Nothing Special   »   [go: up one dir, main page]

WO2005022674A1 - Battery separator and lithium secondary battery - Google Patents

Battery separator and lithium secondary battery Download PDF

Info

Publication number
WO2005022674A1
WO2005022674A1 PCT/JP2004/012499 JP2004012499W WO2005022674A1 WO 2005022674 A1 WO2005022674 A1 WO 2005022674A1 JP 2004012499 W JP2004012499 W JP 2004012499W WO 2005022674 A1 WO2005022674 A1 WO 2005022674A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
battery
porous
lithium secondary
linear
Prior art date
Application number
PCT/JP2004/012499
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Kawabata
Koji Abe
Original Assignee
Ube Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries, Ltd. filed Critical Ube Industries, Ltd.
Priority to US10/569,971 priority Critical patent/US7595130B2/en
Priority to JP2005513501A priority patent/JP4529903B2/en
Publication of WO2005022674A1 publication Critical patent/WO2005022674A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a battery separator and a lithium secondary battery.
  • a lithium battery usually has a configuration in which a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are accommodated in a cylindrical, square, or disk-shaped container.
  • a positive electrode a positive electrode mainly composed of a lithium composite oxide such as LiCo O is used, and as the negative electrode, a carbon material or
  • a negative electrode made of lithium metal is generally used.
  • a porous film formed of polyolefin such as polyethylene (PE) or polypropylene (PP), or a porous film formed of a single porous polyethylene film on both sides.
  • PE polyethylene
  • PP polypropylene
  • a laminated porous film having a configuration in which porous polypropylene films are laminated is used.
  • a positive electrode sheet, a negative electrode sheet, and a separator are overlapped and spirally wound using a metal winding pin to form a battery element (
  • a wound product is prepared, the wound product is stored in a battery container, and then a non-aqueous electrolyte is injected to manufacture a battery.
  • lithium secondary batteries have become increasingly high capacity.
  • a method of increasing the capacity a method of increasing the volume occupied by the electrode active material in a limited size battery container and decreasing the volume occupied by other members to achieve a high capacity is generally employed.
  • the density of the electrode mixture containing the electrode active material gradually increases, and the thickness of the electrode mixture gradually increases, while the thickness of the current collector and the separator of the electrode mixture must be gradually reduced. It is now. For this reason, the remaining space becomes extremely small, so that it is difficult to inject the nonaqueous electrolyte into the container, and it takes time to inject the nonaqueous electrolyte. Furthermore, it tends to be difficult to uniformly impregnate the non-aqueous electrolyte into the separator after injection.
  • Patent Document 1 discloses that a separator and an electrode seal are formed by roughening the surface of the separator. There is disclosed an invention for facilitating the injection of a non-aqueous electrolyte into a battery container in which a rolled product containing a roll containing a separator and a plurality of grooves extending in the width direction of the separator along with the surface roughening. Is also described.
  • Patent Document 1 JP-A-6-333550
  • a plurality of nonporous linear regions extending in the width direction are formed on a long porous film, and at least one surface of the nonporous linear regions forms a concave portion or a convex portion.
  • Battery separator is not limited to
  • the present invention also provides a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the separator is the separator of the present invention.
  • At least one end of the non-porous linear region of the separator extends from the side surface of the separator.
  • the non-aqueous electrolyte of the lithium secondary battery contains at least one compound selected from a cyclic carbonate, a chain carbonate, a chain ester, and ratatone.
  • the non-aqueous electrolyte of the lithium secondary battery contains at least one compound selected from vinylene carbonate, dimethyl vinylene carbonate, butyl ethylene carbonate, high-angle calactone, and divinyl sultone.
  • the separator of the present invention when used as a separator, the non-aqueous electrolyte is injected into a battery container containing a wound product including the separator and the electrode sheet. Therefore, the injection time is shortened, and the uniformity of permeation of the nonaqueous electrolyte into the container after the injection is improved. Therefore, when the battery is a secondary battery, the cycle characteristics of the battery are improved as well as the workability of the battery production. Furthermore, since the mechanical strength and dimensional stability of the separator are improved, a short circuit is less likely to occur, and the effect of preventing overcharging also appears.
  • FIG. 1 is a partial cross-sectional view of an example of a battery separator according to the present invention, which has a nonporous region and the surface of the nonporous region is a concave portion.
  • the separator in FIG. 1 has a configuration in which a porous polypropylene layer 1, a porous polyethylene layer 2, and a porous polypropylene layer 3 are laminated and bonded, and as a whole, a porous region 5 and a nonporous region 6 are formed.
  • the concave portion 4a is formed on the surface of the non-porous region.
  • FIG. 2 shows a partial cross-sectional view of a battery separator having a non-porous region of the present invention, and the surface of the non-porous region is a projection.
  • the separator in FIG. 2 has a configuration in which a porous polypropylene layer 1, a porous polyethylene layer 2, and a porous polypropylene layer 3 are laminated and bonded, and as a whole, a porous region 5 and a non-porous region 6 are formed.
  • the convex portion 4b is formed on the surface of the non-porous region.
  • FIG. 3 to FIG. 11 show various examples of the concave or convex pattern on the surface of the battery separator of the present invention.
  • the concave portion or the convex portion has a linear shape extending entirely along the width of the separator.
  • the concave portion or the convex portion has a V-shape that is symmetrical with respect to a center line along the length direction of the separator.
  • the concave portions or convex portions are in the form of oblique lattices extending entirely along the width of the separator.
  • the concave portion or the convex portion has an S-shape extending entirely along the width of the separator.
  • the concave portions and the convex portions alternately extend in a linear shape along the width of the separator.
  • FIG. 8 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and a linear convex portion extending in the length direction of the separator is additionally provided.
  • FIG. 9 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and a linear convex portion extending in an oblique direction is additionally provided.
  • FIG. 10 shows a V-shaped shape in which the concave portion is symmetrical with respect to a center line along the length direction of the separator, and shows a shape in which a circular convex portion is additionally provided.
  • FIG. 11 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and the dot-shaped convex portions are dispersed and formed.
  • the porous film that can be used for the separator of the present invention is a porous film having a large number of penetrating micropores.
  • the porous film that serves as a separator has a high ion permeability, has a predetermined mechanical strength, and is good as long as it is an insulating thin film.
  • the material include an olefin polymer, a fluorine polymer, a senorelose polymer, and a polyimide. , Polyamide (Ni-Nippon) and glass fiber are used.
  • a nonwoven fabric, a woven fabric, or a microporous film is used as a form.
  • Particularly preferred materials are polypropylene, polyethylene, a mixture of polypropylene and polyethylene, and a mixture of polypropylene and polyperfluoroethylene.
  • a single-layer porous film of polypropylene or polyethylene and polypropylene and polyethylene Any structure of the laminated porous film which is a mixture of the components may be used.
  • the method for making the porous film porous may be a drawing method (dry method) or an extraction method (wet method).
  • the nonporous concave portion of the bottom of the separator of the present invention is continuous in a direction of 90 ⁇ 10 degrees with respect to the longitudinal direction of the battery separator, and has a density of 0.1 / cm.
  • the above is preferable 0.3 Zcm or more is more preferable 0.5 Zcm or more is most preferable.
  • 10 lines / cm or less is preferable 5 lines / cm or less is more preferable 3 lines Zcm or less is most preferable
  • the depth of the recess separator having the present invention 2 xm or preferably Ri good more preferably tool is instrument 4 or M m is most preferable. Meanwhile, most preferably at most 10 xm less preferred instrument 9 M m or less good Ri preferred tool 8 xm.
  • the width of the concave portion of the separator of the present invention is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 10 ⁇ or more.
  • the width of the concave portion is preferably 500 ⁇ 500 ⁇ or less, more preferably 300 ⁇ m or less, most preferably 200 ⁇ m or less.
  • the recess may be formed on both sides of the battery separator, which is preferably formed on at least one side.
  • concave portions or convex portions
  • the concave portion of the battery separator works smoothly as a gas release path, so that the concave portion of the battery separator is Preferably.
  • thermocompression bonding between nip rolls is preferable.
  • the porous film is formed at a melting point of the material of ⁇ 80 ° C, more preferably ⁇ 30. 0. 1-10kgZcm 2 between heated rolls adjusted to a temperature range and C, more preferably dividing lines by crimping at a nip pressure of 1 one 3 kg / cm 2.
  • the concave portions can be provided to the separator either before or after making it porous by a stretching method (dry method) or by an extraction method (wet method), but more preferably after making it porous.
  • a stretching method dry method
  • an extraction method wet method
  • the film is uniaxially or The film is biaxially stretched to optimize the film thickness, porosity, or porous structure.
  • the provision of the concave portion on the battery separator can be performed before or after the uniaxial stretching or the biaxial stretching.
  • the stretching method since the film is uniaxially stretched in the longitudinal direction to make the film porous, it is preferable that the concave portion is provided after the film separator is stretched so that the dimensional change in the width direction of the battery separator hardly occurs.
  • the extraction method wet method
  • biaxial stretching in which the film is stretched not only in the longitudinal direction but also in the width direction is performed, but it is preferable to provide a concave portion before performing the biaxial stretching.
  • the separator is provided with a convex portion having a non-porous region force continuous in a direction substantially intersecting the longitudinal direction of the porous film.
  • the protrusions provided on the porous film are continuous in the direction of 90 ⁇ 30 degrees with respect to the longitudinal direction of the separator, and the density is preferably 0.1 / cm or more. Zcm or more is more preferable 0.5 line Zcm or more is most preferable. On the other hand, 10 / cm or less is preferred, 5 / cm or less is more preferred, and 3 / cm or less is most preferred.
  • the height of the projection provided on the separator is preferably 2 ⁇ or more, more preferably 3 ⁇ or more, and most preferably 4 / im or more.
  • the force S is preferably 20 ⁇ or less, more preferably 15 / im or less, most preferably 10 ⁇ or less.
  • the width of the protrusion provided on the separator is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and most preferably 10 m or more.
  • the force S is preferably 500 m or less, more preferably 200 ⁇ or less, which is more preferable than the force S of 300 m or less.
  • the protrusions provided to the separator may be formed on at least one surface of the porous film, which is preferably formed on at least one surface.
  • the convex portion of the battery separator works smoothly as a gas release path, so that the convex portion of the battery separator is positive. Les, preferably facing the side.
  • the form may be maintained as it is after the injection, or may be dissolved in a non-aqueous electrolyte to make the form disappear.
  • polypropylene, polyethylene, ethylene- A film or filler having a predetermined thickness made of a material selected from the group consisting of copolymer, polybutene 1, propylene butene 1 copolymer, polyimide, and cellulose can be bonded to a battery separator by thermocompression bonding. .
  • the material for forming the projections may be polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, polystyrene, or the like.
  • Polymer materials and copolymers of the above high molecular materials such as ethylene-methacrylic acid copolymer, ethylene-acrylic ester copolymer, and styrene-butadiene copolymer can be used. These materials can lose their form by dissolving in a non-aqueous electrolyte after battery assembly. Further, the melting of the protrusions leads to a reduction in the tightening tension of the battery element after the battery is assembled, so that an effect of preventing damage to the film due to the tightening can be expected.
  • the concave portion and the convex portion may be a single continuous line or point continuum as long as the nonaqueous electrolyte can be guided in a direction substantially intersecting with the longitudinal direction of the separator. It is preferably at least one kind of continuum of the line segment.
  • These linear structures are preferably shaped so as to be symmetrical when the separator is folded back at its center line along its longitudinal direction, especially linear, grid-shaped, diagonal grid-shaped, V-shaped. More preferably, it has a continuous structure such as a letter shape, a W shape, or an S shape.
  • FIGS. 3 to 6 are schematic plan views of linear, V-shaped, lattice-shaped, and S-shaped patterns in the case where concave portions or convex portions are formed in the separator.
  • FIG. 7 shows a schematic plan view of a pattern of a combination structure (type) of a concave portion and a convex portion of a linear alternating type.
  • the solid line portion indicates a concave portion
  • the broken line portion indicates a convex portion.
  • the structure of the concave portion and the convex portion is required.
  • a concave portion or a convex portion having a form selected from a linear shape, a circular shape, and a polygonal shape.
  • Figures 8 to 10 show schematic plan views of the additional type combination structure (type) of concave and convex portions, with additional linear line segments, additional linear line segments (rhombic), and additional V-shaped circles. Shown in The solid line in the figure indicates a concave portion, and the broken line indicates a convex portion.
  • the air permeability of the battery separator manufactured as described above is preferably 30 seconds or more and more preferably 50 seconds or more and more preferably 100 seconds or more.
  • 1000 sec / l OOcc or less is preferable, and 900 sec / l OOcc or less is more preferable. 800 sec / l OOcc or less is most preferable.
  • the maximum pore diameter is 0.02-3 ⁇ m, and more preferably, the porosity is 30-85%, since the capacity characteristics of the battery are improved.
  • the thickness of the battery separator is preferably 5 / im or more in terms of mechanical strength and performance, more preferably 8 ⁇ or more, most preferably ⁇ ⁇ or more.
  • 100 ⁇ or less is preferred, and 40 / im or less is more preferred, and 30 ⁇ m or less is most preferably prepared.
  • the constituent members other than the separator in the lithium secondary battery of the present invention are not particularly limited, and various constituent members of a conventionally used lithium secondary battery can be used.
  • Ratatotones (GBL) ratatones such as ⁇ -valerolatatatone, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), getyl carbonate (DEC), methyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, etc.
  • Chain carbonates tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-di Ethers such as ethoxyxetane and 1,2-dibutoxetane, nitriles such as acetonitrile and adiponitrile, phosphates such as trimethyl phosphate and trioctyl phosphate, butyl formate, methyl propionate, methyl bivalate, and butyl bivalate
  • Non-aqueous solvents such as chain esters such as octyl bivalate and amides such as dimethylformamide are used.
  • the non-aqueous solvents it is preferable that at least one selected from cyclic carbonates, ratatones, chain carbonates and chain esters is contained.
  • non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties.
  • the combination include a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a ratatone, a combination of a rataton and a chain ester, a combination of a cyclic carbonate, a ratatone and a chain ester.
  • Various combinations such as a combination of linear carbonates and chain esters are possible, and the mixing ratio is not particularly limited. It is preferable to include at least one of cyclic carbonates and chain carbonates in the non-aqueous solvent. Particularly, when the cyclic carbonates and chain carbonates are contained in combination, the cycle characteristics are excellent and the capacity is high. This is preferable because a battery can be provided.
  • the ratio of the cyclic carbonates to the chain carbonates is preferably 20:80 to 40:60 force S, particularly preferably 25:75 to 35:65 force S in terms of volume ratio.
  • asymmetric carbonates such as methinoleethynolecarbonate, methinolepropynolecarbonate and methinolebutynolecarbonate.
  • methyl carbonate which is an asymmetric chain carbonate which is a liquid at a low temperature and has a relatively high boiling point and thus little evaporation.
  • At least one selected from double bond-containing compounds such as vinylene carbonate (VC), dimethyl vinylene carbonate, butyl ethylene carbonate, triangular lactone, and divinyl sulfone is added to these non-aqueous solvents. Is preferred.
  • a high-capacity battery has a high electrode mixture density, and thus has a poor liquid injection property and a low cycle characteristic.
  • the content of the double bond-containing compound is excessively large, the battery performance may be degraded, and if the content is excessively small, sufficient expected battery performance cannot be obtained. Accordingly, 0.01% by weight or more is preferable, 0.1% by weight or more is more preferable, and 0.5% by weight or more is most preferable, based on the total weight of the nonaqueous electrolyte. On the other hand, 10% by weight or less is preferred, 7% by weight or less is more preferred, and 5% by weight or less is most preferred.
  • cyclohexynolebenzene fluorocyclohexylbenzene compounds (1-fluoro-2-cyclohexylbenzene, 1_fluoro-3-cyclohexylbenzene, 1_fluoro-4-cyclohexyl) Benzene), biphenyl, terphenyl (o_ form, m-form, p-form), diphenyl ether, 2-fluorodiphenyl ether, 4-diphenyl ether, fluorobenzene, difluorene benzene (o— Body, m-body, ⁇ -body), 2_fluorobiphenyl, 4_fluorobiphenyl, 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-diflu Oroanisone, tert-but
  • a cyclohexynolebenzene skeleton, a diphenyl skeleton, or a fluorine-substituted aromatic compound is preferable.
  • the content of the aromatic compound is excessively large, the battery performance may be degraded, and if the content is excessively small, the expected safety cannot be obtained. Therefore, 0.1% by weight or more is preferable, 0.5% by weight or more is more preferable, and 1% by weight or more is most preferable with respect to the total weight of the nonaqueous electrolyte. On the other hand, 10% by weight or less is preferred, 7% by weight or less is more preferred, and 5% by weight or less is most preferred.
  • the cycle characteristics and the safety are further improved. Preferred, because we can provide lithium secondary batteries.
  • Examples of the electrolyte used in the present invention include LiPF, LiBF, LiCIO, CF SO Li, and the like. LiN (SO CF), LiN (SO C F), LiC (SO CF), LiPF
  • CF LiPF (CF), LiPF (CF), LiPF (iso_CF), LiPF (iso-CF) and other lithium salts containing a chain alkyl group, (CF) (SO) NLi, ( CF) (SO) N
  • Lithium salts containing a cyclic alkylene chain such as Li are mentioned. These electrolyte salts may be used alone or in combination of two or more. These electrolysis The quality is preferably 0.1 M or more with respect to the above non-aqueous solvent, and more preferably 0.5 M or more.
  • the electrolytic solution of the present invention can be obtained, for example, by mixing the above-mentioned non-aqueous solvent and dissolving the above-mentioned electrolyte salt therein.
  • air or carbon dioxide in the battery of the present invention, for example, it is possible to suppress the generation of gas due to the decomposition of the electrolyte and to improve the battery performance such as cycle characteristics and storage characteristics. it can.
  • the method of containing (dissolving) carbon dioxide or air in the non-aqueous electrolyte includes (1) air or carbon dioxide before the non-aqueous electrolyte is injected into the battery in advance.
  • Air or carbon dioxide-containing gas can be contained in the battery either after injection or before or after battery sealing, or a combination of these methods. it can. Air and carbon dioxide-containing gas containing as little moisture as possible have a preferred dew point of 40 ° C or less, and particularly preferably a dew point of 50 ° C or less.
  • the entire amount of the electrolytic solution may be injected into the battery of the present invention at one time, but it is preferably performed in two or more steps. Also, it is preferable to reduce the pressure (preferably 500 to 1 tonole, more preferably 400 to 10 torr) or pressurize the battery can to shorten the electrolyte injection time. May be performed.
  • oxides such as MnO and VO, or cobalt, manganese, and nickel oxide are used.
  • lithium composite oxide with nickel containing nickel is used.
  • One of these positive electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • Such lithium composite oxides include, for example, LiCoO, LiMnO, LiNi
  • LiCoNiO (0.01 ⁇ x ⁇ l), LiMnNiCo ⁇ and the like. Also, LiC
  • a lithium composite oxide having an open circuit voltage of 4.3 V or more on the Li basis after charging as described above is most preferable, and a lithium composite oxide containing Co or Ni is most preferable.
  • a part of the lithium composite oxide may be replaced by another element
  • the battery separator of the present invention has a great effect in a lithium battery using a positive electrode active material suitable for high voltage and high energy density.
  • the conductive agent for the positive electrode may be any electronic conductive material that does not cause a chemical change.
  • Examples include graphites such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. It is also acceptable to use a mixture of graphite and carbon black as appropriate.
  • the amount of the conductive agent to be added to the positive electrode mixture is preferably 11 to 10% by weight, and particularly preferably 25% by weight.
  • the positive electrode comprises the above-mentioned positive electrode active material, a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), After kneading with a binder such as copolymer of acrylonitrile and butadiene (NBR) and propyloxymethylcellulose (CMC) to form a positive electrode mixture, this positive electrode material is made of aluminum foil as a current collector and stainless steel lath. It is prepared by applying it to a plate, drying, pressing, and then heating it under vacuum at a temperature of about 50 ° C to 250 ° C for about 2 hours.
  • a conductive agent such as acetylene black or carbon black
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • SBR copolymer of styrene
  • the negative electrode As the negative electrode (negative electrode active material), a material capable of occluding and releasing lithium is used.
  • lithium metal lithium alloy (eg, Al, Sn, Zn, alloy of Si and lithium), tin Tin compounds, silicon, silicon compounds and carbon materials (pyrolyzed carbons, coatas, dalaphites (artificial graphite, natural graphite, etc.), organic polymer compound burners, carbon fibers) are used.
  • the lattice spacing (d) of the lattice plane (002) is preferably 0.340 nm or less.
  • the graphite crystal structure having a graphite crystal structure of 0.335-0.337 nm is preferred.
  • One of these negative electrode active materials may be selected and used, or two or more thereof may be used in combination.
  • powder materials such as carbon material ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Copolymer (NBR), power It is used as a negative electrode mixture by kneading with a binder such as ropoxymethylcellulose (CMC).
  • the method for manufacturing the negative electrode is not particularly limited, and the negative electrode can be manufactured by the same method as the above-described method for manufacturing the positive electrode.
  • the density of the positive electrode mixture layer formed on the aluminum foil is preferably 3.2-4. OgZcm 3, more preferably 3.3-3.9 g / cm 3 , and most preferably 3.4-3. 8 g / cm 3 .
  • the density of the positive electrode mixture exceeds 4. Og / cm 3 , the production becomes substantially difficult.
  • the density of the negative electrode mixture layer formed on the copper foil is 1.3-2. Og / cm 3 , more preferably 1.4-1.9 gZcm 3 , and most preferably 1.5-1.8 g / cm 3 . it is between cm 3.
  • the preferable thickness of the positive electrode layer is 30 to 120 ⁇ m, preferably 50 to 100 ⁇ m, and the thickness of the negative electrode layer (Per one side of the current collector) is 100 ⁇ m, preferably 370 ⁇ m.
  • the lithium secondary battery of the present invention has excellent cycle characteristics over a long period of time even when the end-of-charge voltage is higher than 4.2V, and particularly when the end-of-charge voltage is 4.3V. It also has excellent cycle characteristics.
  • the discharge end voltage can be 2.5 V or more, and further 2.8 V or more.
  • the current value is not particularly limited, it is usually used in a constant current discharge of 0.1 to 3C.
  • the lithium secondary battery of the present invention has a power capable of charging and discharging in a wide range of -40 to 100 ° C, preferably 0 to 80 ° C.
  • a safety valve can be used for the sealing plate.
  • a method of making a cut in a member such as a battery can or a gasket can also be used.
  • various conventionally known safety elements at least one of a fuse, a bimetal, and a PTC element as an overcurrent prevention element. It is preferable to use these overcurrent prevention elements together with the shutdown function of the battery separator because safety is greatly improved.
  • a plurality of lithium secondary batteries according to the present invention are assembled in series and Z or in parallel as needed, and stored in a battery pack.
  • the battery pack contains safety elements such as PTC elements, thermal fuses, fuses and / or current cutoff elements, as well as safety circuits (each battery and / or Alternatively, a circuit having a function of monitoring the voltage, temperature, current, etc. of the entire assembled battery and interrupting the current may be provided.
  • the battery of the present invention can be used for various devices.
  • it is preferably used for mobile phones, notebook computers, PDAs, video movies, compact cameras, razors, electric tools, automobiles and the like.
  • the lithium secondary battery of the present invention is preferable because of its high reliability.
  • the three-layer structure consisting of a polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer is thermocompression-bonded to an embossing roll heated to 130 ° C.
  • a linear concave portion having a nonporous bottom was formed continuously in a direction at 90 degrees to the longitudinal direction of the porous long laminated film.
  • the densities of the recesses are 0.2 lines / lcm with respect to the longitudinal direction of the porous long laminated film, the average depth is 8 ⁇ m, the average width is 200 ⁇ m, and the film thickness is The air permeability was 25.7 ⁇ m, the air permeability was 530 sec / 100 cc, the maximum pore diameter was 0, and the porosity was 41%.
  • the separator was overlapped with a 22-zm-thick aluminum foil and wound into a cylindrical shape to produce a pseudo battery element.
  • the size of the pseudo battery element was 9.5 mm ⁇ (outer diameter) X 60 mm (height) cylindrical.
  • This pseudo battery element was immersed in a non-aqueous electrolyte prepared by dissolving LiPF into 1MZL in a 1: 1 (volZvol) mixed solution of getyl carbonate / propylene carbonate for a specified time, and the weight before and after immersion was measured. did.
  • Figure 12 shows the non-aqueous electrolyte absorption rate (weight change).
  • VC vinylene carbonate
  • PS 1,3-propane sultone
  • CHB cyclohexylbenzene
  • LiCoO positive electrode active material
  • acetylene black conductive agent
  • polyvinylidene fluoride binder
  • An 18650-size cylindrical battery (diameter 18 mm, height 65 mm) was fabricated.
  • the battery was provided with a pressure release port and an internal current interrupt device (PTC element).
  • the electrode density of the positive electrode was 3.5 g / cm 3
  • the electrode density of the negative electrode was 1.6 g / cm 3 .
  • the thickness of the positive electrode layer (per one side of the current collector) was 70 ⁇ m
  • the thickness of the negative electrode layer (per one side of the current collector) was 60 ⁇ m.
  • the above 18650 battery was charged at a constant current of 2.2A (1C) up to 4.2V at a high temperature (45 ° C), and then charged at a constant voltage of 4.2V for a total of 3 hours under a constant voltage. Next, under a constant current of 2.2 A (1 C), the battery was discharged to a final voltage of 2.8 V, and this charge / discharge was repeated.
  • the initial discharge capacity was almost the same as that of the battery of Comparative Example 1 below. When the battery characteristics after 200 cycles were measured, the discharge capacity retention rate when the initial discharge capacity was 100% was 83.1%. Was.
  • Example 1 Except that the porous long laminated film having a three-layer structure of the polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer used in Example 1 was used as it was as a separator, In the same manner as in Example 1, the absorption rate (weight change) of the nonaqueous electrolyte was measured. The results are shown in FIG.
  • Example 2 Using the above separator, a lithium secondary battery was prepared in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured. The discharge capacity was maintained when the initial discharge capacity was 100%. The rate was 75.7%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery exceeded 120 ° C. and generated heat.
  • Polypropylene (PP) layer Polyethylene filler is thermocompression-bonded to a porous long laminated film consisting of a three-layer structure of Z polyethylene (PE) layer / polypropylene (PP) layer to form a porous length.
  • the laminated film having a cross-section shown in FIG. 2 and having a plurality of non-porous convex regions having the shape shown in FIG. 3 was obtained.
  • the density of the protrusions was 0.2 lines / lcm with respect to the longitudinal direction of the separator, the average height was 15 / im, and the average width was 25 / im.
  • a lithium secondary battery was prepared using the above separator in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured. The discharge capacity was maintained when the initial discharge capacity was set to 100%. The rate was 82.6%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery was 120 ° C. or lower.
  • Polypropylene (PP) layer A porous long laminated film consisting of a three-layer structure of a Z polyethylene (PE) layer / polypropylene (PP) layer, the shape of which is shown in FIG. A plurality of non-porous regions of the concave portion having a cross section shown in FIG. 1 having such an oblique lattice shape were formed to obtain a separator according to the present invention.
  • the nonaqueous electrolyte solution absorption rate (weight change) was measured in the same manner as in Example 1 except that the above separator was used.
  • Fig. 14 shows the results.
  • a lithium secondary battery was prepared using the above separator in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured. The discharge capacity was maintained when the initial discharge capacity was set to 100%. The rate was 81.9%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery was 120 ° C. or lower.
  • Example 3 The procedure was performed except that the porous long laminated film having a three-layer structure of the polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer used in Example 3 was used as a separator. In the same manner as in Example 1, the non-aqueous electrolyte solution absorption rate (weight change) was measured. Fig. 14 shows the results.
  • FIG. 1 shows a partial cross-sectional view of an example of a battery separator of the present invention.
  • FIG. 2 shows a partial cross-sectional view of another example of the battery separator of the present invention.
  • FIG. 3 shows an example of a concave or convex pattern on the surface of the battery separator of the present invention.
  • FIG. 4 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
  • FIG. 5 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
  • FIG. 6 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
  • FIG. 7 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
  • FIG. 8 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
  • FIG. 9 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
  • FIG. 10 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
  • FIG. 11 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
  • FIG. 12 shows the production of a lithium secondary battery using the battery separator of the present invention of Example 1 and the production of a lithium secondary battery using the separator of Comparative Example 1 having no concave or convex portions formed.
  • FIG. 4 is a diagram showing a change in an absorption rate of a non-aqueous electrolyte.
  • FIG. 13 shows the production of a lithium secondary battery using the battery separator of the present invention of Example 2 and the production of a lithium secondary battery using the separator of Comparative Example 1 in which no concave portion or convex portion was formed. It is a figure showing change of the absorption rate of a nonaqueous electrolyte.
  • FIG. 14 shows the production of a lithium secondary battery using the battery separator of the present invention in Example 3, the formation of a concave portion or a convex portion, and the use of a lithium secondary battery using the separator of Comparative Example 2. It is a figure which shows the change of the absorption rate of the nonaqueous electrolyte solution of battery manufacture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

[PROBLEMS] A separator is disclosed which enables to inject a nonaqueous electrolytic solution easily during production of batteries such as lithium secondary batteries and also enables to produce a battery which is excellent in various battery characteristics. [MEANS FOR SOLVING PROBLEMS] A battery separator wherein a long porous film is provided with a plurality of non-porous linear regions extending in the width direction of the film and at least one surface of the non-porous linear regions is provided with a recessed portion or a projected portion is advantageously used as a battery separator for lithium secondary batteries or the like.

Description

明 細 書  Specification
電池用セパレータ及びリチウム二次電池  Battery separator and lithium secondary battery
技術分野  Technical field
[0001] 本発明は、電池用セパレータ及びリチウム二次電池に関する。  The present invention relates to a battery separator and a lithium secondary battery.
背景技術  Background art
[0002] 近年、リチウム電池は、小型電子機器などの駆動用電源として広く使用されている 。リチウム電池は通常、円筒型、角型もしくは円盤状の容器の内部に正極、負極、セ パレータおよび非水電解液を収容した構成からなる。正極としては、主として、 LiCo Oなどのリチウム複合酸化物からなる正極が用いられ、負極としては、炭素材料又は In recent years, lithium batteries have been widely used as power sources for driving small electronic devices and the like. A lithium battery usually has a configuration in which a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte are accommodated in a cylindrical, square, or disk-shaped container. As the positive electrode, a positive electrode mainly composed of a lithium composite oxide such as LiCo O is used, and as the negative electrode, a carbon material or
2 2
リチウム金属からなる負極が一般的に用いられる。そして、そのリチウム電池用のセパ レータとしては、ポリエチレン(PE)、ポリプロピレン(PP)などのポリオレフインから形 成した多孔性フィルム、あるいは一枚の多孔質ポリエチレンフィルムの両側にそれぞ れ一枚の多孔質ポリプロピレンフィルムが積層されてなる構成の積層多孔質フィルム が用いられる。  A negative electrode made of lithium metal is generally used. As a separator for the lithium battery, a porous film formed of polyolefin such as polyethylene (PE) or polypropylene (PP), or a porous film formed of a single porous polyethylene film on both sides. A laminated porous film having a configuration in which porous polypropylene films are laminated is used.
[0003] 例えば、円筒型リチウム二次電池の組立工程においては、正極シート、負極シート 及びセパレータを重ね合せ、金属製の捲回ピンを用いて渦卷状に捲回することで電 池素子 (捲回物)を作成し、該捲回物を電池容器内に収納した後、非水電解液を注 液することで電池が製造されている。ところ力 近年の開発競争により、リチウム二次 電池は、ますます高容量になっている。高容量化の方法としては、限られたサイズの 電池容器内での電極活物質の占める容積を大きくし、それ以外の部材の占める容積 を小さくして高容量ィ匕を達成する方法が一般的に利用されている。従って、電極活物 質を含む電極合剤の密度は次第に高くなり、電極合剤の厚みは次第に大きくなる一 方で、電極合剤の集電体ゃセパレータの厚みは次第に薄くせざるを得なくなつてい る。このため、残される空間が極端に少なくなるために、容器内への非水電解液の注 液が困難になり、また注液に時間力 Sかかるようになっている。さらに、注液後の非水電 解液のセパレータへの均一な含浸が困難になる傾向がある。  [0003] For example, in an assembling process of a cylindrical lithium secondary battery, a positive electrode sheet, a negative electrode sheet, and a separator are overlapped and spirally wound using a metal winding pin to form a battery element ( A wound product is prepared, the wound product is stored in a battery container, and then a non-aqueous electrolyte is injected to manufacture a battery. However, due to recent development competition, lithium secondary batteries have become increasingly high capacity. As a method of increasing the capacity, a method of increasing the volume occupied by the electrode active material in a limited size battery container and decreasing the volume occupied by other members to achieve a high capacity is generally employed. It is used for Therefore, the density of the electrode mixture containing the electrode active material gradually increases, and the thickness of the electrode mixture gradually increases, while the thickness of the current collector and the separator of the electrode mixture must be gradually reduced. It is now. For this reason, the remaining space becomes extremely small, so that it is difficult to inject the nonaqueous electrolyte into the container, and it takes time to inject the nonaqueous electrolyte. Furthermore, it tends to be difficult to uniformly impregnate the non-aqueous electrolyte into the separator after injection.
[0004] 特許文献 1には、セパレータの表面を粗面化することにより、セパレータと電極シー トとを含む捲回物が収容された電池容器内への非水電解液の注入を容易にする発 明の開示があり、また表面の粗面化とともに、セパレータの幅方向に延びる複数の溝 を設けることも記載されてレ、る。 [0004] Patent Document 1 discloses that a separator and an electrode seal are formed by roughening the surface of the separator. There is disclosed an invention for facilitating the injection of a non-aqueous electrolyte into a battery container in which a rolled product containing a roll containing a separator and a plurality of grooves extending in the width direction of the separator along with the surface roughening. Is also described.
特許文献 1:特開平 6 - 333550号公報  Patent Document 1: JP-A-6-333550
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記特許文献 1に記載の表面を粗面化し、かつ幅方向に延びる複数の溝を設けた セパレータは、セパレータと電極シートとを含む捲回物が収容された電池容器内へ の非水電解液の注入を容易にするという機能については有効であるが、その粗面化 加工や溝形成加工のために、セパレータの機械的強度や寸法安定性が低下する。 特に、前記のように、薄膜ィ匕傾向にある最近のセパレータにとって、そのような機械的 強度や寸法安定性の低下は、薄膜化されて低下した機械的強度や寸法安定性をさ らに悪化させ、短絡を引き起こしやすくなる。 [0005] The separator described in Patent Document 1 having a roughened surface and provided with a plurality of grooves extending in the width direction does not fit into a battery container in which a rolled product including the separator and the electrode sheet is stored. Although the function of facilitating the injection of the water electrolyte is effective, the mechanical strength and dimensional stability of the separator are reduced due to the surface roughening process and the groove forming process. In particular, as described above, for a recent separator having a tendency to form a thin film, such a decrease in mechanical strength and dimensional stability further deteriorates the reduced mechanical strength and dimensional stability due to thinning. To cause a short circuit.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、長尺状多孔質フィルムに、その幅方向に延びる複数の非孔質線状領域 が形成され、該非孔質線状領域の少なくとも一方の表面が凹部もしくは凸部を形成 している電池用セパレータにある。 According to the present invention, a plurality of nonporous linear regions extending in the width direction are formed on a long porous film, and at least one surface of the nonporous linear regions forms a concave portion or a convex portion. Battery separator.
[0007] 本発明はまた、正極、負極、セパレータ、そして非水電解液を含むリチウム電池で あって、該セパレータが上記本発明のセパレータであることを特徴とするリチウム二次 電池にもある。 [0007] The present invention also provides a lithium secondary battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the separator is the separator of the present invention.
[0008] 本発明の好ましい態様を次に記載する。 [0008] Preferred embodiments of the present invention are described below.
(1)セパレータの、非孔質線状領域の少なくとも一方の端部がセパレータの側面から 延びている。  (1) At least one end of the non-porous linear region of the separator extends from the side surface of the separator.
(2)セパレータの非孔質線状凹部領域と非孔質線状凸部領域とがセパレータの長手 方向に沿って交互に整列配置されている。  (2) The non-porous linear concave region and the non-porous linear convex region of the separator are alternately arranged along the longitudinal direction of the separator.
(3)セパレータの非孔質線状領域が斜め格子を形成している。  (3) The nonporous linear regions of the separator form an oblique lattice.
(4)セパレータの非孔質線状領域がセパレータの長手方向に沿って 0. 1— 10本/ c mの割合で整列配置されてレ、る。 (5)セパレータの長尺状多孔質フィルム力 一枚の多孔質ポリエチレンフィルムの両 側にそれぞれ一枚の多孔質ポリプロピレンフィルムが積層されてなる構成を有する。(4) The non-porous linear regions of the separator are aligned and arranged at a rate of 0.1 to 10 / cm along the longitudinal direction of the separator. (5) Elongated porous film force of a separator A structure in which one porous polyethylene film is laminated on both sides of one porous polyethylene film, respectively.
(6)リチウム二次電池の非水電解液が環状カーボネート、鎖状カーボネート、鎖状ェ ステル、およびラタトンから選ばれる少なくとも一種の化合物を含んでいる。 (6) The non-aqueous electrolyte of the lithium secondary battery contains at least one compound selected from a cyclic carbonate, a chain carbonate, a chain ester, and ratatone.
(7)リチウム二次電池の非水電解液が、ビニレンカーボネート、ジメチルビ二レンカー ボネート、ビュルエチレンカーボネート、 ひ—アングリカラクトン、およびジビニルスルト ンから選ばれる少なくとも一種の化合物を含んでいる。  (7) The non-aqueous electrolyte of the lithium secondary battery contains at least one compound selected from vinylene carbonate, dimethyl vinylene carbonate, butyl ethylene carbonate, high-angle calactone, and divinyl sultone.
発明の効果  The invention's effect
[0009] リチウム二次電池などの電池において、セパレータとして本発明のセパレータを用 レ、ると、セパレータと電極シートとを含む捲回物が収容された電池容器内への非水電 解液の注入が容易になり、このため注入時間が短縮され、さらに注入後の非水電解 液の容器内への浸透の均一性が向上する。このため、電池作成の作業性のみなら ず、電池が二次電池である場合には、電池のサイクル特性の向上が現われる。さら に、セパレータの機械的強度や寸法安定性が向上するため、短絡が発生しにくくなり 、過充電防止の効果も現われる。  [0009] In a battery such as a lithium secondary battery, when the separator of the present invention is used as a separator, the non-aqueous electrolyte is injected into a battery container containing a wound product including the separator and the electrode sheet. Therefore, the injection time is shortened, and the uniformity of permeation of the nonaqueous electrolyte into the container after the injection is improved. Therefore, when the battery is a secondary battery, the cycle characteristics of the battery are improved as well as the workability of the battery production. Furthermore, since the mechanical strength and dimensional stability of the separator are improved, a short circuit is less likely to occur, and the effect of preventing overcharging also appears.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 本発明の電池用セパレータの特徴的な構成について、添付図面を参照しながら、 詳しく説明する。  [0010] The characteristic configuration of the battery separator of the present invention will be described in detail with reference to the accompanying drawings.
図 1は、本発明の、非孔質領域を持ち、その非孔質領域の表面が凹部である電池 用セパレータの例の部分断面図を示す。図 1のセパレータは、多孔質ポリプロピレン 層 1、多孔質ポリエチレン層 2、そして多孔質ポリプロピレン層 3が積層結合された構 成をとつており、全体として、多孔質領域 5と非孔質領域 6とで構成され、非孔質領域 の表面には凹部 4aが形成されている。  FIG. 1 is a partial cross-sectional view of an example of a battery separator according to the present invention, which has a nonporous region and the surface of the nonporous region is a concave portion. The separator in FIG. 1 has a configuration in which a porous polypropylene layer 1, a porous polyethylene layer 2, and a porous polypropylene layer 3 are laminated and bonded, and as a whole, a porous region 5 and a nonporous region 6 are formed. The concave portion 4a is formed on the surface of the non-porous region.
図 2は、本発明の非孔質領域を持ち、その非孔質領域の表面が凸部である電池用 セパレータの部分断面図を示す。図 2のセパレータは、多孔質ポリプロピレン層 1、多 孔質ポリエチレン層 2、そして多孔質ポリプロピレン層 3が積層結合された構成をとつ ており、全体として、多孔質領域 5と非孔質領域 6とで構成され、非孔質領域の表面 には凸部 4bが形成されてレ、る。 [0011] 図 3乃至図 11は、本発明の電池用セパレータの表面の凹部もしくは凸部のパター ンの様々な例を示す。 FIG. 2 shows a partial cross-sectional view of a battery separator having a non-porous region of the present invention, and the surface of the non-porous region is a projection. The separator in FIG. 2 has a configuration in which a porous polypropylene layer 1, a porous polyethylene layer 2, and a porous polypropylene layer 3 are laminated and bonded, and as a whole, a porous region 5 and a non-porous region 6 are formed. The convex portion 4b is formed on the surface of the non-porous region. FIG. 3 to FIG. 11 show various examples of the concave or convex pattern on the surface of the battery separator of the present invention.
図 3では、凹部もしくは凸部は、セパレータの幅に沿って全体に延びる直線形状に ある。  In FIG. 3, the concave portion or the convex portion has a linear shape extending entirely along the width of the separator.
図 4では、凹部もしくは凸部は、セパレータの長さ方向に沿った中心線に対して対 称となる V字型の形状にある。  In FIG. 4, the concave portion or the convex portion has a V-shape that is symmetrical with respect to a center line along the length direction of the separator.
図 5では、凹部もしくは凸部は、セパレータの幅に沿って全体に延びる斜め格子の 形状にある。  In FIG. 5, the concave portions or convex portions are in the form of oblique lattices extending entirely along the width of the separator.
図 6では、凹部もしくは凸部は、セパレータの幅に沿って全体に延びる S字の形状 にある。  In FIG. 6, the concave portion or the convex portion has an S-shape extending entirely along the width of the separator.
図 7では、凹部と凸部とが交互に、セパレータの幅に沿って全体に延びる直線形状 にある。  In FIG. 7, the concave portions and the convex portions alternately extend in a linear shape along the width of the separator.
図 8では、凹部がセパレータの幅に沿って全体に延びる直線形状にあり、これに、 セパレータの長さ方向に延びる直線状凸部が併設された形状を示す。  FIG. 8 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and a linear convex portion extending in the length direction of the separator is additionally provided.
図 9では、凹部がセパレータの幅に沿って全体に延びる直線形状にあり、これに、 斜め方向に延びる直線状凸部が併設された形状を示す。  FIG. 9 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and a linear convex portion extending in an oblique direction is additionally provided.
図 10では、凹部がセパレータの長さ方向に沿った中心線に対して対称となる V字 型の形状にあり、これに、円形の凸部が併設された形状を示す。  FIG. 10 shows a V-shaped shape in which the concave portion is symmetrical with respect to a center line along the length direction of the separator, and shows a shape in which a circular convex portion is additionally provided.
図 11では、凹部がセパレータの幅に沿って全体に延びる直線形状にあり、これに、 点状の凸部が分散されて形成されている形状を示す。  FIG. 11 shows a shape in which the concave portion has a linear shape extending entirely along the width of the separator, and the dot-shaped convex portions are dispersed and formed.
[0012] 本発明のセパレータに使用できる多孔質フィルムは、多数の貫通微細孔を有する 多孔質フィルムである。セパレータとなる多孔質フィルムは、イオン透過度が大きぐ 所定の機械的強度を持ち、絶縁性の薄膜であれば良ぐその材質としては、ォレフィ ン系ポリマー、フッ素系ポリマー、セノレロース系ポリマー、ポリイミド、ポリアミド(ナイ口 ン)、ガラス繊維が用いられる。形態として、不織布、織布、微多孔性フィルムが用い られる。特に材質として、ポリプロピレン、ポリエチレン、ポリプロピレンとポリエチレン の混合体、ポリプロピレンとポリパーフルォロエチレンの混合体が好ましレ、。更に、ポ リプロピレンまたはポリエチレンの単層多孔質フィルム及びポリプロピレンとポリエチレ ンの混合体である積層多孔質フィルムのいずれの構成であっても良い。該多孔質フ イルムの多孔化方法は、延伸法(乾式法)または抽出法 (湿式法)のレ、ずれであって も良い。 [0012] The porous film that can be used for the separator of the present invention is a porous film having a large number of penetrating micropores. The porous film that serves as a separator has a high ion permeability, has a predetermined mechanical strength, and is good as long as it is an insulating thin film. Examples of the material include an olefin polymer, a fluorine polymer, a senorelose polymer, and a polyimide. , Polyamide (Ni-Nippon) and glass fiber are used. As a form, a nonwoven fabric, a woven fabric, or a microporous film is used. Particularly preferred materials are polypropylene, polyethylene, a mixture of polypropylene and polyethylene, and a mixture of polypropylene and polyperfluoroethylene. Furthermore, a single-layer porous film of polypropylene or polyethylene and polypropylene and polyethylene Any structure of the laminated porous film which is a mixture of the components may be used. The method for making the porous film porous may be a drawing method (dry method) or an extraction method (wet method).
[0013] 本発明のセパレータが有する底部分が非孔質の凹部は、電池用セパレータの長手 方向に対して、 90± 10度の方向に連続しており、その密度は 0. 1本/ cm以上が好 ましぐ 0. 3本 Zcm以上がより好ましぐ 0. 5本 Zcm以上が最も好ましい。一方、 10 本/ cm以下が好ましぐ 5本/ cm以下がより好ましぐ 3本 Zcm以下が最も好ましい  The nonporous concave portion of the bottom of the separator of the present invention is continuous in a direction of 90 ± 10 degrees with respect to the longitudinal direction of the battery separator, and has a density of 0.1 / cm. The above is preferable 0.3 Zcm or more is more preferable 0.5 Zcm or more is most preferable. On the other hand, 10 lines / cm or less is preferable 5 lines / cm or less is more preferable 3 lines Zcm or less is most preferable
[0014] 本発明のセパレータが有する凹部の深さは、 2 x m以上が好ましぐ 以上がよ り好ましぐ 4 M m以上が最も好ましい。一方、 10 x m以下が好ましぐ 9 M m以下がよ り好ましぐ 8 x m以下が最も好ましい。 [0014] The depth of the recess separator having the present invention, 2 xm or preferably Ri good more preferably tool is instrument 4 or M m is most preferable. Meanwhile, most preferably at most 10 xm less preferred instrument 9 M m or less good Ri preferred tool 8 xm.
[0015] 本発明のセパレータが有する凹部の幅は 3 μ m以上が好ましぐ 5 μ m以上がより 好ましぐ 10 μ ΐη以上が最も好ましい。一方、凹部の幅は 500 μ ΐη以下が好ましぐ 3 00 μ m以下がより好ましぐ 200 β m以下が最も好ましい。 The width of the concave portion of the separator of the present invention is preferably 3 μm or more, more preferably 5 μm or more, and most preferably 10 μΐη or more. On the other hand, the width of the concave portion is preferably 500 μ 500η or less, more preferably 300 μm or less, most preferably 200 β m or less.
[0016] 凹部は、電池用セパレータの少なくとも片面に形成されることが好ましぐ両面に形 成することもできる。効果的に電解液注液時間を短縮するためには、電池用セパレ ータに対して表裏から交互に凹部 (もしくは凸部)を付与することがさらに好ましい。特 に、電池が過充電状態になって正極からガスが発生した場合には、電池用セパレー タに付与された凹部がガス抜き経路として円滑に働くために、電池用セパレータの凹 部が正極側に対向していることが好ましい。  The recess may be formed on both sides of the battery separator, which is preferably formed on at least one side. In order to effectively reduce the electrolyte injection time, it is more preferable that concave portions (or convex portions) are alternately provided to the battery separator from both sides. In particular, when the battery is overcharged and gas is generated from the positive electrode, the concave portion of the battery separator works smoothly as a gas release path, so that the concave portion of the battery separator is Preferably.
[0017] セパレータに底部が非孔質の凹部を付与する方法については特に制限はないが、 ニップロール間で熱圧着する方法が好適である。熱圧着は、多孔質フィルムを材料 の融点 ± 80°C、更に好ましくは ± 30。Cの温度範囲に調整した加熱ロールの間で 0. 1—10kgZcm2、更に好ましくは 1一 3kg/cm2のニップ圧で圧着することによって行 われる。 Although there is no particular limitation on the method of providing the separator with a nonporous concave portion at the bottom, a method of thermocompression bonding between nip rolls is preferable. In the thermocompression bonding, the porous film is formed at a melting point of the material of ± 80 ° C, more preferably ± 30. 0. 1-10kgZcm 2 between heated rolls adjusted to a temperature range and C, more preferably dividing lines by crimping at a nip pressure of 1 one 3 kg / cm 2.
[0018] セパレータへの凹部の付与は、延伸法(乾式法)または抽出法 (湿式法)により多孔 化する前でも後でも行うことができるが、多孔化した後の方がより好ましい。延伸法( 乾式法)または抽出法(湿式法)のいずれの製法においても、フィルムを一軸または 二軸に延伸して、膜厚や空孔率或いは多孔質構造の最適化を行う。電池用セパレ ータへの凹部の付与は、一軸延伸または二軸延伸の前でも後でも行うことができる。 一般的に延伸法(乾式法)では、フィルムを長手方向に一軸延伸して多孔化を行うの で、電池用セパレータの幅方向の寸法変化は生じにくぐ延伸後に凹部を付与する ことが好ましい。他方、抽出法(湿式法)では、フィルムの長手方向のみならず、幅方 向についても延伸する二軸延伸が行われるが、二軸延伸を行う前に凹部を付与する ことが好ましい。 [0018] The concave portions can be provided to the separator either before or after making it porous by a stretching method (dry method) or by an extraction method (wet method), but more preferably after making it porous. In either the stretching method (dry method) or the extraction method (wet method), the film is uniaxially or The film is biaxially stretched to optimize the film thickness, porosity, or porous structure. The provision of the concave portion on the battery separator can be performed before or after the uniaxial stretching or the biaxial stretching. In general, in the stretching method (dry method), since the film is uniaxially stretched in the longitudinal direction to make the film porous, it is preferable that the concave portion is provided after the film separator is stretched so that the dimensional change in the width direction of the battery separator hardly occurs. On the other hand, in the extraction method (wet method), biaxial stretching in which the film is stretched not only in the longitudinal direction but also in the width direction is performed, but it is preferable to provide a concave portion before performing the biaxial stretching.
[0019] さらに、セパレータには、凹部の付設に加えて、あるいは凹部を付設することなぐ 多孔質フィルムの長手方向と略交差する方向に連続した非孔質領域力 なる凸部が 付設されていることが好ましい。多孔質フィルムに付与される凸部は、セパレータの長 手方向に対して、 90 ± 30度の方向に連続しており、その密度が 0. 1本/ cm以上が 好ましぐ 0. 3本 Zcm以上がより好ましぐ 0. 5本 Zcm以上が最も好ましい。一方、 10本/ cm以下が好ましぐ 5本/ cm以下がより好ましぐ 3本/ cm以下が最も好ま しい。  [0019] Further, in addition to the provision of the concave portion, or without the provision of the concave portion, the separator is provided with a convex portion having a non-porous region force continuous in a direction substantially intersecting the longitudinal direction of the porous film. Is preferred. The protrusions provided on the porous film are continuous in the direction of 90 ± 30 degrees with respect to the longitudinal direction of the separator, and the density is preferably 0.1 / cm or more. Zcm or more is more preferable 0.5 line Zcm or more is most preferable. On the other hand, 10 / cm or less is preferred, 5 / cm or less is more preferred, and 3 / cm or less is most preferred.
[0020] セパレータに付設される凸部の高さは 2 μ ΐη以上が好ましぐ 3 μ ΐη以上がより好ま しぐ 4 /i m以上が最も好ましい。一方、 20 μ ΐη以下力 S好ましく、 15 /i m以下がより好 ましぐ 10 μ ΐη以下が最も好ましい。  [0020] The height of the projection provided on the separator is preferably 2 µΐη or more, more preferably 3 µΐη or more, and most preferably 4 / im or more. On the other hand, the force S is preferably 20 μΐη or less, more preferably 15 / im or less, most preferably 10 μΐη or less.
[0021] セパレータに付設される凸部の幅は 3 μ m以上が好ましぐ 5 μ m以上がより好まし く、 10 m以上力 S最も好ましい。一方、 500 m以下力 S好ましく、 300 m以下力 Sより 好ましぐ 200 μ ΐη以下が最も好ましい。  [0021] The width of the protrusion provided on the separator is preferably 3 µm or more, more preferably 5 µm or more, and most preferably 10 m or more. On the other hand, the force S is preferably 500 m or less, more preferably 200 μΐη or less, which is more preferable than the force S of 300 m or less.
[0022] セパレータに付与される凸部は、多孔質フィルムの少なくとも片面に形成されること が好ましぐ両面に形成されることもできる。特に、電池が過充電状態になって正極か らガスが発生した場合には、電池用セパレータに付与された凸部がガス抜き経路とし て円滑に働くために、電池用セパレータの凸部が正極側に対向していることが好まし レ、。  [0022] The protrusions provided to the separator may be formed on at least one surface of the porous film, which is preferably formed on at least one surface. In particular, when the battery is overcharged and gas is generated from the positive electrode, the convex portion of the battery separator works smoothly as a gas release path, so that the convex portion of the battery separator is positive. Les, preferably facing the side.
[0023] セパレータに付与された凸部の形態については、注液後にそのままの形態を保持 しても良ぐまた、非水電解液に溶解してその形態を消失させても良い。凸部の形態 を注液後に保持する場合には、ポリプロピレン、ポリエチレン、エチレン-ひォレフィン 共重合体、ポリブテン 1、プロピレンーブテン 1共重合体、ポリイミド、セルロース類等 の群から選ばれる材料からなる所定の厚みのフィルム或いはフィラーを、電池用セパ レータに熱圧着によって貼り合わせることができる。 Regarding the form of the convex portion provided to the separator, the form may be maintained as it is after the injection, or may be dissolved in a non-aqueous electrolyte to make the form disappear. To maintain the shape of the protrusion after injection, use polypropylene, polyethylene, ethylene- A film or filler having a predetermined thickness made of a material selected from the group consisting of copolymer, polybutene 1, propylene butene 1 copolymer, polyimide, and cellulose can be bonded to a battery separator by thermocompression bonding. .
[0024] 本発明の電池用セパレータに付与された凸部の形態を、注液後に消失させたい場 合には、凸部の形成材料として、ポリエチレンオキサイド、ポリフッ化ビニリデン、ポリ アクリロニトリル、ポリスチレン等の高分子材料及び、エチレンーメタクリル酸共重合体 、エチレン一アクリルエステル共重合体、スチレン一ブタジエン共重合体等の前記高 分子材料の共重合体を用いることができる。これらの材料は、電池組立て後に非水 電解液に溶解することによって、その形態を消失させることができる。さらに、凸部の 溶解は、電池組立て後の電池素子の卷き締まり張力を緩和させることにも繋がるので 、巻き締まりによるフィルムの破損等を防ぐ効果も期待できる。  When it is desired to eliminate the form of the projections provided on the battery separator of the present invention after injection, the material for forming the projections may be polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile, polystyrene, or the like. Polymer materials and copolymers of the above high molecular materials such as ethylene-methacrylic acid copolymer, ethylene-acrylic ester copolymer, and styrene-butadiene copolymer can be used. These materials can lose their form by dissolving in a non-aqueous electrolyte after battery assembly. Further, the melting of the protrusions leads to a reduction in the tightening tension of the battery element after the battery is assembled, so that an effect of preventing damage to the film due to the tightening can be expected.
[0025] セパレータに非孔質の凸部の形態を付与する方法に特に制限はなぐ溶剤に溶解 してセパレータに塗布する方法や、前記熱圧着する方法がある。例えば、ポリプロピ レン/ポリエチレン/ポリプロピレンの三層構成からなる電池用セパレータに対して、 その幅方向にポリエチレン製のフィラメントを熱圧着して、セパレータの長手方向に対 して約 90度の方向に連続した凸部を作成することができる。  [0025] There are no particular restrictions on the method of imparting the form of nonporous projections to the separator, and there are a method of dissolving it in a solvent and applying it to the separator, and the method of thermocompression bonding. For example, for a battery separator consisting of three layers of polypropylene / polyethylene / polypropylene, a filament made of polyethylene is thermocompression-bonded in the width direction of the separator, and it is continuous in a direction at about 90 degrees to the longitudinal direction of the separator. A convex portion can be created.
[0026] 本発明において、前記凹部及び凸部は、セパレータの長手方向に略交差する方 向に非水電解液を案内できる構造であれば良ぐ連続した一本の線、点の連続体及 び線分の連続体の少なくとも一種であるのが好ましい。これらの線状構造は、セパレ ータをその長手方向に沿って中心線で折り返した場合に対称となるような形状とする のが好ましぐ特に、直線状、格子形状、斜め格子状、 V字形状、 W字形状、 S字形 状等の連続構造からなっていることがより好ましい。セパレータに凹部または凸部を 形成した場合の直線状、 V字形状、格子形状、 S字形状の模様の概略平面図は、図 3乃至 6に示されている。  [0026] In the present invention, the concave portion and the convex portion may be a single continuous line or point continuum as long as the nonaqueous electrolyte can be guided in a direction substantially intersecting with the longitudinal direction of the separator. It is preferably at least one kind of continuum of the line segment. These linear structures are preferably shaped so as to be symmetrical when the separator is folded back at its center line along its longitudinal direction, especially linear, grid-shaped, diagonal grid-shaped, V-shaped. More preferably, it has a continuous structure such as a letter shape, a W shape, or an S shape. FIGS. 3 to 6 are schematic plan views of linear, V-shaped, lattice-shaped, and S-shaped patterns in the case where concave portions or convex portions are formed in the separator.
[0027] 本発明の電池用セパレータの注液速度をさらに改良する為には、前記凹部及び凸 部の構造を組み合わせて付与することが好ましい。組み合わせ構造 (タイプ)としては 、前記凹部及び凸部を交互に付与することがより好ましい。凹部と凸部との組み合わ せ構造 (タイプ)の模様について、直線状交互型の概略平面図を図 7に示す。図中の 実線部は凹部、破線部は凸部を示す。 [0027] In order to further improve the liquid injection rate of the battery separator of the present invention, it is preferable to apply the combination of the structures of the concave portion and the convex portion. As the combination structure (type), it is more preferable to provide the concave portions and the convex portions alternately. FIG. 7 shows a schematic plan view of a pattern of a combination structure (type) of a concave portion and a convex portion of a linear alternating type. In the figure The solid line portion indicates a concave portion, and the broken line portion indicates a convex portion.
[0028] さらに、本発明において、電池用セパレータの長手方向に略交差する方向に案内 した非水電解液を電池用セパレータの長手方向に浸透させる為には、前記凹部及 び凸部の構造に加えて、線状、円状、多角形状から選ばれる形態の凹部或いは凸 部を適宜追加導入することが好ましい。当該追加構造において、特に凸部の形態を 導入する場合には、電池素子に卷きコブが発生しないように、電池用セパレータの長 手方向に略交差する方向に均一に構造を配することが必要である。凹部と凸部との 追加型組み合わせ構造 (タイプ)の模様について、直線状線分追加型、直線状線分 追加型 (斜方形)、 V字状円形追加型の概略平面図を図 8乃至 10に示す。図中の実 線部は凹部、破線部は凸部を示す。  Further, in the present invention, in order for the non-aqueous electrolyte guided in a direction substantially intersecting with the longitudinal direction of the battery separator to penetrate in the longitudinal direction of the battery separator, the structure of the concave portion and the convex portion is required. In addition, it is preferable to additionally introduce a concave portion or a convex portion having a form selected from a linear shape, a circular shape, and a polygonal shape. In the additional structure, particularly when the form of the convex portion is introduced, it is necessary to arrange the structure uniformly in a direction substantially intersecting the longitudinal direction of the battery separator so as to prevent winding bumps on the battery element. is necessary. Figures 8 to 10 show schematic plan views of the additional type combination structure (type) of concave and convex portions, with additional linear line segments, additional linear line segments (rhombic), and additional V-shaped circles. Shown in The solid line in the figure indicates a concave portion, and the broken line indicates a convex portion.
[0029] 前記のようにして製造される電池用セパレータの透気度は、 30秒 Z l OOcc以上が 好ましぐ 50秒 Z l OOcc以上がより好ましぐ 100秒/ l OOcc以上が最も好ましい。 一方、 1000秒/ l OOcc以下が好ましぐ 900秒/ l OOcc以下がより好ましぐ 800秒 /l OOcc以下が最も好ましい。  [0029] The air permeability of the battery separator manufactured as described above is preferably 30 seconds or more and more preferably 50 seconds or more and more preferably 100 seconds or more. . On the other hand, 1000 sec / l OOcc or less is preferable, and 900 sec / l OOcc or less is more preferable. 800 sec / l OOcc or less is most preferable.
[0030] 極大孔径は 0· 02— 3 μ mのものが好ましぐさらに、空孔率は 30— 85%のものが 電池の容量特性が向上するので好ましい。さらに、電池用セパレータの厚みは機械 的強度、性能等の面から 5 /i m以上が好ましぐ 8 μ ΐη以上がより好ましぐ Ι Ο μ ΐη以 上が最も好ましレ、。一方、 100 μ ΐη以下が好ましぐ 40 /i m以下がより好ましぐ 30 μ m以下が最も好ましく調製される。  [0030] Preferably, the maximum pore diameter is 0.02-3 μm, and more preferably, the porosity is 30-85%, since the capacity characteristics of the battery are improved. Further, the thickness of the battery separator is preferably 5 / im or more in terms of mechanical strength and performance, more preferably 8 μΐη or more, most preferably 以 Ιμΐη or more. On the other hand, 100 μΐη or less is preferred, and 40 / im or less is more preferred, and 30 μm or less is most preferably prepared.
[0031] 本発明のリチウム二次電池におけるセパレータ以外の構成部材については特に限 定されず、従来使用されている種々のリチウム二次電池の構成部材を使用できる。  [0031] The constituent members other than the separator in the lithium secondary battery of the present invention are not particularly limited, and various constituent members of a conventionally used lithium secondary battery can be used.
[0032] 本発明の前記電池用セパレータと共に使用される非水電解液としては、例えば、ェ チレンカーボネート (EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC )などの環状カーボネート類、 γ—プチ口ラタトン (GBL)、 γ—バレロラタトンなどのラタ トン類、ジメチルカーボネート(DMC)、メチルェチルカーボネート (MEC)、ジェチル カーボネート(DEC)、メチルプロピルカーボネート、ジプロピルカーボネート、メチル ブチルカーボネート、ジブチルカーボネートなどの鎖状カーボネート類、テトラヒドロフ ラン、 2—メチルテトラヒドロフラン、 1 , 4ージォキサン、 1 , 2—ジメトキシェタン、 1 , 2—ジ エトキシェタン、 1, 2—ジブトキシェタンなどのエーテル類、ァセトニトリル、アジポニト リルなどの二トリル類、リン酸トリメチルやリン酸トリオクチルなどのリン酸エステル類、 ギ酸ブチル、プロピオン酸メチル、ビバリン酸メチル、ビバリン酸ブチル、ビバリン酸ォ クチルなどの鎖状エステル類、ジメチルホルムアミドなどのアミド類などの非水溶媒が 使用される。前記非水溶媒のなかでも、環状カーボネート類、ラタトン類、鎖状カーボ ネート類および鎖状エステル類から選ばれる少なくとも一種が含有されていることが 好ましい。 Examples of the non-aqueous electrolyte used together with the battery separator of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and γ-petit. Ratatotones (GBL), ratatones such as γ-valerolatatatone, dimethyl carbonate (DMC), methyl ethyl carbonate (MEC), getyl carbonate (DEC), methyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, dibutyl carbonate, etc. Chain carbonates, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-di Ethers such as ethoxyxetane and 1,2-dibutoxetane, nitriles such as acetonitrile and adiponitrile, phosphates such as trimethyl phosphate and trioctyl phosphate, butyl formate, methyl propionate, methyl bivalate, and butyl bivalate Non-aqueous solvents such as chain esters such as octyl bivalate and amides such as dimethylformamide are used. Among the non-aqueous solvents, it is preferable that at least one selected from cyclic carbonates, ratatones, chain carbonates and chain esters is contained.
[0033] これらの非水溶媒は通常、適切な物性を達成するために、混合して使用される。そ の組み合わせは、例えば、環状カーボネート類と鎖状カーボネート類の組み合わせ 、環状カーボネート類とラタトン類との組み合わせ、ラタトン類と鎖状エステル類の組 み合わせ、環状カーボネート類とラタトン類と鎖状エステル類との組み合わせ、環状 カーボネート類と鎖状カーボネート類とラタトン類との組み合わせ、環状カーボネート 類とエーテル類との組み合わせ、環状カーボネート類と鎖状カーボネート類とエーテ ル類の組み合わせ、環状カーボネート類と鎖状カーボネート類と鎖状エステル類との 組み合わせなど種々の組み合わせが挙げられ、その混合比率は、特に制限されな レ、。非水溶媒中に環状カーボネート類と鎖状カーボネート類との少なくとも一種を含 有させることが好ましぐ特に環状カーボネート類と鎖状カーボネート類とを組合せて 含有させるとサイクル特性に優れ、高容量の電池を提供できるので好ましい。  [0033] These non-aqueous solvents are usually used as a mixture in order to achieve appropriate physical properties. Examples of the combination include a combination of a cyclic carbonate and a chain carbonate, a combination of a cyclic carbonate and a ratatone, a combination of a rataton and a chain ester, a combination of a cyclic carbonate, a ratatone and a chain ester. , Combinations of cyclic carbonates, chain carbonates and ratatatones, combinations of cyclic carbonates and ethers, combinations of cyclic carbonates and chain carbonates and ethers, combinations of cyclic carbonates and chains Various combinations such as a combination of linear carbonates and chain esters are possible, and the mixing ratio is not particularly limited. It is preferable to include at least one of cyclic carbonates and chain carbonates in the non-aqueous solvent. Particularly, when the cyclic carbonates and chain carbonates are contained in combination, the cycle characteristics are excellent and the capacity is high. This is preferable because a battery can be provided.
[0034] 中でも、環状カーボネート類と鎖状カーボネート類の割合は、容量比率で 20 : 80— 40 : 60力 S好ましく、特に 25 : 75— 35 : 65力 S好ましい。また、上記鎖状カーボネート類 のうち、メチノレエチノレカーボネート、メチノレプロピノレカーボネート、メチノレブチノレカー ボネートなどの非対称カーボネート類を使用することが好ましい。中でも、低温で液 体であり、比較的沸点が高いために蒸発が少ない非対称鎖状カーボネート類のメチ ルェチルカーボネートを使用することが好ましレ、。更には、鎖状カーボネート類のうち [0034] Above all, the ratio of the cyclic carbonates to the chain carbonates is preferably 20:80 to 40:60 force S, particularly preferably 25:75 to 35:65 force S in terms of volume ratio. Further, among the above-mentioned chain carbonates, it is preferable to use asymmetric carbonates such as methinoleethynolecarbonate, methinolepropynolecarbonate and methinolebutynolecarbonate. Among them, it is preferable to use methyl carbonate, which is an asymmetric chain carbonate which is a liquid at a low temperature and has a relatively high boiling point and thus little evaporation. Furthermore, among the chain carbonates,
、非対称な鎖状カーボネート類であるメチルェチルカーボネートと、対称な鎖状カー ボネート類であるジメチルカーボネートおよび/またはジェチルカーボネートとの容 量]:匕は、 100/0 51/49であること力 S好ましく、 100/0 70/30力 Sより好ましレヽ [0035] また、前記組み合わせのうち、ラタトン類を使用する組み合わせでは、ラタトン類の 容量比が最も大きくなるような割合が好ましい。 , The capacity of methylethyl carbonate, which is an asymmetric chain carbonate, and dimethyl carbonate and / or getyl carbonate, which are symmetric chain carbonates: 100/0 51/49 Force S preferred, 100/0 70/30 Force S preferred [0035] Among the above combinations, in a combination using ratatones, a ratio that maximizes the capacity ratio of ratatones is preferable.
[0036] 更に、これらの非水溶媒にビニレンカーボネート(VC)、ジメチルビ二レンカーボネ ート、ビュルエチレンカーボネート、 ひ—アングリカラクトン、ジビニルスルホンなどの二 重結合含有化合物から選ばれる少なくとも一種を添加することが好ましい。 [0036] Further, at least one selected from double bond-containing compounds such as vinylene carbonate (VC), dimethyl vinylene carbonate, butyl ethylene carbonate, triangular lactone, and divinyl sulfone is added to these non-aqueous solvents. Is preferred.
[0037] 更には、 1 , 3_プロパンスルトン(PS)、 1, 4_ブタンスルトン、メタンスルホン酸ペン タフルォロベンゼン(MSPFB)、グリコールサルファイト、プロピレンサルファイト、グリ コールサルフェート、プロピレンサルフェート、 1 , 4_ブタンジオールジメタンスルホネ ート、エチレングリコールジメタンスルホネートなどの S =〇含有化合物力 選ばれる 少なくとも一種以上を添加することが好ましい。 Further, 1,3-propane sultone (PS), 1,4-butane sultone, pentafluorobenzene methanesulfonate (MSPFB), glycol sulphite, propylene sulphite, glycol sulphate, propylene sulphate, , 4_-butanediol dimethanesulfonate, ethylene glycol dimethanesulfonate, etc. It is preferable to add at least one kind of S = 〇 containing compound.
[0038] 高容量な電池は、電極合剤密度が大きくなるので、注液性が悪くなり、サイクル特 性の低下がみられるが、本発明の電池用セパレータと共に前記二重結合含有化合 物および/または前記 S =〇含有化合物を添加することにより、サイクル特性が向上 するので好ましい。 [0038] A high-capacity battery has a high electrode mixture density, and thus has a poor liquid injection property and a low cycle characteristic. However, together with the battery separator of the present invention, the double bond-containing compound and The addition of the S = 〇-containing compound is preferable since the cycle characteristics are improved.
[0039] 前記二重結合含有化合物の含有量は、過度に多いと電池性能が低下することがあ り、また、過度に少ないと期待した十分な電池性能が得られない。したがって、非水 電解液全体の重量に対して、それぞれ、 0. 01重量%以上が好ましぐ 0. 1重量% 以上がより好ましぐ 0. 5重量%以上が最も好ましい。一方、 10重量%以下が好まし ぐ 7重量%以下がより好ましぐ 5重量%以下が最も好ましい。  [0039] If the content of the double bond-containing compound is excessively large, the battery performance may be degraded, and if the content is excessively small, sufficient expected battery performance cannot be obtained. Accordingly, 0.01% by weight or more is preferable, 0.1% by weight or more is more preferable, and 0.5% by weight or more is most preferable, based on the total weight of the nonaqueous electrolyte. On the other hand, 10% by weight or less is preferred, 7% by weight or less is more preferred, and 5% by weight or less is most preferred.
[0040] 前記 S =〇含有化合物の含有量は、過度に多いと電池性能が低下することがあり、 また、過度に少ないと期待した十分な電池性能が得られない。したがって、非水電解 液全体の重量に対して、 0. 01重量%以上が好ましぐ 0. 1重量%以上がより好まし ぐ 0. 5重量%以上が最も好ましい。一方、 10重量%以下が好ましぐ 7重量%以下 力 り好ましぐ 5重量%以下が最も好ましい。  If the content of the S = 〇-containing compound is excessively large, the battery performance may be deteriorated, and if the content is excessively small, sufficient expected battery performance cannot be obtained. Therefore, 0.01% by weight or more is preferable, 0.1% by weight or more is more preferable, and 0.5% by weight or more is most preferable with respect to the total weight of the nonaqueous electrolyte. On the other hand, 10% by weight or less is preferred 7% by weight or less Force is preferred 5% by weight or less is most preferred.
[0041] さらに、本発明のセパレータと共に芳香族化合物を添加することにより良好な過充 電時の電池の安全性を確保することができるので好ましい。例えば、シクロへキシノレ ベンゼン、フルォロシクロへキシルベンゼン化合物(1—フルオロー 2—シクロへキシル ベンゼン、 1_フルオロー 3—シクロへキシルベンゼン、 1_フルオロー 4—シクロへキシル ベンゼン)、ビフエ二ル、ターフェニル(o_体、 m—体、 p—体)、ジフエニルエーテル、 2 一フルォロジフエニルエーテル、 4ージフエニルエーテル、フルォロベンゼン、ジフルォ 口ベンゼン(o—体、 m—体、 ρ—体)、 2_フルォロビフエニル、 4_フルォロビフエニル、 2 , 4—ジフルォロアニソール、 2, 5—ジフルォロアニソール、 2, 6—ジフルォロアニソー ノレ、 tert—ブチノレベンゼン、 1 , 3—ジ一 tert—ブチノレベンゼン、 1—フノレオ口 _4_tert_ ブチルベンゼン、 tert—ァミルベンゼン、 4_tert—ブチルビフエニル、 tert—アミルビフ ェニノレ、 o—ターフェニルの部分水素化物(1, 2—ジシクロへキシルベンゼン、 2_フエ 二ルビシクロへキシル、 1 , 2—ジフエニルシクロへキサン、 o—シクロへキシルビフエ二 ノレ、以下 m—体、 p_体の場合も同様)、 m—ターフェニルの部分水素化物、 p_ターフ ェニルの部分水素化物等の芳香族化合物から選ばれる少なくとも一種以上が好まし レ、。中でも、本発明のセパレータを使用した電池においては、前記芳香族化合物の うちシクロへキシノレベンゼン骨格、ジフエニル骨格またはフッ素置換された芳香族化 合物であることが好ましい。 Further, it is preferable to add an aromatic compound together with the separator of the present invention, since it is possible to ensure good battery safety during overcharging. For example, cyclohexynolebenzene, fluorocyclohexylbenzene compounds (1-fluoro-2-cyclohexylbenzene, 1_fluoro-3-cyclohexylbenzene, 1_fluoro-4-cyclohexyl) Benzene), biphenyl, terphenyl (o_ form, m-form, p-form), diphenyl ether, 2-fluorodiphenyl ether, 4-diphenyl ether, fluorobenzene, difluorene benzene (o— Body, m-body, ρ-body), 2_fluorobiphenyl, 4_fluorobiphenyl, 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-diflu Oroanisone, tert-butynolebenzene, 1,3-di-tert-butynolebenzene, 1-funoleo _4_tert_butylbenzene, tert-amylbenzene, 4_tert-butylbiphenyl, tert-amylbiphenylenole, o-terphenyl Hydride (1,2-dicyclohexylbenzene, 2_phenylbicyclohexyl, 1,2-diphenylcyclohexane, o-cyclohexylbiphenyl, m- and p_ If same), m-terphenyl partial hydride, p_ Turf Eniru portion hydrides least one kind is preferably les selected from aromatic compounds. Among them, in the battery using the separator of the present invention, among the aromatic compounds, a cyclohexynolebenzene skeleton, a diphenyl skeleton, or a fluorine-substituted aromatic compound is preferable.
[0042] 前記芳香族化合物の含有量は、過度に多いと電池性能が低下することがあり、また 、過度に少ないと期待した十分な安全性が得られない。したがって、非水電解液全 体の重量に対して、 0. 1重量%以上が好ましぐ 0. 5重量%以上がより好ましぐ 1重 量%以上が最も好ましい。一方、 10重量%以下が好ましぐ 7重量%以下がより好ま しぐ 5重量%以下が最も好ましい。  [0042] If the content of the aromatic compound is excessively large, the battery performance may be degraded, and if the content is excessively small, the expected safety cannot be obtained. Therefore, 0.1% by weight or more is preferable, 0.5% by weight or more is more preferable, and 1% by weight or more is most preferable with respect to the total weight of the nonaqueous electrolyte. On the other hand, 10% by weight or less is preferred, 7% by weight or less is more preferred, and 5% by weight or less is most preferred.
[0043] 本発明のセパレータを使用した電池において、特に前記芳香族化合物と、前記二 重結合含有化合物および/または S =〇含有化合物とを併用することにより、さらに サイクル特性や安全性に優れたリチウム二次電池を提供することができるので好まし レ、。  In the battery using the separator of the present invention, in particular, by using the aromatic compound in combination with the double bond-containing compound and / or the S = 〇-containing compound, the cycle characteristics and the safety are further improved. Preferred, because we can provide lithium secondary batteries.
[0044] 本発明で使用される電解質としては、例えば、 LiPF、 LiBF、 LiCIO、 CF SO Li などが挙げられる。また、 LiN (SO CF ) , LiN (SO C F ) 、 LiC (SO CF ) 、 LiPF [0044] Examples of the electrolyte used in the present invention include LiPF, LiBF, LiCIO, CF SO Li, and the like. LiN (SO CF), LiN (SO C F), LiC (SO CF), LiPF
(CF ) 、 LiPF (C F ) 、 LiPF (CF ) 、 LiPF (iso_C F ) 、 LiPF (iso-C F )など の鎖状のアルキル基を含有するリチウム塩や、 (CF ) (SO ) NLi、 (CF ) (SO ) N(CF), LiPF (CF), LiPF (CF), LiPF (iso_CF), LiPF (iso-CF) and other lithium salts containing a chain alkyl group, (CF) (SO) NLi, ( CF) (SO) N
Liなどの環状のアルキレン鎖を含有するリチウム塩が挙げられる。これらの電解質塩 は、一種類で使用してもよぐ二種類以上組み合わせて使用してもよい。これら電解 質は、前記の非水溶媒に対して、 0. 1M以上が好ましぐ 0. 5M以上がより好ましぐLithium salts containing a cyclic alkylene chain such as Li are mentioned. These electrolyte salts may be used alone or in combination of two or more. These electrolysis The quality is preferably 0.1 M or more with respect to the above non-aqueous solvent, and more preferably 0.5 M or more.
0. 7M以上が最も好ましい。一方、 3M以下が好ましぐ 2M以下がより好ましぐ 1. 50.7M or more is most preferable. On the other hand, 3M or less is preferred 2M or less is preferred 1.5
M以下が最も好ましい。 M or less is most preferred.
[0045] 本発明の電解液は、例えば、前記の非水溶媒を混合し、これに前記の電解質塩を 溶解することにより得られる。 [0045] The electrolytic solution of the present invention can be obtained, for example, by mixing the above-mentioned non-aqueous solvent and dissolving the above-mentioned electrolyte salt therein.
[0046] また、本発明の電池に、例えば、空気や二酸化炭素を含ませることにより、電解液 の分解によるガス発生の抑制や、サイクル特性や保存特性などの電池性能を向上さ せること力 Sできる。 In addition, by including air or carbon dioxide in the battery of the present invention, for example, it is possible to suppress the generation of gas due to the decomposition of the electrolyte and to improve the battery performance such as cycle characteristics and storage characteristics. it can.
[0047] 本発明において、非水電解液中に二酸化炭素または空気を含有 (溶解)させる方 法としては、(1)あらかじめ非水電解液を電池内に注液する前に空気または二酸化 炭素含有ガスと接触させて含有させる方法、(2)注液後、電池封口前または後に空 気または二酸化炭素含有ガスを電池内に含有させる方法のいずれでもよぐまたこれ らを組み合わせて使用することもできる。空気や二酸化炭素含有ガスは、極力水分を 含まないものが好ましぐ露点 40°C以下であることが好ましぐ露点 50°C以下であ ることが特に好ましい。  [0047] In the present invention, the method of containing (dissolving) carbon dioxide or air in the non-aqueous electrolyte includes (1) air or carbon dioxide before the non-aqueous electrolyte is injected into the battery in advance. (2) Air or carbon dioxide-containing gas can be contained in the battery either after injection or before or after battery sealing, or a combination of these methods. it can. Air and carbon dioxide-containing gas containing as little moisture as possible have a preferred dew point of 40 ° C or less, and particularly preferably a dew point of 50 ° C or less.
[0048] 本発明の電池の中に電解液全量を一回で注入しても良いが、二段階以上に分け て行うことが好ましい。また、電解液注入時間はの短縮などのために、電池缶を減圧 (好ましくは 500— 1トーノレ、より好ましくは 400— 10トール)または加圧することが好 ましぐ電池缶に遠心力や超音波をかけることで行っても良い。  [0048] The entire amount of the electrolytic solution may be injected into the battery of the present invention at one time, but it is preferably performed in two or more steps. Also, it is preferable to reduce the pressure (preferably 500 to 1 tonole, more preferably 400 to 10 torr) or pressurize the battery can to shorten the electrolyte injection time. May be performed.
[0049] 正極活物質としては、 MnO、 V Oのような酸化物、あるいはコバルト、マンガン、二  [0049] As the positive electrode active material, oxides such as MnO and VO, or cobalt, manganese, and nickel oxide are used.
2 2 5  2 2 5
ッケルを含有するリチウムとのリチウム複合酸化物などが使用される。これらの正極活 物質は、一種類だけを選択して使用しても良いし、二種類以上を組み合わせて用い ても良い。このようなリチウム複合酸化物としては、例えば、 LiCoO、 LiMn O、 LiNi  For example, a lithium composite oxide with nickel containing nickel is used. One of these positive electrode active materials may be selected and used, or two or more thereof may be used in combination. Such lithium composite oxides include, for example, LiCoO, LiMnO, LiNi
2 2 4  2 2 4
O、 LiCo Ni O (0. 01 < x< l)、 LiMn Ni Co 〇などが挙げられる。また、 LiC O, LiCoNiO (0.01 <x <l), LiMnNiCo〇 and the like. Also, LiC
2 l-χ x z y z 1-y-z z 2 l-χ x z y z 1-y-z z
o〇と LiMn O、 LiCoOと LiNiO、 LiMn Oと LiNiOのように適当に混ぜ合わせ  o〇 and LiMn O, LiCoO and LiNiO, LiMn O and LiNiO
2 2 4 2 2 2 4 2  2 2 4 2 2 2 4 2
て使用しても良い。以上のように、正極活物質としては、 LiCoO、 LiMn〇、 LiNiO  May be used. As described above, as the positive electrode active material, LiCoO, LiMn〇, LiNiO
2 2 4 2 2 2 4 2
、のような充電終了後の開回路電圧が Li基準で 4. 3V以上を示すリチウム複合酸化 物が好ましぐ正極材料として最も好ましくは、 Coや Niを含有するリチウム複合酸化 物を用いることであり、リチウム複合酸化物の一部が他元素で置換されていても良いAs a positive electrode material, a lithium composite oxide having an open circuit voltage of 4.3 V or more on the Li basis after charging as described above is most preferable, and a lithium composite oxide containing Co or Ni is most preferable. A part of the lithium composite oxide may be replaced by another element
。例えば、 LiCoOの Coの一部を Sn、 Mg、 Fe、 Ti、 Al、 Zr、 Cr、 V、 Ga、 Zn、 Cuな どで置換されていても良い。特に、本発明の電池用セパレータは、高電圧、高工ネル ギー密度に適した正極活物質を用いたリチウム電池において効果が大きい。 . For example, a part of Co of LiCoO may be replaced with Sn, Mg, Fe, Ti, Al, Zr, Cr, V, Ga, Zn, Cu, or the like. In particular, the battery separator of the present invention has a great effect in a lithium battery using a positive electrode active material suitable for high voltage and high energy density.
[0050] 正極の導電剤は、化学変化を起こさない電子伝導材料であれば何でも良レ、。例え ば、天然黒鉛 (鱗片状黒鉛など)、人造黒鉛などのグラフアイト類、アセチレンブラック 、ケッチェンブラック、チェンネルブラック、ファーネスブラック、ランプブラック、サーマ ルブラックなどのカーボンブラック類などが挙げられる。また、グラフアイト類とカーボン ブラック類を適宜混合して用いても良レ、。導電剤の正極合剤への添加量は、 1一 10 重量%が好ましぐ特に、 2 5重量%が好ましい。  [0050] The conductive agent for the positive electrode may be any electronic conductive material that does not cause a chemical change. Examples include graphites such as natural graphite (flaky graphite and the like) and artificial graphite, and carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black. It is also acceptable to use a mixture of graphite and carbon black as appropriate. The amount of the conductive agent to be added to the positive electrode mixture is preferably 11 to 10% by weight, and particularly preferably 25% by weight.
[0051] 正極は、前記の正極活物質をアセチレンブラック、カーボンブラックなどの導電剤 およびポリテトラフルォロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレン とブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、力 ルポキシメチルセルロース(CMC)などの結着剤と混練して正極合剤とした後、この 正極材料を集電体としてのアルミニウム箔ゃステンレス製のラス板に塗布して、乾燥 、加圧成型後、 50°C— 250°C程度の温度で 2時間程度真空下で加熱処理すること により作製される。  [0051] The positive electrode comprises the above-mentioned positive electrode active material, a conductive agent such as acetylene black or carbon black, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), a copolymer of styrene and butadiene (SBR), After kneading with a binder such as copolymer of acrylonitrile and butadiene (NBR) and propyloxymethylcellulose (CMC) to form a positive electrode mixture, this positive electrode material is made of aluminum foil as a current collector and stainless steel lath. It is prepared by applying it to a plate, drying, pressing, and then heating it under vacuum at a temperature of about 50 ° C to 250 ° C for about 2 hours.
[0052] 負極 (負極活物質)としては、リチウムを吸蔵 ·放出可能な材料が使用され、例えば 、リチウム金属、リチウム合金(例えば、 Al、 Sn、 Zn、 Siとリチウムとの合金)、スズゃス ズ化合物、ケィ素やケィ素化合物および炭素材料〔熱分解炭素類、コータス類、ダラ ファイト類 (人造黒鉛、天然黒鉛など)、有機高分子化合物燃焼体、炭素繊維〕が使 用される。炭素材料においては、特に、格子面(002)の面間隔(d )が 0. 340nm 以下であることが好ましぐ 0. 335-0. 337nmである黒鉛型結晶構造を有する黒 鉛型結晶構造を有するグラフアイト類を使用することが好ましい。これらの負極活物 質は、一種類だけを選択して使用しても良いし、二種類以上を組み合わせて用いて も良い。なお、炭素材料のような粉末材料エチレンプロピレンジエンターポリマー(EP DM)、ポリテトラフルォロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレン とブタジエンの共重合体(SBR)、アクリロニトリルとブタジエンの共重合体(NBR)、力 ルポキシメチルセルロース(CMC)などの結着剤と混練して負極合剤として使用され る。負極の製造方法は、特に限定されず、上記の正極の製造方法と同様な方法によ り製造すること力できる。 As the negative electrode (negative electrode active material), a material capable of occluding and releasing lithium is used. For example, lithium metal, lithium alloy (eg, Al, Sn, Zn, alloy of Si and lithium), tin Tin compounds, silicon, silicon compounds and carbon materials (pyrolyzed carbons, coatas, dalaphites (artificial graphite, natural graphite, etc.), organic polymer compound burners, carbon fibers) are used. In the carbon material, in particular, the lattice spacing (d) of the lattice plane (002) is preferably 0.340 nm or less. The graphite crystal structure having a graphite crystal structure of 0.335-0.337 nm is preferred. It is preferred to use graphites having the following formula: One of these negative electrode active materials may be selected and used, or two or more thereof may be used in combination. In addition, powder materials such as carbon material ethylene propylene diene terpolymer (EPDM), polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), copolymer of styrene and butadiene (SBR), acrylonitrile and butadiene Copolymer (NBR), power It is used as a negative electrode mixture by kneading with a binder such as ropoxymethylcellulose (CMC). The method for manufacturing the negative electrode is not particularly limited, and the negative electrode can be manufactured by the same method as the above-described method for manufacturing the positive electrode.
[0053] 本発明の添加剤の効果は、電池の電極合剤密度が高いほど大きい。特に、アルミ 二ゥム箔上に形成される正極合剤層の密度は 3. 2-4. OgZcm3が好ましぐ更に好 ましくは 3. 3-3. 9g/cm3、最も好ましくは 3. 4-3. 8g/cm3。正極合剤密度が 4. Og/cm3を超えて大きくなると、実質上、作製が困難となる。一方、銅箔上に形成さ れる負極合剤層の密度は 1. 3-2. Og/cm3,更に好ましくは 1. 4- 1. 9gZcm3、 最も好ましくは 1. 5- 1. 8g/cm3の間である。 [0053] The effect of the additive of the present invention increases as the density of the electrode mixture of the battery increases. In particular, the density of the positive electrode mixture layer formed on the aluminum foil is preferably 3.2-4. OgZcm 3, more preferably 3.3-3.9 g / cm 3 , and most preferably 3.4-3. 8 g / cm 3 . When the density of the positive electrode mixture exceeds 4. Og / cm 3 , the production becomes substantially difficult. On the other hand, the density of the negative electrode mixture layer formed on the copper foil is 1.3-2. Og / cm 3 , more preferably 1.4-1.9 gZcm 3 , and most preferably 1.5-1.8 g / cm 3 . it is between cm 3.
[0054] また、本発明における好適な前記正極の電極層の厚さ(集電体片面当たり)は、 30 一 120 μ m、好ましくは 50 100 μ mであり、前記負極の電極層の厚さ(集電体片面 当たり)は、 1一 100 μ m、好ましくは 3 70 μ mである。  In the present invention, the preferable thickness of the positive electrode layer (per one side of the current collector) is 30 to 120 μm, preferably 50 to 100 μm, and the thickness of the negative electrode layer (Per one side of the current collector) is 100 μm, preferably 370 μm.
[0055] 本発明におけるリチウム二次電池は、充電終止電圧が 4. 2Vより大きい場合にも長 期間にわたり、優れたサイクル特性を有しており、特に充電終止電圧が 4. 3Vのよう な場合にも優れたサイクル特性を有している。放電終止電圧は、 2. 5V以上とするこ とができ、さらに 2. 8V以上とすることができる。電流値については特に限定されるも のではないが、通常 0. 1— 3Cの定電流放電で使用される。また、本発明におけるリ チウムニ次電池は、 _40— 100°Cと広い範囲で充放電することができる力 好ましく は 0— 80°Cである。  [0055] The lithium secondary battery of the present invention has excellent cycle characteristics over a long period of time even when the end-of-charge voltage is higher than 4.2V, and particularly when the end-of-charge voltage is 4.3V. It also has excellent cycle characteristics. The discharge end voltage can be 2.5 V or more, and further 2.8 V or more. Although the current value is not particularly limited, it is usually used in a constant current discharge of 0.1 to 3C. In addition, the lithium secondary battery of the present invention has a power capable of charging and discharging in a wide range of -40 to 100 ° C, preferably 0 to 80 ° C.
[0056] 本発明におけるリチウム二次電池の内圧上昇の対策として、封口板に安全弁を用 レ、ることができる。その他、電池缶やガスケットなどの部材に切り込みを入れる方法も 利用することができる。この他、従来から知られている種々の安全素子 (過電流防止 素子として、ヒューズ、バイメタル、 PTC素子の少なくとも 1種以上)を備えつけている ことが好ましい。前記電池用セパレータのシャットダウン機能と共にこれらの過電流防 止素子を併用することは、安全性が非常に向上するのでの好ましい。  As a countermeasure against an increase in the internal pressure of the lithium secondary battery in the present invention, a safety valve can be used for the sealing plate. In addition, a method of making a cut in a member such as a battery can or a gasket can also be used. In addition, it is preferable to provide various conventionally known safety elements (at least one of a fuse, a bimetal, and a PTC element as an overcurrent prevention element). It is preferable to use these overcurrent prevention elements together with the shutdown function of the battery separator because safety is greatly improved.
[0057] 本発明におけるリチウム二次電池は必要に応じて複数本を直列および Zまたは並 列に組み電池パックに収納される。電池パックには、 PTC素子、温度ヒューズ、ヒユー ズおよび/または電流遮断素子などの安全素子のほか、安全回路 (各電池および/ または組電池全体の電圧、温度、電流などをモニターし、電流を遮断する機能を有 する回路)を設けても良い。 [0057] A plurality of lithium secondary batteries according to the present invention are assembled in series and Z or in parallel as needed, and stored in a battery pack. The battery pack contains safety elements such as PTC elements, thermal fuses, fuses and / or current cutoff elements, as well as safety circuits (each battery and / or Alternatively, a circuit having a function of monitoring the voltage, temperature, current, etc. of the entire assembled battery and interrupting the current may be provided.
[0058] 本発明の電池は様々な機器に使用できる。特に、携帯電話、ノートパソコン、 PDA 、ビデオムービー、コンパクトカメラ、ヒゲソリ、電動工具、 自動車などに使用されること が好ましい。特に、充電電流が 0. 5A以上になる機器は、本発明のリチウム二次電池 は信頼性が高ぐ好ましい。 [0058] The battery of the present invention can be used for various devices. In particular, it is preferably used for mobile phones, notebook computers, PDAs, video movies, compact cameras, razors, electric tools, automobiles and the like. In particular, for a device having a charging current of 0.5 A or more, the lithium secondary battery of the present invention is preferable because of its high reliability.
実施例  Example
[0059] 次に、実施例を挙げて本発明を具体的に説明する。  Next, the present invention will be specifically described with reference to examples.
[0060] [実施例 1]  [Example 1]
(1)セパレータの製造  (1) Manufacture of separator
ポリプロピレン(PP)層/ポリエチレン(PE)層/ポリプロピレン(PP)層の三層構成 力 なる多孔質長尺状積層フィルムを、 130°Cに加熱したエンボスロールに熱圧着 することにより、図 3に示すような、多孔質長尺状積層フィルムの長手方向に対して 9 0度の方向に連続した、底部が非孔質の直線状凹部(図 1参照)を作成した。凹部の 密度は多孔質長尺状積層フィルムの長手方向に対して、 0. 2本/ lcmの間隔であり 、その深さは平均 8 μ m、幅は平均 200 μ mであり、膜厚は 25. 7 μ m、透気度は 53 0秒/ 100cc、極大孔径は 0. 空孔率は 41%であった。  The three-layer structure consisting of a polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer is thermocompression-bonded to an embossing roll heated to 130 ° C. As shown, a linear concave portion having a nonporous bottom (see FIG. 1) was formed continuously in a direction at 90 degrees to the longitudinal direction of the porous long laminated film. The densities of the recesses are 0.2 lines / lcm with respect to the longitudinal direction of the porous long laminated film, the average depth is 8 μm, the average width is 200 μm, and the film thickness is The air permeability was 25.7 μm, the air permeability was 530 sec / 100 cc, the maximum pore diameter was 0, and the porosity was 41%.
[0061] (2)電解液注入速度の評価  (2) Evaluation of electrolyte injection rate
上記の本発明のセパレータを用いたリチウム二次電池の電解液注入速度改良効 果を評価するために、次に述べる測定を行なった。  In order to evaluate the effect of improving the electrolyte injection rate of the lithium secondary battery using the above-described separator of the present invention, the following measurement was performed.
セパレータを、 22 z mの厚みのアルミ箔と重ねあわせて筒状に捲回して、疑似電池 素子を作成した。疑似電池素子の大きさは、 9. 5mm φ (外径) X 60mm (高さ)の円 筒形であった。この疑似電池素子を、ジェチルカーボネート/プロピレンカーボネー トの 1: 1 (volZvol)混合液に、 LiPFを溶解して 1MZLに調製した非水電解液に所 定時間浸し、浸漬前後の重量を測定した。非水電解液吸液速度 (重量変化)を図 12 に示す。  The separator was overlapped with a 22-zm-thick aluminum foil and wound into a cylindrical shape to produce a pseudo battery element. The size of the pseudo battery element was 9.5 mm φ (outer diameter) X 60 mm (height) cylindrical. This pseudo battery element was immersed in a non-aqueous electrolyte prepared by dissolving LiPF into 1MZL in a 1: 1 (volZvol) mixed solution of getyl carbonate / propylene carbonate for a specified time, and the weight before and after immersion was measured. did. Figure 12 shows the non-aqueous electrolyte absorption rate (weight change).
[0062] (3)本発明のリチウム二次電池のサイクル特性および過充電防止効果を評価するた めに、次に述べる円筒電池を作製した。 〔非水電解液の調製〕 (3) In order to evaluate the cycle characteristics and the overcharge prevention effect of the lithium secondary battery of the present invention, the following cylindrical battery was manufactured. (Preparation of non-aqueous electrolyte)
EC: MEC (容量比) = 3: 7の非水溶媒を調製し、これに電解質塩として LiPFを 1 EC: MEC (volume ratio) = 3: 7 A non-aqueous solvent was prepared, and LiPF was added thereto as an electrolyte salt.
Mの濃度になるように溶解して非水電解液を調製した後、さらに非水電解液に対して ビニレンカーボネート(VC)を 2重量%、 1, 3_プロパンスルトン(PS)を 1重量%、シ クロへキシルベンゼン(CHB)を 2重量%となるように加えた。 After preparing a non-aqueous electrolyte by dissolving to a concentration of M, 2% by weight of vinylene carbonate (VC) and 1% by weight of 1,3-propane sultone (PS) are added to the non-aqueous electrolyte. And cyclohexylbenzene (CHB) was added to a concentration of 2% by weight.
[0063] 〔リチウム二次電池の作製〕 [Production of lithium secondary battery]
LiCoO (正極活物質)を 90重量%、アセチレンブラック(導電剤)を 5重量%、ポリ フッ化ビニリデン (結着剤)を 5重量%の割合で混合し、これに 1ーメチルー 2_ピロリド ン溶剤を加えて混合したものをアルミニウム箔上に塗布し、乾燥、加圧成型、加熱処 理して正極を調製した。格子面(002)の面間隔 (d )が 0. 335nmである黒鉛型結晶 構造を有する人造黒鉛 (負極活物質)を 95重量%、ポリフッ化ビニリデン (結着剤)を 5重量%の割合で混合し、これに 1-メチル -2—ピロリドン溶剤を加え、混合したもの を銅箔上に塗布し、乾燥、加圧成型、加熱処理して負極を調製した。次に、これらの 正極'及び負極とセパレータから筒状捲回物を作成し、上記の非水電解液を注入後 、電池封口前に露点- 60°Cの空気を電池内に含有させて、 18650サイズの円筒電 池(直径 18mm、高さ 65mm)を作製した。電池には、圧力開放口および内部電流 遮断装置(PTC素子)を設けた。この時、正極の電極密度は 3. 5g/cm3であり、負 極の電極密度は 1. 6g/cm3であった。正極の電極層の厚さ(集電体片面当たり)は 70 μ mであり、負極の電極層の厚さ(集電体片面当たり)は 60 μ mであった。 90% by weight of LiCoO (positive electrode active material), 5% by weight of acetylene black (conductive agent) and 5% by weight of polyvinylidene fluoride (binder) are mixed with 1-methyl-2-pyrrolidone solvent. The mixture was coated on an aluminum foil, dried, pressed and heated to prepare a positive electrode. 95% by weight of artificial graphite (negative electrode active material) having a graphite-type crystal structure with a lattice spacing (d) of 0.335 nm, and 5% by weight of polyvinylidene fluoride (binder) The mixture was mixed, a 1-methyl-2-pyrrolidone solvent was added thereto, and the mixture was applied on a copper foil, dried, pressed, and heat-treated to prepare a negative electrode. Next, a cylindrical wound product was prepared from the positive electrode, the negative electrode, and the separator, and after injecting the nonaqueous electrolyte, air having a dew point of −60 ° C. was contained in the battery before the battery was sealed. An 18650-size cylindrical battery (diameter 18 mm, height 65 mm) was fabricated. The battery was provided with a pressure release port and an internal current interrupt device (PTC element). At this time, the electrode density of the positive electrode was 3.5 g / cm 3 , and the electrode density of the negative electrode was 1.6 g / cm 3 . The thickness of the positive electrode layer (per one side of the current collector) was 70 μm, and the thickness of the negative electrode layer (per one side of the current collector) was 60 μm.
[0064] 〔電池特性の測定〕 [Measurement of Battery Characteristics]
上記の 18650電池を用いて、高温(45°C)下、 2· 2A (1C)の定電流で 4· 2Vまで 充電した後、終止電圧 4. 2Vとして定電圧下に合計 3時間充電した。次に 2. 2A (1C )の定電流下、終止電圧 2. 8Vまで放電し、この充放電を繰り返した。初期放電容量 は、下記比較例 1の電池とほぼ同等であり、 200サイクル後の電池特性を測定したと ころ、初期放電容量を 100%としたときの放電容量維持率は 83. 1 %であった。さら に、サイクル試験を 5回繰り返した 18650電池を用いて、常温(20°C)下、 4. 2Vの満 充電状態から 2. 2A (1C)の定電流で続けて充電することにより過充電試験を行い、 電池の表面温度が 120°Cを越えないことを安全性の基準とした結果、電池の表面温 度は 120°C以下であった。 The above 18650 battery was charged at a constant current of 2.2A (1C) up to 4.2V at a high temperature (45 ° C), and then charged at a constant voltage of 4.2V for a total of 3 hours under a constant voltage. Next, under a constant current of 2.2 A (1 C), the battery was discharged to a final voltage of 2.8 V, and this charge / discharge was repeated. The initial discharge capacity was almost the same as that of the battery of Comparative Example 1 below. When the battery characteristics after 200 cycles were measured, the discharge capacity retention rate when the initial discharge capacity was 100% was 83.1%. Was. In addition, using an 18650 battery that has been subjected to the cycle test five times, it is overcharged by continuously charging it at a constant current of 2.2A (1C) from a fully charged state of 4.2V at room temperature (20 ° C). As a result of conducting a test and setting the battery surface temperature not to exceed 120 ° C as a safety criterion, The temperature was below 120 ° C.
[0065] [比較例 1] [Comparative Example 1]
(1)実施例 1で使用したポリプロピレン(PP)層/ポリエチレン (PE)層/ポリプロピレ ン (PP)層の三層構成からなる多孔質長尺状積層フィルムをそのままセパレータとし て用いた以外は、実施例 1と同様にして、非水電解液吸液速度 (重量変化)を測定し た。その結果を、図 12に示す。  (1) Except that the porous long laminated film having a three-layer structure of the polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer used in Example 1 was used as it was as a separator, In the same manner as in Example 1, the absorption rate (weight change) of the nonaqueous electrolyte was measured. The results are shown in FIG.
(2)上記のセパレータを用いて実施例 1と同様にしてリチウム二次電池を作成し、そ の 200サイクル後の電池特性を測定したところ、初期放電容量を 100%としたときの 放電容量維持率は 75. 7%であった。また、実施例 1と同様にして、過充電試験を行 なったところ、電池の表面温度は 120°Cを超えて発熱していた。  (2) Using the above separator, a lithium secondary battery was prepared in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured.The discharge capacity was maintained when the initial discharge capacity was 100%. The rate was 75.7%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery exceeded 120 ° C. and generated heat.
[0066] [実施例 2]  [Example 2]
(1)ポリプロピレン(PP)層 Zポリエチレン(PE)層/ポリプロピレン(PP)層の三層構 成からなる多孔質長尺状積層フィルムに、ポリエチレン製のフィラーを熱圧着して、多 孔質長尺状積層フィルム図 2に示す断面を持ち、図 3に示すような形状の複数の非 孔質凸部領域を形成して、本発明に従うセパレータを得た。凸部の密度はセパレー タの長手方向に対して、 0. 2本/ lcmの間隔であり、その高さは平均 15 /i m、幅は 平均 25 /i mであった。  (1) Polypropylene (PP) layer Polyethylene filler is thermocompression-bonded to a porous long laminated film consisting of a three-layer structure of Z polyethylene (PE) layer / polypropylene (PP) layer to form a porous length. The laminated film having a cross-section shown in FIG. 2 and having a plurality of non-porous convex regions having the shape shown in FIG. 3 was obtained. The density of the protrusions was 0.2 lines / lcm with respect to the longitudinal direction of the separator, the average height was 15 / im, and the average width was 25 / im.
(2)上記のセパレータを用いた以外は、実施例 1と同様にして、非水電解液吸液速 度(重量変化)を測定した。その結果を図 13に示す。  (2) The non-aqueous electrolyte solution absorption rate (weight change) was measured in the same manner as in Example 1 except that the above separator was used. Figure 13 shows the results.
(3)上記のセパレータを用いて実施例 1と同様にしてリチウム二次電池を作成し、そ の 200サイクル後の電池特性を測定したところ、初期放電容量を 100%としたときの 放電容量維持率は 82. 6%であった。また、実施例 1と同様にして、過充電試験を行 なったところ、電池の表面温度は 120°C以下であった。  (3) A lithium secondary battery was prepared using the above separator in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured.The discharge capacity was maintained when the initial discharge capacity was set to 100%. The rate was 82.6%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery was 120 ° C. or lower.
[0067] [実施例 3]  [Example 3]
(1)ポリプロピレン(PP)層 Zポリエチレン(PE)層/ポリプロピレン(PP)層の 3層構 成からなる多孔質長尺状積層フィルムに、実施例 1と同様にして、形状が図 5に示す ような斜め格子状で、断面が図 1に示す凹部の複数の非孔質領域を形成して、本発 明に従うセパレータを得た。 (2)上記のセパレータを用いた以外は、実施例 1と同様にして、非水電解液吸液速 度 (重量変化)を測定した。その結果を図 14に示す。 (1) Polypropylene (PP) layer A porous long laminated film consisting of a three-layer structure of a Z polyethylene (PE) layer / polypropylene (PP) layer, the shape of which is shown in FIG. A plurality of non-porous regions of the concave portion having a cross section shown in FIG. 1 having such an oblique lattice shape were formed to obtain a separator according to the present invention. (2) The nonaqueous electrolyte solution absorption rate (weight change) was measured in the same manner as in Example 1 except that the above separator was used. Fig. 14 shows the results.
(3)上記のセパレータを用いて実施例 1と同様にしてリチウム二次電池を作成し、そ の 200サイクル後の電池特性を測定したところ、初期放電容量を 100%としたときの 放電容量維持率は 81. 9%であった。また、実施例 1と同様にして、過充電試験を行 なったところ、電池の表面温度は 120°C以下であった。  (3) A lithium secondary battery was prepared using the above separator in the same manner as in Example 1, and the battery characteristics after 200 cycles were measured.The discharge capacity was maintained when the initial discharge capacity was set to 100%. The rate was 81.9%. When an overcharge test was performed in the same manner as in Example 1, the surface temperature of the battery was 120 ° C. or lower.
[0068] [比較例 2]  [0068] [Comparative Example 2]
(1)実施例 3で使用したポリプロピレン(PP)層/ポリエチレン (PE)層/ポリプロピレ ン (PP)層の 3層構成からなる多孔質長尺状積層フィルムをそのままセパレータとして 用いた以外は、実施例 1と同様にして、非水電解液吸液速度(重量変化)を測定した 。その結果を図 14に示す。  (1) The procedure was performed except that the porous long laminated film having a three-layer structure of the polypropylene (PP) layer / polyethylene (PE) layer / polypropylene (PP) layer used in Example 3 was used as a separator. In the same manner as in Example 1, the non-aqueous electrolyte solution absorption rate (weight change) was measured. Fig. 14 shows the results.
図面の簡単な説明  Brief Description of Drawings
[0069] [図 1]本発明の電池用セパレータの例の部分断面図を示す。  FIG. 1 shows a partial cross-sectional view of an example of a battery separator of the present invention.
[図 2]本発明の電池用セパレータの他の例の部分断面図を示す。  FIG. 2 shows a partial cross-sectional view of another example of the battery separator of the present invention.
[図 3]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの一例を示 す。  FIG. 3 shows an example of a concave or convex pattern on the surface of the battery separator of the present invention.
[図 4]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 4 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
[図 5]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 5 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
[図 6]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 6 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
[図 7]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 7 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
[図 8]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 8 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
[図 9]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。 [図 10]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。 FIG. 9 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention. FIG. 10 shows another example of a concave or convex pattern on the surface of the battery separator of the present invention.
[図 11]本発明の電池用セパレータの表面の凹部もしくは凸部のパターンの他の例を 示す。  FIG. 11 shows another example of a pattern of concave portions or convex portions on the surface of the battery separator of the present invention.
[図 12]実施例 1の本発明の電池用セパレータを用いたリチウム二次電池の製造およ び凹部もしくは凸部が形成されていない比較例 1のセパレータを用いたリチウム二次 電池の製造の非水電解液の吸収速度の変化を示す図である。  FIG. 12 shows the production of a lithium secondary battery using the battery separator of the present invention of Example 1 and the production of a lithium secondary battery using the separator of Comparative Example 1 having no concave or convex portions formed. FIG. 4 is a diagram showing a change in an absorption rate of a non-aqueous electrolyte.
[図 13]実施例 2の本発明の電池用セパレータを用いたリチウム二次電池の製造およ び凹部もしくは凸部が形成されていない比較例 1のセパレータを用いたリチウム二次 電池の製造の非水電解液の吸収速度の変化を示す図である。 FIG. 13 shows the production of a lithium secondary battery using the battery separator of the present invention of Example 2 and the production of a lithium secondary battery using the separator of Comparative Example 1 in which no concave portion or convex portion was formed. It is a figure showing change of the absorption rate of a nonaqueous electrolyte.
[図 14]実施例 3の本発明の電池用セパレータを用いたリチウム二次電池の製造およ び凹部もしくは凸部が形成されてレ、なレ、比較例 2のセパレータを用いたリチウム二次 電池の製造の非水電解液の吸収速度の変化を示す図である。 FIG. 14 shows the production of a lithium secondary battery using the battery separator of the present invention in Example 3, the formation of a concave portion or a convex portion, and the use of a lithium secondary battery using the separator of Comparative Example 2. It is a figure which shows the change of the absorption rate of the nonaqueous electrolyte solution of battery manufacture.
符号の説明 Explanation of symbols
1 多孔質ポリプロピレン層 1 Porous polypropylene layer
2 多孔質ポリエチレン層 2 Porous polyethylene layer
3 多孔質ポリプロピレン層 3 Porous polypropylene layer
4 凹部 4 recess
5 多孔質領域 5 Porous area
6 非孔質領域 6 Non-porous area
7 凸部 7 convex

Claims

請求の範囲 The scope of the claims
[1] 長尺状多孔質フィルムに、その幅方向に延びる複数の非孔質線状領域が形成され [1] A plurality of nonporous linear regions extending in the width direction are formed on a long porous film.
、該非孔質線状領域の少なくとも一方の表面が凹部もしくは凸部を形成している電池 用セパレータ。 A battery separator in which at least one surface of the non-porous linear region forms a concave portion or a convex portion.
[2] 非孔質線状領域の少なくとも一方の端部がセパレータの側面から延びてレ、ることを 特徴とする請求項 1に記載のセパレータ。  [2] The separator according to claim 1, wherein at least one end of the non-porous linear region extends from a side surface of the separator.
[3] 非孔質線状凹部領域と非孔質線状凸部領域とがセパレータの長手方向に沿って 交互に整列配置されてレ、る請求項 1に記載のセパレータ。 [3] The separator according to claim 1, wherein the non-porous linear concave region and the non-porous linear convex region are alternately arranged along the longitudinal direction of the separator.
[4] 非孔質線状領域が斜め格子を形成している請求項 1に記載のセパレータ。 [4] The separator according to claim 1, wherein the non-porous linear region forms an oblique lattice.
[5] 非孔質線状領域がセパレータの長手方向に沿って 0. 1— 10本/ cmの割合で整 列配置されている請求項 1に記載のセパレータ。 [5] The separator according to claim 1, wherein the nonporous linear regions are arranged at a rate of 0.1 to 10 / cm along the longitudinal direction of the separator.
[6] 長尺状多孔質フィルムが、一枚の多孔質ポリエチレンフィルムの両側にそれぞれ一 枚の多孔質ポリプロピレンフィルムが積層されてなる構成を有する請求項 1に記載の セパレータ。 [6] The separator according to claim 1, wherein the long porous film has a configuration in which one porous polypropylene film is laminated on both sides of one porous polyethylene film.
[7] 正極、負極、セパレータ、そして非水電解液を含むリチウム電池であって、該セパレ ータが、長尺状多孔質フィルムに、その幅方向に延びる複数の非孔質線状領域が形 成され、該非孔質領域の少なくとも一方の表面が凹部もしくは凸部を形成しているセ パレータであることを特徴とするリチウム二次電池。  [7] A lithium battery including a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, wherein the separator includes a plurality of nonporous linear regions extending in a width direction of the long porous film. A lithium secondary battery formed as a separator, wherein at least one surface of the non-porous region has a concave portion or a convex portion.
[8] 非水電解液が環状カーボネート、鎖状カーボネート、鎖状エステル、およびラタトン 力 選ばれる少なくとも一種の化合物を含んでいることを特徴とする請求項 7に記載 のリチウム二次電池。 [8] The lithium secondary battery according to claim 7, wherein the non-aqueous electrolyte contains at least one compound selected from a group consisting of cyclic carbonate, chain carbonate, chain ester, and rataton.
[9] 非水電解液が、ビニレンカーボネート、ジメチルビ二レンカーボネート、ビュルェチ レンカーボネート、 ひ—アングリカラクトン、およびジビニルスルトンから選ばれる少なく とも一種の化合物を含んでいることを特徴とする請求項 7に記載のリチウム二次電池  [9] The non-aqueous electrolyte contains at least one compound selected from vinylene carbonate, dimethylvinylene carbonate, butylene carbonate, polyangialactone, and divinyl sultone. Lithium secondary battery described in
PCT/JP2004/012499 2003-08-29 2004-08-30 Battery separator and lithium secondary battery WO2005022674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/569,971 US7595130B2 (en) 2003-11-06 2004-08-30 Battery separator and lithium secondary battery
JP2005513501A JP4529903B2 (en) 2003-08-29 2004-08-30 Battery separator and lithium secondary battery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2003-306354 2003-08-29
JP2003-306355 2003-08-29
JP2003306354 2003-08-29
JP2003306355 2003-08-29
JP2003426650 2003-12-24
JP2003-426651 2003-12-24
JP2003426651 2003-12-24
JP2003-426650 2003-12-24

Publications (1)

Publication Number Publication Date
WO2005022674A1 true WO2005022674A1 (en) 2005-03-10

Family

ID=34279966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012499 WO2005022674A1 (en) 2003-08-29 2004-08-30 Battery separator and lithium secondary battery

Country Status (3)

Country Link
JP (1) JP4529903B2 (en)
KR (1) KR100977433B1 (en)
WO (1) WO2005022674A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286531A (en) * 2005-04-04 2006-10-19 Sony Corp Battery
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
US20100129720A1 (en) * 2006-10-30 2010-05-27 Kentaro Sako Polyolefin microporous membrane
US20110223479A1 (en) * 2007-09-27 2011-09-15 Nobuhiro Sakitani Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
JP2012109219A (en) * 2010-10-28 2012-06-07 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery, and method of manufacturing the same
JP2012155866A (en) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd Battery
JP2012209197A (en) * 2011-03-30 2012-10-25 Tdk Corp Multilayer separator and lithium ion secondary battery
JP2013041846A (en) * 2006-01-24 2013-02-28 Sony Corp Separator, and battery
WO2013069134A1 (en) * 2011-11-10 2013-05-16 トヨタ自動車株式会社 Battery
JP2013153166A (en) * 2012-01-24 2013-08-08 Taiwan Green Point Enterprises Co Ltd Super-capacitor module and fabrication method thereof
JP2013211193A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous sheet and secondary battery using same
TWI449232B (en) * 2006-10-16 2014-08-11 Sony Corp Secondary battery
JP2014199801A (en) * 2012-12-28 2014-10-23 株式会社半導体エネルギー研究所 Nonaqueous secondary battery and separator
WO2015083591A1 (en) * 2013-12-03 2015-06-11 東レバッテリーセパレータフィルム株式会社 Laminated porous film, and production method therefor
US9070954B2 (en) * 2006-04-12 2015-06-30 Optodot Corporation Safety shutdown separators
JP2015133333A (en) * 2015-04-20 2015-07-23 ソニー株式会社 secondary battery
JP2016066629A (en) * 2016-01-27 2016-04-28 ソニー株式会社 Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2018092857A (en) * 2016-12-07 2018-06-14 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP2019091603A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
WO2020004205A1 (en) 2018-06-26 2020-01-02 旭化成株式会社 Separator having fine pattern, wound body, and non-aqueous electrolyte battery
JP2020068094A (en) * 2018-10-23 2020-04-30 旭化成株式会社 Separator with minute pattern, wound body and nonaqueous electrolyte battery
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11777176B2 (en) 2009-05-26 2023-10-03 Meta Materials Inc. Lithium batteries utilizing nanoporous separator layers
WO2024143001A1 (en) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 Lithium secondary battery and separator
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
WO2024181085A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2024181086A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Lithium secondary battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833770B1 (en) * 2007-01-03 2008-05-29 삼성에스디아이 주식회사 Electrode assembly and rechargeable battery with the same
CN105900263A (en) * 2013-08-15 2016-08-24 罗伯特·博世有限公司 Li/metal cell with structured surface separator
CN118891763A (en) 2022-03-31 2024-11-01 松下知识产权经营株式会社 Cylindrical secondary battery
WO2023189234A1 (en) 2022-03-31 2023-10-05 パナソニックIpマネジメント株式会社 Cylindrical secondary battery
WO2024219831A1 (en) * 2023-04-17 2024-10-24 주식회사 엘지에너지솔루션 Separator and electrochemical device including same
WO2024219830A1 (en) * 2023-04-17 2024-10-24 주식회사 엘지에너지솔루션 Separator and electrochemical device including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205966A (en) * 1981-06-12 1982-12-17 Japan Storage Battery Co Ltd Liquid circulation lithium cell
JPH05151951A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Battery with nonaqueous electrolytic solution
JPH11273723A (en) * 1998-03-20 1999-10-08 Ube Ind Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2000357517A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP2002151044A (en) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd Separator for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2002319387A (en) * 2001-02-19 2002-10-31 Toyobo Co Ltd Separator for alkaline battery
JP2002367591A (en) * 2001-04-05 2002-12-20 Toyobo Co Ltd Separator for alkaline battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677157U (en) * 1993-04-09 1994-10-28 富士電気化学株式会社 Spiral battery
JP2000011986A (en) * 1998-06-23 2000-01-14 Ube Ind Ltd Battery separator and manufacture thereof
JP3504536B2 (en) * 1999-05-19 2004-03-08 Necトーキン株式会社 Separator, battery assembly and battery provided with the same
JP4944307B2 (en) 2001-04-20 2012-05-30 Necエナジーデバイス株式会社 Battery pack with waterproof function
JP2004146238A (en) * 2002-10-25 2004-05-20 Matsushita Electric Ind Co Ltd Separator for battery, and battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57205966A (en) * 1981-06-12 1982-12-17 Japan Storage Battery Co Ltd Liquid circulation lithium cell
JPH05151951A (en) * 1991-11-26 1993-06-18 Sanyo Electric Co Ltd Battery with nonaqueous electrolytic solution
JPH11273723A (en) * 1998-03-20 1999-10-08 Ube Ind Ltd Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP2000357517A (en) * 1999-06-14 2000-12-26 Matsushita Electric Ind Co Ltd Electrode, battery using the same, and nonaqueous electrolyte secondary battery
JP2002151044A (en) * 2000-08-30 2002-05-24 Sumitomo Chem Co Ltd Separator for nonaqueous electrolytic solution secondary battery and nonaqueous electrolytic solution secondary battery
JP2002319387A (en) * 2001-02-19 2002-10-31 Toyobo Co Ltd Separator for alkaline battery
JP2002367591A (en) * 2001-04-05 2002-12-20 Toyobo Co Ltd Separator for alkaline battery

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9985262B2 (en) 2005-04-04 2018-05-29 Murata Manufacturing Co., Ltd. Battery
JP2006286531A (en) * 2005-04-04 2006-10-19 Sony Corp Battery
JP2007042302A (en) * 2005-07-29 2007-02-15 Sony Corp Battery
JP2013041846A (en) * 2006-01-24 2013-02-28 Sony Corp Separator, and battery
JP2015156402A (en) * 2006-01-24 2015-08-27 ソニー株式会社 Separator, and battery
JP2014197563A (en) * 2006-01-24 2014-10-16 ソニー株式会社 Separator, and battery
JP2017152404A (en) * 2006-01-24 2017-08-31 ソニー株式会社 Separator and battery
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
US10797288B2 (en) 2006-02-15 2020-10-06 Optodot Corporation Separators for electrochemical cells
US11264676B2 (en) 2006-02-15 2022-03-01 Optodot Corporation Separators for electrochemical cells
US12046774B2 (en) 2006-02-15 2024-07-23 Lg Energy Solution, Ltd. Separators for electrochemical cells
US11121432B2 (en) 2006-02-15 2021-09-14 Optodot Corporation Separators for electrochemical cells
US11522252B2 (en) 2006-02-15 2022-12-06 Lg Energy Solution, Ltd. Separators for electrochemical cells
US9070954B2 (en) * 2006-04-12 2015-06-30 Optodot Corporation Safety shutdown separators
TWI449232B (en) * 2006-10-16 2014-08-11 Sony Corp Secondary battery
US20100129720A1 (en) * 2006-10-30 2010-05-27 Kentaro Sako Polyolefin microporous membrane
JP2008135289A (en) * 2006-11-28 2008-06-12 Nissan Motor Co Ltd Secondary battery, and its manufacturing method
US20110223479A1 (en) * 2007-09-27 2011-09-15 Nobuhiro Sakitani Positive electrode for non-aqueous electrolyte battery and non-aqueous electrolyte battery
US11777176B2 (en) 2009-05-26 2023-10-03 Meta Materials Inc. Lithium batteries utilizing nanoporous separator layers
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
US11728544B2 (en) 2010-07-19 2023-08-15 Lg Energy Solution, Ltd. Separators for electrochemical cells
JP2012109219A (en) * 2010-10-28 2012-06-07 Sanyo Electric Co Ltd Nonaqueous electrolytic solution secondary battery, and method of manufacturing the same
JP2012155866A (en) * 2011-01-24 2012-08-16 Mitsubishi Heavy Ind Ltd Battery
JP2012209197A (en) * 2011-03-30 2012-10-25 Tdk Corp Multilayer separator and lithium ion secondary battery
WO2013069134A1 (en) * 2011-11-10 2013-05-16 トヨタ自動車株式会社 Battery
JP2013153166A (en) * 2012-01-24 2013-08-08 Taiwan Green Point Enterprises Co Ltd Super-capacitor module and fabrication method thereof
JP2013211193A (en) * 2012-03-30 2013-10-10 Tdk Corp Porous sheet and secondary battery using same
JP2014199801A (en) * 2012-12-28 2014-10-23 株式会社半導体エネルギー研究所 Nonaqueous secondary battery and separator
US10833309B2 (en) 2012-12-28 2020-11-10 Semiconductor Energy Laboratory Co., Ltd. Method and system for replacing electrolyte solution of secondary battery
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
KR20160091917A (en) * 2013-12-03 2016-08-03 도레이 배터리 세퍼레이터 필름 주식회사 Laminated porous film, and production method therefor
JP5792914B1 (en) * 2013-12-03 2015-10-14 東レバッテリーセパレータフィルム株式会社 Laminated porous membrane and method for producing the same
WO2015083591A1 (en) * 2013-12-03 2015-06-11 東レバッテリーセパレータフィルム株式会社 Laminated porous film, and production method therefor
KR102131009B1 (en) 2013-12-03 2020-07-07 도레이 카부시키가이샤 Laminated porous film, and production method therefor
US12040506B2 (en) 2015-04-15 2024-07-16 Lg Energy Solution, Ltd. Nanoporous separators for batteries and related manufacturing methods
JP2015133333A (en) * 2015-04-20 2015-07-23 ソニー株式会社 secondary battery
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
JP2016066629A (en) * 2016-01-27 2016-04-28 ソニー株式会社 Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric motor vehicle, power storage device and electric power system
JP2018092857A (en) * 2016-12-07 2018-06-14 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP6994152B2 (en) 2017-11-14 2022-02-04 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery
JP2019091603A (en) * 2017-11-14 2019-06-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
WO2020004205A1 (en) 2018-06-26 2020-01-02 旭化成株式会社 Separator having fine pattern, wound body, and non-aqueous electrolyte battery
JP7215873B2 (en) 2018-10-23 2023-01-31 旭化成株式会社 Separator having fine pattern, wound body and non-aqueous electrolyte battery
JP2020068094A (en) * 2018-10-23 2020-04-30 旭化成株式会社 Separator with minute pattern, wound body and nonaqueous electrolyte battery
WO2024143001A1 (en) * 2022-12-27 2024-07-04 パナソニックIpマネジメント株式会社 Lithium secondary battery and separator
WO2024181085A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Lithium secondary battery
WO2024181086A1 (en) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
KR20060132556A (en) 2006-12-21
KR100977433B1 (en) 2010-08-24
JPWO2005022674A1 (en) 2007-11-01
JP4529903B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
WO2005022674A1 (en) Battery separator and lithium secondary battery
US7595130B2 (en) Battery separator and lithium secondary battery
KR102160701B1 (en) Electrode with Perforated Current Collector, Lithium Secondary Battery containing the Same
US8349483B2 (en) Non aqueous electrolyte secondary battery having multilayer polyolefin membrane and electrolyte containing dinitrile compound
EP2105981B1 (en) Electrode Assembly and Secondary Battery having the Same
JP5619620B2 (en) Pouch-type lithium secondary battery
KR100587438B1 (en) Nonaqueous Secondary Battery and Method of Manufacturing Thereof
US20110206962A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
WO2005074067A1 (en) Nonaqueous electrolyte solution and lithium secondary battery
JP6198684B2 (en) Lithium secondary battery
KR100635737B1 (en) Lithium secondary battery
KR101066256B1 (en) Electrode Assembly and Secondary Battery having the Same
CN103098292A (en) Non-aqueous electrolyte secondary battery and method for producing same
US20040142245A1 (en) Nonaqueous secondary cell and electronic device incorporating same
EP4250388A1 (en) Electrode plate for improving safety of electrode assembly, electrochemical device containing same, and electronic device
JP2010040488A (en) Battery
JP4765629B2 (en) Non-aqueous electrolyte and lithium secondary battery
KR101900149B1 (en) Non-Aqueous Electrolyte Secondary Battery
CN100502099C (en) Battery separator and lithium secondary battery
JP2011216360A (en) Nonaqueous electrolyte secondary battery
KR100659860B1 (en) Electrode for a rechargeable battery and the battery employing the same
US20230163429A1 (en) Secondary battery
US20240006597A1 (en) Electrochemical device and electronic device using same
JP2017152311A (en) Lithium ion secondary battery
WO2023219102A1 (en) Electrolytic solution for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480031922.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005513501

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10569971

Country of ref document: US

Ref document number: 1020067004208

Country of ref document: KR

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 1020067004208

Country of ref document: KR