明 細 書 Specification
マルテンサイト系ステンレス鋼 Martensitic stainless steel
技術分野 Technical field
[0001] 本発明は、マルテンサイト系ステンレス鋼に関し、さらに詳しくは、硫化水素、炭酸 ガス、塩素イオンといった腐食性物質を含む腐食環境で使用されるマルテンサイト系 ステンレス鋼に関する。 [0001] The present invention relates to martensitic stainless steel, and more particularly to martensitic stainless steel used in a corrosive environment containing corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions.
背景技術 Background art
[0002] 油井やガス井の深井戸化に伴い、油井管等の油井用鋼材として使用されるマルテ ンサイト系ステンレス鋼には高強度及び高靭性が求められる。そのため、降伏応力(0 . 2%耐カ)力 758〜860MPa (以下、 l lOksi級と称する)のマルテンサイト系ステン レス鋼や、 1 lOksi級以上の高強度を有するマルテンサイト系ステンレス鋼が開発さ れている。 [0002] With the deepening of oil wells and gas wells, martensitic stainless steel used as oil well steel materials such as oil well pipes is required to have high strength and high toughness. Therefore, a martensitic stainless steel with a yield stress (0.2% resistance) strength of 758 to 860 MPa (hereinafter referred to as “l lOksi class”) and a martensitic stainless steel with a high strength of 1 lOksi class or higher have been developed. It has been.
[0003] 油井用のマルテンサイト系ステンレス鋼はさらに、耐 SCC (Stress Corrosion Cracki ng)性ゃ耐 SSC (Sulfide Stress Cracking)性といった高い耐食性も要求される。油井 やガス井は腐食環境であり、硫化水素、炭酸ガス、塩素イオンといった腐食性物質を 含むためである。つまり、油井用のマルテンサイト系ステンレス鋼には、高強度、高靭 性及び高耐食性が求められる。 [0003] Martensitic stainless steel for oil wells is also required to have high corrosion resistance such as SCC (Stress Corrosion Cracking) resistance and SSC (Sulfide Stress Cracking) resistance. Oil and gas wells are corrosive environments and contain corrosive substances such as hydrogen sulfide, carbon dioxide, and chlorine ions. In other words, martensitic stainless steel for oil wells is required to have high strength, high toughness and high corrosion resistance.
[0004] 高強度及び高耐食性を有するマルテンサイト系ステンレス鋼として特開 2003— 32 43号公報が開示されている。この文献に開示されたマルテンサイト系ステンレス鋼は 、 Mo含有量を質量%で 1. 5%以上にすることにより、従来のマルテンサイト系ステン レス鋼よりも高 、耐 SSC性を有する。 [0004] Japanese Unexamined Patent Publication No. 2003-3243 is disclosed as a martensitic stainless steel having high strength and high corrosion resistance. The martensitic stainless steel disclosed in this document has higher SSC resistance than conventional martensitic stainless steel by setting the Mo content to 1.5% by mass or more.
[0005] ところで、 Mo含有量が高 、場合、 1 lOksi級の強度が得られる焼き戻し温度の範囲 [0005] By the way, when the Mo content is high, a range of tempering temperatures at which a strength of 1 lOksi class can be obtained.
(以下、焼き戻し温度範囲と称する)が非常に小さくなる。図 1は Mo含有量が高いマ ルテンサイト系ステンレス鋼(以下、高 Moマルテンサイト系ステンレス鋼と称する)の 降伏応力と焼き戻し温度との関係を示す図である。図 1の高 Moマルテンサイト系ステ ンレス鋼は、質量0 /0で 0. 016%の。、 11. 8%の Cr、 7. 2%の Niゝ 2. 9%の Moを含 み、残部は Fe及び不純物である。図 1を参照して、降伏応力が 758〜860MPaの範
囲における焼き戻し曲線 CIOの勾配は大きい。そのため、高 Moマルテンサイト系ス テンレス鋼の強度を l lOksi級にするには焼き戻し温度を約 580〜約 600°Cの範囲 内に設定しなければならない。つまり、強度を l lOksi級にするための焼き戻し温度 範囲 ΔΤは非常に小さい。 (Hereinafter referred to as the tempering temperature range) becomes very small. Fig. 1 shows the relationship between the yield stress and the tempering temperature of martensitic stainless steel with a high Mo content (hereinafter referred to as high Mo martensitic stainless steel). High Mo martensitic stainless steel of FIG. 1, the mass 0/0 0.016% of. 11.8% Cr, 7.2% Ni 2 2.9% Mo, the balance being Fe and impurities. Referring to Fig. 1, the yield stress ranges from 758 to 860 MPa. Tempering curve in the box The gradient of CIO is large. Therefore, the tempering temperature must be set within the range of about 580 to about 600 ° C in order to increase the strength of high Mo martensitic stainless steel to the lOksi class. In other words, the tempering temperature range ΔΤ for making the strength l lOksi grade is very small.
[0006] 焼き戻し温度範囲 Δ Tが小さければ、生産性が低下する。通常、高 Moマルテンサ イト系ステンレス鋼は数百 t連続して製造される。この場合、高 Moマルテンサイト系ス テンレス鋼は複数のヒート(1回の製鋼工程で得られた溶鋼)から製造されるが、各ヒ ートの化学組成は完全に一致せず、若干変動する。焼き戻し温度範囲 ΔΤが小さい 場合、鋼の強度を l lOksi級にするために、化学組成が変動するたびに焼き戻し温 度を変更しなければならない。要するに、強度を l lOksi級にするためにはヒートごと に焼き戻し温度の設定を変更する必要がある。このような焼き戻し温度の設定変更は 生産性を低下させる。 [0006] If the tempering temperature range ΔT is small, the productivity decreases. Usually, high Mo martensitic stainless steel is produced continuously for several hundred tons. In this case, high Mo martensitic stainless steel is produced from multiple heats (molten steel obtained in a single steelmaking process), but the chemical composition of each heat does not completely match and varies slightly. . When the tempering temperature range ΔΤ is small, the tempering temperature must be changed each time the chemical composition changes to make the steel strength l lOksi grade. In short, it is necessary to change the tempering temperature setting for each heat in order to make the strength l lOksi class. Changing the tempering temperature setting reduces productivity.
[0007] なお、本発明に関連する特許文献として、国際公開 WO2004Z57050が挙げら れる。 [0007] As a patent document related to the present invention, International Publication WO2004Z57050 is cited.
発明の開示 Disclosure of the invention
[0008] 本発明の目的は、 758〜860MPaの降伏応力が得られる焼き戻し温度の範囲が 大きいマルテンサイト系ステンレス鋼を提供することである。 [0008] An object of the present invention is to provide a martensitic stainless steel having a large tempering temperature range in which a yield stress of 758 to 860 MPa is obtained.
[0009] 本発明者は種々の実験及び検討の結果、以下の知見を得た。 As a result of various experiments and examinations, the present inventor has obtained the following knowledge.
[0010] (A)マルテンサイト系ステンレス鋼の A 変態点が高くなるような化学組成にすれば [0010] (A) If the chemical composition is such that the A transformation point of martensitic stainless steel is high
cl cl
、降伏応力を 758〜860MPaになる焼き戻し温度範囲が広くなる。 A 変態点が低け , The tempering temperature range where the yield stress becomes 758 to 860 MPa becomes wide. A Low transformation point
cl cl
れば、高温焼き戻し中にオーステナイトが生成され、これにより強度が低下するから である。 This is because austenite is generated during high-temperature tempering, which reduces strength.
[0011] (B)A 変態点を高くするだけでなぐ C含有量を低くする。これにより、降伏応力が [0011] (B) A Just by raising the transformation point, C content is lowered. This gives the yield stress
cl cl
758〜860MPaになる焼き戻し温度範囲がさらに広くなる。 C含有量が高いほど、 75 8〜860MPaの降伏応力範囲内における焼き戻し曲線の勾配が大きくなる力 であ る。 The tempering temperature range of 758 to 860 MPa becomes even wider. The higher the C content, the larger the tempering curve gradient within the yield stress range of 758 to 860 MPa.
[0012] (C) C含有量を低くすれば、 δフ ライトが生成されやすくなり、鋼の強度及び靭性 に影響を与える。 1 lOksi級のマルテンサイト系ステンレス鋼は外気が 0°Cを下回る環
境でも使用されるため、高強度とともに高靭性も必要である。 Acl変態点を高くし、か つ、 C含有量を低下させても鋼の組織をマルテンサイトイ匕できるような化学組成にす れば、 δフェライトの生成を抑制でき、 l lOksi級の強度を保ちながら靭性の低下を防 止できる。 [0012] (C) If the C content is lowered, δ-flite is likely to be generated, which affects the strength and toughness of steel. 1 lOksi grade martensitic stainless steel is a ring with outside air below 0 ° C. Since it is also used at the border, high strength and high toughness are required. If the chemical composition is such that the steel structure can be martensiticized even if the Acl transformation point is increased and the C content is reduced, the formation of δ ferrite can be suppressed, and l lOksi-class strength can be maintained. However, it is possible to prevent a decrease in toughness.
[0013] 以上の知見に基づいて検討した結果、 C含有量を 0. 01%以下にし、かつ、式(1) 及び式(2)を満足すれば、降伏応力が 758〜860MPaになる焼き戻し温度範囲を 従来よりも大きくできることを見出した。 [0013] As a result of investigation based on the above knowledge, if the C content is not more than 0.01% and the expressions (1) and (2) are satisfied, the tempering yields 758 to 860 MPa. It has been found that the temperature range can be made larger than before.
922. 6- 554. 5C- 50. 9Mn+ 2944. 8P+ 1. 056Cr— 81. lNi+ 95. 8Mo - 125. lTi- 1584. 9A1— 376. 1N≥600 (1) 922. 6- 554. 5C- 50. 9Mn + 2944. 8P + 1. 056Cr— 81. lNi + 95. 8Mo-125. lTi-1584. 9A1— 376. 1N≥600 (1)
30C + 0. 5Mn+Ni+0. 5Cu— 1. 5Si— Cr— Mo + 7. 9≥0 (2) 30C + 0. 5Mn + Ni + 0.5Cu— 1.5Si— Cr— Mo + 7. 9≥0 (2)
[0014] ここで、式中の記号は各元素の含有量 (質量%)である。 Here, the symbol in the formula is the content (% by mass) of each element.
[0015] 式(1)の左辺(以降、式(1)の左辺 =F1とする)は本発明のマルテンサイト系ステン レス鋼の A 変態点を予測する式である。前述のとおり、 A 変態点を高くすれば、焼 [0015] The left side of equation (1) (hereinafter, left side of equation (1) = F1) is an equation for predicting the A transformation point of the martensitic stainless steel of the present invention. As mentioned above, if you raise the A transformation point,
cl cl cl cl
き戻し中に残留オーステナイトが析出するのを抑制できるため、降伏応力が急激に 低下するのを防止できる。換言すれば、降伏応力が 758〜860MPaの範囲の焼き 戻し曲線の勾配を小さくできる。 Since it is possible to suppress the precipitation of retained austenite during tempering, it is possible to prevent the yield stress from rapidly decreasing. In other words, the slope of the tempering curve with a yield stress in the range of 758 to 860 MPa can be reduced.
[0016] Fl≥600としたのは、 600°C以下の焼き戻し温度で焼き戻し処理が実行されるから である。焼き戻し温度を 600°C以上にすれば、鋼中の微細炭化物や金属間化合物 が粗大化し、返って強度が低下し、さらに靭性も低下する。焼き戻し温度が 600°C以 下のため F1値は 600°C以上であれば足りる。 [0016] The reason why Fl ≥ 600 is that the tempering process is executed at a tempering temperature of 600 ° C or lower. If the tempering temperature is set to 600 ° C or higher, fine carbides and intermetallic compounds in the steel become coarser, which decreases the strength and further reduces the toughness. Since the tempering temperature is 600 ° C or lower, it is sufficient if the F1 value is 600 ° C or higher.
[0017] 式(2)は焼き戻し後の鋼をマルテンサイトイ匕するための式である。オーステナイト形 成元素である C、 Mn、 Niの含有量と、フェライト形成元素である Si、 Cr、 Moの含有 量とが式(2)の関係を満たせば、組織がマルテンサイトになり、 δフェライトの生成を 防止できる。そのため強度の低下を防止し、かつ、高靭性を維持できる。 [0017] Formula (2) is a formula for martensiticizing the steel after tempering. If the content of C, Mn, Ni, which are austenite forming elements, and the content of Si, Cr, Mo, which are ferrite forming elements, satisfy the relationship of formula (2), the structure becomes martensite, and δ ferrite Can be prevented. Therefore, strength reduction can be prevented and high toughness can be maintained.
[0018] なお、マルテンサイト系ステンレス鋼が選択元素である Ti、 Cuを含有しな 、場合、 式( 1)及び(2)中の「Ti」及び「Cu」は「0」である。 [0018] When martensitic stainless steel does not contain Ti and Cu as selective elements, "Ti" and "Cu" in formulas (1) and (2) are "0".
[0019] これらの式を満たせば、図 2に示す曲線 C1のような焼き戻し曲線を得ることができ、 758〜860MPaの降伏応力範囲における焼き戻し曲線の勾配を従来よりも小さくで
きる。そのため、降伏応力が 758〜860MPaとなる焼き戻し温度範囲 ΔΤ1は、従来 の焼き戻し曲線 C2の焼き戻し温度範囲 ΔΤ2よりも大きくなる。そのため、操業中の 焼き戻し温度の設定変更に基づく生産性の低下を抑制できる。 [0019] If these equations are satisfied, a tempering curve like the curve C1 shown in Fig. 2 can be obtained, and the gradient of the tempering curve in the yield stress range of 758 to 860MPa can be made smaller than before. wear. Therefore, the tempering temperature range ΔΤ1 where the yield stress is 758 to 860 MPa is larger than the tempering temperature range ΔΤ2 of the conventional tempering curve C2. Therefore, it is possible to suppress a decrease in productivity due to a change in the tempering temperature setting during operation.
[0020] 以上の知見に基づいて、本発明者は、以下の発明を完成させた。 Based on the above findings, the present inventor has completed the following invention.
[0021] 本発明によるマルテンサイト系ステンレス鋼は、質量0 /0で、 C:0.001〜0.01%、 S i:0.5%以下、 Mn:0. 1〜3.0%、P:0.04%以下、 S:0.01%以下、 Cr:10〜15 %、 Ni:4〜8%、 Mo:2.8〜5.0%、A1:0.001〜0. 10%、N:0.07%以下、 Ti: 0〜0.25%、V:0〜0.25%、Nb:0〜0.25%、Zr:0〜0.25%、Cu:0〜l.0% 、 Ca:0〜0.005%、 Mg:0〜0.005%、 La:0〜0.005%、 Ce:0〜0.005%を含 有し、残部は Fe及び不純物からなり、式(1)及び式(2)を満足し、 758〜860MPa の降伏応力を有する。 [0021] Martensitic stainless steel according to the invention, the mass 0/0, C: 0.001~0.01% , S i: 0.5% or less, Mn:. 0 1~3.0%, P: 0.04% or less, S: 0.01% or less, Cr: 10-15%, Ni: 4-8%, Mo: 2.8-5.0%, A1: 0.001-0.10%, N: 0.07% or less, Ti: 0-0.25%, V: 0 ~ 0.25%, Nb: 0 ~ 0.25%, Zr: 0 ~ 0.25%, Cu: 0 ~ 1.0%, Ca: 0 ~ 0.005%, Mg: 0 ~ 0.005%, La: 0 ~ 0.005%, Ce: The content is 0 to 0.005%, the balance is made of Fe and impurities, satisfies the formulas (1) and (2), and has a yield stress of 758 to 860 MPa.
922.6-554.5C-50.9Mn+2944.8P+1.056Cr— 81. lNi+95.8Mo -125. lTi-1584.9A1— 376.1N≥600 (1) 922.6-554.5C-50.9Mn + 2944.8P + 1.056Cr— 81. lNi + 95.8Mo -125. LTi-1584.9A1— 376.1N≥600 (1)
30C + 0.5Mn+Ni+0.5Cu— 1.5Si— Cr— Mo + 7.9≥0 (2) 30C + 0.5Mn + Ni + 0.5Cu— 1.5Si— Cr— Mo + 7.9≥0 (2)
[0022] ここで、式中の記号は各元素の含有量 (質量%)である。また、選択元素である Ti、 Cuを含有しない場合、式(1)及び(2)中の「Ti」、 「Cu」は「0」である。また、 0.2%耐 力を降伏応力とする。 Here, the symbol in the formula represents the content (% by mass) of each element. When Ti and Cu, which are selective elements, are not included, “Ti” and “Cu” in formulas (1) and (2) are “0”. The yield stress is 0.2% proof stress.
[0023] 本発明によるマルテンサイト系ステンレス鋼は、 C含有量を 0.01%以下にすること により焼き戻し曲線の勾配を小さくできる。さらに、式(1)を満たすことにより A [0023] In the martensitic stainless steel according to the present invention, the gradient of the tempering curve can be reduced by making the C content 0.01% or less. Furthermore, by satisfying equation (1), A
cl変態 点を従来よりも高くできる。そのため、焼き戻し曲線の勾配は小さくなり、降伏応力が 7 The cl transformation point can be made higher than before. Therefore, the slope of the tempering curve is reduced and the yield stress is 7
58〜860MPaとなる焼き戻し温度範囲が従来よりも大きくなる。 The tempering temperature range of 58 to 860 MPa is larger than before.
[0024] さらに式(2)を満たすことにより、強度が llOksi未満になるのを防止でき、かつ、高 靭性を維持できる。また、 Mo含有量が高いため、高耐食性を有する。 Furthermore, by satisfying the formula (2), the strength can be prevented from becoming less than llOksi and high toughness can be maintained. In addition, it has high corrosion resistance due to its high Mo content.
[0025] 好ましくは、本発明によるマルテンサイト系ステンレス鋼は、 Ti:0.005〜0.25%、[0025] Preferably, the martensitic stainless steel according to the present invention has Ti: 0.005 to 0.25%,
V:0.005〜0.25%、Nb:0.005〜0.25%、Zr:0.005〜0.25%のうちの 1種 以上を含有する。 V: 0.005 to 0.25%, Nb: 0.005 to 0.25%, Zr: One or more of 0.005 to 0.25%.
[0026] 好ましくは、本発明によるマルテンサイト系ステンレス鋼は、 Cu:0.05-1.0%を 含有する。
[0027] 好ましくは、本発明によるマルテンサイト系ステンレス鋼は、 Ca : 0. 0002〜0. 005 %、 Mg : 0. 0002〜0. 005%、 La : 0. 0002〜0. 005%、 Ce : 0. 0002〜0. 005[0026] Preferably, the martensitic stainless steel according to the present invention contains Cu: 0.05-1.0%. [0027] Preferably, the martensitic stainless steel according to the present invention includes Ca: 0.0002 to 0.005%, Mg: 0.0002 to 0.005%, La: 0.0002 to 0.005%, Ce : 0.0002 ~ 0.005
%のうちの 1種以上を含有する。 Contains one or more of%.
[0028] この場合、マルテンサイト系ステンレス鋼の熱間加工性が向上する。なお、これらの 元素を含有しても、上記発明の効果に影響はない。 [0028] In this case, the hot workability of the martensitic stainless steel is improved. Note that the inclusion of these elements does not affect the effects of the invention.
図面の簡単な説明 Brief Description of Drawings
[0029] [図 1]従来の高 Moマルテンサイト系ステンレス鋼の降伏応力と焼き戻し温度との関係 を示す図である。 [0029] FIG. 1 is a graph showing the relationship between yield stress and tempering temperature of conventional high Mo martensitic stainless steel.
[図 2]本発明の実施例における供試材 1と供試材 14の降伏応力と焼き戻し温度との 関係を示す図である。 FIG. 2 is a graph showing the relationship between yield stress and tempering temperature of Specimen 1 and Specimen 14 in an example of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0030] 以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当 部分には同一符号を付してその説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and the description thereof will not be repeated.
[0031] 1.化学組成 [0031] 1. Chemical composition
本発明の実施の形態によるマルテンサイト系ステンレス鋼は、以下の組成を有する The martensitic stainless steel according to the embodiment of the present invention has the following composition:
。以降、元素に関する%は質量%を意味する。 . Hereinafter, “%” related to elements means “% by mass”.
[0032] C : 0. 001〜0. 01% [0032] C: 0.001 to 0.01%
過剰に Cを含有すれば、焼き戻し曲線の勾配が急峻になり、 758〜860MPaの降 伏応力を有する鋼が安定して得られない。 C含有量は低く制限すべきである。一方、 If C is contained excessively, the gradient of the tempering curve becomes steep, and a steel having a yield stress of 758 to 860 MPa cannot be obtained stably. The C content should be limited low. on the other hand,
C含有量を 0. 001%未満にすれば製造コストが高くなる。そのため、 C含有量は 0. 0If the C content is less than 0.001%, the production cost increases. Therefore, the C content is 0.0
01〜0. 010/0【こする。好まし!/、 C含有量 ίま 0. 001〜0. 0080/0である。 01 to 0.01 0/0 [rub. Preferably! / Is a C content ί or 0.001 to 0.008 0/0.
[0033] Si : 0. 5%以下 [0033] Si: 0.5% or less
Siは脱酸剤として有効である。一方、 Siは鋼を硬化するため Si含有量が高すぎると 鋼の靭性及びカ卩ェ性が劣化する。また、 Siはフェライト形成元素であるため、鋼のマ ルテンサイトイ匕を妨げる。そのため、 Si含有量は 0. 5%以下にする。好ましい Si含有 量は 0. 3%以下である。 Si is effective as a deoxidizer. On the other hand, Si hardens the steel, so if the Si content is too high, the toughness and cacheability of the steel will deteriorate. In addition, since Si is a ferrite-forming element, it hinders martensitic defects in steel. Therefore, Si content should be 0.5% or less. A preferable Si content is 0.3% or less.
[0034] Mn: 0. 1〜3. 0% [0034] Mn: 0.1-3.0%
Mnは鋼の熱間加工性の向上に寄与する。さらに、 Mnはオーステナイト形成元素
であり、組織のマルテンサイトイ匕に寄与する。ただし、過剰に Mnを含有すれば靭性 が低下する。そのため、 Mn含有量は 0. 1〜3. 0%にする。好ましい Mn含有量は 0 . 3〜: L 0%である。 Mn contributes to the improvement of hot workability of steel. Furthermore, Mn is an austenite forming element And contribute to the organization's martensite. However, if Mn is contained excessively, the toughness will decrease. Therefore, the Mn content is set to 0.1 to 3.0%. The preferred Mn content is 0.3 to L 0%.
[0035] P : 0. 04%以下 [0035] P: 0.04% or less
Pは不純物である。 Pは SSCを発生させるため、 P含有量をなるベく低く制限する。 具体的には、 P含有量を 0. 04%以下にする。 P is an impurity. Since P generates SSC, the P content is limited to a very low level. Specifically, the P content is set to 0.04% or less.
[0036] S : 0. 01%以下 [0036] S: 0.01% or less
Sは不純物である。 Sは熱間加工性を低下する。そのため、 S含有量をなるベく低く 制限する。具体的には、 S含有量を 0. 01%以下にする。 S is an impurity. S decreases hot workability. Therefore, the S content is limited to a very low level. Specifically, the S content is set to 0.01% or less.
[0037] Cr: 10〜15% [0037] Cr: 10-15%
Crは湿潤炭酸ガス環境での耐食性の向上に寄与する。一方、 Crはフェライト形成 元素であるため、過剰に含有すれば焼き戻しマルテンサイトが形成されにくくなり、強 度及び靭性が低下する。そのため Cr含有量は 10〜15%にする。好ましい Cr含有量 は 11〜14%である。 Cr contributes to the improvement of corrosion resistance in a wet carbon dioxide environment. On the other hand, since Cr is a ferrite-forming element, if it is excessively contained, tempered martensite is difficult to form, and strength and toughness are reduced. Therefore, Cr content should be 10-15%. The preferred Cr content is 11-14%.
[0038] Ni:4〜8% [0038] Ni: 4-8%
Niはオーステナイト形成元素であり、焼き戻し後の組織をマルテンサイトにするため に必要である。 Ni含有量が低すぎる場合、焼き戻し後の組織はフェライトを多く含む 。一方、 Ni含有量が多すぎる場合、焼き戻し後の組織はオーステナイトを多く含む。 そのため、 Ni含有量は 4〜8%にする。好ましい Ni含有量は 4〜7%である。 Ni is an austenite-forming element and is necessary to make the structure after tempering martensite. When the Ni content is too low, the structure after tempering contains a large amount of ferrite. On the other hand, when the Ni content is too high, the structure after tempering contains a large amount of austenite. Therefore, the Ni content should be 4-8%. The preferred Ni content is 4-7%.
[0039] Mo : 2. 8〜5. 0% [0039] Mo: 2. 8 to 5.0%
Moは耐 SSC性及び強度の向上に寄与する重要な元素である。本実施の形態によ るマルテンサイト系ステンレス鋼では、高い耐 SSC性を得るため Mo含有量の下限を 2. 8%にする。一方、 Moはフェライト形成元素であるため、過剰な添カ卩は組織のマ ルテンサイトイ匕を妨げる。そのため Mo含有量の上限を 5. 0%にする。好ましい Mo含 有量は 2. 8〜4. 0%である。 Mo is an important element that contributes to the improvement of SSC resistance and strength. In the martensitic stainless steel according to the present embodiment, the lower limit of the Mo content is set to 2.8% in order to obtain high SSC resistance. On the other hand, since Mo is a ferrite-forming element, an excessive amount of additive prevents the martensitic structure of the structure. Therefore, the upper limit of Mo content is set to 5.0%. A preferable Mo content is 2.8 to 4.0%.
[0040] A1: 0. 001〜0. 10% [0040] A1: 0.001 ~ 0.10%
A1は脱酸剤として有効である。一方、 A1含有量が多すぎると多数の介在物が生成 され、耐食性が低下する。そのため、 A1含有量は 0. 001-0. 10%にする。好ましい
Al含有量は 0. 001〜0. 06%である。 A1 is effective as a deoxidizer. On the other hand, if the A1 content is too high, a large number of inclusions are produced, and the corrosion resistance is lowered. Therefore, the A1 content should be 0.001-0.10%. preferable The Al content is 0.001 to 0.06%.
[0041] N: 0. 07%以下 [0041] N: 0.07% or less
Nは窒化物を形成し耐食性を低下する。そのため、 N含有量は 0. 07%以下にする N forms nitrides and reduces corrosion resistance. Therefore, N content should be 0.07% or less.
[0042] なお、残部は Fe及び不純物で構成される。不純物は製造過程の種々の要因等に より含まれる。 [0042] The balance is composed of Fe and impurities. Impurities are included due to various factors in the manufacturing process.
[0043] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて Ti、 V、 [0043] The martensitic stainless steel according to the present embodiment further includes Ti, V,
Nb、 Zrのうちの 1種以上を含有する。 Contains one or more of Nb and Zr.
[0044] Ti: 0〜0. 25% [0044] Ti: 0 ~ 0.25%
V: 0〜0. 25% V: 0 ~ 0.25%
Nb : 0〜0. 25% Nb: 0 ~ 0.25%
Zr: 0〜0. 25% Zr: 0 ~ 0.25%
Ti、 V、 Nb、 Zrは選択元素である。これらの元素は Cを固定し、強度のばらつきを 低減する。一方、これらの元素を過剰に含有すると焼き戻し後の組織のマルテンサイ ト化が妨げられる。そのため、これらの元素の含有量をそれぞれ 0〜0. 25%にする。 好ましい含有量はそれぞれ 0. 005-0. 25%であり、さらに好ましい含有量はそれ ぞれ 0. 005〜0. 20%である。 Ti, V, Nb and Zr are selective elements. These elements fix C and reduce strength variations. On the other hand, when these elements are contained excessively, the structure after tempering is prevented from becoming martensite. Therefore, the content of these elements is 0 to 0.25%. A preferable content is 0.005-0.25%, respectively, and a more preferable content is 0.005-0.20% respectively.
[0045] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて Cuを含 有する。 [0045] The martensitic stainless steel according to the present embodiment further contains Cu as necessary.
[0046] Cu: 0〜l. 0% [0046] Cu: 0 to l. 0%
Cuは選択元素である。 Cuは Niと同様にオーステナイト形成元素であり、焼き戻し 後の組織のマルテンサイト化に有効である。一方、過剰に Cuを含有すると熱間加工 性が低下する。そのため、 Cu含有量は 0〜1. 0%にする。好ましい Cu含有量は 0. 0 5〜1. 0%である。 Cu is a selective element. Cu, like Ni, is an austenite-forming element and is effective for martensite formation after tempering. On the other hand, if Cu is contained excessively, the hot workability decreases. Therefore, the Cu content is set to 0 to 1.0%. A preferable Cu content is 0.05 to 1.0%.
[0047] 本実施の形態によるマルテンサイト系ステンレス鋼はさらに、必要に応じて Ca、 Mg [0047] The martensitic stainless steel according to the present embodiment further includes Ca, Mg as necessary.
、 La、 Ceのうちの 1種以上を含有する。 Contains one or more of La, Ce.
[0048] Ca: 0〜0. 005% [0048] Ca: 0 to 0.005%
Mg : 0〜0. 005%
La : 0〜0. 005% Mg: 0 ~ 0.005% La: 0 ~ 0.005%
Ce : 0〜0. 005% Ce: 0 ~ 0.005%
Ca、 Mg、 La、 Ceはいずれも選択元素である。これらの元素は熱間加工性の向上 に寄与する。一方、これらの元素を過剰に含有すると粗大な酸化物が生成され、耐 食性が低下する。そのため、これらの元素の含有量はそれぞれ 0〜0. 005%にする 。好ましい含有量は、それぞれ 0. 0002〜0. 005%である。これらの元素のうち、熱 間加工性の向上に特に寄与する元素は Ca及び Laである。 Ca, Mg, La, and Ce are all selective elements. These elements contribute to the improvement of hot workability. On the other hand, if these elements are contained excessively, coarse oxides are formed and the corrosion resistance is lowered. Therefore, the content of these elements is set to 0 to 0.005%. Preferable contents are 0.0002 to 0.005%, respectively. Among these elements, Ca and La are elements that particularly contribute to the improvement of hot workability.
[0049] 2.製造方法 [0049] 2. Manufacturing method
上記化学組成の鋼を溶製し、周知の精鍊工程により精鍊する。続いて溶鋼を連続 铸造法により連続铸造材にする。連続铸造材とはたとえばスラブやブルームゃビレツ トである。又は、溶鋼を造塊法によりインゴットにする。 The steel having the above chemical composition is melted and refined by a well-known refinement process. Subsequently, the molten steel is made into a continuous forging material by a continuous forging method. For example, slabs and blooms are billets. Alternatively, the molten steel is made into an ingot by the ingot-making method.
[0050] スラブやブルーム、インゴットを熱間加工してビレットにする。このとき、熱間圧延に よりビレットにしてもよいし、熱間鍛造によりビレットにしてもよい。 [0050] Slabs, blooms, and ingots are hot-worked into billets. At this time, the billet may be formed by hot rolling, or may be formed by hot forging.
[0051] 連続铸造又は熱間加工により得られたビレットを熱間加工して油井管にする。熱間 加工としてたとえばマンネスマン法を実施する。熱間加工としてュジーン セルジュ ネ方式等の熱間押出を実施してもよ 、し、エルハルト方式等の鍛造管製造方法を実 施してもよい。熱間加工後の油井管に焼き入れ及び焼き戻し処理を実施する。焼き 入れ処理は周知の方法で実施する。たとえば、焼き入れ温度は 900〜950°Cとする 。ただし、他の温度範囲であってもよい。 [0051] A billet obtained by continuous forging or hot working is hot worked into an oil well pipe. For example, Mannesmann method is implemented as hot working. As the hot working, hot extrusion such as a Eugene Selgene method may be performed, or a forged pipe manufacturing method such as an Erhardt method may be performed. Quench and temper the oil well pipe after hot working. The quenching process is performed by a well-known method. For example, the quenching temperature is 900 to 950 ° C. However, other temperature ranges may be used.
[0052] 焼き戻し処理にぉ 、て、好まし 、焼き戻し温度の下限は 500°Cである。一方、焼き 戻し温度が高すぎると、残留オーステナイトが析出し、降伏応力を 758〜860MPaと することができない。そのため、好ましい焼き戻し温度の上限は 600°Cである。 [0052] For the tempering treatment, the lower limit of the tempering temperature is preferably 500 ° C. On the other hand, if the tempering temperature is too high, retained austenite precipitates and the yield stress cannot be 758 to 860 MPa. Therefore, the preferable upper limit of the tempering temperature is 600 ° C.
[0053] さらに、本発明の実施の形態によるマルテンサイト系ステンレス鋼は、以下の式(1) 及び (2)を満たす。 Furthermore, the martensitic stainless steel according to the embodiment of the present invention satisfies the following formulas (1) and (2).
922. 6- 554. 5C- 50. 9Mn+ 2944. 8P+ 1. 056Cr— 81. lNi+ 95. 8Mo - 125. lTi- 1584. 9A1— 376. 1N≥600 (1) 922. 6- 554. 5C- 50. 9Mn + 2944. 8P + 1. 056Cr— 81. lNi + 95. 8Mo-125. lTi-1584. 9A1— 376. 1N≥600 (1)
30C + 0. 5Mn+Ni+0. 5Cu— 1. 5Si— Cr— Mo + 7. 9≥0 (2) 30C + 0. 5Mn + Ni + 0.5Cu— 1.5Si— Cr— Mo + 7. 9≥0 (2)
[0054] 式(1)を満たせば、 A 変態点が高くなるため、降伏応力が 758〜860MPaの範囲
での焼き戻し曲線の勾配を小さくできる。また、式(2)を満たせば、組織のマルテンサ イト化を促進できる。そのため、式(1)及び式(2)を満たせば、 758〜860MPaの降 伏応力が得られる焼き戻し温度範囲を従来よりも大きくすることができる。そのため、 操業中の焼き戻し温度の設定変更に基づく生産性の低下を抑制できる。 [0054] If Equation (1) is satisfied, the A transformation point becomes high, so the yield stress is in the range of 758 to 860 MPa. The slope of the tempering curve at can be reduced. Also, if the formula (2) is satisfied, the organization can be promoted to martensite. Therefore, if the formulas (1) and (2) are satisfied, the tempering temperature range in which a yield stress of 758 to 860 MPa can be obtained can be made larger than before. Therefore, it is possible to suppress a decrease in productivity due to a change in the setting of the tempering temperature during operation.
[0055] さらに、式 (2)を満足することにより油井用鋼材として必要な高い靭性を得ることもで きる。 [0055] Furthermore, high toughness necessary for oil well steel can be obtained by satisfying the formula (2).
[0056] なお、マルテンサイト系ステンレス鋼が選択元素である Ti、 Cuを含有しな 、場合、 式(1)及び(2)中の「Ti」、「Cu」は「0」である。 [0056] When martensitic stainless steel does not contain Ti and Cu as selective elements, "Ti" and "Cu" in formulas (1) and (2) are "0".
[0057] 上記ではマルテンサイト系ステンレス鋼を鋼管にした力 マルテンサイト系ステンレ ス鋼を鋼板にしてもよい。 [0057] In the above, a force obtained by using martensitic stainless steel as a steel pipe may be martensitic stainless steel.
実施例 1 Example 1
[0058] 表 1に示す化学組成を有する供試材を製造し、各供試材において、降伏応力が 75 8〜860MPaになる焼き戻し温度範囲を調査した。さらに、各供試材の靭性及び耐 食性を調査した。 [0058] Specimens having the chemical composition shown in Table 1 were manufactured, and the tempering temperature range in which the yield stress was 758 to 860 MPa was investigated in each specimen. In addition, the toughness and corrosion resistance of each specimen were investigated.
[表 1]
[table 1]
OAV OAV
[0059] 表 1に示す化学組成を有する鋼を溶製した。表 1に示すように、供試材 1〜11の化 学組成は本発明の化学組成の範囲内であった。 [0059] Steel having the chemical composition shown in Table 1 was melted. As shown in Table 1, the chemical compositions of the test materials 1 to 11 were within the range of the chemical composition of the present invention.
[0060] ここで、式(1)の左辺を Fl、式(2)の左辺を F2とし、各供試材の F1及び F2を求め た。このとき、 Tiを含有しない供試材に対しては F1内の「Ti」を「0」とし、 Cuを含有し な ヽ供試材に対しては、 F2内の「Cu」を「0」とした。 [0060] Here, F1 and F2 of each test material were obtained with Fl on the left side of Equation (1) and F2 on the left side of Equation (2). At this time, “Ti” in F1 is set to “0” for specimens that do not contain Ti, and “Cu” in F2 is set to “0” for specimens that do not contain Cu. It was.
[0061] 供試材 1〜供試材 11はいずれも F1及び F2が本発明の範囲内であった。具体的に は F1が 600以上であり、 F2が 0以上であった。 [0061] Specimen 1 to Specimen 11 both had F1 and F2 within the scope of the present invention. Specifically, F1 was 600 or more and F2 was 0 or more.
[0062] 一方、供試材 12及び 13では、化学組成が本発明の範囲内であるものの、 F1値が 600未満であった。供試材 14〜16では C含有量が本発明の上限値を超えた。さらに 、供試材 14は F1値が 600未満であり、供試材 15は F2値が 0未満であった。 [0062] On the other hand, in the test materials 12 and 13, although the chemical composition was within the range of the present invention, the F1 value was less than 600. In specimens 14 to 16, the C content exceeded the upper limit of the present invention. Further, the specimen 14 had an F1 value of less than 600, and the specimen 15 had an F2 value of less than 0.
[0063] 供試材 1〜16の溶鋼を铸造して連続铸造材にした。製造した連続铸造材を熱間鍛 造及び熱間圧延して厚さ 15mm、幅 120mm、長さ 1000mmの複数の鋼板にした。 熱間鍛造及び熱間圧延後の鋼板は常温まで空冷した。得られた鋼板を用いて以下 の試験を実施した。 [0063] Specimens 1 to 16 molten steel was forged into continuous forged materials. The manufactured continuous forging material was hot forged and hot rolled into a plurality of steel plates 15 mm thick, 120 mm wide and 1000 mm long. The steel sheet after hot forging and hot rolling was air-cooled to room temperature. The following tests were conducted using the obtained steel plate.
[0064] 1.焼き戻し温度範囲 [0064] 1. Tempering temperature range
初めに、得られた複数の鋼板を焼き入れした。このとき、焼き入れ温度は 910°Cに した。続いて、焼き入れした鋼板に対して焼き戻しを実施した。このとき、焼き戻し温 度を 450〜650°Cの温度範囲内で変化させた。各焼き戻し温度で焼き戻しを実施し た鋼板を用いて引張試験を実施した。具体的には、鋼板力も平行部の直径が 6. 35 mm、平行部の長さが 25. 4mmの丸棒試験片を作製した。作製した丸棒試験片を 用いて JIS Z2241に基づいて常温で引張試験を実施し、降伏応力を求めた。引張 試験後、各供試材について降伏応力が 758〜860MPaの範囲内となる焼き戻し温 度範囲 ΔΤを求めた。なお、 0. 2%耐カを降伏応力とした。 First, the obtained plurality of steel plates were quenched. At this time, the quenching temperature was set to 910 ° C. Subsequently, tempering was performed on the quenched steel sheet. At this time, the tempering temperature was changed within a temperature range of 450 to 650 ° C. Tensile tests were performed using steel plates that had been tempered at each tempering temperature. Specifically, a round bar test piece having a parallel part diameter of 6.35 mm and a parallel part length of 25.4 mm was prepared. A tensile test was performed at room temperature based on JIS Z2241 using the prepared round bar test piece, and the yield stress was determined. After the tensile test, the tempering temperature range ΔΤ where the yield stress was in the range of 758 to 860 MPa was determined for each specimen. The yield stress was 0.2% resistance.
[0065] 表 2に各供試材における降伏応力が 758〜860MPaとなる焼き戻し温度範囲を示 す。 [0065] Table 2 shows the tempering temperature range in which the yield stress of each specimen is 758 to 860 MPa.
[表 2]
厶 T (。C) [Table 2] 厶 T (.C)
*号 * Issue
本 1 1 10 Book 1 1 10
2 80 2 80
3 100 3 100
発 4 1 10 Departure 4 1 10
5 45 5 45
6 80 6 80
明 7 50 Light 7 50
8 55 8 55
9 40 9 40
鋼 10 1 10 Steel 10 1 10
1 1 100 1 1 100
比 12 10 Ratio 12 10
較 13 10 Comparison 13 10
鋼 14 20 Steel 14 20
15 25 15 25
16 20 16 20
[0066] 表 2中の ΔΤは各供試材の降伏応力が 758〜860MPaとなる焼き戻し温度のうち の最高温度と最低温度との差分値である。なお、単位は °Cである。 [0066] ΔΤ in Table 2 is a difference value between the highest temperature and the lowest temperature among the tempering temperatures at which the yield stress of each specimen becomes 758 to 860 MPa. The unit is ° C.
[0067] 表 2に示すように、供試材 1〜: L 1はいずれも ΔΤ力 0°C以上であった。一方、供試 材 12及び 13は F1値が 600未満であったため、 ΔΤ力 0°C未満となった。供試材 14 は C含有量が高ぐかつ、 F1値が 600未満であったため ΔΤ力 0°C未満となった。 供試材 15及び 16は C含有量が高いため、 ΔΤ力 0°C未満となった。 [0067] As shown in Table 2, Specimens 1 to L 1 all had a Δ repulsive force of 0 ° C or higher. On the other hand, specimens 12 and 13 had an F1 value of less than 600, so the Δ repulsive force was less than 0 ° C. Specimen 14 had a high C content and an F1 value of less than 600, so the Δ repulsive force was less than 0 ° C. Specimens 15 and 16 had a high C content, so the Δ repulsive force was less than 0 ° C.
[0068] 図 2に供試材 1と供試材 14における焼き戻し温度と降伏応力の関係を示す。図 2に 示すように、 F1値が 600以上である供試材 1の焼き戻し曲線 C1は 758〜860MPa の降伏応力範囲での勾配が小さぐ焼き戻し温度範囲 ΔΤ1は 110°Cであった。一方 、 F1値が 600未満であった供試材 14の 758〜860MPaの降伏応力範囲での焼き 戻し曲線 C2の勾配は大きぐ焼き戻し温度範囲 ΔΤ2は 20°Cと小さ力つた。 [0068] FIG. 2 shows the relationship between the tempering temperature and the yield stress in Sample 1 and Sample 14. As shown in Fig. 2, the tempering curve C1 of Specimen 1 with an F1 value of 600 or more had a tempering temperature range ΔΤ1 of 110 ° C with a small gradient in the yield stress range of 758 to 860 MPa. On the other hand, the slope of the tempering curve C2 in the yield stress range of 758 to 860 MPa for specimen 14 with an F1 value of less than 600 was large, and the tempering temperature range ΔΤ2 was as low as 20 ° C.
[0069] 2.靭性 [0069] 2. Toughness
表 3に各供試材の靭性値を求めた結果を示す。 Table 3 shows the results of determining the toughness value of each specimen.
[表 3]
番号 F2 降伏応力 (MPa) -40°Cの吸収エネルキ'(J) [Table 3] No. F2 Yield stress (MPa) Absorption energy of -40 ° C '(J)
本 1 0.20 804.0 185 Book 1 0.20 804.0 185
2 0.25 782.0 182 2 0.25 782.0 182
3 0.14 812.0 176 3 0.14 812.0 176
発 4 0.24 805.0 185 Departure 4 0.24 805.0 185
5 0.03 813.0 188 5 0.03 813.0 188
6 0.26 838.0 187 6 0.26 838.0 187
明 7 0.18 854.0 192 7 0.18 854.0 192
3 0.30 808.0 90 3 0.30 808.0 90
9 0.06 841.0 188 9 0.06 841.0 188
鋼 10 0.06 807.0 190 Steel 10 0.06 807.0 190
1 1 0.04 773.0 194 1 1 0.04 773.0 194
12 0.63 848.0 160 12 0.63 848.0 160
比 13 0.12 815.0 165 Ratio 13 0.12 815.0 165
較 14 0.98 851.0 167 鋼 15 -1.32 844.0 81 14 0.98 851.0 167 Steel 15 -1.32 844.0 81
16 0.34 841.0 171 16 0.34 841.0 171
[0070] 靭性試験は以下のとおり実施した。得られた鋼板を 910°Cで焼き入れし、続、て降 伏応力が表 3に示す値となるように焼き戻しを実施した。焼き戻しを実施した鋼板から[0070] The toughness test was performed as follows. The obtained steel sheet was quenched at 910 ° C. and subsequently tempered so that the yield stress was as shown in Table 3. From tempered steel sheet
JISZ2202に基づく 10mm幅の Vノッチ試験片を作製した。 A 10 mm wide V-notch specimen based on JISZ2202 was prepared.
[0071] 作製した Vノッチ試験片を用いて JIS Z2242に基づいて—40°Cにてシャルピー衝 撃試験を実施し、吸収エネルギを求めた。 [0071] A Charpy impact test was performed at -40 ° C based on JIS Z2242 using the manufactured V-notch test piece, and the absorbed energy was obtained.
[0072] 表 3中の吸収エネルギの単位 ίおである。供試材 1〜: L 1はいずれも F2値が 0以上で あるため、吸収エネルギが 100Jを超え、高い靭性を示した。一方、供試材 15は F2値 力 SO未満であったため、吸収エネルギが低力つた。 [0072] The unit of absorbed energy in Table 3 is ί お. Specimens 1 ~: All L 1 had F2 value of 0 or more, so the absorbed energy exceeded 100J and showed high toughness. On the other hand, since the test material 15 had an F2 value less than SO, the absorbed energy was low.
[0073] 3.耐食性 [0073] 3. Corrosion resistance
湿潤炭酸ガス環境下での耐食性は以下の炭酸ガス腐食試験を実施することにより 評価した。靭性評価時と同じ条件で焼き入れ及び焼き戻しを実施した鋼板力も幅 20 mm X厚さ 3mm X長さ 50mmの試験片を切り出した。切り出した試験片の表面を 60 Corrosion resistance in a wet carbon dioxide environment was evaluated by carrying out the following carbon dioxide corrosion test. A test piece having a width of 20 mm, a thickness of 3 mm, and a length of 50 mm was cut out for a steel plate that had been quenched and tempered under the same conditions as in the toughness evaluation. The surface of the cut specimen is 60
0番エメリー紙により研磨した後、脱脂及び乾燥した。 After polishing with No. 0 emery paper, it was degreased and dried.
[0074] 作製した試験片を 9. 73気圧の COガスと 0. 014気圧の H Sとを飽和させた 25% [0074] The prepared test piece was saturated with 9.73 atmospheres of CO gas and 0.014 atmospheres of H 2 S 25%
2 2 twenty two
NaCl水溶液に 720時間浸漬した。なお、試験中は水溶液の温度を 165°Cに維持し た。 It was immersed in an aqueous NaCl solution for 720 hours. During the test, the temperature of the aqueous solution was maintained at 165 ° C.
[0075] 試験後、試験片の腐食減量を求めた。具体的には、試験前の試験片の重量から試 験後の試験片の重量を差分した値を腐食減量とした。さらに、目視により試験片表面
の局部腐食の有無を確認した。腐食減量が 7. 7g未満であり、かつ、局部腐食が発 生して 、なければ湿潤炭酸ガス環境下での耐食性が高 、と判断した。 [0075] After the test, the corrosion weight loss of the test piece was determined. Specifically, the value obtained by subtracting the weight of the test piece after the test from the weight of the test piece before the test was taken as the corrosion weight loss. Furthermore, the surface of the test piece is visually The presence or absence of local corrosion was confirmed. If the corrosion weight loss was less than 7.7 g and local corrosion did not occur, it was judged that the corrosion resistance in a wet carbon dioxide environment was high.
[0076] さらに、湿潤硫ィ匕水素環境下での耐 SSC性を以下の SSC試験を実施することによ り評価した。靭性評価時と同じ条件で焼き入れ及び焼き戻しを実施した鋼板力 平 行部の直径 6. 3mm,平行部の長さ 25. 4mmの引張試験片を作製した。作製した 引張試験片を用いて NACE TM0177- 96 Method Aに基づいてプルーフリン グ試験を実施した。このとき、 0. 03atmの H S (CO bal. )を飽和させた 20%NaCl [0076] Furthermore, the SSC resistance in a wet sulfurous acid environment was evaluated by conducting the following SSC test. Tensile strength test pieces with a diameter of 6.3 mm in the parallel part and a length of 25.4 mm in the parallel part were prepared by quenching and tempering under the same conditions as for toughness evaluation. A proofing test was performed based on NACE TM0177-96 Method A using the prepared tensile specimen. At this time, 20% NaCl saturated with 0.03atm H 2 S (CO bal.)
2 2 twenty two
水溶液に試験片を 720時間浸漬した。 NaCl水溶液の pHは 4. 5とし、試験中、水溶 液の温度を 25°Cに維持した。試験後、目視にて割れの有無を確認した。 The test piece was immersed in the aqueous solution for 720 hours. The pH of the aqueous NaCl solution was 4.5, and the temperature of the aqueous solution was maintained at 25 ° C during the test. After the test, the presence or absence of cracks was confirmed visually.
[0077] 表 4に耐食性試験の結果を示す。 [0077] Table 4 shows the results of the corrosion resistance test.
[表 4] [Table 4]
[0078] 表中の炭酸ガス腐食試験における「〇」は、腐食減量が 7. 7g未満であり、かつ、局 部腐食が発生していないことを示す。また、 SSC腐食試験における「〇」は割れが発 生して ヽな 、ことを示す。供試材 1〜1 、ずれも高 、耐食性を有して 、た。 [0078] “◯” in the carbon dioxide corrosion test in the table indicates that the corrosion weight loss is less than 7.7 g and no local corrosion has occurred. In addition, “◯” in the SSC corrosion test indicates that cracking has occurred. The specimens 1-1 were high in deviation and corrosion resistant.
[0079] 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施す るための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることな ぐその趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施するこ とが可能である。 Although the embodiments of the present invention have been described above, the above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit of the invention.
産業上の利用可能性
本発明によるマルテンサイト系ステンレス鋼は、硫化水素、炭酸ガス、塩素イオン等 の腐食性物質を含む腐食環境で使用される鋼材として利用可能である。特に、油井 やガス井といった湿潤硫ィ匕水素環境及び湿潤炭酸ガス環境における生産設備用鋼 材、地熱発電設備用鋼材、炭酸ガス除去設備用鋼材、油井管として使用される鋼管 に利用可能である。
Industrial applicability The martensitic stainless steel according to the present invention can be used as a steel material used in a corrosive environment containing corrosive substances such as hydrogen sulfide, carbon dioxide gas, and chlorine ions. In particular, it can be used for steel materials for production facilities, steel materials for geothermal power generation facilities, steel materials for carbon dioxide gas removal equipment, and steel pipes used as oil well pipes in wet sulfur and hydrogen environments such as oil wells and gas wells. .