Nothing Special   »   [go: up one dir, main page]

WO2005005857A1 - 動吸振器及びこれを用いた動吸振装置 - Google Patents

動吸振器及びこれを用いた動吸振装置 Download PDF

Info

Publication number
WO2005005857A1
WO2005005857A1 PCT/JP2004/005594 JP2004005594W WO2005005857A1 WO 2005005857 A1 WO2005005857 A1 WO 2005005857A1 JP 2004005594 W JP2004005594 W JP 2004005594W WO 2005005857 A1 WO2005005857 A1 WO 2005005857A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
dynamic vibration
vibration absorber
frame
pair
Prior art date
Application number
PCT/JP2004/005594
Other languages
English (en)
French (fr)
Inventor
Ikuo Shimoda
Yukito Matsumoto
Osamu Hasegawa
Original Assignee
Oiles Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2003273759A external-priority patent/JP4396168B2/ja
Application filed by Oiles Corporation filed Critical Oiles Corporation
Priority to US10/563,446 priority Critical patent/US8714324B2/en
Priority to CN2004800194976A priority patent/CN1820151B/zh
Publication of WO2005005857A1 publication Critical patent/WO2005005857A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers
    • F16F7/10Vibration-dampers; Shock-absorbers using inertia effect
    • F16F7/104Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted
    • F16F7/116Vibration-dampers; Shock-absorbers using inertia effect the inertia member being resiliently mounted on metal springs
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/023Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using fluid means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/03Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means
    • F16F15/035Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using magnetic or electromagnetic means by use of eddy or induced-current damping
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/02Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems
    • F16F15/04Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means
    • F16F15/06Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs
    • F16F15/073Suppression of vibrations of non-rotating, e.g. reciprocating systems; Suppression of vibrations of rotating systems by use of members not moving with the rotating systems using elastic means with metal springs using only leaf springs

Definitions

  • the present invention relates to a dynamic vibration absorber that reduces vibration generated in a structure due to a strong wind, an earthquake, or the like, and a dynamic vibration absorber using a plurality of such dynamic vibration absorbers.
  • a dynamic vibration absorber described in Japanese Patent Application Laid-Open No. Hei 9-111947 is known, and the dynamic vibration absorber is provided with a plurality of plates from a common support member. To extend the spring members and attach weights to the ends of these leaf spring members, respectively, to support these weights in a cantilever manner, and to attenuate these weight swings. The damping member is attached. Disclosure of the invention
  • such a dynamic vibration absorber uses a large mass that tunes to a low natural frequency in order to oscillate the weight by a leaf spring member in a cantilever manner. Since the leaf spring member is bent from the beginning, a large space is required between the plate spring and the structure in order to perform the predetermined swing of the weight. While it is difficult to install the sensor on a pad, it is difficult to tune to a low natural frequency even if a large mass is used by using a leaf spring member with a large elastic constant in order to reduce deflection.
  • the vibration since the swing direction of the leaf spring member is perpendicular to the installation surface of the dynamic vibration absorber on the structure, the vibration does not deviate in the vertical direction of the structure. Although it can produce an effect temporarily, it is not suitable for damping horizontal vibration of structures due to earthquakes, strong winds, etc.
  • the present invention has been made in view of the above-mentioned points, and an object of the present invention is to make the weight perform a predetermined swing even if the mass of the weight is increased. Since there is no need to provide a large space between the structure and the structure, it can be installed in a compact, and even if a heavy weight is used, a leaf spring member with a large elastic constant must be used accordingly.
  • Dynamic damper which can be easily tuned to a low natural frequency, and can be suitably used for damping horizontal vibration of structures due to earthquakes, strong winds, etc.
  • An object of the present invention is to provide a dynamic vibration absorber using a plurality of dynamic vibration absorbers.
  • a dynamic vibration absorber comprises a weight, a frame surrounding the weight, and the weight movably held with respect to the frame in all directions in a plane with respect to the frame.
  • a plurality of vertically placed U-shaped leaf springs interposed between the frame and the weight so as to be immovably held in the vertical direction perpendicular to the plane, and the weight in the plane of the weight Damping vibration And a damping mechanism for reducing the pressure.
  • the U-shaped leaf spring is placed vertically, and is interposed between the weight and the frame to move the weight in a plane with respect to the frame. While it is held movably in all directions, it is held immovably in the vertical direction perpendicular to the plane, so it can bend almost vertically in the vertical direction even if a heavy weight is used. Therefore, even if the mass of the weight is increased, it is not necessary to provide a large space between the weight and the structure in order to make the weight swing in a predetermined manner. In addition, even if a mass with a large mass is used, it is not necessary to use a leaf spring member having a large elastic constant, so that tuning to a low natural frequency can be easily performed. Horizontal vibration of structures due to earthquakes, strong winds, etc. by setting the plane to the horizontal plane Can and this suitably used for attenuation.
  • the weight is a regular polygon including a substantially regular triangle in plan view, for example, a square, a regular pentagon, or a regular hexagon.
  • the shape is a square or a regular hexagon, but if a U-shaped plate spring can be interposed between the vertical wall and the weight as desired, the weight is used.
  • the frame body is a regular polygon substantially including a regular triangle in plan view, for example, a square, a regular pentagon, a regular hexagon.
  • a regular polygon substantially including a regular triangle in plan view, for example, a square, a regular pentagon, a regular hexagon.
  • more preferred examples are square and regular hexagons, but if a U-shaped leaf spring can be interposed between the vertical wall and the weight as desired, the frame
  • the body may be composed of a cylindrical body, may be substantially rectangular, circular, elliptical, or the like in plan view, or may be asymmetric with respect to the vertical axis. Techoi.
  • the frame body includes a pair of vertical X-direction wall portions facing each other in the X direction in a plane with the weight therebetween, and the weight therebetween. It has a pair of Y-direction vertical walls opposed to each other in the Y-direction that intersects the X-direction in the plane, and a vertical wall is formed between each of the pair of X-direction vertical walls and the weight.
  • One edge extending in the X direction is attached to the vertical wall portion in the X direction, and the other edge extending in the vertical direction is attached to the weight, and at least one plate spring is interposed therebetween.
  • At least one edge extending in the vertical direction is fixed to the vertical wall in the Y direction, and the other edge extending in the vertical direction is fixed to the weight between the vertical wall and the weight.
  • One other leaf spring is interposed.
  • each leaf spring has a U-shaped portion which curves between one longitudinally extending edge and the other longitudinally extending edge. , This U-shaped part The weight is held movably in all directions in the plane with respect to the frame.
  • a single leaf spring may be interposed between the pair of X-direction vertical walls and the weight and between the pair of Y-direction vertical walls and the weight, but is preferable.
  • a plurality of leaf springs arranged in parallel are interposed, and each leaf spring has a vertical wall at one edge. And the other edge is fixed to the weight.
  • the Y direction intersects the X direction, but preferably, the Y direction is orthogonal to the X direction as in the dynamic vibration absorber according to the sixth aspect of the present invention. I have.
  • the damping mechanism may be a mechanism using the shear resistance of a viscous body.
  • the damping mechanism is fixed to one of the weight and the frame.
  • a magnetic field generator that generates a magnetic field, and a plate-shaped conductor that is fixed to the other of the weight and the frame and that generates an eddy current by moving relative to the magnetic field generator are provided.
  • the magnetic field generators oppose each other with a gap so as to generate a magnetic field at the center of the conductor.
  • a permanent magnet for generating a pair of magnetic poles having different polarities may be provided.
  • the dynamic vibration absorber of the present invention is installed in a structure that attenuates vibration.
  • One dynamic vibration absorber is installed in such a structure. If so, it is preferably tuned to the natural frequency of the installed structure, such as the dynamic vibration absorber of the ninth aspect of the present invention.
  • a dynamic vibration absorber includes a plurality of the dynamic vibration absorbers according to any one of the first to ninth aspects, and the weight of at least one dynamic vibration absorber is provided.
  • the natural frequency for the weight is different from the natural frequency for the weight of other dynamic vibration absorbers
  • the dynamic vibration absorber of the first aspect since the natural frequencies of the weight are different from each other, the different natural frequencies are brought close to each other, so that the natural vibration of the installed structure is improved. It is possible to cope with a change in the natural frequency of the structure and to favorably attenuate the vibration of the structure irrespective of the change in the natural frequency of the structure. By adjusting the number to each order mode, it is possible to correspond to each order mode of the natural frequency of the structure to be built, and to effectively attenuate each order vibration mode.
  • the mass of the weight of at least one of the dynamic vibration absorbers is different from the mass of the weight of the other dynamic vibration absorber.
  • the spring constant of at least one dynamic vibration absorber may be different from the spring constant of the other dynamic vibration absorber
  • the damping coefficient of at least one dynamic vibration absorber may be different from that of the other dynamic vibration absorbers.
  • FIG. 1 is a plan view of a preferred embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line II--II of the example shown in FIG. 1
  • FIG. 3 is a view of the leaf spring of the example shown in FIG. Perspective view
  • FIG. 4 is a plan view of another preferred example of the embodiment of the present invention.
  • FIG. 5 is a side sectional explanatory view of the example shown in FIG.
  • FIG. 6 is a plan view of another preferred example of the embodiment of the present invention.
  • FIG. 7 is a plan view of another preferred example of the embodiment of the present invention.
  • a dynamic vibration absorber 1 of the present example has a weight 2, which is substantially square and has a rectangular parallelepiped shape in plan view, and a weight 2.
