WO2006080420A1 - Antigen-specific t cell inducer, antibody production inducer, immune enhancer and vaccine - Google Patents
Antigen-specific t cell inducer, antibody production inducer, immune enhancer and vaccine Download PDFInfo
- Publication number
- WO2006080420A1 WO2006080420A1 PCT/JP2006/301283 JP2006301283W WO2006080420A1 WO 2006080420 A1 WO2006080420 A1 WO 2006080420A1 JP 2006301283 W JP2006301283 W JP 2006301283W WO 2006080420 A1 WO2006080420 A1 WO 2006080420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antigen
- vaccine
- specific
- cells
- hsv
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5252—Virus inactivated (killed)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55588—Adjuvants of undefined constitution
Definitions
- Antigen-specific T cell inducer Antigen-specific T cell inducer, antibody production inducer, immune enhancer, and vaccine
- the present invention relates to an antigen-specific T cell inducer, an antibody production inducer, an immunopotentiator, and a vaccine containing herpes simplex virus (HSV).
- HSV herpes simplex virus
- adjuvants such as Freund Complete Adjuvant and Freund Incom plete Adjuvant that are often used in animal experiments (Broderson, J.A "Lab. Anim. Sci. 39 (1989) 400-406), for example, Freund's complete adjuvant is an emulsion containing mycobacteria heat-sterilized in mineral oil, and Freund's incomplete adjuvant contains mycobacteria in Freund's complete adjuvant. An emulsion that is not added Mycobacteria are active ingredients that have immunopotentiating activity in Freund's complete adjuvant.
- Vaccines include live vaccines, inactivated vaccines, component vaccines, etc.
- Adjuvants are added to inactivated vaccines and component vaccines in particular, and antibodies are effectively produced even when antigens with weak immunogenicity are used. Will be able to
- the present invention was made for the purpose of developing a novel antigen-specific T cell inducer, a novel immune enhancer, a novel antibody production inducer, and a novel vaccine.
- the antigen-specific T cell inducer that is effective in the present invention contains a herpes simple x virus (HSV) as an active ingredient, and induces antigen-specific T cells against antigens other than HSV. It is an agent. Therefore, a method for inducing the antigen-specific T cell against an antigen other than HSV administered to humans and non-human vertebrates, wherein the antigen-specific T cell is induced in combination with the antigen. A method characterized by administering an agent also belongs to the technical scope of the present invention.
- This antigen-specific T cell inducer is preferably an antigen-specific cytotoxic T cell inducer.
- the herpes simplex virus is preferably inactivated and may be inactivated by, for example, heating, UV irradiation, radiation irradiation, fixation, or gene recombination.
- the antigen-specific T cell inducer may contain incomplete Freund adjuvant (IFA).
- the antibody production inducer according to the present invention is a herpes simplex virus
- the herpes simplex virus force is inactivated.
- it may be inactivated by heating, UV irradiation, radiation irradiation, fixation, or genetic recombination.
- the antibody production-inducing agent may contain an incomplete Freund adjuvant (IF A).
- the immunopotentiator according to the present invention is an immunopotentiator for antigens other than HSV, which contains herpes simplex virus (HSV) as an active ingredient. Accordingly, a method for enhancing immunity against antigens other than HSV in humans and non-human vertebrates, which comprises administering the above-described immunity enhancing agent, also belongs to the technical scope of the present invention.
- the simple herpes virus is preferably inactivated. For example, it may be inactivated by heating, UV irradiation, radiation irradiation, fixation, or genetic recombination.
- the immunopotentiator may contain incomplete Freund's adjuvant.
- the immune enhancer generally refers to a drug that enhances an immune response in a living body.
- This immune reaction includes antigen-specific ⁇ cell induction, antibody production induction, natural killer cell activation induction, dendritic cell activation induction, and inhibitory T cell induction inhibition.
- the vaccine according to the present invention is a vaccine against an antigen other than a herpes simplex virus (HSV), the immunopotentiator comprising the simple herpes virus as an active ingredient, and the antigen Is a vaccine containing
- the vaccine may be a cancer vaccine or a vaccine against pathogen infection. Therefore, a method for treating tumors in humans and non-human vertebrates or a method for treating pathogen infections, which is characterized by vaccination, also belongs to the technical scope of the present invention.
- the herpes simplex virus is inactivated, for example, it may be inactivated by heating, UV irradiation, irradiation, fixation, or genetic recombination. Furthermore, you may contain the said vaccine power incomplete Freund's adjuvant.
- the treatment method referred to herein includes not only a disease treatment method but also a pre-illness prevention method.
- FIG. 1 In one embodiment of the present invention, GARC-1 peptide (mutant) of T cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV. 2 is a graph showing the reactivity with respect to cells presenting (and wild type) in terms of the amount of IFN- ⁇ produced.
- FIG. 2 In one example of the present invention, the reactivity of sputum cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV to GL261 cells is shown as IFN- ⁇ .
- FIG. [Fig. 3] In one example of the present invention, the reactivity of CD8-positive T cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV to GL261 cells is shown.
- FIG. 3 is a graph showing the production amount of IFN-y.
- FIG. 4 In one embodiment of the present invention, in mice to which tumor cells were transplanted and administered a vaccine containing AH1 peptide and inactivated HSV, (A) and (B) are tumors transplanted into mice. It is the figure which evaluated the antitumor effect of cancer vaccine by the change of the volume of the cell, (C) is the figure which evaluated the cytotoxic activity with respect to CT26 cell of the CD8 positive T cell obtained from the mouse, (D) shows the amount of IFN- ⁇ produced in response to the AH1 antigen of CD4 positive T cells and CD8 positive T cells obtained from mice administered a vaccine containing AH1 peptide and inactivated HSV. It is the graph showing.
- FIG. 5 In one embodiment of the present invention, in a mouse administered with a vaccine containing influenza virus ⁇ protein and inactivated ⁇ SV, ( ⁇ ) is a CD8-positive ⁇ cell obtained from the mouse. , K d- restricted ⁇ Peptide (MHC class I) is recognized for its cytotoxic activity, and (B) shows I—E d of CD4 positive T cells obtained from the mouse.
- FIG. 6 is a diagram showing an evaluation of proliferation activity that recognizes and reacts to a restricted HA peptide (MHC class II).
- the type of HSV contained in the antigen-specific T cell inducer, antibody production inducer, immunopotentiator or actin according to the present invention is not particularly limited, but in the examples, the KOS strain, which is a type I wild strain, is used. It was. HSV can be propagated using Vero cells, etc., according to a conventional method.
- the HSV used in the present invention is preferably inactivated by heating, UV irradiation, radiation irradiation, fixation, gene recombination or the like so as not to grow in vivo.
- the following are typical conditions for each operation.
- heating HSV for example, it is treated at 56 ° C. for about 30 minutes.
- UV irradiation UV lamps (wavelength, 253.7 nm) are irradiated at a distance of 10 to 15 cm for a total of 120 to 650 J / m 2 (De Roda Husman AM,. Et al., Appl En viron Microbiol. 70 ( 2004): 5089-5093.).
- ⁇ rays are applied at 0.96 Gy / s for a total of 200-800 Gy (De Roda Husman AM,. Et al., Appl Environ Microbio 1. 70 (2004): 5089-5093).
- a known tissue fixing agent such as formaldehyde solution, formalin or dartal aldehyde may be used.
- Inactivation by genetic recombination can be achieved, for example, by controlling the replication of the virus by means of genetic manipulation (such as T recombination so that the viral genome replicates only in tumor cells and not in normal cells). ) (Mmeta T, et al. Attenuated multi-mutated herpes simplex virus- ⁇ for the treatment of malignant gliomas.
- Such HSV can be used as an antigen-specific T cell inducer, antibody production inducer, or immune enhancer. It is used as an antigen mixture by mixing with an antigen that is the target of antigen-specific T cell induction, antibody production induction, or immune enhancement.
- the dosage forms of these antigen-specific ⁇ cell inducer, antibody production inducer, immunopotentiator and antigen mixture are not particularly limited, and may be any of liquid, emulsion, gel, solid, dry powder, etc. .
- pharmacologically acceptable carriers and additives such as emulsifiers, surfactants, preservatives, and incomplete adjuvants may be contained.
- HSV may be mixed with an incomplete Freund's adjuvant in advance to form an antigen-specific sputum cell inducer, antibody production inducer, or immune enhancer, and then mixed with an antigen to form an antigen mixture. Further, a plurality of types of antigens in the antigen mixture may be contained.
- the antigen of interest in the present invention is not particularly limited as long as it is other than HSV (including antigens derived from HSV), and any antigen can be used as long as it finally has antigenicity in vivo.
- cancer antigens such as cancer-specific proteins and peptides that are part of them
- mycoplasma viruses (such as AIDS virus, influenza virus, SARS (severe acute respiratory syndrome) coronavirus), Inactivated for use in preventing infection of pathogens such as Itoda (pathogenic enterococcus, green bacterium, tuberculosis, etc.), protozoa (malaria, toxoplasma, etc.), parasites (nematodes, etc.)
- Pathogen antigens such as pathogens and some of them (cell wall, polysaccharides, bacterial cell components such as proteins, and proteins constituting viruses), Chin can be made.
- the antigenicity of a vaccine can be enhanced by incorporating the antigen-specific T cell inducer, the antibody production inducer, or the immune enhancer in a vaccine and using it together with a cancer antigen or a pathogen antigen.
- vaccines include live vaccines (attenuated vaccines), killed bacteria vaccines, inactivated vaccines, toxoids, component vaccines (component vaccines), genetically modified vaccines (including peptide vaccines), cancer vaccines, etc.
- Antigen-specific T cell inducers, antibody production inducers, or immune enhancers produced in this way A living body is inoculated with an antigen mixture of a strong agent and an antigen.
- the method for inoculating the antigen mixture is not particularly limited, and it may be administered orally or parenterally.
- Parenteral administration includes subcutaneous, intramuscular, intraperitoneal, intravenous injection, rectal administration, mucosal administration, transdermal administration, or mucosal administration, but is usually inoculated by subcutaneous or intraperitoneal injection There are many cases. Even if the antigen is a cancer antigen, it is not necessary to directly inoculate the tumor with the cancer antigen.
- the number of inoculations and the place of inoculation are not particularly limited, and may be used in combination with other pharmaceuticals at the same time. In addition, different antigen mixtures may be inoculated simultaneously.
- the living body when the living body is inoculated with the antigen mixture according to the present invention, differentiation-proliferation of antigen-specific T cells added to the antigen mixture and production of antigen-specific antibodies are induced.
- the antigen is a cancer antigen or some of its peptides
- typically antigen-specifically induced T cells attack cancer cells that present the antigen with histocompatibility antigen on the cell surface. Tumors can be treated with antigen mixtures to shoot.
- the antigen when the antigen is a pathogen antigen, typically, the antigen-specific production-induced antibody attacks the pathogen. Therefore, by inoculating the living body with the antigen mixture in advance of infection, Prevention of pathogen infection is possible. In addition, it is possible to treat pathogen infections and prevent recurrence of pathogen infections by inoculating a living body with an antigen mixture even after infection.
- the principle of the disease treatment method for the antigen to be inoculated is not limited to the case described here.
- the method of the present invention is used to prevent tumors or the cancer antigen is a cell surface antigen.
- a tumor may be treated with an antibody whose production has been induced.
- the HSV type I wild type KOS strain was used as the HSV, and Vero cells were infected according to a conventional method, and the virus released in the culture supernatant was collected.
- the medium used at this time was a serum-free medium (DMEM without serum).
- DMEM serum-free medium
- the culture supernatant of Vero cells without virus was treated in the same manner as above and used as a control (Mock).
- GARC-1 mutant peptide containing 1 Omg / ml of GARC-1 wild type peptide is 10 ⁇ l (100 / ig)
- a vaccine (200 ⁇ ) was inoculated into the skin of both hands and feet of C57BLZ6 mice, a mouse strain derived from GL261, and again the same vaccine was inoculated again 5 days later.
- GARC lymphocyte reactivity against cells presenting 1 peptide (mutant and wild type)]
- the mixed floating cells obtained by co-culture for 1 week were adjusted to 1 ⁇ 10 s Zml to obtain effector cells.
- 293TK b D b cells expressing MHC class I molecules K b and D b , 293T cells
- GARC-1 mutant peptide expressing MHC class I molecules K b and D b , 293T cells
- GARC-1 mutant peptide expressing MHC class I molecules K b and D b , 293T cells
- GARC-1 wild-type peptide pulse treatment Each peptide was added to the cell culture medium at a concentration of 10 ⁇ g / ml, cultured for 1 hour, washed twice with PBS, and then adjusted to IX 10 6 cells / ml to obtain target cells.
- Each of these effector cells and target cells was mixed at 100 ⁇ and co-cultured in a 96-well plate (167008 NUNC) for 2 days. Thereafter, the amount of IFN- ⁇ released in the culture supernatant was analyzed using
- GARC-1 mutant peptides were obtained from lymph nodes and spleens of mice administered with a vaccine containing GARC-1 mutant peptide, which is a tumor antigen, and mock. T cells that produce IFN-y in response to the cell-specific responses presented were induced, but compared to the vaccine administration containing this GARC-1 mutant peptide and mock, the GARC-1 mutant peptide and Mice receiving a vaccine containing activated HSV had enhanced responsiveness of cell-specific lymphocytes displaying GARC-1 mutant peptides.
- the vaccine using the autoantigen GARC-1 wild-type peptide responds specifically to cells presenting GARC-1 wild-type peptide, even when inactivated HSV is supported. Lymphocytes producing y were not induced.
- HSV as an adjuvant enhances antigen-specific immunity against tumor antigens, but does not show a clear immunity-enhancing effect against self-antigens and is useful from a safety standpoint It became clear that. Therefore, it was concluded that a composition containing HSV is useful as an immunopotentiator against an antigen administered to a living body.
- mice administered with GARC-1 mutant peptide which is a tumor antigen of GL261 Dario cell
- GARC-1 mutant peptide which is a tumor antigen of GL261 Dario cell
- CD8 positive T cells mainly cytotoxic T cells
- GL261 cells were heat-treated at 56 ° C. for 30 minutes and then adjusted to 5 ⁇ 10 5 cells / ml to obtain target cells.
- Each of these effector cells and target cells was mixed at 100 ⁇ l and co-cultured in a 96-well plate (167008 NUNC) for 1 day. Subsequently, the amount of IFN-y released in the culture supernatant was analyzed using an ELISA kit (KM-IFNG Endogen).
- HSV was prepared in the same manner as in Example 1.
- the antigen is a tumor antigen of mouse colon cancer cell line CT26 (derived from BALBZc mouse), and peptide AH1 (SPSYVYHQF, SEQ ID NO: 3) presented on MHC class I (H_2L d ) (Huang A et al, Proc. Natl. Acad. Sci. USA 93. 9730-9735, 1996), a peptide that is the tumor antigen of the mouse mastocytoma cell line P81 as a control peptide presented on the same MHC class I (H_2L d )! ⁇ :! Eight ? ⁇ ! ⁇ ! ⁇ , SEQ ID NO: 4) (Lethe B, et al, Eur. J. Immunol 22, 1992) was used.
- mice administered with vaccines of P815A + HSV (3 individuals) and P815A + Mock (4 individuals) all patients were confirmed to be engrafted with CT26 on the 8th day after tumor implantation, and then tumors were observed. The volume increased and was not rejected. Meanwhile, AHl + Mock vaccine was launched. In the given mice (4 mice), all cases confirmed the engraftment of CT26 tumors on the 8th day after tumor transplantation, but the tumors shrank thereafter, and on the 22nd day after tumor transplantation, 1 case was excluded. In the example, the tumor was rejected. In addition, mice (3 mice) that received the AH1 + HSV vaccine did not show tumor engraftment within the observation period, and were completely rejected in all cases.
- HSV actually enhances the antigen-specific immune response of colorectal cancer cell CT26, and its usefulness as an adjuvant to enhance the effect as a cancer vaccine was demonstrated. . Therefore, it was concluded that a vaccine containing an immunopotentiator containing HSV is effective as a cancer vaccine.
- HSV was purified in the same manner as in Example 1.
- the tumor antigen was AH as in Example 2.
- CT26 mouse colon cancer
- Meth A mouse fibrosarcoma
- CT26 cells (5 ⁇ 10 5 cells) were transplanted into the dorsal part of Balb / c mice, and the first immunization was started on the fifth day of transplantation.
- Fig. 4 (b) shows the experimental results for each mouse
- Fig. 4 (b) shows the mean value of the tumor volume on day 21.
- HSV exhibits an inhibitory effect on tumor growth of colon cancer cell CT26 when administered together with AH1.
- mixed floating cells were isolated from the spleen and lymph nodes of each mouse, and prepared to 3 to 5 ⁇ 10 6 / ml.
- antigen-presenting cells spleen cells prepared from normal mice were irradiated with X-rays (60 Gy) and reacted with peptide antigen AH1 (10 ⁇ M) for 90 minutes to prepare 1 ⁇ 10 6 / ml.
- These mixed floating cells and antigen-presenting cells were mixed in lml each and co-cultured in a 24-well plate (NUNC 142475) for 5 days. Thereafter, cocultured CD8-positive T cells purified from suspended cells (E: T_ratio: 60, 30 , 15; 3 X 10 5, 1.
- CT26 cells 5 X 10 5, 0. 75 X 10 5) and 51 Cr (Amersham Corp. ) in CT26 cells (5 X 10 3 cells were labeled) and engaged mixed, a 96-well plate (U-bottom: BD35 after 4 hours co-cultured in 3077), 51 Cr release mediation Cytotoxic activity was evaluated by SE.
- Meth A cells 5 ⁇ 10 3 cells were used as control cells.
- the CT26 cells 1. added of 51 Cr 85MBq in lml of cell floating ⁇ (IX 10 6 cells), 1-2 hours, was incorporated label by shaking at 37 ° C.
- HSV strongly induces antigen-specific CD8-positive T cells (mainly thought to be cytotoxic T cells) when administered together with the AH1 peptide, and cells against CT26 cells. It has been shown to enhance the disability activity.
- IFN- ⁇ producing cells in the mixed suspension cells co-cultured as described above were analyzed.
- cancer antigen-specific CD8-positive T cells are strongly induced by using HSV as an adjuvant together with cancer antigens.
- HSV as an adjuvant together with cancer antigens.
- HA hemagglutinin antigen
- HSV HSV was purified in the same manner as in Example 1.
- hemagglutinin antigen protein HlNl: IFA-055-B052 2
- HA hemagglutinin antigen protein
- mixed floating cells were isolated from the spleen and lymph nodes of each mouse and prepared to 3 to 5 ⁇ 10 s / ml.
- antigen-presenting cells spleen cells prepared from normal mice were irradiated with X-rays (60 Gy), treated with IE d- restricted HA peptide or K d- restricted HA peptide (10 ⁇ ) for 90 minutes, and 1 X Prepared to 10 6 / ml.
- These mixed floating cells and antigen-presenting cells were mixed in 1 ml each, and co-cultured in a 24-well plate (NUNC 14247 5) for 5 days.
- CD8 positive T cells E: T-ratio: 60, 30, 15; 3 X 10 5 , 1.5 X 10 5 , 0.775 X 10 5 ) purified from co-cultured floating cells with 51 Cr Mix with CT26 cells labeled as described above (treated with 10 ⁇ Kd- restricted HA peptide) (5 ⁇ 10 3 cells) and co-culture for 4 hours in 96-well plate (U-bottom: BD35 3077) Thereafter, the cytotoxic activity was evaluated by 51 Cr release assay. As control cells, CT26 cells (treated with 10 ⁇ of P815 A peptide) (5 ⁇ 10 3 cells) were used.
- HAZHSV high
- DMS ⁇ ZIFA DMS ⁇ ZIFA
- DMSO / IFA DMS ⁇ ZIFA
- HA / IF A HA peptide / IFA combination
- the HA peptide / IFA combination significantly (p 0.05) strongly induces antigen-specific CD8-positive T cells and has cytotoxic activity against CT26 cells (treated with 10 ⁇ Kd- restricted HA peptide). It was shown to enhance.
- CD4-positive T cells purified from a mixed suspension cells were co-cultured (1 X 10 5 cells), X-ray irradiation (60 Gy) after the antigen-presenting cells (spleen cells treated with I _ E d restricted HA peptide) ( 5 x 10 4 or 1 x 10 5 ) for 3 days and put [ 3 H] _th in the medium 5 hours before the end of the culture. After addition of ymidine (18.5 kBq / well), the growth response was evaluated by the amount of uptake (count value cpm of []) after completion of the culture.
- antigen-specific CD4-positive T cells can be induced by using HSV as an adjuvant together with influenza antigen when administering an influenza vaccine.
- the antibody titer was measured in 4 mice each of (1) to (4) by collecting sera from peripheral blood one week after the second vaccine and measuring it by hemagglutination inhibition test (HI).
- the antibody titer against influenza A virus HA antigen was examined using a kit of influenza virus HI reagent "Seiken” (Den Rikiseiken Co., Ltd.). Prepare 0.1 ml of RDE (Receptor Destroying Enzyme) in 0.1 ml of sample, remove non-specific inhibitors by incubating at 37 ° C and heat at 30 ° C for 30 minutes to react with RDE treatment. Stopped and added 0.6 ml of normal saline.
- RDE Receptor Destroying Enzyme
- HSV was shown to enhance the antigen-specific immune response of influenza antigens, and it was shown to be useful as an adjuvant to enhance the effect as an influenza vaccine. Therefore, it was concluded that a vaccine containing an immunopotentiator containing HSV together with an influenza antigen is effective as an influenza vaccine.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
[PROBLEMS] To provide a novel antigen-specific T cell inducer, a novel antibody production inducer, a novel immune enhancer and a novel vaccine, as well as a novel method of inducing antigen-specific T cells, a method of inducing antibody production, a novel method of immune enhancement, a novel therapeutic method for tumor and a novel therapeutic method against a pathogen. [MEANS FOR SOLVING PROBLEMS] A complete adjuvant, which is prepared by inactivating herpes simplex virus (HSV) and adding it to an incomplete adjuvant, is used as an antigen-specific T cell inducer, an antibody production inducer or an immune enhancer. Such an antigen-specific T cell inducer, an antibody production inducer or an immune enhancer is used together with an antigen to give a vaccine. In this case, a cancer-specific antigen or a pathogen-specific antigen is used as the antigen to thereby establish a therapeutic method for tumor or a therapeutic method for pathogen infection.
Description
明 細 書 Specification
抗原特異的 T細胞誘導剤、抗体産生誘導剤、免疫増強剤、及びワクチン 技術分野 Antigen-specific T cell inducer, antibody production inducer, immune enhancer, and vaccine
[0001] 本発明は、単純へルぺスウィルス (herpes simplex virus; HSV)を含有する抗原特 異的 T細胞誘導剤、抗体産生誘導剤、免疫増強剤、及びワクチンに関する。 [0001] The present invention relates to an antigen-specific T cell inducer, an antibody production inducer, an immunopotentiator, and a vaccine containing herpes simplex virus (HSV).
背景技術 Background art
[0002] 生体に免疫反応を起こさせる物質 (抗原)を接種する際、その免疫反応を増強させ るために、抗原にアジュバントと呼ばれる免疫増強剤と混合して接種するということが 行われてきた。アジュバントとしては、動物実験でよく使用される、フロインド完全アジ ュバント (Freund Complete Adjuvant)やフロインド不完全アジュバント (Freund Incom plete Adjuvant)など(Broderson, J. A" Lab. Anim. Sci. 39 (1989), 400-406)、様々 なものが知られている。例えば、フロインド完全アジュバントは、鉱油に熱殺菌したマ ィコバクテリアを含む乳濁液であり、フロインド不完全アジュバントは、フロインド完全 アジュバントにおいてマイコバクテリアを添加していない乳濁液である。フロインド完 全アジュバント中、マイコバクテリアが免疫増強活性を有する有効成分である。 [0002] When inoculating a substance (antigen) that causes an immune response in a living body, in order to enhance the immune response, it has been practiced to inoculate the antigen with an immunopotentiator called an adjuvant. . Adjuvants such as Freund Complete Adjuvant and Freund Incom plete Adjuvant that are often used in animal experiments (Broderson, J.A "Lab. Anim. Sci. 39 (1989) 400-406), for example, Freund's complete adjuvant is an emulsion containing mycobacteria heat-sterilized in mineral oil, and Freund's incomplete adjuvant contains mycobacteria in Freund's complete adjuvant. An emulsion that is not added Mycobacteria are active ingredients that have immunopotentiating activity in Freund's complete adjuvant.
[0003] 動物に、ワクチンを投与する際も、ワクチンの効果を増強させるためアジュバントが 添加される。ワクチンには、生ワクチン、不活性化ワクチン、コンポーネントワクチン等 があるが、アジュバントは特に不活性化ワクチンやコンポーネントワクチンに添加され 、免疫原性の弱い抗原を用いたときでも効果的に抗体を作らせることができるように なる。 [0003] When a vaccine is administered to an animal, an adjuvant is added to enhance the effect of the vaccine. Vaccines include live vaccines, inactivated vaccines, component vaccines, etc. Adjuvants are added to inactivated vaccines and component vaccines in particular, and antibodies are effectively produced even when antigens with weak immunogenicity are used. Will be able to
[0004] 近年、コンポーネントワクチンや癌ワクチンなどの新しいワクチンが開発され、臨床 的にもアジュバントの重要性が高まる中、新しいタイプのアジュバントが開発されてき た(Jin H, et al., Vaccine 22 (2004), 2925-2935; Flarend,R et al. , Vaccine 15 (1997), 1314-1318; Villacres- Eriksson M, et al., Cytokine 9 (1997), 73—82; Weeratna, R, et al" Vaccine 18 (2000), 1755-1762) 0 [0004] In recent years, new vaccines such as component vaccines and cancer vaccines have been developed, and new types of adjuvants have been developed (Jin H, et al., Vaccine 22 ( 2004), 2925-2935; Flarend, R et al., Vaccine 15 (1997), 1314-1318; Villacres- Eriksson M, et al., Cytokine 9 (1997), 73-82; Weeratna, R, et al " Vaccine 18 (2000), 1755-1762) 0
発明の開示 Disclosure of the invention
発明が解決しょうとする課題
[0005] 本発明は、以上のような技術を背景とし、新規抗原特異的 T細胞誘導剤、新規免疫 増強剤、新規抗体産生誘導剤、及び新規ワクチンを開発することを目的としてなされ た。 Problems to be solved by the invention [0005] With the background of the above-described technology, the present invention was made for the purpose of developing a novel antigen-specific T cell inducer, a novel immune enhancer, a novel antibody production inducer, and a novel vaccine.
課題を解決するための手段 Means for solving the problem
[0006] 本発明に力かる抗原特異的 T細胞誘導剤は、単純へルぺスウィルス (herpes simple x virus; HSV)を有効成分として含有する、 HSV以外の抗原に対する抗原特異的 T細 胞誘導剤である。従って、ヒト及びヒト以外の脊椎動物に対して投与した、 HSV以外の 抗原に対して前記抗原特異的な T細胞を誘導する方法であって、前記抗原と併用し て前記抗原特異的 T細胞誘導剤を投与することを特徴とする方法も、本発明の技術 的範囲に属する。この抗原特異的 T細胞誘導剤は、抗原特異的細胞障害性 T細胞 誘導剤であることが好ましい。また、前記単純へルぺスウィルスが、不活性化されて レ、ることが好ましぐ例えば、加熱、 UV照射、放射線照射、固定、または遺伝子組み 換えによって不活性化されていてもよい。さらに、前記抗原特異的 T細胞誘導剤が、 不完全フロイントアジュバント (Incomplete Freund adjuvant; IFA)を含有してもよレ、。 [0006] The antigen-specific T cell inducer that is effective in the present invention contains a herpes simple x virus (HSV) as an active ingredient, and induces antigen-specific T cells against antigens other than HSV. It is an agent. Therefore, a method for inducing the antigen-specific T cell against an antigen other than HSV administered to humans and non-human vertebrates, wherein the antigen-specific T cell is induced in combination with the antigen. A method characterized by administering an agent also belongs to the technical scope of the present invention. This antigen-specific T cell inducer is preferably an antigen-specific cytotoxic T cell inducer. The herpes simplex virus is preferably inactivated and may be inactivated by, for example, heating, UV irradiation, radiation irradiation, fixation, or gene recombination. Further, the antigen-specific T cell inducer may contain incomplete Freund adjuvant (IFA).
[0007] 本発明にかかる抗体産生誘導剤は、単純へルぺスウィルス (herpes simplex virus; [0007] The antibody production inducer according to the present invention is a herpes simplex virus;
HSV)を有効成分として含有する、 HSV以外の抗原に対する抗体産生誘導剤である。 従って、ヒト及びヒト以外の脊椎動物に対して投与した、 HSV以外の抗原に対して抗 体産生を誘導する方法であって、前記抗原と併用して前記抗体産生誘導剤を投与 することを特徴とする方法も、本発明の技術的範囲に属する。また、前記単純へルぺ スウィルス力 不活性化されていることが好ましぐ例えば、加熱、 UV照射、放射線 照射、固定、または遺伝子組み換えによって不活性化されていてもよい。さらに、前 記抗体産生誘導剤が、不完全フロイントアジュバント (Incomplete Freund adjuvant; IF A)を含有してもよい。 It is an antibody production inducer against an antigen other than HSV, containing HSV) as an active ingredient. Therefore, a method for inducing antibody production against an antigen other than HSV administered to humans and non-human vertebrates, wherein the antibody production inducer is administered in combination with the antigen. These methods also belong to the technical scope of the present invention. In addition, it is preferable that the herpes simplex virus force is inactivated. For example, it may be inactivated by heating, UV irradiation, radiation irradiation, fixation, or genetic recombination. Furthermore, the antibody production-inducing agent may contain an incomplete Freund adjuvant (IF A).
[0008] 本発明にかかる免疫増強剤は、単純へルぺスウィルス (herpes simplex virus; HSV )を有効成分として含有する、 HSV以外の抗原に対する免疫増強剤である。従って、 ヒト及びヒト以外の脊椎動物において、 HSV以外の抗原に対する免疫を増強する方 法であって、前記免疫増強剤を投与することを特徴とする方法も、本発明の技術的 範囲に属する。また、前記単純へルぺスウィルスが、不活性化されていることが好ま
しぐ例えば、加熱、 UV照射、放射線照射、固定、または遺伝子組み換えによって 不活性化されていてもよい。さらに、前記免疫増強剤が、不完全フロイントアジュバン トを含有してもよい。ここで、免疫増強剤とは、一般に生体における免疫反応を増強さ せる薬剤のことをいう。この免疫反応には、抗原特異的 τ細胞誘導、抗体産生誘導、 ナチュラルキラー細胞の活性化誘導、樹状細胞の活性化誘導、抑制性 T細胞誘導 の阻害なども含まれる。 [0008] The immunopotentiator according to the present invention is an immunopotentiator for antigens other than HSV, which contains herpes simplex virus (HSV) as an active ingredient. Accordingly, a method for enhancing immunity against antigens other than HSV in humans and non-human vertebrates, which comprises administering the above-described immunity enhancing agent, also belongs to the technical scope of the present invention. The simple herpes virus is preferably inactivated. For example, it may be inactivated by heating, UV irradiation, radiation irradiation, fixation, or genetic recombination. Furthermore, the immunopotentiator may contain incomplete Freund's adjuvant. Here, the immune enhancer generally refers to a drug that enhances an immune response in a living body. This immune reaction includes antigen-specific τ cell induction, antibody production induction, natural killer cell activation induction, dendritic cell activation induction, and inhibitory T cell induction inhibition.
[0009] 本発明に力かるワクチンは、単純へルぺスウィルス (herpes simplex virus; HSV)以外 の抗原に対するワクチンであって、単純へルぺスウィルスを有効成分として含む免疫 増強剤及び前記抗原を含有するワクチンである。前記ワクチンは、癌ワクチンであつ ても、病原体の感染に対するワクチンであってもよレ、。従って、ヒト及びヒト以外の脊 椎動物における腫瘍の治療方法または病原体の感染に対する治療方法であって、 前記ワクチンを接種することを特徴とする方法も、本発明の技術的範囲に属する。前 記単純へルぺスウィルスが、不活性化されていることが好ましぐ例えば、加熱、 UV 照射、放射線照射、固定、または遺伝子組み換えによって不活性化されていてもよ レ、。さらに、前記ワクチン力 不完全フロイントアジュバントを含有してもよい。本明細 書でいう治療方法には、疾病の治療方法のみならず、疾病以前の予防方法も含むも のとする。 [0009] The vaccine according to the present invention is a vaccine against an antigen other than a herpes simplex virus (HSV), the immunopotentiator comprising the simple herpes virus as an active ingredient, and the antigen Is a vaccine containing The vaccine may be a cancer vaccine or a vaccine against pathogen infection. Therefore, a method for treating tumors in humans and non-human vertebrates or a method for treating pathogen infections, which is characterized by vaccination, also belongs to the technical scope of the present invention. It is preferable that the herpes simplex virus is inactivated, for example, it may be inactivated by heating, UV irradiation, irradiation, fixation, or genetic recombination. Furthermore, you may contain the said vaccine power incomplete Freund's adjuvant. The treatment method referred to herein includes not only a disease treatment method but also a pre-illness prevention method.
[0010] —関連文献とのクロスリファレンス一 [0010] — Cross reference with related literature
なお、本出願は、 2005年 1月 27曰出願の曰本国出願番号特願 2005— 20393の 優先権の利益を主張し、これを引用することにより本明細書に含める。 In addition, this application claims the benefit of the priority of Japanese application No. 2005-20393 filed on Jan. 27, 2005, and is incorporated herein by reference.
図面の簡単な説明 Brief Description of Drawings
[0011] [図 1]本発明の一実施例において、 GARC— 1変異型ペプチドと不活性化 HSVとを 含むワクチンを投与されたマウスから得られた T細胞の、 GARC— 1ペプチド(変異型 及び野生型)を提示する細胞に対する反応性を、 IFN- γの産生量で表したグラフ である。 [0011] [FIG. 1] In one embodiment of the present invention, GARC-1 peptide (mutant) of T cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV. 2 is a graph showing the reactivity with respect to cells presenting (and wild type) in terms of the amount of IFN-γ produced.
[図 2]本発明の一実施例において、 GARC— 1変異型ペプチドと不活性化 HSVとを 含むワクチンを投与されたマウスから得られた Τ細胞の、 GL261細胞に対する反応 性を、 IFN- γの産生量で表したグラフである。
[図 3]本発明の一実施例において、 GARC— 1変異型ペプチドと不活性化 HSVとを 含むワクチンを投与されたマウスから得られた CD8陽性 T細胞の、 GL261細胞に対 する反応性を、 IFN- yの産生量で表したグラフである。 [FIG. 2] In one example of the present invention, the reactivity of sputum cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV to GL261 cells is shown as IFN-γ. FIG. [Fig. 3] In one example of the present invention, the reactivity of CD8-positive T cells obtained from a mouse administered with a vaccine containing GARC-1 mutant peptide and inactivated HSV to GL261 cells is shown. FIG. 3 is a graph showing the production amount of IFN-y.
[図 4]本発明の一実施例において、腫瘍細胞が移植され、 AH1ペプチドと不活性化 HSVとを含むワクチンを投与されたマウスにおいて、(A)及び(B)は、マウスに移植 した腫瘍細胞の体積の変化で、癌ワクチンの抗腫瘍効果を評価した図であり、(C)は 、そのマウスから得られた CD8陽性 T細胞の、 CT26細胞に対する細胞障害活性を 評価した図であり、 (D)は、 AH1ペプチドと不活性化 HSVとを含むワクチンを投与さ れたマウスから得られた CD4陽性 T細胞及び CD8陽性 T細胞の、 AH1抗原に反応 して産生される IFN— γ量を表したグラフである。 [FIG. 4] In one embodiment of the present invention, in mice to which tumor cells were transplanted and administered a vaccine containing AH1 peptide and inactivated HSV, (A) and (B) are tumors transplanted into mice. It is the figure which evaluated the antitumor effect of cancer vaccine by the change of the volume of the cell, (C) is the figure which evaluated the cytotoxic activity with respect to CT26 cell of the CD8 positive T cell obtained from the mouse, (D) shows the amount of IFN-γ produced in response to the AH1 antigen of CD4 positive T cells and CD8 positive T cells obtained from mice administered a vaccine containing AH1 peptide and inactivated HSV. It is the graph showing.
[図 5]本発明の一実施例において、インフルエンザウイルス ΗΑ蛋白質と不活性化 Η SVとを含むワクチンを投与されたマウスにおいて、(Α)は、そのマウスから得られた C D8陽性 Τ細胞の、 Kd拘束性 ΗΑペプチド(MHCクラス I)を認識して反応する細胞障 害活性を評価した図であり、(B)は、そのマウスから得られた CD4陽性 T細胞の、 I— Ed拘束性 HAペプチド (MHCクラス II)を認識して反応する増殖活性を評価した図で ある。 [FIG. 5] In one embodiment of the present invention, in a mouse administered with a vaccine containing influenza virus ΗΑ protein and inactivated Η SV, (Α) is a CD8-positive Τ cell obtained from the mouse. , K d- restricted ΗΑ Peptide (MHC class I) is recognized for its cytotoxic activity, and (B) shows I—E d of CD4 positive T cells obtained from the mouse. FIG. 6 is a diagram showing an evaluation of proliferation activity that recognizes and reacts to a restricted HA peptide (MHC class II).
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 実施の形態及び実施例に特に説明がない場合には、 J. Sambrook, E. F. Fritsch & ι'· Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd editionノ, Cold spring Harbor Press, Cold Spring Harbor, New York (2001); F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J.G. Seidman, J. A. Smith, K. Struhl (Ed.), Current Prot ocols in Molecular Biology, John Wiley & Sons Ltd.などの標準的なプロトコ一ノレ集に 記載の方法、あるいはそれを修飾したり、改変した方法を用いる。また、市販の試薬 キットや測定装置を用いる場合には、特に説明が無い場合、それらに添付のプロトコ ールを用いる。 [0012] Unless otherwise stated in the embodiments and examples, J. Sambrook, EF Fritsch & ι '· Maniatis (Ed.), Molecular cloning, a laboratory manual (3rd edition, Cold spring Harbor Press, Cold Spring Harbor, New York (2001); FM Ausubel, R. Brent, RE Kingston, DD Moore, JG Seidman, JA Smith, K. Struhl (Ed.), Current Protocols in Molecular Biology, John Wiley & Sons Ltd. Use the methods described in the standard protocol collection such as, or modified or modified methods, etc. In addition, when using commercially available reagent kits and measuring devices, unless otherwise specified, Use the attached protocol.
[0013] なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、 当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を 再現できる。以下に記載された発明の実施の形態及び具体的に実施例などは、本
発明の好ましい実施態様を示すものであり、例示又は説明のために示されているの であって、本発明をそれらに限定するものではなレ、。本明細書で開示されている本 発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾が できることは、当業者にとって明らかである。 [0013] The objects, features, advantages, and ideas of the present invention will be apparent to those skilled in the art from the description of the present specification, and those skilled in the art can easily read the description from the description of the present specification. The invention can be reproduced. The embodiments and specific examples of the invention described below are described in this document. It is intended to illustrate preferred embodiments of the invention and is presented for purposes of illustration or description and should not be construed as limiting the invention thereto. It will be apparent to those skilled in the art that various modifications and variations can be made based on the description of the present specification within the spirit and scope of the present invention disclosed herein.
[0014] = =抗原特異的 T細胞誘導剤、抗体産生誘導剤、免疫増強剤及び抗原混合物の 作製 = = [0014] = = Production of antigen-specific T cell inducer, antibody production inducer, immune enhancer and antigen mixture = =
本発明にかかる抗原特異的 T細胞誘導剤、抗体産生誘導剤、免疫増強剤またはヮ クチンに含まれる HSVの種類は、特に限定しないが、実施例ではタイプ Iの野性株で ある KOS株を用いた。 HSVは、 Vero細胞などを用いて、常法に従って増殖させるこ とがでさる。 The type of HSV contained in the antigen-specific T cell inducer, antibody production inducer, immunopotentiator or actin according to the present invention is not particularly limited, but in the examples, the KOS strain, which is a type I wild strain, is used. It was. HSV can be propagated using Vero cells, etc., according to a conventional method.
[0015] 本発明に用いる HSVは、生体内で増殖することがないように、加熱、 UV照射、放 射線照射、固定、遺伝子組替えなどを用いて、不活性化することが好ましい。以下、 各操作の典型的な条件例を挙げると、 HSVを加熱する場合、例えば、 56°Cにて、 3 0分間程度処理する。 UV照射の場合、 UV lamps (wavelength, 253.7 nm)を 10から 1 5 cmの距離で、計 120から 650J/m2照射する(De Roda Husman AM,.et al., Appl En viron Microbiol. 70 (2004): 5089-5093.)。また、放射線照射の場合は、 γ線を 0.96 Gy/sで計 200-800Gy照射する(De Roda Husman AM,.et al., Appl Environ Microbio 1. 70 (2004): 5089-5093) また、固定する場合、ホルムアルデヒド溶液、ホルマリン、 ダルタールアルデヒドなど、公知の組織固定剤を使用すればよい。遺伝子組換えに よる不活性化は、例えば、遺伝子操作によってウィルスの複製を制御したり(ウィルス ゲノムを、腫瘍細胞中でのみ複製し、正常細胞中では複製しないように遺伝子組換 えを Tつ) (Mmeta T, et al. Attenuated multi-mutated herpes simplex virus-丄 for the treatment of malignant gliomas. Nat Med.9 (1995), 938-943.)、または、遺伝子操作 によってウィルスを複製させないようにしたりする(Lim F, et al. Biotechniques.20 (199 6):460-469.)ことが考えられる。なお、上記条件は典型的な条件例であり、具体的な 操作では、上記の条件以外でも構わないし、場合によっては不活性化しなくてもかま わない。 [0015] The HSV used in the present invention is preferably inactivated by heating, UV irradiation, radiation irradiation, fixation, gene recombination or the like so as not to grow in vivo. The following are typical conditions for each operation. When heating HSV, for example, it is treated at 56 ° C. for about 30 minutes. In the case of UV irradiation, UV lamps (wavelength, 253.7 nm) are irradiated at a distance of 10 to 15 cm for a total of 120 to 650 J / m 2 (De Roda Husman AM,. Et al., Appl En viron Microbiol. 70 ( 2004): 5089-5093.). In the case of irradiation, γ rays are applied at 0.96 Gy / s for a total of 200-800 Gy (De Roda Husman AM,. Et al., Appl Environ Microbio 1. 70 (2004): 5089-5093). When doing so, a known tissue fixing agent such as formaldehyde solution, formalin or dartal aldehyde may be used. Inactivation by genetic recombination can be achieved, for example, by controlling the replication of the virus by means of genetic manipulation (such as T recombination so that the viral genome replicates only in tumor cells and not in normal cells). ) (Mmeta T, et al. Attenuated multi-mutated herpes simplex virus- 丄 for the treatment of malignant gliomas. Nat Med. 9 (1995), 938-943.), Or to prevent the virus from replicating by genetic engineering. (Lim F, et al. Biotechniques. 20 (199 6): 460-469.). The above condition is a typical condition example, and the specific operation may be other than the above condition, and may not be deactivated in some cases.
[0016] このような HSVを抗原特異的 T細胞誘導剤、抗体産生誘導剤、あるいは免疫増強
剤とし、抗原特異的 T細胞誘導、抗体産生誘導、または免疫増強の対象である抗原 と混合して抗原混合物として用いる。これら抗原特異的 τ細胞誘導剤、抗体産生誘 導剤、免疫増強剤及び抗原混合物の剤形は特に限定されず、液状、乳液状、ゲル 状、固形状、乾燥粉末状など、いずれでもかまわない。また、 HSVの他に、薬理上許 容される担体や、乳化剤 ·界面活性剤 ·防腐剤 ·不完全アジュバントなどの添加剤を 含有しても構わない。例えば、 HSVを、予めフロインド不完全アジュバントと混合して 、抗原特異的 Τ細胞誘導剤、抗体産生誘導剤、あるいは免疫増強剤とし、抗原と混 合して抗原混合物としてもよい。また、抗原混合物中の抗原は複数種類含まれてい ても構わない。 [0016] Such HSV can be used as an antigen-specific T cell inducer, antibody production inducer, or immune enhancer. It is used as an antigen mixture by mixing with an antigen that is the target of antigen-specific T cell induction, antibody production induction, or immune enhancement. The dosage forms of these antigen-specific τ cell inducer, antibody production inducer, immunopotentiator and antigen mixture are not particularly limited, and may be any of liquid, emulsion, gel, solid, dry powder, etc. . In addition to HSV, pharmacologically acceptable carriers and additives such as emulsifiers, surfactants, preservatives, and incomplete adjuvants may be contained. For example, HSV may be mixed with an incomplete Freund's adjuvant in advance to form an antigen-specific sputum cell inducer, antibody production inducer, or immune enhancer, and then mixed with an antigen to form an antigen mixture. Further, a plurality of types of antigens in the antigen mixture may be contained.
[0017] 本発明で対象となる抗原は HSV (HSV由来の抗原も含む)以外であれば特に限定 されず、最終的に生体内で抗原性を有するものであれば何でもよいが、例えば、抗 原として、腫瘍の治療に用いるための癌抗原(癌特異的タンパク質やその一部となる ペプチドなど)や、マイコプラズマ、ウィルス(エイズウイルス、インフルエンザウイルス 、 SARS (severe acute respiratory syndrome)コロナウィルスなど)、糸田菌 (病原性大 腸菌、緑濃菌、結核菌など)、原虫(マラリア、トキソプラズマなど)、寄生虫(線虫など )などの病原体の感染の予防などに用いるためには、不活性化した病原体やその一 部(細胞壁、多糖類、タンパク質などの菌体成分、ウィルスを構成するタンパク質など )などの病原体抗原を用いれば、抗原混合物の一形態としてのワクチンを作製するこ とができる。即ち、上記抗原特異的 T細胞誘導剤、抗体産生誘導剤、あるいは上記 免疫増強剤をワクチンに含有させ、癌抗原や病原体抗原と併用することにより、ワク チンの抗原性を増強することができる。ここで、ワクチンは、生ワクチン (弱毒化ヮクチ ン)、死菌ワクチン、不活性化ワクチン、トキソイド、コンポーネントワクチン (成分ヮクチ ン)、遺伝子組替えワクチン (ペプチドワクチンなども含む)、癌ワクチン等、どのような ものでも構わないが、不活性化ワクチン、コンポーネントワクチン、遺伝子組替えワク チン、癌ワクチンなどの、比較的抗原性の弱いワクチンが好ましい。また、ワクチン中 の抗原が複数種類含まれる混合ワクチンとしてもよい。 [0017] The antigen of interest in the present invention is not particularly limited as long as it is other than HSV (including antigens derived from HSV), and any antigen can be used as long as it finally has antigenicity in vivo. Originally, cancer antigens (such as cancer-specific proteins and peptides that are part of them), mycoplasma, viruses (such as AIDS virus, influenza virus, SARS (severe acute respiratory syndrome) coronavirus), Inactivated for use in preventing infection of pathogens such as Itoda (pathogenic enterococcus, green bacterium, tuberculosis, etc.), protozoa (malaria, toxoplasma, etc.), parasites (nematodes, etc.) Pathogen antigens, such as pathogens and some of them (cell wall, polysaccharides, bacterial cell components such as proteins, and proteins constituting viruses), Chin can be made. That is, the antigenicity of a vaccine can be enhanced by incorporating the antigen-specific T cell inducer, the antibody production inducer, or the immune enhancer in a vaccine and using it together with a cancer antigen or a pathogen antigen. Here, vaccines include live vaccines (attenuated vaccines), killed bacteria vaccines, inactivated vaccines, toxoids, component vaccines (component vaccines), genetically modified vaccines (including peptide vaccines), cancer vaccines, etc. A vaccine with relatively weak antigenicity, such as an inactivated vaccine, a component vaccine, a genetically modified vaccine, or a cancer vaccine, is preferable. Moreover, it is good also as a mixed vaccine containing multiple types of antigens in a vaccine.
[0018] = =抗原混合物の接種方法 = = [0018] = = Inoculation method of antigen mixture = =
こうして作製された抗原特異的 T細胞誘導剤、抗体産生誘導剤、あるいは免疫増
強剤と抗原との抗原混合物を、生体に接種する。抗原混合物の接種方法は特に限 定されず、経口投与でも非経口投与でもよい。非経口投与としては、皮下、筋肉内、 腹腔内、静脈内への注射、直腸内投与、粘膜投与、経皮投与あるいは粘膜投与など が挙げられるが、通常、皮下または腹腔内注射によって接種されることが多い。抗原 が癌抗原の場合であっても、その癌抗原を有する腫瘍に直接接種する必要がなぐ 腫瘍以外の部位に接種すればょレ、。 Antigen-specific T cell inducers, antibody production inducers, or immune enhancers produced in this way A living body is inoculated with an antigen mixture of a strong agent and an antigen. The method for inoculating the antigen mixture is not particularly limited, and it may be administered orally or parenterally. Parenteral administration includes subcutaneous, intramuscular, intraperitoneal, intravenous injection, rectal administration, mucosal administration, transdermal administration, or mucosal administration, but is usually inoculated by subcutaneous or intraperitoneal injection There are many cases. Even if the antigen is a cancer antigen, it is not necessary to directly inoculate the tumor with the cancer antigen.
[0019] なお、接種回数や接種場所も特に限定されず、同時に他の医薬品と併用してもよ い。また、同時に異なる抗原混合物を接種してもよい。 [0019] The number of inoculations and the place of inoculation are not particularly limited, and may be used in combination with other pharmaceuticals at the same time. In addition, different antigen mixtures may be inoculated simultaneously.
[0020] = =疾病の治療方法 (予防方法を含む) = = [0020] = = Disease treatment methods (including prevention methods) = =
以上のように本発明による抗原混合物を生体に接種すると、抗原混合物に添加さ れた抗原特異的な T細胞の分化'増殖や抗原特異的な抗体の産生が誘導される。抗 原が癌抗原やその一部のペプチドであるような場合、典型的には、抗原特異的に誘 導された T細胞が、抗原を組織適合性抗原と共に細胞表面に提示した癌細胞を攻 撃するため、抗原混合物によって腫瘍の治療をすることができる。また、抗原が病原 体抗原である場合、典型的には、抗原特異的に産生誘導された抗体が病原体を攻 撃するため、感染に先立って予め抗原混合物を生体に接種しておくことにより、病原 体の感染に対する予防が可能となる。また、感染後においても抗原混合物を生体に 接種することにより、病原体感染症を治療したり、病原体感染症の再発を予防したり すること力 Sできる。 As described above, when the living body is inoculated with the antigen mixture according to the present invention, differentiation-proliferation of antigen-specific T cells added to the antigen mixture and production of antigen-specific antibodies are induced. When the antigen is a cancer antigen or some of its peptides, typically antigen-specifically induced T cells attack cancer cells that present the antigen with histocompatibility antigen on the cell surface. Tumors can be treated with antigen mixtures to shoot. In addition, when the antigen is a pathogen antigen, typically, the antigen-specific production-induced antibody attacks the pathogen. Therefore, by inoculating the living body with the antigen mixture in advance of infection, Prevention of pathogen infection is possible. In addition, it is possible to treat pathogen infections and prevent recurrence of pathogen infections by inoculating a living body with an antigen mixture even after infection.
[0021] なお、接種する抗原に対する疾病の治療方法の原理はここで述べた場合に限られ ず、例えば、本発明の方法により、腫瘍の予防を行ったり、癌抗原が細胞表面抗原 である場合には、産生誘導された抗体で腫瘍の治療を行ったりしてもよい。 [0021] The principle of the disease treatment method for the antigen to be inoculated is not limited to the case described here. For example, when the method of the present invention is used to prevent tumors or the cancer antigen is a cell surface antigen. For example, a tumor may be treated with an antibody whose production has been induced.
実施例 Example
[0022] <実施例 1 > GARC— 1ペプチドを用いた癌ワクチン <Example 1> Cancer vaccine using GARC-1 peptide
(l) HSVの調製 (l) Preparation of HSV
HSVとして HSVタイプ Iの野性株である KOS株を用い、常法に従って、 Vero細胞 に感染させて、その培養上清中に放出されたウィルスを回収した。なお、この時の培 地は、無血清培地(血清を含まない DMEM)を用いた。ウィルス濃度を計測した後、
15分の UV処理および 56°Cで 30分の熱処理を行うか、または 0. 1%ホルマリンで 1 週間 4°Cで処理することにより、ウィルスを完全に不活性化して、以下の実験に用い た(以下、 HSVのウィルス濃度は不活性化する前の値を示す)。なお、ウィルスなし の Vero細胞の培養上清を上記と同様の処理をして、コントロール(Mock)として用い た。 The HSV type I wild type KOS strain was used as the HSV, and Vero cells were infected according to a conventional method, and the virus released in the culture supernatant was collected. The medium used at this time was a serum-free medium (DMEM without serum). After measuring the virus concentration, Completely inactivate the virus by UV treatment for 15 minutes and heat treatment for 30 minutes at 56 ° C, or treatment with 0.1% formalin for 1 week at 4 ° C, and used in the following experiments (Hereafter, the virus concentration of HSV shows the value before inactivation). The culture supernatant of Vero cells without virus was treated in the same manner as above and used as a control (Mock).
[0023] (2) GARC— 1抗原(腫瘍抗原)を用いたワクチン [0023] (2) Vaccine using GARC-1 antigen (tumor antigen)
マウスグリオ一マ細胞株 GL261 (C57BLZ6マウス由来)には、 GARC 1遺伝子 に、正常細胞には存在しない変異が存在するため、この変異を有するペプチド (AA LLNKLYA、配列番号 1) (MHC class Iである H_2Db上に提示される)は、腫瘍特異 的な抗原として T細胞に認識される。そこで、本実施例において用いる抗原として、こ の GARC— 1変異型ペプチドを用レ、、コントロールとして、正常細胞に存在する GAR C 1の野生型ペプチド(AALLDKLYA、配列番号 2)を用いて、癌ワクチンの生成 を行った。 In mouse glio cell line GL261 (derived from C57BLZ6 mouse), there is a mutation in GARC 1 gene that does not exist in normal cells, so a peptide with this mutation (AA LLNKLYA, SEQ ID NO: 1) (in MHC class I there is presented on H_2D b) is recognized to T cells as tumor-specific antigen. Therefore, using this GARC-1 mutant peptide as an antigen used in this example, and using a GAR C 1 wild-type peptide (AALLDKLYA, SEQ ID NO: 2) present in normal cells as a control, cancer A vaccine was produced.
[0024] ワクチンは、 [0024] The vaccine
(1) 1 Omg/mlの GARC— 1変異型ペプチドあるレヽは GARC— 1野生型ペプチドを 10 μ l (100 /i g)、 (1) GARC-1 mutant peptide containing 1 Omg / ml of GARC-1 wild type peptide is 10 μl (100 / ig),
(2)不活化 HSV (2 X 108pfli相当)を含む溶液あるいは含まない溶液 (Mock)を 50 μ 1 (2) 50 μ 1 of solution containing or not containing inactivated HSV (equivalent to 2 X 10 8 pfli) (Mock)
(3) ?83を40〃1、 (3)? 83 to 40〃1,
以上を混合した混合液(100 μ ΐ)を、各組み合わせに対して 4種類準備し、等量の不 完全フロイントアジュバント(BACTO ADJUVANT INCOMPLETE FREUND、 DIFCO 社: 263910) (100 μ 1)と混合して作製した(計 200 μ 1)。 Prepare 4 types of the above mixture (100 μΐ) for each combination and mix with an equal volume of incomplete Freund's adjuvant (BACTO ADJUVANT INCOMPLETE FREUND, DIFCO: 2 63910) (100 μ 1). (Total 200 μ1).
[0025] GL261の由来となるマウス系統である C57BLZ6マウスの両手足皮内にワクチン( 200 μ ΐ)を接種し、さらに 5日後に再度、同じ各ワクチンを接種した。 [0025] A vaccine (200 μΐ) was inoculated into the skin of both hands and feet of C57BLZ6 mice, a mouse strain derived from GL261, and again the same vaccine was inoculated again 5 days later.
[0026] ワクチン投与開始力 2週間後、マウスのリンパ節及び脾臓より得た混合浮遊細胞 を 2 X 106個 Zmlに調整した。一方、 GL261細胞をマイトマイシン C (200 z g/ml) で 60分処理した後、 3 X 105個/ mlに調整し、刺激細胞(stimulator cell)とした。これ らの混合浮遊細胞と刺激細胞をそれぞれ lmlずつ混合し、 24穴プレート(142575 N
UNC)にて 1週間共培養した。 [0026] Two weeks after the start of vaccine administration, mixed floating cells obtained from the lymph nodes and spleen of the mice were adjusted to 2 x 10 6 Zml. On the other hand, GL261 cells were treated with mitomycin C (200 zg / ml) for 60 minutes, adjusted to 3 × 10 5 cells / ml, and used as stimulator cells. Mix 1 ml each of these mixed floating cells and stimulating cells into a 24-well plate (142575 N UNC) for 1 week.
[0027] その後、以下の 3つの実験系において、 T細胞の抗原特異的な反応性の解析 (IF[0027] Subsequently, in the following three experimental systems, analysis of antigen-specific reactivity of T cells (IF
Ν- γ放出量解析)を行った。 Ν-γ release analysis).
[0028] [1. GARC— 1ペプチド(変異型及び野生型)を提示する細胞に対するリンパ球反応 性] [0028] [1. GARC — lymphocyte reactivity against cells presenting 1 peptide (mutant and wild type)]
上記のように、 1週間共培養した得られた混合浮遊細胞を 1 X 10s個 Zmlに調整し てエフェクター細胞とした。一方、 293TKbDb細胞(MHC class I分子 Kbおよび Dbを発 現してレ、る 293T細胞)を、 GARC - 1変異型ペプチドあるレ、は GARC - 1野生型ぺ プチドのパルス処理 (細胞培養液中に各ペプチドを 10 μ g/mlの濃度で添加し、 1 時間培養後、 PBSで 2回洗浄)を行った後、 I X 106個/ mlに調整し、ターゲット細胞 とした。これらのエフェクター細胞及びターゲット細胞を、それぞれ 100 μ ΐずつ混合 して、 96穴プレート(167008 NUNC)にて 2日間共培養した。その後、培養上清中の I FN— γ放出量を ELISA kit (KM-IFNG Endogen社)を用いて解析した。 As described above, the mixed floating cells obtained by co-culture for 1 week were adjusted to 1 × 10 s Zml to obtain effector cells. On the other hand, 293TK b D b cells (expressing MHC class I molecules K b and D b , 293T cells), GARC-1 mutant peptide, and GARC-1 wild-type peptide pulse treatment ( Each peptide was added to the cell culture medium at a concentration of 10 μg / ml, cultured for 1 hour, washed twice with PBS, and then adjusted to IX 10 6 cells / ml to obtain target cells. Each of these effector cells and target cells was mixed at 100 μΐ and co-cultured in a 96-well plate (167008 NUNC) for 2 days. Thereafter, the amount of IFN-γ released in the culture supernatant was analyzed using ELISA kit (KM-IFNG Endogen).
[0029] その結果、図 1に示すように、腫瘍抗原である GARC— 1変異型ペプチドと mockと を含むワクチンを投与されたマウスのリンパ節及び脾臓から、 GARC— 1変異型ぺプ チドを提示する細胞特異的に反応して IFN— yを産生する T細胞が誘導されたが、 この GARC— 1変異型ペプチドと mockとを含むワクチン投与と比較して、 GARC— 1 変異型ペプチドと不活性化 HSVとを含むワクチンを投与されたマウスでは、 GARC - 1変異型ペプチドを提示する細胞特異的なリンパ球の反応性が増強された。一方 、コントロールにおいては、 自己抗原 GARC— 1野生型ペプチドを用いたワクチンに よって、不活性化 HSVをカ卩えても、 GARC— 1野生型ペプチドを提示する細胞に特 異的に反応して IFN_ yを産生するリンパ球は誘導されな力つた。 As a result, as shown in FIG. 1, GARC-1 mutant peptides were obtained from lymph nodes and spleens of mice administered with a vaccine containing GARC-1 mutant peptide, which is a tumor antigen, and mock. T cells that produce IFN-y in response to the cell-specific responses presented were induced, but compared to the vaccine administration containing this GARC-1 mutant peptide and mock, the GARC-1 mutant peptide and Mice receiving a vaccine containing activated HSV had enhanced responsiveness of cell-specific lymphocytes displaying GARC-1 mutant peptides. On the other hand, in the control, the vaccine using the autoantigen GARC-1 wild-type peptide responds specifically to cells presenting GARC-1 wild-type peptide, even when inactivated HSV is supported. Lymphocytes producing y were not induced.
[0030] 以上から、アジュバントとしての HSVは、腫瘍抗原に対する抗原特異的な免疫を増 強させるが、 自己抗原に対しては、明らかな免疫増強効果を示さず、安全性の面か らも有用であることが明らかとなった。従って、 HSVを含有する組成物は、生体に投 与された抗原に対する免疫増強剤として有用であることが結論された。 [0030] Based on the above, HSV as an adjuvant enhances antigen-specific immunity against tumor antigens, but does not show a clear immunity-enhancing effect against self-antigens and is useful from a safety standpoint It became clear that. Therefore, it was concluded that a composition containing HSV is useful as an immunopotentiator against an antigen administered to a living body.
[0031] [2. GL261細胞に対するリンパ球反応性 I] [0031] [2. Lymphocyte reactivity to GL261 cells I]
上記のように、 1週間共培養した得られた混合浮遊細胞を 1 X 10s個/ mlに調整し
てエフェクター細胞とした。一方、 GL261細胞およびコントロールの EL4細胞をマイ トマイシン C (200 μ g/ml)で 60分処理した後、 1 X 106個 Zmlに調整し、ターゲット 細胞とした。これらのエフェクター細胞及びターゲット細胞を、それぞれ 100 ずつ 混合して、 96穴プレート(167008 NUNC)にて 2日間共培養した。その後、培養上清 中の IFN— γ放出量を ELISA kit (KM-IFNG Endogen社)を用いて解析した。 Adjust mixed suspension cells obtained for 1 week of co-culture as above to 1 X 10 s / ml. Effector cells. On the other hand, GL261 cells and control EL4 cells were treated with mitomycin C (200 μg / ml) for 60 minutes, adjusted to 1 × 10 6 Zml, and used as target cells. 100 of each of these effector cells and target cells were mixed and co-cultured in a 96-well plate (167008 NUNC) for 2 days. Thereafter, the amount of IFN-γ released in the culture supernatant was analyzed using ELISA kit (KM-IFNG Endogen).
[0032] その結果、図 2に示すように、 GL261ダリオ一マ細胞の腫瘍抗原である GARC— 1 変異型ペプチドを投与したマウスでは、不活性化 HSVを含有させたワクチンを投与 した時にのみ、 GL261細胞に特異的に反応して IFN— yを産生するリンパ球が誘 導された。 As a result, as shown in FIG. 2, in mice administered with GARC-1 mutant peptide, which is a tumor antigen of GL261 Dario cell, only when a vaccine containing inactivated HSV was administered, Lymphocytes that specifically react with GL261 cells and produce IFN-y were induced.
[0033] 以上から、腫瘍抗原にカ卩ぇ HSVをアジュバントとして用いることにより、その腫瘍抗 原を発現する腫瘍細胞に特異的な免疫を増強できることが示された。従って、 HSV をワクチンに含有させることは、腫瘍免疫を増強させたり、病原体感染を予防したりす るのに有用であることが結論された。 [0033] From the above, it was shown that immunity specific to tumor cells expressing the tumor antigen can be enhanced by using Kay HSV as an adjuvant for the tumor antigen. Therefore, it was concluded that inclusion of HSV in the vaccine is useful for enhancing tumor immunity and preventing pathogen infection.
[0034] [3. GL— 261細胞に対するリンパ球反応性 II] [0034] [3. Lymphocyte reactivity to GL-261 cells II]
上記のように、 1週間共培養した得られた混合浮遊細胞より CD8陽性 T細胞(主とし て細胞障害性 T細胞)を精製した後、 5 X 105個/ mlに調整してエフェクター細胞とし た。一方、 GL261細胞を 56°Cで 30分間熱処理した後、 5 X 105個/ mlに調整し、タ 一ゲット細胞とした。これらのエフェクター細胞及びターゲット細胞を、それぞれ 100 μ 1ずつ混合して、 96穴プレート(167008 NUNC)にて 1日間共培養した。その後、培 養上清中の IFN— y放出量を ELISA kit (KM-IFNG Endogen社)を用いて解析した As described above, after purifying CD8 positive T cells (mainly cytotoxic T cells) from the mixed suspension cells obtained by co-culture for 1 week, adjust to 5 X 10 5 cells / ml to obtain effector cells. It was. On the other hand, GL261 cells were heat-treated at 56 ° C. for 30 minutes and then adjusted to 5 × 10 5 cells / ml to obtain target cells. Each of these effector cells and target cells was mixed at 100 μl and co-cultured in a 96-well plate (167008 NUNC) for 1 day. Subsequently, the amount of IFN-y released in the culture supernatant was analyzed using an ELISA kit (KM-IFNG Endogen).
[0035] その結果、図 3に示すように、 GL261ダリオ一マ細胞の腫瘍抗原である GARC— 1 変異型ペプチドと HSVとを含有するワクチンを用いてマウスに免疫した場合、それぞ れを単独で免疫したマウスと比較して、 GL261細胞に対して IFN- γを産生する CD8 陽性 T細胞の反応性が増強された(図 3)。 As a result, as shown in FIG. 3, when a mouse was immunized with a vaccine containing GARC-1 mutant peptide, which is a tumor antigen of GL261 dalio cell, and HSV, each of them was singly used. The reactivity of CD8 positive T cells producing IFN-γ to GL261 cells was enhanced compared to mice immunized with (Fig. 3).
[0036] 以上から、腫瘍抗原にカ卩ぇ HSVをアジュバントとして用いることにより、腫瘍に反応 する CD8陽性 T細胞の誘導を増強することが示された。従って、 HSVを含有する免 疫増強剤は、それを併用した抗原に対し抗原特異的 T細胞誘導剤として有用である
ことが結論された。 [0036] From the above, it was shown that the induction of CD8-positive T cells responding to tumors was enhanced by using Kay HSV as an adjuvant as a tumor antigen. Therefore, an immunopotentiator containing HSV is useful as an antigen-specific T cell inducer for the antigen combined with it. It was concluded.
[0037] く実施例 2 > AH1ペプチド (腫瘍抗原)を用いた癌ワクチン [0037] <Example 2> Cancer vaccine using AH1 peptide (tumor antigen)
HSVの調製は実施例 1と同様に行った。 HSV was prepared in the same manner as in Example 1.
抗原には、マウス大腸癌細胞株 CT26 (BALBZcマウス由来)の腫瘍抗原であり、 MHC class I (H_2Ld)上に提示されるペプチド AH1 (SPSYVYHQF,配列番号 3) ( Huang A et al, Proc. Natl. Acad. Sci. USA 93. 9730-9735, 1996)と、同じ MHC class I (H_2Ld)上に提示されるコントロールペプチドとして、マウス肥満細胞腫細胞株 P81 の腫瘍抗原でぁるぺプチド!^:! 八 ?丫!^^^!^^、配列番号 4) (Lethe B, et al, Eur. J. Immunol 22, 1992)を用いた。 The antigen is a tumor antigen of mouse colon cancer cell line CT26 (derived from BALBZc mouse), and peptide AH1 (SPSYVYHQF, SEQ ID NO: 3) presented on MHC class I (H_2L d ) (Huang A et al, Proc. Natl. Acad. Sci. USA 93. 9730-9735, 1996), a peptide that is the tumor antigen of the mouse mastocytoma cell line P81 as a control peptide presented on the same MHC class I (H_2L d )! ^ :! Eight ?丫! ^^^! ^^, SEQ ID NO: 4) (Lethe B, et al, Eur. J. Immunol 22, 1992) was used.
[0038] ワクチンは、 [0038] The vaccine
( 1 ) AH 1ペプチド (100 μ g)あるいは P815 Aペプチド (100 μ g) (1) AH 1 peptide (100 μg) or P815 A peptide (100 μg)
(2)不活化 HSV(2 X 108pfli相当)あるいは Mock (2) Inactivated HSV (equivalent to 2 X 10 8 pfli) or Mock
(3) PBS (3) PBS
の混合液(100 μ 1)を、各組み合わせに対して 4種類準備し、等量の不完全フロイン トアジュバント(100 μ 1)と混合した(計 200 μ 1)。 CT26の由来となるマウス系統であ る BALB/cマウスの両手足皮内にワクチン(200 μ 1)を投与し、さらに 7日後に再度 、同じ各ワクチンを投与した。 2回目のワクチン投与の 1週間後に、 BALB/cマウス の背部に CT26腫瘍細胞を 5 X 105個移植し、経時的に腫瘍径を計測して、腫瘍体 積を解析した。結果を表 1に示す。 Four mixtures (100 μ1) were prepared for each combination and mixed with an equal volume of incomplete Freund's adjuvant (100 μ1) (total 200 μ1). A vaccine (200 μl) was administered into the skin of both hands and feet of BALB / c mice, the mouse strain from which CT26 was derived, and the same vaccine was administered again 7 days later. One week after the second vaccine administration, 5 x 10 5 CT26 tumor cells were transplanted on the back of BALB / c mice, and the tumor diameter was measured over time to analyze the tumor volume. The results are shown in Table 1.
[0039] 【表 】 [0039] [Table]
ワクチン投与後に移植腫瘍が拒絶されたマウスの数 Number of mice whose transplanted tumor was rejected after vaccination
[0040] P815A + HSV (3個体)、 P815A + Mock (4個体)のワクチンが投与されたマウス では、腫瘍移植後 8日目にそれぞれ全例で CT26腫瘍の生着が確認され、その後腫 瘍体積は増加して、拒絶されることはなかった。一方、 AHl + Mockのワクチンが投
与されたマウス (4個体)では、腫瘍移植後 8日目に全例で CT26腫瘍の生着が確認 されたが、その後、腫瘍は縮小し、腫瘍移植 22日目では 1例を除き、 3例で腫瘍は拒 絶された。さらに AH1+HSVのワクチンが投与されたマウス(3個体)では、観察期 間内に腫瘍生着は見られず、全例で完全拒絶された。 [0040] In mice administered with vaccines of P815A + HSV (3 individuals) and P815A + Mock (4 individuals), all patients were confirmed to be engrafted with CT26 on the 8th day after tumor implantation, and then tumors were observed. The volume increased and was not rejected. Meanwhile, AHl + Mock vaccine was launched. In the given mice (4 mice), all cases confirmed the engraftment of CT26 tumors on the 8th day after tumor transplantation, but the tumors shrank thereafter, and on the 22nd day after tumor transplantation, 1 case was excluded. In the example, the tumor was rejected. In addition, mice (3 mice) that received the AH1 + HSV vaccine did not show tumor engraftment within the observation period, and were completely rejected in all cases.
[0041] 以上から、 HSVは、実際に大腸癌細胞 CT26の抗原特異的な免疫反応を増強す ることが示され、癌ワクチンとしての効果を増強するためのアジュバントとしての有用 性が示された。従って、 HSVを含有する免疫増強剤を含有するワクチンは、癌ヮクチ ンとして有効であることが結論された。 [0041] From the above, it was shown that HSV actually enhances the antigen-specific immune response of colorectal cancer cell CT26, and its usefulness as an adjuvant to enhance the effect as a cancer vaccine was demonstrated. . Therefore, it was concluded that a vaccine containing an immunopotentiator containing HSV is effective as a cancer vaccine.
[0042] <実施例 3 > AH1ペプチド (腫瘍抗原)を用いた腫瘍の治療 <Example 3> Treatment of tumor using AH1 peptide (tumor antigen)
HSVの精製は実施例 1と同様に行った。また、腫瘍抗原は、実施例 2と同様に AH HSV was purified in the same manner as in Example 1. In addition, the tumor antigen was AH as in Example 2.
1ペプチドを用い、その標的腫瘍細胞に CT26(マウス大腸癌)を、コントロール腫瘍 細胞に Meth A (マウス線維肉腫)を用いた。 1 peptide was used, CT26 (mouse colon cancer) was used as the target tumor cell, and Meth A (mouse fibrosarcoma) was used as the control tumor cell.
[0043] まず、 CT26細胞 (5 X 105個)を Balb/cマウスの背側部に移植し、移植 5日目に 第 1回目の免疫を開始した。 [0043] First, CT26 cells (5 × 10 5 cells) were transplanted into the dorsal part of Balb / c mice, and the first immunization was started on the fifth day of transplantation.
[0044] 1回目の免疫には、 [0044] For the first immunization,
(1) AH1ペプチド(50 μ g)あるいは DMSO (1) AH1 peptide (50 μg) or DMSO
(2)不活化 HSV (1 X 108 Pfli相当)あるいは Mock (2) Inactivated HSV (equivalent to 1 X 10 8 Pfli) or Mock
(3) PBS (3) PBS
の混合液(ΙΟΟμΙ)を 3種類(AHlZHSV、及びネガティブコントロールとして AH1 ZMockと DMSO/Mock)準備し、等量の不完全フロイントアジュバント(IFA) (10 Ομΐ)と混合した(それぞれ、 AH1/HSV(IFA)、及びネガティブコントロールとして AH1ZIFAと DMSO/IFAと記す;各 200μ1)。また、ポジティブコントロールとして 、 AH1ペプチドと PBSの混合液(100 μ 1)を等量の完全フロイントアジュバント(CFA ) (ΙΟΟμΙ)と混合した(AH1ZCFAと記す; 200μ1)。このようにして調製した抗原( 100 μ 1ずつ)を BalbZcマウスの両足フットパッドに投与した。 3 types (AHlZHSV and AH1 ZMock and DMSO / Mock as negative controls) were prepared and mixed with an equal volume of incomplete Freund's adjuvant (IFA) (10 μμΐ) (respectively, AH1 / HSV ( IFA), and AH1ZIFA and DMSO / IFA as negative controls; 200μ1 each). As a positive control, a mixture of AH1 peptide and PBS (100 μ1) was mixed with an equal volume of complete Freund's adjuvant (CFA) (ΙΟΟμΙ) (denoted as AH1ZCFA; 200 μ1). Antigens prepared in this manner (100 μl each) were administered to both foot pads of BalbZc mice.
[0045] 7日後の 2回目の免疫には、 [0045] For the second immunization 7 days later,
(1)AH1ペプチド(AHlZHSV(IFA)、 AH1/IFA、及び AHl/CFAに対して) あるいは DMSO (DMSO/IFAに対して)
(2) PBS (1) AH1 peptide (for AHlZHSV (IFA), AH1 / IFA, and AHl / CFA) or DMSO (for DMSO / IFA) (2) PBS
の混合液(100 μ 1)を各組み合わせに対して調製し、等量の不完全フロイントアジュ バント IFA (100 μ 1)と混合し(計 200 μ 1)、同様に両足フットパッドに抗原(100 μ 1ず つ)を投与した。 For each combination, mix with an equal volume of incomplete Freund's adjuvant IFA (100 μ1) (total 200 μ1), and apply the antigen (100 μ 1) was administered.
[0046] その後、以下の 3つの実験系において、 Τ細胞の抗原特異的な反応性の解析を行 つた。 [0046] Thereafter, the antigen-specific reactivity of sputum cells was analyzed in the following three experimental systems.
[0047] 1.抗腫瘍効果の評価 [0047] 1. Evaluation of antitumor effect
マウスに移植した腫瘍の体積を、 14日までは 2日ごとに、 21日までは 4日ごとに計 測し、その腫瘍体積の変化で免疫効果を評価した。図 4Αに、マウスごとの実験結果 を、図 4Βに、 21日目の腫瘍体積の平均値を示す。 The volume of tumor transplanted into mice was measured every 2 days up to 14 days and every 4 days up to 21 days, and the immune effect was evaluated by the change in the tumor volume. Fig. 4 (b) shows the experimental results for each mouse, and Fig. 4 (b) shows the mean value of the tumor volume on day 21.
[0048] 腫瘍体積の経時変化(図 4Α)からは、 DMSO/IFA及び AH1/IFAを用いた場 合に比べ、 AH1/CFA (ポジティブコントロール)を用いた場合、腫瘍体積の増加が 抑制されている力 AH1/HSVを用いた場合、さらに腫瘍体積の増加が抑制され ていることがわかる。また、 21日目の平均腫瘍体積を(図 4Β)比較すると、 DMSO/ IFA及び AH1/IFAを用いた場合に比べ、 AH1/CFAを用いた場合は、統計学 的に有意ではないが腫瘍体積の増加に抑制傾向が見られ、一方、 AH1/HSVを 用いた場合は、有意に (ρく 0.05)腫瘍体積の増加が抑制されてレ、た。 [0048] From the time course of tumor volume (Fig. 4 IV), the increase in tumor volume was suppressed when AH1 / CFA (positive control) was used compared to when DMSO / IFA and AH1 / IFA were used. It can be seen that the increase in tumor volume is further suppressed when the force AH1 / HSV is used. In addition, when comparing the mean tumor volume on day 21 (Fig. 4 Β), the tumor volume was not statistically significant when AH1 / CFA was used compared to when DMSO / IFA and AH1 / IFA were used. On the other hand, when AH1 / HSV was used, the increase in tumor volume was significantly suppressed (ρ 0.05).
[0049] このように、 HSVは、 AH1とともに投与することにより、大腸癌細胞 CT26の腫瘍増 殖の抑制効果を示すことが明らかになった。 [0049] Thus, it has been clarified that HSV exhibits an inhibitory effect on tumor growth of colon cancer cell CT26 when administered together with AH1.
[0050] 2.細胞障害活性の評価 [0050] 2. Evaluation of cytotoxic activity
腫瘍細胞移植 21日後、各マウスの脾臓及びリンパ節より混合浮遊細胞を単離し、 3 〜5 X 106/mlに調製した。一方、抗原提示細胞として、正常マウスより調製した脾 臓細胞に X線を照射(60Gy)し、ペプチド抗原 AH1 (10 μ M)で 90分間反応させ、 1 X 106/mlに調製した。これらの混合浮遊細胞と抗原提示細胞を、それぞれ lmlず つ混合し、 24穴プレート (NUNC 142475)にて 5日間共培養した。その後、共培養した 浮遊細胞より精製した CD8陽性 T細胞(E :T_ratio : 60, 30, 15 ; 3 X 105, 1. 5 X 105, 0. 75 X 105)を51 Cr (Amersham社)でラベルした CT26細胞(5 X 103個)と混 合して、 96穴プレート(U-bottom:BD35 3077)で 4時間共培養した後、 51Cr放出アツ
セィにより、細胞傷害活性を評価した。なお、コントロール細胞としては、 Meth A細 胞(5 X 103個)を用いた。また、 CT26細胞には、 1. 85MBqの51 Crを lmlの細胞浮 遊液(I X 106個)に加え、 1〜2時間、 37°Cで振とうすることによりラベルを取り込ませ た。 21 days after tumor cell transplantation, mixed floating cells were isolated from the spleen and lymph nodes of each mouse, and prepared to 3 to 5 × 10 6 / ml. On the other hand, as antigen-presenting cells, spleen cells prepared from normal mice were irradiated with X-rays (60 Gy) and reacted with peptide antigen AH1 (10 μM) for 90 minutes to prepare 1 × 10 6 / ml. These mixed floating cells and antigen-presenting cells were mixed in lml each and co-cultured in a 24-well plate (NUNC 142475) for 5 days. Thereafter, cocultured CD8-positive T cells purified from suspended cells (E: T_ratio: 60, 30 , 15; 3 X 10 5, 1. 5 X 10 5, 0. 75 X 10 5) and 51 Cr (Amersham Corp. ) in CT26 cells (5 X 10 3 cells were labeled) and engaged mixed, a 96-well plate (U-bottom: BD35 after 4 hours co-cultured in 3077), 51 Cr release mediation Cytotoxic activity was evaluated by SE. In addition, Meth A cells (5 × 10 3 cells) were used as control cells. In addition, the CT26 cells, 1. added of 51 Cr 85MBq in lml of cell floating遊液(IX 10 6 cells), 1-2 hours, was incorporated label by shaking at 37 ° C.
[0051] その結果、図 4Cに示すように、 AH1/HSVを用いた場合、 DMSO/IFA及び A HlZlFAを用いた場合に対して、有意に (pく 0.05) CT26細胞に対する特異的障害 性が増強された。 [0051] As a result, as shown in FIG. 4C, when AH1 / HSV was used, there was a significant (p 0.05) specific cytotoxicity against CT26 cells compared with DMSO / IFA and AHlZlFA. Enhanced.
[0052] このように、 HSVは、 AH1ペプチドとともに投与することにより、抗原特異的な CD8 陽性 T細胞(主に細胞傷害性 T細胞と考えられる)を強力に誘導し、 CT26細胞に対 する細胞障害活性を増強することが示された。 [0052] Thus, HSV strongly induces antigen-specific CD8-positive T cells (mainly thought to be cytotoxic T cells) when administered together with the AH1 peptide, and cells against CT26 cells. It has been shown to enhance the disability activity.
[0053] 3.サイト力イン IFN— y産生の評価 [0053] 3. Site force in IFN—y production evaluation
BD Cytofix/Cytoperm kit (Pharmingen社)を使用して、上記により共培養した混合 浮遊細胞内における IFN— γ産生細胞を解析した。 Using BD Cytofix / Cytoperm kit (Pharmingen), IFN-γ producing cells in the mixed suspension cells co-cultured as described above were analyzed.
[0054] まず、共培養した混合浮遊細胞に対し、細胞内タンパク輸送を阻害するため、 mone nsinの含有する BD GolgiStopを 24穴プレートのゥエルに 1 · 5 μ 1/2πι1カ卩え、 8時間 後、非特異的反応を抑制するために Fcレセプターに対する抗体 Fc-Block (mAb 2 . 4G2 : 100倍希釈)を添加し、さらに FITC標識抗 CD4抗体 (mAb GK1. 5 e_B ioscience社 400倍希釈)または FITC標識抗 CD8抗体(mAb 53-6. 7 e-Bioscie nce社 400倍希釈)で染色した。その後、 BD Cytofix/Cytoperm solutionを 100 μ 1 加えて 4°Cで 20分間細胞を固定し、 BD Perm/Wash solutionで 2回洗浄し、 PE (フィ コエリスリン)標識抗 IFN- γ抗体(mAb XMG1. 2 : e- Bioscience社 200倍希釈) を含む BD Perm/Wash solution 50 μ 1で 30分 4。Cで反応させ、 FACS解析を行った [0054] First, in order to inhibit intracellular protein transport for mixed cultured floating cells, add BD GolgiStop containing mone nsin to the well of a 24-well plate for 8 hours. Then, in order to suppress non-specific reaction, antibody Fc-Block (mAb 2.4G2: diluted 100 times) against Fc receptor was added, and FITC-labeled anti-CD4 antibody (mAb GK1.5 eB Bioscience 400 times diluted) Alternatively, it was stained with FITC-labeled anti-CD8 antibody (mAb 53-6.7 e-Bioscience 400-fold dilution). After that, add 100 μ 1 of BD Cytofix / Cytoperm solution, fix the cells at 4 ° C for 20 minutes, wash twice with BD Perm / Wash solution, PE (phycoerythrin) -labeled anti-IFN-γ antibody (mAb XMG1. 2: e-Bioscience 200-fold diluted) BD Perm / Wash solution 50 μ 1 for 30 minutes 4 Reaction with C and FACS analysis
[0055] その結果、 AH1ZHSV免疫群において、 AH1ペプチド共培養によって増加する I FN- 産生細胞のほとんどは CD4陽性 T細胞ではなぐ CD8陽性 T細胞によること が判明した(図 4D)。 As a result, in the AH1ZHSV immunized group, it was found that most of the IFN-producing cells increased by AH1 peptide co-culture were CD8-positive T cells but not CD4-positive T cells (FIG. 4D).
[0056] 以上から、癌抗原を用いた腫瘍の治療において、癌抗原とともにアジュバントとして HSVを用いることにより、癌抗原特異的な CD8陽性 T細胞が強く誘導され、癌免疫
が増強されることが示された。従って、癌抗原とともに HSVを含有する免疫増強剤を 含有するワクチンは、癌抗原を用いた腫瘍の治療に有効であることが結論された。 [0056] From the above, in the treatment of tumors using cancer antigens, cancer antigen-specific CD8-positive T cells are strongly induced by using HSV as an adjuvant together with cancer antigens. Was shown to be enhanced. Therefore, it was concluded that a vaccine containing an immunopotentiator containing HSV together with a cancer antigen is effective for treating a tumor using the cancer antigen.
[0057] <実施例 4 >へマグルチニン抗原(HA)を用レ、たインフルエンザウイルスワクチン <Example 4> Influenza virus vaccine using hemagglutinin antigen (HA)
HSVの精製は実施例 1と同様に行った。なお、ここで用いた動物は BalbZcマウス (早: n = 4/群)である。 HSV was purified in the same manner as in Example 1. The animals used here are BalbZc mice (early: n = 4 / group).
[0058] 1回目の免疫には、へマグルチニン抗原タンパク質(HA) (HlNl : IFA-055-B052 2) (10 x g)を用い、 [0058] For the first immunization, hemagglutinin antigen protein (HA) (HlNl: IFA-055-B052 2) (10 x g) was used,
(Ι) ΗΑ(ΙΟ μ g/10 μ 1)あるいは DMSO (10 μ 1) (Ι) ΗΑ (ΙΟ μ g / 10 μ 1) or DMSO (10 μ 1)
(2)不活化 HSV (low): 1 X 107 Pill,不活化 HSV (high) : 1 X 108 Pili、あるいは Moc k (2) Inactivated HSV (low): 1 X 10 7 Pill, Inactivated HSV (high): 1 X 10 8 Pili, or Moc k
(3) PBS (3) PBS
の混合液(100 μ 1)を各組み合わせに対して以下の 5種類準備し、等量の不完全フ ロイントアジュバント(IFA) (ΙΟΟ μ Ι)と混合し(計 200 /i l)、 Balb/cマウスの両足フ ットパッドに上記ワクチン(100 μ ΐずつ)を投与した。 Prepare the following 5 types of liquid mixture (100 μ1) for each combination and mix with an equal volume of incomplete Freund's adjuvant (IFA) (ΙΟΟ μΙ) (total 200 / il). c The above vaccine (100 μΐ each) was administered to the foot pads of mice.
(D DMSO/IFA (D DMSO / IFA
(2) DMSO/HSV (2) DMSO / HSV
(3) HA/IFA (3) HA / IFA
(4) HA/HSV (low) (4) HA / HSV (low)
(5) HA/HSV (high) (5) HA / HSV (high)
[0059] 2回目の免疫には、へマグルチニン抗原の CD4ェピトープ又は CD8ェピトープに 対する免疫応答を増強させる目的で、ペプチド抗原として、 I一 Ed拘束性 HAぺプチ ド(SVSSFERFEIFPK 配列番号 5、アミノ酸番号 124-136に対応)と Kd拘束性 H Aペプチド(IYSTVASSL 配列番号 6、アミノ酸番号 533-541に対応)の混合ぺプ チド (各 50 z g)を用いた。すなわち、 [0059] The second immunization, immune responses to CD4 Epitopu or CD8 Epitopu of Maguruchinin antigen for the purpose of enhancing the, as a peptide antigen, I one E d restricted HA peptidase de (SVSSFERFEIFPK SEQ ID NO: 5, amino acids No. 124-136) and Kd- restricted HA peptide (IYSTVASSL SEQ ID NO: 6, corresponding to amino acid Nos. 533-541) mixed peptides (50 zg each) were used. That is,
7日後の 2回目ワクチンは、 The second vaccine after 7 days
(1) I— Ed拘束性 HAペプチド (50 μ g)および Kd拘束性 HAペプチド (50 μ g)、あるい は DMS〇 (1) I—E d- restricted HA peptide (50 μg) and K d- restricted HA peptide (50 μg) or DMS
(2) PBS
の混合液(50 μ 1)を、等量の不完全フロイントアジュバント(50 μ 1)と混合した(100 μ ΐ)、各組み合わせに対して下記の通り、 BalbZcマウスの両足フットパッドにヮクチ ン(50 μ ΐずつ)を投与した。 (2) PBS (100 μΐ) was mixed with an equal volume of incomplete Freund's adjuvant (50 μ1) (100 μΐ). 50 μΐ each).
( D DMSO/IFA (D DMSO / IFA
(2)〜(5) ΗΑペプチド/ IFA (2)-(5) Peptide / IFA
[0060] その後、以下の 2つの実験系で Τ細胞の抗原特異的な反応性の解析を行レ、、さら に、誘導された抗体の抗体価を測定した。 [0060] Thereafter, the antigen-specific reactivity of the sputum cells was analyzed in the following two experimental systems, and the antibody titer of the induced antibody was measured.
[0061] 1.細胞障害活性の評価 [0061] 1. Evaluation of cytotoxic activity
2回目のワクチン投与の 1週間後、各マウスの脾臓及びリンパ節より混合浮遊細胞 を単離し、 3〜5 X 10s/mlに調製した。一方、抗原提示細胞として、正常マウスより 調製した脾臓細胞に X線を照射(60Gy)し、 I Ed拘束性 HAペプチド又は Kd拘束 性 HAペプチド(10 μ Μ)で 90分間処理し、 1 X 106/mlに調製した。これらの混合 浮遊細胞と抗原提示細胞を、それぞれ lmlずつ混合し、 24穴プレート (NUNC 14247 5)にて 5日間共培養した。その後、共培養した浮遊細胞より精製した CD8陽性 T細胞 (E : T- ratio : 60, 30, 15 ; 3 X 105, 1. 5 X 105, 0. 75 X 105)を51 Crで上述のよ うにラベルした CT26細胞 ( 10 μ Μの Kd拘束性 HAペプチドで処理)(5 X 103個)と 混合して、 96穴プレート(U-bottom:BD35 3077)で 4時間共培養した後、 51Cr放出ァ ッセィにより、細胞傷害活性を評価した。なお、コントロール細胞としては、 CT26細 胞(P815 Aペプチド 10 μ Μで処理)(5 X 103個)を用いた。 One week after the second vaccination, mixed floating cells were isolated from the spleen and lymph nodes of each mouse and prepared to 3 to 5 × 10 s / ml. On the other hand, as antigen-presenting cells, spleen cells prepared from normal mice were irradiated with X-rays (60 Gy), treated with IE d- restricted HA peptide or K d- restricted HA peptide (10 μΜ) for 90 minutes, and 1 X Prepared to 10 6 / ml. These mixed floating cells and antigen-presenting cells were mixed in 1 ml each, and co-cultured in a 24-well plate (NUNC 14247 5) for 5 days. After that, CD8 positive T cells (E: T-ratio: 60, 30, 15; 3 X 10 5 , 1.5 X 10 5 , 0.775 X 10 5 ) purified from co-cultured floating cells with 51 Cr Mix with CT26 cells labeled as described above (treated with 10 μΜ Kd- restricted HA peptide) (5 × 10 3 cells) and co-culture for 4 hours in 96-well plate (U-bottom: BD35 3077) Thereafter, the cytotoxic activity was evaluated by 51 Cr release assay. As control cells, CT26 cells (treated with 10 μΜ of P815 A peptide) (5 × 10 3 cells) were used.
[0062] その結果、図 5Αに示すように、(1 ) DMS〇ZIFA, DMSO/IFA, (3) HA/IF A, HAペプチド/ IFAの組み合わせに比べて、(5) HAZHSV (high) , HAぺ プチド/ IFAの組み合わせは有意に (pく 0.05)抗原特異的な CD8陽性 T細胞を強力 に誘導し、 CT26細胞 ( 10 μ Μの Kd拘束性 HAペプチドで処理)に対する細胞障害 活性を増強することが示された。 [0062] As a result, as shown in Fig. 5 (1), (5) HAZHSV (high), compared to (1) DMS ○ ZIFA, DMSO / IFA, (3) HA / IF A, HA peptide / IFA combination The HA peptide / IFA combination significantly (p 0.05) strongly induces antigen-specific CD8-positive T cells and has cytotoxic activity against CT26 cells (treated with 10 μΜ Kd- restricted HA peptide). It was shown to enhance.
[0063] 2.増殖応答の評価 [0063] 2. Evaluation of proliferative response
共培養した混合浮遊細胞より精製した CD4陽性 T細胞(1 X 105個)を、 X線照射( 60Gy)後の上記抗原提示細胞(I _ Ed拘束性 HAペプチドで処理した脾臓細胞) ( 5 X 104個または 1 X 105個)と 3日間共培養し、培養終了の 5時間前に培地に [3H]_th
ymidine(18.5kBq/well)を添加し、培養終了後、取り込み量 ([ ]のカウント値 cpm)で増 殖応答を評価した。 CD4-positive T cells purified from a mixed suspension cells were co-cultured (1 X 10 5 cells), X-ray irradiation (60 Gy) after the antigen-presenting cells (spleen cells treated with I _ E d restricted HA peptide) ( 5 x 10 4 or 1 x 10 5 ) for 3 days and put [ 3 H] _th in the medium 5 hours before the end of the culture. After addition of ymidine (18.5 kBq / well), the growth response was evaluated by the amount of uptake (count value cpm of []) after completion of the culture.
[0064] 結果は、図 5Bに示すように、(l) DMSOZlFA、 DMSO/IFAの組み合わせで 免疫したマウスの CD4陽性 T細胞に対し、(4) HAZHSV (low)、 HAペプチド/ IF Aの組み合わせおよび(5) HA/HSV (high)、 HAペプチド/ IFAの組み合わせで 免疫したマウスの CD4陽性 T細胞は抗原提示細胞の数に依存して有意な(pく 0.05) 増殖促進効果を示した。 [0064] As shown in FIG. 5B, the results are as follows: (4) HA4HSV (low), HA peptide / IF A combination, against CD4 positive T cells of mice immunized with DMSOZlFA, DMSO / IFA combination And (5) CD4 positive T cells of mice immunized with the combination of HA / HSV (high) and HA peptide / IFA showed a significant (p 0.05) proliferation promoting effect depending on the number of antigen presenting cells.
[0065] このように、インフルエンザワクチンを投与する際、インフルエンザ抗原とともにアジ ュバントとして HSVを用いることにより、抗原特異的な CD4陽性 T細胞を誘導すること ができることが明らかになった。 [0065] Thus, it was revealed that antigen-specific CD4-positive T cells can be induced by using HSV as an adjuvant together with influenza antigen when administering an influenza vaccine.
[0066] 3.抗体価の測定 [0066] 3. Measurement of antibody titer
抗体価は、(1)〜(4)のマウス各 4匹に対し、 2回目ワクチンの 1週間後、末梢血より 血清を回収し、赤血球凝集抑制試験 (HI)により測定した。 The antibody titer was measured in 4 mice each of (1) to (4) by collecting sera from peripheral blood one week after the second vaccine and measuring it by hemagglutination inhibition test (HI).
[0067] 具体的には、インフルエンザウイルス HI試薬「生研」(デン力生研 (株))のキットを用 いて、 A型インフルエンザウイルス HA抗原に対する抗体価を調べた。検体 0. 1mlに RDE(Receptor Destroying Enzyme)0. 3mlをカロえ、 37°Cでー晚培養することにより 非特異的インヒビターを除去し、 56°Cで 30分間加熱して RDE処理の反応を止め、 生理食塩水 0. 6ml加えた。その RDE処理検体に 50% (v/v)のニヮトリ赤血球浮遊 液 50 μ 1ずつ加え、混和後、 4°C60分間静置し、遠心後、上清を 1: 10からスタートし て段階希釈を作った。それぞれに HA抗原を加え十分混和後、さらに 0. 5% (v/v) のニヮトリ赤血球浮遊液をカ卩え、赤血球凝集が何倍希釈で抑制された力を調べて HI 抗体価を測定した。 [0067] Specifically, the antibody titer against influenza A virus HA antigen was examined using a kit of influenza virus HI reagent "Seiken" (Den Rikiseiken Co., Ltd.). Prepare 0.1 ml of RDE (Receptor Destroying Enzyme) in 0.1 ml of sample, remove non-specific inhibitors by incubating at 37 ° C and heat at 30 ° C for 30 minutes to react with RDE treatment. Stopped and added 0.6 ml of normal saline. Add 50 µl of 50% (v / v) chicken erythrocyte suspension to the RDE-treated sample, mix, leave at 4 ° C for 60 minutes, centrifuge, and start the supernatant at 1:10 for serial dilution. Had made. After adding HA antigen to each and mixing well, we further measured 0.5% (v / v) chicken erythrocyte suspension, and investigated the force at which dilution of erythrocyte aggregation was suppressed to determine the HI antibody titer. .
[0068] この赤血球凝集抑制試験の結果、(1) DMS〇/IFA, DMSO/IFAの組み合わ せ、及び(2) DMS〇/HSV, HAペプチド/ IFAの組み合わせでは、何れも HI抗 体価は 10未満であった。一方、(3) HAZIFA, HAペプチド ZIFAの組み合わせに より HI抗体価が検出されたが(65 ± 64. 03)、 (4) HA/HSV (low) , HAペプチド ZIFAの組み合わせにより HI抗体価は有意に(pく 0.05)増加した(140 ±40)。 (ただ し、カツコ内は、平均値土標準偏差)
この結果から、インフルエンザ抗原とともにアジュバントとして HSVを同時に投与す ることにより、インフルエンザ抗原に対する血清抗体価を有意に上昇させることが明ら かになつた。 [0068] As a result of this hemagglutination inhibition test, (1) the combination of DMS 0 / IFA and DMSO / IFA, and (2) the combination of DMS 0 / HSV, HA peptide / IFA, the HI antibody titer was It was less than 10. On the other hand, (3) HI antibody titer was detected by the combination of HAZIFA and HA peptide ZIFA (65 ± 64. 03), but (4) the combination of HA / HSV (low) and HA peptide ZIFA resulted in an HI antibody titer Significantly (p 0.05) increased (140 ± 40). (However, the average soil standard deviation is in Katsuko) From this result, it was revealed that the serum antibody titer against influenza antigen was significantly increased by simultaneously administering HSV as an adjuvant with influenza antigen.
4.結論 4. Conclusion
以上より、 HSVは、インフルエンザ抗原の抗原特異的な免疫反応を増強することが 示され、インフルエンザワクチンとしての効果を増強するためのアジュバントとしての 有用性が示された。従って、インフルエンザ抗原とともに HSVを含有する免疫増強 剤を含有するワクチンは、インフルエンザワクチンとして有効であることが結論された 産業上の利用可能性 Based on the above, HSV was shown to enhance the antigen-specific immune response of influenza antigens, and it was shown to be useful as an adjuvant to enhance the effect as an influenza vaccine. Therefore, it was concluded that a vaccine containing an immunopotentiator containing HSV together with an influenza antigen is effective as an influenza vaccine.
本発明によって、単純へルぺスウィルスを含有する新規免疫増強剤、新規抗体産生 誘導剤、及びそれらを含有するワクチンを提供することが可能になった。
According to the present invention, it has become possible to provide a novel immunopotentiator containing a simple herpes virus, a novel antibody production inducer, and a vaccine containing them.
Claims
請求の範囲 The scope of the claims
[I] 単純へルぺスウィルス (herpes simplex virus; HSV)を有効成分として含有する、 HS V以外の抗原に対する抗原特異的 T細胞誘導剤。 [I] An antigen-specific T cell inducer for antigens other than HS V, which contains herpes simplex virus (HSV) as an active ingredient.
[2] 抗原特異的細胞障害性 T細胞誘導剤であることを特徴とする請求項 1に記載の抗 原特異的 T細胞誘導剤 [2] The antigen-specific T cell inducer according to claim 1, which is an antigen-specific cytotoxic T cell inducer
[3] 前記単純へルぺスウィルスが、不活性化されていることを特徴とする請求項 1また は 2に記載の抗原特異的 T細胞誘導剤。 [3] The antigen-specific T cell inducer according to claim 1 or 2, wherein the herpes simplex virus is inactivated.
[4] 前記単純へルぺスウィルスが、加熱、 UV照射、放射線照射、固定、または遺伝子 組み換えによって不活性化されていることを特徴とする請求項 3に記載の抗原特異 的 T細胞誘導剤。 [4] The antigen-specific T cell inducer according to claim 3, wherein the herpes simplex virus is inactivated by heating, UV irradiation, irradiation, fixation, or genetic recombination. .
[5] 不完全フロイントアジュバント (Incomplete Freund adjuvant; IFA)をさらに含有するこ とを特徴とする請求項:!〜 4のいずれかに記載の抗原特異的 T細胞誘導剤。 [5] The antigen-specific T cell inducer according to any one of [5] to [4], further comprising an incomplete Freund adjuvant (IFA).
[6] 単純へルぺスウィルス (herpes simplex virus; HSV)を有効成分として含有する、 HS [6] HS containing herpes simplex virus (HSV) as an active ingredient
V以外の抗原に対する抗体産生誘導剤。 Antibody production inducer against antigens other than V.
[7] 抗原特異的細胞障害性 T細胞誘導剤であることを特徴とする請求項 6に記載の抗 体産生誘導剤。 [7] The antibody production inducer according to [6], which is an antigen-specific cytotoxic T cell inducer.
[8] 前記単純へルぺスウィルスが、不活性化されていることを特徴とする請求項 6また は 7に記載の抗体産生誘導剤。 [8] The antibody production-inducing agent according to [6] or [7], wherein the simple herpesvirus is inactivated.
[9] 前記単純へルぺスウィルスが、加熱、 UV照射、放射線照射、固定、または遺伝子 組み換えによって不活性化されていることを特徴とする請求項 8に記載の抗体産生 誘導剤。 [9] The antibody production inducer according to claim 8, wherein the herpes simplex virus is inactivated by heating, UV irradiation, irradiation, fixation, or genetic recombination.
[10] 不完全フロイントアジュバント (Incomplete Freund adjuvant; IFA)をさらに含有するこ とを特徴とする請求項 6〜9のいずれかに記載の抗体産生誘導剤。 [10] The antibody production-inducing agent according to any one of [6] to [9], further comprising an incomplete Freund adjuvant (IFA).
[I I] 単純へルぺスウィルス (herpes simplex virus; HSV)を有効成分として含有する、 HS V以外の抗原に対する免疫増強剤。 [I I] An immunopotentiator against antigens other than HS V, which contains herpes simplex virus (HSV) as an active ingredient.
[12] 前記単純へルぺスウィルスが不活性化されていることを特徴とする請求項 11に記 載の免疫増強剤。 [12] The immunopotentiator according to [11], wherein the simple herpesvirus is inactivated.
[13] 前記単純へルぺスウィルスが、加熱、 UV照射、放射線照射、固定、または遺伝子
組み換えによって不活性化されていることを特徴とする請求項 12に記載の免疫増強 剤。 [13] The simple herpes virus is heated, UV irradiated, irradiated, fixed, or gene 13. The immunopotentiator according to claim 12, which has been inactivated by recombination.
[14] 不完全フロイントアジュバント (Incomplete Freund adjuvant; IFA)をさらに含有するこ とを特徴とする請求項 11〜: 13のいずれかに記載の免疫増強剤。 [14] The immunopotentiator according to any one of [11] to [13], further comprising Incomplete Freund adjuvant (IFA).
[15] 単純へルぺスウィルス (herpes simplex virus; HSV)以外の抗原に対するワクチンで あって、 [15] A vaccine against antigens other than herpes simplex virus (HSV),
単純へルぺスウィルスを有効成分として含む免疫増強剤及び前記抗原を含有する ワクチン。 An immunopotentiator comprising a simple herpes virus as an active ingredient and a vaccine containing the antigen.
[16] 前記単純へルぺスウィルスが、不活性化されていることを特徴とする請求項 15に記 載のワクチン。 16. The vaccine according to claim 15, wherein the simple herpesvirus is inactivated.
[17] 前記単純へルぺスウィルスが、加熱、 UV照射、放射線照射、固定、または遺伝子 組み換えによって不活性化されていることを特徴とする請求項 16に記載のワクチン。 17. The vaccine according to claim 16, wherein the herpes simplex virus is inactivated by heating, UV irradiation, irradiation, fixation, or genetic recombination.
[18] 不完全フロイントアジュバント (Incomplete Freund adjuvant; IFA)をさらに含有すること を特徴とする請求項 15〜: 17のいずれかに記載のワクチン。 [18] The vaccine according to any one of [15] to [17], further comprising Incomplete Freund adjuvant (IFA).
[19] 癌ワクチンであることを特徴とする請求項 15〜: 18のいずれかに記載のワクチン。 [19] The vaccine according to any one of [15] to [18], which is a cancer vaccine.
[20] 病原体の感染に対する予防ワクチンであることを特徴とする請求項 15〜: 18のいず れかに記載のワクチン。 [20] The vaccine according to any one of [15] to [18], which is a preventive vaccine against infection with a pathogen.
[21] 脊椎動物に対して投与した、 HSV以外の抗原に対して抗原特異的な T細胞を誘導 する方法であって、 [21] A method for inducing antigen-specific T cells to an antigen other than HSV administered to a vertebrate,
前記抗原と併用して請求項:!〜 5のいずれかに記載の抗原特異的 T細胞誘導剤、 または請求項 15〜20のいずれかに記載のワクチンを投与することを特徴とする方法 A method comprising administering the antigen-specific T cell inducer according to any one of claims: to 5 or the vaccine according to any one of claims 15 to 20 in combination with the antigen.
[22] 前記 T細胞が細胞障害性 T細胞であることを特徴とする請求項 21に記載の方法。 [22] The method of claim 21, wherein the T cell is a cytotoxic T cell.
[23] 脊椎動物に対して投与した、 HSV以外の抗原に対して抗原特異的な抗体産生を誘 導する方法であって、 [23] A method for inducing antigen-specific antibody production against an antigen other than HSV administered to a vertebrate,
前記抗原と併用して請求項 6〜: 10のいずれかに記載の抗体産生誘導剤、または 請求項 15〜20のいずれかに記載のワクチンを投与することを特徴とする方法。 A method comprising administering the antibody production-inducing agent according to any one of claims 6 to 10 or the vaccine according to any one of claims 15 to 20 in combination with the antigen.
[24] ヒト以外の脊椎動物において免疫を増強する方法であって、
請求項 11〜: 14のいずれかに記載の免疫増強剤、または請求項 15〜20のいずれ かに記載のワクチンを投与することを特徴とする方法。 [24] A method of enhancing immunity in vertebrates other than humans, A method comprising administering the immunopotentiator according to any one of claims 11 to 14 or the vaccine according to any one of claims 15 to 20.
[25] ヒト以外の脊椎動物における腫瘍の治療方法であって、 [25] A method for treating tumors in vertebrates other than humans,
請求項 15〜: 19のいずれかに記載のワクチンを接種することを特徴とする方法。 A method comprising inoculating the vaccine according to any one of claims 15 to 19.
[26] ヒト以外の脊椎動物における病原体の感染に対する治療方法であって、 [26] A method for treating pathogen infection in non-human vertebrates,
請求項 15〜18, 20のいずれかに記載のワクチンを接種することを特徴とする方法
A method comprising inoculating the vaccine according to any one of claims 15 to 18 and 20
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006520465A JPWO2006080420A1 (en) | 2005-01-27 | 2006-01-27 | Antigen-specific T cell inducer, antibody production inducer, immune enhancer, and vaccine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005020393 | 2005-01-27 | ||
JP2005-020393 | 2005-01-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2006080420A1 true WO2006080420A1 (en) | 2006-08-03 |
Family
ID=36740444
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/301283 WO2006080420A1 (en) | 2005-01-27 | 2006-01-27 | Antigen-specific t cell inducer, antibody production inducer, immune enhancer and vaccine |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2006080420A1 (en) |
WO (1) | WO2006080420A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038328A (en) * | 1983-08-11 | 1985-02-27 | Handai Biseibutsubiyou Kenkyukai | Method for promoting antineoplastic immunity induction |
WO1998010749A1 (en) * | 1996-09-11 | 1998-03-19 | Albany Medical College | Protein-lipid vesicles and autogenous vaccine comprising the same |
WO2003092708A1 (en) * | 2002-05-02 | 2003-11-13 | Institute Of Gene And Brain Science | Antitumor agents with the use of hsv |
-
2006
- 2006-01-27 WO PCT/JP2006/301283 patent/WO2006080420A1/en not_active Application Discontinuation
- 2006-01-27 JP JP2006520465A patent/JPWO2006080420A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6038328A (en) * | 1983-08-11 | 1985-02-27 | Handai Biseibutsubiyou Kenkyukai | Method for promoting antineoplastic immunity induction |
WO1998010749A1 (en) * | 1996-09-11 | 1998-03-19 | Albany Medical College | Protein-lipid vesicles and autogenous vaccine comprising the same |
WO2003092708A1 (en) * | 2002-05-02 | 2003-11-13 | Institute Of Gene And Brain Science | Antitumor agents with the use of hsv |
Also Published As
Publication number | Publication date |
---|---|
JPWO2006080420A1 (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chang et al. | Adjuvant activity of fish type I interferon shown in a virus DNA vaccination model | |
Martínez-Donato et al. | Protective T cell and antibody immune responses against hepatitis C virus achieved using a biopolyester-bead-based vaccine delivery system | |
CN115948467A (en) | Vaccine against hepatitis B virus | |
PT1035865E (en) | TAT OF HIV-1 OR THEIR RESPECTIVE DERIVATIVES FOR PROPHYLACTIC AND THERAPEUTIC VACCINATION | |
AU2007252296A1 (en) | Immunogenic compositions | |
EA003554B1 (en) | Pharmaceutical composition for generating an anti virus immune response in a human or animal host | |
Du et al. | The adjuvant effects of co‐stimulatory molecules on cellular and memory responses to HBsAg DNA vaccination | |
Heng et al. | Impact of sex steroid ablation on viral, tumour and vaccine responses in aged mice | |
Verma et al. | Norovirus (NoV) specific protective immune responses induced by recombinant P dimer vaccine are enhanced by the mucosal adjuvant FlaB | |
Dotsika et al. | Influence of Quillaja saponaria triterpenoid content on the immunomodulatory capacity of Epstein–Barr virus Iscoms | |
Li et al. | Bursopentine as a novel immunoadjuvant enhances both humoral and cell-mediated immune responses to inactivated H9N2 avian influenza virus in chickens | |
Olivera et al. | Protective cellular immune response against hepatitis C virus elicited by chimeric protein formulations in BALB/c mice | |
Jin et al. | Induction of potent cellular immune response in mice by hepatitis C virus NS3 protein with double‐stranded RNA | |
AU2018233208B2 (en) | Immunopotentiator, immunotherapeutic pharmaceutical composition and its preparation and use | |
Sordo et al. | Humoral and cellular immune response in mice induced by the classical swine fever virus E2 protein fused to the porcine CD154 antigen | |
WO2018166298A1 (en) | Immunopotentiator, immunotherapeutic pharmaceutical composition and its preparation and use | |
Sun et al. | Vaccine: X | |
Khalifa et al. | Enhanced protection against FMDV in cattle after prime-boost vaccination based on mucosal and inactivated FMD vaccine | |
Reddy et al. | Cationic microparticle [poly (d, l‐lactide‐co‐glycolide)]‐coated DNA vaccination induces a long‐term immune response against foot and mouth disease in guinea pigs | |
He et al. | A human cell-based SARS-CoV-2 vaccine elicits potent neutralizing antibody responses and protects mice from SARS-CoV-2 challenge | |
JP4840774B2 (en) | Oral vaccine | |
JP6152944B2 (en) | Bound immunogenic composition and uses thereof | |
McElhaney | Influenza vaccination in the elderly: seeking new correlates of protection and improved vaccines | |
WO2006080420A1 (en) | Antigen-specific t cell inducer, antibody production inducer, immune enhancer and vaccine | |
Adam et al. | A modified porous silicon microparticle promotes mucosal delivery of SARS-CoV-2 antigen and induction of potent and durable systemic and mucosal T helper 1 skewed protective immunity |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2006520465 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |
Ref document number: 06712449 Country of ref document: EP Kind code of ref document: A1 |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 6712449 Country of ref document: EP |