Nothing Special   »   [go: up one dir, main page]

WO2005103453A1 - Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique - Google Patents

Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique Download PDF

Info

Publication number
WO2005103453A1
WO2005103453A1 PCT/FR2005/050225 FR2005050225W WO2005103453A1 WO 2005103453 A1 WO2005103453 A1 WO 2005103453A1 FR 2005050225 W FR2005050225 W FR 2005050225W WO 2005103453 A1 WO2005103453 A1 WO 2005103453A1
Authority
WO
WIPO (PCT)
Prior art keywords
rankine cycle
heat transfer
heat
vehicle
engine
Prior art date
Application number
PCT/FR2005/050225
Other languages
English (en)
Inventor
Denis Clodic
Rody El Chammas
Original Assignee
Armines
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Armines filed Critical Armines
Publication of WO2005103453A1 publication Critical patent/WO2005103453A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P9/00Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00
    • F01P9/06Cooling having pertinent characteristics not provided for in, or of interest apart from, groups F01P1/00 - F01P7/00 by use of refrigerating apparatus, e.g. of compressor or absorber type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2260/00Recuperating heat from exhaust gases of combustion engines and heat from cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2280/00Output delivery
    • F02G2280/20Rotary generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • hybrid vehicles with thermal and electric motors have variable electrical powers between 5 and 70 k.
  • the recovery of thermal energy from the heat engine and its conversion into electrical energy then opens up new possibilities for improving the overall energy efficiency of the vehicle.
  • the present invention relates to a Rankine cycle system integrated into the cooling circuit of an internal combustion engine and also recovering energy from the exhaust line. This energy recovery takes place via a heat transfer circuit which transfers the recovered thermal energy to an organic working fluid of a Rankine cycle.
  • State of the art Thermal energy recovery systems on vehicles are presented in various patents such as US 4901531 and WO 02/031320.
  • the device presented in US 4901531 mainly uses water as thermodynamic fluid, and makes it possible to recover the thermal heat of the lubricating oil, the heat released by the cylinder head, and the energy of the exhaust gases and uses a piston built into the engine to relieve steam.
  • the device presented in WO 02/031320 uses two exchangers mounted respectively on the lubrication oil circuit and on the exhaust line and makes it possible to generate two flows of superheated vapors in two different places, the first vapor flow having a moderate superheat temperature and pressure and the second flow has a much higher temperature and pressure.
  • the two vapor flows expand in the same turbine comprising two successive expansion stages.
  • the exhaust gases can reach high temperatures of the order of 900 ° C.
  • the principle of the invention is that the thermal energy of the heat engine is recovered at a maximum temperature level of 200 ° C. which makes it possible to design a Rankine cycle using simple turbines, preferably volumetric and having an expansion rate varying between 4 and 6.
  • the overall design is such that the complete energy recovery and transformation system will allow, among other things, to replace the conventional radiator for cooling the heat engine with the condenser associated with the operation of the Rankine cycle.
  • the present invention also relates to a method making it possible to recover the thermal energy of a vehicle with a thermal engine, and / or of a hybrid vehicle with thermal and electric engines, by implementing a Rankine cycle producing mechanical energy. and / or electric by means of a turbine associated with an alternator, in particular by means of a volumetric turbine; said method comprising the following steps: heating a boiler reheating said Rankine cycle using a heat transfer fluid, recovering said thermal energy by direct cooling, using the same heat transfer fluid, of the cylinders and of the cylinder head of said engine and exhaust gases from said vehicle in an exchanger located downstream of a catalytic converter of said vehicle - regulate energy recovery by controlling a circulation rate of the heat transfer fluid.
  • Figure 1 shows an example of architecture of 'a system according to the invention
  • Figure 2 shows an advantageous example of architecture of a system according to the invention
  • Figure 3 shows an alternative architecture of a system according to the invention
  • Figure 4 shows a Ts diagram of a Rankine cycle. As shown in the example of architecture of FIG.
  • the device comprises two distinct circuits: a heat transfer circuit constituted by a circulation pump 5 driven by an electric motor 10 at variable speed, the conventional cylinder cooling circuit and from the cylinder head of the engine 4, the heat recovery exchanger 3, arranged after the catalytic converter 2, and the boiler which is also a heater 6; a thermodynamic circuit allowing the realization of the Rankine cycle consisting of the boiler 6 which recovers thermal energy from the heat transfer circuit, an expansion turbine 8 preferably volumetric driving an alternator 12, a condenser 9 which replaces the conventional radiator of the cooling circuit motor, a pump 7 making it possible to pass the thermodynamic fluid from the low to the high pressure of the cycle, this pump being driven by an electric motor with variable speed 11.
  • a heat transfer circuit constituted by a circulation pump 5 driven by an electric motor 10 at variable speed
  • the conventional cylinder cooling circuit and from the cylinder head of the engine 4 the heat recovery exchanger 3, arranged after the catalytic converter 2, and the boiler which is also a heater 6
  • a thermodynamic circuit allowing the realization of the
  • the exchanger 3 where on one side circulates the heat transfer fluid which will enter at a temperature of the order of 120 ° C. when the heat engine is operating in stabilized mode, the temperature of the heat transfer medium will rise to around 200 ° C. that the exhaust gas temperature is around 400 ° C to 600 ° C in the case corresponding to Figure 1 the exchanger 3 is then steel or alloy steel and the temperature difference between the gases exhaust and the heat transfer fluid is large at the hot end of the exchanger since this difference can reach 400K which has the advantage of limiting the size of one exchanger.
  • a fan 15 lowers the temperature level of the exhaust gases leaving the catalytic converter 2 by introducing a flow of fresh air.
  • the fresh air flow from the fan 15 is controlled by a thermostatic train 16 measuring the temperature after the fresh air introduction nozzle 17 in order to maintain a systematic temperature below 220 ° C at the inlet of the recovery exchanger 3.
  • This temperature of 220 ° C maintained at the inlet of the ⁇ exchanger 3 makes it possible to use light alloys such as aluminum alloys and also makes it possible to increase the quantity of energy recovered by increasing the flow rate of gas circulating in exchanger 3.
  • Exchanger 6 is both a boiler of the working fluid of the thermodynamic circuit and a heater of this working fluid since the thermodynamic fluid, after putting under the high pressure of the cycle by the pump 7, the thermodynamic fluid enters at a typical temperature slightly above 60 ° C. and comes out at a saturation temperature of the order of 130 ° C.
  • the heat transfer fluid for example Syltherm 800, cools from about 200 ° C to a temperature of about 70 ° C by giving its heat to the fluid thermodynamic.
  • the heat transfer fluid can recover the heat from the heat engine in the engine cooling circuit 4.
  • the operating pressure of the exchanger 6 on the side of the thermodynamic fluid is of the order of 1,500 to 2,000 kPa depending on the thermodynamic fluid chosen.
  • the exchanger 6 can therefore also be constructed from a light alloy.
  • the pump 7 is a commercially available pump, for example a diaphragm pump and driven by a variable speed motor to adapt the flow of the thermodynamic fluid to the thermal power available on the heat transfer circuit.
  • This pump 7 is advantageously controlled by a thermostatic train 13 measuring the temperature of the coolant upstream of the boiler 6. The lower the temperature level of the coolant, the lower the flow rate of this pump. In addition, if the temperature of the coolant is lower than a predetermined temperature, typically 120 ° C., the pump 7 is not put into operation. This mode of regulation accelerates the temperature rise of the heat engine and limits the formation of pollutants during cold start.
  • the turbine 8 is preferably a volumetric turbine either scroll, or piston, or vane. Current technologies of positive displacement compressors make it easy to create turbines based on these same technologies, in particular to have turbines made of light materials, in particular cast aluminum. This is because temperatures of the order of 130 ° C and a maximum pressure of 2,000 kPa remain reasonable.
  • the relaxation rate is fixed at around 5, which corresponds to many available technologies.
  • the pump 5 of the heat transfer circuit is of the same type as the circulators used for the cooling circuit of conventional engines. Its only special feature is that it has a variable speed electric motor 10. This pump 5 is controlled by a thermostatic train 14 which adapts the flow rate of the pump as a function of the temperature of the heat transfer fluid at the outlet of the heat engine.
  • FIG. 3 A variant is presented in Figure 3 where the heat transfer circuit after passing through the heat exchanger 3 circulates in an exchange surface 19 integrated around the catalytic converter 2 in order both to maintain the temperature of the catalytic converter 2 in its optimal zones operating, for example around 500 ° C, the passage or not of the heat transfer fluid in this exchange surface 19 is controlled by a 3-way valve 18, itself controlled by a thermostatic train 20 disposed inside the pot catalytic 2 in order to control its temperature.
  • This variant provides a double benefit, increasing the amount of thermal energy recovered when the catalytic converter is at a temperature above its optimum operating threshold and controlling the optimal operating temperature of the catalytic converter.
  • the object of the invention is to design a system for recovering thermal energy which does not entail modification of the engine cooling circuit by the use of a heat transfer fluid generating a low overpressure for a recovery temperature level varying between 120 and 200 ° C and on the other hand to operate a Rankine cycle with a single expansion stage with an appropriately chosen organic working fluid and a sufficiently high condensation temperature level, around 60 ° C.
  • the choice of these temperature levels aims to recover thermal energy and partially transform it into electrical energy by means of steel exchangers for large temperature differences and light alloys typically based on aluminum for heat exchangers. moderate temperature.
  • the turbine preferably volumetric, is also made of light alloy derived from scroll or piston compressor techniques.
  • the proposed system minimizes the number of components added and their weights, in particular the Rankine cycle condenser replaces the conventional engine cooling radiator.
  • the total number of components added is four: an exchanger on the exhaust line, an organic fluid boiler using the heat from the heat transfer circuit, an organic fluid pump from the Rankine cycle, and an expansion turbine driving an alternator.
  • the thermal drawing circuit on the thermal engine replaces the usual cooling circuit, passing through the water pockets surrounding the cylinders and the cylinder head. This cooling is carried out by means of a heat transfer fluid, the pressure of which will remain below 150 kPa absolute for the temperature levels chosen between 120 and 200 ° C. such as the SYLTHERM 800 or the DYALENE 600 which are fluids based on silicones.
  • the boiling temperature of 130 ° C (403 K) in the boiler results in a pressure of 1750 kPa and for a condensation temperature of 60 ° C (333 K), the pressure is 328 kPa, the expansion rate is therefore 5.33.
  • the diagram Ts represented in FIG. 4 shows such a Rankine cycle with the heating and boiling represented by the segment DA, the isentropic expansion represented by the segment AB, the desuperheating and the condensation represented by the segment BC and the compression by the pump. represented the very short CD segment.
  • the efficiency of the Rankine cycle is of the order of 10%, which allows on a conventional engine, for example with a mechanical power of 75 kW, to recover a mechanical power of the turbine varying between 0.8 and 7.5 kW, which therefore makes it possible to improve the overall conversion efficiency of the heat engine by 15 to 30%, which is quite significant.
  • the present invention also aims to provide simple and effective means of regulating the cooling of the engine and the mechanical power supplied by the turbine.
  • the system presented has means of regulation, in particular electric motors with variable speed, to vary the flow rates delivered by the pumps of the heat transfer and thermodynamic circuits. To accelerate the temperature rise of the engine, during the cold start phases, the flow of the thermodynamic circuit pump is stopped while the heat circuit pump is running.
  • the heat of the exhaust gases is recovered by the heat transfer fluid and reintroduced back into the engine block and is used to heat the cylinder head and the cylinders, which accelerates its temperature rise and limits the production of pollutants. cold engine.
  • the thermodynamic circuit pump is started and the flow rates of the two circuits are regulated in order to maximize the recovery of thermal energy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

L'invention concerne un système et un procédé permettant de récupérer l'énergie thermique d'un véhicule à moteur thermique en mettant en œuvre un cycle de Rankine produisant de l'énergie mécanique et/ou électrique au moyen d'une turbine (8) associée à un alternateur (12). Le système comprend : un circuit caloporteur (5) utilisant un fluide caloporteur et destiné à : chauffer un bouilleur réchauffeur (6) du cycle de Rankine, - récupérer l'énergie thermique par un refroidissement direct des cylindres et de la culasse (4) du moteur thermique et des gaz d'échappement (3) du véhicule dans un échangeur situé en aval d'un pot catalytique (2) du véhicule. Le fluide thermodynamique du cycle de Rankine est déterminé de manière à générer un taux de détente de 4 à 6 pour des températures d'ébullition se situant entre 130 et 150 °C et une température de condensation de l'ordre de 60 à 70 °C. La haute pression du cycle de Rankine varie entre 1500 et 2000 kPa. Le procédé permet de réguler la récupération d'énergie par contrôle d'un débit de circulation du fluide caloporteur.

Description

SYSTEME POUR RECUPERER L'ENERGIE THERMIQUE D'UN VEHICULE A MOTEUR THERMIQUE
Domaine de l'invention L'accroissement de la demande électrique dans les véhicules automobiles, fonctionnant avec des moteurs à combustion interne, amène une situation nouvelle quant aux besoins de conversion d'énergie mécanique en énergie électrique. De plus, au-delà de ces véhicules traditionnels, les véhicules hybrides à moteurs thermique et électrique disposent de puissances électriques variables entre 5 et 70 k . La récupération d'énergie thermique du moteur thermique et sa conversion en énergie électrique ouvrent alors des possibilités nouvelles quant à 1 ' amélioration de 1 ' efficacité énergétique globale du véhicule. La présente invention porte sur un système de cycle Rankine intégré au circuit de refroidissement d'un moteur à combustion interne et récupérant aussi de l'énergie sur la ligne d'échappement. Cette récupération d'énergie s'effectue via un circuit caloporteur qui transfère 1 ' énergie thermique récupérée à un fluide de travail organique d'un cycle de Rankine. Etat de l'art Des systèmes de récupération d' énergie thermique sur véhicules, sont présentés dans différents brevets comme US 4901531 et WO 02/031320. Le dispositif présenté dans US 4901531, utilise principalement l'eau comme fluide thermodynamique, et permet de récupérer la chaleur thermique de l'huile de lubrification, la chaleur dégagée par la culasse, et l'énergie des gaz d' échappement et utilise un piston intégré dans le moteur pour détendre la vapeur. Le dispositif présenté dans WO 02/031320, utilise deux échangeurs montés respectivement sur le circuit de l'huile de lubrification et sur la ligne d' échappement et permet de générer deux débits de vapeurs surchauffées en deux endroits différents, le premier débit de vapeur présentant une température de surchauffe et une pression modérées et le second débit présente une température et une pression beaucoup plus importantes. Les deux débits de vapeurs se détendent dans une même turbine comprenant deux étages de détente successifs. Pour un moteur à combustion interne les gaz d'échappement peuvent atteindre des températures élevées de l'ordre de 900°C. Par la suite un échangeur, pour un cycle de Rankine, monté directement sur la ligne d' échappement doit être capable de d'accepter une pression et une température élevées du fluide de travail du cycle Rankine et les températures élevées des gaz d'échappement. Un tel échangeur présente un coût et un poids significatifs, ce qui est un inconvénient majeur pour une application automobile où le poids constitue à lui seul une pénalité énergétique. D'autre part, un cycle de Rankine utilisant la vapeur d' eau comme fluide thermodynamique et opérant avec des niveaux de pression et de température élevés, complique la conception de la turbine du cycle de Rankine par une détente en deux étages et peut entraîner un rendement isentropique de détente réduit, surtout pour les faibles puissances envisagées. De plus, un cycle de Rankine utilisant la vapeur d' eau comme fluide thermodynamique, présente différentes difficultés liées au gel de l'eau l'hiver et aux faibles pressions de condensation rencontrées . De même, pour un moteur à combustion interne, les poches d'eau entourant les cylindres et la culasse sont conçues pour surmonter des pressions relativement faibles ; le fluide de refroidissement généralement utilisé est l'eau glycolée. Le fluide de travail du cycle de Rankine, présente des pressions assez élevées au refoulement de la pompe et donc, sur un moteur conventionnel, . l'introduction de ce fluide directement dans les poches d' eau entourant les cylindres demande un renforcement de l'étanchéité du système de refroidissement. Description de l'invention L' invention concerne un système permettant de récupérer l'énergie thermique d'un véhicule à moteur thermique, et/ou d'un véhicule hybride à moteurs thermique et électrique, en mettant en œuvre un cycle de Rankine produisant de l'énergie mécanique et/ou électrique au moyen d'une turbine associée à un alternateur, notamment au moyen d'une turbine volumétrique. Le système comprend : un circuit caloporteur utilisant un fluide caloporteur et destiné à : chauffer un bouilleur réchauffeur du cycle de Rankine, - récupérer l'énergie thermique par un refroidissement direct des cylindres et de la culasse du moteur thermique et des gaz d' échappement du véhicule dans un échangeur situé en aval d'un pot catalytique du véhicule. Le système est tel que le fluide thermodynamique du cycle de Rankine est déterminé de manière à générer un taux de détente de 4 à 6 pour des températures d'ébullition se situant entre 130 et 150 °C et une température de condensation de l'ordre de 60 à 70 °C. Le système est tel que la haute pression dudit cycle de Rankine varie entre 1 500 et 2 000 kPa. L'invention concerne ainsi un procédé de transformation de l'énergie thermique récupérée en énergie mécanique et/ou électrique. L'énergie thermique est récupérée à la fois sur le circuit de refroidissement du moteur et sur les gaz d'échappement via un fluide caloporteur qui va circuler dans le circuit de refroidissement du moteur, à la place du fluide de refroidissement usuel, puis qui va récupérer la chaleur additionnelle sur la ligne d'échappement préférablement après le système de dépollution catalytique. Dans la conception de l'invention, le fluide caloporteur est choisi de telle manière à ce que sa température varie entre 120 et 200 °C en vue de récupérer cette chaleur à un niveau de température qui rend simple et léger le système de transformation d'énergie thermique en énergie mécanique du cycle de Rankine. En effet, le niveau maximum de température de 200 °C permet de garder tous les composants fabricables dans des métaux légers comme 1 ' aluminium, ce qui limite drastiquement la masse additionnelle associée au système de récupération. On sait en effet que la masse transportée constitue un obstacle même à 1 ' amélioration de 1 ' efficacité énergétique des véhicules roulants . Le principe de l'invention est que l'énergie thermique du moteur thermique est récupérée à un niveau de température maximum de 200 °C qui permet de concevoir un cycle de Rankine utilisant des turbines simples, préférablement volumétriques et disposant d'un taux de détente variant entre 4 et 6. La conception globale est telle que le système complet de récupération et de transformation de l'énergie va permettre entre autres de substituer le radiateur classique de refroidissement du moteur thermique par le condenseur associé au fonctionnement du cycle de Rankine. De préférence, selon l'invention, le système est tel que le circuit caloporteur met en oeuvre un caloporteur monophasique à base de silicone destiné à maintenir une pression légèrement supérieure à la pression atmosphérique pour récupérer de l'énergie thermique successivement : - autour des cylindres et de la culasse du moteur thermique, sur les gaz d'échappement à l'aval du pot catalytique, - dans un échangeur déterminé, intégré dans le pot catalytique, pour des températures variant entre 70 et 220 °C lorsque le moteur thermique est chaud. L'utilisation d'un fluide caloporteur judicieusement choisi, typiquement une huile silicone, permet de récupérer l'énergie de manière adaptée suivant les différents modes de fonctionnement du moteur. En particulier lorsque le moteur est froid, il est judicieux de ne pas mettre immédiatement en circulation le fluide thermodynamique (ou fluide du cycle de Rankine) . Seul le fluide caloporteur est mis en circulation pour récupérer la chaleur des gaz d' échappement qui est réintroduite de nouveau dans le bloc moteur pour permettre au moteur de monter le plus rapidement possible en température et limiter ainsi les émissions de polluants qui sont extrêmement significatifs lors d'un démarrage à froid. De préférence, selon l'invention, le système est tel qu'il comprend en outre un ventilateur destiné à injecter un débit d' air à température ambiante dans les gaz d' échappement à l'amont de l' échangeur de récupération thermique, de manière à maintenir un niveau de température de l'ordre de 220 °C à l'entrée de l' échangeur de récupération sur les gaz d' échappement. Avantageusement, le système inclut une pompe pour faire circuler ledit fluide caloporteur et des moyens de régulation pour faire varier son débit. L'interposition d'un fluide caloporteur pour récupérer la chaleur du moteur et une partie de la chaleur des gaz d'échappement, permet d'adapter la puissance récupérée au fonctionnement du moteur soit en cycle urbain, soit en cycle extra-urbain. Il faut pour ce faire que le débit du fluide caloporteur soit adaptable, il constitue donc un premier niveau de régulation dont le but est d'amortir les variations brutales de chaleur dégagées par le moteur thermique compte tenu des très grandes variations de la vitesse de rotation du moteur selon les profils de mission du véhicule. Il est aussi avantageux que le système soit muni d'une pompe pour faire circuler le fluide thermodynamique et de moyens de régulation pour faire varier son débit. La présente invention concerne également un procédé permettant de récupérer l'énergie thermique d'un véhicule à moteur thermique, et/ou d'un véhicule hybride à moteurs thermique et électrique, en mettant en œuvre un cycle de Rankine produisant de l'énergie mécanique et/ou électrique au moyen d'une turbine associée à un alternateur, notamment au moyen d' une turbine volumétrique ; ledit procédé comprenant les étapes suivantes : chauffer un bouilleur réchauffeur dudit cycle de Rankine à l'aide d'un fluide caloporteur, récupérer ladite énergie thermique par un refroidissement direct, à l'aide du même fluide caloporteur, des cylindres et de la culasse dudit moteur thermique et des gaz d' échappement dudit véhicule dans un échangeur situé en aval d'un pot catalytique dudit véhicule - réguler la récupération d' énergie par contrôle d' un débit de circulation du fluide caloporteur.
D'autres caractéristiques et avantages de l'invention apparaîtront avec la description faite ci-dessous, cette dernière étant effectuée à titre descriptif et non limitatif en faisant référence aux dessins ci-après sur lesquels: la figure 1 montre un exemple d' architecture d' un système selon l'invention, la figure 2 montre un exemple avantageux d'architecture d'un système selon l'invention, la figure 3 montre une variante d'architecture d'un système selon l' invention, le figure 4 représente un diagramme T-s d'un cycle de Rankine. Ainsi que représenté dans l'exemple d'architecture de la figure 1, le dispositif comporte deux circuits distincts : un circuit caloporteur constitué par une pompe de circulation 5 entraînée par un moteur électrique 10 à vitesse variable, le circuit classique de refroidissement des cylindres et de la culasse du moteur 4, l' échangeur de récupération d'énergie thermique 3, disposé après le pot catalytique 2, et le bouilleur qui est aussi un réchauffeur 6; un circuit thermodynamique permettant la réalisation du cycle de Rankine constitué du bouilleur 6 qui récupère 1 ' énergie thermique du circuit caloporteur, une turbine de détente 8 de préférence volumétrique entraînant un alternateur 12, un condenseur 9 qui se substitue au radiateur classique du circuit de refroidissement moteur, une pompe 7 permettant de faire passer le fluide thermodynamique de la basse à la haute pression du cycle, cette pompe étant entraînée par un moteur électrique à vitesse variable 11. Le système illustré sur la figure 1 comporte essentiellement quatre composants ajoutés au moteur thermique. L' échangeur 3 où d'un côté circule le fluide caloporteur qui va entrer à une température de l'ordre de 120 °C lorsque le moteur thermique fonctionne en régime stabilisé, la température du caloporteur va monter jusqu'à environ 200 °C alors que le température des gaz d'échappement se situe aux alentours de 400 °C à 600°C dans le cas correspondant à la figure 1 l' échangeur 3 est alors en acier ou acier allié et l'écart de température entre les gaz d' échappement et le fluide caloporteur est grand à l'extrémité chaude de l' échangeur puisque cette différence peut atteindre 400K ce qui a comme intérêt de limiter la taille de 1' échangeur. Avantageusement, comme indiqué figure 2, un ventilateur 15 abaisse le niveau de température des gaz d' échappement sortant du pot catalytique 2 par introduction d' un débit d'air neuf. Le débit d'air neuf du ventilateur 15 est piloté par un train thermostatique 16 mesurant la température après le piquage d'introduction de l'air neuf 17 en vue de maintenir une température systématique inférieure à 220 °C à 1 ' entrée de 1 ' échangeur de récupération 3. Cette température de 220°C maintenue à l'entrée de lΛéchangeur 3 permet d'utiliser les alliages légers comme les alliages d' aluminium et permet aussi d'accroître la quantité d'énergie récupérée par accroissement du débit de gaz circulant dans l' échangeur 3. L' échangeur 6 est à la fois un bouilleur du fluide de travail du circuit thermodynamique et un réchauffeur de ce fluide de travail puisque le fluide thermodynamique, après mise sous la haute pression du cycle par la pompe 7, le fluide thermodynamique entre à une température typique légèrement supérieure à 60 °C et ressort à une température de saturation de l'ordre de 130 °C. De l'autre côté de la paroi de l' échangeur, le fluide caloporteur, par exemple du Syltherm 800, se refroidit d'environ 200 °C jusqu'à une température de l'ordre de 70 °C en cédant sa chaleur au fluide thermodynamique. Ainsi refroidi, le fluide caloporteur peut récupérer la chaleur du moteur thermique dans le circuit de refroidissement 4 du moteur. La pression de fonctionnement de 1 ' échangeur 6 du côté du fluide thermodynamique est de l'ordre de 1 500 à 2 000 kPa suivant le fluide thermodynamique choisi. L' échangeur 6 peut donc être construit lui aussi en alliage léger. La pompe 7 est une pompe disponible dans le commerce, par exemple à membrane et entraînée par un moteur à vitesse variable pour adapter le débit du fluide thermodynamique à la puissance thermique disponible sur le circuit caloporteur. Cette pompe 7 est avantageusement pilotée par un train thermostatique 13 mesurant la température du fluide caloporteur à l'amont du bouilleur 6. Plus le niveau de température du caloporteur est faible, moins le débit de cette pompe sera élevé. De plus si la température du caloporteur est inférieure à une température prédéterminée, typiquement 120 °C, la pompe 7 n'est pas mise en fonctionnement. Ce mode de régulation permet d'accélérer la montée en température du moteur thermique et limite la formation de polluants lors du démarrage à froid. La turbine 8 est préférentiellement une turbine volumétrique soit scroll, soit à pistons, soit à palettes. Les technologies actuelles des compresseurs volumétriques permettent de créer facilement des turbines basées sur ces mêmes technologies, en particulier pour disposer de turbines réalisées en matériaux légers, fonte d'aluminium en particulier. Ceci parce que les températures de l'ordre de 130 °C et la pression au maximum de 2 000 kPa restent raisonnables. De plus, le taux de détente est fixé aux alentours de 5, ce qui correspond à de nombreuses technologies disponibles . La pompe 5 du circuit caloporteur est du même type que les circulateurs utilisés pour le circuit de refroidissement des moteurs conventionnels. Sa seule particularité est d'être dotée d'un moteur électrique à vitesse variable 10. Cette pompe 5 est pilotée par un train thermostatique 14 qui adapte le débit de la pompe en fonction de la température du fluide caloporteur à la sortie du moteur thermique. Une variante est présentée à la figure 3 où le circuit caloporteur après passage dans 1 ' échangeur 3 circule dans une surface d'échange 19 intégrée autour du pot catalytique 2 en vue à la fois de maintenir la température du pot catalytique 2 dans ses zones optimales de fonctionnement, par exemple autour de 500 °C, le passage ou non du fluide caloporteur dans cette surface d'échange 19 est piloté par une vanne 3 voies 18, elle-même contrôlée par un train thermostatique 20 disposé à l'intérieur du pot catalytique 2 en vue d'en contrôler sa température. Cette variante permet un double bénéfice, accroissement de la quantité d'énergie thermique récupérée lorsque le pot catalytique est à une température supérieure à son seuil de fonctionnement optimum et contrôle de la température de fonctionnement optimale du pot catalytique . Ainsi, l'objet de l'invention est de concevoir un système de récupération d' énergie thermique qui n' entraîne pas de modification du circuit de refroidissement du moteur par l'usage d'un fluide caloporteur générant une faible surpression pour un niveau de température de récupération variant entre 120 et 200°C et d'autre part de faire fonctionner un cycle de Rankine à un seul étage de détente avec un fluide de travail organique convenablement choisi et un niveau de température de condensation suffisamment élevée, autour de 60°C. Le choix de ces niveaux de température vise à récupérer de l'énergie thermique et à la transformer partiellement en énergie électrique au moyen d' échangeurs en acier pour les grands écarts de température et en alliages légers typiquement à base d'aluminium pour les échangeurs à température modérée. La turbine de préférence volumétrique, est elle aussi en alliage léger dérivée des techniques de compresseurs scroll ou à pistons. Le système proposé minimise le nombre de composants ajoutés et leurs poids, en particulier le condenseur du cycle de Rankine se substitue au radiateur de refroidissement classique du moteur thermique. Le nombre total de composants ajoutés est de quatre : un échangeur sur la ligne d'échappement, un bouilleur de fluide organique utilisant la chaleur du circuit caloporteur, une pompe du fluide organique du cycle de Rankine, et une turbine de détente entraînant un alternateur. Le circuit de puisage thermique sur le moteur thermique se substitue au circuit de refroidissement habituel en passant par les poches à eau entourant les cylindres et la culasse. Ce refroidissement s'effectue au moyen d'un fluide caloporteur dont la pression restera inférieure à 150 kPa absolu pour les niveaux de températures choisis entre 120 et 200 °C comme le SYLTHERM 800 ou le DYALENE 600 qui sont des fluides à base de silicones. Après avoir récupéré la chaleur de refroidissement du moteur, le fluide caloporteur récupère une quantité additionnelle de chaleur sur les gaz d' échappement . La chaleur est récupérée à l'aval du pot catalytique à un niveau de température variable entre 600 et 400 °C. Une des options pour maintenir un niveau de température à environ 220°C à l'entrée de l' échangeur entre le caloporteur et les gaz d'échappement est d'utiliser un ventilateur prenant de l'air extérieur pour le mélanger aux gaz d'échappement à 600°C pour en faire baisser la température tout en maintenant un niveau de puissance thermique récupérée élevé. Ce dispositif permet en effet d'accroître l'énergie récupérée par accroissement du débit circulant dans 1' échangeur de récupération. Le fluide de travail du cycle de Rankine, est de préférence un fluide organique présentant une température critique et une température normale d'ébullition (température de saturation du fluide à la pression atmosphérique) acceptables, comme par exemple ceux présentés au tableau 1 : R-123, R-245ca, pentane et isopentane qui vont générer des pressions modérées pour les niveaux de température visés de ce cycle de Rankine, à savoir une température d'ébullition aux alentours de 130 °C et une température de condensation aux alentours de 60 °C. Dans ces cas, et pour la plupart de ces fluides, le taux de détente est de 1 ' ordre de 5.
Figure imgf000013_0001
Tableau 1
Par exemple, pour le R-245ca, la température d'ébullition de 130 °C (403 K) au bouilleur entraîne une pression de 1750 kPa et pour une température de condensation de 60 °C (333 K) , la pression est de 328 kPa, le taux de détente est donc de 5.33. Le diagramme T-s représenté figure 4 montre un tel cycle de Rankine avec le chauffage et l'ébullition représentés par le segment DA, la détente isentropique représentée par le segment AB, la désurchauffe et la condensation représentées par le segment BC et la compression par la pompe représentée le très court segment CD. Compte tenu de la forme de la courbe de saturation vapeur de ce fluide représentée figure 4, la détente isentropique est sèche et donc, a fortiori, une détente avec une génération d'entropie amènera le point de sortie de la turbine à droite du point B de sortie isentropique, dans le sens des entropies croissantes. Ce type de fluide présente donc un avantage important par rapport à un fluide tel que l'eau où le point de sortie de la turbine se retrouve dans le domaine diphasique. Un fluide comme le R-245ca ou d'ailleurs le R-123, le pentane ou 1 ' isopentane permet de créer un échangeur liquide- vapeur entre la sortie de la turbine, segment BB' et l'entrée du bouilleur pour le réchauffage du fluide thermodynamique, segment DD' , sous la haute pression. Pour un rendement typique de détente de la turbine de 0,75, le rendement du cycle de Rankine est de l'ordre de 10 %, ce qui permet sur un moteur classique, par exemple d'une puissance mécanique de 75 kW, de récupérer une puissance mécanique de la turbine variable entre 0,8 et 7,5 kW, ce qui permet donc d' améliorer le rendement global de conversion du moteur thermique de 15 à 30 %, ce qui est tout à fait significatif. La présente invention vise aussi à assurer des moyens de régulation simples et efficaces du refroidissement du moteur et de la puissance mécanique fournie par la turbine. Le système présenté, dispose de moyens de régulation, notamment de moteurs électriques à vitesse variable, pour faire varier les débits refoulés par les pompes des circuits caloporteur et thermodynamique. Pour accélérer la montée en température du moteur thermique, durant les phases de démarrage à froid, le débit de la pompe du circuit thermodynamique est arrêté alors que la pompe du circuit caloporteur fonctionne. Donc au démarrage du moteur, la chaleur des gaz d'échappement est récupérée par le fluide caloporteur et réintroduite de nouveau dans le bloc moteur et sert à chauffer la culasse et les cylindres, ce qui accélère sa mise en température et limite la production de polluants moteur froid. Une fois que le moteur thermique a atteint sa température nominale de fonctionnement, la pompe du circuit thermodynamique est mise en marche et les régulations des débits des deux circuits sont réalisées en vue de maximaliser la récupération d'énergie thermique.

Claims

REVENDICATIONS
1. Système permettant de récupérer l'énergie thermique d'un véhicule à moteur thermique, et/ou d'un véhicule hybride à moteurs thermique et électrique, en mettant en œuvre un cycle de Rankine produisant de l'énergie mécanique et/ou électrique au moyen d'une turbine (8) associée à un alternateur (12), notamment au moyen d'une turbine volumétrique ; ledit système comprenant : - un circuit caloporteur (5) utilisant un fluide caloporteur et destiné à : chauffer un bouilleur réchauffeur (6) dudit cycle de Rankine, récupérer ladite énergie thermique par un refroidissement direct des cylindres et de la culasse (4) dudit moteur thermique et des gaz d'échappement (3) dudit véhicule dans un échangeur situé en aval d'un pot catalytique (2) dudit véhicule; ledit système étant tel que le fluide thermodynamique dudit cycle de Rankine est déterminé de manière à générer un taux de détente de 4 à 6 pour des températures d' ébullition se situant entre 130 et 150 °C et une température de condensation de l'ordre de 60 à 70 °C ; ledit système étant tel que la haute pression dudit cycle de Rankine varie entre 1 500 et 2 000 kPa.
2. Système selon la revendication 1 ; ledit système étant tel que ledit circuit caloporteur (5) met en oeuvre un caloporteur à base de silicone destiné à maintenir une pression légèrement supérieure à la pression atmosphérique pour récupérer de l'énergie thermique successivement : - autour des cylindres et de la culasse (4) dudit moteur thermique, - sur lesdits gaz d'échappement (3) à l'aval dudit pot catalytique (2), - dans un échangeur déterminé, intégré dans ledit pot catalytique (2) , pour des températures variant entre 70 et 220 °C lorsque ledit moteur thermique est chaud.
3. Système selon l'une quelconque des revendications 1 ou 2; ledit système étant tel qu' il comprend en outre un ventilateur destiné à injecter un débit d' air à température ambiante dans lesdits gaz d'échappement (3) à l'amont dudit échangeur de récupération thermique, de manière à maintenir un niveau de température de l'ordre de 220 °C à l'entrée dudit échangeur de récupération sur lesdits gaz d'échappement (3).
4. Système selon l'une des revendications précédentes ; ledit système incluant une pompe pour faire circuler ledit fluide caloporteur et des moyens de régulation pour faire varier son débit.
5. Système selon l'une des revendications précédentes ; ledit système incluant une pompe pour faire circuler ledit fluide thermodynamique et des moyens de régulation pour faire varier son débit.
6. Procédé permettant de récupérer l'énergie thermique d'un véhicule à moteur thermique, et/ou d'un véhicule hybride à moteurs thermique et électrique, en mettant en œuvre un cycle de Rankine produisant de l'énergie mécanique et/ou électrique au moyen d'une turbine (8) associée à un alternateur (12), notamment au moyen d'une turbine volumétrique ; ledit procédé comprenant les étapes suivantes : chauffer un bouilleur réchauffeur (6) dudit cycle de Rankine à l'aide d'un fluide caloporteur, récupérer ladite énergie thermique par un refroidissement direct, à l'aide du même fluide caloporteur, des cylindres et de la culasse (4) dudit moteur thermique et des gaz d'échappement (3) dudit véhicule dans un échangeur situé en aval d'un pot catalytique (2) dudit véhicule - réguler la récupération d'énergie par contrôle d'un débit de circulation du fluide caloporteur.
PCT/FR2005/050225 2004-04-09 2005-04-08 Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique WO2005103453A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403799A FR2868809B1 (fr) 2004-04-09 2004-04-09 Systeme permettant de recuperer l'energie thermique d'un vehicule a moteur thermique en mettant en oeuvre un cycle de rankine produisant de l'energie mecanique et/ou electrique au moyen d'une turbine
FR04/03799 2004-04-09

Publications (1)

Publication Number Publication Date
WO2005103453A1 true WO2005103453A1 (fr) 2005-11-03

Family

ID=34945411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/050225 WO2005103453A1 (fr) 2004-04-09 2005-04-08 Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique

Country Status (2)

Country Link
FR (1) FR2868809B1 (fr)
WO (1) WO2005103453A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128254A (ja) * 2006-11-24 2008-06-05 Behr Gmbh & Co Kg 少なくとも1つの膨張装置を駆動するための有機ランキンサイクル循環を備えたシステム及び膨張装置を駆動するための熱交換器並びに少なくとも1つの膨張装置を運転するための方法
WO2010063368A1 (fr) * 2008-12-06 2010-06-10 Daimler Ag Véhicule à moteur pourvu d'un dispositif d'exploitation de la chaleur dissipée destiné à utiliser la chaleur dissipée dans du travail mécanique productif
WO2010076588A1 (fr) * 2008-12-30 2010-07-08 Renault Trucks Système de récupération d'énergie pour moteur à combustion interne
US20100307155A1 (en) * 2008-02-14 2010-12-09 Junichiro Kasuya Waste Heat Utilization Device for Internal Combustion Engine
US20120111003A1 (en) * 2008-08-26 2012-05-10 Sanden Corporation Waste Heat Utilization Device for Internal Combustion Engine
JP2016142223A (ja) * 2015-02-04 2016-08-08 三菱重工業株式会社 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
WO2018097780A1 (fr) * 2016-11-25 2018-05-31 Scania Cv Ab Système whr comprenant un condenseur en aluminium
US10428713B2 (en) 2017-09-07 2019-10-01 Denso International America, Inc. Systems and methods for exhaust heat recovery and heat storage

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006005477B4 (de) * 2006-02-03 2007-10-11 Veit Wilhelm Vorrichtung zur Erzeugung von Strom, sowie Kraftfahrzeug mit Elektroantrieb und solcher Vorrichtung
DE102007062598A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Nutzung einer Verlustwärme einer Verbrennungskraftmaschine
DE102007062580A1 (de) * 2007-12-22 2009-06-25 Daimler Ag Verfahren zur Rückgewinnung einer Verlustwärme einer Verbrennungskraftmaschine
EP2281111A4 (fr) * 2008-04-25 2014-01-15 New Power Concepts Llc Systeme de recuperation d'energie thermique
WO2009133620A1 (fr) * 2008-05-01 2009-11-05 サンデン株式会社 Dispositif d'utilisation de la chaleur résiduelle pour moteur à combustion interne
DE102008052640A1 (de) * 2008-10-22 2010-04-29 Mwm Gmbh Kraftwärmekopplungsteilanlage, Kraftwärmekopplungsanlage und Verfahren zum Betrieb einer Kraftwärmekopplungsanlage
AT513999B1 (de) * 2013-02-25 2015-02-15 MAN Truck & Bus Österreich AG Abwärmenutzungssystem, insbesondere für ein Kraftfahrzeug, mit einer Speisepumpe
FR3057299B1 (fr) 2016-10-11 2020-09-11 Peugeot Citroen Automobiles Sa Ensemble de motorisation a boucle de rankine
FR3062715A1 (fr) * 2017-02-09 2018-08-10 Valeo Systemes Thermiques Procede de controle d'un echange thermique
US10815929B2 (en) * 2017-07-05 2020-10-27 Cummins Inc. Systems and methods for waste heat recovery for internal combustion engines
US12054892B2 (en) 2021-08-24 2024-08-06 Bryce Wuori Dielectric profile exhaust drying system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060766A (en) * 1979-10-05 1981-05-07 Wallace Murray Corp I.C. engine with a vapour turbine driven supercharger
WO1999022120A1 (fr) * 1997-10-28 1999-05-06 Carrickfergus Ab Systeme de generation de courant electrique pour dispositifs mobiles
WO2000024238A2 (fr) * 1998-10-23 2000-05-04 Eli Hay Nouveaux modeles de composants de systeme turbodetendeur
US20030005696A1 (en) * 2000-10-18 2003-01-09 Wilson Benjamin Raymond Internal combustion engine energy extraction devices
US6526754B1 (en) * 1998-11-10 2003-03-04 Ormat Industries Ltd. Combined cycle power plant
EP1491726A1 (fr) * 2003-06-23 2004-12-29 Denso Corporation Système de récupération de chaleur perdue d'une source de chaleur, avec cycle de Rankine

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2137977A1 (de) * 1971-07-29 1973-02-15 Aeg Kanis Turbinen Energieerzeugungsanlage mit einem dampfkessel und einer gasturbine
US5632143A (en) * 1994-06-14 1997-05-27 Ormat Industries Ltd. Gas turbine system and method using temperature control of the exhaust gas entering the heat recovery cycle by mixing with ambient air
DE10259488A1 (de) * 2002-12-19 2004-07-01 Bayerische Motoren Werke Ag Wärmekraftmaschine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060766A (en) * 1979-10-05 1981-05-07 Wallace Murray Corp I.C. engine with a vapour turbine driven supercharger
WO1999022120A1 (fr) * 1997-10-28 1999-05-06 Carrickfergus Ab Systeme de generation de courant electrique pour dispositifs mobiles
WO2000024238A2 (fr) * 1998-10-23 2000-05-04 Eli Hay Nouveaux modeles de composants de systeme turbodetendeur
US6526754B1 (en) * 1998-11-10 2003-03-04 Ormat Industries Ltd. Combined cycle power plant
US20030005696A1 (en) * 2000-10-18 2003-01-09 Wilson Benjamin Raymond Internal combustion engine energy extraction devices
EP1491726A1 (fr) * 2003-06-23 2004-12-29 Denso Corporation Système de récupération de chaleur perdue d'une source de chaleur, avec cycle de Rankine

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008128254A (ja) * 2006-11-24 2008-06-05 Behr Gmbh & Co Kg 少なくとも1つの膨張装置を駆動するための有機ランキンサイクル循環を備えたシステム及び膨張装置を駆動するための熱交換器並びに少なくとも1つの膨張装置を運転するための方法
US20100307155A1 (en) * 2008-02-14 2010-12-09 Junichiro Kasuya Waste Heat Utilization Device for Internal Combustion Engine
US9441576B2 (en) 2008-02-14 2016-09-13 Sanden Holdings Corporation Waste heat utilization device for internal combustion engine
US20120111003A1 (en) * 2008-08-26 2012-05-10 Sanden Corporation Waste Heat Utilization Device for Internal Combustion Engine
US8881523B2 (en) * 2008-08-26 2014-11-11 Sanden Corporation Waste heat utilization device for internal combustion engine
WO2010063368A1 (fr) * 2008-12-06 2010-06-10 Daimler Ag Véhicule à moteur pourvu d'un dispositif d'exploitation de la chaleur dissipée destiné à utiliser la chaleur dissipée dans du travail mécanique productif
WO2010076588A1 (fr) * 2008-12-30 2010-07-08 Renault Trucks Système de récupération d'énergie pour moteur à combustion interne
JP2016142223A (ja) * 2015-02-04 2016-08-08 三菱重工業株式会社 排熱回収装置、排熱回収型船舶推進装置および排熱回収方法
WO2016125699A1 (fr) * 2015-02-04 2016-08-11 三菱重工業株式会社 Dispositif de récupération de chaleur d'échappement, dispositif de propulsion de bateau de type à récupération de chaleur d'échappement et procédé de récupération de chaleur d'échappement
CN107208571A (zh) * 2015-02-04 2017-09-26 三菱重工业株式会社 废热回收装置、废热回收型船舶推进装置及废热回收方法
WO2018097780A1 (fr) * 2016-11-25 2018-05-31 Scania Cv Ab Système whr comprenant un condenseur en aluminium
US10428713B2 (en) 2017-09-07 2019-10-01 Denso International America, Inc. Systems and methods for exhaust heat recovery and heat storage

Also Published As

Publication number Publication date
FR2868809A1 (fr) 2005-10-14
FR2868809B1 (fr) 2008-07-04

Similar Documents

Publication Publication Date Title
WO2005103453A1 (fr) Systeme pour recuperer l’energie thermique d’un vehicule a moteur thermique
EP2365192B1 (fr) Dispositif de contrôle du fluide de travail circulant dans un circuit fermé fonctionnant selon un cycle de Rankine et procédé pour un tel dispositif
FR3034813B1 (fr) Systeme et procede de stockage et de recuperation d'energie par air comprime avec chauffage a volume constant
EP2933444A1 (fr) Dispositif de contrôle d'un circuit fermé fonctionnant selon un cycle de Rankine et procédé utilisant un tel dispositif.
EP2815153B1 (fr) Groupe de propulsion hybride hydraulique comprenant un circuit hydraulique
EP2764243B1 (fr) Procédé et système perfectionné de conversion de l'énergie thermique marine
EP3564504A1 (fr) Systeme de refroidissement d'un moteur avec deux thermostats et integrant un circuit selon un cycle de rankine
FR3004487A1 (fr) Procede de controle du fonctionnement d'un circuit ferme fonctionnant selon un cycle de rankine et circuit utilisant un tel procede.
FR3042216B1 (fr) Dispositif de lubrification d'un palier recevant un arbre rotatif d'un element d'un circuit ferme fonctionnant selon un cycle de rankine et procede utilisant un tel dispositif.
EP0886724A1 (fr) Procede et installation de recuperation de chaleur dans de l'air de suralimentation d'un moteur
KR102170132B1 (ko) 차량의 열원을 이용한 발전 시스템
EP3724459B1 (fr) Ensemble de turbopompe électrifiée pour un circuit fermé, en particulier de type a cycle de rankine, comportant un refroidissement integré
FR2958325A1 (fr) Moteur thermique suralimente et procede de regulation dudit moteur
WO2014154869A1 (fr) Machine thermique cryogenique
WO2022189712A1 (fr) Dispositif de turbomachine tritherme et vehicule comprenant un tel dispositif
WO2013093224A1 (fr) Dispositif de contrôle d'une machine de détente d'un circuit fermé à cycle de rankine et procédé utilisant un tel dispositif
US10815929B2 (en) Systems and methods for waste heat recovery for internal combustion engines
FR3070725B1 (fr) Turbopompe cinetique avec un dispositif de variation de vitesse pour un circuit ferme, en particulier de type a cycle de rankine, notamment pour un vehicule automobile
EP4189218A1 (fr) Turbine axiale orc a admission variable pilotee
FR2964693A1 (fr) Installation de restitution d'energie
FR2981144A1 (fr) Turbo pompe a chaleur.
FR3010739A1 (fr) Refroidissement d'une machine electrique d'un vehicule automobile
FR3077122A1 (fr) Systeme a cycle thermodynamique de rankine integre a une boucle de climatisation pour vehicule automobile
WO2017198965A1 (fr) Systeme reversible pour la dissipation de puissances thermiques generees dans un moteur a turbine a gaz
FR3057305A1 (fr) Ensemble de motorisation a boucle de rankine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase