Nothing Special   »   [go: up one dir, main page]

WO2006064558A1 - 接触子部材、コンタクタ及び接触方法 - Google Patents

接触子部材、コンタクタ及び接触方法 Download PDF

Info

Publication number
WO2006064558A1
WO2006064558A1 PCT/JP2004/018745 JP2004018745W WO2006064558A1 WO 2006064558 A1 WO2006064558 A1 WO 2006064558A1 JP 2004018745 W JP2004018745 W JP 2004018745W WO 2006064558 A1 WO2006064558 A1 WO 2006064558A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact
contactor
contact member
substrate
conductive
Prior art date
Application number
PCT/JP2004/018745
Other languages
English (en)
French (fr)
Inventor
Shigeyuki Maruyama
Toru Nishino
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to PCT/JP2004/018745 priority Critical patent/WO2006064558A1/ja
Priority to JP2006548612A priority patent/JP4545760B2/ja
Priority to CN2004800446290A priority patent/CN101084442B/zh
Publication of WO2006064558A1 publication Critical patent/WO2006064558A1/ja
Priority to US11/802,315 priority patent/US7795552B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/06711Probe needles; Cantilever beams; "Bump" contacts; Replaceable probe pins
    • G01R1/06755Material aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electrical connection technology for electronic components, and more specifically, a microcontact for contacting an electrode of a semiconductor device typified by LSI for electrical conduction and such contact.
  • the present invention relates to a contact member used for a child.
  • semiconductor devices such as LSIs mounted on electronic devices are also required to be high performance and small. Therefore, in order to integrate more circuits in a smaller volume, the semiconductor device needs to reduce the wiring pattern and reduce the thickness of the wafer.
  • the contactors for LSI testing are classified according to the contactors used: 1) contactor using a needle method, 2) contactor using a spring probe as a contactor, 3) contactor using a membrane probe as a contactor, 4) It is classified into 4 types of contactors using anisotropic conductive rubber as contacts.
  • Each needle (needle formed of tungsten wire or the like) is formed on the contactor substrate so that it matches the terminal position of the LSI to be tested.
  • l_a) Cantilever method It is configured such that the needle extends in an inclined state from above with respect to the electrode of the semiconductor device.
  • the probe pin has a configuration in which a spring is disposed between the contact portion with the terminal of the semiconductor device, the contact portion with the substrate, and the contact portion. Due to the elasticity of the springs between the contact parts, the contact parts are pressed against the terminals of the semiconductor device and the test substrate to obtain electrical contact.
  • the membrane probe is formed as a film-like circuit board having metal protrusions as contact electrodes for the stylus.
  • Anisotropic conductive rubber is formed by using rubber as an insulating member and incorporating a material (such as a metal wire) that conducts only in the thickness direction.
  • the contact resistance is the sum of the film resistance, the concentrated resistance, and the specific resistance of the contact.
  • the reason why contact resistance is reduced by pressurization is that concentration resistance can be reduced.
  • FIG. 2 is a schematic diagram showing a state in which the needle contact 6 is brought into contact with the test terminal 4.
  • the terminal surface 4a has irregularities. Department only. Therefore, force and concentration resistance at the contact area are large. The sum of this concentrated resistance and the film resistance due to the coating on the terminal surface and the contact surface is the contact resistance. Therefore, the contact resistance increases as the concentrated resistance increases. For this reason, a large pressure is applied between the two to increase the contact area between the contactor and the electronic component, thereby reducing the concentrated resistance, thereby reducing the contact resistance.
  • Patent Document 1 As a contact method other than the contactor described above, in Patent Document 1 below, a silicon processing technique is used on a silicon substrate, a hole for a contact electrode is generated, and the hole is formed in the hole. A method for arranging contacts is disclosed. Here, it has been proposed to use a spherical or ring-shaped elastic body having conductivity on the surface as a configuration of the contact. Patent Document 1: JP 2002-5992 A
  • A) Making a fine terminal A contactor having a contact that can contact a fine terminal at a narrow interval.
  • B) Low pressure A contactor in which the contact pressure is low and the contact resistance is stable and low in order to reduce the influence at the time of contact against the increase in the number of terminals and the thinning of the wafer.
  • the reduction of the contact resistance as described above is due to the reduction of the concentrated resistance by increasing the contact area.
  • a contact pressure of 0.05N (5gf)-0. lN (10gf) per pin, and the total for 10,000 terminals is 50N-100N.
  • the impact is very large, such as causing damage to the equipment.
  • the contact electrodes can be arranged in a lattice form connecting only the peripheral area.
  • the contact electrodes are connected by an insulating substrate, individual electrodes cannot move freely at a narrow pitch. Since it is a metal bump with a narrow movable range of the contact electrode, it has poor flexibility. For this reason, there is a problem in that a contact failure of a low bump is caused due to a height variation between adjacent bumps.
  • the wiring extends so as to sew between the contact electrodes.
  • the outer contour electrode can be generated at a narrow pitch, but the rubber can be stably formed in a minute shape (less than 0. ⁇ ). Have difficulty. It is even more difficult to form a metal or conductive film around the rubber. Furthermore, even if a conductive film is formed, its durability becomes a problem.
  • the main object of the present invention is to solve the above problems and provide an improved useful contact member and a contactor using the contact member.
  • a more specific object of the present invention is to provide a contact member in which the contacts can be arranged at a fine pitch and can be reliably contacted with a small contact pressure, and such a contact member. It is to provide a contactor using.
  • one of the contacts is a contact for electrically connecting an electronic component to an external circuit, and is made of a conductive material.
  • a contact is provided that is formed in a substantially spherical shape and has a molecular density in the central portion lower than that in the vicinity of the surface.
  • the conductive material may include at least one of conductive fine particles, conductive fibers, and a conductive filler.
  • a contact member for electrically connecting an electronic component to an external circuit which is formed into a substantially spherical shape with a conductive material, and has a hollow central portion.
  • a contact is provided that is characterized by being.
  • the conductive material may include at least one of conductive fine particles, conductive fiber, and conductive filler.
  • the present invention further provides a contactor for electrically connecting an electronic component and a circuit board, the insulating board, a holding hole formed in the board, and disposed in the holding hole.
  • a contactor for electrically connecting an electronic component and a circuit board, the insulating board, a holding hole formed in the board, and disposed in the holding hole.
  • At least one contact member, and the contact member is formed in a substantially spherical shape with a conductive material, and the molecular density in the central portion is lower than the molecular density in the vicinity of the surface.
  • a contactor is provided.
  • the electronic component has a ball terminal as an external connection terminal, and the diameter of the contact member may be substantially equal to the diameter of the ball terminal. . Further, a plurality of the contact members may be accommodated in series in the holding hole.
  • the contactor includes an insulating substrate, a holding hole formed in the substrate, and at least one contact member disposed in the holding hole.
  • the contact member has conductivity.
  • a contactor characterized by being formed into a substantially spherical shape with a material and having a hollow central portion.
  • the electronic component may have a ball terminal as an external connection terminal, and the diameter of the contact member may be substantially equal to the diameter of the ball terminal. Further, a plurality of the contact members may be accommodated in series in the holding hole.
  • a plurality of contact members whose inner molecular density is lower than the molecular density of the surface portion are provided in the holding hole formed in the insulating substrate in the thickness direction of the insulating substrate.
  • a contact method characterized by obtaining electrical continuity between the contacted members by bringing the contacted members into contact with and pressing both ends of the contact member members arranged in series and aligned.
  • the present invention in a normal state, it has a substantially spherical shape, the surface side is solid (solid phase), the inside is hollow or highly fluid, liquid (liquid phase) or gel.
  • a contact member that can be easily elastically deformed with a small pressure is provided.
  • the elastic deformation can be easily performed with a low applied pressure, and depending on the surface state of the contacted terminal, a large contact area with the contacted terminal can be ensured.
  • a contactor having a contact capable of obtaining a mechanical contact.
  • FIG. 1 is an enlarged side view of a semiconductor device test terminal.
  • FIG. 2 is a side view showing a state in which a contact is brought into contact with the test terminal shown in FIG.
  • FIG. 3 is a schematic view showing a configuration of a contact member according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a part of the contactor in which the contact member shown in FIG. 3 is incorporated, and shows a state where a flat test terminal is pressed against the contact member.
