Nothing Special   »   [go: up one dir, main page]

WO2005106951A1 - Anordnung eines steuerbaren elektrischen bauelements auf einem substrat und verfahren zum herstellen der anordnung - Google Patents

Anordnung eines steuerbaren elektrischen bauelements auf einem substrat und verfahren zum herstellen der anordnung Download PDF

Info

Publication number
WO2005106951A1
WO2005106951A1 PCT/EP2005/051225 EP2005051225W WO2005106951A1 WO 2005106951 A1 WO2005106951 A1 WO 2005106951A1 EP 2005051225 W EP2005051225 W EP 2005051225W WO 2005106951 A1 WO2005106951 A1 WO 2005106951A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
substrate
contact surface
thermal contact
thermal
Prior art date
Application number
PCT/EP2005/051225
Other languages
English (en)
French (fr)
Inventor
Eckhard Wolfgang
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2005106951A1 publication Critical patent/WO2005106951A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L24/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L24/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/82Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by forming build-up interconnects at chip-level, e.g. for high density interconnects [HDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2401Structure
    • H01L2224/2402Laminated, e.g. MCM-L type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/2405Shape
    • H01L2224/24051Conformal with the semiconductor or solid-state device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/18High density interconnect [HDI] connectors; Manufacturing methods related thereto
    • H01L2224/23Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
    • H01L2224/24Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of an individual high density interconnect connector
    • H01L2224/241Disposition
    • H01L2224/24151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/24221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/24225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/24226Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the HDI interconnect connecting to the same level of the item at which the semiconductor or solid-state body is mounted, e.g. the item being planar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92244Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a build-up interconnect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5389Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates the chips being integrally enclosed by the interconnect and support structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0104Zirconium [Zr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01042Molybdenum [Mo]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01088Radium [Ra]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Definitions

  • the invention relates to an arrangement of at least one controllable electrical component on a substrate and a method for producing the arrangement.
  • the controllable electrical component is a power semiconductor component which is arranged on a substrate (circuit carrier).
  • the substrate is, for example, a DGB (Direct Copper Bonding) substrate, which consists of a carrier layer made of a ceramic material, on which electrically conductive layers of copper (copper foils) are applied on both sides.
  • the ceramic material is, for example, aluminum oxide (Al 2 O 3 ).
  • the power semiconductor component is soldered onto one of the electrically conductive layers made of copper.
  • a certain amount of heat is generated during operation of the power semiconductor component. This amount of heat is dissipated away from the power semiconductor component by heat conduction.
  • the heat conduction takes place via the solder connection between the power semiconductor component and the electrically conductive copper layer to the carrier layer of the substrate made of aluminum oxide. Since aluminum oxide also has a certain thermal conductivity (the specific one
  • Thermal conductivity coefficient ⁇ of aluminum oxide is about 30 Wm 1 -K 1 ), the carrier layer of the substrate acts as an efficient heat sink for the.
  • a method for producing the arrangement is to be specified.
  • an arrangement of at least one controllable electrical component on a substrate is specified, the substrate having at least one thermal contact surface with a thermally conductive material, the component at least one thermal
  • the component Has contact surface on which a certain amount of heat occurs during operation of the component, the component is arranged on the substrate such that the thermal contact surface of the component is turned away from the substrate, at least one thermal connecting line for transferring the specific amount of heat from the thermal contact surface of the component is present on the thermal contact surface of the substrate and the thermal connecting line has a metallization layer deposited on the arrangement.
  • a method for producing the arrangement is also specified with the following method steps: a) arranging the component on the substrate such that the thermal contact surface of the component is turned away from the substrate, b) producing an electrical insulation layer on the component such that the thermal contact surface of the component and the thermal contact surface of the substrate are freely accessible, and depositing at least one metallization layer on the thermal contact surface of the component, the thermal contact surface of the substrate and the insulation layer for Establishing the thermal connection line between the thermal contact surfaces.
  • the substrate on which the component is arranged can be any circuit carrier based on organic and in particular inorganic.
  • Such circuit carriers or substrates are, for example, PCB (printed circuit board), DGB, IM (insulated metal), HTCC (high temperature cofired ceramics) and LTCC (low temperature cofired ceramics) substrates.
  • the metallization layer functioning as a thermal connecting line is connected directly to the thermal contact surface of the substrate.
  • the substrate which acts as a heat sink for the amount of heat occurring during operation of the controllable electrical component, is designed in such a way that there is heat conduction through the substrate.
  • the heat conduction takes place through a volume of the substrate.
  • the substrate not only has a thermally conductive material on the thermal contact surface, but also in the volume of the substrate.
  • the substrate consists entirely of the thermally conductive material. It is also conceivable that only one layer of the substrate consists of the thermally conductive material.
  • Such a layer is, for example, the carrier layer of a DCB substrate made of aluminum oxide. The entire carrier layer is used to dissipate the amount of heat.
  • a thermal via is present in the volume of the substrate.
  • the substrate is an LTCC substrate, in the volume of which the thermal via is embedded.
  • the thermal via is formed, for example, by a thermally highly conductive metal. Such a metal is, for example, silver.
  • the thermal via leads from one surface section of the substrate to another surface section of the substrate. The upper surface section and the further surface section have turned away from each other.
  • the surface sections are arranged, for example, on different main surfaces of the substrate.
  • One of the surface sections of the substrate forms the thermal contact surface of the substrate, which is thermally conductively connected to the thermal connecting line of the arrangement. The amount of heat that occurs at the thermal contact surface of the component can thus be dissipated through the substrate via the thermal connecting line and the thermal via.
  • the specific thermal conductivity coefficient ⁇ of the thermally conductive material of the thermal contact surface of the substrate at a temperature of about 20 ° C. is at least 1 w- ⁇ rf 1 - ⁇ X
  • the thermally conductive material is advantageously also characterized by a low electrical conductivity.
  • a thermally conductive and electrically insulating ceramic material is particularly suitable.
  • the thermally conductive material therefore has at least one ceramic material selected from the group consisting of aluminum nitride (A1N) and / or aluminum oxide.
  • the specific thermal conductivity coefficient ⁇ of aluminum nitride is about 180 w-nX-K -1 at 20 ° C.
  • Other ceramic materials for example silicon carbide (SiC) or silicon nitride (SiüNa) are also conceivable.
  • the thermally conductive material can form the thermal contact surface of the substrate or the entire substrate.
  • the substrate consists of a composite material with a matrix of a polymer, in which particles of the thermally conductive material are embedded.
  • a thermally conductive composite material there is a thermally conductive composite material.
  • the metallization layer forms the thermal connection line.
  • the metallization layer has a metal with a relatively high thermal conductivity.
  • the metallization layer adheres very well to the thermal contact surface of the component and the thermal contact surface of the substrate.
  • the metallization layer therefore has at least one metal selected from the group consisting of aluminum, gold, copper, molybdenum, silver, titanium, vanadium, tungsten and / or zirconium.
  • the metallization layer can consist of a single layer. There is a single-layer metallization layer.
  • the metallization layer has a multilayer structure with at least two partial metallization layers arranged one above the other. Each of the partial metallization layers is associated with different functions.
  • a first partial metallization layer leads, for example, to very good mechanical adhesion of the metallization layer to the thermal contact surface of the component and to the thermal contact surface of the substrate.
  • This partial metallization layer functions as an adhesion promoting layer.
  • an adhesion-promoting layer made of titanium has proven itself.
  • suitable materials for the adhesion-promoting layer are, for example, chromium, vanadium or zirconium.
  • a second partial metallization layer arranged above the adhesion-promoting layer functions, for example, as a diffusion barrier.
  • a partial metallization layer consists, for example, of a titanium-tungsten alloy.
  • Metallization layer or partial metallization layers carried out a vapor deposition process.
  • Vapor deposition is, for example, a physical vapor deposition (PVD) process.
  • the PVD process is, for example, sputtering.
  • a chemical vapor deposition (CVD) process is also conceivable.
  • the galvanic deposition can have a layer thickness of up to several hundred ⁇ m. Such a large layer thickness leads to an increased thermal
  • the galvanic deposition consists, for example, of copper.
  • the galvanic deposition of copper is advantageously carried out on a thin copper layer a few micrometers thick. This thin copper layer, which is referred to as the seed layer, is produced, for example, by a vapor deposition process.
  • the metallization layer is electrically insulated from surface sections of the component to be insulated.
  • the metallization layer is therefore deposited on an electrical insulation layer for the electrical insulation of a surface section of the component.
  • the insulation layer preferably has an insulation layer thickness selected from the range from 50 ⁇ m to 500 ⁇ m inclusive and in particular from the range from 100 ⁇ m to 300 ⁇ m inclusive.
  • the insulation layer can be single-layered. It is also conceivable that the insulation layer is multi-layered.
  • the insulation layer has a multilayer structure at least two partial insulation layers arranged one above the other.
  • an electrically insulating lacquer is applied in a corresponding thickness.
  • the varnish is applied to the component and the substrate in a printing process. It can be ensured that the lacquer is not applied to the thermal contact surfaces of the component and / or the substrate.
  • the thermal contact areas remain free. However, the thermal contact areas can also only be exposed after application.
  • corresponding openings are produced in the insulation layer after curing and / or after the lacquer has dried.
  • the opening or openings are produced in particular by a photolithography process and / or by laser ablation.
  • a photosensitive varnish is used for the photolithography process.
  • the following further method steps are carried out to produce the insulation layer on the component: d) laminating at least one electrical insulation film on the component and the substrate and e) creating an opening in the insulation film so that the thermal contact surface of the component is freely accessible ,
  • the same process step can also be carried out for exposing the thermal contact point of the substrate.
  • the insulation film can also be laminated on in such a way that the thermal contact surface of the substrate remains free. In this case, it is not necessary to create an opening to expose the thermal contact surface of the substrate.
  • Component is laminated by at least one on the component and optionally on the substrate Insulation film formed.
  • at least part of the insulation film is laminated onto the surface section of the component to be electrically insulated such that a surface contour of the component is depicted in a surface contour of the part of the insulation film that corresponds to the
  • Component is facing away.
  • the surface contour does not concern a roughness or waviness of the
  • the surface contour results, for example, from an edge of the component.
  • the surface contour shown is in particular not specified by the shape of the component alone, but also by the shape of the substrate on which the component is arranged.
  • the insulation film is laminated on under vacuum. Laminating under vacuum creates a particularly firm and intimate contact between the insulation film and the component or the insulation film and the substrate.
  • An insulation film used for this purpose has an electrical insulation material. Any thermosetting (thermosetting) and / or thermoplastic plastic is conceivable as insulation material.
  • the insulation film has at least one electrical insulation material selected from the group consisting of liquid-crystalline polymer, organically modified ceramic, polyacrylate, polyimide, polyisocyanate, polyethylene, polyphenol, polyether ether kitone, polytetrafluoroethylene and / or epoxy. Mixtures of the plastics mentioned and / or Copolymers of monomers of plastics are also conceivable.
  • the insulation foils are laminated in such a way that the openings come to rest on the thermal contact surfaces of the component and the substrate.
  • the openings in the insulation film are advantageously only created after the lamination.
  • the openings in the insulation foils are created by removing material. This can be done photolithographically.
  • the openings in the insulation films are produced by laser ablation. Material is removed using a laser. For example, a CO2 aser with a wavelength of 9.24 ⁇ m is used for laser ablation. The use of a UV laser is also conceivable.
  • the thermal connection line also takes over the function of the electrical connection line via which the component is electrically contacted.
  • the arrangement can have any controllable electrical component.
  • the controllable electrical component is, for example, a semiconductor component.
  • the semiconductor component is preferably a power semiconductor component selected from the group consisting of a diode, MOSFET, IGBT, tyristor and / or bipolar transistor.
  • the power semiconductor components mentioned are suitable for high
  • the power semiconductor components each have switches via at least one input, one output and one control contact. These contacts are electrically contacted via corresponding electrical contact surfaces.
  • the thermal contact surface of the component and the electrical contact surfaces of the component can be different from one another. In particular, the thermal contact area and the electrical contact area of the component are identical.
  • FIG. 1 shows an arrangement of an electrical component on a substrate.
  • FIG. 2 shows a section of the arrangement of the component on the subs council according to FIG. 1.
  • FIG. 3 shows a method for producing the arrangement.
  • the arrangement 1 has at least one controllable electrical component 2 on a substrate 5 (FIG. 1).
  • the substrate 5 is a DGB substrate with a carrier layer 50 and an electrically conductive layer 51 made of copper applied to the carrier layer 50.
  • the electrically conductive layer 51 is formed by an approximately 300 ⁇ m thick copper foil.
  • the carrier layer 50 consists of a thermally conductive and electrically insulating material. This material is a ceramic material. In a first embodiment, the ceramic material is aluminum oxide. In further alternative configurations, the ceramic material is aluminum nitride, silicon carbide or silicon nitride.
  • the electrical component 2 is a power semiconductor component in the form of a MOSFET with a Height of about 350 ⁇ m.
  • the power semiconductor component 2 is soldered to the electrically conductive layer 51.
  • the solder connection has a layer thickness of approximately 100 ⁇ m.
  • the electrically conductive layer 51 made of copper is used for electrical contacting of one of the contacts of the power semiconductor component 2 (source, gate or drain).
  • the power semiconductor component 2 is soldered onto the electrically conductive layer 51 such that a thermal contact surface 20 of the power semiconductor component 2 faces away from the substrate 5.
  • the thermal contact surface 20 is from an electrical contact surface 21 of the
  • Power semiconductor device 2 formed.
  • One of the contacts of the power semiconductor component 2 is also electrically contacted via the electrical contact surface 21.
  • the thermal connecting line 3 functions as an electrical connecting line 6 for electrically contacting the electrical contact surface 21 of the power semiconductor component 2.
  • the electrical connecting line 6 is connected to a further electrically conductive layer 53 of the substrate 5.
  • the further electrically conductive layer 53 is likewise formed from a copper foil applied to the carrier layer 50.
  • a thermal connecting line 3 is provided to dissipate the amount of heat generated.
  • the thermal connecting line 3 is connected to the thermal contact surface 20 of the power semiconductor component 2 and a thermal one
  • the thermal contact surface 52 of the substrate 5 is thermally conductively connected.
  • the thermal contact surface 52 of the substrate is from the Carrier layer 50 of substrate 5 is formed from the ceramic material.
  • the thermal connection line 3 forms a heat conduction path 33, via which the amount of heat is conducted away by heat conduction from the power semiconductor component 2 to the carrier layer 50 of the substrate 5.
  • the thermal connection line 3 has a metallization layer 30.
  • the amount of heat generated during operation of the power semiconductor component 2 is dissipated via the metallization layer 30.
  • the metallization layer 30 of the connecting line is applied directly to the thermal contact surface 52 of the substrate 5 or the carrier layer 50 of the substrate 5.
  • the metallization layer 30 of the connecting line 3 is distinguished by a multilayer structure (FIG. 2).
  • the metallization layer 30 consists of individual partial metallization layers 32 arranged one above the other.
  • Power semiconductor component 2 or the thermal contact surface 52 of the carrier layer 50 of the substrate 5 is connected, consists of titanium and functions as an adhesion-promoting layer.
  • the partial metallization layer 322 arranged above is made of a titanium-tungsten alloy. This partial metallization layer 322 acts as a diffusion barrier.
  • a thin partial metallization layer 323 made of copper is applied over the partial metallization layer 322 functioning as a diffusion barrier.
  • a partial metallization layer 324 in the form of electrodeposited copper is present over the thin copper layer 323.
  • the thin copper layer 323 acts as a seed layer for the galvanic deposition of the copper. While the partial metallization layers 321, 322 and 323 are each only a few ⁇ m thick (these partial metallization layers are produced by a PVD method) the partial metallization layer 324 is applied with a relatively large layer thickness. The result is one
  • Total layer thickness 31 of the metallization layer 30 of approximately 200 ⁇ m.
  • the metallization layer 30 is almost completely formed by the thick partial metallization layer 324.
  • Power semiconductor component 2 is efficiently forwarded to the substrate 5. Since the ceramic material of the carrier layer 52 of the substrate 5 also has a relatively high thermal conductivity, the amount of heat can be efficiently transported away from the power semiconductor component 2.
  • the power semiconductor component 2 is soldered onto a DCB substrate 5.
  • An insulation film 4 is then laminated on (FIG. 3,
  • Insulation film 4 is applied in such a way that a surface contour 25 which results from the
  • Power semiconductor component 2 the electrically conductive layer 51 and the carrier layer 50 of the DCB substrate results, is imaged in a surface contour 47 of part of the insulation film 4.
  • a surface of the insulation film 4 facing away from the substrate 5 and the power semiconductor component 2 essentially shows the same surface contour as the power semiconductor component 2 and the substrate.
  • the insulation film 4 follows the topography of the power semiconductor component 2 and the substrate 5.
  • the insulation film 4 has a film thickness of approximately 100 ⁇ m on.
  • the result is an insulation layer thickness 41 of approximately 100 ⁇ m.
  • a height difference of approximately 850 ⁇ m is overcome, which is given by the layer thickness of the electrically conductive layer 51, the layer thickness of the solder connection and the height 22 of the power semiconductor component 2.
  • an opening 42 for contacting the thermal contact surface 20 of the power semiconductor component 2 and an opening 43 for contacting the thermal contact surface 52 of the substrate 5 are produced in the insulation film 4 (FIG. 3, reference number 302).
  • One window each is opened in the insulation film 4.
  • the windows are opened by removing material using laser ablation. For this purpose, a CO 2 laser with a wavelength of 9.24 ⁇ m is used.
  • a cleaning step is carried out in order to remove residues of the insulation material of the insulation film 4.
  • Metallization layer 30 applied to the thermal contact surface 21 of the power semiconductor component 2, the thermal contact surface 52 of the substrate 5 and the insulation film 4 (FIG. 3, reference number 303).
  • the metallization layer 30 is applied in such a way that in each case first the partial metallization layer 321 made of titanium, then the partial metallization layer 322 made of the titanium-tungsten alloy and then a thin copper layer 323 are deposited in a vapor deposition process. Copper is then electrodeposited.
  • the partial metallization layer 324 is formed in the form of a copper deposition.
  • the heat dissipation path 33 via the metallization layer 30 of the thermal connecting line 3 there is a further heat dissipation path 34 in the arrangement 1 described, which extends from the power semiconductor component 2 via the Solder connection and leads via the electrically conductive layer 51 to the carrier layer 51 of the substrate 5.
  • the carrier layer 52 functions as a heat sink for the amount of heat.
  • the substrate 5 is connected to a further heat sink, not shown, in a further embodiment.
  • the further heat sink is a heat sink or a cooling fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Die Erfindung betrifft eine Anordnung (1) mindestens eines steuerbaren elektrischen Bauelements (2) auf einem Substrat, wobei das Substrat mindestens eine thermische Kontaktfläche (52) mit einem thermisch leitfähigen Material aufweist, das Bauelement mindestens eine thermische Kontaktfläche (21) aufweist, an der im Betrieb des Bauelements eine bestimmte Wärmemenge auftritt, das Bauelement derart auf dem Substrat angeordnet ist, dass die thermische Kontaktfläche des Bauelements dem Substrat abgekehrt ist, mindestens eine thermische Verbindungsleitung (3) zum Übertragen der bestimmten Wärmemenge von der thermischen Kontaktfläche des Bauelements auf die thermische Kontaktfläche des Substrats vorhanden ist und die thermische Verbindungsleitung eine auf der Anordnung abgeschiedene Metallisierungsschicht (30) aufweist. Zum Herstellen der Anordnung werden folgende Verfahrensschritte durchgeführt: a) Anordnen des Bauelements auf dem Substrat derart, dass die thermische Kontaktfläche des Bauelements dem Substrat abgekehrt ist, b) Erzeugen einer elektrischen Isolationsschicht (4) auf dem Bauelement derart, dass die thermische Kontaktfläche des Bauelements und die thermische Kontaktfläche des Substrats frei zugänglich sind, und Abscheiden mindestens einer Metallisierungsschicht auf der thermischen Kontaktfläche des Bauelements, der thermischen Kontaktfläche des Substrats und der Isolationsschicht zum Herstellen der thermischen Verbindungsleitung zwischen den thermischen Kontaktflächen. Das Bauelement ist ein Leistungshalbleiterbauelement. Die Metallisierungsschicht weist galvanisch abgeschiedenes Kupfer auf. Die resultierende thermische Verbindungsleitung weist einen effizienten Wärmeableitpfad (33) auf.

Description

Beschreibung
Anordnung eines steuerbaren elektrischen Bauelements auf einem Substrat und Verfahren zum Herstellen der Anordnung
Die Erfindung betrifft eine Anordnung mindestens eines steuerbaren elektrischen Bauelements auf einem Substrat und ein Verfahren zum Herstellen der Anordnung.
Eine derartige Anordnung und ein Verfahren zum Herstellen der Anordnung sind beispielsweise aus der WO 03/030247 A2 bekannt. Das steuerbare elektrische Bauelement ist ein Leistungshalbleiterbauelement, das auf einem Substrat (Schaltungsträger) angeordnet ist. Das Substrat ist beispielsweise ein DGB (Direct Copper Bonding) -Substrat, das aus einer Trägerschicht aus einem keramischen Werkstoff besteht, an der beidseitig elektrisch leitende Schichten aus Kupfer (Kupferfolien) aufgebracht sind. Der keramische Werkstoff ist beispielsweise Aluminiumoxid (AI2O3) . Das Leistungshalbleiterbauelement ist auf einer der elektrisch leitenden Schichten aus Kupfer aufgelötet .
Im Betrieb des Leistungshalbleiterbauelements entsteht eine bestimmte Wärmemenge. Diese Wärmemenge wird durch Wärmeleitung vom Leistungshalbleiterbauelement weg abgeleitet . Die Wärmeleitung erfolgt über die Lotverbindung zwischen dem Leistungshalbleiterbauelement und der elektrisch leitenden Kupferschicht hin zur Trägerschicht des Substrats aus Aluminiumoxid. Da Aluminiumoxid ebenfalls über eine bestimmte Wärmeleitfähigkeit verfügt (der spezifische
Wärmeleitfähigkeitskoeffizient λ von Aluminiumoxid beträgt etwa 30 W-m 1-K 1) , fungiert die Trägerschicht des Substrats als effiziente Wärmesenke für die .
Im Betrieb des Leistungshalbleiterbauelements kann es zu einer derart starken Wärmeentwicklung kommen, dass das Leistungshalbleiterbauelement oder die Anordnung des Leistungshalbleiterbauelements auf dem Substrat geschädigt wird.
Aufgabe der vorliegenden Erfindung ist es daher, eine Anordnung aus einem steuerbaren elektrischen Bauelement anzugeben, das eine im Vergleich zum bekannten Stand der Technik verbesserte Ableitung der im Betrieb des Bauelements entstehenden Wärme gewährleistet . Darüber hinaus soll ein Verfahren zum Herstellen der Anordnung angegeben werden.
Zur Lösung der Aufgabe wird eine Anordnung mindestens eines steuerbaren elektrischen Bauelements auf einem Substrat angegeben, wobei das Substrat mindestens eine thermische Kontakt läche mit einem thermisch leitfähigen Material aufweist, das Bauelement mindestens eine thermische
Kontaktfläche aufweist, an der im Betrieb des Bauelements eine bestimmte Wärmemenge auftritt, das Bauelement derart auf dem Substrat angeordnet ist, dass die thermische Kontakt läche des Bauelements dem Substrat abgekehrt ist, mindestens eine thermische Verbindungsleitung zum übertragen der bestimmten Wärmemenge von der thermischen Kontaktfläche des Bauelements auf die thermische Kontaktfläche des Substrats vorhanden ist und die thermische Verbindungsleitung eine auf der Anordnung abgeschiedene Metallisierungsschicht aufweist .
Zur Lösung der Aufgabe wird auch ein Verfahren zum Herstellen der Anordnung mit folgenden Verfahrensschritten angegeben: a) Anordnen des Bauelements auf dem Substrat derart, dass die thermische Kontaktfläche des Bauelements dem Substrat abgekehrt ist, b) Erzeugen einer elektrischen Isolationsschicht auf dem Bauelement derart, dass die thermische Kontaktfläche des Bauelements und die thermische Kontaktfläche des Substrats frei zugänglich sind, und Abscheiden mindestens einer Metallisierungsschicht auf der thermischen Kontakt läche des Bauelements, der thermischen Kontaktfläche des Substrats und der Isolationsschicht zum Herstellen der thermischen Verbindungsleitung zwischen den thermischen Kontaktflächen.
Das Substrat, auf dem das Bauelement angeordnet ist, kann ein beliebiger Schaltungsträger auf organischer und insbesondere anorganischer Basis sein. Solche Schaltungsträger bzw. Substrate sind beispielsweise PCB (Printed Circuit Board)—, DGB-, IM (insulated Metal) -, HTCC (High Te perature Cofired Ceramics)— und LTCC (Low Temperature Cofired Cerarαics)- Substrate.
Die als thermische Verbindungsleitung fungierende MetallisierungsSchicht ist unmittelbar mit der thermischen Kontaktfläche des Substrats verbunden. Das Substrat, das als Wärmesenke für die im Betrieb des steuerbaren elektrischen Bauelements auftretenden Wärmemenge fungiert, ist dabei derart ausgestaltet, dass es zu einer Wärmeleitung durch das Substrat kommt. Die Wärmeleitung erfolgt durch ein Volumen des Substrats. Dazu weist das Substrat nicht nur an der thermischen Kontaktfläche ein thermisch leitfähiges Material auf, sondern auch im Volumen des Substrats. Beispielsweise besteht das Substrat vollständig aus dem thermisch leitfähigen Material. Denkbar ist auch, dass nur eine Schicht des Substrats aus dem thermisch leitfähigen Material besteht. Eine derartige Schicht ist beispielsweise die Trägerschicht eines DCB—Substrats aus Aluminiumoxid. Die gesamte Trägerschicht dient der Ableitung der Wärmemenge. Denkbar ist auch, dass im Volumen des Substrats eine thermische Durchkontaktierung (Via) vorhanden ist. Beispielsweise ist das Substrat ein LTCC-Substrat, in dessen Volumen die thermische Durchkontaktierung eingebettet ist . Die thermische Durchkontaktierung wird beispielsweise von einem thermisch hochleitfäh gen Metall gebildet . Ein derartiges Metall ist beispielsweise Silber. Die thermische Durchkontaktierung führt von einem Oberflächenabschnitt des Substrats zu einem weiteren Oberflächenabschnitt des Substrats. Der Obe flächenabschnitt und der weitere Oberflächenabschnitt sind voneinander abgekehrt. Die Oberflächenabschnitte sind beispielsweise an verschiedenen Hauptflächen des Substrats angeordnet. Einer der Oberflächenabschnitte des Substrats bildet die thermische Kontaktfläche des Substrats, die mit der thermischen Verbindungsleitung der Anordnung thermisch leitend verbunden ist. So kann die Wärmemenge, die an der thermischen Kontaktfläche des Bauelements auftritt, über die thermische Verbindungsleitung und die thermische Durchkontaktierung durch das Substrat hindurch abgeleitet werde .
Zu einer effizienten Wärmeleitung beträgt der spezifische Wärmeleitfähigkeitskoe fizient λ des thermisch leitfähigen Materials der thermischen Kontaktfläche des Substrats bei einer Temperatur von etwa 20° C mindestens 1 w-ιrf1-κX
Gleichzeitig zeichnet sich das thermisch leitfähige Material vorteilhaft auch durch eine niedrige elektrische Leitfähigkeit aus. Besonders geeignet ist ein thermisch leitender und elektrisch isolierender keramischer Werkstoff. In einer besonderen Ausgestaltung weist daher das thermisch leitfähige Material mindestens einen aus der Gruppe Aluminiumnitrid (A1N) und/oder Aluminiumoxid ausgewählten keramischen Werkstoff auf. Der spezifischen Wärmeleitfähigkeitskoeffizient λ von Aluminiumnitrid beträgt bei 20° C etwa 180 w-nX-K-1. Andere keramische Werkstoffe, beispielsweise Siliziumcarbid (SiC) oder Siliziumnitrid (SiüNa) sind ebenfalls denkbar.
Das thermisch leitfähige Material kann allein oder im Verbund mit weiteren Materialien die thermische Kontaktfläche des Substrats bzw. das gesamte Substrat bilden. Beispielsweise besteht das Substrat aus einem Verbundwerkstoff mit einer Matrix aus einem Polymer, in dem Partikel aus dem thermisch leitfähigen Material eingebettet sind. Es liegt ein thermisch leitfähiger Verbundwerkstoff vor.
Die Metallisierungsschicht bildet die thermische Verbindungsleitung. Dazu weist die Metallisierungsschicht ein Metall mit einer relativ hohen thermische Leitfähigkeit aus. Daneben ist auch dafür gesorgt, dass die Metallisierungsschicht sehr gut auf der thermischen Kontaktfläche des Bauelements und der thermischen Kontaktfläche des Substrats haftet. In einer besonderen Ausgestaltung weist die Metallisierungsschicht daher mindestens ein aus der Gruppe Aluminium, Gold, Kupfer, Molybdän, Silber, Titan, Vanadium, Wolfram und/oder Zirkonium ausgewähltes Metall auf.
Die Metallisierungsschicht kann aus einer einzigen Schicht bestehen. Es liegt eine einschichtige Metallisierungsschicht vor. Insbesondere weist die Metallisierungsschicht einen Mehrschichtaufbau mit mindestens zwei übereinander angeordneten Teil—Metallisierungsschichten auf. Dabei ist jede der Teil-Metallisierungsschichten mit unterschiedlichen Funktionen verbunden. Eine erste Teil-Metallisierungsschicht führt beispielsweise zu einer sehr guten mechanischen Haftung der Metallisierungsschicht an der thermischen Kontaktfläche des Bauelements und an der thermischen Kontaktfläche des Substrats. Diese Teil—Metallisierungsschicht fungiert als Haftvermittlungsschicht . Bei einem Halbleiterbauelement hat sich beispielsweise eine Haftvermittlungsschicht aus Titan bewährt. Andere geeignete Materialien für die Haftvermittlungsschicht sind beispielsweise Chrom, Vanadium oder Zirkonium. Eine über der Haftvermittlungsschicht angeordnete zweite Teil-Metallisierungsschicht fungiert beispielsweise als Di fusionsbarriere. Eine derartige Teil— Metallisierungsschicht besteht beispielsweise aus einer Titan-Wolfram-Legierung. Eine dritte Teil- Metallisierungsschicht besteht beispielsweise aus einer Schicht aus thermisch hochleitfähigem Kupfer (λ = 400 W-m_1-K~ 1) , das für eine effiziente Ableitung der Wärmemenge sorgt. Es resultiert eine Metallisierungsschicht mit der Schichtfolge Titan/Titan-Wolfram/Kupfer . Vorzugsweise wird zum Anordnen relativ dünner
Metallisierungsschicht bzw. Teil— etallisierungsschichten ein Dampfabscheideverfahren durchgeführt. Das
Dampfabscheideverfahren ist beispielsweise ein physikalisches Dampfabscheideverfahren (Physical Vapour Deposition, PVD) . Das PVD—Verfahren ist beispielsweise Sputtern. Ein chemisches Dampfabscheideverfahren (Chemical Vapour Deposition, CVD) ist ebenfalls denkbar.
In einer besonderen Ausgestaltung weist die
Metallisierungsschicht eine galvanische Abscheidung auf. Die galvanische Abscheidung kann dabei eine Schichtdicke von bis zu mehreren hundert um aufweisen. Ein derart große Schichtdicke führt zu einer erhöhten thermischen
Leitfähigkeit der Metallisierungsschicht . Die galvanische Abscheidung besteht beispielsweise aus Kupfer. Das galvanische Abscheiden von Kupfer wird vorteilhaft auf einer dünnen, wenige um dicken Kupferschicht durchgeführt. Diese dünne Kupferschicht, die als Seed-Layer bezeichnet wird, wird beispielsweise durch ein Dampfabscheideverfahren erzeugt.
Damit die Metallisierungsschicht das elektrische Bauelement nicht unerwünscht kontaktiert, ist die Metallisierungs schicht von zu isolierenden Oberflächenabschnitten des Bauelements elektrisch isoliert. In einer besonderen Ausgestaltung ist daher die Metallisierungsschicht auf einer elektrischen Isolationsschicht zur elektrischen Isolierung eines Oberflächenabschnitts des Bauelements abgeschieden. Vorzugsweise weist die Isolationsschicht eine aus dem Bereich von einschließlich 50 μm bis einschließlich 500 μm und insbesondere eine aus dem Bereich von einschließlich 100 μm bis einschließlich 300 μm ausgewählte Isolationsschichtdicke auf. Dabei kann die Isolationsschicht einschichtig sein. Denkbar ist auch, dass die Isolationsschicht mehrschichtig ist. Die Isolationsschicht weist einen Mehrschichtaufbau mit mindestens zwei übereinander angeordneten Teil— Isolationsschichten auf.
Zum Erzeugen der Isolationsschicht wird beispielsweise ein elektrisch isolierender Lack in einer entsprechenden Dicke aufgetragen. Der Lack wird in einem Druckverfahren auf das Bauelement und das Substrat aufgetragen. Dabei kann dafür gesorgt werden, dass der Lack nicht auf die thermischen Kontaktflächen des Bauelements und/oder des Substrats aufgebracht wird. Die thermischen Kontaktflächen bleiben frei. Die thermischen Kontaktflächen können aber auch erst nach dem Auftragen freigelegt werden. Beispielsweise werden in Isolationsschicht entsprechende Öffnungen nach einem Aushärten und/oder nach einem Trocknen des Lacks erzeugt. Das Erzeugen der Öffnung oder der Öffnungen wird insbesondere durch einen Photolithographieprozess und/oder durch Laserablation durchgeführt. Für den Photolithographieprozess wird insbesondere eine fotosensitiver Lack verwendet.
In einer besonderen Ausgestaltung werden zum Erzeugen der Isolationsschicht auf dem Bauelement folgende weitere Verfahrensschritte durchgeführt: d) Auflaminieren mindestens einer elektrischen Isolationsfolie auf dem Bauelement und dem Substrat und e) Erzeugen einer Öffnung in der Isolationsfolie, so dass die thermische Kontaktfläche des Bauelements frei zugänglich ist. Die gleichen Verfahrensschritt können auch für das Freilegen der thermischen Kontaktstelle des Substrats durchgeführt werden. Es kann aber auch die Isolationsfolie derart auflaminiert werden, dass die thermische Kontaktfläche des Substrats frei bleibt. In diesem Fall ist ein Erzeugen einer Öffnung zum Freilegen der thermischen Kontaktfläche des Substrats nicht nötig.
Die Isolationsschicht zum elektrischen Isolieren des
Bauelements wird von mindestens einer auf dem Bauelement und gegebenenfalls auf dem Substrat auflaminierten Isolationsfolie gebildet. Dabei wird zumindest ein Teil der Isolations olie derart auf dem elektrisch zu isolierenden Oberflächenabschnitt des Bauelements auflaminiert, dass eine Oberflächenkontur des Bauelements in einer Oberflächenkontur des Teils der Isolationsfolie abgebildet ist, die dem
Bauelement abgewandt ist. Die Oberflächenkontur betrifft nicht eine Rauhigkeit oder Welligkeit des
Oberflächenabschnitts des Bauelements. Die Oberflächenkontur resultiert beispielsweise aus einer Kante des Bauelements. Die abgebildete Oberflächenkontur wird insbesondere nicht durch die Form das Bauelement alleine, sondern auch durch die Form des Substrats vorgegeben, auf dem das Bauelement angeordnet ist.
In einer besonderen Ausgestaltung wird das Auflaminieren der Isolationsfolie unter Vakuum durchgeführt. Durch das Auflaminieren unter Vakuum wird ein besonderes fester und inniger Kontakt zwischen der Isolationsfolie und dem Bauelement bzw. der Isolationsfolie und dem Substrat hergestellt.
Es kann nur eine einzige Isolationsfolie mit einer entsprechenden Folienstärke auflaminiert werden. Es können auch mehrere Teil—Isolationsfolien mit entsprechenden Folienstärken übereinander auflaminiert werden, die als Teil— Isolationsschichten zusammen die Isolationsschicht bilden. Eine dazu verwendete Isolationsfolie weist ein elektrisches Isolationsmaterial auf. Als Isolationsmaterial ist dabei jeder beliebige duroplastische (duromere) und/oder thermoplastische Kunststoff denkbar. Insbesondere weist die Isolationsfolie mindestens einen aus der Gruppe flüssigkristallines Polymer, organisch modifizierte Keramik, Polyacrylat, Polyimid, Polyisocyanat, Polyethylen, Polyphenol, Polyetheretherkiton, Polytetrafluorethylen und/oder Epoxid ausgewähltes elektrisches Isolationsmaterial auf. Mischungen der genannten Kunststoffe und/oder Copolymerisate aus Monomeren der Kunststoffe sind ebenfalls denkbar .
Prinzipiell ist es auch möglich, Isolationsfolien mit bereits erzeugten Öffnungen für die thermischen Kontaktflächen des Bauelements und/oder des Substrats aufzulaminieren. Dabei wird die Isolationsfolie derart auflaminiert, dass die Öffnungen über den thermischen Kontaktflächen des Bauelements und des Substrats zum Liegen kommen. Vorteilhaft werden aber die Öffnungen in der Isolationsfolie, wie oben beschrieben, erst nach dem Auflaminieren erzeugt. Das Erzeugen der Öffnungen in den Isolationsfolien erfolgt durch Materialabtrag. Dies kann fotolithografisch erfolgen. Insbesondere erfolgt das Erzeugen der Öffnungen in den Isolationsfolien durch Laserablation. Material wird mit Hilfe eines Lasers abgetragen. Zur Laserablation wird beispielsweise ein CO2— aser mit einer Wellenlänge von 9,24 μm verwendet. Denkbar ist auch der Einsatz eines UV—Lasers.
In einer besonderen Ausgestaltung weisen die thermische
Kontaktfläche des Bauelements eine elektrische Kontaktfläche des Bauelements und die thermische Verbindungsleitung eine elektrische Verbindungsleitung zur elektrischen Kontaktierung der elektrischen Kontaktfläche des Bauelements auf. Die thermische Verbindungsleitung übernmmt auch die Funktion der elektrischen Verbindungsleitung, über die das Bauelement elektrisch kontaktiert ist.
Die Anordnung kann ein beliebiges steuerbares elektrisches Bauelement aufweisen. Das steuerbare elektrische Bauelement ist beispielsweise ein Halbleiterbauelement. Vorzugsweise ist das Halbleiterbauelement ein aus der Gruppe Diode, MOSFET, IGBT, Tyristor und/oder Bipolar-Transistor ausgewähltes Leistungshalbleiterbauelement. Die genannten Leistungshalbleiterbauelemente sind dazu geeignet, hohe
Ströme (einige 100 Ampere) zu steuern bzw. zu schalten. Zum Schalten verfügen die Leistungshalbleiterbauelemente jeweils über mindestens einen Eingangs-, einen Ausgangs— und einen Steuerkontakt. Diese Kontakte werden über entsprechende elektrische Kontaktflächen elektrisch kontaktiert. Dabei können die thermische Kontaktfläche des Bauelements und die elektrischen Kontaktflächen des Bauelements von einander verschieden sein. Insbesondere sind die thermische Kontaktfläche und die elektrische Kontaktfläche des Bauelements identisch.
Anhand mehrerer Ausführungsbeispiele und der dazugehörigen
Figuren wird die Erfindung im Folgenden näher erläutert. Die Figuren sind schematisch und stellen keine maßstabsgetreuen Abbildungen dar .
Figur 1 zeigt eine Anordnung eines elektrischen Bauelements auf einem Substrat.
Figur 2 zeigt einen Ausschnitt der Anordnung des Bauelements auf dem Subs rat gemäß Figur 1.
Figur 3 zeigt ein Verfahren zum Herstellen der Anordnung.
Die Anordnung 1 weist mindestens ein steuerbares elektrisches Bauelement 2 auf einem Substrat 5 auf (Figur 1) . Das Substrat 5 ist ein DGB—Substrat mit einer Trägerschicht 50 und einer auf der Trägerschicht 50 aufgebrachten elektrisch leitfähigen Schicht 51 aus Kupfer. Die elektrisch leitfähige Schicht 51 wird von einer etwa 300 μm dicken Kupferfolie gebildet. Die Trägerschicht 50 besteht aus einem thermisch leitfähigen und elektrisch isolierendem Material. Dieses Material ist ein keramischer Werkstoff. In einem ersten Ausführungsbeispiel ist der keramische Werkstoff Aluminiumoxid. In weiteren dazu alternativen Ausgestaltungen ist der keramische Werkstoff Aluminiumnitrid, Siliziumcarbid oder Siliziumnitrid.
Das elektrische Bauelement 2 ist ein Leistungshalbleiterbauelement in Form eines MOSFETS mit einer Höhe von etwa 350 μm. Das Leistungshalbleiterbauelement 2 ist auf der elektrisch leitenden Schicht 51 au gelötet. Es besteht eine (nicht dargestellte) Lotverbindung zwischen dem Leistungshalbleiterbauelement 2 und der elektrisch leitenden Schicht 51 aus Kupfer. Die Lotverbindung weist eine Schichtdicke von etwa 100 μm auf. Die elektrisch leitende Schicht 51 aus Kupfer dient der elektrischen Kontaktierung einer der Kontakte des Leistungshalbleiterbauelements 2 (Source, Gate oder Drain) .
Das Leistungshalbleiterbauelement 2 ist derart auf der elektrisch leitenden Schicht 51 aufgelötet, dass eine thermische Kontaktfläche 20 des Leistungshalbleiterbauelements 2 vom Substrat 5 abgewandt ist. Die thermische Kontaktfläche 20 ist von einer elektrischen Kontaktfläche 21 des
Leistungshalbleiterbauelements 2 gebildet. Über die elektrische Kontaktfläche 21 ist ebenfalls einer der Kontakte des Leistungshalbleiterbauelements 2 elektrisch kontaktiert. Dabei fungiert die thermische Verbindungsleitung 3 als elektrische Verbindungsleitung 6 zur elektrischen Kontaktierung der elektrischen Kontaktfläche 21 des Leistungshalbleiterbauelements 2. Zur Vervollständigung der elektrischen Kontaktierung ist die elektrische Verbindungsleitung 6 mit einer weiteren elektrisch leitenden Schicht 53 des Substrats 5 verbunden. Die weitere elektrisch leitende Schicht 53 ist ebenfalls aus einer auf der Trägerschicht 50 aufgebrachten Kupferfolie gebildet.
Im Betrieb des Leistungshalbleiterbauelements 2 kann an diesen Kontakten eine hohe Wärmemenge auftreten. Zur Ableitung der entstehenden Wärmemenge ist eine thermische Verbindungsleitung 3 vorhanden. Die thermische Verbindungsleitung 3 ist mit der thermischen Kontaktfläche 20 des Leistungshalbleiterbauelements 2 und einer thermischen
Kontaktfläche 52 des Substrats 5 thermisch leitend verbunden. Die thermische Kontaktfläche 52 des Substrats wird von der Trägerschicht 50 des Substrats 5 aus dem keramischen Werkstoff gebildet. Die thermische Verbindungsleitung 3 bildet einen Wärmeleitpfad 33 aus, über den die Wärmemenge per Wärmeleitung vom Leistungshalbleiterbauelement 2 hin zur Trägerschicht 50 des Substrats 5 abgeleitet wird.
Die thermische Verbindungsleitung 3 weist eine Metallisierungsschicht 30 auf. Über die' Metallisierungsschicht 30 wird die im Betrieb des Leistungshalbleiterbauelements 2 entstehende Wärmemenge abgeleitet. Zum Ableiten der Wärmemenge ist die Metallisierungsschicht 30 der Verbindungsleitung unmittelbar auf der thermischen Kontaktfläche 52 des Substrats 5 bzw. der Trägerschicht 50 des Substrats 5 aufgebracht.
Die Metallisierungsschicht 30 der Verbindungsleitung 3 zeichnet sich durch einen Mehrschichtaufbau aus (Figur 2) . Die Metallisierungsschicht 30 besteht aus einzelnen, übereinander angeordneten Teil-Metallisierungsschichten 32. Die unterste Teil-Metallisierungsschicht 321, die direkt mit der thermischen Kontaktfläche 20 des
Leistungshalbleiterbauelements 2 bzw. der thermischen Kontaktfläche 52 der Trägerschicht 50 des Substrats 5 verbunden ist, besteht aus Titan und fungiert als Haftvermittlungsschicht. Die darüber angeordnete Teil- Metallisierungsschicht 322 besteht aus einer Titan—Wolfram- Legierung. Diese Teil—Metallisierungsschicht 322 fungiert als Diffusionsbarriere. Über der als Diffusionsbarriere fungierenden Teil—Metallisierungsschicht 322 ist eine dünne Teil— etallisierungsschicht 323 aus Kupfer aufgebracht.
Schließlich ist über der dünnen Kupferschicht 323 eine Teil- Metallisierungsschicht 324 in Form galvanisch abgeschiedenem Kupfer vorhanden. Die dünne Kupferschicht 323 fungiert dabei als Seed-Layer für das galvanische Abscheiden des Kupfers. Während die Teil—Metallisierungsschichten 321, 322 und 323 jeweils nur wenige μm dick sind (das Erzeugen dieser Teil- Metallisierungsschichten erfolgt durch ein PVD-Verfahren) ist die Teil-Metallisierungsschicht 324 mit einer relativ großen Schichtdicke aufgetragen. Es resultiert eine
Gesamtschichtdicke 31 der Metallisierungsschicht 30 von etwa 200 μm. Dabei wird die Metallisierungsschicht 30 nahezu vollständig von der dicken Teil-Metallisierungsschicht 324 gebildet .
Aufgrund der hohen thermischen Leitfähigkeit des Kupfers von etwa 400 w-ιrf1~1 resultiert ein Wärmeableitungspfad 38, bei dem die Wärmemenge von der thermischen Kontaktfläche 21 des
Leistungshalbleiterbauelements 2 effizient zum Substrat 5 hin weitergeleitet wird. Da auch der keramische Werkstoff der Trägerschicht 52 des Substrats 5 über eine relativ hohe thermische Leitfähigkeit verfügt, kann die Wärmemenge effizient vom Leistungshalbleiterbauelement 2 wegtransportiert werden.
Zum Herstellen der Anordnung 1 wird auf einem DCB—Substrat 5 das Leistungshalbleiterbauelement 2 aufgelötet. Nachfolgend wird eine Isolationsfolie 4 auflaminiert (Figur 3,
Bezugszeichen 301) . Dadurch wird der Oberflächenabschnitt 23 des Leistungshalbleiterbauelements 2 elektrisch isoliert. Das Auflaminieren erfolgt unter Vakuum. Dabei entsteht ein fester und inniger Kontakt zwischen der Isolationsfolie 4, dem Leistungshalbleiterbauelement 2 und dem Substrat 5. Die
Isolationsfolie 4 wird dabei derart aufgebracht, dass eine Oberflächenkontur 25, die sich aus dem
Leistungshalbleiterbauelement 2, der elektrisch leitenden Schicht 51 und der Trägerschicht 50 des DCB-Substrats ergibt, in einer Oberflächenkontur 47 eines Teils der Isolationsfolie 4 abgebildet wird. Eine dem Substrat 5 und dem Leistungshalbleiterbauelement 2 abgekehrte Oberfläche der Isolationsfolie 4 zeigt im Wesentlichen die gleiche Oberflächenkontur wie das Leistungshalbleiterbauelement 2 und das Substrat. Die Isolationsfolie 4 folgt der Topografie des Leistungshalbleiterbauelements 2 und des Substrats 5. Die Isolationsfolie 4 weist eine Folienstärke von etwa 100 μm auf. Es resultiert eine Isolationsschichtdicke 41 von etwa 100 um. Dabei wird ein Höhenunterschied von etwa 850 μm überwunden, der durch die Schichtdicke der elektrisch leitende Schicht 51, der Schichtdicke der Lotverbindung und die Höhe 22 des Leistungshalbleiterbauelements 2 gegeben ist.
Im nächsten Verfahrensschritt wird eine Öffnung 42 zum Kontaktieren der thermischen Kontaktfläche 20 des Leistungshalbleiterbauelements 2 und eine Öffnung 43 zum Kontaktieren der thermischen Kontaktfläche 52 des Substrats 5 der in der Isolationsfolie 4 erzeugt (Figur 3, Bezugszeichen 302) . Es wird jeweils ein Fenster in der Isolationsfolie 4 geö fnet. Das Öffnen der Fenster erfolgt durch Materialabtrag mittels Laserablation. Dazu wird ein Cθ2-Laser mit einer Wellenlänge von 9,24 μm verwendet. Im Anschluss an den
Materialabtrag wird ein Reinigungsschritt durchgeführt, um Reste des Isolationsmaterials der Isolationsfolie 4 zu entfernen.
Nach dem Herstellen der Öffnungen 42 und 43 wird die
Metallisierungsschicht 30 auf der thermischen Kontaktfläche 21 des Leistungshalbleiterbauelements 2, der thermischen Kontaktfläche 52 des Substrats 5 und der Isolationsfolie 4 aufgetragen (Figur 3, Bezugszeichen 303) . Die Metallisierungsschicht 30 wird derart aufgetragen, dass jeweils in einem Dampfabscheideverfahren zunächst die Teil- Metallisierungsschicht 321 aus Titan, dann die Teil- Metallisierungsschicht 322 aus der Titan-Wolfram-Legierung und anschließend eine dünne Kupferschicht 323 abgeschieden wird. Nachfolgend wird Kupfer galvanisch abgeschieden. Es entsteht die Teil-Metallisierungsschicht 324 in Form einer Kupfer-Abscheidung.
Neben dem Wärmeableitpfad 33 über die Metallisierungsschicht 30 der thermischen Verbindungsleitung 3 existiert bei der beschriebenen Anordnung 1 ein weiterer Wärmeableitpfad 34, der vom Leistungshalbleiterbauelement 2 über die Lotverbindung und über die elektrisch leitende Schicht 51 zur Trägerschicht 51 des Substrats 5 führt. Dadurch wird die Wärmemenge, die im Betrieb des Leistungshalbleiterbauelements 2 entsteht, mit einer großen Wirkung in Richtung des Substrats 5 bzw. der Trägerschicht 52 des Substrats 5 abgeleitet. Die Trägerschicht 52 fungiert als Wärmesenke für die Wärmemenge. Zur Erhöhung der Effizienz, mit der die Wärmemenge abgeleitet wird, ist in einer weiteren Ausführungsform das Substrat 5 mit einer nicht dargestellten, weiteren Wärmesenke verbunden. Die weitere Wärmesenke ist ein Kühlkörper oder ein Kühlfluid.

Claims

Patentansprüche
1. Anordnung (1) mindestens eines steuerbaren elektrischen Bauelements (2) auf einem Substrat (5) , wobei - das Substrat (5) mindestens eine thermische Kontaktfläche (52) mit einem thermisch leitfähigen Material aufweist, das Bauelement (2) mindestens eine thermische Kontaktfläche (20) aufweist, an der im Betrieb des Bauelements (2) eine bestimmte Wärmemenge auftritt, das Bauelement (2) derart auf dem Substrat (5) angeordnet ist, dass die thermische Kontaktfläche (20) des Bauelements (2) dem Substrat (5) abgekehrt ist, mindestens eine thermische Verbindungsleitung (3) zum Übertragen der bestimmten Wärmemenge von der thermischen Kontaktfläche (20) des Bauelements (2) auf die thermische Kontaktfläche (52) des Substrats (5) vorhanden ist und die thermische Verbindungsleitung (3) eine auf der Anordnung (1) abgeschiedene Metallisierungsschicht (30) aufweist.
2. Anordnung nach Anspruch 1, wobei das thermisch leitfähige Material mindestens einen aus der Gruppe Aluminiumnitrid und/oder Aluminiumoxid ausgewählten keramischen Werkstoff aufweist.
3. Anordnung nach Anspruch 1 oder 2, wobei die Metallisierungsschicht (30) einen Mehrschichtaufbau mit mindestens zwei übereinander angeordneten Teilmetallisierungsschichten (32, 321, 322, 323, 324) aufweist .
4. Anordnung nach einem der Ansprüche 1 bis 3, wobei die Metallisierungsschicht (30) eine galvanische Abscheidung (324) aufweist.
5. Anordnung nach einem der Ansprüche 1 bis 4, wobei Metallisierungsschicht (30) mindestens ein aus der Gruppe Aluminium, Gold, Kupfer, Molybdän, Silber, Titan und/oder Wolfram ausgewähltes Metall aufweisen.
6. Anordnung nach einem der Ansprüche 1 bis 5, wobei die Metallisierungsschicht (30) auf einer elektrischen Isolationsschicht (4) zur elektrischen Isolierung eines Oberflächenabschnitts (23) des Bauelements (2) abgeschieden ist.
7. Anordnung nach einem der Ansprüche 1 bis 6, wobei die Isolationsschicht (4) eine aus dem Bereich von einschließlich 50 μm bis einschließlich 500 μm und insbesondere eine aus dem Bereich von einschließlich 100 μm bis einschließlich 300 μm ausgewählte Isolationsschichtdicke (41) aufweist.
8. Anordnung nach Anspruch 6 oder 7, wobei die elektrische Isolationsschicht (4) von einer auf dem Bauelement (2) auflaminierten Isolationsfolie gebildet ist.
9. Anordnung nach Anspruch 8, wobei zumindest ein Teil der Isolationsfolie (4) derart auf dem Oberflächenabschnitt (23) des Bauelements (2) auflaminiert ist, dass eine Oberflächenkontur (25) des Bauelements (2) in einer Oberflächenkontur (44) des Teils der Isolationsfolie (4) abgebildet ist, die dem Bauelement (2) abgewandt ist.
10. Anordnung nach Anspruch 8 oder 9, wobei die Isolationsfolie (4) ein aus der Gruppe flüssigkristallines Polymer, organisch modifizierte Keramik, Polyacrylat, Polyimid, Polyisocyanat, Polyethylen, Polyphenol, Polyetheretherketon, Polytetrafluorethylen und/oder Epoxid ausgewähltes elektrisches Isolationsmaterial aufweist.
11. Anordnung nach einem der Ansprüche 1 bis 10, wobei die thermische Kontaktfläche (20) des Bauelements (2) eine elektrische Kontaktfläche (21) des Bauelements (2) und die thermische Verbindungsleitung (3) eine elektrische Verbindungsleitung (6) zur elektrischen Kontaktierung der elektrischen Kontaktfläche (21) des Bauelements (2) aufweisen.
12. Anordnung nach einem der Ansprüche 1 bis 11, wobei das Bauelement (2) ein Halbleiterbauelement ist.
13. Anordnung nach Anspruch 12, wobei das Halbleiterbauelement ein aus der Gruppe Diode, MOSFET, IGBT, Tyristor und/oder Bipolar-Transistor ausgewähltes Leistungshalbleiterbauelement ist.
14. Verfahren zum Herstellen einer Anordnung nach einem der Ansprüche 1 bis 13 mit folgenden Verfahrensschritten: a) Anordnen des Bauelements (2) auf dem Substrat (5) derart, dass die thermische Kontaktfläche (21) des Bauelements (2) dem Substrat (5) abgekehrt ist, b) Erzeugen einer elektrischen Isolationsschicht (4) auf dem Bauelement (2) derart, dass die thermische Kontaktfläche (20) des Bauelements (2) und die thermische Kontaktfläche (52) des Substrats (5) frei zugänglich sind, und c) Abscheiden mindestens einer Metallisierungsschicht (30) auf der thermischen Kontaktfläche (20) des Bauelements (2), der thermischen Kontaktfläche (52) des Substrats (5) und der Isolationsschicht (4) zum Herstellen der thermischen Verbindungsleitung (3) zwischen den thermischen Kontaktflächen (20, 52) .
15. Verfahren nach Anspruch 14, wobei das Erzeugen der elektrischen Isolationsschicht (4) folgende weiteren Verfahrensschritte umfasst: d) Auflaminieren mindestens einer elektrischen Isolationsfolie (4) auf dem Bauelement (2) und dem Substrat (5) und e) Erzeugen mindestens einer Öffnung (42) in der Isolationsfolie (4), so dass die thermische Kontakt läche (20) des Bauelements (2) und/oder die thermische Kontaktfläche (52) des Substrats (5) frei zugänglich sind.
16. Verfahren nach Anspruch 15, wobei das Auflaminieren der Isolationsfolie (4) unter Vakuum erfolgt.
17. Verfahren nach Anspruch 15 oder 16, wobei das Erzeugen der Öffnung durch einen Photolithographieprozess und/oder durch Laserablation durchgeführt wird.
PCT/EP2005/051225 2004-04-29 2005-03-17 Anordnung eines steuerbaren elektrischen bauelements auf einem substrat und verfahren zum herstellen der anordnung WO2005106951A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004021064.0 2004-04-29
DE102004021064 2004-04-29

Publications (1)

Publication Number Publication Date
WO2005106951A1 true WO2005106951A1 (de) 2005-11-10

Family

ID=34964427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/051225 WO2005106951A1 (de) 2004-04-29 2005-03-17 Anordnung eines steuerbaren elektrischen bauelements auf einem substrat und verfahren zum herstellen der anordnung

Country Status (1)

Country Link
WO (1) WO2005106951A1 (de)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166864A (en) * 1991-05-17 1992-11-24 Hughes Aircraft Company Protected circuit card assembly and process
US5315480A (en) * 1991-11-14 1994-05-24 Digital Equipment Corporation Conformal heat sink for electronic module
US5856913A (en) * 1996-04-29 1999-01-05 Semikron Elektronik Gmbh Multilayer semiconductor device having high packing density
US5929468A (en) * 1996-10-31 1999-07-27 Sanyo Electric Co., Ltd. Compound semiconductor device
US6292368B1 (en) * 1999-03-09 2001-09-18 Sagem Sa Electrical power component mounted by brazing on a support and corresponding mounting process
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166864A (en) * 1991-05-17 1992-11-24 Hughes Aircraft Company Protected circuit card assembly and process
US5315480A (en) * 1991-11-14 1994-05-24 Digital Equipment Corporation Conformal heat sink for electronic module
US5856913A (en) * 1996-04-29 1999-01-05 Semikron Elektronik Gmbh Multilayer semiconductor device having high packing density
US5929468A (en) * 1996-10-31 1999-07-27 Sanyo Electric Co., Ltd. Compound semiconductor device
US6292368B1 (en) * 1999-03-09 2001-09-18 Sagem Sa Electrical power component mounted by brazing on a support and corresponding mounting process
WO2003030247A2 (de) * 2001-09-28 2003-04-10 Siemens Aktiengesellschaft Verfahren zum kontaktieren elektrischer kontaktflächen eines substrats und vorrichtung aus einem substrat mit elektrischen kontaktflächen

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FILLION R ET AL: "A HIGH PERFORMANCE POLYMER THIN FILM POWER ELECTRONICS PACKAGING TECHNOLOGY", ADVANCING MICROELECTRONICS, IMAPS, RESTON, VA,, US, vol. 30, no. 5, September 2003 (2003-09-01), pages 7 - 12, XP009047125 *
GUO-QUAN LU: "3-D, bond wireless interconnection of power devices in modules will cut resistance, parasitics and noise", PCIM POWER ELECTRONIC SYSTEMS, vol. 26, no. 5, May 2000 (2000-05-01), pages 40,46-48,65,66,68, XP009053854, ISSN: 1523-4908 *

Similar Documents

Publication Publication Date Title
DE102010036915B4 (de) Elektronikbauelement mit eingebetteter Halbleiterkomponente und Verfahren zur Herstellung desselben
DE10335153B4 (de) Schaltungsanordnung auf einem Substrat, die einen Bestandteil eines Sensors aufweist, und Verfahren zum Herstellen der Schaltungsanordnung auf dem Substrat
DE102007041926B4 (de) Verfahren zur elektrischen Isolierung beziehungsweise elektrischen Kontaktierung von ungehäusten elektronischen Bauelementen bei strukturierter Verkapselung
DE102010017768B4 (de) Verfahren zum Herstellen eines Halbleiter-Bauelements
DE102009015722A1 (de) Halbleitermodul
DE102014101238A1 (de) In Leiterplatten eingebettetes Leistungsmodul
DE102007046337A1 (de) Optoelektronischer Halbleiterchip, optoelektronisches Bauelement und Verfahren zum Herstellen eines optoelektronischen Bauelements
DE102014101366B3 (de) Chip-Montage an über Chip hinausstehender Adhäsions- bzw. Dielektrikumsschicht auf Substrat
DE102018111989A1 (de) Elektronikmodul und Verfahren zur Herstellung desselben
WO2004077548A2 (de) Verbindungstechnik für leistungshalbleiter
DE102006018765A1 (de) Leistungshalbleiterbauelement, Leistungshalbleiterbauteil sowie Verfahren zu deren Herstellung
EP0841668B1 (de) Elektrischer Widerstand und Verfahren zu seiner Herstellung
DE102004009296B4 (de) Verfahren zum Herstellen einer Anordnung eines elektrischen Bauelements
DE102006012007B4 (de) Leistungshalbleitermodul mit oberflächenmontierbaren flachen Außenkontakten und Verfahren zur Herstellung desselben und dessen Verwendung
DE102007004301A1 (de) Verfahren zur Herstellung eines Halbleiterbauelements und Dünnfilm-Halbleiterbauelement
EP1817795A1 (de) Metallisierte folie zur flächigen kontaktierung
DE10335155B4 (de) Verfahren zum Herstellen einer Anordnung eines elektrischen Bauelements auf einem Substrat
WO2005106951A1 (de) Anordnung eines steuerbaren elektrischen bauelements auf einem substrat und verfahren zum herstellen der anordnung
WO2004077547A2 (de) Verbindungstechnik für leistungshalbleiter mit grossflächigen anschlüssen
WO2005027222A2 (de) Anordnung eines elektrischen bauelements mit einer elektrischen isolationsfolie auf einem substrat und verfahren zum herstellen der anordnung
DE102004057497B4 (de) Wärmeaustauschvorrichtung und Verfahren zum Herstellen der Wärmeaustauschvorrichtung sowie Anordnung eines Bauelements und der Wärmeaustauschvorrichtung und Verfahren zum Herstellen der Anordnung
WO2004100259A2 (de) Halbleiterbauelement und verfahren zum herstellen eines halbleiterbauelements
EP1987536B1 (de) Verfahren zur selektiven herstellung von folienlaminaten zum packaging und zur isolation von ungehäusten elektronischen bauelementen und funktionsstrukturen
DE102019129675A1 (de) Leistungshalbleitermodul und Verfahren zum Herstellen eines Leistungshalbleitermoduls
DE102004018468A1 (de) Verfahren zum strukturierten Aufbringen einer laminierbaren Folie auf ein Substrat für ein Halbleitermodul

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase