density appears and a relatively small threading dislocation density. Having low And a second area in which the dislocation region 82d appears.
  • the high dislocation region 82c is surrounded by the low dislocation region 82d, and the first area is randomly distributed in dots in the second area on the first surface 82a.
  • the threading dislocation density as a whole is, for example, 1 ⁇ 10 8 cm ⁇ 2 or less.
  • an epitaxial layer with a reduced dislocation density can be obtained on the low dislocation region 82d. Therefore, the reverse leakage current is reduced and the reverse breakdown voltage is improved.
  • FIG. 7 is a drawing showing another arrangement of high dislocation regions and low dislocation regions in the gallium nitride free-standing substrate for the first and second embodiments.
  • the first surface 84a of the gallium nitride free-standing substrate 84 for the epitaxial substrate 81 has a first area where a high dislocation region 84c having a relatively high threading dislocation density appears and a relatively small threading dislocation density. And a second area in which a low dislocation region 82d appears.
  • the high dislocation region 84c is surrounded by the low dislocation region 84d, and the first area is distributed in a stripe shape in the second area on the first surface 84a.
  • the threading dislocation density as a whole is, for example, 1 ⁇ 10 8 cm 2 or less.
  • an epitaxial layer with a reduced dislocation density can be obtained on the low dislocation region 84d. Therefore, the reverse leakage current is reduced and the reverse breakdown voltage is improved.
  • X ⁇ l substrate can be used, in particular, the free-standing substrate can be made of A1N, AlGaN or GaN.
  • FIG. 8 is a drawing showing a high electron mobility transistor according to a modification of the first embodiment.
  • an additional gallium nitride based semiconductor layer 4 provided between the GaN epitaxial layer 17 and the gallium nitride supporting base 13 can be provided.
  • the gallium nitride based semiconductor layer 4 is made of, for example, A1N, GaN, AlGaN, InGaN, or AlInGaN.
  • the gallium nitride based semiconductor layer 4 can suppress the propagation of defects on the supporting base and the influence of impurities on the supporting base to the upper layer, and improve the quality of the GaN epitaxial layer 17.
  • FIG. 9 is a diagram showing a high electron mobility transistor according to another variation of the first embodiment.
  • the high electron mobility transistor lb can include an AlGaN layer 5a instead of the AlGaN layer 5 of the high electron mobility transistor la.
  • the AlGaN layer 5a includes a first portion 5b, a second portion 5c, and a third portion 5d.
  • the first portion 5b is located between the second portion 5c and the third portion 5d.
  • the thickness of the first portion 5b is smaller than the thickness of the second portion 5c and the thickness of the third portion 5d, whereby a recess structure is formed in the AlGaN layer 5a.
  • a gate electrode 9a is provided on the first portion 5b.
  • the recess structure is formed by thinning the AlGaN epitaxial layer 15 by etching, for example.
  • FIG. 10 is a drawing showing a high electron mobility transistor according to another modification of the first embodiment.
  • the high electron mobility transistor lc can include an AlGaN layer 5e instead of the AlGaN layer 5 of the high electron mobility transistor la.
  • the AlGaN layer 5e includes a first portion 5f, a second portion 5g, and a third portion 5h.
  • the first part 5f is located between the second part 5g and the third part 5h.
  • the thickness of the first portion 5f is larger than the thickness of the second portion 5g and the thickness of the third portion 5h, whereby a recess structure is formed in the AlGaN layer 5e.
  • the recess structure is formed by etching the AlGaN epitaxial layer 15 by etching, for example.
  • a source electrode 11a is provided on the second portion 5g.
  • a drain electrode 13a is provided on the third portion 5h. This recessic structure can reduce contact resistance.
  • FIG. 11 is a drawing showing a high electron mobility transistor according to another modification of the first embodiment.
  • the high electron mobility transistor Id is provided in the AlGaN layer 5 of the high electron mobility transistor la and can further include a contact layer 6 for the source electrode and the drain electrode.
  • the contact layer 6 can be made of a gallium nitride based semiconductor.
  • the gallium nitride based semiconductor can be composed of GaN, InN, or InGaN.
  • the band gap of the contact layer 6 is preferably smaller than that of the AlGaN layer 5.
  • the carrier concentration of the contact layer 6 is preferably larger than the carrier concentration of the AlGaN layer 5.
  • the gate electrode 9 forms a Schottky junction with the AlGaN layer 5, and the source electrode 1 lb and the drain electrode 13 b make ohmic contact with the contact layer 6.
  • Contact layer 6 is a source electrode l ib And between the drain electrode 13b and the AlGaN layer 5. The contact resistance can be similarly reduced by the additional contact layer structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

 ショットキ電極からのリーク電流が低減されるIII族窒化物半導体素子を提供する。  高電子移動度トランジスタ1では、支持基体3は、AlN、AlGaN、GaNからなる。AlYGa1-YNエピタキシャル層5は、0.25nm以下の表面ラフネス(Rms)を有しており、この表面ラフネスは1μm角のエリアによって規定される。GaNエピタキシャル層7は、AlYGa1-YN支持基体3とAlYGa1-YNエピタキシャル層5との間に設けられる。ショットキ電極9は、AlYGa1-YNエピタキシャル層5上に設けられる。第1のオーミック電極11は、AlYGa1-YNエピタキシャル層5上に設けられる。第2のオーミック電極13は、AlYGa1-YNエピタキシャル層5上に設けられる。第1および第2のオーミック電極11、13の一方はソース電極であり、また他方はドレイン電極である。ショットキ電極9は、高電子移動度トランジスタ1のゲート電極である。

Description

明 細 書
III族窒化物半導体素子およびェピタキシャル基板
技術分野
[0001] 本発明は、 ΠΙ族窒化物半導体素子およびェピタキシャル基板に関する。
背景技術
[0002] 非特許文献 1には、高電子移動度トランジスタ (HEMT: High ElectronMobility Tra nsistor)が記載されている。この高電子移動度トランジスタは、サファイア基板上にェ ピタキシャル成長された AlGaN/GaNヘテロ構造を有する。この高電子移動度トラ ンジスタを作製するためには、サファイア基板上に形成された低温 GaN層を形成し た後に、 2〜3マイクロメートルの i型 GaN膜を形成する。この GaN膜上に、 7nmの i型 AlGaN層、 15nmの n型 AlGaN層、 3nmの i型 AlGaN層を順に形成する。ショットキ 電極は、 Ni (3nm) /Pt (30nm) /Au (300nm)から成る。
特許文献 1: "Improvement of DC Characteristicsof AlGaN/ GaN High Electron Mo bilityTransistors Thermally Annealed Ni/Pt/ AuSchottky Gate"Japanese Journal of A pplied Physics Vol.43, No.4B, 2004,pp.1925-1929
発明の開示
発明が解決しょうとする課題
[0003] 従来技術で作製された HEMT用ェピタキシャル基板では、ショットキゲートは最表 面 AlGaN膜上に形成される。このェピタキシャル基板を用いて、高電子移動度トラン ジスタを作製すると、ゲート-ドレイン間の耐圧が低ぐ高出力化が達成されない。この 原因は、ゲート電極からのリーク電流が大きいためと考えられる。また、発明者らの実 験によれば、この AlGaN膜には多数の貫通転位だけでなく溝も存在する。この AlGa N膜の表面にゲート電極を作製すると、これらの貫通転位および溝に起因して界面 準位が形成されて、ショットキ障壁が低くなる。その結果ゲート電極からのリーク電流 が大きくなる。
[0004] 界面準位を低減するためには、 AlGaN膜の結晶品質を向上させることが必要と考 えられるが、結晶品質の向上がそれほど容易に達成されるわけでもない。発明者らは 、AlGaN膜のどのような種類の結晶品質がゲート電極からのリーク電流に関連して レ、るかを調べるために様々な実験を行った。
[0005] 本発明は、ゲート電極からのリーク電流が低減される III族窒化物半導体素子を提 供することを目的とし、またこの III族窒化物半導体素子を作製するためのェピタキシ ャル基板を提供することを目的とする。
課題を解決するための手段
[0006] 本発明の一側面によれば、 III族窒化物半導体素子は、(a) Al Ga N支持基体(0
X 1-X
≤X≤1)と、 (b) 0. 25nm以下の l m角のエリアの表面ラフネス(Rms)を有する A1 Ga Nェピタキシャル層(0<Y≤1)と、 (c)前記窒化ガリウム支持基体と Al Ga
Y 1-Y Y 1-Y
Nェピタキシャル層との間に設けられた GaNェピタキシャル層と、(d)前記 Al Ga
Y 1-Y
Nェピタキシャル層上に設けられたショットキ電極と、(e)前記 Al Ga Nェピタキシ
Y 1-Y
ャル層上に設けられたソース電極と、(f)前記 Al Ga Nェピタキシャル層上に設け
Y 1-Y
られたドレイン電極とを備える。
本発明の一側面によれば、 III族窒化物半導体素子は、(a) Al Ga N支持基体(0
X 1-X
≤X≤1)と、 (b) 0. 25nm以下の l m角のエリアの表面ラフネス(Rms)を有する Al Ga Nェピタキシャル層(0<Y≤1)と、 (c)前記窒化ガリウム支持基体と Al Ga
Y 1-Y Y 1-Y
Nェピタキシャル層との間に設けられた GaNェピタキシャル層と、(d)前記 Al Ga
Y 1-Y
Nェピタキシャル層上に設けられたショットキ電極と、 (e)前記 GaNェピタキシャル層 上に設けられたソース電極と、 (f)前記 GaNェピタキシャル層上に設けられたドレイン 電極とを備える。
[0007] 発明者らの実験によれば、 Al Ga Nェピタキシャル層(0< Y≤ 1)に接触するショ
Y 1-Y
ットキ電極からのリーク電流は、 l x m角のエリアの表面ラフネス(Rms)に関連してい ることを見いだした。この発明によれば、この表面ラフネスが 0. 25nm以下であるので 、ショットキ電極のリーク電流が低減される。
[0008] 本発明に係る III族窒化物半導体素子では、前記 Al Ga Nェピタキシャル層のァ
Y 1-Y
ノレミニゥム組成 Yは、 0. 1以上であり、且つ 0. 7以下であることが好ましい。
[0009] アルミニウム組成 Yが 0· 1より少ないと、バンドオフセットが小さくなり AlGaN/GaN 界面に充分な密度の二次元電子ガスが形成されない。アルミニウム組成 Yが 0. 7より 大きいと、 AlGaN層にクラックが発生する可能性が高くなる。クラックの発生により、 A IGaN/GaN界面に二次元電子ガスが生成されなレ、。
[0010] 本発明に係る III族窒化物半導体素子では、前記 Al Ga Nェピタキシャル層の厚
Y 1-Y
さは、 5nm以上であり、且つ 50nm以下であることが好ましい。
[0011] Al Ga Nェピタキシャル層の厚さが 5nmより少ないと、 AlGaN/GaN界面にお
Y 1-Y
ける歪みが小さくなり二次元電子ガスが形成されなレ、。 Al Ga Nェピタキシャル層
Y 1-Y
の厚さが 50nmより大きいと、 AlGaN層にクラックが発生する可能性が高くなる。クラ ックの発生により、 AlGaNZGaN界面に二次元電子ガスが形成されない。
[0012] 本発明に係る III族窒化物半導体素子では、前記支持基体は窒化ガリウムからなる ことが好ましい。低い転位密度の支持基体を用いた III族窒化物半導体素子が提供さ れる。
[0013] 本発明の別の側面は、 III族窒化物半導体素子のためのェピタキシャル基板に係る 。ェピタキシャル基板は、(a) Al Ga N基板(0≤X≤1)と、 (b) 0. 25nmの Ι μ ΐη
X l-X
角のエリアの表面ラフネス(Rms)を有する Al Ga Nェピタキシャル膜(0< Y≤ 1)
Y 1-Y
と、(c)前記窒化ガリウム基板と Al Ga Nェピタキシャル膜との間に設けられた Ga
1-Y
Nェピタキシャル膜とを備える c
[0014] 発明者らの実験によれば、 Al Ga Nェピタキシャル層(0< Y≤ 1)に接触するショ
Y 1-Y
ットキ電極からのリーク電流は、 1 μ ΐη角のエリアの表面ラフネス(Rms)に関連してい ることを見いだした。このェピタキシャル基板によれば、 1 /i m角のエリアの表面ラフネ ス(Rms)が 0. 25nm以下であるので、この Al Ga Nェピタキシャル層に形成され
Y 1-Y
るショットキ電極は小さいリーク電流を示す。これ故に、例えば、高電子移動度トラン ジスタに好適なェピタキシャル基板が提供される。
[0015] 本発明に係るェピタキシャル基板では、前記 Al Ga Nェピタキシャル膜のアルミ
Y 1-Y
ニゥム組成 Yは 0. 1以上であり、且つ 0. 7以下であることが好ましい。
[0016] Al Ga Nェピタキシャル層のアルミニウム組成 Yが 0. 1より少ないと、バンドオフ
Y 1-Y
セットが小さくなり AlGaN/GaN界面に充分な密度の二次元電子ガスが形成されな レ、。 Al Ga Nェピタキシャル層のアルミニウム組成 Yが 0. 7より大きレ、と、 AlGaN
Y 1-Y
層にクラックが発生する可能性が高くなる。クラックの発生により、 AlGaN/GaN界 面に二次元電子ガスが形成されない。
[0017] 本発明に係るェピタキシャル基板では、前記 Al Ga Nェピタキシャル膜の厚さは
Y 1-Y
、 5nm以上であり、且つ 50nm以下であることが好ましい。
[0018] Al Ga Nェピタキシャル層の厚さが 5nmより少ないと、 AlGaN/GaN界面にお
Y 1-Y
ける歪みが小さくなり二次元電子ガスが形成されなレ、。 Al Ga Nェピタキシャル層
Y 1-Y
の厚さが 50nmより大きいと、 AlGaN層にクラックが発生する可能性が高くなる。クラ ックの発生により、 AlGaNZGaN界面に二次元電子ガスが形成されない。
[0019] 本発明に係るェピタキシャル基板では、前記基板は窒化ガリウム基板であることが 好ましい。低い転位密度の基板を用いた III族窒化物半導体素子のためのェピタキシ ャル基板が提供される。
[0020] 本発明の上記の目的および他の目的、特徴、並びに利点は、添付図面を参照して 進められる本発明の好適な実施の形態の以下の詳細な記述から、より容易に明らか になる。
発明の効果
[0021] 以上説明したように、本発明によれば、ショットキ電極からのリーク電流が低減される ΠΙ族窒化物半導体素子が提供される。また、本発明によれば、 ΠΙ族窒化物半導体素 子を作製するためのェピタキシャル基板が提供される。
図面の簡単な説明
[0022] [図 1]図 1は、第 1の実施の形態に係る高電子移動度トランジスタを示す図面である。
[図 2A]図 2Aは、実施例に係る高電子移動度トランジスタ(HEMT)の構造を示す図 面である。
[図 2B]図 2Bは、実験例に係る HEMTの構造を示す図面である。
[図 3A]図 3Aは、高電子移動度トランジスタのために作製されたェピタキシャル基板( 試料 A)の AlGaN層の表面における原子間力顕微鏡 (AFM)像を示す図面である。
[図 3B]図 3Bは、ェピタキシャル基板 (試料 B)の AlGaN層の表面における原子間力 顕微鏡 (AFM)像を示す図面である。
[図 4]図 4は、 AlGaN層の表面ラフネス (Rms)とリーク電流密度との対応を示す図面 である。 [図 5A]図 5Aは、第 2の実施の形態に係るェピタキシャル基板の作製を示す図面であ る。
[図 5B]図 5Bは、第 2の実施の形態に係るェピタキシャル基板の作製を示す図面であ る。
[図 5C]図 5Cは、第 2の実施の形態に係るェピタキシャル基板の作製を示す図面であ る。
[図 6]図 6は、第 1および第 2の実施の形態のための窒化ガリウム自立基板における高 転位領域および低転位領域の一配置を示す図面である。
[図 7]図 7は、第 1および第 2の実施の形態のための窒化ガリウム自立基板における高 転位領域および低転位領域の他の一配置を示す図面である。
[図 8]図 8は、第 1の実施の形態の一変形例に係る高電子移動度トランジスタを示す 図面である。
[図 9]図 9は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを示 す図面である。
[図 10]図 10は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを 示す図面である。
[図 11]図 11は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを 示す図面である。
符号の説明
1、 la、 lb、 lc、 Id 高電子移動度トランジスタ
3 支持基体
4 追加の窒化ガリウム系半導体層
5、 5a Al Ga Nェピタキシャル層(0< Y≤ 1)
Y 1-Y
6 コンタクト層
7 GaNェピタキシャル層
9、 9a シ 3ッ卜キ電極
11 , 11a, l ib 第 1のォーミック電極
13、 13a、 13b 第 2のォーミック電極 21 窒化ガリウム基板
23 窒化ガリウム層
25 AlGaN層
A、 B ェピタキシャル基板
27a ソース電極
27b ドレイン電極
29 ゲート電極
31 サファイア基板
32 種付け層
33 窒化ガリウム層
35 AlGaN層
37a ソース電極
37b ドレイン電極
80 反応炉
83 窒化ガリウム自立基板
85 GaNェピタキシャル膜
87 AlGaNェピタキシャゾレ J莫
81 ェピタキシャル基板
82 窒化ガリウム自立基板
82c 高転位領域
82d 低転位領域
84 窒化ガリウム支持基体
84c 高転位領域
84d 低転位領域
発明を実施するための最良の形態
本発明の知見は、例示として示された添付図面を参照して以下の詳細な記述を考 慮することによって容易に理解できる。引き続いて、添付図面を参照しながら、本発 明の III族窒化物半導体素子およびェピタキシャル基板に係る実施の形態を説明す る。実施の形態では、 m族窒化物半導体素子として高電子移動度トランジスタを説明 する。可能な場合には、同一の部分には同一の符号を付する。
[0025] (第 1の実施の形態)
図 1は、第 1の実施の形態に係る高電子移動度トランジスタを示す図面である。高電 子移動度トランジスタ 1は、支持基体 3と、 Al Ga Nェピタキシャル層(0<Y≤1) 5
Y 1-Y
と、 GaNェピタキシャル層 7と、ショットキ電極 9と、第 1のォーミック電極 11と、第 2の ォーミック電極 13とを備える。支持基体 3は、 Al Ga N (0≤X≤ 1)からなり、具体
X 1-X
的には、 A1N、 AlGaN、 GaNからなる。 Al Ga Nェピタキシャル層 5は、 0. 25nm
Y 1-Y
以下の表面ラフネス(Rms)を有しており、この表面ラフネスは l z m角のエリアによつ て規定される。 GaNェピタキシャル層 7は、 Al Ga N支持基体 3と Al Ga Nェピ
Y 1-Y Y 1-Y タキシャル層 5との間に設けられている。ショットキ電極 9は、 Al Ga Nェピタキシャ
Y 1-Y
ル層 5上に設けられている。第 1のォーミック電極 11は、 Al Ga Nェピタキシャル層
Y 1-Y
5上に設けられている。第 2のォーミック電極 13は、 Al Ga Nェピタキシャル層 5上
Y 1-Y
に設けられている。第 1および第 2のォーミック電極 11、 13の一方はソース電極であ り、また他方はドレイン電極である。ショットキ電極 9は、高電子移動度トランジスタ 1の ゲート電極である。
[0026] 発明者らは、 Al Ga Nェピタキシャル層(0<Y≤ 1) 5に接触するショットキ電極 9
Y 1-Y
力 のリーク電流は、 1 /i m角のエリアの表面ラフネス(Rms)に関連していることを見 いだした。この発明によれば、この表面ラフネスが 0. 25nm以下であるので、ショット キ電極 9からのリーク電流が低減される。
[0027] 図 2Aは、実施例に係る高電子移動度トランジスタ(HEMT)の構造を示す図面で ある。図 2Bは、実験例に係る HEMTの構造を示す図面である。
実施例 1
[0028] MOVPE装置のリアクタに窒化ガリウム基板 21を置く。水素、窒素、アンモニアを含 むガスをリアクタ内に供給しながら、窒化ガリウム基板 21の熱処理を行う。この熱処理 は、例えば摂氏 1100度において 20分間程度行われる。次いで、窒化ガリウム基板 2 1の温度を昇温して、例えば摂氏 1130度に設定する。アンモニアとトリメチルガリウム (TMG)をリアクタに供給して、厚さ 1. 5 μ ΐηの窒化ガリウム層 23を窒化ガリウム基板 21上に成長する。窒化ガリウム層 23の厚さは、例えば 1. 5 /i mである。トリメチルァ ルミニゥム(TMA)、 TMG、アンモニアをリアクタに供給して、 AlGaN層 25を窒化ガ リウム層 23上に成長する。 AlGaN層 25の厚さは、例えば 30nmである。これらのェ 程により、ェピタキシャル基板 Aを作製する。このェピタキシャル基板 Aの表面に TiZ Al/Ti/Au力もなるソース電極 27aおよびドレイン電極 27bを形成すると共に、ェピ タキシャル基板 Aの表面に Au/Niからなるゲート電極 29を形成する。これらの工程 により、図 2Aに示される HEMT- 1が作製される。
実験例 1
[0029] MOVPE装置のリアクタにサファイア基板 31を置く。水素、窒素、アンモニアを含む ガスをリアクタ内に供給して、サファイア基板 31の熱処理を行う。この熱処理の温度 は、例えば摂氏 1170度であり、熱処理時間は例えば 10分間である。次いで、サファ ィァ基板 31上に種付け層 32を成長する。この後に、実施例 1と同様にして、窒化ガリ ゥム層 33および AlGaN層 35を成長して、ェピタキシャル基板 Bを作製する。このェ ピタキシャル基板 Bの表面に、 Ti/Al/Ti/Auからなるソース電極 37aおよびドレイ ン電極 37bを形成すると共に Au/Niからなるゲート電極 39を形成する。これらのェ 程により、図 2Bに示される HEMT-2が作製される。
[0030] 図 3Aおよび図 3Bは、高電子移動度トランジスタのために作製されたェピタキシャ ル基板(試料 A)およびェピタキシャル基板(試料 B)の AlGaN層の表面における原 子間力顕微鏡 (AFM)像を示す図面である。図面は、 l x m角のエリアの像を示して いる。試料 Aは、窒化ガリウム基板上に順に形成された GaN膜および AlGaN膜を有 する。試料 Bは、サファイア基板上に順に形成された、種付け膜、 GaN膜および A1G aN膜を有する。図面に示されるように、試料 Aの表面は原子層ステップが観察される ように非常に平坦であるのに対し、試料 Bでは多数の溝が見られる。それぞれの A1G aN膜上には、リーク電流を測定するためにショットキ電極が設けられる。ショットキ電 極の面積は、例えば 7. 85 X 10— 5cm2であり、印加電圧は、例えば- 5ボルトである。 試料 A
1 /i m角のエリアにおける表面粗さ(Rms) : 0. 071 (nm)
リーク電流密度: 1. 75 X 10— 6 (A/cm2) 試料 B
1 /i m角のエリアにおける表面粗さ(Rms) : 0. 401 (nm)
リーク電流密度: 1. 79 X 10— 2 (A/cm2)
試料 Aのリーク電流は試料 Bのリーク電流に比べ大幅に低減される。これは、 AlGaN 層に関して試料 Aの表面粗さは試料 Bの表面粗さに比べて小さいからである。
[0031] 図 4は、 AlGaN層の表面ラフネス(Rms)とリーク電流密度との対応を示す図面であ る。参照符合 41a〜41dで示されるシンボルは、窒化ガリウム基板を用いて形成され た AlGaN層上にショットキ電極を作製した構造を測定した値を示す。参照符合 43a
〜43cで示されるシンボルは、サファイア基板を用いて形成された AlGaN層上にショ ットキ電極を作製した構造を測定した値を示す。
実施例 2
[0032] 具体例を示せば、
参照符合 41aで示される試料
表面ラフネス: 0. 204nm
リーク電流密度: 1. 11 X 10— 5 A/cm2
参照符合 41bで示される試料
表面ラフネス: 0. 170nm
リーク電流密度: 1. 75 X 10— 6 A/cm2
参照符合 41cで示される試料
表面ラフネス: 0. 127nm
リーク電流密度: 9. 01 X 10— 7A/cm2
参照符合 41dで示される試料
表面ラフネス: 0. 127nm
リーク電流密度: 2. 72 X 10— 8 A/cm2
である。
実験例 2
[0033] 具体例を示せば、
参照符合 43aのショットキダイオード構造 (最も表面ラフネスが小さレ、) 表面ラフネス: 0. 493nm
リーク電流密度: 2. 31 X 10— 3 A/cm2
参照符合 43bのショットキダイオード構造 (最もリーク電流密度が小さい)
表面ラフネス: 0. 652nm
リーク電流密度: 1. 63 X 10— 3 A/cm2
である。
[0034] 高電子移動度トランジスタ 1では、窒化物からなる支持基体 3は、導電性、あるいは 半絶縁性を有する窒化ガリウムから成る。この形態では、窒化ガリウム領域は、窒化 ガリウム支持基体上にホモェピタキシャル成長される。窒化ガリウム支持基体のキヤリ ァ濃度は 1 X 1019cm— 3以下である。 GaN層 7の厚さは 0. 1 μ m以上 1000 μ m以下 であり、 GaN層 7のキャリア濃度は 1 X 1017以下である。 AlGaN層 5の厚さは 5nm以 上 50nm以下であり、 AlGaN層 5のキャリア濃度は 1 X 1019cm— 3以下である。