  • FIG. 5 is a cross-sectional view of a part of the contactor in which the contact member shown in FIG. 3 is incorporated, and shows a state where a spherical test terminal is pressed against the contact member.
  • FIG. 6 is a schematic view showing a configuration of a modification of the contact member shown in FIG.
  • FIG. 7 is a cross-sectional view showing a part of a contactor in which a plurality of contact members are arranged in series. 8]
  • FIG. 8 is a view showing a state of the contactor when the contactor shown in FIG. 7 is brought into contact with a wafer provided with a ball terminal as a protruding electrode.
  • FIG. 9 A partial cross-sectional view showing another example of a contactor using a contact member.
  • FIG. 10 is a diagram showing a state where a wafer having ball electrodes is in contact with the contactor shown in FIG. 9.
  • FIG. 10 is a diagram showing a state where a wafer having ball electrodes is in contact with the contactor shown in FIG. 9.
  • FIG. 12 A sectional view showing a part of a contactor in which a plurality of contact members are arranged in series. 13] FIG. 13 is a cross-sectional view showing a part of the contactor obtained by dividing the contactor substrate shown in FIG. 12 into an upper substrate and a lower substrate.
  • FIG. 3 is a schematic view of a contact member according to the first embodiment of the present invention.
  • the contact member shown in FIG. 3 functions as a contact member that is incorporated in the contactor and electrically connects the terminal of the test substrate and the electrode of the semiconductor device as will be described later.
  • 10A is a contact member formed of a conductive material according to the present invention.
  • the contact member 10A is substantially spherical when no external force is applied, and has a characteristic of easily elastically deforming when an external force is applied.
  • the contact member 10A is made of a conductive polymer material, and its inside, particularly in the vicinity of the center portion, is in a state where the molecular density of the material is low and the fluidity is high. The liquidity is low or low. That is, the contact member 10A has a force composed of one material, the inside of which is a liquid (liquid phase) or gel, and the surface and the vicinity of the surface are solid (solid phase) such as a film. Therefore, the liquid or gel material inside is in a state of being enclosed and enclosed by the outer solid part and does not leak to the outside.
  • the contact member 10A having such a structure is formed of a conductive material, it functions as a contact. Since the contact member 10A is liquid or gel inside, it can be easily deformed according to the pressure from the outside, and can easily follow the shape of the contact portion of the contacting member. . That is, it can be deformed substantially corresponding to the shape of the contact portion of the member pressed from the outside.
  • FIG. 4 shows a state in which the deformable contact member 10A that is applied with force is incorporated in the contactor and disposed between the test substrate and the semiconductor device under test.
  • one contact member 10A is accommodated and held in a holding hole 22a provided in the substrate 22 of the contactor 20.
  • the contact member 10A is housed in the holding hole 22a, partially protruding from both surfaces (front and back surfaces) of the substrate 22 of the contactor 20 or near the surface, and the wafers on both sides.
  • 2 test terminal 4 and test board 8 terminal 8a The substrate 22 of the contactor 20 can be formed using, for example, the same silicon as the wafer 2.
  • the contact member 10A that functions as a contact is in contact with the terminal 8a of the test substrate 8 at one end (lower side) and the wafer 2 ( It is in contact with the test terminal 4 of the semiconductor device formed on the wafer.
  • the terminal 8a and the test terminal 4 are flat terminals, and a part of the contact member 10A contacts with a part of the contact member 10A in a flat state along the flat terminal. Accordingly, in the contact member 10A, a large contact area is ensured so as to contact almost the entire surface of the terminal 8a and the test terminal 4, and a reliable contact can be made with a low contact resistance. it can.
  • the contact member 10A can be deformed with a small external force, and the pressing force for bringing the terminal 8a and the test terminal 4 into contact with each other is much smaller than that of the contactor using the conventional contact needle. That power S.
  • the force S shown only in the portion where one contact member 10A is provided is applied to a number of test terminals 4 provided on the wafer 2 to be tested.
  • a corresponding number of contact members 10A are provided.
  • the pressing force applied to the wafer 2 to be tested is the sum of the pressing forces required for the contact of each contact member 10A. Therefore, as the number of test terminals increases, it is necessary for the contact of each contact member 10A. The necessary pressing force must be reduced.
  • the contact member 10A according to the present embodiment can be deformed with a very small external force, so that reliable contact can be made and greatly contributes to the reduction of the pressing force applied to the entire wafer 2.
  • test terminal of the semiconductor device brought into contact with the contact member is not necessarily flat.
  • protruding electrodes such as solder balls or bumps are terminals for testing.
  • FIG. 5 shows a contact state of the contact member 10 A when the terminal under test is a ball-shaped electrode.
  • the contact member 10A according to the present invention is deformed into a concave shape along the outer surface of the ball-shaped electrode 4A, the contact member 10A and the ball-shaped electrode 4A The contact area increases and both come in contact with low contact resistance.
  • FIG. 6 shows a configuration of a contact member 10B according to a modification of the first embodiment of the present invention.
  • the contact member 10A shown in FIG. 3 has a force S in which the inside is a gel or liquid, and the contact member 10B shown in FIG. 6 has a hollow inside.
  • the outer portion of the contact member 10B is a solid (solid phase) film, like the contact member 10A, and has a certain degree of flexibility and elasticity. Therefore, the contact member 1 OB can be easily deformed according to the pressure from the outside like the contact member 1 OA, and a reliable electrical connection can be obtained even with a small contact pressure. Assembling the contact member 10B into the contactor is the same as the contact member 10A described above, and the description thereof is omitted.
  • the contact members 10A and 10B that are effective in the present invention have a solid (solid phase) skin surface and a liquid, gel, or hollow inside. Even with a low pressing force, it can be easily elastically deformed according to the shape of the contacting member, so that it contacts the contacting member with a wider contact area. As a result, the concentrated resistance is reduced and the contact resistance is reduced, so that a reliable electrical connection can be obtained even with a small pressing force.
  • the contact member according to the present invention can be formed with extremely small dimensions and easily accommodated in the contact member holding hole provided in the contactor substrate. That power S. Accordingly, the contact members in the contactor can be arranged at a fine pitch corresponding to the pitch of the electrodes of the semiconductor device under test.
  • a method for forming the contact member there is a method in which a liquid obtained by melting the material of the contact member is injected into a heated atmosphere and solidified into a spherical shape.
  • a material suitable for such a formation method include conductive polymers such as polyaniline, polypyrrole, and polythiophene.
  • the contact member 10A having a substantially spherical shape can be formed.
  • the molecules concentrate on the surface portion and harden, and the inside becomes a cavity.
  • the contact member 10B having a substantially spherical shape in the normal state can be formed.
  • hydrochloric acid is added to ammonium peroxodisulfate to completely dissolve it.
  • This solution is sufficiently cooled to 0 ° C or lower, and then gradually added to a solution of hydrochloric acid in aniline, and stirred well while continuing to cool to 0 ° C or lower.
  • the precipitate formed here is suction filtered and washed with hydrochloric acid, acetone, or the like. Thoroughly dry the washed precipitate and pulverize the fine particles to form a complete powder.
  • the powder thus produced is acidic polyaniline.
  • This acidic polyaniline powder is pulverized vigorously and then a small amount of 1-methyl-2-pyrrolidone (N-methyl-2-pyrrolidinone) is added to form a solution.
  • This solution is sprayed into an atmosphere of 50-100 ° C heated as described above, and the contact member having a substantially spherical shape is formed in a normal state by hardening the surface.
  • a spherical contact member having a diameter of about 50 ⁇ is formed by the method using polyaniline, and the contact member is displaced by 25 ⁇ in the vertical direction under a pressure of 0.3 gf. (Deformation) could be obtained.
  • the contact member according to the second embodiment of the present invention is the contact member 10 according to the first embodiment described above.
  • a and 10B It has the same structure as A and 10B, that is, the structure shown in FIG. 3 or FIG. 6, except that the conductive fine particles are contained in the outer coating and the inner gel or liquid.
  • a material for forming the contact member a material obtained by adding conductive fine particles to the material for forming the contact members 10A and 10B described above is used.
  • conductive fine particles hydrochloric acid Gold fine particles or carbon fine particles that do not corrode are suitable.
  • fine fibers or fillers of gold or carbon may be added as conductive fine particles.
  • a specific forming method is the same as the method of forming the contact members 10A and 10B described above, and the description thereof is omitted.
  • a contact member with a diameter of 50 x m was formed by adding conductive fine particles, a displacement (deformation) of 25 z m in the vertical direction was obtained with a pressure of 0.003 N (0.3 gf).
  • the electrical resistance and contact resistance of the contact member can be reduced, and more reliable conduction and electrical connection can be obtained. For example, this is effective when a plurality of conductive members are arranged in series and incorporated in the contactor as described later.
  • the surface is a solid (solid phase) film and the inside is a liquid, gel, or hollow. Therefore, even if the pressing force is low, it can be easily elastically deformed according to the shape of the contacting member, so that it contacts the contacting member with a wider contact area.
  • a conductive material was contained therein.
  • the conductive material may be the polymer material described in Example 1, the conductive fiber described in Example 2, or a metal that exhibits a liquid phase at 150 ° C or lower, such as mercury, or an alloy thereof. .
  • the dropped contact material such as calcium chloride and calcium lactate
  • the surface has a high molecular density due to the reaction between the osmotic pressure and calcium, and the inside remains in a liquid phase.
  • a conductive capsule that is confined and elastic can be formed. Since the size of the capsule is proportional to the volume of the contact material to be dropped, a capsule having a diameter of about 10 m can be formed by spraying a small amount.
  • FIG. 7 is a cross-sectional view showing a plurality of contactors accommodated and arranged in series (two in the figure) in the thickness direction of the contact member 10A force in the holding hole provided in the contactor substrate. It is a figure.
  • the substrate 32 of the contactor 30 has a plurality of holding holes 32a corresponding to the number of electrodes of the semiconductor device.
  • Terminals 34a are disposed at the bottom of each holding hole 32a, and the terminals 34a are led out to the outside with a multilayer wiring structure composed of a plurality of wiring layers 34, and a test / inspection device (not shown) Connected to. Since such a multilayer wiring structure is applied, the distance between the bottom of the holding hole 32a and the corresponding terminal 34a is different.
  • an adjuster 36 made of a conductive material is disposed at the bottom of each holding hole 32a, and a contact member 1OA is accommodated on the adjuster 36.
  • the adjuster 36 is disposed such that the positions of the upper ends of the contact member members 10A in the respective holding holes 32a are equal to each other.
  • the shallow receiving hole 32a-1 is provided with a low height (thin plate) adjuster 36-1, while the deep receiving hole 32a_3 is a high (thick plate) adjuster 36-3. Is placed.
  • the displacement amount (deformation amount) of the contact member as a whole can be increased while keeping the pressing force small. This has the effect of absorbing the variation in height between the terminals to be contacted (in the figure, solder balls).
  • FIG. 8 shows a state of the contactor 30 when the contactor 30 shown in FIG. 7 is brought into contact with the ball terminal 4A of the wafer 2 provided with the ball terminal 4A as a protruding electrode.
  • the ball terminal 4A of the wafer 2 is approximately the same size as the contact member 10A, and comes into contact with the contact member 10A while being pressed into the holding hole 32a.
  • the holding hole 32a exhibits a function of guiding the ball terminal 4A when pressing the wafer 2 just by holding the contact member 10A against the contactor 30.
  • the contactor 40 shown in FIG. 9 has a plurality (three in FIG. 9) of contact members 10A in holding holes 42a provided on one main surface side of a powerful substrate 42 such as a silicon substrate.
  • the insulating protective film 44 is disposed on the main surface of the substrate 42 that is accommodated and arranged in series and further includes the accommodation part of the contact member 10A.
  • the contact member 10A and the terminal (not shown) of the wafer 2 are connected to the insulating protective film 44 via a conductive portion 44a disposed corresponding to the contact member 10A. Electrically connected.
  • a multilayer wiring structure is provided on the other main surface side of the substrate in the same manner as the contactor structure shown in Figs. 7 and 8, and the contact in each holding hole 42a is provided.
  • A is electrically connected to an external test / detection device via the multilayer wiring. At this time, the above-mentioned adjuster is applied as necessary.
  • the contact member 10A can be reliably held in the holding hole 42a.
  • the holding hole 42a is tapered such that the bottom side is narrower than the opening side, and when the contact member 10A is pressed from above, the lower contact member 1
  • OA is limited in lateral deformation. This suppresses vertical deformation and does not cause a decrease in the pressing force.
  • FIG. 10 shows a state where the ball electrode 4 A, which is an electrode on the wafer 2, is brought into contact with the contactor 40 shown in FIG.
  • the ball terminal 4A of the wafer 2 is in mechanical and electrical contact with the conductive portion 44a of the insulating protective film 44, and the contact member 10A is pressed by the ball terminal 4A through the conductive portion 44a.
  • the contact member 10A comes into contact with the conductive portion 44a with a large contact area, but does not deform with respect to the ball electrode 4A, so the contact area is small.
  • a fine protrusion 44b may be provided on the outer surface of the conductive portion 44a.
  • the protrusion 44b of the conductive portion 44a breaks a film such as a natural oxide film on the surface of the ball electrode 4A, and the electric current between the conductive portion 44a and the ball electrode 4A is broken. Air contact is ensured.
  • FIG. 12 shows that a plurality of contact members 10A (three in the figure) are arranged in series in the contactor substrate, and a part of the contact members located at both ends slightly protrudes from the contactor. A part of the contactor is shown.
  • the contactor 50 shown in FIG. Three contact members 10A are accommodated and held in series in the thickness direction of the substrate 52 in a holding hole 52a provided through the formed substrate 52.
  • the holding hole 52a is formed with a taper whose diameter decreases from one main surface of the substrate 52 to the other main surface (back surface), and the other main surface of the substrate 52
  • the diameter of the opening on the side is smaller than the diameter of the contact member 10A.
  • the lowermost contact member 10A is accommodated in the holding hole 52a in a state in which a part of the contact member 10A slightly protrudes from the opening on the back side of the substrate 52, and the two contact member members 10A are accommodated thereon. Be placed.
  • the uppermost contact member 10A is not pressed, a part of the contact member 10A is held in a state where the surface force of the substrate 52 slightly protrudes.
  • the contactor 50 is disposed between the wafer 2 and the test substrate 8, and includes the test electrode of the wafer 2 and the terminals 8a of the test substrate 8. Are electrically connected.
  • the contactor 50 has a configuration in which a plurality of contact members 10A are connected in series, a larger deformation amount can be obtained in the contact members than the contactor 20 shown in FIG.
  • FIG. 13 shows a part of the contactor 50A obtained by dividing the substrate 52 of the contactor 50 shown in FIG. 12 into an upper substrate 52A and a lower substrate 52B.
  • the lower substrate 52B has a lower side than the opening on the main surface on the upper side, that is, the side facing the upper substrate 52A, like the holding hole 52a of the substrate 52 shown in FIG.
  • a holding hole 52Ba having a taper that forms a small opening is formed on the main surface side.
  • the upper substrate 52A has a taper in a direction opposite to the holding hole 52Ba at a position corresponding to the holding hole 52Ba of the lower substrate 52B, that is, a main surface on the side facing the lower substrate 52B.
  • a holding hole 52Aa having a taper is formed so as to form a small opening on the main surface side on the upper side compared to the opening.
  • the plurality of contact members 10A are accommodated in series in the holding holes 52Aa and 52Ba by the substrate 52A and the substrate 52B, and the contact members located at both the upper and lower ends are Part of the opening force provided on the substrate is held in a slightly protruding state.
  • the contact member according to the present invention can be used for applications other than the contactor.
  • FIG. 14 shows an example in which the contact member according to the present invention is used as the external connection terminal 10AA of the semiconductor device.
  • a contact member 10A is fixed to each electrode 60a of a semiconductor integrated circuit element (LSI) 60, and functions as an external connection terminal 10AA.
  • LSI semiconductor integrated circuit element
  • the contact member 10A according to the present invention As the external connection member 10AA, the contact area of the external connection terminal 10AA to the external connection portion (not shown) can be increased, which is reliable. An electrical connection can be obtained. In addition, variation in height between the external connection terminal 10AA and a terminal (not shown) on the circuit board to which the external connection terminal is connected can be absorbed by deformation of the external connection terminal 10AA.
  • the contactor member 10A according to the first embodiment of the present invention is applied to the contactor and the semiconductor element described above, the contact member according to the second embodiment of the present invention is used. Also good.
  • the present invention is suitable for a contactor for obtaining an electrical connection of a semiconductor device having electrodes arranged at a fine pitch.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Leads Or Probes (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

 コンタクタにおいて、接触子部材を微細ピッチで配置することができ、且つ小さな接触圧で確実に接触をとることができる。接触子部材は、電子部品を外部の回路に電気的に接続する。接触子部材は、導電性を有する材料で略球形状に形成される。接触子部材の中央部分の分子密度は表面付近部分の分子密度より低い。導電性を有する材料は、導電性微粒子、導電性繊維、導電性フィラーの少なくとも一つを含むこととしてもよい。

Description

明 細 書
接触子部材、コンタクタ及び接触方法
技術分野
[0001] 本発明は電子部品の電気的接続技術に係り、より詳細には、 LSIに代表される半 導体装置の電極に接触して電気的導通をとるための微小接触子及びそのような接触 子に使用する接触子部材に関する。
背景技術
[0002] 近年、電子機器の高性能かつ小型化への要求に伴い、電子機器に搭載される LSI 等の半導体装置も高性能かつ小型であることが求められている。従って、当該半導 体装置は、より多くの回路をより小さな体積に集積化するために、配線パターンを微 細化し、ウェハの厚さを薄くする必要がある。
[0003] また、より高速動作が求められ、半導体装置の配線パターンを微細化し、回路間の 配線の短縮化が図られている。さらに、 1つの半導体装置に、より多くの機能.回路が 集積されるため、当該半導体装置に設けられる端子数も増大している。
[0004] このような状況において、当該半導体装置の試験を行なうために、微細で多数の端 子に安定して接触し得る接触子を備えたいわゆるコンタクタが求められている。
[0005] LSI試験用のコンタクタは、使用している接触子別に分類すると、 1)針方式のコン タクタ、 2)スプリングプローブを接触子としたコンタクタ、 3)メンブレンプローブを接触 子としたコンタクタ、 4)異方性導電ゴムを接触子としたコンタクタの 4種に分類される。
[0006] 1)針方式のコンタクタ
個々の針 (タングステンワイヤ等により形成された針)をそれぞれ試験する LSIの端 子位置にあうようにコンタクタ基板に配置して形成される。
[0007] l_a)カンチレバー方式:半導体装置の電極に対して、針が上方より傾斜した状態 で延在するように構成されてレ、る。
[0008] 1 - b)垂直針方式:導電性の垂直に起立した針 (棒状部材)を接触子とする。
[0009] 1一 c)屈曲針方式:導電性の垂直に起立した針の途中を屈曲させ弾性を持たせた 接触子を使用したコンタクタ。 [0010] 2)スプリングプローブを接触子としたコンタクタ
プローブピンは、半導体装置の端子との接触部、基板との接触部、および接触部 間にスプリングを配置した構成である。接触部間のスプリングの弾性により、半導体装 置の端子および試験用基板へ接触部を押し付けて、電気的接触を得る。
[0011] 3)メンブレンプローブを接触子としたコンタクタ
メンブレン式プローブは、触針用の接触子電極として金属突起を有するフィルム状 の回路基板として形成される。
[0012] 4)異方性導電ゴムを接触子としたコンタクタ
異方性導電ゴムは、絶縁部材にゴムを用いて、この中に厚さ方向にのみ導通する 材料 (金属ワイヤ等)を坦め込んで形成される。
[0013] 上述のいずれの方法においても、一つの接触子に対して約 0. 05N (5gf)— 0. 1 N (10gf)の加圧を行い、電気的接触抵抗を安定かつ低減させている。
[0014] 接触抵抗は、皮膜抵抗と集中抵抗および接触子の固有抵抗の和である。加圧によ り接触抵抗が低減するのは、特に集中抵抗を低減できることによる。
[0015] 接触子及び電子部品の端子、それぞれの表面には微小な凹凸があり、電気的接 続は両者の表面における微小な凸(突)部の接触のみで行われるので、実質的な接 触面積は狭くなり、高い集中抵抗が発生する。
[0016] 図 1に示すように、半導体素子 2上の LSI試験用端子 4の表面 4aは、微視的にみる と凹凸がある。図 2は試験用端子 4に針式接触子 6を接触させた状態を示す模式図 である。図 1に示すように、端子表面 4aには凹凸があり、ここに針式接触子 6を接触さ せると、接触子 6と端子 4の用面 4aの真に接触している部分は、一部のみである。従 つて、力、かる接触部分に於ける集中抵抗は大きい。この集中抵抗と、端子表面と接触 子表面に於ける皮膜による皮膜抵抗との和が接触抵抗であり、従って集中抵抗が高 くなると接触抵抗も高くなる。この為、両者の間に大きな加圧を行なうことにより、接触 子と電子部品の接触面積を増大させ、集中抵抗を低減させ、それにより接触抵抗を 低減させている。
[0017] また、上述のコンタクタ以外のコンタクト方法として、以下の特許文献 1には、シリコ ン基板上にシリコンの加工技術を用レ、、コンタクト電極用の穴を生成し、この穴内に 接触子を配置する方法が開示されている。ここでは、接触子の構成として、表面に導 電性が付与された球状或いはリング状の弾性体を用いることが提案されている。 特許文献 1 :特開 2002 - 5992号公報
発明の開示
発明が解決しょうとする課題
[0018] LSI等半導体装置に関する要求から、 LSI試験のためのコンタクタには、下記の機 能が求められる。
[0019] A)微細端子化:狭い間隔で、微細な端子に接触可能な接触子をもつコンタクタ。
[0020] B)低圧化:多端子化、ウェハの薄型化に対して、接触時の影響を低減するため、 接触時の圧力が低ぐ接触抵抗が安定かつ低い状態であるコンタクタ。
[0021] 前述の如ぐ接触抵抗の低減は、接触面積の拡大による集中抵抗の低減によるも のである。現在一般的に、 1ピンあたり 0. 05N (5gf)— 0. lN (10gf)の接触圧で加 圧しており、 1万個の端子に対する総和を計算すると 50N— 100Nにもなり、被試験 半導体装置の破壊をもたらすなど影響が非常に大きい。
[0022] C)エリアフリーィ匕:接触子電極を、周辺エリアだけでなぐ格子状に配置できる。
多端子化にともない、 LSI等の半導体素子の縁部のみでなぐ当該半導体素子上に 格子状に配置された端子に接触する必要が生じている。
[0023] D)ワイドエリア化:複数個の LSIに一括して接触できる接触子。
[0024] このような必要とされる機能に対して、前記コンタクタのそれぞれの構成'方式に於 ける特徴は次の通りである。
[0025] 1)針方式のコンタクタ
1 a)カンチレバー方式:基板側の端子間隔はウェハ側の端子間隔より大きくなり、 構造上、端子配置に制約があり、上述の課題 Cに対応できない。また、課題 Dに関し ても制約が大きい。したがって、例えば、端子をエリアアレイ状態に配置できない、あ るいはチップサイズよりプローブサイズが大きいため、隣接する半導体素子チップに は同時にコンタクトできないといった問題がある。
[0026] 1 b)垂直針方式:課題 Aに関して、変位は座屈モードであり、針が屈曲する方向 を特定できない。このため、 P 接ピン同士が接触し、絡んでしまう可能性がある。また 、課題 Bに関して、ワイプ動作がないため、低圧で安定したコンタクトが得難レ、。
[0027] 1-c)屈曲針方式:課題 Aに関して、屈曲の程度にもよる力 狭ピッチに配置するに は、隣接した針 (ピン)が邪魔になる。また、針を一本づっ屈曲する構成では、製造コ ストが非常に高い。
[0028] 2)スプリングプローブ(POGO—PIN)を接触子としたコンタクタ
スプリング、接触部、スプリングを収納するバレル部というように構成部品が多ぐ構 造上、狭ピッチには限界がある。課題 Aに関して、構造上、狭ピッチに限界がある。す なわち、コイルスプリングの卷き径を小さくすることに限界がある。
[0029] また、課題 Bに関して、 LSI端子の酸化膜を破るようなワイプ動作がないため、低圧 では安定した接触がえられない。また、針先の位置精度を維持するために、別途精 度の高い穴加工部品が必要である。
[0030] 3)メンブレンプローブを接触子としたコンタクタ
課題 Aに関して、コンタクト電極が絶縁基板で連結されているため、狭ピッチでは個 々の電極が自由に動けない。コンタクト電極の可動範囲が狭ぐ金属バンプであるた め、柔軟性に乏しい。このため、隣接バンプ同士の高さばらつきにより、低いバンプの 接触不良をひき起こすという問題がある。
[0031] 一方、課題 Dに関して、配線がコンタクト電極間を縫うように延在するようになるため
、配線数に限界がある。更に、メンブレン方式の配線は多層化が進んでおらず、絶縁 基板の両面に配線を施す程度である。課題 Bに関し、ある程度の圧力がないと変形 しないため安定したコンタクトが得難い。
[0032] 4)異方性導電ゴムを接触子としたコンタクタ
課題 Aに関して、狭ピッチに対応ができない。また、その他、耐熱性が低い、あるい は耐久性が低レ、などの問題がある。
[0033] また、上述の特許文献 1に開示された方法によれば、狭ピッチでコンタ外電極を生 成できるが、ゴムを微小な形状(0. ΙπιιηΦ以下)で安定して形成することは困難であ る。カロえて、ゴムの周囲に金属あるいは導電性の膜を形成することはさらに困難であ る。さらに、導電性の膜を形成したとしても、その耐久性が問題となる。
[0034] 以上のように、従来技術の接触子では、 Α)微細端子化、 Β)低圧化、 C)ワイドエリ ァ化、 D)エリアフリー化という課題を全て解決し、微小サイズにおいて耐久性のある コンタクタを提供することができない。
課題を解決するための手段
[0035] 本発明は、上記の問題を解決し、改良された有用な接触子部材およびそれを利用 したコンタクタを提供することを主たる目的とする。
[0036] 本発明のより具体的な目的は、接触子を微細ピッチで配置することができ、且つ小 さな接触圧で確実に接触をとることができる接触子部材及びそのような接触子部材を 用いたコンタクタを提供することである。
[0037] 上記の目的を達成するために、本発明にあっては、一つに、電子部品を外部の回 路に電気的に接続するための接触子であって、導電性を有する材料で略球形状に 形成され、中央部分の分子密度は表面付近部分の分子密度より低いことを特徴とす る接触子が提供される。上述の接触子において、前記導電性を有する材料は、導電 性微粒子、導電性繊維、導電性フィラーの少なくとも一つを含むこととしてもよい。
[0038] また、本発明によれば、電子部品を外部の回路に電気的に接続するための接触子 部材であって、導電性を有する材料で略球形状に形成され、中央部分は空洞である ことを特徴とする接触子が提供される。
[0039] 上述の接触子において、前記導電性を有する材料は、導電性微粒子、導電性繊 維、導電性フィラーの少なくとも一つを含むこととしてもよい。
[0040] また、本発明は更に、電子部品と回路基板に電気的に接続するためのコンタクタで あって、絶縁性の基板と、該基板に形成された保持孔と、該保持孔内に配置された 少なくとも一つの接触子部材とを有し、該接触子部材は、導電性を有する材料で略 球形状に形成され、中央部分の分子密度は表面付近部分の分子密度より低いことを 特徴とするコンタクタが提供される。
[0041] 上述のコンタクタにおいて、前記電子部品は外部接続用端子としてボール端子を 有しており、前記接触子部材の直径は該ボール端子の直径に実質的に等しいことと してもよレ、。また、前記保持孔内に複数の前記接触部材が直列に収容されたこととし てもよい。
[0042] さらに、本発明の他の面によれば、電子部品と回路基板に電気的に接続するため のコンタクタであって、絶縁性の基板と、該基板に形成された保持孔と、該保持孔内 に配置された少なくとも一つの接触子部材とを有し、該接触子部材は、導電性を有 する材料で略球形状に形成され、中央部分は空洞であることを特徴とするコンタクタ が提供される。上述のコンタクタにおいて、前記電子部品は外部接続用端子としてボ ール端子を有しており、前記接触子部材の直径は該ボール端子の直径に実質的に 等しいこととしてもよい。また、前記保持孔内に複数の前記接触部材が直列に収容さ れたこととしてもよい。
[0043] また、本発明他の面によれば、絶縁性基板に形成した保持孔に、内部の分子密度 が表面部分の分子密度より低い複数の接触子部材を該絶縁性基板の厚み方向に 直列に配置し、整列した該接触子部材の両端に被接触部材を接触させて押圧する ことで該被接触部材間の電気的導通を得ることを特徴とする接触方法が提供される。 発明の効果
[0044] 本発明によれば、通常状態ではほぼ球状を有し、その表面側は固体(固相)で、内 部が空洞か流動性の高レ、液体 (液相)状又はゲル状であり、小さな圧力で容易に弾 性変形し得る接触子部材が提供される。
[0045] また、力、かる接触子部材の適用により、低い加圧力で容易に弾性変形し、被接触 端子の表面状態に応じて、当該被接触端子との間に広い接触面積をもって確実に 電気的接触を得ることのできる接触子を有するコンタクタが提供される。
図面の簡単な説明
[0046] [図 1]半導体素子の試験用端子の拡大側面図である。
[図 2]図 1に示す試験用端子に接触子を接触させた状態を示す側面図である。
[図 3]本発明の第 1実施例による接触子部材の構成を示す模式図である。
[図 4]図 3に示す接触子部材が組み込まれたコンタクタの一部の断面図であり、接触 子部材に平坦な試験用端子が押圧された状態を示す。
[図 5]図 3に示す接触子部材が組み込まれたコンタクタの一部の断面図であり、接触 子部材に球状の試験用端子が押圧された状態を示す。
[図 6]図 3に示す接触子部材の変形例の構成を示す模式図である。
[図 7]接触子部材を複数個直列に配置したコンタクタの一部を示す断面図である。 園 8]図 7に示すコンタクタに、突起電極としてボール端子が設けられたウェハを接触 させた際のコンタクタの状態を示す図である。
園 9]接触子部材を用いたコンタクタの他の例を示す一部断面図である。
[図 10]図 9に示すコンタクタに対してボール電極を有するウェハを接触させた状態を 示す図である。
園 11]図 9に示す導電部の拡大図である。
園 12]接触子部材を複数個直列に配置したコンタクタの一部を示す断面図である。 園 13]図 12に示すコンタクタの基板を上側基板と下側基板とに分割したコンタクタの 一部を示す断面図である。
園 14]接触子部材を半導体装置の外部接続用端子として用いた例を示す側面図で ある。
符号の説明
2 ウェハ
4 試験用端子
4A ボール状電極
8 試験用基板
8a, 34a 端子
10A, 10B 接触子部材
10AA 外部接続用端子
20, 30, 40, 50, 50A コンタクタ
22, 32, 42, 52 基板
22a, 32a, 32a-l , 32a-2, 32a-3, 42a, 52a, 52Aa, 52Ba 保持孑し
34 配線層
36, 36-1 , 36-2, 36—3 アジヤスタ
44 絶縁性保護膜
44a 導電部
44b 突起
発明を実施するための最良の形態 [0048] 本発明の第 1実施例による接触子部材について図 3を参照しながら説明する。図 3 は本発明の第 1実施例による接触子部材の模式図である。
[0049] 図 3に示す接触子部材は、後述するようにコンタクタに組み込まれて試験用基板の 端子と半導体装置の電極とを電気的に接続する接触子として機能する。
[0050] 図 3において、 10Aは、本発明にかかる導電性材料で形成された接触子部材であ る。当該接触子部材 10Aは、外力が作用していない状態でほぼ球形であり、外力が 作用すると容易に弾性変形する特性を有している。当該接触子部材 10Aは、導電性 高分子材料から構成され、その内部、特に中心部付近は材料の分子密度が低く流 動性が高い状態であり、表面及び表面近傍部分では分子の密度が高く流動性がな いか低い状態である。すなわち、当該接触子部材 10Aは、一つの材料から構成され る力 その内部は液体 (液相)状あるいはゲル状であり、表面及び表面近傍は皮膜の ような固体(固相)状である。従って、内部の液体状又はゲル状の材料は、外側の固 体状の部分に包囲されて封入された状態であり、外部に漏れ出すことはない。
[0051] このような構造を有する接触子部材 10Aは、導電性材料により形成されているため 、接触子として機能する。接触子部材 10Aは内部が液体状又はゲル状であることか ら、外部からの圧力に応じて容易に変形することができ、接触する部材の接触部の形 状に容易に追従することができる。すなわち、外部より押し付けられる部材の接触部 の形状にほぼ対応して変形することができる。
[0052] 例えば、接触子部材 10Aに平坦な部材が押圧されると、平坦な部材に接触した接 触子部材 10Aの一部は平面となって接触面積が大きな状態で接触する。接触子部 材 10Aに、球状の部材が押圧されると、平坦な部材に接触した接触子部材 10Aの 一部は当該球面に対応する凹面形状となり大きな接触面積をもって接触する。
[0053] 図 4は、力かる変形可能な接触子部材 10Aがコンタクタに組み込まれ、試験用基板 と被試験半導体装置との間に配置された状態を示す。同図に於いて、一つの接触子 部材 10Aは、コンタクタ 20の基板 22に設けられた保持孔 22a内に収容され、保持さ れている。当該接触子部材 10Aは、保持孔 22a内に収容された状態で、コンタクタ 2 0の基板 22の両表面 (表面及び裏面)から一部が突出するか、あるいは表面近くにあ り、両側でウェハ 2の試験用端子 4及び試験用基板 8の端子 8aに接触することができ る。コンタクタ 20の基板 22は、例えばウェハ 2と同じシリコンを用いて形成することが できる。
[0054] 図 4に示されるコンタクタ構成では、接触子として機能する接触子部材 10Aは、一 端 (下側)で試験用基板 8の端子 8aに接触し、他端 (上側)でウェハ 2 (ウェハに形成 された半導体装置)の試験用端子 4に接触している。端子 8a及び試験用端子 4は平 坦な端子であり、接触子部材 10Aの一部は平坦な端子に沿って一部が平坦となった 状態で接触する。したがって、接触子部材 10Aにあっては、端子 8a及び試験用端子 4の表面のほぼ全域に対して接触するように大きな接触面積が確保され、低接触抵 抗で且つ確実な接触を行なうことができる。
[0055] 接触子部材 10Aは小さな外力で変形可能であり、端子 8a及び試験用端子 4を接 触させるための押圧力を、前記従来の接触針を用いたコンタクタに比較して非常に 小さくすること力 Sできる。
[0056] なお、図 4に示すコンタクタにあっては、一つの接触子部材 10Aが設けられた部分 のみが示されている力 S、被試験ウェハ 2に設けられた多数の試験用端子 4に対応す る数の接触子部材 10Aが設けられるのは当然である。この時、被試験ウェハ 2に加え られる押圧力は、各接触子部材 10Aの接触に必要な押圧力の総和となるので、試験 用端子の数が増えるほど、各接触子部材 10Aの接触に必要な押圧力を低減しなく てはならない。この点、本実施例による接触子部材 10Aは、非常に小さな外力で変 形可能なため確実な接触を行なうことができ、ウェハ 2全体に加わる押圧力の低減に 大きく貢献する。
[0057] 各接触子部材 10Aの接触に必要な押圧力を低減することは、ウェハ 2に加えるベ き押圧力を低減することとなる。
[0058] なお、接触子部材に接触させる半導体装置の試験用端子は平坦な形状とは限らな レ、。例えば、半田ボール或いはバンプ等の突起電極が被試験用端子である場合も 多レ、。
[0059] 図 5は、被試験用端子がボール状電極である場合の、接触子部材 10Aの接触状 態を示す。同図に示すように、本発明にかかる接触子部材 10Aは、ボール状電極 4 Aの外面に沿って凹形状に変形するため、接触子部材 10Aとボール状電極 4Aとの 接触面積は増大し、両者は低接触抵抗をもって接触する。
[0060] 次に、本発明の第 1実施例による接触子部材の変形例について、図 6を参照しなが ら説明する。図 6は、本発明の第 1実施例の変形例による接触子部材 10Bの構成を 示す。
[0061] 前記図 3に示す接触子部材 10Aは内部がゲル状又は液体状である力 S、図 6に示す 接触子部材 10Bは内部が空洞である。
[0062] 接触子部材 10Bの外側の部分は、接触子部材 10Aと同様に固体(固相)状の皮膜 となっており、ある程度の柔軟性及び弾力性を有している。したがって、接触子部材 1 OBは、接触子部材 1 OAと同様に外部からの圧力に応じて容易に変形することができ 、小さな接触圧でも確実な電気的接続を得ることができる。接触部材 10Bのコンタク タへの組み込みは上述の接触子部材 10Aと同様であり、その説明は省略する。
[0063] このように、本発明に力かる接触子部材 10A, 10Bは、表面が固体(固相)状の皮 膜であって且つ内部が液体状又はゲル状或いは中空状であることから、低い押圧力 であっても接触する部材の形状に応じて容易に弾性変形が可能であり、よって接触 する部材に対しより広い接触面積をもって接触する。これにより集中抵抗が低減され 、接触抵抗が低減するため、小さな押圧力でも確実な電気的接続を得ることができる
[0064] また、本発明に力かる接触子部材は、以下に述べるように、極めて小さい寸法で形 成することができ、且つコンタクタの基板に設けられる接触部材用保持孔に容易に収 容すること力 Sできる。従って、当該コンタクタに於ける接触子部材は、被試験半導体 装置の電極のピッチに対応した微細なピッチで配置することができる。
[0065] 上記接触子部材 10A, 10Bの材料及び形成方法について説明する。
[0066] 接触子部材の形成方法の一例として、接触子部材の材料を溶融した液を加熱雰囲 気中に射出して球状に固化させる方法がある。このような形成方法に適した材料とし て、ポリア二リン、ポリピロール、あるいはポリチォフェン等の導電性高分子が挙げら れる。
[0067] このような導電性高分子は、その溶液を加熱した雰囲気にノズルから射出すると、 表面張力により微細な球形状になって表面部分が瞬間的に硬化する。この際、硬化 により表面部分での分子密度が高くなり皮膜が形成されるが、内部は分子密度が表 面近傍部分より小さくなり、硬化せずにゲル状あるいは液体状のままとなる。この結果
、通常状態ではほぼ球状を有する接触子部材 10Aを形成することができる。
[0068] また、用レ、る材料によって、あるいは表面部分を硬化させる条件によっては、表面 部分に分子が集中し硬化し内部が空洞となる。これにより、通常状態ではほぼ球状を 有する接触子部材 10Bを形成することができる。
[0069] ポリア二リンを用いて接触子部材 10A, 10Bを形成する方法について説明する。
[0070] まず、ペルォキソ二硫酸アンモニゥムに塩酸を加えて完全に溶解させる。
この溶液を 0°C以下になるまで十分に冷却した後、ァニリンに塩酸をカ卩えた溶液に徐 々に加え、 0°C以下に冷却を続けながら十分に攪拌する。ここで生じた沈殿物を吸引 ろ過し、塩酸、アセトン等で洗浄する。洗浄した沈殿物を十分に乾燥させ、細粒を粉 砕し、完全な粉末状とする。
[0071] このようにして生成された粉末は、酸性型ポリア二リンである。この酸性型ポリアニリ ンの粉末を細力べ粉砕してから、 1-メチル -2-ピロリドン(N-メチル -2-ピロリジノン) を少量加えて溶液とする。
[0072] この溶液を、上述のように加熱された 50— 100°Cの雰囲気中に噴霧し、表面を硬 化させることにより通常状態ではほぼ球状を有する接触子部材が形成される。
[0073] ポリア二リンの代わりに、ポリチォフェン系の高分子物質をクロロフオルム等の揮発 性の物質に溶解した溶液を用いてもょレ、。
[0074] 上記ポリア二リンを用いた方法により、直径が 50 μ ιηΦ程度の球形状接触子部材 が形成され、当該接触子部材は 0. 3gfの加圧で、上下方向に 25 μ ΐηの変位 (変形) を得ることができた。
[0075] 次に本発明の第 2実施例による接触子部材について説明する。
[0076] 本発明の第 2実施例による接触子部材は、上述の第 1実施例による接触子部材 10
A, 10Bと同様な構造、すなわち、図 3又は図 6に示す構造を有しているが、導電性 微粒子が外側の皮膜及び内側のゲル又は液体に含まれている点が異なる。
[0077] 接触子部材を形成するための材料として、上述の接触子部材 10A, 10Bを形成す るための材料に導電性微粒子を加えたものを用いる。導電性微粒子としては、塩酸 などに腐食しない金微粒子あるいは炭素微粒子が好適である。また、導電性微粒子 として金や炭素の微細な繊維あるいはフィラーを添カ卩してもよい。
[0078] 具体的な形成方法は、上述の接触子部材 10A, 10Bを形成する方法と同じであり 、その説明は省略する。導電性微粒子を添加して直径 50 x mの接触子部材を形成 したところ、 0. 003N (0. 3gf)の加圧力で上下方向に 25 z mの変位(変形)が得ら れた。
[0079] 以上のように導電性微粒子を材料に添加することにより、接触子部材の電気抵抗 及び接触抵抗を低減することができ、より確実な導通や電気的接続を得ることができ る。例えば、後述のように導電性部材を複数個直列に配置してコンタクタに組み込む 場合などに効果的である。
[0080] このように、導電性微粒子が添加された 1 OA, 10Bにあっても、表面が固体(固相) 状の皮膜であって且つ内部が液体状又はゲル状或いは中空状であることから、低い 押圧力であっても接触する部材の形状に応じて容易に弾性変形が可能であり、よつ て接触する部材に対しより広い接触面積をもって接触する。
[0081] 次に本発明の第 3の実施例による接触子部材について説明する。
[0082] 接触子部材の内部は分子密度が低いゲル状で、表面は分子密度が高い薄膜を形 成しやすくするために、例えばアルギン酸ナトリウムを母材に、この中に導電材料を 含有させた溶液をつくる。 (導電材料は実施例 1で述べた高分子材料でも、実施例 2 で述べた導電性繊維でも、または水銀等の 150°C以下で液相を示す金属、あるいは その合金であっても構わない。)この溶液を、 1ウェイトパーセント以上の濃度の塩化 カルシウム、あるいは乳酸化カルシウム等の溶液に滴下する。
[0083] 滴下された前記接触子材料は、塩化カルシウム、乳酸化カルシウム等の溶液の中 で、その浸透圧とカルシウムとの反応により、表面だけが分子密度が高くなり、内部は 液相のまま、閉じ込められ弾性を有した導電性カプセルが形成できる。カプセルの大 きさは、滴下する接触子材料の体積に比例するため、微量を噴霧することで、 10 m程度の直径のカブセルを形成することができる。
[0084] 次に、前記本発明にかかる接触子部材を用いた、コンタクタ構造について説明する [0085] 図 7は、コンタクタ基板に設けられた保持孔内に、接触子部材 10A力 当該基板の 厚さ方向に、複数個(図では 2個)直列に収容 ·配置されたコンタクタを示す断面図で ある。同図に於いて、コンタクタ 30の基板 32は、半導体装置の電極の数に対応して 複数個の保持孔 32aを有する。
[0086] 各保持孔 32aの底部には、それぞれ端子 34aが配設され、当該端子 34aは、複数 の配線層 34からなる多層配線構造をもって外部へ導出され、試験 ·検査装置(図示 せず)へ接続される。かかる多層配線構造が適用される為、保持孔 32aの底部とこれ に対応する端子 34a迄の距離が異なる。
[0087] この為、各保持孔 32aの底部には、導電性材料よりなるアジヤスタ 36が配設され、 当該ァジャスタ 36上に接触子部材 1 OAが収容 '配置されている。当該ァジャスタ 36 は、保持孔 32aに接触子部材 10Aを配設した際、各保持孔 32aに於ける接触子部 材 10Aの上端の位置が互いに等しくなるように配設される。したがって、浅い収容孔 32a— 1には高さの低レ、(薄レ、)アジヤスタ 36—1が配置され、深レ、収容孔 32a_3には 高さの高い(厚レ、)アジヤスタ 36-3が配置される。
[0088] このように複数の接触子部材 10Aを直列に配置することにより、押圧力を小さく維 持したまま接触子部材全体としての変位量 (変形量)を増大させることができる。これ は、接触すべき複数の端子(図では半田ボール)相互間に於ける高さのバラツキを吸 収するという効果がある。
[0089] 図 8は、図 7に示すコンタクタ 30に、突起電極としてボール端子 4Aが設けられたゥ ェハ 2の当該ボール端子 4Aを接触させた際のコンタクタ 30の状態を示す。
[0090] ここで、ウェハ 2のボール端子 4Aは、接触子部材 10Aとほぼ同じサイズとされ、保 持孔 32a内に挿入された状態で接触子部材 10Aを押圧しながら接触する。すなわち 、保持孔 32aは、接触子部材 10Aを保持するだけでなぐウェハ 2をコンタクタ 30に 押圧する際にボール端子 4Aを案内する機能を発揮する。
[0091] また、図 9に示すコンタクタ 40は、シリコン基板など力 なる基板 42の一方の主面側 に設けられた保持孔 42aに、複数個(図 9では 3個)の接触子部材 10Aを、直列状態 に収容'配置し、更に当該接触子部材 10Aの収容部分上を含む基板 42の主面上に 、絶縁性保護膜 44を貼り付けた構成を有する。 [0092] 当該接触子部材 10Aと前記ウェハ 2の端子(図示せず)とは、かかる絶縁性保護膜 44に於いて、接触子部材 10Aに対応して配設された導電部 44aを介して電気的に 接続される。
[0093] 尚、図示されないが、前記基板の他方の主面側には、前記図 7、図 8に示すコンタ クタ構造と同様に、多層配線構造が設けられ、各保持孔 42aに於ける接触子部材 10
Aは、当該多層配線を介して外部の試験'検查装置と電気的に接続される。この時、 必要に応じて前記アジヤスタが適用される。
[0094] 前記絶縁性保護膜 44を設けることにより、接触子部材 10Aを保持孔 42a内に確実 に保持することができる。
[0095] コンタクタ 40に於いて、保持孔 42aには底部側が開口部側より狭くなるようなテーパ がつけられており、接触子部材 10Aが上から押圧された際に、下側の接触子部材 1
OAは横方向への変形が制限される。これにより上下方向の変形が抑制され、押圧力 の低下を招くことは無い。
[0096] 図 10は、前記図 9に示すコンタクタ 40に対して、ウェハ 2に於ける電極であるボー ル電極 4Aを接触させた状態を示す。
[0097] ウェハ 2のボール端子 4Aは、絶縁性保護膜 44の導電部 44aに機械的'電気的に 接触し、接触子部材 10Aはかかる導電部 44aを介してボール端子 4Aにより押圧され
、弾性変形する。
[0098] この時、接触子部材 10Aは、導電部 44aに対して大きな接触面積で接触するが、 ボール電極 4Aに対しては変形しないため、接触面積は小さい。
[0099] そこで、導電部 44aとボール電極 4Aとの接触を確実にするために、図 11に示すよ うに、導電部 44aの外側表面に微細な突起 44bを設けてもよい。
[0100] 導電部 44aの突起 44bは、ボール電極 4Aが押圧された際に当該ボール電極 4A の表面に在る自然酸化膜等の皮膜を破り、導電部 44aとボール電極 4Aとの間の電 気的接触が確実に行なわれる。
[0101] 図 12は、コンタクタの基板内に、接触子部材 10Aが複数個(図では 3個)直列に配 置され、両端に位置する接触子部材の一部が、当該コンタクタから若干突出したコン タクタの一部を示す。図 12に示すコンンタクタ 50にあっては、シリコン基板などから形 成された基板 52を貫通して設けられた保持孔 52a内に、 3個の接触子部材 10Aが、 当該基板 52の厚さ方向に直列状態に収容'配置され、保持されている。
[0102] ここで、保持孔 52aは、基板 52の一方の主面から他方の主面(裏面)に向かってそ の径を小とするテーパをもって形成されており、基板 52の他方の主面側に於ける開 口部の径は、接触子部材 10Aの直径より小さなものとされている。このため、最下部 の接触子部材 10Aは、その一部が基板 52の裏側の開口部から僅かに突出した状態 で保持孔 52a内に収容され、その上に 2つの接触子部材 10Aが収容 ·配置される。 最上部の接触子部材 10Aは、押圧されていない状態では、その一部が基板 52の表 面力 僅かに突出した状態で保持される。
[0103] 当該コンタクタ 50は、前記図 4に示したコンタクタ 20と同様に、ウェハ 2と試験用基 板 8との間に配置され、ウェハ 2の試験用電極と試験用基板 8の端子 8aとを電気的に 接続する。
[0104] コンタクタ 50は、複数の接触子部材 10Aが直列に繋がった構成であるため、図 4に 示したコンタクタ 20に比較して、当該接触子部材に大きな変形量を得ることができる
[0105] 図 13は、前記図 12に示したコンタクタ 50の基板 52を、上側基板 52Aと下側基板 5 2Bとに分割されたコンタクタ 50Aの一部を示す。同図に於いて、下側基板 52Bには 、前記図 12に示す基板 52の保持孔 52aと同様に、上側即ち上側基板 52Aに対向 する側の主面に於ける開口に比して下側の主面側に小さな開口が形成されるテーパ が付された保持孔 52Baが形成されている。
[0106] 一方、上側基板 52Aには、前記下側基板 52Bの保持孔 52Baに対応する位置に、 当該保持孔 52Baとは逆方向のテーパ、即ち下側基板 52Bに対向する側の主面に 於ける開口に比して上側の主面側に小さな開口を形成するようにテーパが付された 保持孔 52Aaが形成されている。
[0107] かかる構成により、複数個の接触子部材 10Aは、基板 52Aと基板 52Bとにより、保 持孔 52Aa, 52Baの内部に、直列状態に収容され、上下両端に位置する接触子部 材はその一部が基板に設けられた開口力 若干突出した状態で保持される。
[0108] 本コンタクタ構成にあっても、複数の接触子部材 10Aが直列に繋がった構成である ため、図 4に示したコンタクタ 20に比較して、当該接触子部材に大きな変形量を得る こと力 Sできる。
[0109] 本発明による接触子部材は、コンタクタ以外の用途にも用いることができる。
[0110] 図 14は、本発明にかかる接触子部材を半導体装置の外部接続用端子 10AAとし て用いた例を示す。同図において、半導体集積回路素子 (LSI) 60の電極 60aの各 々には、接触子部材 10Aが固定され、外部接続用端子 10AAとして機能する。
[0111] 外部接続部材 10AAとして、本発明にかかる接触子部材 10Aを用いることにより、 外部接続用端子 10AAの、外部接続部(図示せず)への接触面積を大きくすることが でき、確実な電気的接続を得ることができる。また、外部接続用端子 10AA及び当該 外部接続端子が接続される回路基板上の端子(図示せず)における高さのバラツキ は、当該外部接続端子 10AAの変形により吸収することができる。
[0112] なお、上述のコンタクタ及び半導体素子には本発明の第 1実施例による接触子部 材 10Aを適用して説明したが、本発明の第 2実施例による接触子部材を用いることし てもよい。
[0113] 本発明は具体的に開示された実施例に限られず、本発明の範囲内で様々な変形 例、改良例がなされるであろう。
産業上の利用可能性
[0114] 以上説明したように、本発明は微細ピッチで配置された電極を有する半導体装置 等の電気的接続を得るコンタクタに好適である。

Claims

請求の範囲
[1] 導電性高分子材料から形成され、中心部の分子密度が表面部の分子密度より低く
、通常状態では略球形状を有し、且つ弾性変形が可能であることを特徴とする接触 子部材。
[2] 請求項 1記載の接触子部材であって、
導電性微粒子、導電性繊維、導電性フィラーの少なくとも一つを含むことを特徴と する接触子部材。
[3] 導電性高分子材料から形成され、中心部に空洞を有し、通常状態では略球形状を 有し、且つ弾性変形が可能であることを特徴とする接触子部材。
[4] 請求項 3記載の接触子部材であって、
導電性微粒子、導電性繊維、導電性フィラーの少なくとも一つを含むことを特徴と する接触子部材。
[5] 電子部品と回路基板に電気的に接続するためのコンタクタであって、
絶縁性の基板と、
該基板に形成された保持孔と、
該保持孔内に配置された少なくとも一つの接触子部材と
を有し、
前記接触子部材は、導電性高分子材料から形成され、中心部の分子密度が表面 部の分子密度より低ぐ通常状態では略球形状を有し、且つ弾性変形が可能である ことを特徴とするコンタクタ。
[6] 請求項 5記載のコンタクタであって、
前記基板の保持孔内に、複数の接触子部材が、該基板の厚さ方法に、直列状態 に収容されることを特徴とするコンタクタ。
[7] 電子部品と回路基板に電気的に接続するためのコンタクタであって、
絶縁性の基板と、
該基板に形成された保持孔と、
該保持孔内に配置された少なくとも一つの接触子部材と
を有し、 前記接触子部材は、導電性高分子材料から形成され、中心部に空洞を有し、通常 状態では略球形状を有し、且つ弾性変形が可能である
ことを特徴とするコンタクタ。
[8] 請求項 7記載のコンタクタであって、
前記基板の保持孔内に、複数の接触子部材が、該基板の厚さ方法に、直列状態 に収容されることを特徴とするコンタクタ。
[9] 絶縁性基板に形成した保持孔に、内部の分子密度が表面部分の分子密度より低 い複数の接触子部材を該絶縁性基板の厚さ方向に直列に配置し、
整列した該接触子部材の両端に被接触部材を接触させて押圧することで該被接触 部材間の電気的導通を得ることを特徴とする接触方法。
PCT/JP2004/018745 2004-12-15 2004-12-15 接触子部材、コンタクタ及び接触方法 WO2006064558A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2004/018745 WO2006064558A1 (ja) 2004-12-15 2004-12-15 接触子部材、コンタクタ及び接触方法
JP2006548612A JP4545760B2 (ja) 2004-12-15 2004-12-15 接触子部材、コンタクタ及び接触方法
CN2004800446290A CN101084442B (zh) 2004-12-15 2004-12-15 接触构件、接触器以及接触方法
US11/802,315 US7795552B2 (en) 2004-12-15 2007-05-22 Contact piece member, contactor and contact method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018745 WO2006064558A1 (ja) 2004-12-15 2004-12-15 接触子部材、コンタクタ及び接触方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/802,315 Continuation US7795552B2 (en) 2004-12-15 2007-05-22 Contact piece member, contactor and contact method

Publications (1)

Publication Number Publication Date
WO2006064558A1 true WO2006064558A1 (ja) 2006-06-22

Family

ID=36587623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018745 WO2006064558A1 (ja) 2004-12-15 2004-12-15 接触子部材、コンタクタ及び接触方法

Country Status (4)

Country Link
US (1) US7795552B2 (ja)
JP (1) JP4545760B2 (ja)
CN (1) CN101084442B (ja)
WO (1) WO2006064558A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156665B2 (en) 2018-11-08 2021-10-26 GM Global Technology Operations LLC Verifying operation of battery contactors during vehicle operation without loss of power

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073420B2 (en) 2006-01-31 2018-09-11 Ian Blakeman Switch actuation device
US9865406B2 (en) * 2006-01-31 2018-01-09 Ian Blakeman Switch actuation device
DE102011008261A1 (de) * 2011-01-11 2012-07-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Schiene für die elektrische Kontaktierung eines elektrisch leitfähigen Substrates
US9059552B2 (en) 2013-01-21 2015-06-16 International Business Machines Corporation Land grid array (LGA) socket cartridge and method of forming
CN104425396A (zh) * 2013-09-02 2015-03-18 日月光半导体制造股份有限公司 半导体封装结构及其制造方法
CN109307834A (zh) * 2018-11-15 2019-02-05 天津津航计算技术研究所 一种柔性连接的bga测试插座
CN112130384B (zh) * 2020-10-12 2022-07-19 武汉天马微电子有限公司 一种连接结构、显示面板和显示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005992A (ja) * 2000-06-26 2002-01-09 Fujitsu Ltd コンタクタ及びコンタクタを使用した試験方法
JP2004296301A (ja) * 2003-03-27 2004-10-21 Enplas Corp コンタクトユニット

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2295338A (en) * 1940-04-13 1942-09-08 Westinghouse Electric & Mfg Co Method of making electrical contact members
US3488841A (en) * 1965-11-19 1970-01-13 Stern Metals Corp Method for manufacturing electrical contact elements
US4547640A (en) * 1981-10-01 1985-10-15 Kabushiki Kaisha Meidensha Electrical contact structure of a vacuum interrupter
JPH11245085A (ja) * 1998-02-27 1999-09-14 Fuji Xerox Co Ltd 接合部材およびこれを用いた半導体実装装置
JP2002299378A (ja) * 2001-03-30 2002-10-11 Lintec Corp 導電体付接着シート、半導体装置製造方法および半導体装置
US6809280B2 (en) * 2002-05-02 2004-10-26 3M Innovative Properties Company Pressure activated switch and touch panel
JP2004010858A (ja) * 2002-06-11 2004-01-15 Yamaguchi Technology Licensing Organization Ltd 導電性高分子微粒子の製造方法及び導電性高分子微粒子
DE10318223A1 (de) * 2003-04-22 2004-12-02 Louis Renner Gmbh Kontaktstück aus Wolfram mit einer korrosionshemmenden Schicht aus Unedelmetall

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005992A (ja) * 2000-06-26 2002-01-09 Fujitsu Ltd コンタクタ及びコンタクタを使用した試験方法
JP2004296301A (ja) * 2003-03-27 2004-10-21 Enplas Corp コンタクトユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156665B2 (en) 2018-11-08 2021-10-26 GM Global Technology Operations LLC Verifying operation of battery contactors during vehicle operation without loss of power

Also Published As

Publication number Publication date
JPWO2006064558A1 (ja) 2008-06-12
CN101084442A (zh) 2007-12-05
US7795552B2 (en) 2010-09-14
CN101084442B (zh) 2012-02-08
JP4545760B2 (ja) 2010-09-15
US20070222070A1 (en) 2007-09-27

Similar Documents

Publication Publication Date Title
KR101482911B1 (ko) 탄성체 에스 컨택터를 가지는 반도체 디바이스 테스트용 소켓
US7795552B2 (en) Contact piece member, contactor and contact method
JP2001266983A (ja) 半導体装置試験用コンタクタ及びその製造方法
KR20090094841A (ko) 강화 접촉 요소
JP2002203879A (ja) ウエハ検査用プローブ装置
WO2011129244A1 (ja) 接触構造体および接触構造体の製造方法
KR20190052726A (ko) 양방향 도전성 모듈
US6674297B1 (en) Micro compliant interconnect apparatus for integrated circuit devices
KR101173191B1 (ko) 테스트 소켓
CN103328993A (zh) 探针卡组件和包括碳纳米管材料体的探针针体
JP2000241498A (ja) 半導体素子接続装置、半導体素子検査装置および検査方法
KR101044851B1 (ko) 회로 기판 검사 장치
CN112881895A (zh) 导电组件及测试装置
JP2014127407A (ja) 電気接触子及び電気部品用ソケット
KR20060082594A (ko) 마이크로핀이 인터페이스 보드에 삽입되는 프로브 장치
KR100907234B1 (ko) 접촉자 부재, 콘택터 및 접촉 방법
JP5755527B2 (ja) 異方導電性膜および導電性コネクタ
KR102270275B1 (ko) 테스트 소켓
KR101339168B1 (ko) 검사용 소켓의 제조방법
JP2005019343A (ja) 接続端子配列部材及びそれを用いたicソケット
KR102518123B1 (ko) 전자 부품 검사용 소켓 및 소켓 핀
KR102061669B1 (ko) 양방향 도전성 모듈
KR101678368B1 (ko) 반도체 디바이스 테스트용 컨택터
KR200381448Y1 (ko) 마이크로핀이 인터페이스 보드에 삽입되는 프로브 장치
KR100293601B1 (ko) 탄성 지지체를 갖는 집적회로 소자 검사 소켓

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006548612

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11802315

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077013231

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200480044629.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 11802315

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 04807104

Country of ref document: EP

Kind code of ref document: A1