Nothing Special   »   [go: up one dir, main page]

WO2006070749A1 - METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD - Google Patents

METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD Download PDF

Info

Publication number
WO2006070749A1
WO2006070749A1 PCT/JP2005/023798 JP2005023798W WO2006070749A1 WO 2006070749 A1 WO2006070749 A1 WO 2006070749A1 JP 2005023798 W JP2005023798 W JP 2005023798W WO 2006070749 A1 WO2006070749 A1 WO 2006070749A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
silicon carbide
sic
production method
alkali metal
Prior art date
Application number
PCT/JP2005/023798
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuo Kitaoka
Takatomo Sasaki
Yusuke Mori
Fumio Kawamura
Minoru Kawahara
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd., Osaka University filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/599,035 priority Critical patent/US7419545B2/en
Priority to EP05820246A priority patent/EP1739211A4/en
Priority to JP2006521031A priority patent/JP5049590B2/en
Publication of WO2006070749A1 publication Critical patent/WO2006070749A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1068Seed pulling including heating or cooling details [e.g., shield configuration]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1032Seed pulling
    • Y10T117/1072Seed pulling including details of means providing product movement [e.g., shaft guides, servo means]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1024Apparatus for crystallization from liquid or supercritical state
    • Y10T117/1076Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone
    • Y10T117/1088Apparatus for crystallization from liquid or supercritical state having means for producing a moving solid-liquid-solid zone including heating or cooling details

Definitions

  • the present invention relates to a method for producing a silicon carbide (SiC) single crystal and a silicon carbide (SiC) single crystal obtained thereby.
  • Silicon carbide (SiC) single crystal is a promising semiconductor material having a wide band gap, high thermal conductivity, high insulation electric field, and large saturation electron velocity. Because of these characteristics, semiconductor devices manufactured using silicon carbide single crystal force can be operated at high operating temperatures, high speeds, and high output levels. For example, automotive power devices are energy devices. It is a promising semiconductor device.
  • the sublimation method is a method in which SiC is used as a raw material, and this is heated and sublimated to precipitate a single crystal in a low temperature part.
  • the Atchison method is a method in which carbon and silica are reacted at a high temperature.
  • Liquid phase growth is a method in which a silicon compound is dissolved in a carbon crucible and carbon and silicon are reacted at a high temperature to precipitate a single crystal.
  • the conventional growth methods have various problems as shown below. First, a common problem in these methods is that a high temperature is required for crystal growth.
  • the obtained single crystal has many micropipes, stacking faults, and the like, so there is a problem in the quality of the obtained crystal.
  • it is difficult to control the partial pressure of these gases to the stoichiometric composition because the raw materials are vaporized as Si, SiC, and Si C during sublimation. Is considered to be formed.
  • liquid phase growth it is difficult to grow large crystals because the amount of carbon dissolved in the silicon solution is small.
  • Patent Document 4 a method of producing 3C_SiC single crystal by crystal growth using SiC as a raw material in a liquid phase growth method has been reported (Patent Document 4). To obtain crystals, high temperature treatment is required. On the other hand, it is generally said that in order to produce a high-quality SiC single crystal substrate at a low cost, it is necessary to produce the single crystal under a low temperature condition of 1500 ° C or lower.
  • Patent Document 1 JP 2000-264790 A
  • Patent Document 2 JP 2002-356397
  • Patent Document 3 Japanese Patent Laid-Open No. 2004-2173
  • Patent Document 4 U.S. Pat.No. 4,349,407
  • an object of the present invention is to provide a method for producing a silicon carbide single crystal capable of producing a large silicon carbide (SiC) single crystal at low cost.
  • the production method of the present invention involves dissolving silicon (Si) and carbon (C) in an alkali metal flux and reacting them to form a silicon carbide unit. This is a manufacturing method for generating or growing crystals.
  • the silicon carbide single crystal of the present invention is a silicon carbide single crystal obtained by the production method of the present invention.
  • the invention's effect is a silicon carbide single crystal obtained by the production method of the present invention.
  • silicon and carbon are dissolved in an alkali metal flux and reacted with each other.
  • the temperature condition is low (eg, 1500 ° C. or lower).
  • a large silicon carbide single crystal can be manufactured at low cost.
  • FIG. 1 is a schematic diagram showing an example of a production apparatus used in the production method of the present invention
  • Fig. 1 (B) shows a pressure-resistant and heat-resistant container in the production apparatus. It is an enlarged perspective view
  • FIG. 2 is a photograph of an aggregate of SiC single crystals obtained in one example of the production method of the present invention.
  • FIG. 3 (A) and (B) are enlarged photographs of the SiC single crystal.
  • FIG. 4 is a chart showing the results of X-ray diffraction evaluation of the products in the crucible in the example.
  • FIG. 5 (A) is a schematic diagram showing a method of X-ray diffraction
  • FIG. 5 (B) is a chart showing the results of X-ray diffraction evaluation of the SiC single crystal.
  • FIG. 6 is another chart showing the X-ray diffraction evaluation results of the SiC single crystal.
  • the silicon carbide single crystal is generated or grown by cooling the alkali metal flux in which the silicon and the carbon are dissolved. That is, for example, by heating the silicon, the carbon, and the alkali metal, the silicon and the carbon are dissolved in the alkali metal flux, and the heating state is maintained for a certain time, and then the heating temperature is decreased. It is preferable to cool the alkali metal flux.
  • this method is referred to as “temperature drop method”.
  • the initial temperature of the heat treatment (growth initial temperature), the final temperature after the drop, the temperature drop rate, etc. are not particularly limited and can be determined as appropriate.
  • a temperature gradient is formed in the alkali metal flux, the silicon and the carbon are dissolved in a high temperature region of the temperature gradient, and the low temperature region of the temperature gradient is It is preferable to produce or grow a silicon carbide single crystal.
  • this method is referred to as “temperature gradient method”.
  • the temperature in the high temperature region and the low temperature region is not particularly limited and can be determined as appropriate.
  • the alkali metal flux force includes lithium (Li). S is preferable, and a flux of lithium alone is particularly preferable.
  • the present invention is not limited to this, and the flux is, for example, other alkali metals such as sodium (Na) and potassium (K), and alkaline earth metals (for example, calcium (Ca)). It contains other elements such as
  • the generation or growth of the single crystal is preferably performed in a heated atmosphere.
  • the heating temperature is, for example, not more than 1500 ° C, preferably in the range of 200 to 1500 o C, more preferably in the range from 400 to 1500 o C, more preferably in the range of 600 to 1400 ° C is there.
  • the heating temperature can be determined as appropriate depending on, for example, the composition of the flux. Among these, the heating temperature is preferably not more than the boiling point of the element that is the main component of the flux, because the evaporation of the flux component can be further suppressed.
  • the generation and growth of the single crystal be performed in a pressurized atmosphere, for example, in the range of 0.1 to:! OOMPa. Yes, preferably in the range of 0.:! To lOMPa, more preferably in the range of 0.:! To IMPa.
  • the generation or growth of the single crystal is preferably performed in an inert gas atmosphere.
  • the inert gas include argon (Ar) gas and hydrocarbon gas such as methane and propane, and more preferably argon gas.
  • the proportions of alkali metal, silicon and carbon as flux components are not particularly limited.
  • the reaction is performed in a reaction vessel, and the carbon is supplied with the material component force of the reaction vessel.
  • a silicon carbide crystal prepared in advance is used as a seed crystal, and a new silicon carbide single crystal is grown using the seed crystal as a nucleus.
  • the seed crystal is preferably in the form of a substrate.
  • a silicon carbide crystal may be formed in a thin film on the surface of a substrate made of another material.
  • the silicon carbide crystal used as the seed crystal for example, 6H-SiC crystal and 4H-SiC crystal are preferable.
  • a 2H-SiC single crystal is manufactured on a 6H-SiC crystal substrate. It is preferable to do.
  • the seed crystal a commercially available silicon carbide crystal or a carbide crystal substrate can be used.
  • Examples of the silicon carbide single crystal obtained by the production method of the present invention include 6H—SiC single crystal, 4H—SiC single crystal, 3C—SiC single crystal, and 2H—SiC single crystal.
  • 2H—SiC single crystals are particularly preferred because of their high practicality because they have the largest band gap and high electron mobility.
  • a 2H—SiC single crystal means a material that can be used practically as a 2H—SiC single crystal, and is not limited to one that is formed strictly from 2H—SiC. The same applies to 3C_SiC single crystals and other single crystals.