[0035] 高電子移動度トランジスタ 1では、 Al Ga Nェピタキシャル層 5のアルミニウム組
Y 1-Y
成 Yは、 0· 1以上であることが好ましい。アルミニウム組成 Yが 0· 1より少ないと、バン ドオフセットが小さくなり AlGaN/GaN界面に充分な密度の二次元電子ガスが形成 されなレ、。また、アルミニウム組成 Yは、 0. 7以下であることが好ましい。アルミニウム 組成 Yが 0. 7より大きいと、 AlGaN層にクラックが発生する可能性が高くなる。クラッ クの発生により、 AlGaN/GaN界面に二次元電子ガスが形成されない。
[0036] 高電子移動度トランジスタ 1では、 Al Ga Nェピタキシャル層 5の厚さは 5nm以上
Y 1-Y
であることが好ましレ、。 Al Ga Nェピタキシャル層 5の厚さが 5nmより少ないと、 Al
Y 1-Y
GaN/GaN界面における歪みが小さくなり二次元電子ガスが形成されなレ、。また、 Al Ga Nェピタキシャル層 5の厚さは 50nm以下であることが好ましレ、。 Al Ga
Y 1-Y Y 1-Y
Nェピタキシャル層 5の厚さが 50nmより大きいと、 AlGaN層にクラックが発生する可 能性が高くなる。クラックの発生により、 AlGaNZGaN界面に二次元電子ガスが形 成されない。
[0037] 高電子移動度トランジスタ 1のための Al Ga N支持基体としては窒化ガリウムから
X 1-X
なることが好ましレ、。低レ、転位密度の支持基体を用いた m族窒化物半導体素子が提 供される。 [0038] (第 2の実施の形態)
図 5A、図 5B、および図 5Cは、第 2の実施の形態に係るェピタキシャル基板の作製 を示す図面である。図 5Aに示されるように、例えば導電性の窒化ガリウム自立基板 8 3を反応炉 80内に置く。引き続く結晶成長は、 MOVPE法で行われることが好ましい 。窒化ガリウム自立基板 83は I X 1019cm 3以下のキャリア濃度を有する。図 5Bに示 されるように、 TMGおよび NHを供給して GaNェピタキシャル膜 85を窒化ガリウム
3
自立基板 83の第 1の面 83a上に堆積する。 GaNェピタキシャル膜 85は、好ましくは アンドープである。 GaNェピタキシャル膜 85の成膜温度は 600°C以上 1200°C以下 であり、炉内の圧力は、 lkPa以上 120kPa以下である。窒化ガリウムェピタキシャノレ 膜 85の厚さは 0. 5マイクロメートル以上 1000マイクロメートル以下である。 GaNェピ タキシャル膜 85のキャリア濃度は 1 X 1017cm— 3以下である。必要な場合には、 GaN ェピタキシャル膜 85の成長に先立ち、バッファ層を成長させることができる。バッファ 層は、 A1N、 GaN、 AlGaN、 InGaN、 AlInGaNのいずれかからなることができる。バ ッファ層により、 GaNェピタキシャル層の 85に窒化ガリウム自立基板 83の欠陥、不純 物の影響が及ぼすのを抑制することができ、 GaNェピタキシャル層 85の品質向上を 図ること力 Sできる。
次いで、図 5Cに示されるように、 TMA、 TMGおよび NHを供給して、アンドープ
3
又は n型 AlGaNェピタキシャル膜 87をアンドープ GaNェピタキシャル膜 85上に堆積 する。 AlGaNェピタキシャル膜 87の成膜温度は 600°C以上 1200°C以下であり、炉 内の圧力は、 lkPa以上 120kPa以下である。 AlGaNェピタキシャル膜 87のアルミ二 ゥム組成は 0. 1以上 0. 7以下である。 AlGaNェピタキシャル膜 87の厚さは 5nm以 上 50nm以下である。 AlGaNェピタキシャル膜 87のキャリア濃度は 1 X 1019cm— 3以 下である。これによつて、ェピタキシャル基板 81が得られる。この基板を利用して、第 1の実施の形態に示された HEMTを作製できる。
[0039] 発明者らは、 Al Ga Nェピタキシャル膜 87 (0<Y≤ 1)に接触するショットキ電極
Y 1-Y
力 のリーク電流は、原子間力顕微鏡を用いて測定される表面ラフネス (Rms)に関 連していることを見いだした。 1マイクロメートノレ角の領域は、原子層ステップや溝など のェピタキシャル層の表面構造に対して充分に大きいため、 1マイクロメートノレ角の表 面ラフネス (Rms)をェピタキシャル層の表面の平坦性の指標とすることが可能である 。 HEMTのゲート電極の順方向電流は約 1A/ cm2であり、リーク電流は順方向電 流と比較して 1/100000以下の 1 X 10— 4 A/cm2以下に抑える必要がある。図 4に 示すとおり、 Al Ga Nェピタキシャル層の表面ラフネス(Rms)を 0. 25nm以下に
Y 1-Y
することで、リーク電流を 1 X 10— 4A/cm2以下にすることが可能である。
[0040] このェピタキシャル基板 81の AlGaNェピタキシャル膜 87の表面に、ゲート電極の ためのショットキ電極膜並びにソース電極およびドレイン電極のためのォーミック電極 膜を堆積する。ショットキ電極膜およびォーミック電極膜から、それぞれ、ショットキ電 極およびォーミック電極が形成される。なお、ショットキ電極直下の AlGaNェピタキシ ャル膜 87を部分的に薄くした後に、当該部分上にショットキ電極を形成してもよい。こ れによりソース抵抗、相互コンダクタンス向上、ノーマリオフ化などを図ることができる 。また、 n型ドーパントを添加して n型半導体領域をソース電極およびドレイン電極の 直下に形成するようにしてもよい。さらに、 n型ドーパントを添加した n型半導体領域を コンタクト層として、 AlGaNェピタキシャル膜 87の表面上に成長し、そのコンタクト層 上にソース電極および/またはドレイン電極形成してもよい。これにより、コンタクト抵 抗低減を図ることができる。また、 AlGaN層を部分的に薄くして、当該部分上にソー スおよび/またはドレイン電極を形成してもよい。これにより、やはりコンタクト抵抗低 減を図ることができる。或いは、ソースおよび/またはドレイン電極は、 AlGaN層を除 去して、 AlGaNのバンドギャップより小さいバンドギャップを有する GaN層に接触す るように形成してもよレ、。これにより、やはりコンタクト抵抗低減を図ることができる。
AlGaN領域の表面ラフネスを結晶品質の指標に用いて、ショットキ電極がショットキ 接合を成す AlGaN膜の品質をモニタすることにより、ショットキ電極とォーミック電極 との間に電圧を印加したときにショットキ接合に流れる逆方向リーク電流を低減可能 な半導体素子のためのェピタキシャル基板が提供される。
[0041] 図 6は、第 1および第 2の実施の形態のための窒化ガリウム自立基板における高転 位領域および低転位領域の一配置を示す図面である。ェピタキシャル基板 81のた めの窒化ガリウム自立基板 82の第 1の面 82aは、比較的大きい貫通転位密度を有す る高転位領域 82cが現れた第 1のエリアと、比較的小さい貫通転位密度を有する低 転位領域 82dが現れた第 2のエリアとを有する。高転位領域 82cは低転位領域 82d に囲まれており、第 1の面 82aにおいて、第 1のエリアは、第 2のエリア内にドット状に ランダムに分布している。全体として貫通転位密度は、例えば 1 X 108cm— 2以下であ る。このェピタキシャル基板 81によれば、低転位領域 82d上に転位密度の低減され たェピタキシャル層が得られる。これ故に、逆方向リーク電流が減少しまた逆方向の 耐圧が向上する。
[0042] 図 7は、第 1および第 2の実施の形態のための窒化ガリウム自立基板における高転 位領域および低転位領域の別の一配置を示す図面である。ェピタキシャル基板 81 のための窒化ガリウム自立基板 84の第 1の面 84aは、比較的大きい貫通転位密度を 有する高転位領域 84cが現れた第 1のエリアと、比較的小さい貫通転位密度を有す る低転位領域 82dが現れた第 2のエリアとを有する。高転位領域 84cは低転位領域 8 4dに囲まれており、第 1の面 84aにおいて、第 1のエリアは、第 2のエリア内にストライ プ状に分布している。全体として貫通転位密度は、例えば 1 X 108cm 2以下である。 このェピタキシャル基板 81によれば、低転位領域 84d上に転位密度の低減されたェ ピタキシャル層が得られる。これ故に、逆方向リーク電流が減少しまた逆方向の耐圧 が向上する。
[0043] 本実施の形態では、第 1の実施の形態と同様に、自立基板として、 Al Ga N (0≤
X 1-X
X≤l)基板を用いることができ、具体的には、 自立基板は、 A1N、 AlGaNまたは Ga Nからなることができる。
[0044] 次いで、本実施の形態は様々な変形例を有する。図 8は、第 1の実施の形態の一 変形例に係る高電子移動度トランジスタを示す図面である。図 8を参照すると、高電 子移動度トランジスタ laでは、 GaNェピタキシャル層 17と窒化ガリウム支持基体 13と の間に設けられた追加の窒化ガリウム系半導体層 4を設けることができる。窒化ガリウ ム系半導体層 4は、例えば、 A1N、 GaN、 AlGaN, InGaN、 AlInGaNからなる。窒 化ガリウム系半導体層 4により、支持基体の欠陥および支持基体上の不純物の影響 が上層へ伝播することを抑制し、 GaNェピタキシャル層 17の品質向上を図ることが できる。
[0045] 図 9は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを示す図 面である。高電子移動度トランジスタ lbは、高電子移動度トランジスタ laの AlGaN層 5に替えて、 AlGaN層 5aを備えることができる。 AlGaN層 5aは、第 1の部分 5b、第 2 の部分 5cおよび第 3の部分 5dを含む。第 1の部分 5bは、第 2の部分 5cと第 3の部分 5dとの間に位置している。第 1の部分 5bの厚みは第 2の部分 5cの厚みおよび第 3の 部分 5dの厚みより小さぐこれにより、 AlGaN層 5aにはリセス構造が形成される。第 1 の部分 5b上には、ゲート電極 9aが設けられている。リセス構造は、例えばエッチング により Al Ga Nェピタキシャル層 15をエッチングなどで薄くすることにより形成され
Y 1-Y
る。このリセスゲート構造により、ソース抵抗低減、相互コンダクタンス向上、ノーマリオ フ化などを図ることができる。
[0046] 図 10は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを示す 図面である。高電子移動度トランジスタ lcは、高電子移動度トランジスタ laの AlGaN 層 5に替えて、 AlGaN層 5eを備えることができる。 AlGaN層 5eは、第 1の部分 5f、第 2の部分 5gおよび第 3の部分 5hを含む。第 1の部分 5fは、第 2の部分 5gと第 3の部 分 5hとの間に位置している。第 1の部分 5fの厚みは第 2の部分 5gの厚みおよび第 3 の部分 5hの厚みより大きぐこれにより、 AlGaN層 5eにはリセス構造が形成される。リ セス構造は、例えばエッチングにより Al Ga Nェピタキシャル層 15をエッチングな
Y 1-Y
どで薄くすることにより形成される。第 2の部分 5g上には、ソース電極 11aが設けられ ている。第 3の部分 5h上には、ドレイン電極 13aが設けられている。このリセスォーミツ ク構造により、コンタクト抵抗低減を図ることができる。
[0047] 図 11は、第 1の実施の形態の別の変形例に係る高電子移動度トランジスタを示す 図面である。高電子移動度トランジスタ Idは、高電子移動度トランジスタ laの AlGaN 層 5に設けられておりソース電極およびドレイン電極のためのコンタクト層 6を更に備 えること力できる。コンタクト層 6は、窒化ガリウム系半導体からなることができる。窒化 ガリウム系半導体としては、 GaN、 InN、 InGaNからなることができる。コンタクト層 6 のバンドギャップは、 AlGaN層 5のバンドギャップより小さいことが好ましレ、。また、コ ンタクト層 6のキャリア濃度は、 AlGaN層 5のキャリア濃度より大きいことが好ましい。 ゲート電極 9は AlGaN層 5にショットキ接合を成し、ソース電極 1 lbおよびドレイン電 極 13bは、コンタクト層 6にォーミック接触を成す。コンタクト層 6は、ソース電極 l ibお よびドレイン電極 13bと AlGaN層 5との間に位置している。コンタクト層追加構造によ り、同じくコンタクト抵抗低減を図ることができる。
好適な実施の形態において本発明の原理を図示し説明してきたが、本発明は、そ のような原理から逸脱することなく配置および詳細において変更され得ることは、当 業者によって認識される。本発明は、本実施の形態に開示された特定の構成に限定 されるものではなレ、。したがって、特許請求の範囲およびその精神の範囲から来る全 ての修正および変更に権利を請求する。

Claims

請求の範囲
[1] Al Ga N支持基体(0≤X≤1)と、
X l-X
0. 25nm以下の l x m角のエリアの表面ラフネス(Rms)を有する Al Ga Nェピタ
Υ 1-Υ キシャル層(0<Υ≤1)と、
前記窒化ガリウム支持基体と Al Ga Nェピタキシャル層との間に設けられた GaN
Y 1-Y
ェピタキシャル層と、
前記 Al Ga Nェピタキシャル層上に設けられたショットキ電極と、
Y 1-Y
前記 Al Ga Nェピタキシャル層上に設けられたソース電極と、
Y 1-Y
前記 Al Ga Nェピタキシャル層上に設けられたドレイン電極と
Y 1-Y
を備える、ことを特徴とする m族窒化物半導体素子。
[2] Al Ga N支持基体(0≤X≤1)と、
X 1-X
0. 25nm以下の Ι μ ΐη角のエリアの表面ラフネス(Rms)を有する Al Ga Nェピタ
Y 1-Y キシャル層(0<Y≤1)と、
前記窒化ガリウム支持基体と Al Ga Nェピタキシャル層との間に設けられた GaN
Y 1-Y
ェピタキシャル層と、
前記 Al Ga Nェピタキシャル層上に設けられたショットキ電極と、
Y 1-Y
前記 GaNェピタキシャル層上に設けられたソース電極と、
前記 GaNェピタキシャル層上に設けられたドレイン電極と
を備える、ことを特徴とする ΙΠ族窒化物半導体素子。
[3] 前記 Al Ga Nェピタキシャル層のアルミニウム組成 Yは、 0. 1以上であり、且つ 0
Y 1-Y
. 7以下である、ことを特徴とする請求項 1または請求項 2に記載された ΠΙ族窒化物半 導体素子。
[4] 前記 Al Ga Nェピタキシャル層の厚さは、 5nm以上であり、且つ 50nm以下であ
Y 1-Y
る、ことを特徴とする請求項 1〜3のいずれか一項に記載された ΠΙ族窒化物半導体素 子。
[5] 前記 Al Ga N支持基体は窒化ガリウムからなる、ことを特徴とする請求項 1〜4の
X 1-X
いずれか一項に記載された m族窒化物半導体素子。
[6] m族窒化物半導体素子のためのェピタキシャル基板であって、 Al Ga N基板(0≤X≤1)と、
X 1-X
0, 25nm以下の l / m角のエリアの表面ラフネス(Rms)を有する Al Ga Nェピタ
Υ 1-Υ キシャル膜(ο<γ≤ι)と、
前記 Al Ga N基板と Al Ga Nェピタキシャル膜との間に設けられた GaNェピタ
X l-X Y 1-Y
キシャル膜と
を備える、ことを特徴とするェピタキシャル基板。
前記 Al Ga Nェピタキシャル膜のアルミニウム組成 Yは、 0. 1以上であり、且つ 0
Y 1-Y
. 7以下である、ことを特徴とする請求項 6に記載されたェピタキシャル基板。
前記 Al Ga Nェピタキシャル膜の厚さは、 5nm以上であり、且つ 50nm以下であ
Y 1-Y
る、ことを特徴とする請求項 6または 7に記載されたェピタキシャル基板。
前記 Al Ga N基板は窒化ガリウム基板である、ことを特徴とする請求項 6〜8のい
X 1-X
ずれか一項に記載されたェピタキシャル基板。
PCT/JP2006/304095 2005-03-15 2006-03-03 Iii族窒化物半導体素子およびエピタキシャル基板 WO2006098167A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06715178A EP1746641B1 (en) 2005-03-15 2006-03-03 Method of manufacturing a group III nitride semiconductor device and epitaxial substrate
US11/569,066 US20080265258A1 (en) 2005-03-15 2006-03-03 Group III Nitride Semiconductor Device and Epitaxial Substrate
CA002564423A CA2564423A1 (en) 2005-03-15 2006-03-03 Group iii nitride semiconductor device and epitaxial substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005073519 2005-03-15
JP2005-073519 2005-03-15
JP2006019502A JP2006295126A (ja) 2005-03-15 2006-01-27 Iii族窒化物半導体素子およびエピタキシャル基板
JP2006-019502 2006-01-27

Publications (1)

Publication Number Publication Date
WO2006098167A1 true WO2006098167A1 (ja) 2006-09-21

Family

ID=36991515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304095 WO2006098167A1 (ja) 2005-03-15 2006-03-03 Iii族窒化物半導体素子およびエピタキシャル基板

Country Status (7)

Country Link
US (1) US20080265258A1 (ja)
EP (1) EP1746641B1 (ja)
JP (1) JP2006295126A (ja)
KR (1) KR20070113093A (ja)
CA (1) CA2564423A1 (ja)
TW (1) TW200731352A (ja)
WO (1) WO2006098167A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE538497T1 (de) * 2002-04-30 2012-01-15 Cree Inc Hochspannungsschaltbauelemente und prozess zu ihrer herstellung
JP4462330B2 (ja) * 2007-11-02 2010-05-12 住友電気工業株式会社 Iii族窒化物電子デバイス
US7781780B2 (en) 2008-03-31 2010-08-24 Bridgelux, Inc. Light emitting diodes with smooth surface for reflective electrode
US20100072518A1 (en) * 2008-09-12 2010-03-25 Georgia Tech Research Corporation Semiconductor devices and methods of fabricating same
JP5564842B2 (ja) 2009-07-10 2014-08-06 サンケン電気株式会社 半導体装置
JP2010045416A (ja) * 2009-11-25 2010-02-25 Sumitomo Electric Ind Ltd Iii族窒化物電子デバイス
KR101933230B1 (ko) * 2012-08-10 2018-12-27 엔지케이 인슐레이터 엘티디 반도체 소자, hemt 소자, 및 반도체 소자의 제조 방법
CN108511567A (zh) * 2013-03-15 2018-09-07 晶体公司 与赝配电子和光电器件的平面接触
US10912474B2 (en) * 2016-03-10 2021-02-09 Epitronic Holdings Pte Ltd. Microelectronic sensor for use in hypersensitive microphones
US10945643B2 (en) * 2016-03-10 2021-03-16 Epitronic Holdings Pte. Ltd. Microelectronic sensor for biometric authentication
ES2813111T3 (es) * 2016-03-10 2021-03-22 Epitronic Holdings Pte Ltd Sensores microelectrónicos para monitorización no invasiva de parámetros fisiológicos
US10932684B2 (en) * 2016-03-10 2021-03-02 Epitronic Holdings Pte Ltd. Microelectronic sensor for air quality monitoring
WO2017153906A2 (en) * 2016-03-10 2017-09-14 RG Innovations PTE LTD. Pseudo-conductive high-electron mobility transistors and microelectronic sensors based on them
WO2017199110A1 (en) * 2016-05-17 2017-11-23 Rg Innovations Pte Ltd Microelectronic sensor for biometric authentication
US9865721B1 (en) * 2016-06-15 2018-01-09 Qorvo Us, Inc. High electron mobility transistor (HEMT) device and method of making the same
ES2847890T3 (es) * 2016-08-16 2021-08-04 Epitronic Holdings Pte Ltd Sensor de RFID de ondas acústicas superficiales para la detección química y diagnósticos (bio)moleculares

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289528A (ja) * 2001-03-23 2002-10-04 Yasuhiko Arakawa 窒化ガリウム系化合物半導体の結晶成長法、および窒化ガリウム系化合物半導体を備えた電子デバイス
JP2003059946A (ja) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The GaN系半導体装置
JP2003243424A (ja) * 2002-02-21 2003-08-29 Oki Electric Ind Co Ltd ヘテロ接合電界効果トランジスタ
JP2004327882A (ja) * 2003-04-28 2004-11-18 Ngk Insulators Ltd エピタキシャル基板、半導体素子および高電子移動度トランジスタ

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6586781B2 (en) * 2000-02-04 2003-07-01 Cree Lighting Company Group III nitride based FETs and HEMTs with reduced trapping and method for producing the same
US7501023B2 (en) * 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
JP2003234356A (ja) * 2002-02-07 2003-08-22 Oki Electric Ind Co Ltd 高電子移動度トランジスタ
US8089097B2 (en) * 2002-12-27 2012-01-03 Momentive Performance Materials Inc. Homoepitaxial gallium-nitride-based electronic devices and method for producing same
EP3211659A1 (en) * 2002-12-27 2017-08-30 Soraa Inc. Gallium nitride crystal
JP4179539B2 (ja) * 2003-01-15 2008-11-12 富士通株式会社 化合物半導体装置及びその製造方法
US20050139838A1 (en) * 2003-12-26 2005-06-30 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002289528A (ja) * 2001-03-23 2002-10-04 Yasuhiko Arakawa 窒化ガリウム系化合物半導体の結晶成長法、および窒化ガリウム系化合物半導体を備えた電子デバイス
JP2003059946A (ja) * 2001-08-14 2003-02-28 Furukawa Electric Co Ltd:The GaN系半導体装置
JP2003243424A (ja) * 2002-02-21 2003-08-29 Oki Electric Ind Co Ltd ヘテロ接合電界効果トランジスタ
JP2004327882A (ja) * 2003-04-28 2004-11-18 Ngk Insulators Ltd エピタキシャル基板、半導体素子および高電子移動度トランジスタ

Also Published As

Publication number Publication date
US20080265258A1 (en) 2008-10-30
JP2006295126A (ja) 2006-10-26
EP1746641A1 (en) 2007-01-24
TW200731352A (en) 2007-08-16
EP1746641B1 (en) 2011-08-24
KR20070113093A (ko) 2007-11-28
EP1746641A4 (en) 2009-07-08
CA2564423A1 (en) 2006-09-21

Similar Documents

Publication Publication Date Title
WO2006098167A1 (ja) Iii族窒化物半導体素子およびエピタキシャル基板
CN101276792B (zh) 半导体外延衬底、化合物半导体器件及其制造方法
JP4462330B2 (ja) Iii族窒化物電子デバイス
CN108140563B (zh) 半导体元件用外延基板、半导体元件和半导体元件用外延基板的制造方法
WO2006117902A1 (ja) Iii族窒化物半導体素子およびエピタキシャル基板
JP6392498B2 (ja) 化合物半導体装置及びその製造方法
EP2251464B1 (en) Epitaxial substrate for semiconductor device, semiconductor device, and method of manufacturing epitaxial substrate for semiconductor device
JP5092139B2 (ja) GaN系高電子移動度電界効果トランジスタ
CN111406306B (zh) 半导体装置的制造方法、半导体装置
JP6729416B2 (ja) 窒化物半導体デバイス及び窒化物半導体デバイスの製造方法
JP2012015304A (ja) 半導体装置
US11430875B2 (en) Method for manufacturing transistor
US20150287791A1 (en) Nitride semiconductor device and nitride semiconductor substrate
JP4276135B2 (ja) 窒化物半導体成長用基板
JP5135686B2 (ja) Iii族窒化物半導体素子
US20110049573A1 (en) Group iii nitride semiconductor wafer and group iii nitride semiconductor device
WO2019142496A1 (ja) 窒化物半導体エピタキシャル基板
JP5399021B2 (ja) 高周波用半導体素子形成用のエピタキシャル基板および高周波用半導体素子形成用エピタキシャル基板の作製方法
JP2009246307A (ja) 半導体装置及びその製造方法
JP4904726B2 (ja) 半導体エピタキシャルウェハ及びhemt用半導体エピタキシャルウェハの製造方法
JP4972879B2 (ja) 電界効果トランジスタ、半導体素子、及びエピタキシャル基板
JP5616420B2 (ja) 高周波用半導体素子形成用のエピタキシャル基板および高周波用半導体素子形成用エピタキシャル基板の作製方法
CN1977367A (zh) Ⅲ族氮化物半导体器件和外延衬底
WO2022032576A1 (zh) 半导体结构及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2564423

Country of ref document: CA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006715178

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11569066

Country of ref document: US

Ref document number: 1020067023823

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680000432.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006715178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU