WO2005118185A1 - Wear resistant alloy powders and coatings - Google Patents
Wear resistant alloy powders and coatings Download PDFInfo
- Publication number
- WO2005118185A1 WO2005118185A1 PCT/US2005/018423 US2005018423W WO2005118185A1 WO 2005118185 A1 WO2005118185 A1 WO 2005118185A1 US 2005018423 W US2005018423 W US 2005018423W WO 2005118185 A1 WO2005118185 A1 WO 2005118185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight percent
- alloy
- wear resistant
- chromium
- molybdenum
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/045—Alloys based on refractory metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
- C22C19/05—Alloys based on nickel or cobalt based on nickel with chromium
- C22C19/051—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
- C22C19/053—Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 30% but less than 40%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/04—Alloys based on tungsten or molybdenum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/06—Alloys based on chromium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Definitions
- This invention relates to chromium-molybdenum alloys and wear resistant alloy powders useful for deposition through thermal spray devices.
- the wear resistant alloy powders are useful for forming coatings having the same composition.
- Hard surface coating metals and alloys are known in the art.
- chromium metal has been used as an electroplated coating for many years to restore worn or damaged parts to their original dimensions, to increase wear and corrosion resistance, and to reduce friction.
- Hard chromium electroplate has a number of limitations. When the configuration of the part becomes complex, obtaining a uniform coating thickness by electro-deposition is difficult. A non- uniform coating thickness necessitates grinding to a finished surface configuration, which is both difficult and expensive with electroplated chromium because of its inherent brittleness and hardness. The rate of deposition by electroplating is relatively low, and thus a substantial capital investment in plating equipment is required.
- 3,846,084 discloses coatings made by the plasma or detonation gun process that are superior to hard chromium electroplate in compatibility, frictional characteristics and wear resistance by incorporating a dispersion of chromium carbide particles in a chromium matrix. Coatings of this type can be made from mechanical mixtures of powders. However, there are certain limitations to the quality of coatings made from them. Plasma, HVOF and detonation-gun coatings result in a multilayer structure of overlapping lamellae or "splats." Each splat is derived from a single particle of the powder used to produce the coating. There appears to be little, if any, combining or alloying of two or more powder particles during the coating deposition process. U.S. Patent No.
- 6,562,480 Bl discloses a wear resistant coating for protecting a surface undergoing sliding contact with another surface such as piston rings and cylinder liners of internal combustion engines.
- the wear resistant coating is applied by HVOF deposition of a powder which comprises a blend of about 13 weight percent to about 43 weight percent of a nickel -chromium alloy, about 25 weight percent to about 64 weight percent chromium carbide, and about 15 weight percent to about 50 weight percent molybdenum.
- U.S. Patent No. 6,503,290 Bl discloses a corrosion resistant powder useful for deposition through thermal spray devices.
- the powder comprises about 30 to 60 weight percent tungsten, about 27 to 60 weight percent chromium, about 1.5 to 6 weight percent carbon, a total of about 10 to 40 weight percent cobalt plus nickel and incidental impurities plus melting point suppressants.
- the corrosion resistant powder is useful for forming coatings having the same composition.
- a need continues to exist for powders and coatings that can be deposited by thermal spray devices and that exhibit excellent wear and/or corrosion resistance. Therefore, a need continues to exist for developing new powders and for exploring their potential for thermal spray deposition of wear and corrosion resistant coatings. It would therefore be desirable in the art to provide powders and coatings that can be deposited by thermal spray devices and that exhibit excellent wear and corrosion resistance .
- the alloys include precipitated carbides (and optionally nitrides) of chromium and molybdenum interspersed throughout.
- This invention also relates to wear resistant alloy powders useful for deposition through thermal spray devices.
- the powders comprise an alloy of about 20 to 65 weight percent chromium, about 20 to 65 weight percent molybdenum, about 0.5 to 3 weight percent carbon, and about 10 to 45 weight percent nickel.
- the wear resistant alloy powders are useful for forming coatings having the same composition.
- this invention relates to wear resistant alloy powders useful for deposition through thermal spray devices such as plasma, HVOF or detonation gun.
- the powders are made from alloys comprising about 20 to 65 weight percent chromium, about 20 to 65 weight percent molybdenum, about 0.5 to 3 weight percent carbon, and about 10 to 45 weight percent nickel .
- the alloys include precipitated carbides and optionally nitrides of chromium and molybdenum interspersed throughout.
- the alloys are useful for forming wear resistant powders and coatings having the same composition.
- the alloys herein rely upon a large concentration of chromium and molybdenum for excellent wear resistance.
- the alloys contain at least about 20 weight percent chromium, preferably at least about 30 weight percent chromium, and more preferably at least about 35 weight percent chromium. Powders containing less than about 20 weight percent chromium may exhibit inadequate wear resistance for many applications. Chromium levels in excess of about 65 weight percent may tend to detract from the wear resistance of the coating because the coating may become too brittle. Similarly, the alloys contain at least about 20 weight percent molybdenum, preferably at least about 25 weight percent molybdenum, and more preferably about 30 or 35 weight percent molybdenum. Powders containing less than about 20 weight percent molybdenum may exhibit inadequate wear resistance for many applications.
- the alloys comprise about 20 to 65, preferably about 30 to 60, and more preferably about 35 to 55, weight percent chromium; about 20 to 65, preferably about 25 to 60, and more preferably about 30 to 55, weight percent molybdenum; about 0.5 to 3, preferably about 1 to 2.5, and more preferably about 1.5 to 2, weight percent carbon; and about 10 to 45, preferably about 15 to 35, and more preferably about 20 to 35, weight percent nickel.
- These alloys are useful for forming wear resistant powders and coatings having the same composition.
- the alloys comprise about 50 to 90, preferably about 60 to 80, and more preferably about 65 to 75, weight percent chromium and molybdenum; about 0.5 to 3, preferably about 1 to 2.5, and more preferably about 1.5 to 2, weight percent carbon; and about 10 to 45, preferably about 15 to 35, and more preferably about 20 to 35, weight percent nickel.
- These alloys are useful for forming wear resistant powders and coatings having the same composition.
- the carbon concentration controls the hardness and wear properties of coatings formed with the powders. A minimum of about 0.5 weight percent carbon may be necessary to impart adequate hardness into the coatings. If the carbon exceeds about 3 weight percent, the melting temperature of the powder may become too high and it may become too difficult to atomize the powder.
- cobalt may be included in the alloys, powders and coatings.
- the powders may contain about 10 to 45, preferably about 15 to 35, and more preferably about 20 to 35, weight percent nickel plus cobalt. This may facilitate the melting of the chromium/molybdenum/carbon combination that, if left alone, would form carbides having too high of melting temperatures for atomization.
- Increasing the concentration of cobalt and nickel may also tend to increase the deposition efficiency for thermal spraying the powder. Because total nickel plus cobalt levels above about 45 weight percent may tend to soften the coating and limit the wear resistance of the coating, the total concentration of nickel plus cobalt may best be maintained below about 45 weight percent.
- the alloys may contain only nickel or cobalt since coatings with only nickel (e.g., about 10 to 45 weight percent nickel) or only cobalt (e.g., about 10 to 45 weight percent cobalt) may form powders with wear resistance tailored for specific applications. But for most applications, cobalt and nickel appear to be interchangeable.
- boron, silicon and/or manganese may be included in the alloys, powders and coatings.
- the alloys may contain about 0.5 to 3, preferably about 1 to 2.5, and more preferably about 1.5 to 2, weight percent carbon plus boron, silicon and/or manganese.
- the alloys may optionally contain melting point suppressants such as boron, silicon and manganese.
- the alloys include precipitated carbides (and optionally nitrides) of chromium and molybdenum interspersed throughout .
- the alloys may contain a volume fraction of the precipitated carbides and optionally nitrides in excess of 0.25.
- the volume fraction of the precipitated carbides and optionally nitrides dispersed in the alloys may be 0.25 or greater and more preferably between 0.35 and 0.80.
- the precipitated carbide and optionally nitride grains may be of micrometer and submicrometer size, for example, between 0.5 or less and 20 micrometers, more preferably between 1 and 10 micrometers in its largest dimensions.
- the size and volume fraction of the precipitated carbides and optionally nitrides can be adjusted by varying the chromium, molybdenum and carbon content.
- the alloys of this invention may be blended with molybdenum to form powders with wear resistance tailored for specific applications.