  • a frame 3 that surrounds and is substantially square in plan view, and the weight 2 is movably held in all directions in a plane, in this example, a horizontal plane with respect to the frame 3.
  • a set of U-shaped leaf springs 4, 5, 6, and 7, which are vertically arranged, and a damping mechanism 8 for damping the movement of the weight 2 in a horizontal plane are provided.
  • the frame 3 fixed to the floor 45 such as the rooftop of the structure has a gap X1 between the weight 2 and the X-axis in the horizontal plane.
  • a gap Y1 between the pair of X-direction vertical walls 21 and 22 and the weight 2 and the weight 2 has a pair of Y-direction vertical walls 23 and 24 facing each other in the orthogonal Y-direction, a pair of X-direction vertical walls 21 and 22 and a pair of Y-direction vertical walls.
  • the walls 23 and 24 are integrally connected to each other so as to form a square frame 3 in plan view.
  • a plurality of parallel-arranged, in this example, a pair of leaf springs 4 are interposed between the X-direction vertical wall portion 2 1 and the side surface 3 3 of the weight 2, a plurality of parallel-arranged, in this example, a pair of leaf springs 4 are interposed.
  • a plurality of parallel-arranged, in this example, a pair of leaf springs 5 are interposed between 2 2 and the side surface 3 4 of the weight 2, and the Y-direction vertical wall portion 2 3 and the weight
  • a plurality of, in this example, a pair of leaf springs 6 are interposed between the side wall 3 and the side wall 3 5 of the cylinder 2.
  • a plurality of, in this example, a pair of leaf springs ⁇ ⁇ is interposed between and, and each leaf spring 4 facing each other with a concave surface is arranged at one edge 31 in the X direction.
  • Directional vertical wall 2 2 The leaf springs 6, which are fixed to the side surfaces 3 4 of the weight 2 at the other edge 3 2, and face each other with concave surfaces, are attached to the vertical wall 23 in the Y direction at one edge 31.
  • Each leaf spring 7, which is fixed to the side surface 35 of the weight 2 at the other edge 32, and faces each other with a concave surface, is attached to the Y-direction vertical wall portion 24 at one edge 31. It is fixed to the side surface 36 of the weight 2 at the other edge 32.
  • Each of the leaf springs 4, 5, 6 and 7 has an edge 3 1 and an edge 3 2 in addition to one edge 3 1 extending in the vertical direction V and the other edge 3 2 extending in the vertical direction V. And a U-shaped portion 41 which is curved between the weight 3 and the weight 2 so as to movably hold the weight 2 with respect to the frame 3 in all directions in the horizontal plane. are doing.
  • the damping mechanism 8 is provided between a vessel 51 fixed to a floor 45 such as a rooftop of a structure, a viscous body 52 contained in the vessel 51, and a bottom plate 53 of the vessel 51. It comprises a resistance plate 54 arranged inside the viscous body 52 with a small gap, and an attachment member 56 for attaching the resistance plate 54 to the bottom surface 55 of the weight 2. Therefore, the damping mechanism 8 causes the viscous body 52 between the bottom plate 53 and the resistance plate 54 to shear by the relative movement of the weight 2 with respect to the floor 45 in the horizontal plane. The relative resistance of the weight 2 relative to the floor 45 in the horizontal plane is attenuated by the shear resistance due to the shear deformation.
  • the frame 3 is fixed to the floor 45 at the lower edge thereof and installed on the structure.
  • the natural frequency of the weight 2 is tuned to the natural frequency of the structure.
  • the weight 2 when the structure does not vibrate in the horizontal plane, the weight 2 is movable in all directions in the horizontal plane by the leaf springs 4, 5, 6, and 7, and is moved in the vertical direction V. Each of them is held immovably, and the dynamic vibration absorber 1
  • the U-shaped leaf springs 4, 56 and 7 are vertically arranged:!: Interposed between the weight 2 and the frame 3.
  • the weight 2 In order to hold the weight 2 movably with respect to the frame 3 in all directions in the horizontal plane with respect to the frame 3, the weight 2 is fixedly held in the vertical direction V perpendicular to the horizontal plane, so that the mass Even if a large weight 2 is used, it hardly bends in the vertical direction V. Therefore, even if the mass of the weight 2 is increased, it is specially designed to cause the weight 2 to perform a predetermined swing.
  • the damping mechanism 8 in the dynamic vibration absorber 1 of this example is generated in the viscous body 52 between the bottom plate 53 and the resistance plate 54 due to the relative movement of the weight 2 with respect to the floor 45 in the horizontal plane.
  • a mechanism using the shear resistance of the viscous material, which attenuates the vibration of the weight 2 in the horizontal plane by the shear resistance due to the shear deformation, is provided instead.
  • a magnetic damping mechanism 101 may be provided, and the magnetic damping mechanism 101 is one of the weight 2 and the frame 3 in this example.
  • the plurality of conductors 102 are fixed to the X-direction vertical wall portions 21 and 22 and the inner surfaces of the Y-direction vertical wall portions 23 and 24, respectively.
  • a pair of permanent magnets 106 and 107 having different polarities are fixed to the side surfaces 3 3, 3 4, 35 and 36 of the weight 2 via magnetically permeable L-shaped members 105. husband I have many.
  • the conductor 102 and the magnetic field generator 103 are arranged between a pair of leaf springs 4, 5, 6, and 7, respectively.
  • the permanent magnets 106 and 107 that generate a magnetic field are disposed opposite to each other with a gap fc in the vertical direction V with a conductor 102 interposed therebetween.
  • a magnetically permeable member is interposed between the L-shaped members 105.
  • the permanent magnets 106 and 107 are opposed to each other with a gap so as to generate a magnetic field at the center of the plate-like conductor 102 when the weight 2 is at rest. A pair of polar magnetic poles is generated.
  • the floor 45 of the structure vibrates in the X and Y directions due to an earthquake, a strong wind, or the like, and the weight 2 moves with respect to the floor 45 in synchronization with the vibration.
  • the conductors 102 fixed to the X-direction vertical walls 21 and 22 and the Y-direction vertical walls 23 and 24 cause magnetic field generation.
  • the electromotive force is generated in the conductor 102 by moving in the X and Y directions relative to 103, and the thermal energy of the eddy current flowing through the conductor 102 due to the electromotive force is generated.
  • the dynamic vibration absorber 61 may include two dynamic vibration absorbers 1.
  • the weight of the weight 2 of one dynamic vibration absorber 1 is made different from the mass of the weight 2 of the other dynamic vibration absorber 1, whereby The natural frequency of the vibration absorber 1 with respect to the weight 2 is synchronized with the frequency of the primary mode of the natural frequency of the structure, and the natural frequency of the other dynamic vibration absorber 1 with respect to the weight 2 is calculated as the natural frequency of the structure.
  • the natural frequency of one dynamic vibration absorber 1 with respect to the weight 2 is different from the natural frequency of the other dynamic vibration 3 ⁇ 4F 1 with respect to the weight 2 I have.
  • one of the dynamic vibration absorbers 1 and 2 is made different from the natural frequency of the other dynamic vibration absorber 1 for the weight 2 in
  • the spring constant mainly determined by the leaf springs 4, 5, 6 and 7 of the vessel 1 is different from the spring constant mainly determined by the leaf springs 4, 5, 6 and 7 of the other dynamic vibration absorber 1. You may.
  • the damper of one of the dynamic vibration absorbers 1 By making the damping coefficient mainly determined by the structure 8 different from the damping coefficient mainly determined by the damping mechanism 8 of the other dynamic vibration absorber 1, it is possible to effectively and optimally damp the vibration of the structure. You may be able to do so.
  • the natural frequency of the dynamic vibration absorber 1 with respect to the weight 2 is synchronized with the frequency of the primary mode of the natural frequency of the structure, and the weight of the other dynamic vibration absorber 1 is adjusted.
  • the natural vibration frequency of one dynamic vibration absorber 1 with respect to the weight 2 and the other dynamic vibration absorber 1 May be brought close to the natural frequency of the weight 2 so that the natural frequency of the installed structure can be coped with and the natural frequency of the structure can be changed. Regardless of the change, it is possible to favorably dampen the vibration of the structure.
  • the dynamic vibration absorber 1 is configured using the square weight 2 and the frame 3 in plan view, but instead of this, as shown in FIG. 9, a regular hexagonal weight 2 and The frame 3 may be used to construct the dynamic vibration absorber 1. As shown in the dynamic vibration absorber 1 shown in FIG. 9, each side 7 1 to 76 of the weight 2 and each vertical wall of the frame 3. One vertical U-shaped leaf spring 91 to 96 may be interposed between the parts 81 to 86, respectively. Further, instead of the square weight 2 and the frame 3 in a plan view, a weight (not shown) and a plane which are substantially circular and made of a cylindrical body in a plan view. The dynamic vibration absorber 1 may be configured by using a frame (not shown) which is substantially circular and is formed of a cylindrical body.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Electromagnetism (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

動吸振器(1)は、重錘(2)と、重錘(2)を取り囲んでいる枠体(3)と、重錘(2)を枠体(3)に対して水平面内の全方向に関して可動に保持する一方、鉛直方向(V)に不動に保持するように、枠体(3)と重錘(2)との間に介在された二個一組の合計四組の縦置きのU字状の板ばね(4、5、6、7)と、重錘(2)の水平面内での振動を減衰させる減衰機構(8)とを具備している。

Description

明細書 動吸振器及びこれを用いた動吸振装置 技術分野
本発明は、 強風、 地震等によ り 構造物に生起する振動を 低減する動吸振器及びこ の動吸振器を複数個用 いた動吸振 装置に関する。 背景技術
動吸振器と しては特開平 9 一 1 1 9 4 7 7 号公報に記載 .されている も のが知 られてお り 、 こ の動吸振器は、 共通の 支持部材か ら複数の板ばね部材を延出 し、 これ ら板ばね部 材の先端に夫々 重 り を取 り 付けて これ ら重 り を揺動自在に 片持ち支持する と共に、 これ ら重 り の揺動を減衰するため の減衰部材を取 り 付けてなる ものである。 発明の開示
と こ ろで、 斯かる動吸振器は、 板ばね部材によ り 重 り を 揺動自在に片持ち支持させるために、 低い固有振動数に同 調させるベく 質量の大きな重 り を用いる と板ばね部材が最 初か ら撓んで し まっ て、 重 り の所定の揺動を行わせるため には構造物 との間に広い空間を必要と して、 構造物にコ ン パク ト に設置し難い一方、 撓みを少な く するため に、 弾性 定数の大きな板ばね部材を用いる と、 質量の大きな重 り を 用 いて も低い固有振動数に同調させる こ とが困難となる。
また上記の動吸振器では、 板ばね部材の揺動方向が動吸 振器の構造物への設置面に対して直交する方向であるため に、 構造物の上下方向の振動にはそれな り に一応効果を発 揮し得るが、 地震、 強風等によ る構造物の水平方向の振動 の減衰には適しない。
本発明は、 前記諸点に鑑みてなされた ものであ っ て、 そ の 目 的とする と こ ろは、 重 り の質量を大き く して も重 り に 所定の揺動を行わせるために特別に構造物との間に広い空 間を設ける必要がないのでコ ンパク 卜 に設置でき、 しか も 質量の大きな重 り を用いてもそれに応じて弾性定数の大き な板ばね部材を用 いる必要がないので容易に低い固有振動 数に同調させる こ とができ、 加えて、 地震、 強風等によ る 構造物の水平方向の振動の減衰に好適に用いる こ とができ る動吸振器及びこ の動吸振器を複数個用 いた動吸振装置を 提供する こ と にあ る。
本発明の第一の態様の動吸振器は、 重錘と、 こ の重錘を 取 り 囲んだ枠体と、 重錘を枠体に対して平面内の全方向に 関 して可動に保持する一方、 平面に直交する縦方向に不動 に保持する よ う に、 枠体と重錘と の間に介在された複数の 縦置きの U字状の板ばねと、 重錘の平面内での振動を減衰 させる減衰機構と を具備 している。
第一の態様の動吸振器によれば、 U字状の板ばねが、 縦 置きであ っ て、 重錘と枠体との間に介在されて重錘を枠体 に対して平面内の全方向に関 して可動に保持する一方、 平 面に直交する縦方向に不動に保持する よ う になっ ている た めに、 質量の大きな重錘を用いても縦方向に殆ど撓む こ と がな く 、 したがっ て重錘の質量を大き く しても重錘に所定 の揺動を行わせるために特別に構造物 と の間に広い空間を 設ける必要がないのでコ ンパク ト に設置でき、 しかも、 質 量の大きな重錘を用 いてもそれに応 じて弾性定数の大きな 板ばね部材を用 い る必要がないので容易 に低い固有振動数 に同調させる こ とができ、 加えて、 平面を水平面に合わせ て設置する こ と によ り 地震、 強風等によ る構造物の水平方 向の振動の減衰に好適に用いる こ とができる。
本発明では、 好ま し く はその第二の態様の動吸振器のよ う に、 重錘は、 平面視において実質的に正三角形を含む正 多角形、 例えば正方形、 正五角形、 正六角形であ り 、 よ り 好ま し い例では正方形、 正六角形であるが、 U字状の板ば ねを所望に縦壁部と重錘との間に介在させる こ とができ る 場合には、 重錘を円柱体か ら構成しても よ く 、 更には、 平 面視において実質的に長方形、 円形、 楕円形等の形状であ つ ても よ く 、 また縦軸に関して非対称の形状であっても よ い 。 本発明では、 好ま し く はその第三の態様の動吸振器のよ う に、 枠体は、 平面視において実質的に正三角形を含む正 多角形、 例えば、 正方形、 正五角形、 正六角形であ り 、 よ り 好ま し い例では、 正方形、 正六角形であるが、 U字状の 板ばねを所望に縦壁部と重錘との間に介在させる こ とがで きる場合には、 枠体を円筒体か ら構成しても よ く 、 更には 平面視において実質的に長方形、 円形、 楕円形等の形状で あっ ても よ く 、 また、 縦軸に関 して非対称の形状であっ て ちょ い。
本発明の第四の態様の動吸振器では、 枠体は、 重錘を間 に して平面内の X方向において互いに対向する一対の X方 向縦壁部と、 重錘を間に して平面内の X方向に交差する Y 方向にお いて互いに対向する一対の Y方向縦壁部と を有 し てお り 、 一対の X方向縦壁部と重錘との夫々 の間に、 縦方 向に伸びる一方の縁部が X方向縦壁部に、 縦方向に伸びる 他方の縁部が重錘に夫々 固着された少な く と も一つの板ば ねが介在されてお り 、 一対の Y方向縦壁部と重錘との夫々 の間に、 縦方向に伸びる一方の縁部が Y方向縦壁部に、 縦 方向に伸びる他方の縁部が重錘に夫々 固着されて少な く と も一つの他の板ばねが介在されている。
本発明の好ま しい例では、 各板ばねは、 縦方向に伸びる 一方の縁部と同 じ く 縦方向に伸びる他方の縁部と の間に湾 曲する U字状部を具備してお り 、 こ の U字状部でもっ て重 錘を枠体に対して平面内の全方向に関して可動に保持して い る。
一対の X方向縦壁部と重錘との夫々 の間及び一対の Y方 向縦壁部と重錘との夫々 の間には、 一つの板ばねが介在さ れていて もよいが、 好ま し く は、 本発明の第五の態様の動 吸振器のよ う に、 並列に配された複数個の板ばねが介在さ れてお り 、 各板ばねは、 一方の縁部で縦壁部に、 他方の縁 部で重錘に夫々 固着されている。
本発明において、 Y方向は、 X方向に対して交差してい ればよいのであ るが、 好ま し く は本発明の第六の態様の動 吸振器のよ う に、 X方向に直交している。
減衰機構は、 粘性体の剪断抵抗を用いた機構であっ ても よいが、 本発明の第七の態様の動吸振器のよ う に、 重錘及 び枠体の一方に固定されている と共に磁界を発生する磁界 発生体と、 重錘及び枠体の他方に固定されている と共に磁 界発生体に対する相対的な移動で渦電流を生じ る板状の導 電体と を具備してお り 、 こ こ で、 本発明の第八の態様の動 吸振器のよ う に、 磁界発生体は、 導電体の中央部において 磁界を発生する よ う にギャ ッ プを も っ て対向する互い に異 なる極性の一対の磁極を生じ させる永久磁石を具備してい ても よい。
本発明の動吸振器は、 振動を減衰させる構造物に設置さ れる のであるが、 一つの動吸振器が斯かる構造物に設置さ れる場合には、 好ま し く は本発明の第九の態様の動吸振器 のよ う に、 設置される構造物の固有振動数に同調されてい る。
本発明の第一の態様の動吸振装置は 、 上記の第一か ら第 九のいずれかの態様の動吸振器を複数個有してお り 、 少な く と も一つの動吸振器の重錘に対する固有振動数は、 他の 動吸振器の重錘に対する 固有振動数と異なつ ている
第一の態様の動吸振装置によれば、 重錘に対する互い に 異なる固有振動数を有するために、 異なる固有振動数を互 いに近接させる こ と によ り 、 設置される構造物の固有振動 数の変化に対応できて、 構造物の固有振動数の変化に拘わ らず好ま し く 構造物の振動を減衰させる こ とができ、 また 異なる固有振動数を設置される構造物の固有振動数の各次 モー ド に合わせる こ と によ り 、 れる構造物の固有振 動数の各次モー ド に対応できて 、 各次の振動モー ド を効果 的に減衰させる こ とができる。
本発明の動吸振装置においては、 その第二の態様のよ う に、 少な く と も一つの動吸^器の重錘の質量は、 他の動吸 振器の重錘の質量と異なっ ていても よ く 、 その第三の態様 のよ う に、 少な く と も一つ の動吸振器のばね定数は、 他の 動吸振器のばね定数と異なっ ていてもよ く 、 そして、 その 第四の態様のよ う に、 少な く と も一つの動吸振器の減衰係 数は、 他の動吸振器の減衰係数と異なつ ていても よい。 .本発明によれば、 重 り の質量を大き く しても重 り に所定 の揺動を行わせるために特別に構造物との間に広い空間を 設ける必要がないのでコ ンパク ト に設置でき、 しかも、 質 量の大きな重 り を用いてもそれに応じて弾性定数の大きな 板ばね部材を用 いる必要がない ので容易 に低い固有振動数 に同調させる こ とができ、 加えて、 地震、 強風等によ る構 造物の水平方向の振動の減衰に好適に用 いる こ とができる 動吸振器及びこ の動吸振器を複数個用いた動吸振装置を提 供する こ とができる。
次に本発明及びその実施の形態を構造物に用いた実施例 について、 図を参照して更に詳細に説明する。 なお、 本発 明はこれ ら実施例に何等限定されないのであ る。 図面の簡単な説明
図 1 は、 本発明の実施の形態の好ま しい例の平面図、 図 2 は、 図 1 に示す例の I I _ I I 線矢視断面図、 図 3 は、 図 1 に示す例の板ばねの斜視図、
図 4 は、 本発明の実施の形態の好ま しい他の例の平面図 図 5 は、 図 4 に示す例の側断面説明図、
図 6 は、 本発明の実施の形態の好ま し い他の例の平面図 そ して、
図 7 は、 本発明の実施の形態の好ま しい他の例の平面図 である。 発明を実施するための最良の形態 図 1 か ら 図 3 において、 本例の動吸振器 1 は、 平面視に おいて実質的に正方形であっ て直方体か ら なる重錘 2 と、 重錘 2 を取 り 囲んでいる と共に平面視において実質的に正 方形であ る枠体 3 と、 重錘 2 を枠体 3 に対して平面内、 本 例では水平面内の全方向に関して可動に保持する一方、 水 平面に直交する縦方向、 本例では鉛直方向 V に不動に保持 する よ う に、 枠体 3 と重錘 2 との間に介在された複数、 本 例では二個一組の合計四組の縦置きの U字状の板ばね 4 、 5 、 6 及び 7 と、 重錘 2 の水平面内での 動を減衰させる 減衰機構 8 と を具備している。
構造物の屋上床等の床部 4 5 に固定される枠体 3 は、 重 錘 2 を間に して しか も重錘 2 との間に隙間 X 1 を も っ て水 平面内の X方向において互いに対向する一対の X方向縦壁 部 2 1 及び 2 2 と、 重錘 2 を間に して しかも重錘 2 との間 に隙間 Y 1 を も っ て水平面内の X方向に交差、 本例では直 交する Y方向において互いに対向する一対の Y方向縦壁部 2 3 及び 2 4 と を有してお り 、 一対の X方向縦壁部 2 1 及 び 2 2 並びに一対の Y方向縦壁部 2 3 及び 2 4 は、 平面視 で正方形の枠体 3 を形成するよ う に一体的に互いに連結さ れている。
一対の X方向縦壁部 2 1 及び 2 2 と重錘 2 の側面 3 3 及 び 3 4 と の夫々 の間に、 鉛直方向 Vに伸びる一方の縁部 3 1 が X方向縦壁部 2 1 及び 2 2 の夫々 に、 鉛直方向 V に伸 びる他方の縁部 3 2 が重錘 2 の側面 3 3 及び 3 4 の夫々 に 夫々 固着されて少な く と も一つ、 本例では二個一組の合計 二組の板ばね 4 及び 5 が介在されてお り 、 一対の Y方向縦 壁部 2 3 及び 2 4 と重錘 2 の側面 3 5 及び 3 6 と の夫々 の 間に、 鉛直方向 V に伸びる一方の縁部 3 2 が Y方向縦壁部 2 3 及び 2 4 の夫々 に、 鉛直方向 V に伸びる他方の縁部 3 2 が重錘 2 の側面 3 5 及び 3 6 の夫々 に夫々 固着されて少 な く と も一つの、 本例では二個一組の合計二組の板ばね 6 及び 7 が介在されてレ る。
X方向縦壁部 2 1 と重錘 2 の側面 3 3 との間には、 並列 に配された複数個、 本例では一対の板ばね 4 が介在さ れて お り 、 X方向縦壁部 2 2 と重錘 2 の側面 3 4 との間には、 並列に配された複数個、 本例では一対の板ばね 5 が介在さ れてお り 、 Y方向縦壁部 2 3 と重錘 2 の側面 3 5 との間に は、 並列に配された複数個、 本例では一対の板ばね 6 が介 在されてお り 、 Y方向縦壁部 2 4 と重錘 2 の側面 3 6 と の 間には、 並列に配された複数個、 本例では一対の板ばね Ί が介在されてお り 、 互い に凹面で対面した各板ばね 4 は、 一方の縁部 3 1 で X方向縦壁部 2 1 に、 他方の縁部 3 2 で 重錘 2 の側面 3 3 に固着されてお り 、 互レ に凹面で対面し た各板ばね 5 は、 一方の縁部 3 1 で X方向縦壁部 2 2 に、 他方の縁部 3 2 で重錘 2 の側面 3 4 に固着されてお り 、 互 いに凹面で対面した各板ばね 6 は、 一方の縁部 3 1 で Y方 向縦壁部 2 3 に、 他方の縁部 3 2 で重錘 2 の側面 3 5 に固 着されてお り 、 互いに凹面で対面した各板ばね 7 は、 一方 の縁部 3 1 で Y方向縦壁部 2 4 に、 他方の縁部 3 2 で重錘 2 の側面 3 6 に固着されている。
板ばね 4 、 5 、 6 及び 7 の夫々 は、 鉛直方向 V に伸びる 一方の縁部 3 1 と鉛直方向 V に伸びる他方の縁部 3 2 と に 加えて、 縁部 3 1 と縁部 3 2 との間に湾曲する U字状部 4 1 を具備 してお り 、 U字状部 4 1 でも っ て重錘 2 を枠体 3 に対して水平面内の全方向に関 して可動に保持している。
減衰機構 8 は、 構造物の屋上床等の床部 4 5 に固定され ている容器 5 1 と、 容器 5 1 に収容された粘性体 5 2 と、 容器 5 1 の底板 5 3 との間に微小隙間を も っ て対面して粘 性体 5 2 内に配された抵抗板 5 4 と、 抵抗板 5 4 を重錘 2 の底面 5 5 に取 り 付ける取り 付け部材 5 6 と を具備してお り 、 減衰機構 8 は、 重錘 2 の床部 4 5 に対する水平面内の 相対的移動で、 底板 5 3 と抵抗板 5 4 との間の粘性体 5 2 に剪断変形を生 じさせて、 こ の剪断変形による剪断抵抗で も っ て重錘 2 の床部 4 5 に対する水平面内の相対的移動を 減衰させる よ う になっ ている。
以上の動吸振器 1 は、 枠体 3 がその下縁で床部 4 5 に固 着されて構造物に設置される。 こ の設置にあたっ ては、 重 錘 2 の固有振動数が構造物の固有振動数に同調される。 斯 かる動吸振器 1 では、 構造物が水平面内で振動しない際に は、 重錘 2 は、 板ばね 4 、 5 、 6 及び 7 によ り 水平面内の 全方向に可動に、 鉛直方向 Vに不動に夫々保持されている そ して動吸振器 1 では、 地震、 強風等で構造物の床部 4
5 が X方向及び Y方向に振動して、 こ の振動に同調 して重 錘 2 が床部 4 5 に対して相対的に X方向及び Y方向に振動 する と、 こ の振動で底板 5 3 と抵抗板 5 4 と の間の粘性体 5 2 に剪断変形を生じさせて、 こ の剪断変形によ る剪斬抵 抗でも つ て重錘 2 の床部 4 5 に対する水平面内の相対的移 動を減衰させ、 斯かる減衰機構 8 の振動ェネルギの吸収に よ り 構造物の X方向及び Y方向の振動を減衰させる よ う に なっ てい る。
と こ ろで、 動吸振器 1 によれば、 U字状の板ばね 4 、 5 6 及び 7 が、 縦置きであ つ:!:、 重錘 2 と枠体 3 と の間に介 在されて重錘 2 を枠体 3 に対して水平面内の全方向に関 し て可動に保持する一方、 水平面に直交する鉛直方向 V に不 動に保持する よ う になつ ているために、 質量の大きな重錘 2 を用 いて も鉛直方向 V に殆ど撓む こ とがな く 、 したがつ て重錘 2 の質量を大き く しても重錘 2 に所定の揺動を行わ せるため に特別に構造物と の間に広い空間を設ける必要が なレ のでコ ンパク ト に設置でき、 しか も、 質量の大きな重 錘 2 を用 いてもそれに応じて弹性定数の大きな板ばね 4 、 5 、 6 及び 7 を用 いる必要がないので容易に低い固有振動 数に同調させる こ とができ、 加えて、 重錘 2 が枠体 3 に対 して可動 となる平面を本例のよ う に水平面に合わせて設置 する こ と によ り 、 地震、 強風等による構造物の水平方向の 振動の減衰に好適に用いる こ とができる。
本例の動吸振器 1 における減衰機構 8 は、 重錘 2 の床部 4 5 に対する水平面内の相対的移動によ り 底板 5 3 と抵抗 板 5 4 と の間の粘性体 5 2 に生じ る剪断変形によ る剪断抵 抗でも っ て重錘 2 の水平面内での振動を減衰させる よ う に してなる粘性体の剪断抵抗を用いた機構を具備しているが これに代えて又は加えて、 例えば図 4及び図 5 に示すよ う に、 磁気減衰機構 1 0 1 を具備していても よ く 、 磁気減衰 機構 1 0 1 は、 重錘 2 及び枠体 3 の一方、 本例では重錘 2 に固定されてい る と共に磁界を発生する複数の磁界発生体 1 0 3 と、 重錘 2 及び枠体 3 の他方、 本例では枠体 3 に固 定されている と共に磁界発生体 1 0 3 に対する相対的な X 方向及び Y方向の移動で渦電流を生じる複数の板状の導電 体 1 0 2 と を具備 している。
複数の導電体 1 0 2 は、 X方向縦壁部 2 1 及び 2 2 並び に Y方向縦壁部 2 3 及び 2 4 の内面に夫々 固定されてお り 複数の磁界発生体 1 0 3 は、 重錘 2 の側面 3 3 、 3 4 、 3 5 及び 3 6 の夫々 に透磁性の L型部材 1 0 5 を介して固定 された互いに異極の一対の永久磁石 1 0 6 及び 1 0 7 を夫 々有 している。 導電体 1 0 2 及び磁界発生体 1 0 3 は、 一 組の板ばね 4 、 5 、 6 及び 7 の夫々 の間に配されてい る。 磁界を発生する永久磁石 1 0 6 及び 1 0 7 は、 鉛直方向 V でギャ ッ プ fc つ て互いに対向 して導電体 1 0 2 を間に し て夫々配されている。 永久磁石 1 0 6 を支持する L型部材 1 0 5 と永久磁石 1 0 7 を支持する L型部材 1 0 5 との間 の磁気抵抗を減 じて良好な磁気回路を形成するために、 両 L型部材 1 0 5 間に透磁性の部材を介在させる とよい。
永久磁石 1 0 6 及び 1 0 7 は、 重錘 2 の静止時に板状の 導電体 1 0 2 の中央部〇 において磁界を発生する よ う にギ ヤ ッ プを も つ て対向する互い に異なる極性の一対の磁極を 生 じ させる よ う になっ ている。
斯かる磁気減衰機構 1 0 1 は、 地震、 強風等で構造物の 床部 4 5 が X方向及び Y方向に振動して、 こ の振動に同調 して重錘 2 が床部 4 5 に対して相対的に X方向及び Y方向 · に振動する と、 X方向縦壁部 2 1 及び 2 2 並びに Y方向縦 壁部 2 3 及び 2 4 に夫々 固定された導電体 1 0 2 が磁界発 生体 1 0 3 に対して相対的に X方向及び Y方向に移動して 導電体 1 0 2 に起電力 を生じる と共に、 こ の起電力 に起因 して導電体 1 0 2 に流れる渦電流の熱ェネルギへの変換 (渦電流損 ) によ り 電力消費がなされ、 導電体 1 0 2 に流 れる渦電流と磁界発生体 1 0 3 の磁界と に Jいて X方向 及び Y方向の移動に抗する電磁力 を生じる結果、 重錘 2 の 枠体 3 に対する X方向及び Y方向の相対的移動を減衰させ る。 尚、 動吸振器 1 が磁気減衰機構 1 0 1 を具備する場合 等の枠体 3 に大きな力が加わる場合には、 導電体 1 0 2 等 を確実に固定する こ とができる程度に枠体 3 を厚く 構成す る と よ い。
以上は動吸振器の例であるが、 図 8 に示すよ う に動吸振 '器 1 を二個有 して動吸振装置 6 1 を構成しても よレ 。 図 8 に示す動吸振装置 6 1 では、 一方の動吸振器 1 の重錘 2 の を他方の動吸振器 1 の重錘 2 の質量と異な らせて、 こ れによ り 、 一方の動吸振器 1 の重錘 2 に対する固有振動数 を構造物の固有振動数の一次モー ド の振動数に同調させ、 他方の動吸振器 1 の重錘 2 に対する固有振動数を構造物の 固有振動数の二次モー ド の振動数に同調させ、 而して、 一 方の動吸振器 1 の重錘 2 に対する固有振動数を他方の動吸 振 ¾F 1 の重錘 2 に対する固有振動数と異な らせている。
8 に示す動吸振装置 6 1 おいて、 一方の動吸振器 1 の 2 に対する固有振動数を他方の動吸振器 1 の重錘 2 に 対する固有振動数と異な らせるために、 一方の動吸振器 1 の板ばね 4、 5 、 6 及び 7 で主に決定される ばね定数を他 方の動吸振器 1 の板ばね 4、 5、 6 及び 7 で主に決定され る ばね定数と異な らせても よい。
た図 8 に示すよ う に複数個の動吸振器 1 を具備して動 吸振装置 6 1 を構成する場合、 一方の動吸振器 1. の減衰機 構 8 で主に決定される減衰係数を他方の動吸振器 1 の減衰 機構 8 で主に決定される減衰係数と異な らせて、 構造物の 振動を効果的に最適に減衰させる こ とができるよ う に して も よい。
動吸振装置 6 1 では、 一方の動吸振器 1 の重錘 2 に対す る固有振動数を構造物の固有振動数の一次モー ド の振動数 に同調させ、 他方の動吸振器 1 の重錘 2 に対する 固有振動 数を構造物の固有振動数の二次モ一 ド の振動数に同調させ る代わ り に、 一方の動吸振器 1 の重錘 2 に対する 固有振動 数と他方の動吸振器 1 の重錘 2 に対する 固有振動数と を近 接させる よ う に してもよ く 、 これによ り 、 設置される構造 物の固有振動数の変化に対応できて、 構造物の固有振動数 の変化に拘わ らず好ま し く 構造物の振動を減衰させる こ と ができる。
上記では、 平面視において正方形の重錘 2 及び枠体 3 を 用 いて動吸振器 1 を構成したが、 これに代えて、 図 9 に示 すよ う に平面視において正六角形の重錘 2 及び枠体 3 を用 いて動吸振器 1 を構成してもよ く 、 図 9 に示す動吸振器 1 のよ う に、 重錘 2 の各側面 7 1 〜 7 6 と枠体 3 の各縦壁部 8 1 〜 8 6 との間に、 夫々 一個の縦置きの U字状の板ばね 9 1 〜 9 6 を介在させてもよい。 また、 平面視において正 方形の重錘 2 及び枠体 3 に代えて、 平面視において実質的 に円形であ っ て円柱体か らなる重錘 (図示せず) 及び平面 視において実質的に円形であっ て円筒体か らなる枠体 (図 示せず) を用 いて動吸振器 1 を構成しても よい。

Claims

請求の範囲
1 . 重錘と、 こ の重錘を取 り 囲んだ枠体と、 重錘を枠体 に対して平面内の全方向に関して可動に保持する一方、 平 面に直交する縦方向に不動に保持する よ う に、 枠体と重錘 と の間に介在された複数の縦置きの U字状の板ばねと、 重 錘の平面内での振動を減衰させる減衰機構と を具備してい る動吸振器。
2 . 重錘は、 平面視において実質的に正三角形を含む正 多角形又は円形であ る請求の範囲 1 に記載の動吸振器。
3 . 枠体は、 平面視において実質的に正三角形を含む正 多角形又は円形であ る請求の範囲 1 又は 2 に記載の動吸振
¾5 。
4 . 枠体は、 重錘を間に して平面内の X方向において互 いに対向する一対の X方向縦壁部と、 重錘を間に して平面 内の X方向に交差する Y方向において互いに対向する一対 の Y方向縦壁部と を有してお り 、 一対の X方向縦壁部 と重 錘と の夫々 の間に、 縦方向に伸びる一方の縁部が X方向縦 壁部に、 縦方向に伸びる他方の縁部が重錘に夫々 固着され た少な く と も一つの板ばねが介在されてお り 、 一対の Y方 向縦壁部と重錘との夫々 の間に、 縦方向に伸びる一方の縁 部が Y方向縦壁部に、 縦方向に伸びる他方の縁部が重錘に 夫々 固着されて少な く と も一つの他の板ばねが介在されて いる請求の範囲 1 か ら 3 のいずれか一つ に記載の動吸振器
5 . 一対の X方向縦壁部と重錘との夫々 の間及び一対の Y方向縦壁部 と重錘との夫々 の間には、 並列に配された複 数個の板ばねが介在されてお り 、 各板ばねは、 一方の縁部 で縦壁部に、 他方の縁部で重錘に夫々 固着されている請求 の範囲 4 に記載の動吸振器。
6 . Y方向は、 X方向に直交している請求の範囲 4 又は
5 に記載の動吸振
7 . 減衰機構は 、 重錘及び枠体の一方に固定されている と共に磁界を発生する磁界発生体と、 重錘及び枠体の他方 に固定されている と共に磁界発生体に対する相対的な移動 で渦電流を生 じ る板状の導電体と を具備 している請求の範 囲 1 力 ら 6 の レ ずれか一つに記載の動吸振器。
8 . 磁界発生体は、 導電体の中央部において磁界を発生 する よ う にギヤ ッ プをも っ て対向する互いに異なる極性の 一対の磁極を生じ させる永久磁石を具備している請求の範 囲 7 に記載の動吸振器。
9 . 設置される構造物の固有振動数に同調されている請 求の範囲 1 か ら 8 のいずれか一つに記載の動吸振器。
1 0 . 請求の範囲 1 か ら 9 のいずれか一つに記載の動吸振 器を複数個有してお り 、 少なく と も一つの動吸振器の重錘 に対する 固有振動数は、 他の動吸振器の重錘に対する固有 振動数と異なっ ている動吸振装置。
11. 少な く と も一つの動吸振器の重錘の質量は、 他の動 吸振器の重錘の質量と異なっ ている請求の範囲 10に記載の 動吸振装置。
12. 少な く と も一つの動吸振器のばね定数は、 他の動吸 振器のばね定数と異なっ ている請求の範囲 10又は 11に記載 の動吸振装置。
13. 少な く と も一つの動吸振器の減衰係数は、 他の動吸 振器の減衰係数と異なっ ている請求の範囲 10か ら 12のいず れか一つ に記載の動吸振装置
PCT/JP2004/005594 2003-07-11 2004-04-20 動吸振器及びこれを用いた動吸振装置 WO2005005857A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/563,446 US8714324B2 (en) 2003-07-11 2004-04-20 Dynamic vibration absorber and dynamic vibration absorbing apparatus using the same
CN2004800194976A CN1820151B (zh) 2003-07-11 2004-04-20 动态振动吸收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003273759A JP4396168B2 (ja) 2002-10-23 2003-07-11 動吸振器及びこれを用いた動吸振装置
JP2003-273759 2003-07-11

Publications (1)

Publication Number Publication Date
WO2005005857A1 true WO2005005857A1 (ja) 2005-01-20

Family

ID=34056037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005594 WO2005005857A1 (ja) 2003-07-11 2004-04-20 動吸振器及びこれを用いた動吸振装置

Country Status (4)

Country Link
US (1) US8714324B2 (ja)
KR (1) KR20060027863A (ja)
CN (1) CN1820151B (ja)
WO (1) WO2005005857A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076879A1 (de) * 2017-10-18 2019-04-25 Framatome Gmbh Schwingungstilger, insbesondere für einen schaltschrank
CN112888875A (zh) * 2018-10-18 2021-06-01 西门子股份公司 能在多个方向上使用的主动减振器

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI252970B (en) * 2004-07-05 2006-04-11 Benq Corp An electronic apparatus having a shock absorber
ATE506580T1 (de) * 2007-12-28 2011-05-15 Arcelik As Backofen
KR100942496B1 (ko) * 2009-09-07 2010-02-12 주식회사 브이원 고점성오일의 전단력을 이용한 댐퍼 및 이를 이용한 방진장치
EP2659277B8 (en) 2010-12-30 2018-05-23 Dresser-Rand Company Method for on-line detection of resistance-to-ground faults in active magnetic bearing systems
US8994237B2 (en) 2010-12-30 2015-03-31 Dresser-Rand Company Method for on-line detection of liquid and potential for the occurrence of resistance to ground faults in active magnetic bearing systems
WO2012138545A2 (en) 2011-04-08 2012-10-11 Dresser-Rand Company Circulating dielectric oil cooling system for canned bearings and canned electronics
EP2715167B1 (en) 2011-05-27 2017-08-30 Dresser-Rand Company Segmented coast-down bearing for magnetic bearing systems
US8851756B2 (en) 2011-06-29 2014-10-07 Dresser-Rand Company Whirl inhibiting coast-down bearing for magnetic bearing systems
CN102384213B (zh) * 2011-07-02 2013-09-18 长安大学 一种通过非线性能量转移与碰撞耗能作用的吸振器
CN103216568A (zh) * 2012-01-19 2013-07-24 昆山思拓机器有限公司 一种用于激光设备的u型缓冲装置
ES2520466T3 (es) * 2012-09-13 2014-11-11 Ideko, S. Coop Amortiguador inercial para la supresión de vibraciones en máquina herramienta
CN104240901A (zh) * 2013-06-20 2014-12-24 国家电网公司 一种变压器安装温度计的改进结构
CN103335061B (zh) * 2013-07-10 2016-01-20 青岛科而泰环境控制技术有限公司 车轮吸振器
CN103335057B (zh) * 2013-07-10 2015-07-22 青岛科而泰环境控制技术有限公司 带有框架的调谐质量减振器
US9509204B2 (en) 2013-12-12 2016-11-29 The Boeing Company Motion-damping systems between base structure and an attached component and methods including the same
US9670981B2 (en) * 2013-12-12 2017-06-06 The Boeing Company Motion-damping systems and methods including the same
CN103807221B (zh) * 2014-01-03 2017-07-07 北京怡和嘉业医疗科技有限公司 风机装置和包括这种风机装置的呼吸机
US20160070317A1 (en) * 2014-09-05 2016-03-10 Hong Fu Jin Precision Industry (Wuhan) Co., Ltd. Mounting system for hard disk drive
CN104455195B (zh) * 2014-12-16 2016-06-15 中国电子科技集团公司第十研究所 全金属多向隔振器
EP3043087A1 (en) * 2015-01-07 2016-07-13 BAE Systems PLC Improvements in and relating to electromechanical actuators
AU2016205924B2 (en) * 2015-01-07 2019-09-19 Bae Systems Plc Improvements in and relating to electromechanical actuators
WO2016167670A1 (en) * 2015-04-17 2016-10-20 University Of Canterbury Energy dissipation device
AU2015417386B2 (en) * 2015-12-14 2021-03-11 Indian Industries, Inc. Basketball goal with vibration damping
CN106369799A (zh) * 2016-10-18 2017-02-01 广东美的暖通设备有限公司 用于空调器排水泵的支架组件和空调器
CN106499081B (zh) * 2016-10-29 2019-07-19 海南大学 一种连梁抗风抗震装置
US10232936B2 (en) * 2016-11-22 2019-03-19 Bell Helicopter Textron Inc. Damper
US11326661B2 (en) 2016-11-22 2022-05-10 Textron Innovations Inc. Damper
WO2018183400A1 (en) * 2017-03-27 2018-10-04 Hutchinson Aerospace & Industry, Inc. A continuous framework for shock, vibration and thermal isolation and motion accommodation
WO2018208307A1 (en) * 2017-05-11 2018-11-15 Portland State University Energy dissipators with rotated members
IT201700113264A1 (it) * 2017-10-09 2019-04-09 Milano Politecnico Dispositivo a modulo per l’isolamento di vibrazioni a bassa frequenza e ad ampio spettro, e relativa struttura periodica
KR102519583B1 (ko) * 2018-10-18 2023-04-10 어플라이드 머티어리얼스, 인코포레이티드 평면형 대상물을 운반하기 위한 캐리어, 캐리어를 이송하기 위한 이송 시스템, 캐리어를 비접촉식으로 이송하는 방법, 및 코팅된 기판을 생산하는 방법
US11105459B2 (en) * 2018-12-10 2021-08-31 The Boeing Company Isolation coupler for a structural assembly and method for attenuating a load
GB2580980A (en) * 2019-02-04 2020-08-05 Airbus Operations Ltd Interfaces between components
CN113513103B (zh) * 2021-09-14 2021-12-17 中国电建集团山东电力建设第一工程有限公司 一种悬挂式复合调谐减振装置及方法
CN115024738A (zh) * 2022-06-14 2022-09-09 上海联影医疗科技股份有限公司 X射线球管的承载装置及移动式数字x射线成像设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103131A (en) * 1979-01-30 1980-08-07 Agency Of Ind Science & Technol Method of absorbing vibration of machine foundation or the like
JPH0542789U (ja) * 1991-11-07 1993-06-11 オイレス工業株式会社 調整機構付き動吸振装置
WO1995028577A1 (en) * 1994-04-18 1995-10-26 Minnesota Mining And Manufacturing Company Tuned mass damper
JPH08159203A (ja) * 1994-12-01 1996-06-21 Maeda Corp 制振装置
JP2000346129A (ja) * 1999-06-10 2000-12-12 Tokin Corp 振動除去装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US989958A (en) * 1909-10-30 1911-04-18 Hermann Frahm Device for damping vibrations of bodies.
US4558852A (en) * 1982-03-11 1985-12-17 Sig Schweizerische Industrie-Gesellschaft Vibration damper with linearly reciprocating mass
FR2583584B1 (fr) * 1985-06-14 1987-09-18 Ecole Nale Sup Meca Microtechn Dispositif de support d'un resonateur piezoelectrique a l'interieur d'un boitier
DE4007443A1 (de) * 1989-03-16 1991-09-12 Topexpress Ltd Aktive vibrationssteuerung
JPH0698589A (ja) * 1992-09-09 1994-04-08 Toyota Autom Loom Works Ltd 冷却制御装置
US5445249A (en) * 1993-02-18 1995-08-29 Kabushiki Kaisha Toshiba Dynamic vibration absorber
US5595430A (en) * 1995-03-27 1997-01-21 Ford Motor Company Resilient retainer for vibration sensitive components
KR980006398A (ko) * 1996-06-21 1998-03-30 마에다 시게루 진동 감쇄장치
DE19748707C1 (de) * 1997-11-04 1999-01-21 Eurocopter Deutschland Schwingungstilger für einen Hubschrauber und Verwendung einer Batterie als Masse eines Schwingungstilgers
JPH11166582A (ja) * 1997-12-05 1999-06-22 Tokico Ltd 制振装置
US7478803B2 (en) * 2000-11-17 2009-01-20 Elmer C. Lee Compact shock absorption, vibration, isolation, and suspension device
US20040134733A1 (en) * 2003-01-13 2004-07-15 Wood James Gary Vibration absorber
ATE468491T1 (de) * 2003-07-15 2010-06-15 Ebm Papst St Georgen Gmbh & Co Lüfteranordnung, und verfahren zur herstellung einer solchen
TWI252970B (en) * 2004-07-05 2006-04-11 Benq Corp An electronic apparatus having a shock absorber
US20060017208A1 (en) * 2004-07-23 2006-01-26 Honeywell International, Inc. Leaf spring design for centrifugal clutch

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103131A (en) * 1979-01-30 1980-08-07 Agency Of Ind Science & Technol Method of absorbing vibration of machine foundation or the like
JPH0542789U (ja) * 1991-11-07 1993-06-11 オイレス工業株式会社 調整機構付き動吸振装置
WO1995028577A1 (en) * 1994-04-18 1995-10-26 Minnesota Mining And Manufacturing Company Tuned mass damper
JPH08159203A (ja) * 1994-12-01 1996-06-21 Maeda Corp 制振装置
JP2000346129A (ja) * 1999-06-10 2000-12-12 Tokin Corp 振動除去装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019076879A1 (de) * 2017-10-18 2019-04-25 Framatome Gmbh Schwingungstilger, insbesondere für einen schaltschrank
US11549564B2 (en) 2017-10-18 2023-01-10 Framatome Gmbh Oscillation damper, in particular for a switch cabinet
CN112888875A (zh) * 2018-10-18 2021-06-01 西门子股份公司 能在多个方向上使用的主动减振器
US11268587B2 (en) * 2018-10-18 2022-03-08 Siemens Aktiengesellschaft Active vibration damper, usable in a plurality of orientations
CN112888875B (zh) * 2018-10-18 2022-06-28 西门子股份公司 能在多个方向上使用的主动减振器

Also Published As

Publication number Publication date
CN1820151B (zh) 2012-06-27
US20070051576A1 (en) 2007-03-08
CN1820151A (zh) 2006-08-16
US8714324B2 (en) 2014-05-06
KR20060027863A (ko) 2006-03-28

Similar Documents

Publication Publication Date Title
WO2005005857A1 (ja) 動吸振器及びこれを用いた動吸振装置
JP5503264B2 (ja) 発電装置
KR101777319B1 (ko) 동조 질량 댐퍼 및 이를 포함하는 시스템
JP2014079118A (ja) 発電装置
US20070131504A1 (en) Planar vibration absorber
JP4615638B2 (ja) スピーカの機械的共振を減衰する方法および装置
JP5697876B2 (ja) 発電装置
JP4396168B2 (ja) 動吸振器及びこれを用いた動吸振装置
JP5478279B2 (ja) 防振台及び発電システム
JP2000329187A (ja) 制振装置
JP4687092B2 (ja) 動吸振器及びこれを用いた動吸振装置
JP4044977B2 (ja) 板ばね振動型磁気式ダンパ
JP2018182941A (ja) 振動発電装置
KR101301349B1 (ko) 동흡진기
JP7219626B2 (ja) 制振システム
Li et al. A tunable'negative'stiffness system for vibration control
JP2001234972A (ja) 制振ユニット及び制振装置
JP2006194073A (ja) 振動低減装置
JP2000230604A (ja) 防振用ベースプレート
KR102468715B1 (ko) 동흡진장치
JPH04258549A (ja) ダイナミックダンパ
JP2001317586A (ja) チューンドマスダンパー
JPH0315871Y2 (ja)
JP2018042330A (ja) 振動発電装置
US20160105131A1 (en) Vibration generating device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480019497.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007051576

Country of ref document: US

Ref document number: 10563446

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020067000554

Country of ref document: KR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10563446

Country of ref document: US