  • the manufacturing method of the present invention can be used for manufacturing semiconductor devices, for example. That is, in the method for manufacturing a semiconductor device, for example, by forming a silicon carbide single crystal on a substrate using the manufacturing method of the present invention, a semiconductor device including a silicon carbide single crystal layer can be manufactured at low cost.
  • the substrate include a 6H_SiC crystal substrate and a 4H_SiC crystal substrate, and the silicon carbide single crystal includes, for example, a 2H_SiC single crystal. preferable.
  • the silicon carbide single crystal of the present invention is a silicon carbide single crystal obtained by the production method of the present invention.
  • This silicon carbide single crystal is of higher quality than that produced by conventional methods.
  • FIGS. 1A and 1B show an example of an apparatus used in the production method of the present invention.
  • this apparatus includes a gas tank 11, a pressure regulator 12, an electric furnace 14, and a pressure and heat resistant container 13.
  • a pressure-resistant and heat-resistant container 13 is arranged in the electric furnace 14, and a crucible 15 is arranged in the pressure-resistant and heat-resistant container 13 (FIG. 1 (B)).
  • the gas tank 11 is connected to the pressure-resistant and heat-resistant container 13 by a pipe, and a pressure regulator 12 is disposed in the middle thereof.
  • the gas tank 11 is filled with an inert gas such as argon (Ar), for example.
  • the pressure of the gas can be adjusted to, for example, 1 to: 100 atm (0.1 to: OMPa) from the pressure regulator 12 and supplied into the pressure and heat resistant container 13.
  • evaporation of the flux component eg, lithium
  • 16 is a leak valve.
  • the electric furnace 14 include a resistance heater and the like, and a resistance heater and a heat insulating material force may be configured.
  • MoSi or the like can be used.
  • a Kanthal wire can be used. Is extremely easy.
  • the container disposed in the electric furnace 14 is not limited to a pressure and heat resistant container.
  • a material of the crucible 15 for example, a material resistant to lithium metal such as tungsten (W) or SUS can be used.
  • a crucible formed from a carbon-based material such as a graphite crucible may be used, or a material force resistant to lithium metal may be used. System material force A crucible formed may be arranged.
  • carbon as a crystal raw material can be supplied with a crucible material force.
  • other components may be placed in the crucible 15.
  • doping impurities may be added.
  • the P-type doping material include A1 and B.
  • the N-type doping material include N and P.
  • the production of a SiC single crystal using this apparatus can be performed, for example, as follows. First, in a glove box, lithium, silicon, and carbon are weighed and put in a crucible 15, and this crucible 15 is set in a pressure and heat resistant container 13. Then, argon gas is supplied from the gas tank 11 into the pressure and heat resistant container 13. At this time, the pressure is adjusted to a predetermined pressure by the pressure regulator 12. Then, the inside of the pressure and heat resistant container 13 is heated by the electric furnace 14. Then, since the boiling point of lithium is 1327 ° C. in the crucible 15, lithium is first dissolved to form a flux (melt), in which silicon and carbon are dissolved. The heating temperature is, for example, 1500 ° C.
  • the melt temperature can be further increased by increasing the atmospheric pressure, which can further improve the solubility of silicon and carbon.
  • the atmospheric pressure is as described above.
  • a hydrocarbon gas such as methane or propane can be used in addition to the argon gas.
  • the temperature drop rate (temperature drop rate) is preferably in the range of, for example, 0.1 to 100 ° C./h, where a constant rate is preferred.
  • This temperature gradient method is, for example, a method in which, in the flux, two regions having different temperatures, a temperature region where a crystal raw material is dissolved (high temperature region) and a temperature region where a single crystal is generated or grown (low temperature region) are provided. is there.
  • the temperature difference between the high temperature region and the low temperature region is preferably in the range of 10 to 500 ° C., for example.
  • a seed crystal it is preferable to make this seed crystal and its periphery into a low temperature area
  • a method of forming a temperature gradient in the flux For example, there are the following methods. That is, first, silicon and carbon as raw materials are filled at the bottom of a crucible containing flux (melt), and silicon carbide as a seed crystal is fixed at the top of the crucible. The heater is divided into two zones, and a difference is formed between the temperature of the crucible bottom, which is the raw material part, and the growth part where the seed crystal is fixed. By setting the crucible bottom to a high temperature and the growth to a low temperature, silicon and carbon dissolve in the flux (melt) and react to grow a single crystal on the seed crystal in the low temperature. .
  • the heating temperature of the growth region is set to 600 ° C.
  • C force is preferred, more preferably ⁇ or 700-850.
  • the initial growth temperature is preferably 750 to 850 ° C, more preferably 800 to 850 ° C.
  • the temperature is gradually lowered from the initial temperature to grow a single crystal, and the final temperature is preferably set to 600 to 800 ° C, for example, more preferably 700 to 800 ° C.
  • the high temperature region is preferably, for example, 800 ° C or more, more preferably 850 ° C or more, and the low temperature region is, for example, 600 to 850 ° C.
  • Force S is preferable, more preferably 700 to 850 ° C.
  • the heating temperature of the growth region is preferably 850 to 1000 ° C., more preferably 850 to 950 ° C., for example.
  • the initial growth temperature is preferably 900 to 1000 ° C. force S, for example.
  • the temperature is gradually lowered from the initial temperature to grow a single crystal, and the final temperature is preferably set to 850 to 950 ° C., for example.
  • the high temperature region is preferably 950 ° C. or more, more preferably 1000 ° C. or more. 1000.
  • C force is preferred, more preferred f is 850-950. C.
  • silicon carbide single crystals such as 4H—SiC single crystals and 6H—SiC single crystals can be grown at a lower temperature than in the past.
  • the manufacturing method of the present invention it is possible to produce or grow a silicon carbide single crystal at a lower temperature than in the prior art.
  • these temperature ranges are examples, and are not limited, for example The heating temperature can be appropriately set according to other conditions.
  • This example is an example in which a silicon carbide (SiC) single crystal was manufactured using the crystal growth apparatus shown in FIGS. 1 (A) and (B).
  • the electric furnace 14 used was composed of a resistance heater and heat insulating material.
  • a pressure-resistant and heat-resistant container 13 is arranged in the electric furnace 14, and the pressure-resistant and heat-resistant container 1
  • a tungsten (W) crucible 15 was placed in 3.
  • FIG. 2 is an aggregate of silicon carbide single crystals formed on the side wall of the graphite crucible
  • FIGS. 3A and 3B are enlarged views of the obtained silicon carbide single crystal.
  • Fig. 4 is a chart showing the results of the ⁇ / 2 ⁇ scan (rotating the crystal and detector). As shown in the figure, a diffraction peak matching the peak data of 2H_SiC was confirmed, and further, the obtained single crystal was evaluated by X-ray diffraction using a parallel beam method as shown in the schematic diagram of Fig. 5 (A). Did. As shown in the figure, in this evaluation, X-rays are incident from 3.7 degrees, and diffracted light from the single crystal is detected by a detector. A solar slit for extracting only the parallel beam is placed in front of the detector to detect the signal with high resolution. The analysis results are shown in the chart of Fig. 5 (B). Fig.
  • the X-ray source is not particularly limited.
  • a CuK ct line can be used.
  • the first crystal used for the X-ray patrol is not particularly limited, and for example, InP crystal or Ge crystal can be used.
  • a silicon carbide single crystal was produced in the same manner as in Example 1 except that the temperature in the electric furnace 14 was heated to 950 ° C and held for 24 hours, and then cooled to 850 ° C in 72 hours. did.
  • the product in the crucible obtained was evaluated for X-ray diffraction in the same manner as in Example 1.
  • the chart in Figure 9 shows the results of this analysis. From this result, the formation of 3C-SiC single crystal was confirmed.
  • a large silicon carbide single crystal can be produced at low cost. Further, according to the production method of the present invention, for example, a large butter-shaped silicon carbide single crystal can be produced at low cost.
  • the silicon carbide single crystal obtained by the production method of the present invention can be preferably used, for example, as a semiconductor device for an in-vehicle power device or an energy device, and its application is not limited and is wide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Disclosed is a method for producing a large-sized silicon carbide (SiC) single crystal at low cost. Specifically, a silicon carbide single crystal is produced or grown by melting and reacting silicon (Si) and carbon (C) in an alkali metal flux. Lithium (Li) is preferable as the alkali metal. By this method, a silicon carbide single crystal can be produced under low temperature conditions, for example, at 1500˚C or less. One example of the silicon carbide single crystal obtained by this method is shown in the photograph of Fig. 3(B).

Description

明 細 書  Specification
炭化珪素(SiC)単結晶の製造方法及びそれにより得られた炭化珪素(Si C)単結晶  Method for producing silicon carbide (SiC) single crystal and silicon carbide (Si C) single crystal obtained thereby
技術分野  Technical field
[0001] 本発明は、炭化珪素(SiC)単結晶の製造方法及びそれにより得られた炭化珪素( SiC)単結晶に関する。  The present invention relates to a method for producing a silicon carbide (SiC) single crystal and a silicon carbide (SiC) single crystal obtained thereby.
背景技術  Background art
[0002] 炭化珪素(SiC)単結晶は、広いバンドギャップ、高い熱伝導性、高い絶縁電界、大 きな飽和電子速度を有してレ、る有望な半導体材料である。このような特性をもつこと により、炭化珪素単結晶力 製造した半導体デバイスは、高い動作温度で、高速、高 出力レベルで動作させることが可能であるため、例えば、車載用パワーデバイスゃェ ネルギーデバイス用として有望な半導体デバイスである。  [0002] Silicon carbide (SiC) single crystal is a promising semiconductor material having a wide band gap, high thermal conductivity, high insulation electric field, and large saturation electron velocity. Because of these characteristics, semiconductor devices manufactured using silicon carbide single crystal force can be operated at high operating temperatures, high speeds, and high output levels. For example, automotive power devices are energy devices. It is a promising semiconductor device.
[0003] 従来の炭化珪素単結晶の成長方法としては、昇華法、アチソン法、液相成長など が知られている。昇華法は、 SiCを原料とし、これを加熱して昇華させて低温部に単 結晶を析出させる方法である。アチソン法は、炭素と珪石とを高温で反応させる方法 である。液相成長は、炭素坩堝内で珪素化合物を溶解し、高温で炭素とシリコンとを 反応させ、単結晶を析出させる方法である。しかしながら、従来の成長方法には、下 記に示すように、様々な問題がある。まず、これらの方法において共通する問題点は 、結晶成長に高温を要する点である。その他に、昇華法では、得られた単結晶にマイ クロパイプ、積層欠陥などが多数存在するため、得られる結晶の品質に問題がある。 つまり、これは、昇華させる際、原料が、 Si、 SiC、 Si Cとなって気化するため、これら のガス分圧を化学量論的組成に制御することが困難であり、このため前述の欠陥が 形成されると考えられる。また、液相成長では、珪素溶液中への炭素の溶解量が小さ レ、ため大きな結晶を成長させることが困難である。  As conventional silicon carbide single crystal growth methods, the sublimation method, the Atchison method, liquid phase growth, and the like are known. The sublimation method is a method in which SiC is used as a raw material, and this is heated and sublimated to precipitate a single crystal in a low temperature part. The Atchison method is a method in which carbon and silica are reacted at a high temperature. Liquid phase growth is a method in which a silicon compound is dissolved in a carbon crucible and carbon and silicon are reacted at a high temperature to precipitate a single crystal. However, the conventional growth methods have various problems as shown below. First, a common problem in these methods is that a high temperature is required for crystal growth. In addition, in the sublimation method, the obtained single crystal has many micropipes, stacking faults, and the like, so there is a problem in the quality of the obtained crystal. In other words, it is difficult to control the partial pressure of these gases to the stoichiometric composition because the raw materials are vaporized as Si, SiC, and Si C during sublimation. Is considered to be formed. In liquid phase growth, it is difficult to grow large crystals because the amount of carbon dissolved in the silicon solution is small.
[0004] 近年、前述の問題を解決するために、液相成長法において、 Si、 C及び遷移金属 を溶融して融液とし、この融液に種結晶を接触させて、 SiC単結晶を製造する方法が 報告されている(例えば、特許文献 1、 2及び 3参照)。この方法では、黒鉛坩堝に Si Ti となる組成の原料を挿入し、大気圧の Ar雰囲気下で前記坩堝を 1850°Cまでカロ 熱して前記原料を溶解させた後、この融液中に黒鉛が溶解するように 1850°Cで 5時 間保持する。その後、 6H— SiC種結晶を前記融液中に浸漬し、 0. 5°C/minの速 度で 1650°Cまで冷却し、結晶成長させるという方法である。この方法により、厚み 73 2 z mの SiC結晶が形成されたことが報告されている。しかしながら、この方法におい ても、結晶成長に高温を要するという問題がある。すなわち、 Siの融点が 1414°C、 C の融点が 3500°C、 Tiの融点が 1675°C、 SiCの融点が 2545°Cであるため、少なくと も 1700°C以上の高温条件が必要となる。特に、 Tiなどの遷移金属を用いた場合、こ れらの融点が高いため、低温での結晶成長が困難である。また、その他の方法として 、液相成長法において、原料として SiCを使用し、結晶成長させることにより 3C_ Si C単結晶を製造する方法が報告されているが(特許文献 4)、高品質の単結晶を得る には高温での処理が必要となる。一方、一般に、高品質の SiC単結晶基板を、低コス トで作製するためには、 1500°C以下の低温条件で前記単結晶を製造する必要があ るといわれている。 [0004] In recent years, in order to solve the above-mentioned problems, in the liquid phase growth method, Si, C and transition metals are melted to form a melt, and a seed crystal is brought into contact with the melt to produce a SiC single crystal. Have been reported (see, for example, Patent Documents 1, 2 and 3). In this method, the graphite crucible is A raw material having a composition of Ti was inserted, and the crucible was heated to 1850 ° C in an Ar atmosphere at atmospheric pressure to dissolve the raw material, and then at 1850 ° C so that graphite was dissolved in the melt. Hold for 5 hours. Thereafter, the 6H—SiC seed crystal is immersed in the melt, cooled to 1650 ° C. at a rate of 0.5 ° C./min, and grown. It has been reported that a SiC crystal having a thickness of 73 2 zm was formed by this method. However, this method also has a problem that high temperature is required for crystal growth. In other words, the melting point of Si is 1414 ° C, the melting point of C is 3500 ° C, the melting point of Ti is 1675 ° C, and the melting point of SiC is 2545 ° C, so a high temperature condition of at least 1700 ° C is required. Become. In particular, when transition metals such as Ti are used, crystal growth at low temperatures is difficult because of their high melting points. As another method, a method of producing 3C_SiC single crystal by crystal growth using SiC as a raw material in a liquid phase growth method has been reported (Patent Document 4). To obtain crystals, high temperature treatment is required. On the other hand, it is generally said that in order to produce a high-quality SiC single crystal substrate at a low cost, it is necessary to produce the single crystal under a low temperature condition of 1500 ° C or lower.
特許文献 1 :特開 2000— 264790号公報  Patent Document 1: JP 2000-264790 A
特許文献 2 :特開 2002— 356397号公報  Patent Document 2: JP 2002-356397
特許文献 3:特開 2004— 2173号公報  Patent Document 3: Japanese Patent Laid-Open No. 2004-2173
特許文献 4 :米国特許第 4349407号明細書  Patent Document 4: U.S. Pat.No. 4,349,407
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] そこで、本発明は、低コストで大きな炭化珪素(SiC)単結晶を製造可能な炭化珪素 単結晶の製造方法の提供を目的とする。 Accordingly, an object of the present invention is to provide a method for producing a silicon carbide single crystal capable of producing a large silicon carbide (SiC) single crystal at low cost.
課題を解決するための手段  Means for solving the problem
[0006] 前記目的を達成するために、本発明の製造方法は、アルカリ金属フラックス中にお いて、シリコン(Si)と炭素(C)とを溶解し、これらを反応させることにより、炭化珪素単 結晶を生成又は成長させる製造方法である。 [0006] In order to achieve the above object, the production method of the present invention involves dissolving silicon (Si) and carbon (C) in an alkali metal flux and reacting them to form a silicon carbide unit. This is a manufacturing method for generating or growing crystals.
[0007] また、本発明の炭化珪素単結晶は、前記本発明の製造方法により得られた炭化珪 素単結晶である。 発明の効果 [0007] The silicon carbide single crystal of the present invention is a silicon carbide single crystal obtained by the production method of the present invention. The invention's effect
[0008] このように、本発明の製造方法では、アルカリ金属フラックス中において、シリコンと 炭素とを溶解し、これらを反応させるため、例えば、低温 (例えば、 1500°C以下)の 温度条件であっても、炭化珪素単結晶の製造が可能である。このため、本発明の製 造方法によれば、低コストで大きな炭化珪素単結晶の製造が可能となる。  As described above, in the production method of the present invention, silicon and carbon are dissolved in an alkali metal flux and reacted with each other. For example, the temperature condition is low (eg, 1500 ° C. or lower). However, it is possible to produce a silicon carbide single crystal. For this reason, according to the manufacturing method of the present invention, a large silicon carbide single crystal can be manufactured at low cost.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]図 1 (A)は、本発明の製造方法に使用する製造装置の一例の概略を示す構成 図であり、図 1 (B)は、前記製造装置における耐圧耐熱容器を拡大した斜視図である  [0009] [Fig. 1] Fig. 1 (A) is a schematic diagram showing an example of a production apparatus used in the production method of the present invention, and Fig. 1 (B) shows a pressure-resistant and heat-resistant container in the production apparatus. It is an enlarged perspective view
[図 2]図 2は、本発明の製造方法の一実施例で得られた SiC単結晶の集合体の写真 である。 FIG. 2 is a photograph of an aggregate of SiC single crystals obtained in one example of the production method of the present invention.
[図 3]図 3 (A)及び (B)は、前記 SiC単結晶の拡大写真である。  FIG. 3 (A) and (B) are enlarged photographs of the SiC single crystal.
[図 4]図 4は、前記実施例における坩堝内の生成物の X線回折評価結果を示すチヤ ート図である。  FIG. 4 is a chart showing the results of X-ray diffraction evaluation of the products in the crucible in the example.
[図 5]図 5 (A)は、 X線回折の手法を示す模式図であり、図 5 (B)は、前記 SiC単結晶 の X線回折評価結果を示すチャート図である。  FIG. 5 (A) is a schematic diagram showing a method of X-ray diffraction, and FIG. 5 (B) is a chart showing the results of X-ray diffraction evaluation of the SiC single crystal.
[図 6]図 6は、前記 SiC単結晶の X線回折評価結果を示す別のチャート図である。  FIG. 6 is another chart showing the X-ray diffraction evaluation results of the SiC single crystal.
[図 7]図 7は、本発明のその他の実施例で得られた生成物の X線回折評価結果を示 すチャート図である。  FIG. 7 is a chart showing the results of X-ray diffraction evaluation of products obtained in other examples of the present invention.
符号の説明  Explanation of symbols
[0010] 11 ガスタンク [0010] 11 Gas tank
12 圧力調整器  12 Pressure regulator
13 電気炉  13 Electric furnace
14 耐圧耐熱容器  14 Pressure and heat resistant container
15 坩堝  15 crucible
16 リーク用バルブ  16 Leak valve
発明を実施するための最良の形態 [0011] 本発明の製造方法において、前記シリコン及び前記炭素が溶解している前記アル カリ金属フラックスを冷却することにより、前記炭化珪素単結晶を生成又は成長させる ことが好ましい。すなわち、例えば、前記シリコン、前記炭素及び前記アルカリ金属を 加熱することにより、前記アルカリ金属フラックス中に前記シリコン及び前記炭素を溶 解させ、前記加熱状態を一定時間保持した後、前記加熱温度を降下させることにより 前記アルカリ金属フラックスを冷却することが好ましい。以下、この方法を「温度降下 法」という。なお、温度降下法において、加熱処理の初期温度(成長初期温度)、降 下後の最終温度、温度降下速度等は、特に制限されず、適宜決定できる。 BEST MODE FOR CARRYING OUT THE INVENTION [0011] In the production method of the present invention, it is preferable that the silicon carbide single crystal is generated or grown by cooling the alkali metal flux in which the silicon and the carbon are dissolved. That is, for example, by heating the silicon, the carbon, and the alkali metal, the silicon and the carbon are dissolved in the alkali metal flux, and the heating state is maintained for a certain time, and then the heating temperature is decreased. It is preferable to cool the alkali metal flux. Hereinafter, this method is referred to as “temperature drop method”. In the temperature drop method, the initial temperature of the heat treatment (growth initial temperature), the final temperature after the drop, the temperature drop rate, etc. are not particularly limited and can be determined as appropriate.
[0012] 本発明の製造方法において、前記アルカリ金属フラックス中に温度勾配を形成し、 前記温度勾配の高温領域において、前記シリコンと前記炭素とを溶解させ、前記温 度勾配の低温領域において、前記炭化珪素単結晶を生成又は成長させることが好 ましレ、。以下、この方法を「温度勾配法」という。なお、温度勾配法において、高温領 域および低温領域の温度は、特に制限されず、適宜決定できる。  [0012] In the manufacturing method of the present invention, a temperature gradient is formed in the alkali metal flux, the silicon and the carbon are dissolved in a high temperature region of the temperature gradient, and the low temperature region of the temperature gradient is It is preferable to produce or grow a silicon carbide single crystal. Hereinafter, this method is referred to as “temperature gradient method”. In the temperature gradient method, the temperature in the high temperature region and the low temperature region is not particularly limited and can be determined as appropriate.
[0013] 本発明の製造方法において、前記アルカリ金属フラックス力 リチウム (Li)を含むこ と力 S好ましく、特に好ましくは、リチウム単体のフラックスである。なお、本発明は、これ に制限されず、前記フラックスは、例えば、ナトリウム (Na)及びカリウム (K)などのそ の他のアルカリ金属や、アルカリ土類金属(例えば、カルシウム(Ca)等)等のその他 の元素を含んでレ、ても良レ、。  [0013] In the production method of the present invention, the alkali metal flux force includes lithium (Li). S is preferable, and a flux of lithium alone is particularly preferable. The present invention is not limited to this, and the flux is, for example, other alkali metals such as sodium (Na) and potassium (K), and alkaline earth metals (for example, calcium (Ca)). It contains other elements such as
[0014] 本発明の製造方法において、前記単結晶の生成又は成長が、加熱雰囲気で行わ れることが好ましい。前記加熱温度は、例えば、 1500°C以下であり、好ましくは 200 〜1500oCの範囲であり、より好ましくは 400〜1500oCの範囲であり、さらに好ましく は 600〜1400°Cの範囲である。なお、前記加熱温度は、例えば、前記フラックスの 組成により適宜決定できるが、中でも、フラックス成分の蒸発をより一層抑制できるこ と力、ら、前記フラックスの主成分となる元素の沸点以下が好ましい。 [0014] In the production method of the present invention, the generation or growth of the single crystal is preferably performed in a heated atmosphere. The heating temperature is, for example, not more than 1500 ° C, preferably in the range of 200 to 1500 o C, more preferably in the range from 400 to 1500 o C, more preferably in the range of 600 to 1400 ° C is there. The heating temperature can be determined as appropriate depending on, for example, the composition of the flux. Among these, the heating temperature is preferably not more than the boiling point of the element that is the main component of the flux, because the evaporation of the flux component can be further suppressed.
[0015] 本発明の製造方法において、後述のように、前記単結晶の生成及び成長は、加圧 雰囲気で行うことが好ましぐこの条件は、例えば、 0. 1〜: !OOMPaの範囲であり、好 ましくは 0.:!〜 lOMPaの範囲であり、より好ましくは 0. :!〜 IMPaの範囲である。ま た、前記単結晶の生成又は成長は、不活性ガス雰囲気で行うことが好ましい。前記 不活性ガスとしては、例えば、アルゴン (Ar)ガス、並びに、メタン及びプロパン等の 炭化水素ガスがあげられ、より好ましくはアルゴンガスである。 [0015] In the production method of the present invention, as described later, it is preferable that the generation and growth of the single crystal be performed in a pressurized atmosphere, for example, in the range of 0.1 to:! OOMPa. Yes, preferably in the range of 0.:! To lOMPa, more preferably in the range of 0.:! To IMPa. In addition, the generation or growth of the single crystal is preferably performed in an inert gas atmosphere. Said Examples of the inert gas include argon (Ar) gas and hydrocarbon gas such as methane and propane, and more preferably argon gas.
[0016] 本発明の製造方法において、フラックス成分であるアルカリ金属並びにシリコン及 び炭素の割合は、特に制限されなレ、。例えば、フラックス成分としてリチウムを単体で 使用する場合、 Li、 Si及び Cの割合 (mol比)は、例えば、 Li: Si: C = l : (0. 01〜: 10 0): (0. 01〜: 100)であり、好ましくは Li: Si: C = l : (0. 01〜: 10): (0. 01〜: 10)で あり、より好ましくは Li: Si: C = l : (0. 01〜: 1): (0. 01〜: 1)である。  [0016] In the production method of the present invention, the proportions of alkali metal, silicon and carbon as flux components are not particularly limited. For example, when lithium is used alone as a flux component, the ratio (mol ratio) of Li, Si, and C is, for example, Li: Si: C = l: (0. 01 to: 10 0): (0. 01 ~: 100), preferably Li: Si: C = l: (0. 01 ~: 10): (0. 01 ~: 10), more preferably Li: Si: C = l: (0 01 ~: 1): (0. 01 ~: 1).
[0017] 本発明の製造方法において、前記反応が、反応容器中で行われ、前記炭素が、前 記反応容器の材料成分力 供給されることが好ましい。  [0017] In the production method of the present invention, it is preferable that the reaction is performed in a reaction vessel, and the carbon is supplied with the material component force of the reaction vessel.
[0018] 本発明の製造方法において、予め準備した炭化珪素結晶を種結晶とし、この種結 晶を核として新たな炭化珪素単結晶を成長させることが好ましい。前記種結晶は、基 板状であることが好ましぐこの場合、例えば、別の材質の基板表面に薄膜状に炭化 珪素結晶が形成されたものであってもよい。前記種結晶とする炭化珪素結晶としては 、例えば、 6H— SiC結晶及び 4H— SiC結晶等が好ましぐ本発明の製造方法にお いて、 6H— SiC結晶基板上に 2H— SiC単結晶を製造することが好ましい。また、前 記種結晶としては、市販の炭化珪素結晶や炭化結晶基板を使用できる。  In the production method of the present invention, it is preferable that a silicon carbide crystal prepared in advance is used as a seed crystal, and a new silicon carbide single crystal is grown using the seed crystal as a nucleus. The seed crystal is preferably in the form of a substrate. In this case, for example, a silicon carbide crystal may be formed in a thin film on the surface of a substrate made of another material. As the silicon carbide crystal used as the seed crystal, for example, 6H-SiC crystal and 4H-SiC crystal are preferable. In the manufacturing method of the present invention, a 2H-SiC single crystal is manufactured on a 6H-SiC crystal substrate. It is preferable to do. Further, as the seed crystal, a commercially available silicon carbide crystal or a carbide crystal substrate can be used.
[0019] 本発明の製造方法により得られる炭化珪素単結晶としては、例えば、 6H— SiC単 結晶、 4H— SiC単結晶、 3C— SiC単結晶及び 2H— SiC単結晶等があげられる。中 でも、バンドギャップが最も大きぐ電子移動度も高いことから、実用性に優れる 2H— SiC単結晶が特に好ましい。なお、本発明において、例えば、 2H— SiC単結晶とは 、実用上、 2H— SiC単結晶として使用できるものをいい、厳密に 2H— SiCのみから 形成されるものには限定されなレ、。また、 3C_ SiC単結晶や他の単結晶についても 同様である。  Examples of the silicon carbide single crystal obtained by the production method of the present invention include 6H—SiC single crystal, 4H—SiC single crystal, 3C—SiC single crystal, and 2H—SiC single crystal. Of these, 2H—SiC single crystals are particularly preferred because of their high practicality because they have the largest band gap and high electron mobility. In the present invention, for example, a 2H—SiC single crystal means a material that can be used practically as a 2H—SiC single crystal, and is not limited to one that is formed strictly from 2H—SiC. The same applies to 3C_SiC single crystals and other single crystals.
[0020] また、本発明の製造方法は、例えば、半導体デバイスの製造に利用できる。つまり 、半導体デバイスの製造方法において、例えば、本発明の製造方法を用いて基板上 に炭化珪素単結晶を形成することにより、炭化珪素単結晶層を含む半導体デバイス を低コストで製造できる。前記基板は、例えば、 6H_ SiC結晶基板及び 4H_ SiC結 晶基板等があげられ、また、前記炭化珪素単結晶は、例えば、 2H_SiC単結晶が 好ましい。 In addition, the manufacturing method of the present invention can be used for manufacturing semiconductor devices, for example. That is, in the method for manufacturing a semiconductor device, for example, by forming a silicon carbide single crystal on a substrate using the manufacturing method of the present invention, a semiconductor device including a silicon carbide single crystal layer can be manufactured at low cost. Examples of the substrate include a 6H_SiC crystal substrate and a 4H_SiC crystal substrate, and the silicon carbide single crystal includes, for example, a 2H_SiC single crystal. preferable.
[0021] つぎに、本発明の炭化珪素単結晶は、前記本発明の製造方法により得られた炭化 珪素単結晶である。この炭化珪素単結晶は、従来法により製造されたものより高品質 である。  Next, the silicon carbide single crystal of the present invention is a silicon carbide single crystal obtained by the production method of the present invention. This silicon carbide single crystal is of higher quality than that produced by conventional methods.
[0022] つぎに、本発明の製造方法について例をあげて説明する。  Next, the production method of the present invention will be described with examples.
[0023] 図 1 (A)及び (B)に、本発明の製造方法に使用する装置の一例を示す。図 1 (A)に 示すように、この装置は、ガスタンク 11、圧力調節器 12、電気炉 14及び耐圧耐熱容 器 13から構成されている。電気炉 14内に耐圧耐熱容器 13が配置され、耐圧耐熱容 器 13内に坩堝 15が配置されている(図 1 (B) )。前記坩堝 15中に、フラックス成分並 びに原料であるシリコン及び炭素を配置する。ガスタンク 11は、パイプで耐圧耐熱容 器 13と連結しており、その途中に圧力調節器 12が配置されており、ガスタンク 11に は、例えば、アルゴン (Ar)などの不活性ガスが充填され、圧力調節器 12より、前記 ガスの圧力を、例えば、 1〜: 100atm (0. 1〜: !OMPa)に調整して耐圧耐熱容器 13 中に供給できる。雰囲気圧力を加圧条件にすることで、フラックス成分 (例えば、リチ ゥム)の蒸発を抑制できる。なお、同図において、 16はリーク用バルブである。前記電 気炉 14としては、例えば、抵抗加熱ヒータ等があげられ、また、抵抗加熱ヒータ及び 断熱材力 構成されていてもよい。前記抵抗加熱ヒータにおける発熱体は、 1500°C まで加熱する場合は、例えば、 MoSi等が使用でき、一方、 1000°C以下で使用する 場合は、例えば、カンタル線等が使用できるため装置の構成が極めて簡単になる。 耐圧耐熱容器 13は、例えば、ステンレス容器等が使用され、電気炉 14内において 加熱される。また、電気炉 14内に配置する容器は、耐圧耐熱容器に限られず、例え ば、電気炉内の圧力と電気炉内に配置した容器内の圧力との差を調節することによ り、耐熱容器が使用できる。坩堝 15の材料としては、例えば、タングステン (W)や SU Sなどのリチウム金属に耐性のある材料等が使用できる。なお、坩堝 15として、例え ば、黒鉛坩堝等の炭素系素材から形成された坩堝を使用してもよいし、リチウム金属 に耐性のある材料力 形成された坩堝内に、さらに黒鉛坩堝等の炭素系素材力 形 成された坩堝を配置してもよい。このように、炭素系素材から形成された坩堝を使用 した場合、結晶原料となる炭素を坩堝材料力 供給できる。なお、本発明において、 坩堝 15内に、シリコン等に加えて、その他の成分を配置してもよぐ例えば、ドーピン グ用の不純物を加えてもよい。 P型ドーピング材料としては、例えば、 A1や B等があり 、 N型ドーピング材料としては、例えば、 Nや P等がある。 FIGS. 1A and 1B show an example of an apparatus used in the production method of the present invention. As shown in FIG. 1 (A), this apparatus includes a gas tank 11, a pressure regulator 12, an electric furnace 14, and a pressure and heat resistant container 13. A pressure-resistant and heat-resistant container 13 is arranged in the electric furnace 14, and a crucible 15 is arranged in the pressure-resistant and heat-resistant container 13 (FIG. 1 (B)). In the crucible 15, flux components and raw materials silicon and carbon are arranged. The gas tank 11 is connected to the pressure-resistant and heat-resistant container 13 by a pipe, and a pressure regulator 12 is disposed in the middle thereof. The gas tank 11 is filled with an inert gas such as argon (Ar), for example. The pressure of the gas can be adjusted to, for example, 1 to: 100 atm (0.1 to: OMPa) from the pressure regulator 12 and supplied into the pressure and heat resistant container 13. By adjusting the atmospheric pressure to a pressurized condition, evaporation of the flux component (eg, lithium) can be suppressed. In the figure, 16 is a leak valve. Examples of the electric furnace 14 include a resistance heater and the like, and a resistance heater and a heat insulating material force may be configured. When the heating element in the resistance heater is heated to 1500 ° C, for example, MoSi or the like can be used. On the other hand, when used at 1000 ° C or less, for example, a Kanthal wire can be used. Is extremely easy. As the pressure resistant and heat resistant container 13, for example, a stainless steel container or the like is used and heated in the electric furnace 14. In addition, the container disposed in the electric furnace 14 is not limited to a pressure and heat resistant container. For example, by adjusting the difference between the pressure in the electric furnace and the pressure in the container disposed in the electric furnace, Containers can be used. As a material of the crucible 15, for example, a material resistant to lithium metal such as tungsten (W) or SUS can be used. As the crucible 15, for example, a crucible formed from a carbon-based material such as a graphite crucible may be used, or a material force resistant to lithium metal may be used. System material force A crucible formed may be arranged. Thus, when a crucible formed from a carbon-based material is used, carbon as a crystal raw material can be supplied with a crucible material force. In the present invention, In addition to silicon or the like, other components may be placed in the crucible 15. For example, doping impurities may be added. Examples of the P-type doping material include A1 and B. Examples of the N-type doping material include N and P.
この装置を用いた SiC単結晶の製造は、例えば、次のようにして実施できる。まず、 グローブボックスの中で、リチウムとシリコンと炭素とを秤量して坩堝 15内に入れ、こ の坩堝 15を耐圧耐熱容器 13内にセットする。そして、ガスタンク 11から、前記耐圧 耐熱容器 13内にアルゴンガスを供給する。この際、圧力調節器 12により所定の圧力 に調節する。そして、電気炉 14によって耐圧耐熱容器 13内を加熱する。すると、坩 堝 15内では、リチウムの沸点が 1327°Cあるため、まずリチウムが溶解してフラックス( 融液)が形成され、この中にシリコン及び炭素が溶解する。前記加熱温度は、例えば 、 1500°C以下であり、好ましくは前記リチウムの沸点以下とし、より好ましくは 1000°C 以下であり、さらに好ましくは 950°C以下、 850°C以下である。例えば、雰囲気圧力を 増加させることによりさらに融液温度を上げることができ、これによつてシリコンや炭素 の溶解度をより一層向上させることが可能である。雰囲気圧力は前述のとおりである 。雰囲気ガスとしては、アルゴンガス以外に、例えば、メタンやプロパンなどの炭化水 素ガスなどを用いることができる。そして、前述のような温度降下法を採用する場合に は、例えば、融液の温度を一定に保持し、シリコンと炭素を十分に溶解させた後、融 液温度を降下させることで、 SiC単結晶を生成又は成長させることができる。前記融 液の保持温度は、例えば、 200〜1500。Cであり、好ましくは 1000。C以下であり、より 好ましくは 950°C以下、 850°C以下である。温度降下率(温度降下速度)は、例えば 、一定速度が好ましぐ例えば、 0. 1〜: 100°C/hの範囲であることが好ましい。この 他に、前述の温度勾配法のように、前記フラックス中に温度勾配を形成し、結晶原料 の溶解と、単結晶の生成又は成長とを、同時に実施することも可能である。この温度 勾配法は、例えば、前記フラックスにおいて、結晶原料が溶解する温度領域(高温領 域)及び単結晶が生成又は成長する温度領域 (低温領域)の 2種類の温度が異なる 領域を設ける方法である。前記高温領域と低温領域との温度差は、例えば、 10〜50 0°Cの範囲が好ましい。また、種結晶を使用する場合、この種結晶及びその周囲を低 温領域とすることが好ましい。前記フラックスにおいて、温度勾配を形成する方法とし ては、例えば、つぎの方法がある。すなわち、まず、フラックス(融液)の入った坩堝の 底部には原料であるシリコン及び炭素を充填し、坩堝上部に種結晶である炭化珪素 を固定する。加熱ヒータを 2ゾーン化し、原料部である坩堝底部と、種結晶が固定さ れた成長部の温度に差を形成する。坩堝底部を高温に設定し、成長部を低温に設 定することで、フラックス (融液)中にシリコン及び炭素が溶解し、反応して、低温部に ある種結晶上で単結晶が成長する。 The production of a SiC single crystal using this apparatus can be performed, for example, as follows. First, in a glove box, lithium, silicon, and carbon are weighed and put in a crucible 15, and this crucible 15 is set in a pressure and heat resistant container 13. Then, argon gas is supplied from the gas tank 11 into the pressure and heat resistant container 13. At this time, the pressure is adjusted to a predetermined pressure by the pressure regulator 12. Then, the inside of the pressure and heat resistant container 13 is heated by the electric furnace 14. Then, since the boiling point of lithium is 1327 ° C. in the crucible 15, lithium is first dissolved to form a flux (melt), in which silicon and carbon are dissolved. The heating temperature is, for example, 1500 ° C. or less, preferably the boiling point of the lithium, more preferably 1000 ° C. or less, and further preferably 950 ° C. or less, 850 ° C. or less. For example, the melt temperature can be further increased by increasing the atmospheric pressure, which can further improve the solubility of silicon and carbon. The atmospheric pressure is as described above. As the atmospheric gas, for example, a hydrocarbon gas such as methane or propane can be used in addition to the argon gas. When the temperature drop method as described above is adopted, for example, the temperature of the melt is kept constant, silicon and carbon are sufficiently dissolved, and then the melt temperature is lowered to reduce the temperature of the SiC unit. Crystals can be generated or grown. The holding temperature of the melt is, for example, 200-1500. C, preferably 1000. C or lower, more preferably 950 ° C or lower and 850 ° C or lower. The temperature drop rate (temperature drop rate) is preferably in the range of, for example, 0.1 to 100 ° C./h, where a constant rate is preferred. In addition, as in the above-described temperature gradient method, it is possible to form a temperature gradient in the flux and simultaneously dissolve the crystal raw material and generate or grow a single crystal. This temperature gradient method is, for example, a method in which, in the flux, two regions having different temperatures, a temperature region where a crystal raw material is dissolved (high temperature region) and a temperature region where a single crystal is generated or grown (low temperature region) are provided. is there. The temperature difference between the high temperature region and the low temperature region is preferably in the range of 10 to 500 ° C., for example. Moreover, when using a seed crystal, it is preferable to make this seed crystal and its periphery into a low temperature area | region. A method of forming a temperature gradient in the flux. For example, there are the following methods. That is, first, silicon and carbon as raw materials are filled at the bottom of a crucible containing flux (melt), and silicon carbide as a seed crystal is fixed at the top of the crucible. The heater is divided into two zones, and a difference is formed between the temperature of the crucible bottom, which is the raw material part, and the growth part where the seed crystal is fixed. By setting the crucible bottom to a high temperature and the growth to a low temperature, silicon and carbon dissolve in the flux (melt) and react to grow a single crystal on the seed crystal in the low temperature. .
本発明の製造方法により 2H— SiC単結晶を製造する場合、その成長領域の加熱 温度 ίま、 ί列えば'、 600〜850。C力好ましく、より好ましく ίま 700〜850。Cである。前記 温度降下法で単結晶を育成する場合、前記成長初期温度は、例えば、 750〜850 °Cが好ましぐより好ましくは 800〜850°Cである。この初期温度で、例えば、 1-100 時間保持することが好ましぐより好ましくは 10〜50時間である。そして、初期温度か ら徐々に温度を降下して単結晶を成長させ、最終温度は、例えば、 600〜800°Cに 設定することが好ましぐより好ましくは 700〜800°Cである。前記温度勾配法で単結 晶を育成する場合、前記高温領域は、例えば、 800°C以上が好ましぐより好ましくは 850°C以上であり、前記低温領域は、例えば、 600〜850°C力 S好ましく、より好ましく は 700〜850°Cである。また、本発明の製造方法により 3C— SiC単結晶を製造する 場合、その成長領域の加熱温度は、例えば、 850〜1000°Cが好ましぐより好ましく は 850〜950°Cである。前記温度降下法で単結晶を育成する場合、前記成長初期 温度は、例えば、 900〜: 1000°C力 S好ましい。この初期温度で、例えば、 1〜: 100時 間保持することが好ましぐより好ましくは 10〜50時間である。そして、初期温度から 徐々に温度を降下して単結晶を成長させ、最終温度は、例えば、 850〜950°Cに設 定することが好ましい。前記温度勾配法で単結晶を育成する場合、前記高温領域は 、例えば、 950°C以上が好ましぐより好ましくは 1000°C以上であり、前記低温領域 fま、 ί列えば'、 850〜1000。C力好ましく、より好ましく fま 850〜950。Cである。また、成 長温度の増加によって、例えば、 4H— SiC単結晶や 6H— SiC単結晶等の炭化珪 素単結晶についても、従来より低温で成長させることができる。このように、本発明の 製造方法によれば、従来と比較して低温での炭化珪素単結晶の生成又は成長が可 能である。なお、これらの温度範囲は一例であって、制限されるものではなぐ例えば 、その他の条件に応じて加熱温度を適宜設定できる。 When a 2H—SiC single crystal is manufactured by the manufacturing method of the present invention, the heating temperature of the growth region is set to 600 ° C. C force is preferred, more preferably ί or 700-850. C. When growing a single crystal by the temperature drop method, the initial growth temperature is preferably 750 to 850 ° C, more preferably 800 to 850 ° C. For example, it is preferable to hold at this initial temperature for 1 to 100 hours, more preferably 10 to 50 hours. Then, the temperature is gradually lowered from the initial temperature to grow a single crystal, and the final temperature is preferably set to 600 to 800 ° C, for example, more preferably 700 to 800 ° C. When growing a single crystal by the temperature gradient method, the high temperature region is preferably, for example, 800 ° C or more, more preferably 850 ° C or more, and the low temperature region is, for example, 600 to 850 ° C. Force S is preferable, more preferably 700 to 850 ° C. Further, when a 3C—SiC single crystal is produced by the production method of the present invention, the heating temperature of the growth region is preferably 850 to 1000 ° C., more preferably 850 to 950 ° C., for example. When the single crystal is grown by the temperature drop method, the initial growth temperature is preferably 900 to 1000 ° C. force S, for example. At this initial temperature, for example, it is preferable to hold for 1 to 100 hours, more preferably 10 to 50 hours. Then, the temperature is gradually lowered from the initial temperature to grow a single crystal, and the final temperature is preferably set to 850 to 950 ° C., for example. When growing a single crystal by the temperature gradient method, the high temperature region is preferably 950 ° C. or more, more preferably 1000 ° C. or more. 1000. C force is preferred, more preferred f is 850-950. C. Also, by increasing the growth temperature, for example, silicon carbide single crystals such as 4H—SiC single crystals and 6H—SiC single crystals can be grown at a lower temperature than in the past. Thus, according to the manufacturing method of the present invention, it is possible to produce or grow a silicon carbide single crystal at a lower temperature than in the prior art. In addition, these temperature ranges are examples, and are not limited, for example The heating temperature can be appropriately set according to other conditions.
[0026] つぎに、本発明の実施例について説明する。なお、本発明は、下記の実施例に制 限されない。  Next, examples of the present invention will be described. The present invention is not limited to the following examples.
実施例 1  Example 1
[0027] 本実施例は、図 1 (A)及び (B)に示した結晶成長装置を用いて炭化珪素(SiC)単 結晶を製造した例である。電気炉 14は、抵抗加熱ヒータ及び断熱材により構成され ているものを使用した。電気炉 14内に、耐圧耐熱容器 13を配置し、耐圧耐熱容器 1 This example is an example in which a silicon carbide (SiC) single crystal was manufactured using the crystal growth apparatus shown in FIGS. 1 (A) and (B). The electric furnace 14 used was composed of a resistance heater and heat insulating material. A pressure-resistant and heat-resistant container 13 is arranged in the electric furnace 14, and the pressure-resistant and heat-resistant container 1
3内にはタングステン (W)坩堝 15を配置した。 W坩堝 15内に、高純度の黒鉛坩堝を 設置し、その中に金属リチウム(Li) 1 · 2g ( = 0. 1739mol)及びシリコン(Si) l . lg (A tungsten (W) crucible 15 was placed in 3. A high-purity graphite crucible is placed in the W crucible 15, and metallic lithium (Li) 1 · 2 g (= 0. 1739 mol) and silicon (Si) l. Lg (
=0. 039mol)を配置した。なお、結晶の原料となる炭素(C)は、前記黒鉛坩堝の材 料成分カゝら供給される。耐圧耐熱容器 13内を Ar雰囲気に置換し、耐圧耐熱容器 13 内の雰囲気は、ガスボンベ 11から供給される Arガスにより圧力とともに調整した。つ ぎに、電気炉 14内の温度を 850°Cまで加熱し、リチウムを溶解してフラックス(融液) を形成し、さらに Liフラックス中にシリコン及び炭素を過飽和まで溶解させるため、 24 時間保持した。その後、 700°Cまで 72時間で冷却を続けた。その後、室温まで自然 冷却させて、 目的とする炭化珪素単結晶を得た。得られた単結晶を、図 2及び図 3 (A= 0.039 mol). Note that carbon (C) as a raw material for the crystal is supplied from the material component of the graphite crucible. The pressure-resistant and heat-resistant container 13 was replaced with an Ar atmosphere, and the atmosphere in the pressure-resistant and heat-resistant container 13 was adjusted together with the pressure by Ar gas supplied from the gas cylinder 11. Next, the temperature in the electric furnace 14 is heated to 850 ° C., and lithium is dissolved to form a flux (melt). Further, in order to dissolve silicon and carbon in the Li flux to supersaturation, hold for 24 hours. did. Thereafter, cooling was continued to 700 ° C. in 72 hours. Thereafter, it was naturally cooled to room temperature to obtain the intended silicon carbide single crystal. The obtained single crystals are shown in FIGS. 2 and 3 (A
)及び (B)の写真に示す。図 2は、黒鉛坩堝側壁に形成された炭化珪素単結晶の集 合体であり、図 3 (A)及び (B)は、得られた炭化珪素単結晶の拡大図である。まず、 坩堝内の生成物を取り出して粉末状にし、その粉末について X線回折評価を行った) And (B). FIG. 2 is an aggregate of silicon carbide single crystals formed on the side wall of the graphite crucible, and FIGS. 3A and 3B are enlarged views of the obtained silicon carbide single crystal. First, the product in the crucible was taken out and powdered, and X-ray diffraction evaluation was performed on the powder.
。その結果を、図 4に示す。図 4は、 ω /2 θスキャン (結晶と検出器を回転)の結果を 示すチャートである。図示のように、 2H_ SiCのピークデータと一致する回折ピーク が確認されたため、さらに、得られた単結晶について、図 5 (A)の模式図に示すよう な平行ビーム法により X線回析評価をした。図示のように、この評価では、 X線を 3. 7 度から入射し、前記単結晶からの回折光を検出器で検出する。検出器の前には平行 ビームのみを取り出すためのソーラスリットが配置され、高い分解能で信号を検出す る。図 5 (B)のチャートに、この分析結果を示す。図 6は、図 5 (B)のチャートのバック グランドを除去したピークデータである。図示のように、この評価により、 2H— SiCの ピークデータと一致する回折ピークが得られた。これらの結果により、前記単結晶が、 2H— SiC単結晶であることが確認できた。なお、前記 X線源は、特に制限されない 力 例えば、 CuK ct線等が使用できる。また、前記 X線回祈に使用する前記第 1結 晶も特に制限されず、例えば、 InP結晶や Ge結晶等が使用できる。 . The results are shown in Fig. 4. Fig. 4 is a chart showing the results of the ω / 2 θ scan (rotating the crystal and detector). As shown in the figure, a diffraction peak matching the peak data of 2H_SiC was confirmed, and further, the obtained single crystal was evaluated by X-ray diffraction using a parallel beam method as shown in the schematic diagram of Fig. 5 (A). Did. As shown in the figure, in this evaluation, X-rays are incident from 3.7 degrees, and diffracted light from the single crystal is detected by a detector. A solar slit for extracting only the parallel beam is placed in front of the detector to detect the signal with high resolution. The analysis results are shown in the chart of Fig. 5 (B). Fig. 6 shows peak data with the background of the chart in Fig. 5 (B) removed. As shown in the figure, this evaluation yielded a diffraction peak consistent with the 2H-SiC peak data. These results indicate that the single crystal is It was confirmed to be 2H—SiC single crystal. The X-ray source is not particularly limited. For example, a CuK ct line can be used. Further, the first crystal used for the X-ray patrol is not particularly limited, and for example, InP crystal or Ge crystal can be used.
実施例 2  Example 2
[0028] 電気炉 14内の温度を 950°Cまで加熱して 24時間保持した後、 850°Cまで 72時間 で冷却を行った以外は、実施例 1と同様にして炭化珪素単結晶を製造した。得られ た坩堝内の生成物について、実施例 1と同様にして X線回析評価をした。図 9のチヤ ートに、この分析結果を示す。この結果より、 3C— SiC単結晶の生成が確認できた。 産業上の利用可能性  [0028] A silicon carbide single crystal was produced in the same manner as in Example 1 except that the temperature in the electric furnace 14 was heated to 950 ° C and held for 24 hours, and then cooled to 850 ° C in 72 hours. did. The product in the crucible obtained was evaluated for X-ray diffraction in the same manner as in Example 1. The chart in Figure 9 shows the results of this analysis. From this result, the formation of 3C-SiC single crystal was confirmed. Industrial applicability
[0029] 以上のように、本発明の製造方法によれば、低コストで大きな炭化珪素単結晶を製 造可能である。また、本発明の製造方法によれば、例えば、低コストでバルタ状の大 きな炭化珪素単結晶の製造も可能となる。本発明の製造方法により得られた炭化珪 素単結晶は、例えば、車載用パワーデバイスやエネルギーデバイス用の半導体デバ イスとして好ましく使用でき、その用途は制限されず、広範囲である。 [0029] As described above, according to the production method of the present invention, a large silicon carbide single crystal can be produced at low cost. Further, according to the production method of the present invention, for example, a large butter-shaped silicon carbide single crystal can be produced at low cost. The silicon carbide single crystal obtained by the production method of the present invention can be preferably used, for example, as a semiconductor device for an in-vehicle power device or an energy device, and its application is not limited and is wide.

Claims

請求の範囲 The scope of the claims
[I] 炭化珪素(SiC)単結晶の製造方法であって、アルカリ金属フラックス中において、 シリコン (Si)と炭素(C)とを溶解し、これらを反応させることにより、炭化珪素単結晶を 生成又は成長させる製造方法。  [I] Silicon carbide (SiC) single crystal manufacturing method, in which silicon (Si) and carbon (C) are dissolved in an alkali metal flux and reacted to form a silicon carbide single crystal Or a growing production method.
[2] 前記炭化珪素単結晶が、 2H— SiC単結晶又は 3C— SiC単結晶である請求の範 囲 1記載の製造方法。  [2] The method according to claim 1, wherein the silicon carbide single crystal is a 2H—SiC single crystal or a 3C—SiC single crystal.
[3] 前記シリコン及び前記炭素が溶解してレ、る前記アルカリ金属フラックスを冷却するこ とにより、前記炭化珪素単結晶を生成又は成長させる請求の範囲 1記載の製造方法  [3] The method according to claim 1, wherein the silicon carbide single crystal is produced or grown by cooling the alkali metal flux that is dissolved when the silicon and the carbon are dissolved.
[4] 前記シリコン、前記炭素及び前記アルカリ金属を加熱することにより、前記アルカリ 金属フラックス中に前記シリコン及び前記炭素を溶解させ、前記加熱状態を一定時 間保持した後、前記加熱温度を降下させることにより前記アルカリ金属フラックスを冷 却する請求の範囲 3記載の製造方法。 [4] By heating the silicon, the carbon, and the alkali metal, the silicon and the carbon are dissolved in the alkali metal flux, and the heating state is maintained for a certain time, and then the heating temperature is decreased. The manufacturing method according to claim 3, wherein the alkali metal flux is cooled.
[5] 前記アルカリ金属フラックス中に温度勾配を形成し、前記温度勾配の高温領域に おいて、前記シリコンと前記炭素とを溶解させ、前記温度勾配の低温領域において、 前記炭化珪素単結晶を生成又は成長させる請求の範囲 1記載の製造方法。  [5] A temperature gradient is formed in the alkali metal flux, the silicon and the carbon are dissolved in a high temperature region of the temperature gradient, and the silicon carbide single crystal is generated in a low temperature region of the temperature gradient. Or the manufacturing method of Claim 1 made to grow.
[6] 前記アルカリ金属力 リチウム (Li)、ナトリウム(Na)及びカリウム (K)からなる群から 選択される少なくとも一つである請求の範囲 1記載の製造方法。  6. The method according to claim 1, wherein the alkali metal power is at least one selected from the group consisting of lithium (Li), sodium (Na) and potassium (K).
[7] 前記アルカリ金属が、リチウム (Li)である請求の範囲 1記載の製造方法。  7. The production method according to claim 1, wherein the alkali metal is lithium (Li).
[8] 前記アルカリ金属フラックスが、さらに、アルカリ土類金属を含む請求の範囲 1記載 の製造方法。  [8] The production method according to claim 1, wherein the alkali metal flux further contains an alkaline earth metal.
[9] 前記反応が、反応容器中で行われ、前記炭素が、前記反応容器の材料成分から 供給される請求の範囲 1記載の製造方法。  [9] The production method according to claim 1, wherein the reaction is performed in a reaction vessel, and the carbon is supplied from material components of the reaction vessel.
[10] 前記反応容器が、炭素系素材で形成された容器である請求の範囲 9記載の製造 方法。 [10] The production method according to claim 9, wherein the reaction vessel is a vessel formed of a carbon-based material.
[II] 前記炭素系素材が、黒鉛である請求の範囲 10記載の製造方法。  [II] The production method according to claim 10, wherein the carbonaceous material is graphite.
[12] 予め準備した炭化珪素結晶を種結晶とし、この種結晶を核として新たな炭化珪素 単結晶を成長させる請求の範囲 1記載の製造方法。 12. The production method according to claim 1, wherein a silicon carbide crystal prepared in advance is used as a seed crystal, and a new silicon carbide single crystal is grown using the seed crystal as a nucleus.
[13] 加圧雰囲気下で炭化珪素単結晶を生成又は成長させる請求の範囲 1記載の製造 方法。 [13] The production method according to claim 1, wherein the silicon carbide single crystal is produced or grown under a pressurized atmosphere.
[14] 不活性ガス雰囲気下で炭化珪素単結晶を生成又は成長させる請求の範囲 1記載 の製造方法。  [14] The production method according to claim 1, wherein the silicon carbide single crystal is produced or grown in an inert gas atmosphere.
[15] 前記不活性ガスが、アルゴン (Ar)ガス及び炭化水素ガスの少なくとも一方である請 求の範囲 14記載の製造方法。  [15] The production method according to claim 14, wherein the inert gas is at least one of argon (Ar) gas and hydrocarbon gas.
[16] 前記炭化水素ガスが、メタンガス及びプロパンガスの少なくとも一方である請求の範 囲 15記載の製造方法。 16. The production method according to claim 15, wherein the hydrocarbon gas is at least one of methane gas and propane gas.
[17] 前記アルカリ金属フラックスが、さらに、ドーピング用不純物を含む請求の範囲 1記 載の製造方法。  17. The manufacturing method according to claim 1, wherein the alkali metal flux further contains a doping impurity.
[18] 炭化珪素(SiC)単結晶であって、請求の範囲 1記載の製造方法により得られた炭 化珪素単結晶。  [18] A silicon carbide single crystal obtained by the production method according to claim 1, which is a silicon carbide (SiC) single crystal.
[19] 2H— SiC単結晶又は 3C— SiC単結晶である請求の範囲 18記載の炭化珪素単結 曰  [19] The silicon carbide single crystal according to claim 18, which is a 2H—SiC single crystal or a 3C—SiC single crystal.
曰曰  曰 曰
PCT/JP2005/023798 2004-12-28 2005-12-26 METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD WO2006070749A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/599,035 US7419545B2 (en) 2004-12-28 2005-12-26 Method for producing silicon carbide (SiC) single crystal and silicon carbide (SiC) single crystal obtained by such method
EP05820246A EP1739211A4 (en) 2004-12-28 2005-12-26 METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD
JP2006521031A JP5049590B2 (en) 2004-12-28 2005-12-26 Method for producing silicon carbide (SiC) single crystal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004380168 2004-12-28
JP2004-380168 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070749A1 true WO2006070749A1 (en) 2006-07-06

Family

ID=36614866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023798 WO2006070749A1 (en) 2004-12-28 2005-12-26 METHOD FOR PRODUCING SILICON CARBIDE (SiC) SINGLE CRYSTAL AND SILICON CARBIDE (SiC) SINGLE CRYSTAL OBTAINED BY SUCH METHOD

Country Status (6)

Country Link
US (1) US7419545B2 (en)
EP (1) EP1739211A4 (en)
JP (1) JP5049590B2 (en)
KR (1) KR100806999B1 (en)
CN (1) CN100567596C (en)
WO (1) WO2006070749A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001786A1 (en) * 2006-06-27 2008-01-03 Osaka University METHOD FOR PRODUCING SILICON CARBIDE (SiC) CRYSTAL AND SILICON CARBIDE (SiC) CRYSTAL OBTAINED BY THE SAME
JP2008239371A (en) * 2007-03-26 2008-10-09 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
JP2009062203A (en) * 2007-09-04 2009-03-26 Tohoku Univ Method for producing silicon carbide structure
WO2009069564A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Process for growing single-crystal silicon carbide
JP2010083732A (en) * 2008-10-02 2010-04-15 Tohoku Univ Method for manufacturing silicon crystal and method for manufacturing solar cell film
JP2010265133A (en) * 2009-05-13 2010-11-25 Hitachi Metals Ltd Method for manufacturing 2h silicon carbide single crystal
JP2014124622A (en) * 2012-12-27 2014-07-07 Ibiden Co Ltd Method of manufacturing honeycomb structure, honeycomb structure, and honeycomb molding

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8158071B2 (en) * 2006-04-29 2012-04-17 Chun-Chieh Chang Method and devices for producing air sensitive electrode materials for lithium ion battery applications
JP4499698B2 (en) * 2006-10-04 2010-07-07 昭和電工株式会社 Method for producing silicon carbide single crystal
CN100560487C (en) * 2007-10-23 2009-11-18 山东大学 A kind of method of low-temperature preparation of cubic silicon carbide nano wire
RU2451755C2 (en) * 2007-11-14 2012-05-27 Цун-Юй ЧАНГ Method and device for production of electrode materials sensitive to air medium to be used in lithium-ion batteries
KR101188069B1 (en) * 2007-11-14 2012-10-04 천-유 창 Method and devices for producing air sensitive electrode materials for lithium ion battery applications
JP4697235B2 (en) * 2008-01-29 2011-06-08 トヨタ自動車株式会社 Method for producing p-type SiC semiconductor single crystal and p-type SiC semiconductor single crystal produced thereby
US8278666B1 (en) * 2009-09-25 2012-10-02 Northrop Grumman Systems Corporation Method and apparatus for growing high purity 2H-silicon carbide
JP2012240869A (en) * 2011-05-18 2012-12-10 Sumitomo Electric Ind Ltd Silicon carbide powder and method for producing silicon carbide
KR101657018B1 (en) * 2012-07-19 2016-09-12 신닛테츠스미킨 카부시키카이샤 APPARATUS FOR PRODUCING SiC SINGLE CRYSTAL AND METHOD FOR PRODUCING SiC SINGLE CRYSTAL
US10455680B2 (en) 2016-02-29 2019-10-22 Asml Netherlands B.V. Method and apparatus for purifying target material for EUV light source
CN108130592B (en) * 2017-11-14 2019-11-12 山东天岳先进材料科技有限公司 A kind of preparation method of high-purity semi-insulating silicon carbide monocrystalline
CN108977885A (en) * 2018-08-20 2018-12-11 孙月静 A kind of technique based on LPE method production SiC
CN115478324A (en) * 2022-08-31 2022-12-16 昆明理工大学 Method for growing single crystal or polycrystalline SiC crystal by cosolvent method
CN116926670B (en) * 2023-07-12 2024-04-16 通威微电子有限公司 Method for preparing silicon carbide by liquid phase method and prepared silicon carbide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696799A (en) * 1979-12-29 1981-08-05 Toshiba Corp Growth of crystal of silicon carbide
JP2000503968A (en) * 1996-02-05 2000-04-04 クリー リサーチ インコーポレイテッド Growth of colorless silicon carbide crystals
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3053635A (en) * 1960-09-26 1962-09-11 Clevite Corp Method of growing silicon carbide crystals
US3669763A (en) * 1970-09-22 1972-06-13 Gen Electric Traveling solvent method of growing silicon carbide crystals and junctions utilizing yttrium as the solvent
US4349407A (en) * 1979-05-09 1982-09-14 The United States Of America As Represented By The United States Department Of Energy Method of forming single crystals of beta silicon carbide using liquid lithium as a solvent
JPS5696883A (en) 1979-12-29 1981-08-05 Toshiba Corp Manufacture of silicon carbide diode
JPS58156597A (en) 1982-03-11 1983-09-17 Toshiba Corp Apparatus for growth of silicon carbide crystal
US4702901A (en) * 1986-03-12 1987-10-27 The United States Of America As Represented By The United States Department Of Energy Process for growing silicon carbide whiskers by undercooling
DE19527536A1 (en) * 1995-07-27 1997-01-30 Siemens Ag Process for the production of silicon carbide single crystals
JP3087065B1 (en) 1999-03-05 2000-09-11 日本ピラー工業株式会社 Method for growing liquid phase of single crystal SiC
JP2001106600A (en) 1999-10-12 2001-04-17 Mitsubishi Cable Ind Ltd Method for growing silicon carbide crystal in liquid phase
JP3631976B2 (en) 2001-05-02 2005-03-23 益三 山田 Method for growing silicon carbide single crystal
JP4561000B2 (en) * 2001-05-31 2010-10-13 住友金属工業株式会社 Method for producing silicon carbide (SiC) single crystal
JP4100228B2 (en) 2002-04-15 2008-06-11 住友金属工業株式会社 Silicon carbide single crystal and manufacturing method thereof
US7520930B2 (en) * 2002-04-15 2009-04-21 Sumitomo Metal Industries, Ltd. Silicon carbide single crystal and a method for its production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5696799A (en) * 1979-12-29 1981-08-05 Toshiba Corp Growth of crystal of silicon carbide
JP2000503968A (en) * 1996-02-05 2000-04-04 クリー リサーチ インコーポレイテッド Growth of colorless silicon carbide crystals
JP2000264790A (en) * 1999-03-17 2000-09-26 Hitachi Ltd Production of silicon carbide single crystal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1739211A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008001786A1 (en) * 2006-06-27 2008-01-03 Osaka University METHOD FOR PRODUCING SILICON CARBIDE (SiC) CRYSTAL AND SILICON CARBIDE (SiC) CRYSTAL OBTAINED BY THE SAME
JP4714834B2 (en) * 2006-06-27 2011-06-29 国立大学法人大阪大学 Method for producing silicon carbide (SiC) crystal and silicon carbide (SiC) crystal obtained thereby
JP2008239371A (en) * 2007-03-26 2008-10-09 Hitachi Metals Ltd Silicon carbide single crystal substrate and method for manufacturing the same
JP2009062203A (en) * 2007-09-04 2009-03-26 Tohoku Univ Method for producing silicon carbide structure
WO2009069564A1 (en) * 2007-11-27 2009-06-04 Toyota Jidosha Kabushiki Kaisha Process for growing single-crystal silicon carbide
US8685163B2 (en) 2007-11-27 2014-04-01 Toyota Jidosha Kabushiki Kaisha Method for growing silicon carbide single crystal
JP2010083732A (en) * 2008-10-02 2010-04-15 Tohoku Univ Method for manufacturing silicon crystal and method for manufacturing solar cell film
JP2010265133A (en) * 2009-05-13 2010-11-25 Hitachi Metals Ltd Method for manufacturing 2h silicon carbide single crystal
JP2014124622A (en) * 2012-12-27 2014-07-07 Ibiden Co Ltd Method of manufacturing honeycomb structure, honeycomb structure, and honeycomb molding

Also Published As

Publication number Publication date
EP1739211A4 (en) 2008-01-23
CN1922346A (en) 2007-02-28
JPWO2006070749A1 (en) 2008-06-12
KR100806999B1 (en) 2008-02-25
KR20070069089A (en) 2007-07-02
JP5049590B2 (en) 2012-10-17
US7419545B2 (en) 2008-09-02
CN100567596C (en) 2009-12-09
EP1739211A1 (en) 2007-01-03
US20070221122A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
JP5049590B2 (en) Method for producing silicon carbide (SiC) single crystal
JP4277926B1 (en) Growth method of silicon carbide single crystal
JP4450074B2 (en) Method for growing silicon carbide single crystal
JP2000264790A (en) Production of silicon carbide single crystal
JP4561000B2 (en) Method for producing silicon carbide (SiC) single crystal
JP4419937B2 (en) Method for producing silicon carbide single crystal
JP4450075B2 (en) Method for growing silicon carbide single crystal
Chaussende et al. Prospects for 3C-SiC bulk crystal growth
TWI499698B (en) Seed materials for single crystal silicon carbide liquid phase epitaxial growth and method for liquid phase epitaxial growth of single crystal silicon carbide
JP4992821B2 (en) Method for producing SiC single crystal
JP4714834B2 (en) Method for producing silicon carbide (SiC) crystal and silicon carbide (SiC) crystal obtained thereby
JP4707148B2 (en) Silicon carbide single crystal substrate and method for manufacturing the same
JP5724122B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5724121B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5724123B2 (en) Feed material for epitaxial growth of single crystal silicon carbide and epitaxial growth method of single crystal silicon carbide
JP5644004B2 (en) Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method
JP5707612B2 (en) Single crystal silicon carbide liquid phase epitaxial growth unit and single crystal silicon carbide liquid phase epitaxial growth method
JP2012136372A (en) Unit for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide
JP2012136370A (en) Seed material for liquid phase epitaxial growth of single crystal silicon carbide, and method for liquid phase epitaxial growth of single crystal silicon carbide

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006521031

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200580005839.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067017373

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2005820246

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10599035

Country of ref document: US

Ref document number: 2007221122

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005820246

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 10599035

Country of ref document: US