- the amount of molybdenum that may be blended with the alloys of this invention is not narrowly critical and may range from about 10 to 50, preferably about 15 to 45, and more preferably about 20 to 40, weight percent of the total alloy/molybdenum blend composition.
- the amount of blended molybdenum is in addition to the amount of alloy molybdenum.
- the amount of blended molybdenum will depend upon the desired application.
- the powders of this invention may be produced by means of inert gas atomization of a mixture of elements in the proportions stated herein.
- Preferred atomization methods that may be employed in making the powders of this invention are described in U.S. Patent 5,863,618, the disclosure of which is incorporated herein by reference.
- the alloys of these powders are typically melted at a temperature of about 1600°C and then atomized in a protective atmosphere (e.g., argon, helium or nitrogen). Most advantageously the atmosphere is argon.
- a nitrogen atmosphere may be employed which may result in the formation of additional hard phases interspersed throughout the alloys, e.g., nitrides.
- the alloy may optionally contain melting point suppressants like boron, silicon and manganese.
- melting point suppressants like boron, silicon and manganese.
- gas atomization however represents the most effective method for manufacturing the powder. Gas atomization techniques typically produce a powder having a size distribution of about 1 to 500 microns. For thermal spray applications, the powder is classified to a size of about 1 to 100 microns. Coatings may be produced using the alloys of this invention by a variety of methods well known in the art.
- Thermal spray is a preferred method for deposition of powders to form the coatings of this invention.
- the wear resistant alloy powders of this invention are useful for forming coatings having the same composition.
- the alloy powders of this invention are useful for forming coatings or objects having excellent wear properties, for example, wear resistant coatings for protecting surfaces undergoing sliding contact with other surfaces such as piston rings and cylinder liners of internal combustion engines.
- the examples that follow are intended as an illustration of certain preferred embodiments of the invention, and no limitation of the invention is implied.
- Example 1 The alloy powders listed in Table I were made by processes alike to those described in U.S. Patent 5,863,618.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Coating By Spraying Or Casting (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2567089A CA2567089C (en) | 2004-05-28 | 2005-05-26 | Wear resistant alloy powders and coatings |
JP2007515312A JP5222553B2 (en) | 2004-05-28 | 2005-05-26 | Abrasion resistant alloy powder and coating |
BRPI0511582-5A BRPI0511582A (en) | 2004-05-28 | 2005-05-26 | alloy and wear resistant powder |
MXPA06013558A MXPA06013558A (en) | 2004-05-28 | 2005-05-26 | Wear resistant alloy powders and coatings. |
EP05753987A EP1768802A4 (en) | 2004-05-28 | 2005-05-26 | Wear resistant alloy powders and coatings |
US11/596,624 US20080274010A1 (en) | 2004-05-28 | 2005-05-26 | Wear Resistant Alloy Powders and Coatings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US57492904P | 2004-05-28 | 2004-05-28 | |
US60/574,929 | 2004-05-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005118185A1 true WO2005118185A1 (en) | 2005-12-15 |
Family
ID=35462777
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2005/018423 WO2005118185A1 (en) | 2004-05-28 | 2005-05-26 | Wear resistant alloy powders and coatings |
Country Status (8)
Country | Link |
---|---|
US (1) | US20080274010A1 (en) |
EP (1) | EP1768802A4 (en) |
JP (1) | JP5222553B2 (en) |
CN (1) | CN1997474A (en) |
BR (1) | BRPI0511582A (en) |
CA (1) | CA2567089C (en) |
MX (1) | MXPA06013558A (en) |
WO (1) | WO2005118185A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981398A (en) * | 2014-05-27 | 2014-08-13 | 湘潭大学 | High-performance metal ceramic cladding material and preparation method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006042549C5 (en) * | 2006-09-11 | 2017-08-17 | Federal-Mogul Burscheid Gmbh | Wet cylinder liner with cavitation-resistant surface |
JP5626947B2 (en) * | 2008-09-22 | 2014-11-19 | 独立行政法人物質・材料研究機構 | Alloy particles and wires used for atmospheric plasma spraying and hot wire arc spraying |
DE102009035210B3 (en) * | 2009-07-29 | 2010-11-25 | Federal-Mogul Burscheid Gmbh | Sliding element with thermally sprayed coating and manufacturing method therefor |
US8906130B2 (en) | 2010-04-19 | 2014-12-09 | Praxair S.T. Technology, Inc. | Coatings and powders, methods of making same, and uses thereof |
FI124135B (en) * | 2010-06-08 | 2014-03-31 | Wärtsilä Finland Oy | PISTON ENGINE CYLINDER SOCKET |
BRPI1101402A2 (en) * | 2011-03-29 | 2013-06-04 | Mahle Metal Leve Sa | sliding element |
WO2013062045A1 (en) * | 2011-10-25 | 2013-05-02 | 株式会社Ihi | Piston ring |
US9611532B2 (en) * | 2013-07-03 | 2017-04-04 | Mahle International Gmbh | Coating additive |
CN108085550A (en) * | 2017-12-21 | 2018-05-29 | 厦门佰事兴新材料科技有限公司 | A kind of supersonic flame spraying jet pipe |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3030206A (en) * | 1959-02-17 | 1962-04-17 | Gen Motors Corp | High temperature chromiummolybdenum alloy |
US4556607A (en) * | 1984-03-28 | 1985-12-03 | Sastri Suri A | Surface coatings and subcoats |
US4692305A (en) * | 1985-11-05 | 1987-09-08 | Perkin-Elmer Corporation | Corrosion and wear resistant alloy |
US4822415A (en) * | 1985-11-22 | 1989-04-18 | Perkin-Elmer Corporation | Thermal spray iron alloy powder containing molybdenum, copper and boron |
JPH08325698A (en) * | 1995-05-26 | 1996-12-10 | Nittetsu Hard Kk | Coating material for roll shaft member in continuous hot-dip metal plating bath |
US6248292B1 (en) * | 1998-02-25 | 2001-06-19 | Toyota Jidosha Kabushiki Kaisha | Overlay welding alloy and engine valve overlayed therewith |
US6887585B2 (en) * | 2000-09-21 | 2005-05-03 | Federal-Mogul Burscheid Gmbh | Thermally applied coating of mechanically alloyed powders for piston rings |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2868639A (en) * | 1955-10-06 | 1959-01-13 | Wall Colmonoy Corp | Metallic composition |
US3846084A (en) * | 1973-08-15 | 1974-11-05 | Union Carbide Corp | Chromium-chromium carbide powder and article made therefrom |
JPS59100263A (en) * | 1982-11-29 | 1984-06-09 | Teikoku Piston Ring Co Ltd | Plasma-sprayed piston ring |
JPS59211546A (en) * | 1983-05-17 | 1984-11-30 | Sumitomo Metal Ind Ltd | Cobalt alloy for thermal spraying |
EP0223135A1 (en) * | 1985-11-05 | 1987-05-27 | The Perkin-Elmer Corporation | Corrosion resistant self-fluxing alloys for thermal spraying |
DE3802920C1 (en) * | 1988-02-02 | 1989-05-03 | Goetze Ag, 5093 Burscheid, De | |
US5141571A (en) * | 1991-05-07 | 1992-08-25 | Wall Colmonoy Corporation | Hard surfacing alloy with precipitated bi-metallic tungsten chromium metal carbides and process |
JPH07300642A (en) * | 1994-04-27 | 1995-11-14 | Nittetsu Hard Kk | Coating material and metal bath immersion member coated with this material |
JPH07316696A (en) * | 1994-05-27 | 1995-12-05 | Mitsubishi Materials Corp | Nickel-base alloy for casting |
FI100388B (en) * | 1996-01-22 | 1997-11-28 | Rauma Materials Tech Oy | Wear-resistant, tough steel |
JPH09209095A (en) * | 1996-01-30 | 1997-08-12 | Mitsubishi Materials Corp | Iron-base sintered alloy excellent in wear resistance |
DE10061751C1 (en) * | 2000-12-12 | 2002-07-25 | Federal Mogul Burscheid Gmbh | Antiwear layer, used for piston rings in I.C. engines, made from an agglomerated or sintered powder consisting of chromium carbide, chromium, nickel and molybdenum |
US6503290B1 (en) * | 2002-03-01 | 2003-01-07 | Praxair S.T. Technology, Inc. | Corrosion resistant powder and coating |
US6863990B2 (en) * | 2003-05-02 | 2005-03-08 | Deloro Stellite Holdings Corporation | Wear-resistant, corrosion-resistant Ni-Cr-Mo thermal spray powder and method |
-
2005
- 2005-05-26 MX MXPA06013558A patent/MXPA06013558A/en active IP Right Grant
- 2005-05-26 BR BRPI0511582-5A patent/BRPI0511582A/en not_active IP Right Cessation
- 2005-05-26 US US11/596,624 patent/US20080274010A1/en not_active Abandoned
- 2005-05-26 CN CNA200580017117XA patent/CN1997474A/en active Pending
- 2005-05-26 CA CA2567089A patent/CA2567089C/en not_active Expired - Fee Related
- 2005-05-26 WO PCT/US2005/018423 patent/WO2005118185A1/en active Application Filing
- 2005-05-26 EP EP05753987A patent/EP1768802A4/en not_active Withdrawn
- 2005-05-26 JP JP2007515312A patent/JP5222553B2/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3030206A (en) * | 1959-02-17 | 1962-04-17 | Gen Motors Corp | High temperature chromiummolybdenum alloy |
US4556607A (en) * | 1984-03-28 | 1985-12-03 | Sastri Suri A | Surface coatings and subcoats |
US4692305A (en) * | 1985-11-05 | 1987-09-08 | Perkin-Elmer Corporation | Corrosion and wear resistant alloy |
US4822415A (en) * | 1985-11-22 | 1989-04-18 | Perkin-Elmer Corporation | Thermal spray iron alloy powder containing molybdenum, copper and boron |
JPH08325698A (en) * | 1995-05-26 | 1996-12-10 | Nittetsu Hard Kk | Coating material for roll shaft member in continuous hot-dip metal plating bath |
US6248292B1 (en) * | 1998-02-25 | 2001-06-19 | Toyota Jidosha Kabushiki Kaisha | Overlay welding alloy and engine valve overlayed therewith |
US6887585B2 (en) * | 2000-09-21 | 2005-05-03 | Federal-Mogul Burscheid Gmbh | Thermally applied coating of mechanically alloyed powders for piston rings |
Non-Patent Citations (1)
Title |
---|
See also references of EP1768802A4 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103981398A (en) * | 2014-05-27 | 2014-08-13 | 湘潭大学 | High-performance metal ceramic cladding material and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
BRPI0511582A (en) | 2008-01-02 |
MXPA06013558A (en) | 2007-02-08 |
EP1768802A1 (en) | 2007-04-04 |
US20080274010A1 (en) | 2008-11-06 |
CA2567089C (en) | 2010-04-20 |
JP5222553B2 (en) | 2013-06-26 |
CN1997474A (en) | 2007-07-11 |
EP1768802A4 (en) | 2009-07-22 |
CA2567089A1 (en) | 2005-12-15 |
JP2008501073A (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1485220B1 (en) | Corrosion resistant powder and coating | |
US9291264B2 (en) | Coatings and powders, methods of making same, and uses thereof | |
US4822415A (en) | Thermal spray iron alloy powder containing molybdenum, copper and boron | |
US3313633A (en) | High temperature flame spray powder | |
EP0138228B1 (en) | Abrasion resistant coating and method for producing the same | |
EP0224724B1 (en) | Amorphous alloy | |
US9919358B2 (en) | Sintered molybdenum carbide-based spray powder | |
US3378392A (en) | High temperature flame spray powder and process | |
US5966585A (en) | Titanium carbide/tungsten boride coatings | |
US3779720A (en) | Plasma sprayed titanium carbide tool steel coating | |
CA2567089C (en) | Wear resistant alloy powders and coatings | |
EP1077272A1 (en) | Titanium carbide/tungsten boride coatings | |
US5837327A (en) | Method for producing a TiB2 -based coating | |
JP6985961B2 (en) | Piston ring and its manufacturing method | |
JP6411875B2 (en) | Piston ring and manufacturing method thereof | |
JPH0564706B2 (en) | ||
US4588606A (en) | Abrasion resistant coating and method for producing the same | |
JPH0258345B2 (en) | ||
BRPI0511582B1 (en) | LEATHER, AND, WEAR RESISTANT POWDER |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2567089 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: PA/a/2006/013558 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580017117.X Country of ref document: CN Ref document number: 2007515312 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2005753987 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2005753987 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 2005753987 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11596624 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: PI0511582 Country of ref document: BR |