Nothing Special   »   [go: up one dir, main page]

WO2005005683A1 - Sputtering target and optical recording medium - Google Patents

Sputtering target and optical recording medium Download PDF

Info

Publication number
WO2005005683A1
WO2005005683A1 PCT/JP2004/005395 JP2004005395W WO2005005683A1 WO 2005005683 A1 WO2005005683 A1 WO 2005005683A1 JP 2004005395 W JP2004005395 W JP 2004005395W WO 2005005683 A1 WO2005005683 A1 WO 2005005683A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical recording
recording medium
alloy
target
sputtering target
Prior art date
Application number
PCT/JP2004/005395
Other languages
French (fr)
Japanese (ja)
Inventor
Hideyuki Takahashi
Original Assignee
Nikko Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co., Ltd. filed Critical Nikko Materials Co., Ltd.
Priority to JP2005511456A priority Critical patent/JP4582457B2/en
Publication of WO2005005683A1 publication Critical patent/WO2005005683A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/266Sputtering or spin-coating layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/2431Metals or metalloids group 13 elements (B, Al, Ga, In)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)

Definitions

  • the present invention relates to a sputtering method and a method for manufacturing the same, and an optical recording medium, and in particular, generation of particles during sputtering is small.
  • Ge-In-Sb-Te alloy sheet that can stably produce high-quality thin films and obtain optical recording media free of recording bit errors
  • the present invention relates to a sputtering target and an optical recording medium comprising the same alloy.
  • a phase-change optical disk records and reproduces information by heating a recording thin film on a substrate by irradiating a laser beam and causing a crystallographic phase change (amorphous crystal) in the structure of the recording thin film. More specifically, information is reproduced by detecting a change in reflectance caused by a change in an optical constant between the phases.
  • the above-mentioned phase change is performed by irradiating a laser beam with a diameter of about 1 to several meters.
  • a laser beam of 1 im passes at a linear velocity of 1 OmZs
  • the time at which a point on the optical disc is irradiated with light is 100 ns, and within this time, the phase It is necessary to detect the change and the reflectance.
  • an optical recording medium suitable for this is required.
  • D VD- phase change optical disk such as a RAM, the number of rewrites is guaranteed 10 5-10 6 times.
  • An optical recording medium has been proposed (see JP-A-2002-264155).
  • X is from In, A u, Cu, Al, Ga, P b, T i, S n At least one element selected, within the range of 0.001 ⁇ a ⁇ 0.20, 0.011 ⁇ b ⁇ 0.20, 0.40 ⁇ y ⁇ 0.90 and the recording layer
  • An optical recording medium containing nitrogen has been proposed (see JP-A-2002-264514).
  • phase change optical recording layer in which Sb and Te are essential elements and at least one or more types of X elements are added to this SbTe, where X is Ag, Au, Cu, Zn,
  • An optical recording medium which is selected from B, Al, Ga, In, Si, Ge, Sn, Pb, N, P, Bi, La, Ce, Cd, and Tb has been proposed. (See Japanese Patent Application Laid-Open No. 2002-245663).
  • the present invention is directed to an optical recording medium for optical recording media that generates a small amount of particles during sputtering, can stably produce a high-quality thin film, has no recording bit error, and can achieve a high recording density.
  • the present inventors have conducted intensive studies, and as a result, have achieved high recording density by selecting a Ge—In—Sb—Te alloy having an appropriate composition. It has been found that the generation of particles during sputtering can be effectively suppressed by strictly limiting the oxygen content and strictly adjusting the crystal grain size.
  • the present invention is based on this finding,
  • the optical recording medium is characterized by being in the range of 0.1 ⁇ 1 ⁇ 10, 0.1 ⁇ ; 3 ⁇ 10, 60 ⁇ r ⁇ 90, 1 0 ⁇ ⁇ ⁇ 22, where the sum of G e — I ⁇ — S b -T e alloy sputtering head and optical recording medium made of the same alloy 2.
  • the Ge—In—Sb—Te alloy sputtering target for an optical recording medium according to any one of the above 1 to 3, characterized in that the target has an average crystal grain size of 100 m or less.
  • the Ge—In—Sb—Te alloy sputtering target for optical recording media according to any one of the above items 1 to 3, wherein the target has an average crystal grain size of 50 m or less.
  • the Ge—In—Sb—Te alloy sputtering target for the optical recording medium of the present invention and the optical recording medium composed of the same alloy have low particle generation during sputtering and are stable and high in quality. This has an excellent effect that a thin film can be produced and a high recording density can be achieved without occurrence of recording bit error.
  • the Ge—In—Sb—Te alloy sputtering target for an optical recording medium of the present invention and the optical recording medium comprising the alloy are as follows: G e () -I In ( ⁇ ) —S b (r) ⁇ It is composed of T e ( ⁇ ) alloy, and assuming that the sum of the component composition ratios ⁇ , ⁇ , ⁇ , and ⁇ (atomic%) is 100, 0.1 ⁇ H ⁇ 10 and 0.1 ⁇ ⁇ ⁇ 1 0, 6 0 ⁇ f ⁇ 90, 1 0 ⁇ ⁇ ⁇ 22
  • This alloy composition is a suitable composition that can achieve a high recording density, realizes a crystallographic phase change, that is, a phase change between amorphous and crystal, and can greatly improve the number of rewrites.
  • the Ge—In—Sb—Te alloy sputtering target for an optical recording medium of the present invention has a strict oxygen content of not more than 1500 ppm, more preferably not more than 800 ppm. Limited. As a result, the generation of particles during sputtering is remarkably reduced, a stable high-quality thin film can be produced, no recording bit error occurs, and a high recording density of an optical recording medium can be achieved. Manufacturing becomes possible.
  • oxygen in the optical recording medium is selectively bonded to Ge, so that the stability of mutual transformation between amorphization and crystallization is deteriorated, and the number of times of repeated recording is reduced. Therefore, limiting (reducing as much as possible) the amount of oxygen in the optical recording medium is important for obtaining high quality films.
  • the average crystal grain size of the target should be 100 The following is also very effective. This makes it possible to produce a good thin film with no recording pit error. In particular, it is desirable that the average crystal grain size of the target is 50; m or less. Further, it is effective to set the iron content in the Ge-In-Sb-Te alloy sputtering target (recording medium) for the optical recording medium to 1 to 100 ppm. . If the addition is less than 1 ppm, the effect of the addition is ineffective, and if it exceeds lOO ppm, the CNR and D ⁇ W deteriorate, so when iron is added, the Fe content should be 1 to 100 p pm is desirable.
  • the Ge-In-Sb-Te alloy sputtering target for an optical recording medium of the present invention was obtained by synthesizing Ge powder, In powder, Sb powder, and Te powder in an ampoule. After the ingot is ground to a predetermined particle size, uniformly dispersed and mixed, using a hot press, the sintering temperature is 400 to 600 ° C, and the surface pressure is 75 to 250 kg / cm. It can be manufactured by sintering under the conditions of 2 .
  • CNR (dB) indicates a measured value at 30 m / s
  • DOW indicates an evaluation result by jitter at the time of performing overwrite recording 100 times.
  • Jitter is the value of the re-signal deviation of the minimum pit length signal (3 T) from the maximum pit length signal (11 T).
  • Table 1 shows a comparison with the examples.
  • the CNR (dB) measurement value, DOW measurement value, and sputtering conditions of the evaluation sample were performed in the same manner as in the example. table 1
  • Particles #K indicate less than 500 particles / wafer, and NG indicates more than 500 particles / wafer.
  • Examples 1 to 6 show that the oxygen content is in the range of 700 to 130 ppm, the particle size is in the range of 30 to 89 m, the CNR (dB) is in the range of 45 to 55, and the DOW However, the amount of generated particles was good.
  • Example 7 the Fe content was ⁇ 1 wtp pm, but the oxygen content in the raw material was as low as 500 ppm or less (450 wtp pm). In addition, CNR (dB), DOW, and particle generation were all good.
  • Comparative Example 1 On the other hand, in Comparative Example 1, the amount of oxygen was as large as 2000 ppm, and the amount of DOW and particles generated was poor. In Comparative Example 2, since the particle size was as large as 200 xm, the amount of generated particles was poor. In Comparative Example 3, the DOW deteriorated because the Fe content was too high at 120 ppm. In Comparative Example 4, since the oxygen content was as high as 2500 ppm and Fe ⁇ lppm, the DOW and the amount of particles generated were poor. In the absence of Fe, oxygen is high. Comparative Example 5 had a composition deviation of 62.2.Oat% (excessive), and thus had poor DOW. Comparative Example 6 had a composition deviation of ⁇ 55.0 at% (small), and thus had poor DOW.
  • the oxygen content and the particle size of the target have good CNR (dB), DOW and an effect of suppressing generation of particles within the range of the present invention.
  • the Fe content affects the amount of oxygen, and the presence of an appropriate amount of Fe has an effect of suppressing generation of particles during sputtering. It can also be seen that when the oxygen content is sufficiently low, similar good results are obtained regardless of the Fe content. 0 Industrial applicability
  • the present invention relates to an optical recording medium capable of stably producing a high-quality thin film with little generation of particles during sputtering, generating no recording bit error, and achieving a high recording density.
  • G e In — S b — Te alloy Applicable to sputtering targets, methods for manufacturing the same alloy targets, and optical recording media made of the same alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

A Ge(α)-In(β)-Sb(Ϝ)-Te(δ) alloy sputtering target for optical recording media characterized in that letting the sum of the respective composition ratios α, β, Ϝ, δ (atom%) be 100, their ranges are 0.1≤α≤10, 0.1≤β≤10, 60≤Ϝ≤90, 10≤δ<22. An optical recording medium made of the alloy is also disclosed. Few particles are produced during sputtering, and consequently a high-quality thin film is stably formed. The optical recording medium hardly causes an error of record bits and has a high recording density.

Description

スパッタリング夕ーゲット及び光記録媒体 Sputtering targets and optical recording media
技術分野 Technical field
本発明は、 スパッタリング夕一ゲット及び同夕ーゲッ卜の製造方法並び に光記録媒体に関し、特にスパッタリングの際にパーティクルの発生が少 明  The present invention relates to a sputtering method and a method for manufacturing the same, and an optical recording medium, and in particular, generation of particles during sputtering is small.
なく、 安定して高品質の薄膜の作製が可能であり、 記録ビットのエラー発 生のない光記録媒体を得ることができる G e - I n - S b— T e合金ス 書 Ge-In-Sb-Te alloy sheet that can stably produce high-quality thin films and obtain optical recording media free of recording bit errors
パッタリングターゲット及び同合金からなる光記録媒体に関する。 The present invention relates to a sputtering target and an optical recording medium comprising the same alloy.
背景技術 Background art
近年、 磁気へッドを必要とせずに記録 ·再生ができる高密度記録光ディ スク技術が開発され、 急速に関心が高まっている。 この光ディスクは再生 専用型、 追記型、 書き換え型の 3種類に分けられるが、 特に追記型又は書 き換え型で使用されている相変化方式が注目されている。  In recent years, high-density recording optical disc technology capable of recording and reproducing without the need for a magnetic head has been developed, and interest has rapidly increased. This optical disk is classified into three types: read-only type, write-once type, and rewritable type. The phase change method used in write-once type or rewritable type has attracted special attention.
相変化光ディスクは、 基板上の記録薄膜をレーザー光の照射によって加 熱昇温させ、 その記録薄膜の構造に結晶学的な相変化 (アモルファス 結 晶) を起こさせて情報の記録,再生を行うものであり、 より具体的にはそ の相間の光学定数の変化に起因する反射率の変化を検出して情報の再生 を行うものである。  A phase-change optical disk records and reproduces information by heating a recording thin film on a substrate by irradiating a laser beam and causing a crystallographic phase change (amorphous crystal) in the structure of the recording thin film. More specifically, information is reproduced by detecting a change in reflectance caused by a change in an optical constant between the phases.
上記の相変化は 1〜数 m程度の径に絞ったレーザ一光の照射によつ て行なわれる。 この場合、 例えば 1 i mのレ一ザ一ビームが 1 O mZ sの 線速度で通過するとき、 光ディスクのある点に光が照射される時間は 1 0 0 n sであり、 この時間内で上記相変化と反射率の検出を行う必要がある。 また、 上記結晶学的な相変化すなわちアモルファスと結晶との相変化を 実現する上で、 これに適合する光記録媒体が求められている。 一般に、 D VD— RAM等の相変化光ディスクは、書き換え回数が 105〜 106回を 保証している。 The above-mentioned phase change is performed by irradiating a laser beam with a diameter of about 1 to several meters. In this case, for example, when a laser beam of 1 im passes at a linear velocity of 1 OmZs, the time at which a point on the optical disc is irradiated with light is 100 ns, and within this time, the phase It is necessary to detect the change and the reflectance. Further, in order to realize the above-mentioned crystallographic phase change, that is, a phase change between amorphous and crystalline, an optical recording medium suitable for this is required. In general, D VD- phase change optical disk such as a RAM, the number of rewrites is guaranteed 10 5-10 6 times.
一方、 基板への光記録媒体用薄膜を形成する場合、 スパッタリングが使 用されているが、 ターゲッ卜の材料によってパーティクルの発生が多くな り、 品質を低下させる場合がある。 特に高記録密度媒体ではパーティクル などのよる記録ビットのエラー発生が深刻な問題となる。 これが原因で、 不良品となって歩留まりが低下するという問題が発生する。  On the other hand, when a thin film for an optical recording medium is formed on a substrate, sputtering is used. However, depending on the material of the target, the generation of particles increases, and the quality may deteriorate. Particularly, in a high-density recording medium, a recording bit error caused by particles or the like becomes a serious problem. As a result, there is a problem that the yield is reduced due to defective products.
従来、 提案されている光記録媒体としては、 Ge ( a) 一 I n ( β ) 一 S b (r ) — T e ( δ ) 合金からなるターゲッ卜で、 各成分組成比 α + β + Τ + δ (原子%) = 100としたとき、 0. 1≤«≤7、 1≤ι3≤9、 61≤ 7≤ 75、 22≤(3≤30であり、 C L V記録及び C A V記録が可 能とする光記録媒体が提案されている (特開 2002— 26451 5号公 報参照)。  Conventionally, an optical recording medium that has been proposed is a target made of Ge (a) -In (β) -Sb (r) —Te (δ) alloy, and each component composition ratio α + β + Τ + δ (atomic%) = 100, 0.1≤≤≤7, 1≤ι3≤9, 61≤7≤75, 22≤ (3≤30, and CLV and CAV recording are possible. An optical recording medium has been proposed (see JP-A-2002-264155).
また、 G e a X b S b y T e (1_a_b_y) と表したとき、 Xが I n、 A u、 Cu、 A l、 Ga、 P b、 T i、 S nから選択される少なくとも一種の元 素であり、 0. 00 1≤ a≤ 0. 20, 0. 01≤ b≤ 0. 20, 0. 4 0≤y≤0. 90の範囲であると共に、 記録層に窒素を含む光記録媒体が 提案されている (特開 2002— 2645 14号公報参照)。 Also, when expressed as G e a X b S b y T e (1 _ a _ b _ y) , X is from In, A u, Cu, Al, Ga, P b, T i, S n At least one element selected, within the range of 0.001≤a≤0.20, 0.011≤b≤0.20, 0.40≤y≤0.90 and the recording layer An optical recording medium containing nitrogen has been proposed (see JP-A-2002-264514).
また、 S b、 T eを必須元素とし、 この S b T eに対して少なくとも一 種以上の X元素を添加した相変化光記録層であり、 Xが A g、 Au、 C u、 Zn、 B、 A l、 Ga、 I n、 S i、 Ge、 S n、 P b、 N、 P、 B i、 L a、 C e、 Cd、 T bから選ばれるとする光記録媒体が提案されている (特開 2002— 245663号公報参照)。 また、 高純度 G e、 もしくは A 1、 S i、 F e、 C r、 T a、 Nb、 C u、 Mn、 Mo、 W、 N i、 T i、 Z r、 H f 、 C o、 I r、 P t、 Ru、 Bおよび Cから選ばれる少なくとも 1種の元素を 0. 1〜 5 0 & 1:原子% の範囲で含む G e合金であって、 A gおよび A u含有量がそれぞれ 5 p p m以下である相変化光ディスク用スパッタリングターゲッ 卜が提案され ている (特開 2 0 0 2— 6 9 6 24号公報参照)。 発明の開示 Further, a phase change optical recording layer in which Sb and Te are essential elements and at least one or more types of X elements are added to this SbTe, where X is Ag, Au, Cu, Zn, An optical recording medium which is selected from B, Al, Ga, In, Si, Ge, Sn, Pb, N, P, Bi, La, Ce, Cd, and Tb has been proposed. (See Japanese Patent Application Laid-Open No. 2002-245663). In addition, high purity Ge or A1, Si, Fe, Cr, Ta, Nb, Cu, Mn, Mo, W, Ni, Ti, Zr, Hf, Co, I A Ge alloy containing at least one element selected from r, Pt, Ru, B and C in the range of 0.1 to 50 & 1: atomic%, wherein the Ag and Au contents are respectively A sputtering target for a phase change optical disk having a concentration of 5 ppm or less has been proposed (see Japanese Patent Application Laid-Open No. 2002-69624). Disclosure of the invention
本発明は、 スパッタリングの際にパーティクルの発生が少なく、 安定し て高品質の薄膜の作製が可能であり、 記録ビットのエラー発生のない、 そ して高記録密度が達成できる光記録媒体用 G e— I n— S b— T e合金 スパッタリング夕一ゲット及び同合金ターゲッ トの製造方法並びに同合 金からなる光記録媒体を提供する。  The present invention is directed to an optical recording medium for optical recording media that generates a small amount of particles during sputtering, can stably produce a high-quality thin film, has no recording bit error, and can achieve a high recording density. Provided are an e-In-Sb-Te alloy sputtering target and a method for producing the alloy target, and an optical recording medium comprising the alloy.
上記の課題を解決するために、 本発明者らは鋭意研究を行った結果、 適 切な組成の G e— I n— S b— T e合金を選択して高記録密度が達成す ると共に、 酸素含有量を厳しく制限し、 かつ結晶粒度を厳密に調整するこ とにより、 スパッタリングの際にパーティクルの発生を効果的に抑制する ことができるとのとの知見を得た。  In order to solve the above-mentioned problems, the present inventors have conducted intensive studies, and as a result, have achieved high recording density by selecting a Ge—In—Sb—Te alloy having an appropriate composition. It has been found that the generation of particles during sputtering can be effectively suppressed by strictly limiting the oxygen content and strictly adjusting the crystal grain size.
本発明はこの知見に基づき、  The present invention is based on this finding,
1. G e (a) — I n (β) — S b (r ) — T e ( δ ) 合金からなる夕一 ゲットであって、 各成分組成比ひ、 β、 τ、 δ (原子%) の合計を 100 としたとき、 0. 1≤ひ≤ 1 0、 0. 1≤ ;3≤ 10 , 60≤ r≤ 90 , 1 0≤ δ < 22の範囲にあることを特徴とする光記録媒体用 G e — I η— S b -T e合金スパッ夕リング夕一ゲッ ト及び同合金からなる光記録媒 体 2. 酸素含有量が 1 500 p pm以下であることを特徴とする上記 1記載 の光記録媒体用 G e— I n— S b— T e合金スパッタリングターゲット 及び同合金からなる光記録媒体 1. G e (a) — In (β) — S b (r) — Te (δ) alloy, with each component composition ratio β, τ, δ (atomic%) The optical recording medium is characterized by being in the range of 0.1 ≤ 1 ≤ 10, 0.1 ≤; 3 ≤ 10, 60 ≤ r ≤ 90, 1 0 ≤ δ <22, where the sum of G e — I η — S b -T e alloy sputtering head and optical recording medium made of the same alloy 2. The Ge—In—Sb—Te alloy sputtering target for an optical recording medium according to 1 above, wherein the oxygen content is not more than 1,500 ppm, and an optical recording medium comprising the alloy.
3. 酸素含有量が 8 0 0 pm以下であることを特徴とする上記 1記載の 光記録媒体用 G e— I n— S b— T e合金スパッ夕リング夕一ゲッ ト及 び同合金からなる光記録媒体  3. The Ge—In—Sb—Te alloy sputtering ring for optical recording media described in 1 above, characterized by having an oxygen content of 800 pm or less. Optical recording medium
4. ターゲットの結晶平均粒度が 1 0 0 m以下であることを特徴とする 上記 1〜 3のいずれかに記載の光記録媒体用 G e— I n— S b— T e合 金スパッタリング夕ーゲット  4. The Ge—In—Sb—Te alloy sputtering target for an optical recording medium according to any one of the above 1 to 3, characterized in that the target has an average crystal grain size of 100 m or less.
5. ターゲッ卜の結晶平均粒度が 50 m以下であることを特徴とする上 記 1〜 3のいずれかに記載の光記録媒体用 G e— I n— S b— T e合金 スパッ夕リングターゲット  5. The Ge—In—Sb—Te alloy sputtering target for optical recording media according to any one of the above items 1 to 3, wherein the target has an average crystal grain size of 50 m or less.
6. 鉄の含有量が 1〜 1 00 p pmであることを特徴とする上記 1〜 5の いずれかに記載の光記録媒体用 G e - I n - S b -T e合金スパッ夕リ ング夕ーゲット 6. The Ge-In-Sb-Te alloy sputtering for optical recording media according to any one of the above items 1 to 5, wherein the iron content is 1 to 100 ppm. Evening get
を提供する。 発明の効果 I will provide a. The invention's effect
本発明の光記録媒体用 G e— I n— S b— T e合金スパッ夕リング夕 ーゲット及び同合金からなる光記録媒体は、 スパッタリングの際にパーテ ィクルの発生が少なく、 安定して高品質の薄膜の作製が可能であり、 記録 ビッ 卜のエラ一発生のない高記録密度が達成できるという優れた効果を 有する。 発明を実施するための最良の形態 The Ge—In—Sb—Te alloy sputtering target for the optical recording medium of the present invention and the optical recording medium composed of the same alloy have low particle generation during sputtering and are stable and high in quality. This has an excellent effect that a thin film can be produced and a high recording density can be achieved without occurrence of recording bit error. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の光記録媒体用 G e— I n— S b— T e合金スパッタリングタ ーゲッ卜及び同合金からなる光記録媒体は、 G e ( ) 一 I n ( β ) — S b (r) -T e ( δ ) 合金からなり、 各成分組成比 α、 β、 γ、 δ (原子%) の合計を 1 0 0としたとき、 0. 1≤ひ≤ 1 0、 0. 1 ≤ β≤ 1 0 , 6 0 ≤ァ≤ 9 0、 1 0≤ δ < 2 2の範囲にある。 この合金組成は、 高記録密度 化が達成できる好適な組成であり、 結晶学的な相変化すなわちァモルファ スと結晶との相変化を実現し、 書き換え回数の大幅な向上が可能となる。 さらに、 本発明の光記録媒体用 G e— I n— S b— T e合金スパッタリ ングターゲットは、 酸素含有量が 1 5 0 0 p pm以下に、 より好ましくは 8 0 0 p pm以下に厳しく制限される。 これによつて、 スパッタリングの 際のパーティクル発生が著しく減少し、 安定した高品質の薄膜の作製が可 能であり、 記録ビットのエラー発生のない、 そして高記録密度が達成でき る光記録媒体の製造が可能となる。  The Ge—In—Sb—Te alloy sputtering target for an optical recording medium of the present invention and the optical recording medium comprising the alloy are as follows: G e () -I In (β) —S b (r) − It is composed of T e (δ) alloy, and assuming that the sum of the component composition ratios α, β, γ, and δ (atomic%) is 100, 0.1 ≤ H ≤ 10 and 0.1 ≤ β ≤ 1 0, 6 0 ≤ f ≤ 90, 1 0 ≤ δ <22 This alloy composition is a suitable composition that can achieve a high recording density, realizes a crystallographic phase change, that is, a phase change between amorphous and crystal, and can greatly improve the number of rewrites. Further, the Ge—In—Sb—Te alloy sputtering target for an optical recording medium of the present invention has a strict oxygen content of not more than 1500 ppm, more preferably not more than 800 ppm. Limited. As a result, the generation of particles during sputtering is remarkably reduced, a stable high-quality thin film can be produced, no recording bit error occurs, and a high recording density of an optical recording medium can be achieved. Manufacturing becomes possible.
また、 光記録媒体中の酸素は G eと選択的に結合するため、 ァモルファ ス化と結晶化の相互変態の安定性を劣化させ、 繰り返し記録回数の低下を もたらす。 したがって、 光記録媒体中の酸素量の制限 (極力減少させるこ と) は高品質の膜が得る上でも重要である。  In addition, oxygen in the optical recording medium is selectively bonded to Ge, so that the stability of mutual transformation between amorphization and crystallization is deteriorated, and the number of times of repeated recording is reduced. Therefore, limiting (reducing as much as possible) the amount of oxygen in the optical recording medium is important for obtaining high quality films.
また、 スパッタリングの際のパーティクル発生防止には、 ターゲットの 結晶平均粒度を 1 0 0
Figure imgf000006_0001
以下とすることも極めて有効である。 これによ つて、 同様に記録ピットのエラー発生のない良好な薄膜の作製が可能とな る。 特に、 ターゲットの結晶平均粒度が 5 0; m以下であることが望まし い。 さらに、 本発明の光記録媒体用 G e - I n - S b— T e合金スパッタリ ングターゲット (記録媒体) 中に鉄の含有量を 1〜 1 0 0 p pmとするこ とが有効である。 1 p pm未満では添加の効果がなく、 l O O p pmを超 えると CNRと D〇 Wが悪くなるので、 鉄を添加する場合には、 F eの含 有量を 1〜 1 0 0 p pmとするのが望ましい。
In order to prevent the generation of particles during sputtering, the average crystal grain size of the target should be 100
Figure imgf000006_0001
The following is also very effective. This makes it possible to produce a good thin film with no recording pit error. In particular, it is desirable that the average crystal grain size of the target is 50; m or less. Further, it is effective to set the iron content in the Ge-In-Sb-Te alloy sputtering target (recording medium) for the optical recording medium to 1 to 100 ppm. . If the addition is less than 1 ppm, the effect of the addition is ineffective, and if it exceeds lOO ppm, the CNR and D〇W deteriorate, so when iron is added, the Fe content should be 1 to 100 p pm is desirable.
本発明の光記録媒体用 G e - I n - S b -T e合金スパッタリングタ 一ゲットは、 G e粉、 I n粉、 S b粉、 T e粉をアンプル内で合成し、 得 られたィンゴッ卜を所定の粒度まで粉砕した後、 均一に分散混合させた後、 ホットプレスを使用して、 焼結温度 4 0 0〜 6 0 0 ° C、 面圧 7 5〜 2 5 0 k g/ c m2の条件で焼結することによって製造することができる。 実施例 The Ge-In-Sb-Te alloy sputtering target for an optical recording medium of the present invention was obtained by synthesizing Ge powder, In powder, Sb powder, and Te powder in an ampoule. After the ingot is ground to a predetermined particle size, uniformly dispersed and mixed, using a hot press, the sintering temperature is 400 to 600 ° C, and the surface pressure is 75 to 250 kg / cm. It can be manufactured by sintering under the conditions of 2 . Example
以下、 実施例および比較例に基づいて説明する。 なお、 本実施例はあく まで一例であり、 この例によって何ら制限されるものではない。すなわち、 本発明は特許請求の範囲によってのみ制限されるものであり、本発明に含 まれる実施例以外の種々の変形を包含するものである。  Hereinafter, description will be made based on examples and comparative examples. This embodiment is merely an example, and the present invention is not limited to this embodiment. That is, the present invention is limited only by the claims, and includes various modifications other than the examples included in the present invention.
(実施例 1一 7)  (Examples 1 to 7)
純度 5 N ( 9 9. 9 9 9 %) の G e粉、 I n粉、 S b粉、 T e粉を準備 し、 これらの粉を G e ( ) — I n ( β ) — S b (r ) — T e ( δ ) とな るように調合した後アンプル内で合成し、 得られたインゴットを所定の粒 度まで粉砕した後、 カーボン製ダイスに充填し、 温度 6 0 0 ° C, 圧力 1 5 0 k g/ cm2の条件でホットプレスを行った。 Prepare Ge powder, In powder, Sb powder, and Te powder with a purity of 5 N (99.99.99%), and use these powders as Ge () — In (β) — S b ( r) — Compounded to give Te (δ), synthesized in an ampoule, crushed the obtained ingot to a predetermined particle size, filled in a carbon die, and heated to a temperature of 600 ° C. Hot pressing was performed under the condition of a pressure of 150 kg / cm 2 .
この焼結体を仕上げ加工して夕ーゲットとした。 ターゲットの相対密度 は 9 9 % ( 1 0 0 %密度で 5. 54 g/ c m3) であった。 この夕一ゲッ トの 3箇所から任意に採取したサンプルの密度をアルキメデス法により 測定した。 また、 同組成における T e含有量 δ ( a t %)、 酸素量 (w t p pm)、 粒径 (a m) F e含有量、 CNR ( carrier to noise ratio )、 DOW ( direct over write ), スパッタリング時のパーティクル発生の結果を 表 1に示す。 This sintered body was finished to obtain evening get. The relative density of the target was 99% (5.54 g / cm 3 at 100% density). The density of samples arbitrarily collected from the three spots in this evening was measured by the Archimedes method. In the same composition, Te content δ (at%), oxygen content (wtp pm), particle size (am) Fe content, CNR (carrier to noise ratio), DOW (direct over write), Table 1 shows the results of particle generation.
なお、 CNR (d B) は 3 0 m/ sにおける測定値、 DOWは 1 0 0回 上書き記録を実施した時点でのジッターによる評価結果を示す。 ジッター とは最小ピッ卜長信号 (3 T) の最大ピット長信号 ( 1 1 T) に対する再 信号のずれの値で、 今回は 2 0 %を下回るものを OK:、 2 0 %以上をNG と判定した。  Note that CNR (dB) indicates a measured value at 30 m / s, and DOW indicates an evaluation result by jitter at the time of performing overwrite recording 100 times. Jitter is the value of the re-signal deviation of the minimum pit length signal (3 T) from the maximum pit length signal (11 T). Judged.
また、 評価サンプルは、 D VDブランクメディァ上に、 Z n S— S i〇 2 ( 4 5 n m)、 記録層 ( 1 5 n m)、 Z n S - S i 02 (2 0 nm)、 A 1 — T i ( 1 5 0 nm) を連続成膜して作製した。 比較例 The evaluation sample, on D VD blank media §, Z n S- S I_〇 2 (4 5 nm), the recording layer (1 5 nm), Z n S - S i 0 2 (2 0 nm), A It was fabricated by continuous deposition of 1-Ti (150 nm). Comparative example
(比較例 1一 6)  (Comparative Examples 1-6)
純度 5 N ( 9 9. 9 9 9 %) の G e粉、 I n粉、 S b粉、 T e粉を準備 し、 これらの粉を G e ( ) — I n ( β ) - S b (r ) — T e ( δ ) とな るように調合し、 これを乾式混合した後アンプル内で合成し、 得られたィ ンゴットを所定の粒度まで粉砕した後、 カーボン製ダイスに充填し、 温度 6 0 0 ° C、 圧力 1 5 0 k g/ cm2の条件でホットプレスを行った。 この焼結体を仕上げ加工して夕一ゲットとした。 夕ーゲットの相対密度 は 9 9 % ( 1 0 0 %密度で 5. S A gZcm3) であった。 この夕ーゲッ 卜の 3箇所から任意に採取したサンプルの密度をアルキメデス法により 測定した。 また、 同組成における T e含有量 δ (a t %)、 酸素量 (w t p pm)、 粒径 ( m)、 F e含有量、 CNR (d B)、 DOW、 スパッタリング時の パーティクル発生の結果を、実施例と対比し表 1に示す。なお、 CNR (d B) 測定値、 DOW測定値、 評価サンプルのスパッタリング条件は、 実施 例と同様に行った。 表 1 Prepare Ge powder, In powder, Sb powder, and Te powder with a purity of 5 N (99.99.99%), and use these powders as G e () — In (β)-S b ( r) — T e (δ), dry-blended and synthesized in an ampoule. Hot pressing was performed under the conditions of 600 ° C. and a pressure of 150 kg / cm 2 . This sintered body was finished to obtain an evening get. The relative density of the evening get was 99% (5. SA gZcm 3 at 100% density). The density of samples arbitrarily collected from the three spots in this evening was measured by the Archimedes method. For the same composition, the Te content δ (at%), oxygen content (wtp pm), particle size (m), Fe content, CNR (d B), DOW, and the results of particle generation during sputtering are shown below. Table 1 shows a comparison with the examples. The CNR (dB) measurement value, DOW measurement value, and sputtering conditions of the evaluation sample were performed in the same manner as in the example. table 1
Figure imgf000009_0001
Figure imgf000009_0001
パーティクル〇Kは 5 0 0個未満/ウェハを、 NGは 5 0 0個以上/ゥェ 八を示す。 実施例 1一 6は、 酸素含有量が 7 0 0 - 1 3 0 0 p pmの範囲、 粒径 3 0— 8 9 m、 CNR (d B) が 4 5— 5 5の範囲にあり、 DOW、 パー ティクル発生量は良好であった。 Particles #K indicate less than 500 particles / wafer, and NG indicates more than 500 particles / wafer. Examples 1 to 6 show that the oxygen content is in the range of 700 to 130 ppm, the particle size is in the range of 30 to 89 m, the CNR (dB) is in the range of 45 to 55, and the DOW However, the amount of generated particles was good.
なお、 実施例 7については、 F e含有量が < 1 w t p pmであるが、 原料 に含まれる酸素含有量が 5 0 0 p pm以下 (4 5 0 w t p pm) と低いの で、 上記と同様に CNR (d B)、 DOW、 パーティクル発生量はいずれ も良好であった。 Note that, in Example 7, the Fe content was <1 wtp pm, but the oxygen content in the raw material was as low as 500 ppm or less (450 wtp pm). In addition, CNR (dB), DOW, and particle generation were all good.
これに対し、 比較例 1は酸素量が 2 0 0 0 p pmと多いため DOW、 パ 一ティクル発生量は不良であった。 比較例 2は、 粒径が 2 0 0 xmと大き いためパーティクル発生量は不良であった。 比較例 3は、 F e含有量が 1 2 0 p pmと多過ぎるため、 DOWが悪化した。 比較例 4は、 酸素含有量 が 2 5 0 0 p pmと多く、 また F e< l p pmのため、 DOW、 パ一ティ クル発生量は不良であった。 F eがない場合には酸素が高くなる。 比較例 5は、 6 2 2. O a t %と組成ずれを生じている (過量の) ため、 DOW が不良であった。 比較例 6は <5 5. 0 a t %と組成ずれを生じている (過 少) のため、 DOWが不良であった。  On the other hand, in Comparative Example 1, the amount of oxygen was as large as 2000 ppm, and the amount of DOW and particles generated was poor. In Comparative Example 2, since the particle size was as large as 200 xm, the amount of generated particles was poor. In Comparative Example 3, the DOW deteriorated because the Fe content was too high at 120 ppm. In Comparative Example 4, since the oxygen content was as high as 2500 ppm and Fe <lppm, the DOW and the amount of particles generated were poor. In the absence of Fe, oxygen is high. Comparative Example 5 had a composition deviation of 62.2.Oat% (excessive), and thus had poor DOW. Comparative Example 6 had a composition deviation of <55.0 at% (small), and thus had poor DOW.
以上に示すように、 G e («) — I n (β) - S b (r ) -T e (δ) 合金からなるターゲットにおいて、 T e ( (5 ) 組成のずれは、 光記録媒体 の特性に大きく影響を与えることが分かる。  As described above, in a target composed of G e («) — In (β)-S b (r)-T e (δ) alloy, the deviation of the T e ((5) It can be seen that the characteristics are greatly affected.
また、 ターゲットの酸素量、 粒径は、 本発明の範囲において、 良好な C NR (d B) と DOW及びパーティクル発生の抑制効果を有する。 また、 F e含有量は酸素量に影響を与え、 適量の F eの存在はスパッタリング時 のパーティクル発生の抑制効果を有する。 また、 酸素量が十分に低い場合 には、 F e含有量に関係なく、 同様の良好な結果を示すことが分かる。 0 産業上の利用可能性 Further, the oxygen content and the particle size of the target have good CNR (dB), DOW and an effect of suppressing generation of particles within the range of the present invention. Further, the Fe content affects the amount of oxygen, and the presence of an appropriate amount of Fe has an effect of suppressing generation of particles during sputtering. It can also be seen that when the oxygen content is sufficiently low, similar good results are obtained regardless of the Fe content. 0 Industrial applicability
本発明は、 スパッタリングの際にパーティクルの発生が少なく、 安定し て高品質の薄膜の作製が可能であり、 記録ビッ卜のエラ一発生のない、 そ して高記録密度が達成できる光記録媒体用 G e — I n — S b — T e合金 スパッタリングターゲット及び同合金ターゲットの製造方法並びに同合 金からなる光記録媒体に適用できる。  The present invention relates to an optical recording medium capable of stably producing a high-quality thin film with little generation of particles during sputtering, generating no recording bit error, and achieving a high recording density. G e — In — S b — Te alloy Applicable to sputtering targets, methods for manufacturing the same alloy targets, and optical recording media made of the same alloys.

Claims

請 求 の 範 囲 1. G e ( ) 一 I n (β) 一 S b (r ) 一 T e ( δ ) 合金からなるター ゲッ卜であって、 各成分組成比ひ、 β、 r、 δ (原子%) の合計を 1 0 0 としたとき、 0. 1≤ «≤ 1 0、 0. 1≤ β≤ 1 0 , 6 0≤ r≤ 9 0 , 1 0≤ (5 < 2 2の範囲にあることを特徴とする光記録媒体用 G e— I n _ S b - T e合金スパッ夕リング夕ーゲッ卜及び同合金からなる光記録媒 体。 Scope of Claim 1. A target composed of an alloy of Ge ()-In (β) -Sb (r) -Te (δ), wherein the composition ratio of each component is β, r, δ (Atomic%) as 1 0 0, 0.1 ≤ «≤ 1 0, 0.1 ≤ β≤ 1 0, 6 0 ≤ r≤ 9 0, 1 0 ≤ (5 <2 2 An optical recording medium comprising a Ge—In_Sb—Te alloy sputtering target for an optical recording medium, the optical recording medium comprising the alloy.
2. 酸素含有量が 1 5 0 0 p pm以下であることを特徴とする請求の範囲 第 1項記載の光記録媒体用 G e— I n— S b— T e合金スパッ夕リング 夕一ゲット及び同合金からなる光記録媒体。  2. The Ge—In—Sb—Te alloy sputtering ring for an optical recording medium according to claim 1, wherein the oxygen content is not more than 1500 ppm. And an optical recording medium comprising the same alloy.
3. 酸素含有量が 8 0 0 p pm以下であることを特徴とする請求の範囲第 1項記載の光記録媒体用 G e— I n— S b— T e合金スパッ夕リングタ 3. The Ge—In—Sb—Te alloy sparing ring for optical recording media according to claim 1, wherein the oxygen content is 800 ppm or less.
—ゲット及び同合金からなる光記録媒体。 —Get and optical recording media made of the same alloy.
4. ターゲットの結晶平均粒度が 1 0 0 /xm以下であることを特徴とする 請求の範囲第 1項〜第 3項のいずれかに記載の光記録媒体用 G e— I n - S b -T e合金スパッ夕リングターゲット。  4. The optical recording medium according to any one of claims 1 to 3, wherein the target has an average crystal grain size of 100 / xm or less. Te alloy sputtering target.
5. ターゲッ卜の結晶平均粒度が 5 0 以下であることを特徴とする請 求の範囲第 1項〜第 3項のいずれかに記載の光記録媒体用 G e— I n— S b— T e合金スパッ夕リングターゲット。 5. The Ge—In—Sb—T for optical recording media according to any one of claims 1 to 3, wherein the target has an average crystal grain size of 50 or less. e-alloy sputtering target.
6. 鉄の含有量が 1〜 1 0 0 p pmであることを特徴とする請求の範囲第 1項〜第 5項のいずれかに記載の光記録媒体用 G e— I n— S b— T e 合金スパッタリングターゲット。  6. The Ge—In—Sb— for an optical recording medium according to any one of claims 1 to 5, wherein the iron content is 1 to 100 ppm. T e alloy sputtering target.
PCT/JP2004/005395 2003-07-15 2004-04-15 Sputtering target and optical recording medium WO2005005683A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005511456A JP4582457B2 (en) 2003-07-15 2004-04-15 Sputtering target and optical recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003274651 2003-07-15
JP2003-274651 2003-07-15
JP2003287247 2003-08-06
JP2003-287247 2003-08-06

Publications (1)

Publication Number Publication Date
WO2005005683A1 true WO2005005683A1 (en) 2005-01-20

Family

ID=34067388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/005395 WO2005005683A1 (en) 2003-07-15 2004-04-15 Sputtering target and optical recording medium

Country Status (3)

Country Link
JP (1) JP4582457B2 (en)
TW (1) TWI288180B (en)
WO (1) WO2005005683A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010496A1 (en) 2008-02-25 2009-08-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe sputtering Target
JP2009221588A (en) * 2008-03-19 2009-10-01 Mitsubishi Materials Corp Sputtering target for phase change film formation with less particle generation
KR20160078478A (en) 2014-03-25 2016-07-04 제이엑스금속주식회사 Sputtering target of sintered sb-te-based alloy
US9528181B2 (en) 2011-04-22 2016-12-27 Mitsubishi Materials Corporation Sputtering target and method for producing same
JP2021028411A (en) * 2019-08-09 2021-02-25 Jx金属株式会社 Sputtering target, and manufacturing method of sputtering target

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5045804B2 (en) * 2009-10-29 2012-10-10 住友金属鉱山株式会社 Sputtering target for forming a resistance thin film, resistance thin film, thin film resistor, and manufacturing method thereof
CN114717524A (en) * 2022-04-02 2022-07-08 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material suitable for serving as long-storage phase change storage medium and preparation method thereof
CN114892133A (en) * 2022-04-02 2022-08-12 昆明贵研新材料科技有限公司 Ru-Sb-Te alloy sputtering target material used as long-storage phase change storage medium and preparation method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11279752A (en) * 1998-03-27 1999-10-12 Sumitomo Metal Mining Co Ltd Production of sputtering target for phase transition-type optical recording
JP2000313170A (en) * 1999-03-01 2000-11-14 Mitsubishi Chemicals Corp Optical information recording medium, method for regenerating it and method for recording
JP2001123267A (en) * 1999-10-26 2001-05-08 Sanyo Special Steel Co Ltd METHOD OF MANUFACTURING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JP2002264515A (en) * 2001-03-12 2002-09-18 Ricoh Co Ltd Optical recording medium and method of recording and reproducing information
JP2002269806A (en) * 2001-03-09 2002-09-20 Ricoh Co Ltd Optical information recording medium
JP2003003222A (en) * 1993-12-13 2003-01-08 Ricoh Co Ltd Sputtering target, its manufacturing method, optical recording medium using the target, and method for manufacturing the optical recording medium
JP2003173585A (en) * 2001-12-04 2003-06-20 Ricoh Co Ltd Phase change optical disk and its manufacturing method
JP2003196892A (en) * 2002-10-18 2003-07-11 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing optical disk

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06280009A (en) * 1993-03-30 1994-10-04 Mitsubishi Materials Corp Target for sputtering and its production
JP3838712B2 (en) * 1996-10-16 2006-10-25 同和鉱業株式会社 Antimony purification method
JP2001316803A (en) * 2000-04-28 2001-11-16 Honeywell Electronics Japan Kk Method of manufacturing sputtering target material
JP4578704B2 (en) * 2001-03-02 2010-11-10 アルバックマテリアル株式会社 W-Ti target and manufacturing method thereof
JP4432015B2 (en) * 2001-04-26 2010-03-17 日立金属株式会社 Sputtering target for thin film wiring formation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003003222A (en) * 1993-12-13 2003-01-08 Ricoh Co Ltd Sputtering target, its manufacturing method, optical recording medium using the target, and method for manufacturing the optical recording medium
JPH11279752A (en) * 1998-03-27 1999-10-12 Sumitomo Metal Mining Co Ltd Production of sputtering target for phase transition-type optical recording
JP2000313170A (en) * 1999-03-01 2000-11-14 Mitsubishi Chemicals Corp Optical information recording medium, method for regenerating it and method for recording
JP2001123267A (en) * 1999-10-26 2001-05-08 Sanyo Special Steel Co Ltd METHOD OF MANUFACTURING Ge-Sb-Te SPUTTERING TARGET MATERIAL
JP2002269806A (en) * 2001-03-09 2002-09-20 Ricoh Co Ltd Optical information recording medium
JP2002264515A (en) * 2001-03-12 2002-09-18 Ricoh Co Ltd Optical recording medium and method of recording and reproducing information
JP2003173585A (en) * 2001-12-04 2003-06-20 Ricoh Co Ltd Phase change optical disk and its manufacturing method
JP2003196892A (en) * 2002-10-18 2003-07-11 Matsushita Electric Ind Co Ltd Method and apparatus for manufacturing optical disk

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009010496A1 (en) 2008-02-25 2009-08-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe sputtering Target
JP2009221588A (en) * 2008-03-19 2009-10-01 Mitsubishi Materials Corp Sputtering target for phase change film formation with less particle generation
US9528181B2 (en) 2011-04-22 2016-12-27 Mitsubishi Materials Corporation Sputtering target and method for producing same
KR20160078478A (en) 2014-03-25 2016-07-04 제이엑스금속주식회사 Sputtering target of sintered sb-te-based alloy
US10854435B2 (en) 2014-03-25 2020-12-01 Jx Nippon Mining & Metals Corporation Sputtering target of sintered Sb—Te-based alloy
JP2021028411A (en) * 2019-08-09 2021-02-25 Jx金属株式会社 Sputtering target, and manufacturing method of sputtering target
JP7261694B2 (en) 2019-08-09 2023-04-20 Jx金属株式会社 Sputtering target and method for manufacturing sputtering target

Also Published As

Publication number Publication date
JPWO2005005683A1 (en) 2006-10-19
JP4582457B2 (en) 2010-11-17
TW200502412A (en) 2005-01-16
TWI288180B (en) 2007-10-11

Similar Documents

Publication Publication Date Title
EP1146509B1 (en) Optical information recording medium
TW501123B (en) Optical recording medium and production method of the same
US6811949B2 (en) Optical information recording medium and optical recording method
TW200303369A (en) Sputtering target for phase-change memory, film for phase change memory formed by using the target, and method for producing the target
WO2005005683A1 (en) Sputtering target and optical recording medium
EP1566802B1 (en) Optical recording process
JP2003182237A (en) Phase-change recording element for write-once application
JP4025139B2 (en) Phase change recording element for write-once applications
KR100453540B1 (en) Rewritable phase-change optical recording composition and rewritable phase-change optical disk
JP4276849B2 (en) Ge-Cr alloy sputtering target
JP4093846B2 (en) Phase change optical recording medium
JPH06166268A (en) Optical information recording medium and its manufacture
JP3534264B2 (en) Target material for magnetic thin film and method for manufacturing the same
EP0514733B1 (en) Optical recording medium
JP2003022570A (en) Optical recording medium and manufacturing method therefor
JP2003030901A (en) Aluminum alloy for forming reflecting film in optical recording disk
JP3235503B2 (en) Optical information recording medium and optical recording method
JP3885051B2 (en) Phase change optical recording medium
JPH04286683A (en) Optical recording medium and its manufacture
JPH09263055A (en) Target for sputtering, manufacture thereof, photorecording medium using the target, manufacture of the photorecording medium and photorecording method
JP6434546B2 (en) Nickel-tellurium-based sputtering target and nickel-tellurium-based oxide material
JP3433641B2 (en) Optical information recording medium and optical recording method
JP2000343826A (en) Phase change recording medium, its manufacture, and manufacturing device therefor
JP2003027158A (en) Gold alloy for forming optical recording disk reflection film
JP2003257077A (en) Optical recording medium

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005511456

Country of ref document: JP

122 Ep: pct application non-entry in european phase