Nothing Special   »   [go: up one dir, main page]

WO2005082228A1 - Endoscope and endoscope system - Google Patents

Endoscope and endoscope system Download PDF

Info

Publication number
WO2005082228A1
WO2005082228A1 PCT/JP2005/003327 JP2005003327W WO2005082228A1 WO 2005082228 A1 WO2005082228 A1 WO 2005082228A1 JP 2005003327 W JP2005003327 W JP 2005003327W WO 2005082228 A1 WO2005082228 A1 WO 2005082228A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
endoscope
connection
light
endoscope system
Prior art date
Application number
PCT/JP2005/003327
Other languages
French (fr)
Japanese (ja)
Inventor
Sumihiro Uchimura
Fumiyuki Onoda
Toshiaki Noguchi
Akira Taniguchi
Katsuya Suzuki
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2004052327A external-priority patent/JP2005237705A/en
Priority claimed from JP2004125759A external-priority patent/JP2005304779A/en
Priority claimed from JP2004125758A external-priority patent/JP4364051B2/en
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2005082228A1 publication Critical patent/WO2005082228A1/en
Priority to US11/510,767 priority Critical patent/US7942810B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00039Operational features of endoscopes provided with input arrangements for the user
    • A61B1/00042Operational features of endoscopes provided with input arrangements for the user for mechanical operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00105Constructional details of the endoscope body characterised by modular construction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/042Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by a proximal camera, e.g. a CCD camera
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means

Definitions

  • the present invention relates to an endoscope that is inserted into a body cavity or the like and performs an endoscopy or the like, and an endoscope system including the endoscope.
  • an endoscope having a built-in imaging device and having a flexible insertion section is provided with a light guide for transmitting illumination light from an operation section provided at a rear end side of the insertion section.
  • an operation button or a switch for performing various control operations is provided on an operation unit of this type of endoscope, so that various controls can be performed by the operation unit.
  • Endoscopes are also known.
  • buttons or switches can be provided on the operation unit to perform various controls. Therefore, many signal lines are provided in the universal cable. It is necessary to pass through. As a result, the universal cable became thicker, and in some cases, the thicker universal cable hindered operation.
  • a universal cable through which a light guide for transmitting illumination light is inserted is made detachable, and an optical cable is inserted together with this light guide so that an image pickup device is used.
  • an endoscope configured to transmit an imaging signal or the like to a signal processing device outside the endoscope. The problem that is greatly reduced there were.
  • an endoscope having a flexible insertion portion is provided with a curved portion near the distal end of the insertion portion so that the endoscope can be inserted into a bent body or the like and can be observed in a desired direction.
  • a bending operation means is provided so that the bending portion can be bent (angled) in the operation portion on the hand side.
  • a pressure sensor formed of a strain gauge is provided in a bending portion to detect pressure, and the bending operation is performed by the output of the pressure sensor.
  • the bending operation by the operating means is restricted.
  • the example of the above-mentioned Japanese Patent Application Laid-Open No. 7-124104 is to electrically detect pressure, and does not make it possible to efficiently use the above-mentioned illumination light.
  • an endoscope particularly in the medical field, is used by being inserted into a body cavity for the purpose of examination and treatment, it is necessary to wash and disinfect the endoscope.
  • an endoscope cleaning and disinfecting apparatus is used.
  • the endoscope is set in a cleaning tank of an endoscope cleaning / disinfecting apparatus, and is cleaned, disinfected, rinsed, and drained.
  • the endoscope has a plurality of conduits such as an air supply / water supply conduit and a forceps port. It is necessary that the washing liquid and the disinfectant liquid sufficiently pass through these pipes, and that the washing and disinfection be surely performed.
  • Such an endoscope cleaning and disinfecting apparatus capable of detecting whether various pipes provided inside the endoscope are appropriately cleaned and disinfected is disclosed in, for example, Japanese Patent Application Laid-Open No. H11-163,089. There is one proposed in Japanese Patent Publication No. 2001 1-299697.
  • the present invention has been made in view of the above points, and is an operation unit that can cope with a case where an operation unit such as a bending operation or an air / water switch is provided in an operation unit without lowering the observation function.
  • An object of the present invention is to provide an endoscope having good workability.
  • the present invention relates to an insertion section to be inserted into a subject, an operation section provided at a rear end of the insertion section, imaging means provided in the operation section, for taking a subject image, and the operation section.
  • Control processing means for controlling a predetermined function of the control unit, a signal circuit extending from the control processing means, and a tube unit provided in the operation unit and through which at least one conduit is passed, in a detachable manner.
  • a connection unit that is connectable.
  • FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
  • FIG. 2 is a block diagram showing each example of a data communication form in the endoscope system of the first embodiment.
  • FIG. 3 is an external perspective view showing a schematic configuration of an endoscope in the endoscope system according to the first embodiment.
  • FIG. 4 is an external perspective view showing a more detailed configuration of the endoscope system according to the first embodiment.
  • FIG. 5 is a perspective view showing a specific external shape around an AWS unit in the endoscope system according to the first embodiment.
  • FIG. 6 is a perspective view showing a state where a detachable AWS adapter is attached to and detached from an AWS unit in the endoscope system according to the first embodiment.
  • FIG. 7 is a diagram showing an internal configuration of a control device and an AWS unit and a structure of a connection portion of a scope connector in the endoscope system of the first embodiment.
  • FIG. 8 is a diagram showing a structure of an AWS adapter in the endoscope system according to the first embodiment.
  • FIG. 9 is a side view showing a part of internal components of the endoscope in the endoscope system according to the first embodiment in a see-through manner.
  • An external perspective view showing a schematic configuration of a conductive polymer artificial muscle used for an endoscope in the endoscope system of the first embodiment, and a diagram showing a distortion amount.
  • FIG. 12 is a circuit diagram showing an electrical configuration of a connection portion between the operation unit of the endoscope and the tube guide in the endoscope system according to the first embodiment.
  • FIG. 13 is a block diagram showing an electrical configuration of the endoscope in the endoscope system according to the first embodiment.
  • FIG. 14 is a block diagram showing a main electrical configuration of an endoscope system control device in the endoscope system according to the first embodiment.
  • FIG. 15 is a block diagram showing an electrical configuration of an AWS unit in the endoscope system according to the first embodiment.
  • FIG. 16 is a view showing a typical display example of a monitor display surface of the observation monitor and a specific example of menu display in the endoscope system according to the first embodiment.
  • FIG. 17 is a flowchart showing an operation content of a start process of an AWS unit in the endoscope system of the first embodiment.
  • FIG. 20 is a flowchart showing an operation content of an air / water supply control process in the endoscope system of the first embodiment.
  • FIG. 21 is a flowchart showing a control process of an angle operation in the endoscope system according to the first embodiment.
  • FIG. 23 is an operation explanatory view showing a setting operation of a hardness variable and an UPD image corresponding to the operation in the endoscope system of the first embodiment.
  • FIG. 24 is a flowchart showing the contents of human interface processing on the endoscope side in the endoscope system of the first embodiment.
  • FIG. 25 is a flowchart showing the contents of human interface processing on the endoscope system control device side in the endoscope system of the first embodiment.
  • FIG. 27 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the second embodiment of the present invention as seen through.
  • FIG. 28 is an essential part perspective view showing a transparency sensor of the endoscope in the endoscope system according to the second embodiment.
  • FIG. 29 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the second embodiment.
  • FIG. 30 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the third embodiment of the present invention as seen through.
  • FIG. 31 is a side view in which some of the internal components of the endoscope in the endoscope system according to the fourth embodiment of the present invention are seen through.
  • FIG. 32 is a side view of a main part showing a configuration of a battery unit and peripheral parts of the endoscope in the endoscope system of the fourth embodiment, and an electric circuit showing the configuration of a charging unit related to the battery unit. circuit diagram.
  • FIG. 33 is a side view in which some of the internal components of the endoscope in the endoscope system according to the fifth embodiment of the present invention are seen through.
  • FIG. 34 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of the endoscope in the endoscope system according to the fifth embodiment.
  • FIG. 35 is a view showing a schematic configuration of an endoscope optical pressing amount detecting means in the endoscope system according to the fifth embodiment.
  • FIG. 36 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the fifth embodiment.
  • FIG. 37 is a flowchart showing a control process of an angle operation of the endoscope in the endoscope system according to the fifth embodiment.
  • FIG. 38 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of an endoscope in an endoscope system according to a sixth embodiment of the present invention.
  • FIG. 39 is an enlarged fragmentary cross-sectional view showing a first modification of the configuration of the endoscope insertion section distal end side in the endoscope system according to the sixth embodiment.
  • FIG. 40 is an enlarged perspective view of a main part showing a second modification of the configuration of the distal end side of the endoscope insertion section in the endoscope system according to the sixth embodiment.
  • FIG. 41 is an enlarged cross-sectional view of a main part showing a second modification of the configuration of the endoscope insertion section distal end side in the endoscope system according to the sixth embodiment.
  • FIG. 42 is an enlarged cross-sectional view of a main part, showing a cross section taken along line DD ′ in FIG.
  • FIG. 43 is a diagram showing an overall configuration of an endoscope system according to a seventh embodiment of the present invention.
  • FIG. 44 is a perspective view showing a specific external shape of the periphery of the AWS unit in the endoscope system according to the seventh embodiment.
  • FIG. 45 is a side view showing a part of internal components of the endoscope in the endoscope system according to the seventh embodiment in a see-through manner.
  • FIG. 46 is a view showing a specific external shape and the like of an endoscope in the endoscope system according to the seventh embodiment.
  • FIG. 47 is a view showing the configuration and operation of a transparency sensor of the endoscope in the endoscope system according to the seventh embodiment.
  • FIG. 48 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the seventh embodiment.
  • FIG. 49 is a perspective view showing a modified AWS unit in the endoscope system according to the seventh embodiment, showing a state in which an electromagnetic valve unit is attached and detached, and an AWS unit in a detached state.
  • FIG. 50 is a view showing the structure of an electromagnetic valve unit in the endoscope system according to the seventh embodiment.
  • FIG. 1 is a diagram illustrating a schematic configuration of an endoscope system according to a first embodiment of the present invention
  • FIG. 2 is a diagram illustrating data communication in the endoscope system according to the first embodiment
  • FIG. 3 is a block diagram showing each example of the embodiment
  • FIG. 3 is an external perspective view showing a schematic configuration of an endoscope in the endoscope system of the first embodiment.
  • an endoscope system 1 includes a flexible endoscope (also referred to as a scope) 3 that is inserted into a body cavity of a patient (not shown) lying on an examination bed 2 and performs endoscopy.
  • An air supply / water supply / suction unit (hereinafter abbreviated as AWS unit) 4 having an air supply, water supply and suction function to which the endoscope 3 is connected, and an image pickup device built in the endoscope 3 , A part of signal processing for the endoscope 3, an endoscope system controller 5 responsible for a part of control processing for various operation means provided in the endoscope 3, and an image generated by the endoscope system controller 5.
  • an observation monitor 6 such as a liquid crystal monitor for displaying signals.
  • the endoscope system 1 is connected to an image recording unit 7 generated by the endoscope system controller 5, for example, for filing digital video signals, etc., and an AWS unit 4.
  • a shape detection coil hereinafter abbreviated as UPD coil
  • UPD coil shape detection coil
  • the position of each UPD coil is detected and endoscoped by receiving the signal of the electromagnetic field generated by the UPD coil. It has an UPD coil unit 8 for displaying the shape of the entrance of the mirror 3.
  • the image recording unit 7 is connected to a LAN 9 in a hospital where the endoscope system 1 is provided, and is connected to the image recording unit 7 by terminal devices connected to the LAN 9 by wire or wirelessly. It is possible to refer to the image that has been filed.
  • the AWS unit 4 and the endoscope system control device 5 transmit and receive predetermined information wirelessly.
  • the endoscope 3 is connected to the AWS unit 4 by a cable.
  • the endoscope 3 may transmit and receive information wirelessly (bidirectional transmission).
  • the endoscope system control device 5 may directly transmit and receive information to and from the endoscope 3 by wireless.
  • Fig. 2 (A)-Fig. 2 (C) shows three systems in the transmission / reception unit (communication unit) that transmits and receives data between units and devices in the endoscope system 1, or between the endoscope 3 and the unit or device. Is shown.
  • AWS Unit 4 and the endoscope system The case of the control device 5 will be described.
  • FIG. 2A shows a wireless system, in which a data communication control unit 11 built in the AWS unit 4 modulates the data via a data transmission unit 12 and wirelessly transmits an endoscope system control device 5 from an antenna unit 13. Send to
  • the AWS unit 4 receives data transmitted wirelessly by the endoscope system control device 5 by the antenna unit 13, demodulates the data by the data reception unit 14, and sends the data to the data communication control unit 11.
  • a wireless LAN having a maximum data communication speed of 54 Mbps is formed according to, for example, the IEEE802.lg standard.
  • FIG. 2 (B) shows a wired system, and as a specific example, a case where data transmission / reception is performed between the endoscope 3 and the AWS unit 4 will be described.
  • the data communication control unit 11 built in the endoscope 3 transmits the data to the AWS unit 4 by wire from the electrical connector 15 via the data transmission unit 12 '.
  • the data transmitted from the AWS unit 4 is sent to the data communication control unit 11 via the electrical connector 15 and the data receiving unit 14 '.
  • FIG. 2 (C) shows an optical communication method, and a specific example will be described in which data transmission and reception are performed between the AWS unit 4 and the endoscope system control device 5.
  • the data communication control unit 11 built in the AWS unit 4 is connected to the optical communication coupler 16 provided in the AWS unit 4 via a data transmission unit 12 ⁇ that performs transmission and reception for optical communication and a data reception unit 14. Data is transmitted and received via the optical communication power bra on the endoscope system control device 5 side.
  • the endoscope 3 is a tube unit 19 having one end connected to the endoscope main body 18 so as to be attachable and detachable, and the other end connected to the AWS unit 4.
  • the endoscope main body 18 has a flexible insertion portion 21 inserted into a body cavity, and an operation portion 22 provided at a rear end of the insertion portion 21.
  • the operation section 22 has a grip section 68, and a control circuit 57 for controlling a part of various operations and the like in the operation section 22 is provided inside the grip section 68.
  • a predetermined power supply line and signal line extend from the control circuit 57.
  • a predetermined tube extending from the insertion section 21 is provided in the operation section 22. Further, a connector section 51 connected to the general connector section 52 of the tube unit 19 is provided on the operation section 22 of the endoscope main body 18.
  • the tube unit 19 is provided at one end with a general connector section 52 connected to the connector section 51, and can be connected to the connector section 51 in a characteristic connection state. Further, a scope connector 41 is provided at the other end, and can be connected to the AWS unit 4.
  • a plurality of predetermined tubes, electric wires, and signal wires specific to the endoscope apparatus are provided inside the tube unit 19.
  • the endoscope body 18 and the tube unit 19 are connected by the connector portion 51 and the general connector portion 52. They are mechanically connected to each other, and the power supply line and the signal line are connected by so-called electromagnetic coupling.
  • a disposable tube having a smaller diameter than a conventional universal cable is used as the tube unit 19.
  • the endoscope 3 will be described later in detail with reference to FIG. 9, including the connection between the connector unit 51 and the general connector unit 52 that can be connected in a characteristic connection state.
  • an imaging unit using a CCD 25 whose gain is variable inside the imaging device is arranged at the distal end portion 24 of the insertion section 21 as an imaging device.
  • the tip 24 has a tip
  • a contact sensor 142 for detecting a state in which 24 contacts (presses) an inner wall or the like in a body cavity.
  • a bending portion 27 that can be bent with a small amount of force is provided at a rear end of the distal end portion 24, and the bending portion 27 is bent by operating an angle / remote controller 28 provided on the operation portion 22. can do.
  • the angle / remote control 28 includes an angle operation (bending operation), an operation for air / water supply, suction, and the like, and a remote control operation for the endoscope system controller 5 (specifically, a freeze instruction operation, a release operation, Remote control operation etc. can be performed as an instruction operation).
  • the insertion portion 21 is formed with a portion having a variable hardness so that insertion can be performed more smoothly.
  • a cleaning level detecting section 29 is provided in the insertion section 21 so as to be able to detect a cleaning level of the pipeline.
  • FIG. 4 is an external perspective view showing a more detailed configuration of the endoscope system according to the first embodiment.
  • FIG. 5 is a perspective view showing a specific external shape of the periphery of the AWS unit in the endoscope system according to the first embodiment.
  • FIG. 6 is a perspective view showing the AWS in the endoscope system according to the first embodiment.
  • FIG. 7 is a perspective view showing a state where a detachable AWS adapter is attached to and detached from the unit, and FIG. 7 is a diagram showing the internal configuration of the control device and the AWS unit and the scope connector of the endoscope system according to the first embodiment.
  • FIG. 8 is a diagram illustrating a structure of a connection unit, and FIG. 8 is a diagram illustrating a structure of an AWS adapter in the endoscope system according to the first embodiment.
  • An observation monitor 6 constituted by a liquid crystal monitor or the like is arranged adjacent to the side surface of the inspection bed 2, and is placed on a cart 31 movably arranged near one end of the inspection bed 2 in the longitudinal direction.
  • the endoscope system control unit 5, AWS unit 4, image file ZLANZ electric mesh Z ultrasonic unit (image file unit, wireless LAN or wired LAN, electric scalpel device, ultrasonic unit, etc. Notation) 32 is arranged, and a monitor 33 with a touch panel is arranged at the top.
  • a UPD coil unit 8 is embedded in the upper surface of the examination bed 2 where the patient lies.
  • the UPD coil unit 8 is connected to the AWS unit 4 by a UPD cable 34.
  • the AWS unit 4 and the endoscope system control device 5 transmit and receive data by wireless transmitting and receiving units 77 and 101, for example, as shown in FIG. Further, as shown in FIG. 4, the observation monitor 6 is connected to a motor connector of the endoscope system control device 5 by a monitor cable 35.
  • transmission / reception units 101 and 36 are attached to the endoscope system control device 5 and the observation monitor 6, respectively, and the image signal is transmitted from the endoscope system control device 5 to the observation monitor 6. May be transmitted so that the endoscope images corresponding to the video signals can be displayed on the display surface.
  • the endoscope system controller 5 has the AWS unit 4 side force together with the image data captured by the CCD 25 and the insertion part shape of the endoscope 3 detected using the UPD coil unit 8 (UPD image) Therefore, the endoscope system controller 5 can send a video signal corresponding to the image data to the observation monitor 6 and display the UPD image together with the endoscope image on the display surface.
  • UPD image UPD image
  • the observation monitor 6 is configured by a high-resolution TV (HDTV) monitor so that a plurality of types of images can be simultaneously displayed on the display surface.
  • HDTV high-resolution TV
  • a storage recess is formed at one end of the inspection bed 2 in the longitudinal direction and at a position below the storage bed, and the tray transport trolley 38 is slidable in the storage recess. It can be stored in.
  • a scope tray 39 in which the endoscope 3 shown in FIG. 9 is stored is placed on the upper part of the tray transport trolley 38.
  • the scope tray 39 containing the sterilized or disinfected endoscope 3 can be transported by the tray transport trolley 38 and can be stored in the storage recess of the inspection bed 2.
  • the operator can pull out the endoscope 3 from the scope tray 39 and use it for endoscopy, and store it in the scope tray 39 again after the endoscope inspection.
  • the scope tray 39 containing the used endoscope 3 is transported by the tray transport trolley 38, so that sterilization or disinfection can be performed smoothly.
  • the AWS unit 4 is provided with a scope connector 40. Then, a scope connector 41 (of the endoscope 3) is detachably connected to the scope connector 40 as shown in FIG. 4,
  • FIGS. 5 and 6 show more specific external shapes of the scope connector 40 on the AWS unit 4 side.
  • FIG. 7 shows the structure of an AWS adapter 42 detachably attached to the scope connector 40 of the AWS unit 4.
  • FIG. 8 shows the scope connector 40 of the AWS unit 4 and the scope of the endoscope 3. The internal structure of the connector 41 is shown in a connected state.
  • the AWS unit 4 has a recessed AWS adapter mounting part 40a on the front face, and the AWS adapter mounting part 40a has the AWS adapter shown in Fig. 7
  • an adapter (pipe connection adapter) 42 By attaching an adapter (pipe connection adapter) 42, the scope connector 40
  • the scope connector 40 of the endoscope 3 is connected to the scope connector 40.
  • the AWS adapter mounting portion 40a is provided with an electrical connector 43 for connecting a scope, an air supply connector 44, and a pinch valve 45.
  • the AWS adapter mounting portion 40a is located inside the AWS adapter 42.
  • the end face is detachably attached, and the outer end face side force is connected to the scope connector 41 of the endoscope 3.
  • FIG. Fig. 7 (A) is a front view of the AWS adapter 42
  • Figs. 7 (B) and 7 (C) are left and right side views
  • Figs. 7 (D) and 7 (E) are those of Fig. 7 (A).
  • AA 'and B-BZ sectional views are shown, respectively.
  • a scope connector 41 is inserted into a concave portion 42a on the front surface thereof.
  • an electric connector portion of the scope connector 41 is inserted into a through hole 42b provided in the concave portion, and the inside of the through hole 42b is inserted.
  • an air / water supply connector 42c and a suction connector 42d are provided below the through hole 42b, and an air / water supply base 63 and a suction base 64 in the scope connector 41 (see FIGS. 8 and 9). Are connected respectively.
  • the AWS adapter 42 has a concave portion 42f on the base end side for accommodating the pinch valve 45 protruding from the AWS adapter mounting portion 40a.
  • the air / water supply connector 42c provided on the AWS adapter 42 has an air supply port that connects to the air supply connector 44 of the AWS unit 4 by branching the internal pipeline communicating therewith.
  • Gold 42e and water outlet 46 protruding sideways.
  • the suction connector 42d has a suction pipe 47 that is bent sideways and protrudes from the side, and a relief pipe 47a that branches upward, for example. 47a is passed through the inside of the pinch valve 45 halfway, and the upper end is open.
  • the relief pipe line 47a is normally set to a released state by the pinch valve 45, and the suction operation is performed.
  • the pinch valve 45 is driven.
  • the pinch knob 45 closes the relief pipeline 47a to stop the release, and the suction operation is performed.
  • the water supply port 46 and the suction port 47 are respectively connected to the water supply tank 48 and the suction device (with the suction tank 49b inserted in the middle via the suction tube 49a) as shown in FIG. Connected.
  • the water tank 48 is connected to the water tank connector 50 of the AWS unit 4.
  • An operation panel 4a is provided on the front side of the AWS unit 4 above the scope connector 40.
  • FIG. 9 is a side view showing a part of internal components of the endoscope in the endoscope system according to the first embodiment in a see-through manner.
  • FIG. 9 is a view of the endoscope 3 as viewed from one side, and shows a main member provided in the endoscope by cutting off a part of a surface of a force.
  • the endoscope 3 includes an endoscope main body 18 having a flexible insertion portion 21 and an operation portion 22 provided at a rear end thereof.
  • a tube unit 19 (for connecting the tube unit 19) to the connector unit 51 (for connecting the tube unit) provided near the base end (front end) of the operation unit 22 in the endoscope body 18 is detachably connected.
  • a disposable type is adopted).
  • the above-described scope connector 41 is detachably connected to the AWS unit 4 at the end of the tube unit 19.
  • the insertion portion 21 has a hard tip 24 provided at the tip of the insertion portion 21, a bendable bending portion 27 provided at the rear end of the tip 24, and a rear end of the bending portion 27.
  • the force also has an elongate flexible portion (bend portion) 53 up to the operation portion 22. At a plurality of positions, specifically two portions, in the soft portion 53, the force expands and contracts by applying a voltage, and the hardness increases.
  • the hardness variable actuators 54A and 54B which are made of conductive polymer artificial muscle (abbreviated as EPAM), are also provided.
  • a light emitting diode (abbreviated as LED) 56 is attached as illumination means inside the illumination window provided at the distal end portion 24 of the insertion portion 21, and the illumination light of the LED 56 is integrated with the LED 56.
  • the light is emitted forward through an illumination lens attached to the camera, and illuminates the subject such as the affected part.
  • the LED 56 may be an LED that generates white light, or may be red (R), green ( It is also possible to use an LED for R, an LED for G, and an LED for B that generate light of each wavelength range of G) and blue (B).
  • the light emitting element forming the illumination means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
  • an objective lens (not shown) is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a built-in variable gain function is arranged at an image forming position to image a subject.
  • An imaging means is formed.
  • the function of changing the gain is built into the CCD element itself, and the gain of the CCD output signal can be easily changed to about several hundred times by the function of changing the gain. However, it tries to obtain a bright image with little decrease in S / N. Further, since the LED 56 has better luminous efficiency than the case of a lamp, the temperature rise near the LED 56 can be suppressed.
  • One end is connected to each of the LED 56 and the CCD 25, and the other end of the signal line passed through the insertion section 21 is connected to a control circuit 57 provided, for example, inside the operation section 22 and performing centralized control processing (aggregated control processing). It is connected.
  • a plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to a UPD coil drive unit provided in the operation section 22. It is connected to the control circuit 57 via 59.
  • Angle actuators 27a formed by arranging EPAMs in the longitudinal direction are arranged at four locations in the circumferential direction on the inner side of the outer skin of the curved portion 27!
  • the angle actuator 27a and the hardness variable actuators 54A and 54B are also connected to the control circuit 57 via signal lines, respectively.
  • the EPAM used for the angle actuator 27a and the hardness variable actuators 54A and 54B is, for example, as shown in FIG. 10 (A), by attaching electrodes to both sides of a plate shape and applying a voltage, as shown in FIG. 10 (B). As shown in (1), it can be contracted in the thickness direction and elongated in the longitudinal direction. In this EPAM, as shown in FIG. 10 (C), for example, the amount of distortion can be varied in proportion to the square of the electric field strength E due to the applied voltage.
  • an angle actuator 27a When used as an angle actuator 27a, it is formed in a wire shape or the like, one side is extended, and the other side is contracted.
  • the curved portion 27 can be curved.
  • the hardness can be varied by the extension or contraction, and the hardness varying actuators 54A and 54B can use the function to vary the hardness of the portion.
  • an air / water supply conduit 60a and a suction conduit 61a are inserted into the insertion portion 21.
  • the air / water supply line 60b and the suction line 61b are also inserted in the tube unit 19, and the rear ends of the air / water supply line 60b and the suction line 61b are the same as those described above. It extends to a tube connector portion 52a formed at an opening end of the connector portion 52, and opens at the tube connector portion 52a.
  • the suction conduit 61b is branched and opened to the outside in the tube connector 52a.
  • the conduit connector portion 51a of the connector portion 51 and the tube connector portion 52a of the integrated connector portion 52 are mechanically connected to each other when the integrated connector portion 52 is mounted on the connector portion 51.
  • the open ends of the air / water supply line 60a and the suction line 61a are connected to the open ends of the air / water supply line 60b and the suction line 61b, respectively.
  • the suction conduit 61a is connected to a suction conduit 61b inserted into the tube unit 19, and further allows a treatment tool such as a forceps, which is branched and opened to the outside in the tube connector 52a, to be inserted.
  • Communication port (abbreviated as forceps port) 62 The forceps port 62 is closed by the forceps stopper 62a when not in use.
  • the rear ends of the air / water supply pipe 60b and the suction pipe 61b on the hand side serve as an air / water supply base 63 and a suction base 64 in the scope connector 41.
  • the air / water supply base 63 and the suction base 64 are connected to the air / water supply connector 42c and the suction connector 42d of the AWS adapter 42 shown in Figs. Then, as shown in FIG. 7, inside the AWS adapter 42, the air supply / water supply connector 42c branches into an air supply line and a water supply line. As shown in Fig. 8, the air supply line is connected to the air supply / water supply pump 65 inside the AWS unit 4 via the solenoid valve B1, and the water supply line is connected to the water supply tank 48. Is done. The water supply tank 48 is also connected to the air / water supply pump 65 on the way via the solenoid valve B2.
  • the air / water supply pump 65 and the solenoid valves B1 and B2 are connected to the AWS control unit 66 by control lines (drive lines), and the opening and closing of the AWS control unit 66 are controlled to perform air supply and water supply. I can do it.
  • the AWS control unit 66 also controls the suction operation by controlling the opening and closing of the pinch valve 45.
  • the operating section 22 of the endoscope main body 18 is provided with a grip section 68 which is gripped by an operator, and the periphery including the grip section 68 includes a release and a freeze.
  • three scope switches SW1, SW2, and SW3 for performing remote control operations are provided along the longitudinal axis of the operation unit 22 and are connected to the control circuit 57, respectively. .
  • the slope Sa formed on the upper surface of the operation unit 22 opposite to the position where the scope switches SW1, SW2, and SW3 are provided is located at a position where the operation can be performed by the hand holding the grip unit 68.
  • a trackball 69 having a waterproof structure for performing an angle operation (bending operation) and setting other remote control operations by switching is provided.
  • FIG. 11 is a front view showing a track ball provided in an operation section of the endoscope in the endoscope system of the first embodiment and a peripheral portion thereof, as viewed in the direction of arrow C in FIG.
  • two scope switches SW4 and SW5 are symmetrical in the left and right direction on both sides in the longitudinal direction of the operation unit 22. Position. Normally, the functions of the air / water switch and the suction switch are assigned to the scope switches SW4 and SW5.
  • the trackball 69 is in the longitudinal direction with respect to the longitudinal direction of the operation unit 22 or the insertion unit 21.
  • the two scope switches SW4 and SW5 are on the center line and are arranged symmetrically, and the scope switches SW1, SW2 and SW3 are arranged on the rear side along the center line.
  • the trackball 69 and the scope switches SW4 and SW5 are also connected to the control circuit 57.
  • the trackball 69 and the scope switches SW1 to SW5 correspond to the angle Z remote controller 28 shown in FIG.
  • connection relationship between the connector section 51 and the general connector section 52 that can be connected in a characteristic connection state in the endoscope 3 will be described with reference to FIGS. 9 and 12.
  • FIG. 12 is a circuit diagram showing an electrical configuration of a connection portion between the operation unit of the endoscope and the tube unit in the endoscope system according to the first embodiment.
  • One end of a power supply line 71a and one end of a signal line 71b are connected to the control circuit 57.
  • the other end of the power supply line 71a and the other end of the signal line 71b are connected to the electromagnetic coupling connection portions 72a and 72b of the connector portion 51, respectively.
  • a power supply line 73a and a signal line 73b pass through the tube unit 19, and one end of each of the power supply line 73a and the signal line 73b is provided with a power supply & signal contact at the scope connector 41.
  • Connected to electrical connector 74 Connected to electrical connector 74.
  • the other end of the power supply line 73a and the other end of the signal line 73b are connected to electromagnetic coupling connectors 72a and 72b in the integrated connector 52, respectively.
  • the electromagnetic coupling connection sections 72a and 72b on the connector section 51 side are referred to as a transmission unit 5 lb.
  • the electromagnetic coupling connection portions 72a and 72b supply electric power from the power supply line 73a to the power supply line 71a when the integrated connector portion 52 is mounted on the connector portion 51, without joining by a so-called metal electrode.
  • signals can be transmitted and received between the signal line 71b and the signal line 73b.
  • a primary coil Cla is disposed at the other end of the power supply line 73a in the tube unit 19, and a secondary coil Clb is disposed at the other end of the opposing power supply line 71a.
  • the close proximity of these coils forms a transformer T1 that is electromagnetically coupled in a state where the magnetic flux leakage is small.
  • a coil C2a is provided at the other end of the signal line 71b, and a coil C2b is provided at the other end of the opposing signal line 73b. Then, a transformer T2 that is electromagnetically coupled with a small amount of magnetic flux leakage due to the proximity of these coils is formed. The details will be described later.
  • the user connects the scope connector 41 to the AWS unit 4 to As shown, the power line 73a is connected to the power unit 75 via the electrical connector 43 of the AWS unit 4, and the signal line 73b is connected to the UPD unit 76 and the transmitting / receiving unit 77 (via the power unit 75) Connected to unit 66.
  • the transmission / reception unit 77 is connected to an antenna for transmitting / receiving radio waves by radio.
  • the AC power supplied from the power supply unit 75 via the power supply line 73 a passed through the tube unit 19 is supplied to the primary side coil Cla in the connector section 52.
  • a secondary coil Clb is disposed inside the outer case of the connector part 51, and the primary coil Cla and the secondary coil Clb are in close proximity to each other with little magnetic flux leakage and electromagnetically. Forming a binding trans T1.
  • the coil Clb is connected to a power supply circuit 78 in the control circuit 57, and the power supply circuit 78 generates DC power required on the control circuit 57 side.
  • the power supply circuit 78 converts the DC voltage rectified through the rectifying diode D and the smoothing capacitor into a DC voltage required for the operation of the control circuit 57 by, for example, the three-terminal power supply IC 79 and the smoothing capacitor. The signal is converted and supplied to the control circuit 57.
  • the signal line 71b (forming a common signal transmission means) connected to the control circuit 57 is connected to the coil C2a as described above, and the coil C2b, which is close to and opposed to the coil C2a, is a tube. It is connected to the signal line 73b passed through the unit 19. That is, almost in the same manner as in the case of the transformer T1, the transformer T2 that is electromagnetically coupled by the coils C2a and C2b is formed.
  • the signal on the signal line 7 lb side is also transmitted to the signal line 73b side via the coils C2a and C2b that are electromagnetically coupled, and also transmitted in the opposite direction.
  • the control circuit 57 is configured to centrally control or manage various kinds of operation means and image pickup means, so that the tube The number of electric signal lines passing through the unit 19 can be reduced. Further, even when the function provided to the endoscope 3 is changed, the signal line 73b in the tube unit 19 can be used without any change. That is, the signal line 73b To form a common signal transmission means for transmitting these signals in common.
  • the magnets Ml and M2 are arranged so that different magnetic poles are opposed to each other.
  • Cla and Clb and coils C2a and C2b can be detachably mounted in close proximity to each other.
  • the connector portions 51 and 52 may be provided with concave and convex portions for positioning by fitting each other.
  • the endoscope 3 makes the tube guide 19 detachable from the endoscope main body 18, and when the tube unit 19 is mounted on the endoscope main body 18, the endoscope 3
  • the transmission and reception of power and signals between the main body 18 and the tube unit 19 are performed by connection means that does not rely on the connection between metal electrodes.
  • FIG. 13 is a block diagram showing an electrical configuration of the endoscope in the endoscope system according to the first embodiment.
  • a CCD 25 and an LED 56 are arranged at the tip 24 of the insertion section 21 shown in the lower part on the left side in FIG. 13, and a bending section 27 described above in the drawing has an angle actuator (this embodiment).
  • an EPAM 27a and an encoder 27c are arranged!
  • the flexible portion 53 includes a hardness variable actuator 54 and an encoder 54c (specifically, in this embodiment, the hardness variable actuators 54A and 54B by EPAM are used. (Represented as representatives) are arranged. Further, an UPD coil 58 is arranged in the flexible portion 53.
  • a track ball 69 On the surface of the operation section 22 described above the flexible section 53 of the insertion section 21, a track ball 69, an air supply / water supply switch (SW4), a suction switch (SW5), and a scope switch (SW1-3) are provided. Will be placed. As will be described later, the trackball 69 is used for an angle operation, selection setting of other functions, and the like.
  • the control circuit 57 has a state management unit 81 composed of a CPU or the like that manages a control state.
  • the state management unit 81 is connected to a state holding memory 82 that holds (stores) the state of each unit. It is.
  • This state holding memory 82 has a program storage memory 82a as control information storage means, and the components shown in FIG. 13 are changed by rewriting program data as control information stored in the program storage memory 82a.
  • the state management unit 81 (the CPU constituting the state management unit 81) can perform control (management) corresponding to the changed configuration.
  • the state holding memory 82 or at least the program holding memory 82 a is composed of, for example, a non-volatile, electrically rewritable flash memory or EEPROM, and changes program data via the state management unit 81. Make it easy!
  • a command for changing program data is sent to the state management unit 81 via the signal line 71b, that is, via the following wired transmission / reception unit 83, and the program data to be rewritten after the command is sent to the AWS.
  • Unit 4 also sends the force to change program data. Also, version upgrades and the like can be easily performed via the signal line 71b.
  • the state holding memory 82 holds, for example, the model information of the endoscope 3 (for example, information on the type of the CCD 25, the length of the insertion section, etc.), and also varies depending on the usage state of the endoscope inspection or the like.
  • Individual information of the endoscope 3 for example, information such as use time (total use time of endoscopy or total use time), number of cleaning times, adjustment value, maintenance history, etc. is retained, and this information is stored in the system. It is used for deciding operations and providing information to users.
  • Such information can be edited from outside such as the endoscope system control device 5 or a cleaning device (not shown).
  • the state management unit 81 is connected to a wired transmission / reception unit 83 (in this embodiment) that performs wired communication with the AWS unit 4 (this transmission / reception unit 83 is configured as shown in FIG. 2 (B) 2 (B), the electrical connectors 15 are electromagnetic coupling connectors 72a and 72b in the operation unit 22, and the tube unit 19 At the end is an electrical connector 74).
  • the state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination.
  • the LED driving section 85 applies an LED driving signal for causing the LED 56 serving as a lighting means to emit light to the LED 56.
  • the illuminated subject such as the affected part is imaged by the objective lens (not shown) attached to the observation window onto the imaging surface of the CCD 25 arranged at the image forming position, and photoelectrically converted by the CCD 25.
  • the CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by applying a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81.
  • the image signal is converted into a digital signal by an AZD converter (abbreviated as ADC) 87 and then input to the state management unit 81, and the digital signal (image data) is stored in the image memory 88. .
  • the image data of the image memory 88 is sent to the data transmission section 1 ⁇ of the transmission / reception unit 83.
  • the signal is transmitted from the electrical connector 15 (the transmission unit 51b in the present embodiment) to the AWS unit 4 via the signal line 73b in the tube unit 19. Further, the data is transmitted from the AWS unit 4 to the endoscope system controller 5 by radio.
  • the output signal of the ADC 87 is sent to the brightness detection unit 89, and information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the amount of illumination by the LED 56 becomes appropriate.
  • the state management unit 81 controls an actuator driving unit 92 via an angle control unit 91, and manages driving of the angle actuator (EPAM) 27a by the actuator driving unit 92.
  • the drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c, and is controlled so that the drive amount matches a value corresponding to the indicated value.
  • the state management unit 81 controls the actuator driving unit 94 via the hardness varying control unit 93, and manages driving of the hardness varying actuator 54 by the actuator driving unit 94.
  • the drive amount of the hardness variable actuator 54 is detected by the encoder 54c, and is controlled so that the drive amount becomes a value corresponding to the indicated value.
  • an operation signal corresponding to the operation amount of the trackball 69 provided on the operation unit 22 is input to the state management unit 81 via the trackball displacement detection unit 95. Further, a switch press operation such as an ON operation by the air / water supply switch, suction switch, and scope switch is detected by the switch press detection unit 96, and the detected information is input to the state management unit 81.
  • EPAM has a characteristic of generating an electromotive force by deformation due to an external force, and an EPAM arranged on the opposite side of a driving EPAM may be used as an encoder.
  • the control circuit 57 includes a power transmission / reception unit 97 and a power generation unit 98.
  • the power transmission / reception unit 97 is, specifically, the electromagnetic coupling connection unit 72a in the operation unit 22. Then, the AC power transmitted to the power generation unit 98 is converted into a DC power in the power generation unit 98.
  • This power generation section 98 corresponds to the power supply circuit 78 in FIG.
  • the DC power generated by the power generation unit 98 supplies power required for its operation to each unit in the control circuit 57.
  • FIG. 14 shows an internal configuration of the transmission / reception unit 101 and the image processing unit 116 of FIG. 8 in the endoscope system control device 5.
  • the endoscope system control device 5 has, for example, a transmission / reception cut 101 of a wireless system.
  • the data such as image signals transmitted wirelessly by the AWS unit 4 is taken in by the antenna unit 13, sent to the data receiving unit 14, amplified, and demodulated.
  • the operation of the data receiving unit 14 is controlled by the data communication control unit 11, and the received data is sequentially stored in the buffer memory 102.
  • the image data in the buffer memory 102 is sent to an image processing unit 103 that processes the image data.
  • the image processing unit 103 receives, in addition to the image data from the buffer memory 102, character information from a character generation unit 105 that generates character information by key input of a keyboard 104, and superimposes the character information on the image data. You can impose.
  • the image processing unit 103 sends the input image data and the like to the image memory control unit 106.
  • the image data and the like are temporarily stored in the image memory 107 via the image memory control unit 106 and are also recorded on the recording medium 158.
  • the image memory control unit 106 reads out the image data temporarily stored in the image memory 107 and sends it to the digital encoder 108.
  • the digital encoder 108 encodes the image data into a predetermined video format, and Output to 109).
  • This DAC 109 converts a digital video signal into an analog video signal.
  • the analog video signal is further output from the video output terminal to the observation monitor 6 via the line driver 110, and an image corresponding to the video signal is displayed on the observation monitor 6.
  • the image data temporarily stored in the image memory 107 is read out and input to the DV data generating unit 111, where the DV data is generated by the DV data generating unit 111, and the DV data output terminal DV data is output. Is output.
  • the endoscope system control device 5 is provided with a video input terminal and a DV data input terminal, and the video signal to which the power of the video input terminal is also input is digitally transmitted through the line receiver 112 and the ADC 113.
  • the converted video signal is demodulated by the digital decoder 114 and input to the image memory control unit 106.
  • the image data is extracted (decoded) by the image data extraction unit 115 from the DV data input to the DV data input terminal, and is input to the image memory control unit 106.
  • the image memory control unit 106 also temporarily stores the video signal (image data) to which the video input terminal or the DV data input terminal is also input in the image memory 107, records it in the recording medium 158, or For example, output to the observation monitor 6 from the video output terminal.
  • the AWS unit 4 side wirelessly inputs the image data captured by the CCD 25 of the endoscope 3 and the UPD image data generated by the UPD unit 76 to the endoscope system controller 5. Then, the endoscope system control device 5 converts these image data into a predetermined video signal and outputs it to the observation monitor 6. Note that the endoscope system control device 5 may receive the UPD coil position data instead of the UPD image data, and generate the UPD image data in the image processing unit 103.
  • FIG. 15 shows the internal configuration of AWS Unit 4.
  • Image data input from control circuit 57 of endoscope 3 to electrical connector 43 for scope And operation data of the switches and the like are output to the data communication control unit 11 of the transmission / reception unit 77 and transmitted from the antenna unit 13 to the antenna unit 13 of the endoscope system control device 5 together with the UPD image data from the UPD unit 76. I do.
  • AWS-related information such as the operation of the air supply / water supply switch and the suction switch provided on the operation unit 22 of the endoscope 3 is also sent to the air supply / water supply control unit 122, and this air supply / water supply control unit 122
  • the operation of the pump 65 and the solenoid valve unit 124 is controlled in accordance with the received information.
  • the air valve / water supply tube 60b, 61b is connected to the electromagnetic valve unit 124 via the AWS adapter 42.
  • the water supply tank 48 is connected to the solenoid valve unit 124 and the AWS adapter 42, and the suction tank 49b is connected to the AWS adapter 42.
  • commercial power is supplied to the AWS unit 4, and the commercial power is sent to the power transmission output unit 127 via the insulating transformer 126.
  • the power transmission output section 127 supplies AC power insulated from commercial power from the electric connector 43 to the power line 73a of the endoscope 3 connected to the electric connector 43.
  • the power transmission output of the power transmission output unit 127 is controlled by a power transmission control unit 128 connected to the data communication control unit 11.
  • the endoscope system 1 when the power is turned on, various images are displayed on the observation monitor 6 as shown in FIG. 16A, for example.
  • the menu display area Rm is provided, and a menu is displayed in the menu display area Rm.
  • the under-shaped display area Ra detects the amount of angle operation of the angle actuator 27a by the encoder coder 27c, and displays the angle shape in that case.
  • the main menu shown in FIG. 16B is displayed.
  • This main menu includes the scope switch, angle sensitivity, insertion section hardness, zoom, image enhancement, and air volume, as well as an instruction to return to the previous menu screen.
  • the item is displayed.
  • the general connector section 52 of the disposable tube unit 19 is connected to the connector section 51 of the operation section 22 of the endoscope body 18.
  • the transformers Tl and T2 forming the electromagnetic coupling connection sections 72a and 72b are electromagnetically connected to each other in an insulated and waterproof state. With this connection, the preparation of the endoscope 3 is completed.
  • the scope connector 41 of the tube unit 19 is connected to the connector 43 of the AWS unit 4.
  • various conduits, power lines, signal lines, and optical connections are completed in one connection operation by one-touch connection.
  • the user connects the AWS unit 4 to the UPD coil unit 8 and connects the endoscope system control device 5 to the observation monitor 6.
  • the endoscope system control device 5 is connected to the image recording unit 7 or the like, thereby completing the setup of the endoscope system 1.
  • the power of the AWS unit 4 and the endoscope system control device 5 is turned on. Then, each unit in the AWS unit 4 is activated, and the power supply unit 75 can supply power to the endoscope 3 via the power supply line 73a and the like.
  • step S2 after the monitoring timer is turned on, the state of the power transmission output unit 127 is supplied with power, that is, the power supply is turned on, as shown in step S3.
  • the power transmission output unit 127 is in a state of supplying power, the power is transmitted to the tube unit.
  • AC power is supplied to the power generation unit 98 in the control circuit 57 of the operation unit 22 via the power supply line 73a in the switch 19 and further via the electromagnetic coupling connection unit 72a.
  • step S4 the power transmission control unit 128 enters a state of waiting for reception of a start message from the endoscope 3 via the signal line 73b in the tube unit 19. Then, when the power transmission control unit 128 does not receive the activation message, the power transmission control unit 128 determines whether the monitoring timer has expired as shown in step S5, and if not, returns to step S4. If the time has expired, the process returns to the first step S1.
  • step S4 when the activation message is received before the timeout in step S4, the power transmission control unit 128 turns off the time measurement of the monitoring timer as shown in step S6. Then, a continuation message is issued as shown in step S7, and the activation process ends.
  • control circuit 57 of the endoscope 3 is supplied with AC power to the power generation unit 98, so that the power required for the operation in the control circuit 57 is supplied, and the start process is started. Then, the state management unit 81 shown in FIG. 13 waits for the power supply voltage of the power generation unit 98 to stabilize in the first step S11.
  • the state management unit 81 performs system initialization of each unit of the control circuit 57. After the system initialization, as shown in step S13, the state management unit 81 transmits a start message to the power transmission control unit 128 via the transmission / reception unit 83 and further via the signal line 73b in the tube unit 19.
  • step S14 After transmitting the start message, as shown in step S14, the state management unit 81 enters a state of waiting for a continuation message to be received by the power transmission control unit 128, and receives the continuation message. Then, the startup processing ends. On the other hand, if the continuation message is not received, as shown in step S15, the state management unit 81 proceeds to step S15 if the retry end condition (for example, the condition of the preset number of retry) is not reached. Return to step 13, issue a start message again, and terminate with an error if the retry end condition is met.
  • the retry end condition for example, the condition of the preset number of retry
  • FIG. 19 shows the operation contents of the imaging control processing.
  • the endoscope 3 acquires imaging data as shown in step S21. Specifically, under the control (control) of the state management unit 81, the LED 56 emits light, the CCD driving unit 86 starts the operation of driving the CCD 25, and the imaging signal captured by the CCD 25 is digitally converted by the ADC 87. It is converted into a signal (imaging data). The image data (image data) is sequentially stored in the image memory 88, and the image data is obtained.
  • the acquired image data is sequentially transmitted as shown in step S22.
  • the image data read from the image memory 88 is transmitted from the transmission / reception unit 83 to the AWS unit 4 by wire, and is transmitted from the transmission / reception unit 77 of the AWS unit 4 to the endoscope system control device 5 wirelessly.
  • the video signal is converted into a video signal inside the endoscope system control device 5 and displayed on the observation monitor 6.
  • the image data of the ADC 87 is input to the brightness detector 89.
  • the brightness detecting unit 89 detects the brightness of the image data by calculating an average value of the luminance data of the image data at an appropriate time.
  • the detection data of the brightness detection unit 89 is input to, for example, the state management unit 81, and it is determined whether or not the designated brightness power is present (step S24). Then, when the brightness is the designated brightness, the imaging process ends, and the process proceeds to the next imaging process.
  • step S24 when the state management unit 81 determines that the brightness is not the designated brightness, it sends an instruction signal (control signal) for adjusting the illumination light to the illumination control unit 84 as shown in step S25.
  • the illumination control unit 84 adjusts the amount of illumination light. For example, the illumination control unit 84 adjusts the amount of illumination by increasing or decreasing the drive current for causing the LED 56 to emit light.
  • the lighting control unit 84 returns the adjustment result to the state management unit 81.
  • the state management unit 81 determines whether or not the brightness is within the brightness adjustment range possible by the illumination control unit 84 based on the information on the adjustment result. Then, when the brightness control by the illumination control unit 84 has succeeded, the imaging process control ends without performing the process of step S27. On the other hand, if it is out of the brightness adjustment range by the illumination control unit 84, as shown in step S27.
  • the state management unit 81 outputs a CCD gain adjustment signal to the CCD drive unit 86 and adjusts the gain of the CCD 25 to adjust the brightness of the imaging data. Then, the imaging process ends.
  • the state management unit 81 of the control circuit 57 acquires the state data of the air / water supply switch as shown in step S31 of FIG.
  • step S32 the state management unit 81 determines a change in the state of the air / water switch.
  • step S33 the state management unit 81 transmits the air / water switch corresponding to the instruction of the air / water switch operated by the user.
  • the control data is transmitted to the AWS unit 4 via the transmission / reception unit 83.
  • the air / water control unit 122 in the AWS unit 4 controls the pump 65 and the solenoid valve unit 124 in accordance with the air / water control data. Then, the air supply / water supply processing operation ends. On the other hand, when it is determined in step S32 that there is no change in the state of the air / water switch, the air / water processing operation without performing the processing in step S33 is ended. Note that the suction process is almost the same as the air supply / water supply process, and thus the process is omitted.
  • the state management unit 81 determines whether or not the angle control is effective, as shown in step S41.
  • the state management section 81 determines whether or not the angle control is valid, as shown in step S41, based on whether or not the trackball 69 is pressed against the trackball 69. Specifically, the state management unit 81 From the output, the displacement operation and the pressing operation of the trackball 69 can be detected. When the trackball 69 is pressed, the angle control is turned off.
  • the state management unit 81 determines whether or not the angle control is valid based on the output of the trackball displacement detection unit 95.
  • step S45 When it is determined that the angle control is not valid, the process proceeds to step S45, and the previous command value is held. On the other hand, when it is determined that the angle control is valid, the process proceeds to the next step S42, and the state management unit 81 acquires the state data by operating the trackball 69. Then, in the next step S43, the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
  • step S45 when the state management unit 81 determines that there is no state change, the process proceeds to step S45. Conversely, when the state management unit 81 determines that there is a state change, in the next step S44, the track ball 69 The command value corresponding to the rotation direction and the rotation amount is calculated.
  • step S46 the state management unit 81 sends the command value to the actuator driving unit 92 via the angle control unit 91, and performs servo processing on the angle actuator.
  • the actuator drive unit 92 drives the angle actuator based on the command value so as to be in an under state (curved angle) corresponding to the command value.
  • the angle state of the angle actuator is detected by the encoder, and the actuator driving unit 92 drives the angle actuator so that the value detected by the encoder matches the command value.
  • the angle control process ends.
  • FIG. 21 also shows the processing operation (steps S47 and S48) when the contact sensor described in the second embodiment is provided in the servo processing in step S46.
  • the processing in step S47 and step S48 will be described in the second embodiment.
  • This control process basically performs the same control process as FIG.
  • the state management unit 81 determines whether the variable hardness control is effective or not, as shown in step S51.
  • the insertion part hardness is Assigned to switches SW1 to SW5
  • the state management unit 81 determines whether or not the scope switch of the insertion portion hardness has been pressed and activated. Then, when the state management unit 81 determines that the hardness variable control is not valid, the process proceeds to step S55, and holds the previous command value. On the other hand, if it is determined that the hardness variable control is valid, the process proceeds to the next step S52, where the state management unit 81 acquires the state data by operating the trackball 69.
  • the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
  • step S55 if the state management unit 81 determines that there is no state change, the process proceeds to step S55. Conversely, if it determines that there is a state change, in the next step S54, the rotation direction of the trackball 69 is changed. , A command value corresponding to the rotation amount is calculated.
  • step S56 the state management unit 81 sends the command value to the actuator driving unit 94 via the hardness varying control unit 93, and the hardness varying actuator 54A or! Servos 54B.
  • the actuator driving unit 94 drives the hardness varying actuator 54A or 54B based on the command value so as to attain the target hardness corresponding to the command value.
  • the hardness changing state of the hardness changing actuator 54A or 54B is detected by the encoder 54c, and the actuator driving unit 94 controls the hardness changing actuator 54A or 54A so that the value detected by the encoder 54c reaches the target hardness.
  • Drive 54B drives the hardness varying actuator 54A or 54B based on the command value so as to attain the target hardness corresponding to the command value.
  • step S57 the hardness variable control section 93 or the state management section 81 determines whether or not the actuator is in the variable range of the hardness variable actuator 54A or 54B by the actuator driving section 94. A determination is made, and if it deviates from this variable range, the process of the hardness variable control ends.
  • step S57 if the hardness is within the variable range of the hardness variable actuator 54A or 54B, in the next step S58, the hardness variable control section 93 or the state management section 81 outputs the force reaching the target hardness. A determination is made as to whether or not the target hardness has been reached, and the flow returns to step S56 to continue the servo processing. In this way, when the target hardness has been reached, the hardness variable control process is terminated.
  • the UPD unit 76 detects the position of the UPD coil 58 disposed inside the insertion section 21 of the endoscope 3 by the UPD coil unit 8, calculates the insertion shape of the insertion section 21,
  • the shape of the insertion part that is, the UPD image, is displayed on the display screen of the observation monitor 6.
  • Figs. 23 (A) and 1 (D) show the menu screen on the right side and the UPD image on the left side in a corresponding state, respectively.
  • the user force S menu screen allows the hardness variable actuators 54A and 54B to be displayed.
  • the hardness of the hardness variable actuators 54A and 54B provided at a plurality of locations is displayed in a color corresponding to the set hardness. This shows how identification is facilitated.
  • FIG. 23 (A) shows the display state of the main menu, and shows that the user selects the variable insertion part hardness in this display state.
  • the UPD image is displayed immediately before the variable insertion portion hardness is selected, so that the sections A and B of the hardness variable actuators 54A and 54B are displayed without being distinguished from the sections other than the sections A and B.
  • the section ranges of the hardness set for the sections A and B of the two hardness variable actuators 54A and 54B are shown.
  • the hardness setting screen is displayed as to whether the hardness is set to (soft! /,) Soft state, hard /! / In the hard state, or the deviation hardness.
  • the current hardness position is indicated by a circle. It is. In this case, the colors are displayed in different display colors from soft to hard.
  • the corresponding UPD image is displayed in a color corresponding to the hardness for which the hardness variable factor is set, and the portion of the hardness variable factor is displayed in color.
  • the hardness section is set to a state close to soft, and in this case, the sections A and B of the hardness varying actuators 54A and 54B in the UPD image are displayed in yellow. .
  • Fig. 23 (C) shows a case where the hardness of section B of the hardness varying actuator 54B is set to a hardness near the center in the state of Fig. 23 (B), and the UPD image in this case is shown.
  • the section B of the hardness variable actuator 54B in is displayed in green.
  • FIG. 23 (D) shows that, for example, in the state shown in FIG. 23 (B) or FIG. 23 (C), the hardness in section B of the hardness variable actuator 54B is set to the hardness (hard value).
  • B of the hardness variable actuator 54B in the UPD image is Displayed in blue.
  • the user can freely set the hardness of the hardness variable actuators 54A and 54B, and set the sections A and B of the set hardness variable actuators 54A and 54B. Since the display is performed in the display color corresponding to the hardness, the user can easily identify the hardness of the hardness variable actuators 54A and 54B.
  • the operator can easily perform the insertion work of the insertion section 21 and the like.
  • the human interface is abbreviated as HMI.
  • the state management unit 81 waits for the angle valid switch to be turned off. That is, it waits until the trackball 69 is pressed and the angle effective switch is turned off.
  • the state management unit 81 issues a GUI (graphical user interface) display message as shown in the next step S62.
  • This GUI display message is wirelessly sent from the endoscope 3 via the AWS unit 4 to the (control CPU) in the system control unit 117 of the endoscope system control device 5.
  • the state management unit 81 waits for a display completion message of the endoscope system control device 5 side GUI display in the next step S63. If the GUI completion message cannot be received, the state management unit 81 proceeds to step S64 to determine whether the retry end condition is satisfied. Returns to step S63, and conversely terminates with an error if the retry end condition is met.
  • step S63 when receiving the display completion message, the state management unit 81 proceeds to step S65 and determines whether or not the angle valid switch has been turned ON. Then, when the angle valid switch is turned ON, the state management unit 81 issues a GUI end message as shown in step S66.
  • This GUI end message is the same as the GUI display message. It is transmitted to the endoscope system control device 5 wirelessly via the S unit 4. After issuing the GUI end message, the state management unit 81 waits for a display end message of the endoscope system control device 5 side power GUI to be received in the next step S67. Then, when receiving the GUI display end message, the state management unit 81 ends the human interface processing.
  • step S68 determines whether or not the force satisfies the retry end condition, and satisfies the retry end condition. If not, the process returns to step S66. Conversely, if the retry end condition is satisfied, the process ends with an error.
  • step S65 If the angle valid switch is not turned on in step S65, the process proceeds to the menu screen of step S69, and in this step S69, the state management unit 81 determines that the state of the trackball 69 has changed. It is determined whether or not the output force of the trackball displacement detection unit 95 has a change amount equal to or greater than a certain threshold.
  • step S70 when determining that there is a change in the state of the trackball 69, the state management unit 81 acquires the state data (change data) of the trackball 69.
  • the user can select and instruct the function of a desired item on the main menu screen of FIG. 16B using a cursor that moves in response to the operation of the trackball 69.
  • step S71 the state management unit 81 transmits state data corresponding to the operation of the trackball 69 by the user.
  • This state data is transmitted from the endoscope 3 to the endoscope system controller 5 via the AWS unit 4 as packet data in synchronization with the imaging data of the CCD 25.
  • the process returns to step S65.
  • step S69 when the state management unit 81 determines that there is no change in the state of the trackball 69, as shown in step S72, the switch pushes the switch state (switch SW1-SW5) to determine whether or not there is a change. The determination is made based on the detection output from the detection unit 96.
  • step S72 when it is determined that there is no change in the switch state, the process returns to step S65, and when it is determined that there is a change in the switch state, the process proceeds to step S73.
  • the state management unit 81 acquires the switch pressing state data, transmits the switch pressing data acquired in the next step S74, and returns to the processing in step S65.
  • the CPU of the system control unit 117 of the endoscope system control device 5 sends a GUI display message from the endoscope 3 in the first step S81. Waits for reception. This CPU waits for reception of the GUI display message wirelessly via the transmission / reception unit 101 of FIG. 8 or FIG.
  • step S82 when the CPU of the system control unit 117 receives the GUI display message, it performs a GUI display control process. That is, the CPU controls the image processing unit 116 to perform GUI display.
  • the CPU issues a display completion message as shown in step S83.
  • the CPU transmits this display completion message via the transmission / reception unit 101.
  • the CPU determines whether or not a GUI end message has been received from the endoscope 3. Then, when receiving the GUI end message, the CPU performs a process of ending the GUI display in step S85, issues a GUI display end message in the next step S86, and then executes the process of the human interface. The process ends.
  • step S84 if the GUI end message has not been received, the CPU proceeds to step S87 to determine whether or not the received data of the trackball 69 has changed. The determination as to whether or not the received data of the trackball 69 has changed is made based on the determination result of the change in the state of the trackball 69 by the endoscope 3. If there is a change in the received data, the state data of the trackball 69 is obtained as shown in step S88. Further, in the next step S89, the CPU moves the cursor by a moving amount corresponding to the acquired state data (change data) of the trackball 69. Then, the process returns to step S84.
  • step S87 If it is determined in step S87 that the received data of the trackball 69 has not changed, the CPU determines whether the received data of the switch has changed as shown in step S90. Is the received data of the transmission data of the judgment result on the endoscope 3 side. Data.
  • the CPU acquires the switch pressed state data from the transmission information on the endoscope 3 side force as shown in step S91. Further, as shown in step S91, the CPU performs processing for executing the function assigned to the switch on which the switch has been pressed, and returns to the processing in step S84. Also, in step S90, if there is no change in the received data of the switch, the process returns to step S84.
  • the endoscope 3 of the present embodiment that forms the endoscope system 1 performing such operations, the endoscope 3 is separated into the endoscope main body 18 and the tube unit 19 at the operation unit 22. By making the tube unit 19 side a disposable type, the endoscope body 18 can be easily cleaned and sterilized.
  • the air / water supply line 60a and the suction line 61a in the endoscope main body 18 can be much shorter than in the conventional example in which the universal cable corresponding to the tube unit 19 is integrally formed. Therefore, cleaning and sterilization are also easy.
  • the endoscope main body 18 and the tube unit 19 are detachably provided with connecting means that does not rely on the connection between the metal electrodes. Even if it is repeatedly washed and sterilized, it is possible to improve reliability without occurrence of contact failure or the like.
  • the operating section 22 is provided with a number of operating means such as an angle operating means, an air / water supplying means, a suction operating means, a hardness varying means, a freeze operating means, a release operating means, and the like.
  • the operation means is controlled intensively by a control circuit 57 provided in the operation unit 22.
  • the control circuit 57 also includes a light emitting unit that emits illumination light for performing imaging and an imaging unit that performs imaging with the operating unit. Both are configured to be controlled collectively.
  • various functions provided in the endoscope main body 18 are collectively controlled by the control circuit 57 provided in the operation unit 22 and the AWS unit connected to the endoscope main body 18 4 and the endoscope system control device 5 that transmits and receives information wirelessly, the various functions of the operating means are collectively controlled, so that the user (more specifically, the operator) can Various operations can be freely performed by the various operation means provided in, and the operability can be greatly improved.
  • image data obtained by the CCD 25 from the control circuit 57 and various types of data by the operation means are provided. Since the signals are transmitted in common through a pair of signal lines 71b by packetizing or the like, the number of electric signal lines can be reduced (specifically, two signal lines for signal transmission and power transmission The number of power lines can be reduced to two, and if one of the signal line and the power line is used in common, the number can be reduced to three in total.)
  • the number of signal lines that need to be inserted into the tube unit 19 connected at the connection portion of the operation unit 22 can be reduced, and the tube unit 19 side can be made disposable.
  • the tube unit 19 can be easily narrowed and bent, and operability when a user operates can be improved.
  • an endoscope system 1B having a configuration as shown in FIG. 26 may be used.
  • the endoscope system 1B has a configuration in which the AWS unit 4 is housed in a recess provided on the upper end surface of the examination bed 2 in the endoscope system 1 shown in FIG.
  • a wireless transmission / reception unit 77 as shown in Fig. 8 is provided on, for example, the upper surface thereof. Further, when housed in the recess, a scope connector 40 is provided on the front surface exposed to the outside, so that the scope connector 41 of the endoscope 3 can be detachably connected.
  • FIG. 27 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the second embodiment of the present invention as seen through
  • FIG. FIG. 29 is a perspective view of a main part showing a transparency sensor of the endoscope in the endoscope system
  • FIG. 29 is a block diagram showing an electrical configuration of the endoscope in the endoscope system of the second embodiment.
  • the endoscope 3B according to the present embodiment does not include a unit corresponding to the signal line 71b of the endoscope 3 according to the first embodiment, and includes an antenna unit 141 provided in the operation unit 22.
  • This allows image data captured by the CCD 25 and various data to be transmitted and received to and from AWS Unit 4 wirelessly. That is, in the endoscope according to the first embodiment, various wired signals are carried by the signal line 71b as a common signal transmission unit, but in the second embodiment, various signals are wirelessly transmitted by the common signal transmission means.
  • An antenna section 141 forming means is employed.
  • the connector 51 of the operation unit 22 of the endoscope main body 18 of the present embodiment does not have the electromagnetic coupling connection 72b connected to the signal line 71b in the first embodiment. ing.
  • the signal line 73b is not passed through the tube unit 19 side (in the tube unit 19 in FIG. 9)!
  • the air / water supply line 60b, the suction line 61b, and the power supply line 73a are connected.
  • the electrical connector 74 'of the connector 41 has only the connection part of the power supply line 73a.
  • the structure inside the tube unit 19 can be simpler than in the first embodiment, so that the cost can be reduced and the tube unit 19 can be made more suitable for disposable use.
  • a contact sensor 142 is provided on the outer peripheral surface of the distal end portion 24, and the contact sensor 142 is connected to the control circuit 57 via a signal line. And angle
  • control is performed to restrict the bending of the bending portion 27 based on the detection result of the contact sensor 142 at that time. By performing this control, the bending portion 27 is reduced so as not to apply excessive force to the inner wall of the body cavity, and for example, when the insertion portion 21 is inserted into the body cavity, the pain given to the patient is reduced. To make the insertion smoother.
  • a transparency sensor 143 for detecting the transparency of the fluid inside the air / water supply line 60a and the suction line 61a is provided at an appropriate position in the longitudinal direction of the insertion portion 21.
  • the detection signal of the transparency sensor 143 is sent to the control circuit 57.
  • the configuration is such that the UPD coil 58 in the first embodiment is not provided.
  • FIG. 28 is an explanatory diagram of the operation of detecting the cleaning level by the transparency sensor 143.
  • a photoreflector 144 and a reflection plate 145 are opposed to the outer periphery of an air / water supply pipe 60a (same for the suction pipe 61a) formed of a transparent tube.
  • the transparency sensor 143 is formed.
  • the light from the light emitting element constituting the photo reflector 144 is emitted to the reflector 145 side, and the light reflected by the reflector 145 is received by the light receiving element constituting the photo reflector 144 I do.
  • the transmittance detector 146 such as the air / water supply line 60a formed of a transparent tube is actually disposed between the photoreflector 144 and the reflection plate 145, the air / water supply line
  • the transmittance detector 146 such as the air / water supply line 60a formed of a transparent tube
  • the air / water supply line When the inner wall side of the air / water supply line 60a is cleaned by flowing a transparent cleaning liquid inside the 60a, when the inner wall surface is in a clean state, the amount of light received by the light receiving element of the photo reflector 144 increases. Make it possible to detect the degree of cleaning.
  • this function can quantitatively detect the washing level between the inner wall surface of the air / water supply conduit 60a and the inner wall surface of the suction conduit 61a.
  • FIG. 29 shows a configuration of an electric system in the case of the endoscope 3B according to the present embodiment.
  • the contact portion is further provided at the distal end portion 24.
  • a sensor 142 is provided, and is connected to the state management unit 81 via a contact sensor detection unit 147 that performs contact detection based on a detection output from the contact sensor 142.
  • a transparency sensor 143 is further provided on the flexible portion of the insertion section 21, and is connected to the state management section 81 via a transparency detection section 148 that detects the transparency by the detection output of the transparency sensor 143.
  • a transmission / reception unit 149 for performing transmission / reception by a wireless system is employed instead of the transmission / reception unit 83 by wire in FIG.
  • image data and operation data such as switches input to the electrical connector 43 of the AWS unit 4 are transmitted to the data communication control unit 11 of the endoscope system controller 5 in the same manner as in the first embodiment. Receive all.
  • the data communication control unit 11 of the AWS unit 4 receives only the AWS-related information such as the operation of the air / water switch and the suction switch, and then sends the information to the air / water control unit 122, and the pump 65 and the solenoid valve unit. Controls 124.
  • the configuration is such that the UPD coil 58 is not provided.
  • the state management unit 81 when performing the angle operation control for the angle operation, performs state management at the start of the servo processing in step S46 as shown in FIG.
  • the unit 81 captures the detection result of the contact sensor 142 via the contact sensor detection unit 147 as shown in step S47, and determines whether the distal end portion 24 is in contact with the inner wall or the like in the body cavity at a pressure equal to or more than a moderate value. Is detected (determined).
  • step S48 determines whether or not the target position corresponding to the angle command value has been reached.
  • the control returns to step S46 if the target position has not been reached, and the control processing for this angle operation ends if the target position has been reached.
  • step S47 when the state management unit 81 determines that the contact is made with an appropriate value or more, the control process for the angle operation is terminated without performing the process of the next step S48.
  • the state management unit 81 performs the angle operation. Performs control processing to bend the bending portion 27 to the target position corresponding to the command value by the force. If the distal end portion 24 comes into contact with the inner wall or the like in the body cavity with a pressure equal to or higher than the set value, it bends further. The control is performed so as to suppress the occurrence.
  • the user when the user inserts the insertion section 21 into the body cavity, even if the user performs an angle operation to insert the insertion section 21 along the bent conduit, the user should make contact with a pressure greater than the set value. Thus, pain given to the patient can be further reduced, and smooth insertion can be achieved.
  • the hardness output may be controlled to be further changed by the hardness variable actuator based on the detection output of the contact sensor 142.
  • FIG. 30 is a side view showing a perspective view of some of the internal components of the endoscope in the endoscope system according to the third embodiment of the present invention.
  • the endoscope 3C does not include the above-described signal line 7 lb similarly to the above-described second embodiment, and instead includes the antenna unit 141 and the antenna unit 141.
  • the power supply line 71a is not provided, and the operation unit 22 is provided with a battery 151, a charging circuit 152 connected thereto, and a non-contact charging coil 153. I have.
  • the connector section 51 of the operation section 22 in the third embodiment includes a pipeline connector section 5la having an air / water supply connector and a suction connector.
  • the tube unit 19 detachably connected to the endoscope main body 18 in the third embodiment is provided with the power supply line 73a and the signal line 73b as in the first embodiment described above.
  • the structure is such that the water supply line 60b and the suction line 61b are inserted.
  • the battery 151 is formed of a rechargeable secondary battery such as a lithium battery, and the battery 151 is provided with a watertight structure built in a portion near the outer surface of the operation unit 22 via a charging circuit 152. Connected to contact charging coil 153. And this contactless charging core A non-contact power supply coil (not shown) is arranged opposite to the outer surface of the portion in which the coil 153 is built in, and the battery 151 can be charged by supplying an alternating current to the non-contact power supply coil. .
  • the AC power is supplied to the non-contact charging coil 153 inside the operation unit 22 by electromagnetic coupling. Can be transmitted by contact.
  • the AC power is further converted by the charging circuit 152 into a DC voltage for charging the battery 151, supplied to the battery 151, and the battery 151 is charged.
  • the LED 56 is employed as the lighting means, the power consumption can be reduced far more than in the case of using a lamp.
  • an ultra-sensitive CCD 25 (with a built-in variable gain function) is used, so that a sufficiently bright image can be obtained even when the amount of illumination light is small. For this reason, even when the knowledge 151 is adopted, the endoscopy can be performed for a much longer time than in the conventional example.
  • the notch 151 can be smaller and lighter than in the case of the conventional example, and the operation section 22 can be lighter in weight to ensure good operability.
  • the configuration of the electrical system inside the endoscope 3C is such that the contact sensor 142 and the transparency sensor 143 are removed in FIG. 29, and the power transmission / reception unit 97 includes a nottery 151 and a charging circuit 152 connected thereto. And a contactless charging coil. Therefore, the drawing is omitted.
  • the tube unit 19 includes only the conduit system, and has a configuration more suitable for a disposable type. Also, in the case of recycling (reuse), since there is no electric wire in the tube unit 19, it is easy to recycle. Further, according to the third embodiment, when the pipe system is not used, the tube unit 19 can be detached from the endoscope main body 18 and used. In other words, in this case, the tube unit 19 can be dispensed with, so that the tube unit 19 can be prevented from obstructing the operation, and the operability can be improved.
  • FIG. 31 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the fourth embodiment of the present invention in a see-through manner
  • FIG. FIG. 2 is a side view of a main part showing a configuration of a battery unit and a peripheral part of the endoscope in the endoscope system, an electric circuit unit, and an electric circuit diagram showing a configuration of a charging unit according to the battery unit.
  • the endoscope 3D according to the fourth embodiment is different from the power supply circuit 161 in place of the battery 151 and the charging circuit 152 incorporated in the operation unit 22 in the endoscope 3C according to the third embodiment. Is placed.
  • a non-contact power supply coil 162 is connected to the power supply circuit 161, and a concave portion 163 is formed at a position facing the portion of the operation unit 22 in which the non-contact power supply coil 162 is built. It has a structure in which the battery 164 of the type can be detachably mounted.
  • Fig. 32 (A) shows an enlarged view of the vicinity of the battery unit 164
  • Fig. 32 (B) shows the internal configuration in Fig. 32 (A)
  • Fig. 32 (C) charges the battery unit 164.
  • the circuit configuration for connecting to the device 165 and charging the battery 166 by the charging device 165 is shown.
  • a battery unit 164 provided with a watertight outer case to be mounted in a concave portion 163 provided in the operation unit 22 includes a non-contact power supply on the power supply circuit 161 side.
  • a non-contact power supply coil 167 is disposed at a portion facing the coil 162, and the non-contact power supply coil 167 is connected to a battery 166 via a power supply circuit 168.
  • the non-contact power feeding coil 167 is connected to a switching circuit 169 and a charging circuit 170 constituting a power supply circuit 168, and the switching circuit 169 and the charging circuit 170 These switches are connected to lead switches 171 and 172 as magnetically sensitive switches that turn on and off in response to magnetism (magnetic field).
  • the battery unit 164 is housed in an outer case and has a waterproof structure.
  • the power supply circuit 161 connected to the other contactless power supply coil 162 has the same configuration as that shown in FIG. 12, for example.
  • the AC power transmitted to the contactless power supply coil 162 is rectified by the rectifying diode D, and the pulsating component is removed through the smoothing capacitor.
  • the voltage is then smoothed, input to the three-terminal power supply IC 79, and converted to a predetermined voltage value by the three-terminal power supply IC 79.
  • the DC power having a predetermined voltage value generated by the power supply circuit 161 is supplied to each unit of the control circuit 57.
  • the power of the battery 166 is supplied to the switching circuit 169, and the switching circuit 169 performs a switching operation, and the pulse (AC) current switched by the switching operation is transmitted through the contactless power feeding coil 167, The power is transmitted to the non-contact power supply coil 162 which is electromagnetically coupled with the non-contact power supply coil 167 in a non-contact manner.
  • the charging device 165 for charging the battery 166 of the battery unit 164 has a circuit configuration as shown in FIG.
  • the AC power from the AC power supply is input to the rectifier Z smoothing circuit 182 via the EMI filter 181 and converted into smoothed DC power.After that, the switching operation is performed in substantially the same manner as the switching circuit 169 to perform charging control. Is supplied to a charge control circuit 183 for performing the above-mentioned operations.
  • the output terminal of the charge control circuit 183 is connected to a non-contact power supply coil 184, and the AC power switched by the charge control circuit 183 is supplied to the non-contact power supply coil 167 via the non-contact power supply coil 184. Is done.
  • a reed switch 185 is connected to the charge control circuit 183, and by mounting the nottery unit 164 in a recess provided in the charging device 165, a magnetic field generated by a magnet 175 provided on the side of the nottery unit 164 is provided. Turns on the reed switch 185. Ma Also, the reed switch 172 connected to the charging circuit 170 can be turned on by the magnet 186 provided on the charging device 165 side!
  • the charging control circuit 183 is in an operating state, performs a switching operation, and supplies AC power from the contactless power feeding coil 184 to the contactless power feeding coil 167 side.
  • the AC power supplied to the non-contact power supply coil 167 side is converted by the charging circuit 170 into a DC voltage for charging the battery 166, and charges the battery 166.
  • the charge control circuit 183 monitors the current and the like supplied from the non-contact power supply coil 184 to the non-contact power supply coil 167, and detects the state of charge of the battery 166 from the value. When a predetermined charge state is reached, the supply of AC power is stopped, and an LED or the like (not shown) is turned on to notify the completion of charging.
  • the detachable battery unit 164 to the endoscope main body 18, the intensive control operation by the control circuit 57 provided inside the operation unit 22 can be performed. Can be done.
  • the battery unit 164 When the electric energy of the battery 166 in the battery unit 164 is exhausted or reduced, the battery unit 164 is brought into non-contact with the charging device 165 as shown in FIG. The battery 166 can be charged by mounting
  • the tube unit 19 since the electric signal lines do not need to pass through the tube unit 19, the tube unit 19 can be manufactured at lower cost and the tube unit 19 more suitable for a disposable type can be realized. it can. Further, the tube unit 19 itself can be reduced in diameter, and the operability when operating the operation unit 22 can be improved.
  • the tube unit 19 side is detached from the endoscope main body 18 and used as described in the third embodiment. You can also.
  • FIG. 33 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the fifth embodiment of the present invention in a see-through manner
  • FIG. FIG. 35 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of the endoscope in the endoscope system according to the embodiment.
  • FIG. 35 is an optical diagram of the endoscope in the endoscope system according to the fifth embodiment.
  • FIG. 4 is a diagram showing a schematic configuration of a simple pressing amount detecting means.
  • FIG. 36 is a block diagram showing the electrical configuration of the endoscope in the endoscope system according to the fifth embodiment.
  • FIG. 37 is a block diagram showing the endoscope system according to the fifth embodiment. 4 is a flowchart showing a control process of an angle operation of the endoscope in FIG.
  • the endoscope according to the fifth embodiment has the same basic configuration as that of the first embodiment. Therefore, only the differences will be described here, and the same constituent elements will be the same in the drawings. And the description is omitted.
  • the endoscope 3 includes, for example, a light emitting diode (LED) as an illumination means inside an illumination window provided at the distal end portion 24 of the insertion portion 21.
  • the illumination light of the LED 56 is emitted forward through a lens integrally attached to the LED 56.
  • a transparent optical element 161 is arranged, and illumination light is emitted forward through the optical element 161 and the illumination lens 162 arranged in front of the optical element 161 to illuminate a subject such as an affected part.
  • FIG. 35A is a schematic view of the optical element 161 as viewed from the LED 56 side. That is, a prism or a beam splitter having a function of splitting transmitted light and reflected light is provided around the optical element 161 to form the light splitting unit 163.
  • the pressing and deforming member 165i When the pressing and deforming member 165i is pressed and deformed, the reflection characteristic of the light guided by the optical fiber 164i in the pressing and deforming member 165i changes, and the amount of light incident on the optical fiber 166i changes. . Therefore, when the pressing and deforming member 165i is pressed and deformed, the intensity (signal level) of the electric signal detected by the light detecting element of the light detecting element array 167 via the optical fiber 166i also changes.
  • the photodetector array 167 is connected to the control circuit 57 via a signal line.
  • the control circuit 57 determines, based on the output of the photodetector array 167, whether or not a pressing force equal to or greater than a predetermined value has acted on the basis of whether or not the output has changed by an amount equal to or greater than a reference value.
  • a restricting means for restricting the bending drive is formed when it is determined that the output change amount has changed by the reference value or more. This operation will be described later in detail.
  • a light branching portion 163 is formed to be elongated below the optical element 161 to form a light branching part 163a at four corners of the optical element 161 as shown in FIG. 35 (B).
  • 163b, 163c and 163d may be formed. In this way, light can be easily guided to the pressing deformation members 165i disposed at the upper, lower, left, and right positions in the curved portion 27.
  • the pressure detecting means (part of FIG. 15 is a simplified contact diagram) that optically detects the amount of pressure acting on each of the upper, lower, left and right corners of the distal end portion 24 by using a part of the illumination light. (Using the sensor 142).
  • the LED 56 may be an LED that generates white light, an R LED, a G LED, and a red (R), green (G), and blue (B) wavelength light. Even if it is configured with LED for B good.
  • the light emitting element forming the illumination means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
  • an objective lens 169 is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a built-in variable gain function is arranged at an image forming position to capture an object.
  • An imaging means is formed.
  • the function of varying the gain is built into the CCD element itself, and the gain of the CCD output signal can be easily varied up to about 100 times by the function of varying the gain.
  • the LED 56 has better luminous efficiency than a lamp, the temperature rise near the LED 56 can be suppressed.
  • One end is connected to each of the LED 56 and the CCD 25, and the other end of the signal line passed through the insertion section 21 is provided, for example, in the operation section 22 and performs centralized control processing (aggregated control processing).
  • a plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to a UPD coil driving unit provided in the operation section 22. It is connected to the control circuit 57 via 59.
  • the state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination.
  • the LED drive unit 85 applies an LED drive signal to the LED 56 to emit light to the LED 56 serving as illumination means.
  • the illuminated subject such as the affected part is irradiated by the objective lens 169 attached to the observation window.
  • An image is formed on the imaging surface of the CCD 25 arranged at the image forming position, and the image is photoelectrically converted by the CCD 25.
  • the CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by applying a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81.
  • the image signal is converted into a digital signal by an AZD converter 87 after being converted into an analog signal.
  • the digital signal (image data) is stored in the image memory 88 while being input to the state management unit 81.
  • the image data in the image memory 88 is sent to the data transmission unit 12 'of the transmission / reception unit 83. [0179]
  • the signal is transmitted from the electrical connector 15 to the AWS cut 4 via the signal line 73b in the tube unit 19. In addition, it is transmitted to the endoscope system controller 5 by the AWS unit 4 power wirelessly.
  • the output signal of the ADC 87 is sent to the brightness detection unit 89, and the information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the amount of illumination by the LED 56 becomes appropriate.
  • the dimming control when performing the operation of optically detecting the amount of pressure, maintains the illumination light amount of the LED 56 constant, and adjusts the gain of the CCD 25 to obtain an image of appropriate brightness. Is obtained.
  • the contact sensor 142 is provided on the outer peripheral surface of the distal end portion 24, and the contact sensor 142 performs contact detection (press detection) based on the detection output. (Pressing detection unit) is connected to the state management unit 81 via 147.
  • the state management unit 81 performs control for restricting the bending of the bending unit 27 based on the detection result of the contact sensor 142 at that time.
  • the bending portion 27 is reduced so that the inner wall of the body cavity does not exert excessive force on the inner wall.For example, when the insertion portion 21 is inserted into the body cavity, the pain given to the patient is reduced. To ensure smooth insertion.
  • the state management unit 81 controls an actuator driving unit 92 via an angle control unit 91, and manages driving of the angle actuator (EPAM) 27a by the actuator driving unit 92.
  • the drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c, and is controlled so that the drive amount matches a value corresponding to the indicated value.
  • the output of the optical pressing amount detecting means is used for the angle operation so that the insertion operation of the insertion portion 21 and the like can be smoothly performed.
  • the state management unit 81 determines whether the angle control is effective as shown in step S41, as in the first embodiment.
  • the state management section 81 determines whether or not the angle control is valid as shown in step S41, based on whether or not the track ball 69 is pressed by the track ball 69. Do. Specifically, the state management unit 81 can detect a displacement operation and a pressing operation of the trackball 69 based on an output of the trackball displacement detection unit 95. When the trackball 69 is pressed, the angle control is turned off.
  • the state management unit 81 determines whether or not the angle control is valid based on the output of the trackball displacement detection unit 95.
  • step S45 If it is determined that the angle control is not valid, the process proceeds to step S45, and the previous command value is held. On the other hand, when it is determined that the angle control is valid, the process proceeds to the next step S42, and the state management unit 81 acquires the state data by operating the trackball 69. Then, in the next step S43, the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
  • step S45 if the state management unit 81 determines that there is no state change, the process proceeds to step S45, and if it determines that there is a state change, on the other hand, in the next step S44, the rotation direction of the trackball 69 is changed. , A command value corresponding to the rotation amount is calculated.
  • step S46 the state management unit 81 sends the command value to the actuator driving unit 92 via the angle control unit 91, and performs servo processing on the angle actuator 27a.
  • the actuator drive unit 92 drives the angle actuator based on the command value so as to be in an under state (curved angle) corresponding to the command value.
  • step S46 the state management unit 81 captures the detection result of the contact sensor 142 via the contact sensor detection unit 147 as shown in step S47. 24 comes into contact with the inner wall of the body cavity, etc. with a pressure equal to or more than an appropriate value!
  • the process proceeds to the next step S48, and the state management unit 81 has reached the target position corresponding to the angle command value. Is determined based on the detection value of the encoder 27c.If the target position has not been reached, the process returns to step S46.If the target position has been reached, on the other hand, the control processing for this angle operation ends. .
  • step S47 when the state management unit 81 determines that the contact is made with an appropriate value or more, the control process for the angle operation is terminated without performing the process of the next step S48.
  • the state management unit 81 performs a control process so as to bend the bending unit 27 to the target position corresponding to the command value by the angle operation.
  • control is performed so as to suppress further bending.
  • the user when the user inserts the insertion section 21 into the body cavity, even if the user performs an angle operation to insert the insertion section 21 along the bent conduit, the user should make contact with a pressure greater than the set value. Thus, pain given to the patient can be further reduced, and smooth insertion can be achieved.
  • the amount of pressing is detected using a part of the peripheral light in the illumination light emitted from the illumination window ( Since the means for performing (contact detection) is formed, it can be used for performing insertion work and the like smoothly by effectively using the illumination light.
  • FIG. 38 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of an endoscope in an endoscope system according to a sixth embodiment of the present invention.
  • FIG. FIG. 40 is an enlarged cross-sectional view of a main part showing a first modification of the configuration of the endoscope insertion section distal end side in the endoscope system of FIG. 40.
  • FIG. 40 is an endoscope of the endoscope system of the sixth embodiment.
  • FIG. 41 is an enlarged perspective view of a main part showing a second modification of the configuration on the distal end side of the insertion section.
  • 41 is a second modification of the configuration on the distal end side of the endoscope insertion section in the endoscope system according to the sixth embodiment.
  • 42 is an enlarged cross-sectional view of a main part showing an example
  • FIG. 42 is an enlarged cross-sectional view of a main part showing a cross section taken along line DD ′ in FIG. 41.
  • the endoscope 3B of the sixth embodiment is further provided near the rear end of the curved portion 27 and also at a position behind the curved portion 27.
  • Contact sensors 171a-171d and 172a-172d are provided.
  • An LED 173 and a light detection element array 174 are arranged inside the vicinity of the rear end of the curved portion 27, and the light of the LED 173 is guided into the pressing and deforming member 176i by the optical fiber 175i.
  • One end of a pair of optical fibers 177i is arranged in the deformation member 176i. The light detected by the optical fiber 177i is received by the photodetector array 174.
  • the LED 173 and the photodetector array 174 are connected to the control circuit 57 by signal lines.
  • the contact sensors 172a to 172d also have the same configuration, and a description thereof will be omitted.
  • the present embodiment it is possible to detect a state in which the peripheral edge portion (specifically, the upper, lower, left, and right positions) of the distal end portion 24 is in contact with the inner wall of the body cavity and is deformed by pressing. It is possible to detect a state in which the outer peripheral surface is pressed and deformed at each of the upper, lower, left, and right positions, and a state in which the outer peripheral surface behind the curved portion 27 is deformed by pressing at the upper, lower, left, and right positions.
  • the distal end portion 24 is provided near the rear end of the curved portion 27 and further on the rear end side. It is possible to detect the pressing state in a wider range of the area 21.
  • the other effects are the same as those of the first embodiment.
  • a force using a light source for detecting a pressing amount different from that of the LED 56 for generating illumination light is used.
  • a structure for detection can also be used.
  • FIG. 39 shows the structure of the distal end side of an endoscope 3C according to a first modification.
  • the contact sensors 197a to 197d are arranged at four positions inside, for example, up, down, left and right inside the curved portion 27.
  • FIG. 39 shows the upper and lower contact sensors 197a and 197c.
  • the output of each contact sensor 197j is used as a detecting means for detecting the vertical and horizontal bending states of the bending section 27.
  • FIG. 40 shows the shape of the distal end side of the insertion section 21 of the endoscope 3D of the second modification.
  • a tapered portion 181 is provided on a peripheral edge portion of the distal end portion 24.
  • a hard large-diameter portion 182 which is thicker than the outer diameter of the insertion portion 21 is provided at a rear end portion of the curved portion 27.
  • Fig. 41 shows the internal structure of the distal end side of the insertion section 21 of the endoscope 3D.
  • an LED 184 for illumination is provided in the hard large-diameter portion 182, and the illumination light of the LED 184 is provided by a light guide fiber bundle 185 having a rear end (incident end) disposed opposite to the LED 184. The light is transmitted, and the tip surface force fixed to the illumination window of the tip portion 24 is further emitted to the front side via the illumination lens 186.
  • light guide fibers 187a, 187b, 187c, and 187d are also arranged in a ring shape on the outermost periphery of the light guide fiber bundle 185 so that a part of the illumination light of the LED 184 is incident.
  • each light guide fiber 187j is disposed inside a circular ring-shaped pressing deformation member 188 disposed in the tapered portion 181 of the distal end portion 24, and emits the guided light.
  • FIG. 42 (A) shows a light guide fiber 187j (and 18) arranged inside a circular ring-shaped pressing deformation member 188 in a cross section taken along line DD ′ in FIG.
  • the light guide fibers 187 (and 189) may be provided in directions other than the vertical and horizontal directions as shown in FIG.
  • a light guide fiber paired with each light guide fiber 187j is provided inside the pressing deformation member 188.
  • the distal end surface of the eyebar 189j is arranged, and guides the light reflected and incident by the pressing deformation member 188 to the rear end.
  • a light detection element array 190 is arranged, which receives the guided light and performs photoelectric conversion.
  • the outer periphery of the pressing deformation member 188 is covered by a protection member 191.
  • a reference pressing deformation member 192 having substantially the same shape and almost the same characteristics as the pressing deformation member 188 is disposed in the hard large-diameter portion 182. Further, the pressing deformation member 192 is set in a state where it is not deformed.
  • the pressure (contact) can be detected with high accuracy. I can do it.
  • the optical fiber 193j and 194j on the reference side may be configured as a single pair to have a simplified configuration.
  • the pressing deformation member 192 may not be provided in a circular ring shape like the pressing deformation member 188, and may be provided only near the reference optical fibers 193 and 194.
  • the amount of pressing can be detected with higher accuracy.
  • FIG. 43 is a diagram showing an overall configuration of an endoscope system according to a seventh embodiment of the present invention
  • FIG. 44 is a diagram showing a peripheral portion of an AWS unit in the endoscope system according to the seventh embodiment.
  • FIG. 3 is a perspective view showing a specific external shape of the vehicle.
  • an endoscope system 1 including an embodiment of the present invention is a flexible endoscope that is inserted into a body cavity of a patient (not shown) lying on an examination bed 2 to perform an endoscopy.
  • a mirror (also referred to as a scope) 3 is connected to the endoscope 3 to provide air supply, water supply, and suction functions.
  • Air 'water supply' suction unit (hereinafter abbreviated as AWS unit) 4 signal processing for the imaging device built in endoscope 3, control processing and video processing for various operating means provided in endoscope 3
  • an observation monitor 6 such as a liquid crystal monitor for displaying a video signal generated by the endoscope system control device 5.
  • the observation monitor 6 is provided with a touch panel 33.
  • the endoscope system 1 is connected to the image recording unit 7 for, for example, filing the digital video signal generated by the endoscope system control device 5, and the AWS unit 4, and the endoscope 3
  • a shape detection coil hereinafter abbreviated as UPD coil
  • UPD coil shape detection coil
  • the position of each UPD coil is detected by receiving an electromagnetic field by the UPD coil, and the endoscope is used.
  • an UPD coil unit 8 for displaying the shape of the inlet.
  • the UPD coil unit 8 is provided so as to be embedded on the upper surface of the inspection bed 2.
  • the UPD coil unit 8 is connected to the AWS rack 4 by a cable 8a.
  • a storage recess is formed at one end of the inspection bed 2 in the longitudinal direction and at a position below the same, so that the tray transport trolley 38 can be stored. .
  • a scope tray 39 in which the endoscope 3 is stored is placed on the upper part of the tray transport trolley 38.
  • the scope tray 39 containing the sterilized or disinfected endoscope 3 can be transported by the tray transport trolley 38 and can be stored in the storage recess of the inspection bed 2.
  • the operator can pull out the endoscope 3 from the scope tray 39 and use it for endoscopy, and store it in the scope tray 39 again after the endoscope inspection.
  • the scope tray 39 containing the used endoscope 3 is transported by the tray transport trolley 38, so that sterilization or disinfection can be performed smoothly.
  • the AWS unit 4 and the endoscope system control device 5 shown in FIG. 43 transmit and receive information (data) wirelessly.
  • the endoscope 3 may transmit and receive information (data) (bidirectional transmission) by force radio connected to the AWS unit 4 and the tube unit 19.
  • the endoscope system controller 5 May be configured to transmit and receive information to and from the endoscope 3 wirelessly.
  • the three methods in the transmission / reception unit (communication unit) for transmitting and receiving data between units and devices in the endoscope system 1, or between the endoscope 3 and the unit or device are described. Is the same as in the first embodiment.
  • the endoscope 3 is detachably connected to the endoscope main body 18 and the endoscope main body 18, for example, using a disposable type (disposer). (Bulb type) tube unit 19.
  • the endoscope main body 18 has an elongated soft insertion portion 21 inserted into a body cavity, and an operation portion 22 provided at a rear end of the insertion portion 21.
  • the base end of the tube unit 19 is detachably connected.
  • an imaging unit using a charge-coupled device (abbreviated as CCD) 25 having a variable gain inside the imaging device is arranged at the distal end portion 24 of the insertion section 21.
  • CCD charge-coupled device
  • a bending portion 27 that can be bent with a small amount of force is provided at the rear end of the distal end portion 24.
  • a trackball 69 as operating means (instruction input unit) provided in the operating unit 22, The bending portion 27 can be bent.
  • This trackball 69 is angled
  • the insertion portion 21 is formed with a plurality of hardness variable portions provided with hardness variable actuators 54A and 54B for varying the hardness so that an insertion operation or the like can be performed more smoothly.
  • the AWS unit 4 and the endoscope system control device 5 transmit and receive data using the wireless transmission and reception units 77 and 101, for example, as shown in Fig. 8 described above.
  • the observation monitor 6 is connected to the monitor connector 35 of the endoscope system control device 5 by a monitor cable.
  • the endoscope system control device 5 includes the AWS unit 4 side force together with the image data captured by the CCD 25 and the shape of the insertion section of the endoscope 3 detected using the UPD coil unit 8 ( The image data of the (UPD image) is transmitted, and accordingly, the endoscope system controller 5 transmits a video signal corresponding to the In addition, the UPD image can be displayed together with the endoscope image.
  • the observation monitor 6 is configured by a high-resolution TV (HDTV) monitor so that a plurality of types of images can be simultaneously displayed on the display surface.
  • HDTV high-resolution TV
  • the AWS unit 4 is provided with a scope connector 40. Then, the scope connector 41 of the endoscope 3 is detachably connected to the scope connector 40.
  • FIG. 45 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the seventh embodiment in a see-through manner
  • FIG. FIG. 2 is a diagram showing a specific external shape and the like of an endoscope in the endoscope system.
  • FIG. 47 is a diagram showing the configuration and operation of a transparency sensor of an endoscope in the endoscope system according to the seventh embodiment.
  • FIG. 48 is a diagram showing the endoscope according to the seventh embodiment.
  • FIG. 2 is a block diagram showing an electrical configuration of the endoscope in the system.
  • Fig. 46 (A) shows the vicinity of the operation unit of the endoscope 3 from the side
  • Fig. 46 (B) shows a front view seen from the right side of Fig. 46 (A)
  • Fig. 46 (C ) Shows the rear view of the left side force in Fig. 46 (A).
  • FIG. 46 (D) shows a plan view seen from above in FIG. 46 (A).
  • FIG. 46 (E) shows an example of the angle range of the slope that is close to optimal.
  • the flexible endoscope 3 includes an endoscope main body 18 having an elongated and flexible insertion section 21 and an operation section 22 provided at the rear end thereof.
  • a disposable type in which a general connector section 52 at the base end is detachably connected to a connector section 51 (for tube unit connection) provided near the base end (front end) of the operation section 22 of the endoscope body 18.
  • the insertion portion 21 includes a hard tip portion 24 provided at the tip of the insertion portion 21, a bendable bending portion 27 provided at the rear end of the tip portion 24, and a rear end of the bending portion 27.
  • Power up to operation unit 22 And an elongated flexible portion (coil tube portion) 53.
  • a plurality of portions, specifically two portions, in the soft portion 53 are formed of a conductive polymer artificial muscle (abbreviated as EPAM) or the like that can expand and contract by applying a voltage and change the hardness.
  • Hardness variable actuators 54A and 54B are provided.
  • a light emitting diode (abbreviated as LED) 56 is attached as an illumination means inside the illumination window provided at the distal end portion 24 of the insertion portion 21, and the illumination light of the LED 56 is integrated with the LED 56.
  • the light is emitted forward through the attached illumination lens and illuminates a subject such as an affected part.
  • the light emitting element forming the lighting means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
  • an objective lens (not shown) is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a variable gain function is arranged at an image forming position to capture an image of a subject.
  • An imaging means is formed.
  • One end is connected to each of the LED 56 and the CCD 25, and the signal line passed through the insertion section 21 is provided inside the operation section 22 and connected to a control circuit 57 that performs centralized control processing (aggregated control processing). ing.
  • a plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to an UPD coil provided in the operation section 22. It is connected to a control circuit 57 via a controller drive unit 59.
  • Angle actuators 27a as angle elements (curving elements) formed by arranging EPAMs in the longitudinal direction are arranged at four locations in the circumferential direction on the inner side of the outer skin of the bending portion 27. .
  • the angle actuator 27a and the hardness variable actuators 54A and 54B are also connected to the control circuit 57 via signal lines.
  • the control circuit 57 is configured by mounting electronic circuit elements on a switch board 57a and a trackball board 57b, for example.
  • the EPAM used for the angle actuator 27a and the hardness variable actuators 54A and 54B is, for example, to attach electrodes to both sides of a plate shape and apply a voltage to cause contraction in the thickness direction and expansion in the longitudinal direction. be able to. In this EPAM, for example, the amount of distortion can be changed in proportion to the square of the applied voltage.
  • the angle actuator 27a When used as the angle actuator 27a, the curved portion 27 is bent in the same manner as a normal wire by forming a wire shape or the like and extending one side and contracting the other side. Can be.
  • the hardness can be varied by the extension or contraction, and the hardness varying actuators 54A and 54B can use the function to vary the hardness of the portion.
  • an air / water supply conduit 60a and a suction conduit 61a are inserted into the insertion portion 21, and a rear end thereof is a conduit connector 51a opened in the connector portion 51.
  • the pipeline connector 51 is detachably connected to the pipeline connector 52a of the overall connector section 52 at the base end of the tube unit 19.
  • the air / water supply line 60a is connected to the air / water supply line 6 Ob inserted into the tube unit 19, and the suction line 61a is connected to the suction line 61b inserted into the tube unit 19.
  • it is branched into the conduit connector 52a and opened to the outside, and communicates with an insertion port (also called a forceps port) 62 through which a treatment tool such as forceps can be inserted.
  • the forceps port 62 is closed by the forceps stopper 62a when not in use.
  • the rear ends of the air / water supply pipe 60b and the suction pipe 61b serve as the air / water supply cap 63 and the suction cap 64 in the scope connector 41.
  • the air / water supply base 63 and the suction base 64 are connected to the air / water supply base 42c and the suction base 42d of the AWS adapter 42, respectively. Then, inside the AWS adapter 42, the air supply / water supply base 42c branches into an air supply line and a water supply line, and the air supply line is inserted into the air supply pump 65 inside the AWS unit 4 via the electromagnetic valve B1.
  • the water supply line is connected to the water supply tank 48.
  • the water supply tank 48 is also connected to the air supply pump 65 via the solenoid valve B2 on the way.
  • the air supply pump 65 and the solenoid valves B1 and B2 are connected to the AWS control unit 66 by control lines (drive lines), and the opening and closing are controlled by the AWS control unit 66 to perform air supply and water supply. I can do it.
  • the AWS control unit 66 also controls the suction operation by controlling the opening and closing of the pinch valve 45.
  • the operating section 22 of the endoscope main body 18 is provided with a grip section 68 that is gripped by an operator.
  • a grip section 68 that is gripped by an operator.
  • It is formed by, for example, a cylindrical side portion near the rear end (base end) of the operation portion 22 (on the side opposite to the insertion portion 21 side).
  • the grip 68 is used to perform a remote control operation (abbreviated as a remote control operation) such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3. Are provided along the longitudinal axis of the grip portion 68, and are respectively connected to the control circuit 57 (see FIG. 45).
  • a remote control operation such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3.
  • a remote control operation such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3.
  • a remote control operation such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3.
  • a remote control operation such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3.
  • a base end face provided at the rear end (base end) of the grip portion 68 (or the operation portion 22) (usually, the base end side is set up as shown in Fig. 46 and used for endoscopic examination) Therefore, it is also referred to as the upper end surface) is an inclined surface Sa.
  • An angle operation (bending operation), an angle operation, or the like is performed near the side of the inclined surface Sa opposite to the position where the scope switches SW1, SW2, and SW3 are provided.
  • a trackball 69 having a waterproof structure is provided to switch the operation power and set other remote control operations.
  • the waterproof structure is such that the trackball 69 is actually rotatably held, or the encoder side that detects the amount of rotation is covered with a waterproof film, and the trackball 69 is rotatably held outside. It has a structure!
  • a substantially U-shaped hook 70 is provided for connecting the vicinity of both ends in the longitudinal direction of the grip portion 68 provided near the rear end of the operation portion 22, as shown in FIG. 46 (B). Since the surgeon inserts his / her finger inside the hook 70 to hold with the right hand (or left hand), the endoscope 3 falls with its weight even when the holding section 68 is not held firmly. Can be effectively prevented.
  • the hook 70 hits the lower hand to prevent the endoscope 3 from falling.
  • the surgeon grasps (holds) the grasping portion 68 when the operator grasps the grasping portion 68 and performs various operations and the hand or finger grasped by the operation becomes fatigued. Even if the operation is stopped, if a part of the hand is put in the hook 70, the endoscope 3 can be prevented from falling off and the operability can be improved.
  • the air / water supply switch SW4 and the suction switch SW5 are symmetrically arranged.
  • the trackball 69 and the scope switches SW4 and SW5 are also connected to the control circuit 57.
  • the operation unit 22 or the grip unit 68 extends in the longitudinal direction of the operation unit 22 or the grip unit 68 in the front view shown in FIG. 46 (B) (
  • the trackball 69 is arranged on the inclined surface Sa at a position symmetrical with respect to the center line O (as a reference line) with respect to the center line O.
  • An air / water switch SW4 and a suction switch SW5 are arranged on both sides of the track ball 69 at symmetrical positions.
  • FIG. 46 (C) A rear view opposite to the front view is shown in FIG. 46 (C).
  • the shape is also symmetrical with respect to the center line O.
  • three scope switches SW1, SW2, and SW3 are arranged on the outer surface of the holding unit 68.
  • the inclined surface Sa forms an obtuse angle that is greater than 90 ° with respect to the center line O of the grip portion 68 or a line parallel to the side surface. It is formed at an angle ⁇ .
  • the inclined surface Sa is formed in an inclined shape having an angle of ⁇ with the surface perpendicular to the center line O of the grip portion 68, and the track ball 69 and the track ball 69 are located at the lower side of the inclined surface Sa.
  • An air / water supply switch SW4 and a suction switch SW5 are provided symmetrically. Then, as shown in FIG. 46 (B), the trackball 69 and the like can be easily operated with the thumb of the hand grasped.
  • the inclined surface Sa has an obtuse angle ⁇ with respect to the center line O, that is, a force that can be satisfactorily operated if the 90 ° force is also within an angle of 180 °. More specifically, FIG. As shown in (E), when the angle is within 120 ° of the angle ⁇ 1 and 150 ° of the angle ⁇ 2, further excellent operability can be secured.
  • the operation means such as the trackball 69 provided on the operation section 22 is symmetrical with respect to the longitudinal centerline ⁇ of the grip section 68.
  • One of the features is that it can be placed so that it can be operated well even if the surgeon holds it with the right or left hand or a misaligned hand! /
  • the grip unit 68 is formed near the rear end of the operation unit 22, and the tube unit 19 is positioned closer to the insertion unit 21 than the grip unit 68 is. Since the connecting portion is provided, it is possible to reduce the eccentricity of the position of the center of gravity when the gripping portion 68 is gripped from the position of the center axis.
  • the tube unit 19 is extended laterally from a position rearward (upper side) from the position of the gripping portion in the conventional example, the position of the center of gravity in that case tends to be eccentric due to the weight of the tube unit.
  • the tube unit 19 also extends laterally with respect to the position of the insertion portion 21, that is, the position below the grip portion 68, that is, on the lower side. Can be improved.
  • the inner surface of the hook 70 is positioned near the side of the index finger. Since the side is lightly touched, even if the center of gravity is eccentric and the central axis is inclined (that is, the longitudinal direction of the operation unit 22 is inclined), the hook 70 hits the hand and the inclination is regulated. And good operability can be secured.
  • the power supply line 71a and the signal line 71b extending from the control circuit 57 are connected to each other via electromagnetic coupling connecting portions 72a and 72b formed in the connector portion 51 and the general connector portion 52. It is connected to the power supply line 73a and the signal line 73b passed through the tube unit 19. The power supply line 73a and the signal line 73b are connected to power supply & signal terminals forming the electric connector 74 in the scope connector 41.
  • the user By connecting the scope connector 41 to the AWS unit 4, the user connects the power line 73a to the power unit 75 via the scope electrical connector 43 of the AWS unit 4, and connects the signal line 73b to the power unit 75.
  • the transmission / reception unit 77 is connected to an antenna unit 77a for transmitting and receiving radio waves by radio.
  • the air / water supply line 60a and the suction line 61a have A transparency sensor 143 is provided, and light is transmitted through each of the air supply / water supply conduit 60a and the suction conduit 61a formed of a transparent tube, which is a transparent conduit, so that the inner wall of the conduit is stained, The transparency of the fluid passing through the pipeline can be detected.
  • FIG. 47 is an explanatory diagram of the operation of detecting the cleaning level by the transparency sensor 143.
  • a photoreflector 144 and a reflection plate 145 are opposed to the outer periphery of an air / water supply pipe 60a (same for the suction pipe 61a) formed of a transparent tube.
  • the transparency sensor 143 is formed.
  • a transmittance detector 146 such as an air / water supply line 60a formed of a transparent tube is disposed between the photoreflector 144, which is a photodetector, and the reflector 145. Therefore, when the inner wall side of the air / water supply line 60a is cleaned by flowing a transparent cleaning solution inside the air / water supply line 60a, the light receiving element of the photo reflector 144 is used when the inner wall surface becomes clean. The amount of light received is increased so that the degree of cleaning can be detected.
  • the washing level of the inner wall surface of the air / water supply conduit 60a and the inner wall surface of the suction conduit 61a can be quantitatively detected by this function.
  • the photoreflector 144 emits light to a transparent pipe section such as the air / water supply pipe 60a, and reduces the amount of light transmitted through the transparent pipe section and reflected from the reflector 145. As long as it can be detected, the portion of the transparent tube may be formed in a part of the air / water supply line 60a etc. which is not the whole of the air / water supply line 60a etc.!
  • the conduit is stained, or the fluid passing through the conduit is transparent.
  • the degree and the like can be detected.
  • the output of the photodetector can be used as a cleaning level detector and used as an output indicating the cleaning level.
  • FIG. 48 is a diagram showing a configuration of a control circuit 57 and the like arranged in the operation unit 22 of the endoscope main body 18 according to the seventh embodiment and a configuration of an electric system in main components arranged in each unit of the insertion unit 21. Is shown.
  • a CCD 25 and an LED 56 are arranged at the distal end 24 of the insertion section 21 shown in the lower part on the left side in Fig. 48, and the angle actuator (shown in the present embodiment) is provided on the bending section 27 described above the drawing.
  • an EPAM 27a and an encoder 27c are arranged, and in the flexible portion 53 described above in the drawing, a hardness variable actuator (specifically, EPAM in the present embodiment) 54 and an encoder 54c Are arranged respectively.
  • a transparency sensor 143 and an UPD coil 58 are arranged in the flexible portion 53.
  • the track ball 69 On the surface of the operation section 22 described above the flexible section 53 of the insertion section 21, the track ball 69, the air / water supply SW (SW4), the suction SW (SW5), and the scope SW (SW1 SW3) is located. As will be described later, an angle operation and a function of selecting and setting other functions are assigned by operating the trackball 69.
  • control circuit 57 (excluding the UPD coil drive unit 59 and the like) including most of the inside of the operation unit 22 shown on the right side via signal lines. Connected, the control circuit 57 performs drive control and signal processing of those functions.
  • the control circuit 57 has a state management unit 81 composed of a CPU or the like that manages the control state.
  • the state management unit 81 is connected to a state holding memory 82 that holds (stores) the state of each unit.
  • a wired transmission / reception unit 83 that communicates with the AWS unit 4 in a wired manner is connected.
  • the state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination.
  • the LED driving section 85 applies an LED driving signal for causing the LED 56 serving as a lighting means to emit light to the LED 56.
  • the illuminated subject such as the affected part is formed on the imaging surface of the CCD 25 arranged at the image forming position by an objective lens (not shown) attached to the observation window. It is imaged and photoelectrically converted by the CCD 25.
  • the CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by application of a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81.
  • the image signal is converted into a digital signal by an AZD converter (abbreviated as ADC) 87 and then input to the state management unit 81, and the digital signal (image data) is stored in the image memory 88. .
  • the image data of the image memory 88 is sent to the data transmission section 1 ⁇ of the transmission / reception unit 83.
  • the output value of the above-described transparency sensor 143 is also input to the state management unit 81, and is transmitted and received by the transmission / reception unit as data on the dirt of the pipeline or the transparency of the fluid passing through the pipeline. Supplied from 83 to AWS Unit 4.
  • the signal is transmitted from the electrical connector 15 to the AWS cut 4 via the signal line 73b in the tube unit 19.
  • it is transmitted to the endoscope system controller 5 by the AWS unit 4 power wirelessly.
  • the image data transmitted to the endoscope system control device 5 is wirelessly received by the transmission / reception unit 101, image-processed by the image processing unit 116, and a video signal is generated.
  • a video signal is output from the monitor connector 35 to the observation monitor 6 via the system control unit 117 that controls the entire endoscope system 1, and an endoscope image is displayed on the display surface of the observation monitor 6.
  • the power supply unit 100 supplies operation power to the transmission / reception unit 101, the image processing unit 116, and the system control unit 117.
  • the output signal of the ADC 87 is sent to the brightness detection unit 89, and information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the illumination light amount of the LED 56 becomes appropriate brightness.
  • the state management unit 81 controls the actuator driving unit 92 via the angle control unit 91, and controls the angle actuator (EPAM) 27a to be driven by the actuator driving unit 92.
  • the drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c and controlled so that the drive amount matches the value corresponding to the indicated value. Is controlled.
  • the state management unit 81 controls the actuator driving unit 94 via the hardness variable control unit 93, and the actuator driving unit 94 controls the hardness variable actuator (EPAM) 54 (here, 54A and 54B are connected). (Represented by one).
  • the driving amount of the hardness variable actuator (EPAM) 54 is detected by the encoder 54c, and is controlled so that the driving amount becomes a value corresponding to the indicated value.
  • the detection signal from the transparency sensor 143 provided in the flexible portion 53 is converted into signal data corresponding to the transparency by the transparency detection unit 148, and is then input to the state management unit 81, where it is input to the state management unit 81. Is compared with the reference value of transparency stored in advance in the state holding memory 82, etc., and when the reference value is reached, the information is transmitted from the transmission / reception unit 83 to the endoscope system controller 5 via the AWS unit 4 And the observation monitor 6 indicates that the reference value has been reached.
  • the state management unit 81 is input via a trackball displacement detection unit 95 corresponding to the operation amount of the trackball 69 or the like provided in the operation unit 22.
  • a switch pressing operation such as an ON operation by the air / water supply SW, the suction SW, and the scope SW is detected by the switch pressing detection unit 96, and the detected information is input to the state management unit 81.
  • the control circuit 57 has a power transmission / reception unit 97 and a power generation unit 98.
  • the power transmission / reception unit 97 is, specifically, a transmission unit 51 b in the operation unit 22 and an electric connector 74 at the end of the tube unit 19. Then, the power transmitted by the power generation unit 98 is converted into a DC power in the power generation unit 98.
  • the power generated by the power generation unit 98 supplies power required for its operation to each unit in the control circuit 57.
  • the endoscope system 1 when the power is turned on, various images are displayed on the observation motor 6 as shown in FIG. 16 (A), for example.
  • a menu display area is provided in addition to the information display area Rj for displaying patient information, the endoscope image display area Ri, the UPD image display area Ru, the freeze image display area Rf, and the angle display area Ra.
  • Rm is provided, and a menu is displayed in the menu display area Rm.
  • the menu displayed in the menu display area Rm includes the main menu shown in Fig. 16 (B). One is displayed.
  • This main menu includes the scope switch, angle sensitivity, insertion section hardness, zoom, image enhancement, and air volume, as well as an instruction to return to the previous menu screen. The item is displayed.
  • the general connector section 52 of the disposable tube unit 19 is connected to the connector section 51 of the operation section 22 of the endoscope body 18.
  • the electromagnetic coupling connection sections 72a and 72b are connected to each other in a DC current-insulated and waterproof state. With this connection, the preparation of the endoscope 3 is completed.
  • the scope connector 41 of the tube unit 19 is connected to the connector 40 of the AWS unit 4.
  • various conduits, power lines, signal lines, and optical connections are completed in one connection operation by one-touch connection.
  • the user connects the UPD coil unit 8 to the AWS unit 4, and connects the endoscope system controller 5 to the observation monitor 6.
  • the endoscope system control device 5 is connected to the image recording unit 7 or the like, thereby completing the setup of the endoscope system 1.
  • the power supply unit 75 is connected to the endoscope via the power supply line.
  • Power can be supplied to the 3 side.
  • the AWS unit 4 first turns off the power supply, starts a timer, and confirms that the endoscope 3 side force is correctly returned within a certain period of time. Ensure continuous supply.
  • the operator inserts the insertion portion 21 of the endoscope 3 into the body cavity of the patient, A subject such as an affected part in a body cavity is imaged by a CCD 25 provided at a distal end portion 24 of the insertion portion 21.
  • the captured image data is wirelessly transmitted to the endoscope system control device 5 via the AWS unit 4 and subjected to image processing to generate a video signal, and the image of the subject is displayed on the display surface of the observation module 6 by the endoscope. Displayed as an image. Therefore, the surgeon can diagnose the diseased part or the like by observing the endoscopic image, and can perform a treatment for treatment using a treatment tool as necessary.
  • a trackball 69 having a function of an angle instruction input unit, a freeze instruction Scope switches SW1 to SW3 for instructing various operation such as operation, air supply / water supply switch (SW4) and suction switch (SW5) are provided symmetrically.
  • scope switches SW1 and SW2 are respectively located near the positions where the index finger and the middle finger are gripped when gripped, and scope switch SW3 is located near the position where the little finger is gripped. Therefore, the operator can perform various operations with good operability by the grasped right hand.
  • the holding position of the outer peripheral surface holding the holding portion 68 is on the side facing the side holding with the right hand.
  • the position of the finger is the same as when the user holds the instruction input unit with the left hand.
  • the trackball 69 is located at the position V ⁇ which is easy to operate with the thumb, and the air supply and water supply arranged symmetrically on both sides thereof
  • the switch (SW4) and the suction switch (SW5) can also be operated.
  • scope switches SW1 and SW2 are respectively located near the positions where the index finger and the middle finger are gripped when gripped, and scope switch SW3 is located near the position where the little finger is gripped.
  • the hook 70 is provided so as to connect both sides in the longitudinal direction of the grip portion 68 so that the hand to be gripped can pass through the inside thereof.
  • the endoscope 3 can be effectively prevented from falling due to its weight without holding the grip portion 68 tightly.
  • the assignment of functions to scope switches SW1-SW5 can be changed and set. Therefore, each operator can perform an endoscopy by changing and assigning the functions to the scope switches SW1 to SW5 so that the operator can operate the apparatus most easily.
  • Fig. 50 (A) is a front view of the solenoid valve unit 42 '
  • Figs. 50 (B) and 50 (C) are left and right side views
  • Figs. 50 (D) and 50 (E) Shows cross-sectional views taken along lines AA ′ and BB ′ in FIG. 50 (A).
  • a force provided with a concave portion 42f for accommodating the pinch valve 45 (the front surface force of the AWS unit 4 also protrudes) is provided on the back (base end) side thereof.
  • a pinch valve 45 is provided therein, and a relief pipe 47a is passed through the pinch valve 45.
  • a pinch valve connector 42g that is detachably connected to the back side of the solenoid valve unit 42' of the AWS unit 4 and transmits a signal for driving the pinch valve 45. Is attached.
  • Other configurations are the same as the above AWS adapter 42.
  • the endoscope of the present invention by inserting the insertion portion into the body cavity and operating various operation means such as a track ball provided on the operation portion, the endoscope can be operated with good operability. Endoscopy can be performed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Mechanical Engineering (AREA)
  • Endoscopes (AREA)

Abstract

An endoscope having an insertion section to be inserted into a subject; an operation section provided at the rear end of the insertion section; control processing means provided in the operation section, controlling imaging means for imaging an image of the subject and also controlling a predetermined function of the operation section; a signal circuit extended from the control processing means; and a connection section provided in the operation section, enabling detachable connection of a tube unit through which at least one tube path is inserted.

Description

明 細 書  Specification
内視鏡および内視鏡システム  Endoscope and endoscope system
技術分野  Technical field
[0001] 本発明は、体腔内などに挿入され、内視鏡検査等を行う内視鏡および当該内視鏡 を有する内視鏡システムに関する。  The present invention relates to an endoscope that is inserted into a body cavity or the like and performs an endoscopy or the like, and an endoscope system including the endoscope.
背景技術  Background art
[0002] 近年、挿入部内に撮像素子を内蔵した内視鏡は、体腔内の検査、および処置具を 用いた処置等にお!、て広く採用されて 、る。  [0002] In recent years, endoscopes having an image pickup device built in an insertion section have been widely used for inspection of body cavities, treatment using a treatment tool, and the like.
[0003] このように撮像素子を内蔵し、軟性の挿入部を有する内視鏡にぉ 、ては、挿入部 の後端側に設けられた操作部カゝら照明光を伝送するライトガイドと撮像素子に接続さ れた信号線が挿通されたユニバーサルケーブルを有する内視鏡が知られて 、る。 [0003] As described above, an endoscope having a built-in imaging device and having a flexible insertion section is provided with a light guide for transmitting illumination light from an operation section provided at a rear end side of the insertion section. 2. Description of the Related Art An endoscope having a universal cable through which a signal line connected to an image sensor is inserted is known.
[0004] また、この種の内視鏡にぉ 、て、その操作部に各種の制御操作を行う操作ボタンあ るいはスィッチ等を設けることにより、各種の制御を当該操作部で行えるようにした内 視鏡も知られている。 [0004] In addition, an operation button or a switch for performing various control operations is provided on an operation unit of this type of endoscope, so that various controls can be performed by the operation unit. Endoscopes are also known.
[0005] し力しながら上述した如き内視鏡では、操作ボタンあるいはスィッチ等を操作部に 多数設けて各種の制御を行うことはできる力 そのためにユニバーサルケーブル内 には、多くの信号線を揷通することが必要になる。これによりユニバーサルケーブル が太くなつてしま 、、太くなつたユニバーサルケーブルが操作の妨害となる虡もあつ た。  [0005] However, in the endoscope as described above, a large number of operation buttons or switches can be provided on the operation unit to perform various controls. Therefore, many signal lines are provided in the universal cable. It is necessary to pass through. As a result, the universal cable became thicker, and in some cases, the thicker universal cable hindered operation.
[0006] また、内視鏡に異なる機能を多数設けた場合、ユニバーサルケーブル内にもその 異なる機能に対応して信号線をそれぞれ挿通することが必要になり、拡張しにくくな るとともに、製造コストが増大するという問題点が生じる。  [0006] In addition, when a large number of different functions are provided in the endoscope, it is necessary to insert signal lines corresponding to the different functions in the universal cable, which makes it difficult to expand the cable and reduces the manufacturing cost. Is increased.
一方、例えば特開 2002-369789号公報に開示されているように照明光を伝送す るライトガイドが挿通されるユニバーサルケーブルを着脱自在にして、このライトガイド と共に、光ケーブルを挿通して撮像素子による撮像信号等を内視鏡外部の信号処 理装置に送信する構成にした内視鏡が知られる、送気送水等、管路により流体を送 る機能を実現することができないため、観察機能等が大幅に低下してしまう問題点が あった。 On the other hand, for example, as disclosed in Japanese Patent Application Laid-Open No. 2002-369789, a universal cable through which a light guide for transmitting illumination light is inserted is made detachable, and an optical cable is inserted together with this light guide so that an image pickup device is used. There is known an endoscope configured to transmit an imaging signal or the like to a signal processing device outside the endoscope. The problem that is greatly reduced there were.
[0007] また、一般的に、軟性の挿入部を有する内視鏡は、屈曲した体内等に挿入したり、 所望の方向を観察できるように挿入部の先端付近に湾曲部が設けてあり、手元側の 操作部にお ヽて湾曲部を湾曲操作 (アングル操作)することができるように湾曲操作 手段が設けられている。  [0007] In general, an endoscope having a flexible insertion portion is provided with a curved portion near the distal end of the insertion portion so that the endoscope can be inserted into a bent body or the like and can be observed in a desired direction. A bending operation means is provided so that the bending portion can be bent (angled) in the operation portion on the hand side.
[0008] このように湾曲部を湾曲させることにより、挿入部を屈曲した体腔内にも挿入し易く なる。そして、挿入性をより向上するため、湾曲部が内壁等に圧接した状態を検出で きると便利となる。この場合、湾曲部に電気的な感圧センサを設けるようにしても良い 力 内視鏡においては照明手段が必ず必要になるため、その照明光の一部を使用 できれば非常に有用な利用方法となる。  [0008] By bending the bending portion in this way, it becomes easy to insert the insertion portion into a bent body cavity. Then, in order to further improve the insertability, it is convenient to be able to detect a state in which the curved portion is pressed against the inner wall or the like. In this case, an electric pressure sensor may be provided in the bending portion. Since the power endoscope necessarily requires illumination means, if a part of the illumination light can be used, it is a very useful use method. Become.
[0009] 特開平 7— 124104号公報の電子内視鏡においては、湾曲部に圧力を検知するた めに歪ゲージで形成した感圧センサを設けて、この感圧センサの出力により、湾曲操 作手段による湾曲操作を規制する構成にしている。  [0009] In the electronic endoscope disclosed in Japanese Patent Application Laid-Open No. 7-124104, a pressure sensor formed of a strain gauge is provided in a bending portion to detect pressure, and the bending operation is performed by the output of the pressure sensor. The bending operation by the operating means is restricted.
上記特開平 7— 124104号公報の例は、電気的に圧力検知を行うものであり、上述 した照明光を効率良く利用できるようにしたものではな 、。  The example of the above-mentioned Japanese Patent Application Laid-Open No. 7-124104 is to electrically detect pressure, and does not make it possible to efficiently use the above-mentioned illumination light.
[0010] また、特に医療分野の内視鏡は、検査及び治療を目的として体腔内に挿入して使 用されるものであるため、内視鏡を洗滌し消毒することが必要である。内視鏡を洗滌 し消毒する場合、内視鏡洗滌消毒装置が使用される。内視鏡は、内視鏡洗滌消毒 装置の洗滌槽内にセットされ、洗滌、消毒、濯ぎ及び水切りがされる。  [0010] Furthermore, since an endoscope, particularly in the medical field, is used by being inserted into a body cavity for the purpose of examination and treatment, it is necessary to wash and disinfect the endoscope. When cleaning and disinfecting an endoscope, an endoscope cleaning and disinfecting apparatus is used. The endoscope is set in a cleaning tank of an endoscope cleaning / disinfecting apparatus, and is cleaned, disinfected, rinsed, and drained.
[0011] また、内視鏡の内部には、送気送水管路、鉗子口など複数の管路を有している。こ れら管路内も、十分に洗滌液及び消毒液が通過し、確実に洗滌及び消毒などされる 必要がある。  [0011] The endoscope has a plurality of conduits such as an air supply / water supply conduit and a forceps port. It is necessary that the washing liquid and the disinfectant liquid sufficiently pass through these pipes, and that the washing and disinfection be surely performed.
[0012] このような、内視鏡の内部に設けられている各種管路が適切に洗滌及び消毒がさ れているかを検出することができる内視鏡洗滌消毒装置としては、例えば、特開 200 1—299697号公報に提案されて 、るものがある。  [0012] Such an endoscope cleaning and disinfecting apparatus capable of detecting whether various pipes provided inside the endoscope are appropriately cleaned and disinfected is disclosed in, for example, Japanese Patent Application Laid-Open No. H11-163,089. There is one proposed in Japanese Patent Publication No. 2001 1-299697.
[0013] しかし、上記公報に開示の内視鏡洗滌消毒装置においては、内視鏡内の管路が 適切に洗滌等された力否かは、内視鏡洗滌消毒装置に設けられた流量センサよつて 検出された流量値に基づいて判断される。従って、内視鏡洗滌消毒装置にこのよう な汚れを検出するためのセンサが設けられているため、内視鏡内の管路の汚れは、 洗滌等のときし力検出することができな力つた。 [0013] However, in the endoscope cleaning / disinfecting apparatus disclosed in the above publication, it is determined whether or not a pipe line in the endoscope is appropriately cleaned by a flow rate sensor provided in the endoscope cleaning / disinfecting apparatus. Therefore, it is determined based on the detected flow rate value. Therefore, such an endoscope cleaning and disinfecting apparatus is Since a sensor is provided for detecting an unclean dirt, dirt in a conduit in the endoscope cannot be detected at the time of washing or the like.
発明の開示  Disclosure of the invention
課題を解決するための手段  Means for solving the problem
[0014] 本発明は、上述した点に鑑みてなされたもので、観察機能を低下させること無ぐ操 作部に湾曲操作や送気送水スィッチ等の操作手段を設けた場合にも対応できる操 作性の良好な内視鏡を提供することを目的とする。  [0014] The present invention has been made in view of the above points, and is an operation unit that can cope with a case where an operation unit such as a bending operation or an air / water switch is provided in an operation unit without lowering the observation function. An object of the present invention is to provide an endoscope having good workability.
[0015] 本発明は、被検体に挿入する挿入部と、前記挿入部の後端に設けられた操作部と 、前記操作部内に設けられた、被検体像を撮像する撮像手段および当該操作部に おける所定の機能を制御する制御処理手段と、前記制御処理手段から延設された 信号回路と、前記操作部に設けられた、少なくとも 1つの管路が揷通されたチューブ ユニットを着脱自在に接続可能とする接続部と、を具備したことを特徴とする。  [0015] The present invention relates to an insertion section to be inserted into a subject, an operation section provided at a rear end of the insertion section, imaging means provided in the operation section, for taking a subject image, and the operation section. Control processing means for controlling a predetermined function of the control unit, a signal circuit extending from the control processing means, and a tube unit provided in the operation unit and through which at least one conduit is passed, in a detachable manner. And a connection unit that is connectable.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]本発明の第 1実施形態である内視鏡システムの概略の構成を示した図。 FIG. 1 is a diagram showing a schematic configuration of an endoscope system according to a first embodiment of the present invention.
[図 2]前記第 1実施形態の内視鏡システム内におけるデータ通信形態の各例を示す ブロック図。  FIG. 2 is a block diagram showing each example of a data communication form in the endoscope system of the first embodiment.
[図 3]前記第 1実施形態の内視鏡システムにおける内視鏡の概略構成を示した外観 斜視図。  FIG. 3 is an external perspective view showing a schematic configuration of an endoscope in the endoscope system according to the first embodiment.
[図 4]前記第 1実施形態の内視鏡システムのさらに詳しい構成を示した外観斜視図。  FIG. 4 is an external perspective view showing a more detailed configuration of the endoscope system according to the first embodiment.
[図 5]前記第 1実施形態の内視鏡システムにおける AWSユニット周辺部の具体的な 外観形状を示す斜視図。  FIG. 5 is a perspective view showing a specific external shape around an AWS unit in the endoscope system according to the first embodiment.
[図 6]前記第 1実施形態の内視鏡システムにおける AWSユニットに着脱自在の AWS アダプタを取り付けた状態及び取り外した状態を示す斜視図。  FIG. 6 is a perspective view showing a state where a detachable AWS adapter is attached to and detached from an AWS unit in the endoscope system according to the first embodiment.
[図 7]前記第 1実施形態の内視鏡システムにおける制御装置及び AWSユニットの内 部構成及びスコープコネクタの接続部の構造を示す図。  FIG. 7 is a diagram showing an internal configuration of a control device and an AWS unit and a structure of a connection portion of a scope connector in the endoscope system of the first embodiment.
[図 8]前記第 1実施形態の内視鏡システムにおける AWSアダプタの構造を示す図。  FIG. 8 is a diagram showing a structure of an AWS adapter in the endoscope system according to the first embodiment.
[図 9]前記第 1実施形態の内視鏡システムにおける内視鏡の内部構成要素の一部を 透視して示した側面図。 圆 10]前記第 1実施形態の内視鏡システムにおける内視鏡に用いる導電性高分子 人工筋肉の概略構成を示す外観斜視図および歪み量を示す線図。 FIG. 9 is a side view showing a part of internal components of the endoscope in the endoscope system according to the first embodiment in a see-through manner. [10] An external perspective view showing a schematic configuration of a conductive polymer artificial muscle used for an endoscope in the endoscope system of the first embodiment, and a diagram showing a distortion amount.
圆 11]前記第 1実施形態の内視鏡システムにおける内視鏡の操作部に設けたトラック ボールおよびその周辺部を示す正面図。 [11] A front view showing a track ball provided in an operation section of the endoscope in the endoscope system of the first embodiment and a peripheral portion thereof.
圆 12]前記第 1実施形態の内視鏡システムにおける内視鏡の操作部とチューブュ- ットとの接続部分の電気的構成を示した回路図。 [12] FIG. 12 is a circuit diagram showing an electrical configuration of a connection portion between the operation unit of the endoscope and the tube guide in the endoscope system according to the first embodiment.
[図 13]前記第 1実施形態の内視鏡システムにおける内視鏡の電気的構成を示したブ ロック図。  FIG. 13 is a block diagram showing an electrical configuration of the endoscope in the endoscope system according to the first embodiment.
[図 14]前記第 1実施形態の内視鏡システムにおける内視鏡システム制御装置の主要 電気的構成を示したブロック図。  FIG. 14 is a block diagram showing a main electrical configuration of an endoscope system control device in the endoscope system according to the first embodiment.
[図 15]前記第 1実施形態の内視鏡システムにおける AWSユニットの電気的構成を示 したブロック図。  FIG. 15 is a block diagram showing an electrical configuration of an AWS unit in the endoscope system according to the first embodiment.
[図 16]前記第 1実施形態の内視鏡システムにおける観察モニタのモニタ表示面の代 表的な表示例とメニュー表示の具体例を示した図。  FIG. 16 is a view showing a typical display example of a monitor display surface of the observation monitor and a specific example of menu display in the endoscope system according to the first embodiment.
[図 17]前記第 1実施形態の内視鏡システムにおける AWSユニットの起動処理の動作 内容を示すフローチャート。  FIG. 17 is a flowchart showing an operation content of a start process of an AWS unit in the endoscope system of the first embodiment.
圆 18]前記第 1実施形態の内視鏡システムにおける内視鏡の起動処理の動作内容 を示したフローチャート。 [18] A flowchart showing the operation contents of the endoscope start-up process in the endoscope system of the first embodiment.
圆 19]前記第 1実施形態の内視鏡システムにおける撮像制御処理の動作内容を示 すフローチャート。 [19] A flowchart showing the operation contents of an imaging control process in the endoscope system of the first embodiment.
[図 20]前記第 1実施形態の内視鏡システムにおける送気送水の制御処理の動作内 容を示すフローチャート。  FIG. 20 is a flowchart showing an operation content of an air / water supply control process in the endoscope system of the first embodiment.
[図 21]前記第 1実施形態の内視鏡システムにおけるアングル操作の制御処理を示す フローチャート。  FIG. 21 is a flowchart showing a control process of an angle operation in the endoscope system according to the first embodiment.
圆 22]前記第 1実施形態の内視鏡システムにおける硬度可変操作に対する制御操 作を示すフローチャート。 [22] A flow chart showing a control operation for a hardness varying operation in the endoscope system of the first embodiment.
圆 23]前記第 1実施形態の内視鏡システムにおける硬度可変の設定操作とその操作 に対応する UPD画像を示す動作説明図。 [図 24]前記第 1実施形態の内視鏡システムにおける内視鏡側のヒューマンインターフ エース処理の内容を示すフローチャート。 [23] FIG. 23 is an operation explanatory view showing a setting operation of a hardness variable and an UPD image corresponding to the operation in the endoscope system of the first embodiment. FIG. 24 is a flowchart showing the contents of human interface processing on the endoscope side in the endoscope system of the first embodiment.
[図 25]前記第 1実施形態の内視鏡システムにおける内視鏡システム制御装置側のヒ ユーマンインターフェース処理の内容を示すフローチャート。  FIG. 25 is a flowchart showing the contents of human interface processing on the endoscope system control device side in the endoscope system of the first embodiment.
圆 26]前記第 1実施形態の内視鏡システムの変形例の構成を示す外観斜視図。 圆 27]本発明の第 2実施形態の内視鏡システムにおける内視鏡の内部構成要素の 一部を透視して示した側面図。 [26] An external perspective view showing a configuration of a modification of the endoscope system according to the first embodiment. [27] FIG. 27 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the second embodiment of the present invention as seen through.
[図 28]前記第 2実施形態の内視鏡システムにおける内視鏡の透明度センサを示した 要部斜視図。  FIG. 28 is an essential part perspective view showing a transparency sensor of the endoscope in the endoscope system according to the second embodiment.
[図 29]前記第 2実施形態の内視鏡システムにおける内視鏡の電気的構成を示すプロ ック図。  FIG. 29 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the second embodiment.
圆 30]本発明の第 3実施形態の内視鏡システムにおける内視鏡の内部構成要素の 一部を透視して示した側面図。 [30] FIG. 30 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the third embodiment of the present invention as seen through.
圆 31]本発明の第 4実施形態の内視鏡システムにおける内視鏡の内部構成要素の 一部を透視して示した側面図。 [31] FIG. 31 is a side view in which some of the internal components of the endoscope in the endoscope system according to the fourth embodiment of the present invention are seen through.
[図 32]前記第 4実施形態の内視鏡システムにおける内視鏡のバッテリユニットおよび 周辺部の構成を示す要部側面図および電気回路部並びに当該バッテリユニットに係 る充電部の構成を示す電気回路図。  FIG. 32 is a side view of a main part showing a configuration of a battery unit and peripheral parts of the endoscope in the endoscope system of the fourth embodiment, and an electric circuit showing the configuration of a charging unit related to the battery unit. circuit diagram.
圆 33]本発明の第 5実施形態の内視鏡システムにおける内視鏡の内部構成要素の 一部を透視して示した側面図。 [33] FIG. 33 is a side view in which some of the internal components of the endoscope in the endoscope system according to the fifth embodiment of the present invention are seen through.
圆 34]前記第 5実施形態の内視鏡システムにおける内視鏡の挿入部先端側の構成 を示した要部拡大断面図。 [34] FIG. 34 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of the endoscope in the endoscope system according to the fifth embodiment.
[図 35]前記第 5実施形態の内視鏡システムにおける内視鏡の光学的な押圧量検出 手段の概略構成を示す図。  FIG. 35 is a view showing a schematic configuration of an endoscope optical pressing amount detecting means in the endoscope system according to the fifth embodiment.
[図 36]前記第 5実施形態の内視鏡システムにおける内視鏡の電気的構成を示したブ ロック図。  FIG. 36 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the fifth embodiment.
[図 37]前記第 5実施形態の内視鏡システムにおける内視鏡のアングル操作の制御処 理を示すフローチャート。 [図 38]本発明の第 6実施形態の内視鏡システムにおける内視鏡の挿入部先端側の 構成を示した要部拡大断面図。 FIG. 37 is a flowchart showing a control process of an angle operation of the endoscope in the endoscope system according to the fifth embodiment. FIG. 38 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of an endoscope in an endoscope system according to a sixth embodiment of the present invention.
[図 39]前記第 6実施形態の内視鏡システムにおける内視鏡挿入部先端側の構成の 第 1変形例を示した要部拡大断面図。  FIG. 39 is an enlarged fragmentary cross-sectional view showing a first modification of the configuration of the endoscope insertion section distal end side in the endoscope system according to the sixth embodiment.
[図 40]前記第 6実施形態の内視鏡システムにおける内視鏡挿入部先端側の構成の 第 2変形例を示した要部拡大斜視図。  FIG. 40 is an enlarged perspective view of a main part showing a second modification of the configuration of the distal end side of the endoscope insertion section in the endoscope system according to the sixth embodiment.
[図 41]前記第 6実施形態の内視鏡システムにおける内視鏡挿入部先端側の構成の 第 2変形例を示した要部拡大断面図。  FIG. 41 is an enlarged cross-sectional view of a main part showing a second modification of the configuration of the endoscope insertion section distal end side in the endoscope system according to the sixth embodiment.
[図 42]図 41における D-D' 線断面を示した要部拡大断面図。  FIG. 42 is an enlarged cross-sectional view of a main part, showing a cross section taken along line DD ′ in FIG.
[図 43]本発明の第 7実施形態である内視鏡システムの全体構成を示した図。  FIG. 43 is a diagram showing an overall configuration of an endoscope system according to a seventh embodiment of the present invention.
[図 44]前記第 7実施形態の内視鏡システムにおける AWSユニット周辺部の具体的な 外観形状を示した斜視図。  FIG. 44 is a perspective view showing a specific external shape of the periphery of the AWS unit in the endoscope system according to the seventh embodiment.
[図 45]前記第 7実施形態の内視鏡システムにおける内視鏡の内部構成要素の一部 を透視して示した側面図。  FIG. 45 is a side view showing a part of internal components of the endoscope in the endoscope system according to the seventh embodiment in a see-through manner.
[図 46]前記第 7実施形態の内視鏡システムにおける内視鏡の具体的な外観形状等 を示した図。  FIG. 46 is a view showing a specific external shape and the like of an endoscope in the endoscope system according to the seventh embodiment.
[図 47]前記第 7実施形態の内視鏡システムにおける内視鏡の透明度センサの構成 及び動作を示す図。  FIG. 47 is a view showing the configuration and operation of a transparency sensor of the endoscope in the endoscope system according to the seventh embodiment.
[図 48]前記第 7実施形態の内視鏡システムにおける内視鏡の電気的構成を示すプロ ック図。  FIG. 48 is a block diagram showing an electrical configuration of an endoscope in the endoscope system according to the seventh embodiment.
[図 49]前記第 7実施形態の内視鏡システムにおける AWSアダプタの変形例となる電 磁弁ユニットを取り付けた状態及び取り外した状態の AWSユニットを示す斜視図。  FIG. 49 is a perspective view showing a modified AWS unit in the endoscope system according to the seventh embodiment, showing a state in which an electromagnetic valve unit is attached and detached, and an AWS unit in a detached state.
[図 50]前記第 7実施形態の内視鏡システムにおける電磁弁ユニットの構造を示す図 発明を実施するための最良の形態 FIG. 50 is a view showing the structure of an electromagnetic valve unit in the endoscope system according to the seventh embodiment. BEST MODE FOR CARRYING OUT THE INVENTION
以下、図面を参照して本発明の好ましい実施形態を説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
本発明の第 1実施形態である内視鏡システムの具体的な構成を説明する前に、当 該内視鏡システムの概略構成について図 1ないし図 3を参照して説明する。 [0018] 図 1は、本発明の第 1実施形態である内視鏡システムの概略の構成を示した図であ り、図 2は、当該第 1実施形態の内視鏡システム内におけるデータ通信形態の各例を 示すブロック図であり、図 3は、前記第 1実施形態の内視鏡システムにおける内視鏡 の概略構成を示した外観斜視図である。 Before describing a specific configuration of the endoscope system according to the first embodiment of the present invention, a schematic configuration of the endoscope system will be described with reference to FIGS. FIG. 1 is a diagram illustrating a schematic configuration of an endoscope system according to a first embodiment of the present invention, and FIG. 2 is a diagram illustrating data communication in the endoscope system according to the first embodiment. FIG. 3 is a block diagram showing each example of the embodiment, and FIG. 3 is an external perspective view showing a schematic configuration of an endoscope in the endoscope system of the first embodiment.
[0019] 図 1に示すように内視鏡システム 1は、検査ベッド 2に横たわる図示しない患者の体 腔内に挿入して内視鏡検査を行う軟性の内視鏡 (スコープともいう) 3と、この内視鏡 3 が接続され、送気、送水及び吸引機能を備えた送気 ·送水 ·吸引ユニット(以下、 AW Sユニットと略記する) 4と、内視鏡 3に内蔵された撮像素子に対する信号処理の一部 と、内視鏡 3に設けられた各種操作手段に対する制御処理の一部を担う内視鏡シス テム制御装置 5と、この内視鏡システム制御装置 5により生成された映像信号を表示 する液晶モニタ等による観察モニタ 6とを有する。  As shown in FIG. 1, an endoscope system 1 includes a flexible endoscope (also referred to as a scope) 3 that is inserted into a body cavity of a patient (not shown) lying on an examination bed 2 and performs endoscopy. An air supply / water supply / suction unit (hereinafter abbreviated as AWS unit) 4 having an air supply, water supply and suction function to which the endoscope 3 is connected, and an image pickup device built in the endoscope 3 , A part of signal processing for the endoscope 3, an endoscope system controller 5 responsible for a part of control processing for various operation means provided in the endoscope 3, and an image generated by the endoscope system controller 5. And an observation monitor 6 such as a liquid crystal monitor for displaying signals.
また、この内視鏡システム 1は、内視鏡システム制御装置 5により生成された、例え ばデジタル映像信号をフアイリング等する画像記録ユニット 7と、 AWSユニット 4に接 続され、内視鏡 3の挿入部内に形状検出用コイル (以下、 UPDコイルと略記)が内蔵 された場合には、その UPDコイルにより発生される電磁場の信号を受信する等して 各 UPDコイルの位置を検出して内視鏡 3の揷入部の形状を表示するための UPDコ ィルユニット 8とを有する。  The endoscope system 1 is connected to an image recording unit 7 generated by the endoscope system controller 5, for example, for filing digital video signals, etc., and an AWS unit 4. When a shape detection coil (hereinafter abbreviated as UPD coil) is built in the insertion part, the position of each UPD coil is detected and endoscoped by receiving the signal of the electromagnetic field generated by the UPD coil. It has an UPD coil unit 8 for displaying the shape of the entrance of the mirror 3.
[0020] また、画像記録ユニット 7は、この内視鏡システム 1が設けられた病院内の LAN9と 接続されており、この LAN9に有線或いは無線で接続された各端末装置により画像 記録ユニット 7にフアイリングされた画像等を参照できるようにしている。  Further, the image recording unit 7 is connected to a LAN 9 in a hospital where the endoscope system 1 is provided, and is connected to the image recording unit 7 by terminal devices connected to the LAN 9 by wire or wirelessly. It is possible to refer to the image that has been filed.
また、図 1に示すように、 AWSユニット 4と内視鏡システム制御装置 5とは無線で所 定の情報の送受信を行うようにしている。なお、図 1では、内視鏡 3は、 AWSユニット 4とケーブルで接続されて 、るが、無線で情報の送受信 (双方向の伝送)をするように しても良い。また、内視鏡システム制御装置 5は、内視鏡 3と直接無線で情報の送受 信を行うようにしても良い。  Further, as shown in FIG. 1, the AWS unit 4 and the endoscope system control device 5 transmit and receive predetermined information wirelessly. In FIG. 1, the endoscope 3 is connected to the AWS unit 4 by a cable. However, the endoscope 3 may transmit and receive information wirelessly (bidirectional transmission). Further, the endoscope system control device 5 may directly transmit and receive information to and from the endoscope 3 by wireless.
図 2 (A)—図 2 (C)は、内視鏡システム 1におけるユニット、装置間、或いは内視鏡 3 とユニット或いは装置間のデータ送受信を行う送受信ユニット(通信部)における 3つ の方式を示している。図 2 (A)では、具体例として、 AWSユニット 4と内視鏡システム 制御装置 5の場合として説明する。 Fig. 2 (A)-Fig. 2 (C) shows three systems in the transmission / reception unit (communication unit) that transmits and receives data between units and devices in the endoscope system 1, or between the endoscope 3 and the unit or device. Is shown. In Figure 2 (A), AWS Unit 4 and the endoscope system The case of the control device 5 will be described.
[0021] 図 2 (A)は無線方式を示し、 AWSユニット 4に内蔵したデータ通信制御部 11により 、データ送信部 12を経て変調してアンテナ部 13から無線で内視鏡システム制御装 置 5に送信する。 FIG. 2A shows a wireless system, in which a data communication control unit 11 built in the AWS unit 4 modulates the data via a data transmission unit 12 and wirelessly transmits an endoscope system control device 5 from an antenna unit 13. Send to
また、 AWSユニット 4は、内視鏡システム制御装置 5側力も無線で送信されるデー タをアンテナ部 13で受け、データ受信部 14により復調してデータ通信制御部 11に そのデータを送る。本実施形態では、無線方式でデータを送信する場合には、例え ば IEEE802. 1 lgの規格により最大のデータ通信速度が 54Mbpsのワイヤレス LA Nを形成している。  In addition, the AWS unit 4 receives data transmitted wirelessly by the endoscope system control device 5 by the antenna unit 13, demodulates the data by the data reception unit 14, and sends the data to the data communication control unit 11. In the present embodiment, when data is transmitted by a wireless method, a wireless LAN having a maximum data communication speed of 54 Mbps is formed according to, for example, the IEEE802.lg standard.
図 2 (B)は、有線方式であり、具体例として、内視鏡 3と AWSユニット 4とでデータ送 受信を行う場合として説明する。内視鏡 3に内蔵したデータ通信制御部 11により、デ ータ送信部 12' を経て電気コネクタ 15から有線で AWSユニット 4に送信する。 ま た、 AWSユニット 4から送信されるデータは電気コネクタ 15及びデータ受信部 14' を経てデータ通信制御部 11にそのデータを送る。  FIG. 2 (B) shows a wired system, and as a specific example, a case where data transmission / reception is performed between the endoscope 3 and the AWS unit 4 will be described. The data communication control unit 11 built in the endoscope 3 transmits the data to the AWS unit 4 by wire from the electrical connector 15 via the data transmission unit 12 '. The data transmitted from the AWS unit 4 is sent to the data communication control unit 11 via the electrical connector 15 and the data receiving unit 14 '.
[0022] 図 2 (C)は、光通信方式を示し、具体例として、 AWSユニット 4と内視鏡システム制 御装置 5とでデータ送受信を行う場合として説明する。 AWSユニット 4に内蔵したデ ータ通信制御部 11は、光通信用の送受信を行うデータ送信部 12〃 とデータ受信部 14 を介して、この AWSユニット 4に設けた光通信カプラ 16と接続され、内視鏡シス テム制御装置 5側の光通信力ブラを介してデータの送受信を行う。 FIG. 2 (C) shows an optical communication method, and a specific example will be described in which data transmission and reception are performed between the AWS unit 4 and the endoscope system control device 5. The data communication control unit 11 built in the AWS unit 4 is connected to the optical communication coupler 16 provided in the AWS unit 4 via a data transmission unit 12〃 that performs transmission and reception for optical communication and a data reception unit 14. Data is transmitted and received via the optical communication power bra on the endoscope system control device 5 side.
図 3に示すように、内視鏡 3は、内視鏡本体 18と、一端が当該内視鏡本体 18に着 脱自在に接続され、他端が前記 AWSユニット 4に接続されるチューブユニット 19とを 有する。  As shown in FIG. 3, the endoscope 3 is a tube unit 19 having one end connected to the endoscope main body 18 so as to be attachable and detachable, and the other end connected to the AWS unit 4. And
[0023] 前記内視鏡本体 18は、体腔内に挿入される軟性の挿入部 21と、この挿入部 21の 後端に設けられた操作部 22とを有する。  The endoscope main body 18 has a flexible insertion portion 21 inserted into a body cavity, and an operation portion 22 provided at a rear end of the insertion portion 21.
[0024] 前記操作部 22は、把持部 68を有すると共に、当該把持部 68内には当該操作部 2 2における各種操作等の制御の一部を司る制御回路 57が内設されている。なお、当 該制御回路 57からは、所定の電源線および信号線が延設されている。  The operation section 22 has a grip section 68, and a control circuit 57 for controlling a part of various operations and the like in the operation section 22 is provided inside the grip section 68. A predetermined power supply line and signal line extend from the control circuit 57.
[0025] また、操作部 22には、挿入部 21から延設された所定のチューブが配設されている [0026] さらに、内視鏡本体 18の操作部 22には、チューブユニット 19における総合コネクタ 部 52と接続されるコネクタ部 51が配設される。 A predetermined tube extending from the insertion section 21 is provided in the operation section 22. Further, a connector section 51 connected to the general connector section 52 of the tube unit 19 is provided on the operation section 22 of the endoscope main body 18.
[0027] 一方、前記チューブユニット 19は、その一端に、前記コネクタ部 51と接続される総 合コネクタ部 52が配設され、当該コネクタ部 51と特徴ある接続状態で接続可能とな つている。また、他端にスコープコネクタ 41が配設され、前記 AWSユニット 4と接続可 能となっている。 On the other hand, the tube unit 19 is provided at one end with a general connector section 52 connected to the connector section 51, and can be connected to the connector section 51 in a characteristic connection state. Further, a scope connector 41 is provided at the other end, and can be connected to the AWS unit 4.
[0028] また、チューブユニット 19の内部には、内視鏡装置特有の所定の複数のチューブ、 電気線および信号線が配設される。  [0028] Further, inside the tube unit 19, a plurality of predetermined tubes, electric wires, and signal wires specific to the endoscope apparatus are provided.
[0029] 前記内視鏡本体 18と前記チューブユニット 19とは、上述したように、前記コネクタ 部 51と総合コネクタ部 52とで接続される力 これらコネクタ同士の接続により、上述し たチューブ同士は互いに機械的に接続され、電源線および信号線については、いわ ゆる電磁結合によって接続されることを特徴とする。 [0029] As described above, the endoscope body 18 and the tube unit 19 are connected by the connector portion 51 and the general connector portion 52. They are mechanically connected to each other, and the power supply line and the signal line are connected by so-called electromagnetic coupling.
[0030] また、本実施形態では、当該チューブユニット 19として、デイスポーザブルタイプで あって、従来のユニバーサルケーブルより細径ィ匕されたチューブを採用している。 In the present embodiment, as the tube unit 19, a disposable tube having a smaller diameter than a conventional universal cable is used.
[0031] なお、当該内視鏡 3については、特徴ある接続状態で接続可能となっているコネク タ部 51と総合コネクタ部 52との接続を含め、後に図 9を参照して詳述する。 The endoscope 3 will be described later in detail with reference to FIG. 9, including the connection between the connector unit 51 and the general connector unit 52 that can be connected in a characteristic connection state.
[0032] また、挿入部 21の先端部 24には、撮像素子として、撮像素子内部でゲインを可変 とする CCD25を用いた撮像ユニットが配置されている。また、先端部 24には先端部[0032] In addition, an imaging unit using a CCD 25 whose gain is variable inside the imaging device is arranged at the distal end portion 24 of the insertion section 21 as an imaging device. The tip 24 has a tip
24が体腔内の内壁等と接触 (圧接)した状態を検出する接触センサ 142が設けてあ る。 There is provided a contact sensor 142 for detecting a state in which 24 contacts (presses) an inner wall or the like in a body cavity.
また、先端部 24の後端には低力量で湾曲させることができる湾曲部 27が設けてあ り、操作部 22に設けたアングル/リモコン操作子 28を操作することにより、湾曲部 27 を湾曲することができる。このアングル/リモコン操作子 28は、アングル操作 (湾曲操 作)と、送気送水、吸引等の操作、内視鏡システム制御装置 5等に対する遠隔制御 操作 (具体的には、フリーズ指示操作、レリーズ指示操作)としてのリモコン操作等を 行うことができるようにしている。また、挿入部 21には硬度可変とする部分が形成され 、挿入などをより円滑に行えるようにしている。 また、挿入部 21内には、洗浄レベル検出部 29が設けてあり、管路の洗浄レベル等 を検出できるようにしている。 Further, a bending portion 27 that can be bent with a small amount of force is provided at a rear end of the distal end portion 24, and the bending portion 27 is bent by operating an angle / remote controller 28 provided on the operation portion 22. can do. The angle / remote control 28 includes an angle operation (bending operation), an operation for air / water supply, suction, and the like, and a remote control operation for the endoscope system controller 5 (specifically, a freeze instruction operation, a release operation, Remote control operation etc. can be performed as an instruction operation). Further, the insertion portion 21 is formed with a portion having a variable hardness so that insertion can be performed more smoothly. In addition, a cleaning level detecting section 29 is provided in the insertion section 21 so as to be able to detect a cleaning level of the pipeline.
次に図 4乃至図 8等を参照して、内視鏡システム 1のより具体的な構成を説明する。  Next, a more specific configuration of the endoscope system 1 will be described with reference to FIGS.
[0033] 図 4は、前記第 1実施形態の内視鏡システムのさらに詳しい構成を示した外観斜視 図である。また、図 5は、前記第 1実施形態の内視鏡システムにおける AWSユニット 周辺部の具体的な外観形状を示す斜視図であり、図 6は、前記第 1実施形態の内視 鏡システムにおける AWSユニットに着脱自在の AWSアダプタを取り付けた状態及 び取り外した状態を示す斜視図であり、図 7は、前記第 1実施形態の内視鏡システム における制御装置及び AWSユニットの内部構成及びスコープコネクタの接続部の構 造を示す図であり、図 8は、前記第 1実施形態の内視鏡システムにおける AWSァダ プタの構造を示す図である。  FIG. 4 is an external perspective view showing a more detailed configuration of the endoscope system according to the first embodiment. FIG. 5 is a perspective view showing a specific external shape of the periphery of the AWS unit in the endoscope system according to the first embodiment. FIG. 6 is a perspective view showing the AWS in the endoscope system according to the first embodiment. FIG. 7 is a perspective view showing a state where a detachable AWS adapter is attached to and detached from the unit, and FIG. 7 is a diagram showing the internal configuration of the control device and the AWS unit and the scope connector of the endoscope system according to the first embodiment. FIG. 8 is a diagram illustrating a structure of a connection unit, and FIG. 8 is a diagram illustrating a structure of an AWS adapter in the endoscope system according to the first embodiment.
[0034] 検査ベッド 2の側面に隣接して液晶モニタ等により構成される観察モニタ 6が配置さ れ、また検査ベッド 2の長手方向の一方の端部付近に移動自在に配置したカート 31 上には、内視鏡システム制御装置 5、 AWSユニット 4、画像ファイル ZLANZ電気メ ス Z超音波ユニット(画像ファイルユニット、無線 LAN或いは有線 LAN、電気メス装 置、超音波ユニット等を簡略ィ匕して表記) 32が配置され、最上部にはタツチパネル付 きモニタ 33が配置されて!、る。  An observation monitor 6 constituted by a liquid crystal monitor or the like is arranged adjacent to the side surface of the inspection bed 2, and is placed on a cart 31 movably arranged near one end of the inspection bed 2 in the longitudinal direction. The endoscope system control unit 5, AWS unit 4, image file ZLANZ electric mesh Z ultrasonic unit (image file unit, wireless LAN or wired LAN, electric scalpel device, ultrasonic unit, etc. Notation) 32 is arranged, and a monitor 33 with a touch panel is arranged at the top.
[0035] また、検査ベッド 2における患者が横たわる上面部分には、 UPDコイルユニット 8が 埋め込まれている。この UPDコイルユニット 8は、 UPDケーブル 34により、 AWSュニ ット 4に接続される。  [0035] A UPD coil unit 8 is embedded in the upper surface of the examination bed 2 where the patient lies. The UPD coil unit 8 is connected to the AWS unit 4 by a UPD cable 34.
[0036] 本実施形態では AWSユニット 4と内視鏡システム制御装置 5とは、例えば図 8に示 すように無線の送受信ユニット 77、 101によりデータの送受信を行う。また、図 4に示 すように観察モニタ 6は、モニタケーブル 35により内視鏡システム制御装置 5のモ- タ用コネクタに接続される。  In the present embodiment, the AWS unit 4 and the endoscope system control device 5 transmit and receive data by wireless transmitting and receiving units 77 and 101, for example, as shown in FIG. Further, as shown in FIG. 4, the observation monitor 6 is connected to a motor connector of the endoscope system control device 5 by a monitor cable 35.
[0037] なお、図 4に示すように内視鏡システム制御装置 5と観察モニタ 6とに、それぞれ送 受信ユニット 101、 36を取り付け、内視鏡システム制御装置 5から観察モニタ 6に映 像信号を送信して、その表示面にその映像信号互に対応する内視鏡画像を表示で きるようにしても良い。 後述するように内視鏡システム制御装置 5には、 AWSユニット 4側力も CCD25によ り撮像した画像データと共に、 UPDコイルユニット 8を用いて検出した内視鏡 3の挿 入部形状 (UPD画像)の画像データが送信され、従って内視鏡システム制御装置 5 は、これらの画像データに対応する映像信号を観察モニタ 6に送り、その表示面に内 視鏡画像と共に UPD画像も表示することもできるようにして 、る。 As shown in FIG. 4, transmission / reception units 101 and 36 are attached to the endoscope system control device 5 and the observation monitor 6, respectively, and the image signal is transmitted from the endoscope system control device 5 to the observation monitor 6. May be transmitted so that the endoscope images corresponding to the video signals can be displayed on the display surface. As will be described later, the endoscope system controller 5 has the AWS unit 4 side force together with the image data captured by the CCD 25 and the insertion part shape of the endoscope 3 detected using the UPD coil unit 8 (UPD image) Therefore, the endoscope system controller 5 can send a video signal corresponding to the image data to the observation monitor 6 and display the UPD image together with the endoscope image on the display surface. Like that.
[0038] 観察モニタ 6は、このように複数種類の画像をその表示面に同時に表示できるよう に、高解像度 TV (HDTV)のモニタにて構成される。 [0038] The observation monitor 6 is configured by a high-resolution TV (HDTV) monitor so that a plurality of types of images can be simultaneously displayed on the display surface.
また、本実施形態においては、検査ベッド 2における長手方向の一方の端部及び その下部の位置には、収納用凹部が形成されており、この収納用凹部にトレー運搬 用トロリ 38を、スライド自在に収納できるようにしている。このトレー運搬用トロリ 38の 上部には、図 9に示す内視鏡 3が収納されるスコープトレー 39が載置される。  In the present embodiment, a storage recess is formed at one end of the inspection bed 2 in the longitudinal direction and at a position below the storage bed, and the tray transport trolley 38 is slidable in the storage recess. It can be stored in. A scope tray 39 in which the endoscope 3 shown in FIG. 9 is stored is placed on the upper part of the tray transport trolley 38.
そして、滅菌或いは消毒された内視鏡 3を収納したスコープトレー 39をトレー運搬 用トロリ 38により運搬でき、検査ベッド 2の収納用凹部に収納できる。術者は、スコー プトレー 39から内視鏡 3を引き出して内視鏡検査に使用できると共に、内視鏡検査 の終了後には再びこのスコープトレー 39に収納すれば良い。その後、トレー運搬用ト ロリ 38により、使用後の内視鏡 3を収納したスコープトレー 39を運搬することにより、 滅菌或いは消毒もスムーズに行うことができる。  Then, the scope tray 39 containing the sterilized or disinfected endoscope 3 can be transported by the tray transport trolley 38 and can be stored in the storage recess of the inspection bed 2. The operator can pull out the endoscope 3 from the scope tray 39 and use it for endoscopy, and store it in the scope tray 39 again after the endoscope inspection. After that, the scope tray 39 containing the used endoscope 3 is transported by the tray transport trolley 38, so that sterilization or disinfection can be performed smoothly.
[0039] また、図 4に示すように、例えば AWSユニット 4には、スコープコネクタ 40が設けて ある。そして、このスコープコネクタ 40には、図 8に示すように(内視鏡 3の)スコープコ ネクタ 41が着脱自在に接続される。 Also, as shown in FIG. 4, for example, the AWS unit 4 is provided with a scope connector 40. Then, a scope connector 41 (of the endoscope 3) is detachably connected to the scope connector 40 as shown in FIG.
この場合、 AWSユニット 4側のスコープコネクタ 40のより具体的な外観形状を図 5 及び図 6に示す。  In this case, FIGS. 5 and 6 show more specific external shapes of the scope connector 40 on the AWS unit 4 side.
[0040] また、図 7は AWSユニット 4のスコープコネクタ 40に着脱自在に取り付けられる AW Sアダプタ 42の構造を示し、図 8は、 AWSユニット 4側のスコープコネクタ 40及び内 視鏡 3側のスコープコネクタ 41の内部構造を接続状態で示して 、る。  FIG. 7 shows the structure of an AWS adapter 42 detachably attached to the scope connector 40 of the AWS unit 4. FIG. 8 shows the scope connector 40 of the AWS unit 4 and the scope of the endoscope 3. The internal structure of the connector 41 is shown in a connected state.
実際には図 6 (B)に示すように AWSユニット 4の前面には、凹部形状の AWSァダ プタ取り付け部 40aが設けてあり、この AWSアダプタ取り付け部 40aには、図 7に示 す AWSアダプタ(管路接続アダプタ) 42を取り付けることにより、スコープコネクタ 40 が形成され、このスコープコネクタ 40に内視鏡 3のスコープコネクタ 41が接続される。 Actually, as shown in Fig. 6 (B), the AWS unit 4 has a recessed AWS adapter mounting part 40a on the front face, and the AWS adapter mounting part 40a has the AWS adapter shown in Fig. 7 By attaching an adapter (pipe connection adapter) 42, the scope connector 40 The scope connector 40 of the endoscope 3 is connected to the scope connector 40.
[0041] AWSアダプタ取り付け部 40aには、スコープ接続用の電気コネクタ 43と送気コネク タ 44と、ピンチバルブ 45とが設けてあり、この AWSアダプタ取り付け部 40a〖こ、 AW Sアダプタ 42の内側端面が着脱自在に取り付けられ、その外側端面側力 内視鏡 3 のスコープコネクタ 41が接続される。 [0041] The AWS adapter mounting portion 40a is provided with an electrical connector 43 for connecting a scope, an air supply connector 44, and a pinch valve 45. The AWS adapter mounting portion 40a is located inside the AWS adapter 42. The end face is detachably attached, and the outer end face side force is connected to the scope connector 41 of the endoscope 3.
この AWSアダプタ 42の詳細を図 7に示す。図 7 (A)は AWSアダプタ 42の正面図、 図 7 (B)及び図 7 (C)は左及び右側面図、図 7 (D)及び図 7 (E)は、図 7 (A)の A-A ' 及び B— BZ 断面図をそれぞれ示す。  The details of the AWS adapter 42 are shown in FIG. Fig. 7 (A) is a front view of the AWS adapter 42, Figs. 7 (B) and 7 (C) are left and right side views, and Figs. 7 (D) and 7 (E) are those of Fig. 7 (A). AA 'and B-BZ sectional views are shown, respectively.
この AWSアダプタ 42には、その前面の凹部 42aにスコープコネクタ 41が挿入され 、その場合、この凹部内に設けた貫通孔 42bにスコープコネクタ 41における電気コネ クタ部分が挿入され、この貫通孔 42b内に臨む AWSユニット 4に設けたスコープ接続 用の電気コネクタ 43に接続される。  In the AWS adapter 42, a scope connector 41 is inserted into a concave portion 42a on the front surface thereof. In this case, an electric connector portion of the scope connector 41 is inserted into a through hole 42b provided in the concave portion, and the inside of the through hole 42b is inserted. Connected to the electrical connector 43 for scope connection provided in the AWS unit 4 facing the.
[0042] また、この貫通孔 42bの下側に送気送水コネクタ 42cと吸引コネクタ 42dとが設けて あり、スコープコネクタ 41における送気送水口金 63及び吸引口金 64 (図 8及び図 9 参照)がそれぞれ接続される。 [0042] Further, an air / water supply connector 42c and a suction connector 42d are provided below the through hole 42b, and an air / water supply base 63 and a suction base 64 in the scope connector 41 (see FIGS. 8 and 9). Are connected respectively.
なお、 AWSアダプタ 42の基端面側には、 AWSアダプタ取り付け部 40aから突出 するピンチバルブ 45を収納する凹部 42fが設けてある。  The AWS adapter 42 has a concave portion 42f on the base end side for accommodating the pinch valve 45 protruding from the AWS adapter mounting portion 40a.
図 7 (E)に示すように AWSアダプタ 42に設けた送気送水コネクタ 42cは、これに連 通する内部の管路が分岐し、 AWSユニット 4の送気コネクタ 44に接続される送気口 金 42eと、側方に突出する送水口金 46とになる。また、吸引コネクタ 42dは、これに連 通する管路が側方に屈曲して側面に突出する吸引口金 47になると共に、途中で例 えば上方に分岐したリリーフ管路 47aとなり、このリリーフ管路 47aは途中でピンチバ ルブ 45の内側を通された後、その上端は開口している。  As shown in Fig. 7 (E), the air / water supply connector 42c provided on the AWS adapter 42 has an air supply port that connects to the air supply connector 44 of the AWS unit 4 by branching the internal pipeline communicating therewith. Gold 42e and water outlet 46 protruding sideways. In addition, the suction connector 42d has a suction pipe 47 that is bent sideways and protrudes from the side, and a relief pipe 47a that branches upward, for example. 47a is passed through the inside of the pinch valve 45 halfway, and the upper end is open.
[0043] このリリーフ管路 47aは、吸引手段を形成する図示しない吸引ポンプを常時動作状 態に設定した場合には、通常ピンチバルブ 45により解放状態に設定されており、吸 引操作が行われた場合にピンチバルブ 45が駆動される。そして、このピンチノ レブ 4 5により、リリーフ管路 47aが閉じられることにより解放が止められ、吸引の動作が行わ れるようになる。 これら送水口金 46と吸引口金 47〖こは、図 5等〖こ示すよう〖こ、送水タンク 48と(吸引 チューブ 49aを介して途中に吸引タンク 49bが介挿されて)吸引器とにそれぞれ接続 される。送水タンク 48は、 AWSユニット 4の送水タンク用コネクタ 50に接続される。な お、 AWSユニット 4の前面におけるスコープコネクタ 40の上部側に操作パネル 4aが 設けてある。 [0043] When a suction pump (not shown) forming a suction means is set to a constantly operating state, the relief pipe line 47a is normally set to a released state by the pinch valve 45, and the suction operation is performed. In this case, the pinch valve 45 is driven. Then, the pinch knob 45 closes the relief pipeline 47a to stop the release, and the suction operation is performed. The water supply port 46 and the suction port 47 are respectively connected to the water supply tank 48 and the suction device (with the suction tank 49b inserted in the middle via the suction tube 49a) as shown in FIG. Connected. The water tank 48 is connected to the water tank connector 50 of the AWS unit 4. An operation panel 4a is provided on the front side of the AWS unit 4 above the scope connector 40.
次に図 9を参照して本発明の第 1実施形態における内視鏡の具体的な構成につい て説明する。  Next, a specific configuration of the endoscope according to the first embodiment of the present invention will be described with reference to FIG.
図 9は、前記第 1実施形態の内視鏡システムにおける内視鏡の内部構成要素の一 部を透視して示した側面図である。なお、図 9は、当該内視鏡 3を一側方から見た図 である力 一部の表面を切り取って当該内視鏡に内設する主要部材を示したもので ある。  FIG. 9 is a side view showing a part of internal components of the endoscope in the endoscope system according to the first embodiment in a see-through manner. FIG. 9 is a view of the endoscope 3 as viewed from one side, and shows a main member provided in the endoscope by cutting off a part of a surface of a force.
[0044] 図 3において、その概略を説明したように、本実施形態における内視鏡 3は、軟性 の挿入部 21及びその後端に設けられた操作部 22を有する内視鏡本体 18と、この内 視鏡本体 18における操作部 22の基端 (前端)付近に設けた (チューブユニット接続 用)コネクタ部 51に、その基端の総合コネクタ部 52が着脱自在に接続されるチュー ブユニット 19 (本実施形態ではデイスポーザルタイプを採用する)とを有する。  As described in FIG. 3, the endoscope 3 according to the present embodiment includes an endoscope main body 18 having a flexible insertion portion 21 and an operation portion 22 provided at a rear end thereof. A tube unit 19 (for connecting the tube unit 19) to the connector unit 51 (for connecting the tube unit) provided near the base end (front end) of the operation unit 22 in the endoscope body 18 is detachably connected. In the embodiment, a disposable type is adopted).
[0045] 前記チューブユニット 19の末端には AWSユニット 4に着脱自在に接続される上述 のスコープコネクタ 41が設けてある。  The above-described scope connector 41 is detachably connected to the AWS unit 4 at the end of the tube unit 19.
[0046] 挿入部 21は、この挿入部 21の先端に設けた硬質の先端部 24と、その先端部 24の 後端に設けられた湾曲自在の湾曲部 27と、この湾曲部 27の後端力も操作部 22まで の細長の軟性部(蛇管部) 53とを有し、この軟性部 53における途中の複数箇所、具 体的には 2箇所には、電圧を印加することにより伸縮し、硬度も変化させることができ る導電性高分子人工筋肉(EPAMと略記)で構成された硬度可変用ァクチユエータ 54A、 54Bが設けられている。  The insertion portion 21 has a hard tip 24 provided at the tip of the insertion portion 21, a bendable bending portion 27 provided at the rear end of the tip 24, and a rear end of the bending portion 27. The force also has an elongate flexible portion (bend portion) 53 up to the operation portion 22. At a plurality of positions, specifically two portions, in the soft portion 53, the force expands and contracts by applying a voltage, and the hardness increases. The hardness variable actuators 54A and 54B, which are made of conductive polymer artificial muscle (abbreviated as EPAM), are also provided.
[0047] 前記挿入部 21の先端部 24に設けた照明窓の内側には、照明手段として例えば発 光ダイオード(LEDと略記) 56が取り付けられ、この LED56の照明光は、この LED5 6に一体的に取り付けられた照明レンズを介して前方に出射され、患部等の被写体 を照明する。なお、この LED56は、白色光を発生する LEDでも良いし、赤 (R) ,緑( G) ,青 (B)の各波長域の光を発生する R用 LED、 G用 LED及び B用 LEDを用いて 構成しても良い。照明手段を形成する発光素子としては、 LED56に限定されるもの でなぐ LD (レーザダイオード)等を用いて形成することもできる。 [0047] A light emitting diode (abbreviated as LED) 56, for example, is attached as illumination means inside the illumination window provided at the distal end portion 24 of the insertion portion 21, and the illumination light of the LED 56 is integrated with the LED 56. The light is emitted forward through an illumination lens attached to the camera, and illuminates the subject such as the affected part. The LED 56 may be an LED that generates white light, or may be red (R), green ( It is also possible to use an LED for R, an LED for G, and an LED for B that generate light of each wavelength range of G) and blue (B). The light emitting element forming the illumination means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
[0048] また、この照明窓に隣接して設けた観察窓には、図示しない対物レンズが取り付け られ、その結像位置には、ゲイン可変の機能を内蔵した CCD25が配置され、被写体 を撮像する撮像手段が形成されている。本実施形態における CCD25は、ゲイン可 変の機能を CCD素子自体に内蔵し、ゲイン可変の機能により CCD出力信号のゲイ ンを数 100倍程度まで容易に可変できるので、 LED56による照明光のもとでも、 S/ Nの低下の少ない明るい画像が得られるようにしている。また、 LED56は、ランプの 場合に比べて発光効率が良好であるので、 LED56付近の温度上昇を抑制できる。 [0048] Further, an objective lens (not shown) is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a built-in variable gain function is arranged at an image forming position to image a subject. An imaging means is formed. In the CCD 25 of the present embodiment, the function of changing the gain is built into the CCD element itself, and the gain of the CCD output signal can be easily changed to about several hundred times by the function of changing the gain. However, it tries to obtain a bright image with little decrease in S / N. Further, since the LED 56 has better luminous efficiency than the case of a lamp, the temperature rise near the LED 56 can be suppressed.
LED56及び CCD25にそれぞれ一端が接続され、挿入部 21内に揷通された信号 線の他端は、例えば操作部 22内部に設けられ、集中制御処理 (集約制御処理)を行 う制御回路 57に接続されている。 One end is connected to each of the LED 56 and the CCD 25, and the other end of the signal line passed through the insertion section 21 is connected to a control circuit 57 provided, for example, inside the operation section 22 and performing centralized control processing (aggregated control processing). It is connected.
また、挿入部 21内には、その長手方向に沿って所定間隔で UPDコイル 58が複数 配置され、各 UPDコイル 58に接続された信号線は、操作部 22内に設けた UPDコィ ル駆動ユニット 59を介して制御回路 57に接続されている。  A plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to a UPD coil drive unit provided in the operation section 22. It is connected to the control circuit 57 via 59.
[0049] また、湾曲部 27における外皮内側における周方向の 4箇所には、その長手方向に EPAMを配置して形成したアングル用ァクチユエータ 27aが配置されて!、る。また、 このアングル用ァクチユエータ 27a及び硬度可変用ァクチユエータ 54A、 54Bもそれ ぞれ信号線を介して制御回路 57に接続されて!ヽる。 [0049] Angle actuators 27a formed by arranging EPAMs in the longitudinal direction are arranged at four locations in the circumferential direction on the inner side of the outer skin of the curved portion 27! The angle actuator 27a and the hardness variable actuators 54A and 54B are also connected to the control circuit 57 via signal lines, respectively.
アングル用ァクチユエータ 27a及び硬度可変用ァクチユエータ 54A、 54Bに用いら れる EPAMは、図 10 (A)に示すように例えば板形状の両面に電極を取り付け、電圧 を印加することにより、図 10 (B)に示すように厚み方向に収縮させ、長手方向に伸長 させることができる。なお、この EPAMは、図 10 (C)に示すように、例えば印加する電 圧による電界強度 Eの略 2乗に比例して歪み量を可変することができる。  The EPAM used for the angle actuator 27a and the hardness variable actuators 54A and 54B is, for example, as shown in FIG. 10 (A), by attaching electrodes to both sides of a plate shape and applying a voltage, as shown in FIG. 10 (B). As shown in (1), it can be contracted in the thickness direction and elongated in the longitudinal direction. In this EPAM, as shown in FIG. 10 (C), for example, the amount of distortion can be varied in proportion to the square of the electric field strength E due to the applied voltage.
アングル用ァクチユエータ 27aとして利用する場合には、ワイヤ形状等に形成して 一方を伸長させ、反対側を収縮させることにより、通常のワイヤによる機能と同様に湾 曲部 27を湾曲させることができる。また、この伸長或いは収縮により、その硬度を可 変させることができ、硬度可変用ァクチユエータ 54A、 54Bではその機能を利用して その部分の硬度を可変可能にして 、る。 When used as an angle actuator 27a, it is formed in a wire shape or the like, one side is extended, and the other side is contracted. The curved portion 27 can be curved. In addition, the hardness can be varied by the extension or contraction, and the hardness varying actuators 54A and 54B can use the function to vary the hardness of the portion.
[0050] 一方、挿入部 21内には、送気送水管路 60a及び吸引管路 61aが挿通されている。 [0050] On the other hand, an air / water supply conduit 60a and a suction conduit 61a are inserted into the insertion portion 21.
これら送気送水管路 60a及び吸弓 I管路 6 laの後端部は、 、ずれも前記コネクタ部 51 の開口端に形成された管路コネクタ部 51aまで延設され、それぞれ当該管路コネクタ 部 51aにお!/、て開口して!/、る。  The rear end of the air / water supply line 60a and the rear end of the suction-absorbing I line 6 la are extended to a line connector portion 51a formed at the open end of the connector portion 51. Open to part 51a!
[0051] 一方、チューブユニット 19内においても送気送水管路 60bおよび吸引管路 61bが 挿通されており、これら送気送水管路 60b及び吸引管路 61bの後端部は、いずれも 前記総合コネクタ部 52の開口端に形成されたチューブコネクタ部 52aまで延設され、 それぞれ当該チューブコネクタ部 52aにおいて開口している。 [0051] On the other hand, the air / water supply line 60b and the suction line 61b are also inserted in the tube unit 19, and the rear ends of the air / water supply line 60b and the suction line 61b are the same as those described above. It extends to a tube connector portion 52a formed at an opening end of the connector portion 52, and opens at the tube connector portion 52a.
[0052] なお、前記吸引管路 61bは、当該チューブコネクタ部 52a内において分岐して外部 に開口している。 [0052] The suction conduit 61b is branched and opened to the outside in the tube connector 52a.
[0053] 前記コネクタ部 51における管路コネクタ部 51aと、前記総合コネクタ部 52における チューブコネクタ部 52aとは、当該コネクタ部 51に総合コネクタ部 52が装着された際 に、互いに機械的に接続するようになっており、このとき、送気送水管路 60a及び吸 引管路 61aの開口端はそれぞれ送気送水管路 60b及び吸引管路 61bの開口端に 接続されるようになっている。なお、前記吸引管路 61aは、チューブユニット 19内に 挿通された吸引管路 61bに接続され、さらに、チューブコネクタ部 52a内で分岐して 外部に開口した、鉗子等の処置具を挿入可能とする処置具挿入口(鉗子口と略記) 6 2と連通する。この鉗子口 62は、鉗子栓 62aにより、使用しない場合には閉塞される。  [0053] The conduit connector portion 51a of the connector portion 51 and the tube connector portion 52a of the integrated connector portion 52 are mechanically connected to each other when the integrated connector portion 52 is mounted on the connector portion 51. At this time, the open ends of the air / water supply line 60a and the suction line 61a are connected to the open ends of the air / water supply line 60b and the suction line 61b, respectively. The suction conduit 61a is connected to a suction conduit 61b inserted into the tube unit 19, and further allows a treatment tool such as a forceps, which is branched and opened to the outside in the tube connector 52a, to be inserted. Communication port (abbreviated as forceps port) 62 The forceps port 62 is closed by the forceps stopper 62a when not in use.
[0054] これら送気送水管路 60b及び吸引管路 61bの手元側の後端は、スコープコネクタ 4 1において、送気送水口金 63及び吸引口金 64となる。  The rear ends of the air / water supply pipe 60b and the suction pipe 61b on the hand side serve as an air / water supply base 63 and a suction base 64 in the scope connector 41.
[0055] 送気送水口金 63及び吸引口金 64は、図 6及び図 7等に示した AWSアダプタ 42の 送気送水コネクタ 42c及び吸引コネクタ 42dにそれぞれ接続される。そして、図 7に示 すようにこの AWSアダプタ 42の内部において送気送水コネクタ 42cは、送気管路と 送水管路に分岐する。図 8に示すように、送気管路は、 AWSユニット 4内部の送気送 水用ポンプ 65に電磁弁 B1を介挿して接続され、送水管路は、送水タンク 48に接続 される。また、この送水タンク 48も、途中に電磁弁 B2を介して送気送水用ポンプ 65 に接続される。 送気送水用ポンプ 65、電磁弁 B1及び B2は、制御線 (駆動線)によ り AWS制御ユニット 66と接続され、この AWS制御ユニット 66により開閉が制御され、 送気及び送水を行うことができるようにしている。なお、 AWS制御ユニット 66は、ピン チバルブ 45の開閉の制御により、吸引の動作制御も行う。 [0055] The air / water supply base 63 and the suction base 64 are connected to the air / water supply connector 42c and the suction connector 42d of the AWS adapter 42 shown in Figs. Then, as shown in FIG. 7, inside the AWS adapter 42, the air supply / water supply connector 42c branches into an air supply line and a water supply line. As shown in Fig. 8, the air supply line is connected to the air supply / water supply pump 65 inside the AWS unit 4 via the solenoid valve B1, and the water supply line is connected to the water supply tank 48. Is done. The water supply tank 48 is also connected to the air / water supply pump 65 on the way via the solenoid valve B2. The air / water supply pump 65 and the solenoid valves B1 and B2 are connected to the AWS control unit 66 by control lines (drive lines), and the opening and closing of the AWS control unit 66 are controlled to perform air supply and water supply. I can do it. The AWS control unit 66 also controls the suction operation by controlling the opening and closing of the pinch valve 45.
[0056] また、図 9に示すように内視鏡本体 18の操作部 22には、術者が把持する把持部 6 8が設けられ、この把持部 68を含むその周辺には、レリーズ、フリーズ等のリモートコ ントロール操作(リモコン操作と略記)を行う、例えば 3つのスコープスィッチ SW1, S W2, SW3が操作部 22の長手方向の軸に沿って設けてあり、それぞれ制御回路 57 に接続されている。 Further, as shown in FIG. 9, the operating section 22 of the endoscope main body 18 is provided with a grip section 68 which is gripped by an operator, and the periphery including the grip section 68 includes a release and a freeze. For example, three scope switches SW1, SW2, and SW3 for performing remote control operations (abbreviated as remote control operations) are provided along the longitudinal axis of the operation unit 22 and are connected to the control circuit 57, respectively. .
さらに操作部 22におけるこれらスコープスィッチ SW1, SW2, SW3が設けられた 位置と反対側の上面として傾斜して形成された斜面部 Saには、把持部 68を把持した 手で操作可能とする位置にアングル操作 (湾曲操作)や切り換えて他のリモコン操作 の設定等を行う防水構造のトラックボール 69が設けてある。  Further, the slope Sa formed on the upper surface of the operation unit 22 opposite to the position where the scope switches SW1, SW2, and SW3 are provided is located at a position where the operation can be performed by the hand holding the grip unit 68. A trackball 69 having a waterproof structure for performing an angle operation (bending operation) and setting other remote control operations by switching is provided.
図 11は、前記第 1実施形態の内視鏡システムにおける内視鏡の操作部に設けたト ラックボールおよびその周辺部を示す正面図であって、図 9における C矢視である。  FIG. 11 is a front view showing a track ball provided in an operation section of the endoscope in the endoscope system of the first embodiment and a peripheral portion thereof, as viewed in the direction of arrow C in FIG.
[0057] 図 11に示すように、この斜面部 Saにおけるトラックボール 69の両側には、 2つのス コープスイッチ SW4, SW5が操作部 22の長手方向の両側となる左右方向に左右対 称となる位置に設けてある。スコープスィッチ SW4, SW5は、通常は、送気送水スィ ツチと吸引スィッチの機能が割り付けられる。  As shown in FIG. 11, on both sides of the trackball 69 on the slope Sa, two scope switches SW4 and SW5 are symmetrical in the left and right direction on both sides in the longitudinal direction of the operation unit 22. Position. Normally, the functions of the air / water switch and the suction switch are assigned to the scope switches SW4 and SW5.
[0058] 図 9における C矢視方向側から内視鏡 3の操作部 22を見た場合を正面とした場合、 操作部 22或いは挿入部 21の長手方向に対してトラックボール 69が長手方向の中心 線上となり、かつ 2つのスコープスィッチ SW4, SW5は左右対称に配置されると共に 、この中心線に沿ってその背面側にスコープスィッチ SW1, SW2, SW3が配置され ている。  When the operation unit 22 of the endoscope 3 is viewed from the direction of the arrow C in FIG. 9 as the front, the trackball 69 is in the longitudinal direction with respect to the longitudinal direction of the operation unit 22 or the insertion unit 21. The two scope switches SW4 and SW5 are on the center line and are arranged symmetrically, and the scope switches SW1, SW2 and SW3 are arranged on the rear side along the center line.
このように操作部 22には、トラックボール 69等の各種の操作手段が、その長手方向 の中心軸に関して左右対称に設けられているので、術者が操作部 22の把持部 68を 把持して操作する場合、左手で把持する場合と右手で把持して操作する場合の ヽず れにお ヽても同じように良好な操作性を確保できるようにして!/ヽる。 As described above, since various operation means such as the trackball 69 are provided on the operation unit 22 symmetrically with respect to the central axis in the longitudinal direction, the operator grips the grip 68 of the operation unit 22. When operating, grasping with left hand and operating with grasping with right hand In this case, the same good operability should be ensured!
このトラックボール 69及びスコープスィッチ SW4, SW5も制御回路 57に接続され ている。トラックボール 69及びスコープスィッチ SW1— SW5は、図 3に示すアングル Zリモコン操作子 28に該当する。  The trackball 69 and the scope switches SW4 and SW5 are also connected to the control circuit 57. The trackball 69 and the scope switches SW1 to SW5 correspond to the angle Z remote controller 28 shown in FIG.
[0059] 次に、当該内視鏡 3における、特徴ある接続状態で接続可能となっているコネクタ 部 51と総合コネクタ部 52との接続関係について図 9および図 12を参照して説明する Next, the connection relationship between the connector section 51 and the general connector section 52 that can be connected in a characteristic connection state in the endoscope 3 will be described with reference to FIGS. 9 and 12.
[0060] 図 12は、前記第 1実施形態の内視鏡システムにおける内視鏡の操作部とチューブ ユニットとの接続部分の電気的構成を示した回路図である。 FIG. 12 is a circuit diagram showing an electrical configuration of a connection portion between the operation unit of the endoscope and the tube unit in the endoscope system according to the first embodiment.
[0061] 前記制御回路 57には、電源線 71a及び信号線 71bの一端が接続されている。また 、前記電源線 71a及び信号線 71bの他端は、それぞれコネクタ部 51における電磁結 合接続部 72a、 72bに接続される。一方、チューブユニット 19内には、電源線 73aお よび信号線 73bが揷通されており、これら電源線 73a及び信号線 73bの一端は、スコ ープコネクタ 41にお 、て電源 &信号接点を備えた電気コネクタ 74に接続されて 、る 。また、前記電源線 73a及び信号線 73bの他端は、それぞれ総合コネクタ部 52にお ける電磁結合接続部 72a、 72bに接続される。なお、コネクタ部 51側の電磁結合接 続部 72a、 72bを伝送ユニット 5 lbと呼ぶ。  [0061] One end of a power supply line 71a and one end of a signal line 71b are connected to the control circuit 57. The other end of the power supply line 71a and the other end of the signal line 71b are connected to the electromagnetic coupling connection portions 72a and 72b of the connector portion 51, respectively. On the other hand, a power supply line 73a and a signal line 73b pass through the tube unit 19, and one end of each of the power supply line 73a and the signal line 73b is provided with a power supply & signal contact at the scope connector 41. Connected to electrical connector 74. The other end of the power supply line 73a and the other end of the signal line 73b are connected to electromagnetic coupling connectors 72a and 72b in the integrated connector 52, respectively. Note that the electromagnetic coupling connection sections 72a and 72b on the connector section 51 side are referred to as a transmission unit 5 lb.
[0062] 前記電磁結合接続部 72a、 72bは、コネクタ部 51に総合コネクタ部 52が装着され た際に、いわゆる金属電極による接合なくして、電源線 73aから電源線 71aに対して 電力を供給し、また、信号線 71bと信号線 73bとの信号の送受を可能とする。  [0062] The electromagnetic coupling connection portions 72a and 72b supply electric power from the power supply line 73a to the power supply line 71a when the integrated connector portion 52 is mounted on the connector portion 51, without joining by a so-called metal electrode. In addition, signals can be transmitted and received between the signal line 71b and the signal line 73b.
[0063] すなわち、チューブユニット 19における電源線 73aの他端には 1次側のコイル Cla が配設され、対向する電源線 71aの他端には 2次側のコイル Clbが配設される。そし て、これらコイルが近接することで磁束漏れが少な 、状態で電磁結合するトランス T1 を形成する。  That is, a primary coil Cla is disposed at the other end of the power supply line 73a in the tube unit 19, and a secondary coil Clb is disposed at the other end of the opposing power supply line 71a. The close proximity of these coils forms a transformer T1 that is electromagnetically coupled in a state where the magnetic flux leakage is small.
[0064] 同様に、信号線 71bの他端にはコイル C2aが配設され、対向する信号線 73bの他 端にはコイル C2bが配設される。そして、これらコイルが近接することで磁束漏れが少 ない状態で電磁結合するトランス T2を形成する。なお、詳しくは後述する。  Similarly, a coil C2a is provided at the other end of the signal line 71b, and a coil C2b is provided at the other end of the opposing signal line 73b. Then, a transformer T2 that is electromagnetically coupled with a small amount of magnetic flux leakage due to the proximity of these coils is formed. The details will be described later.
[0065] ユーザは、前記スコープコネクタ 41を AWSユニット 4に接続することにより、図 8に 示すように電源線 73aは、 AWSユニット 4の電気コネクタ 43を介して電源ユニット 75 に接続され、信号線 73bは、(電源ユニット 75を介して) UPDユニット 76と送受信ュ ニット 77と、 AWS制御ユニット 66に接続される。なお、送受信ユニット 77は、無線に よる電波の送受信を行うアンテナと接続される。 [0065] The user connects the scope connector 41 to the AWS unit 4 to As shown, the power line 73a is connected to the power unit 75 via the electrical connector 43 of the AWS unit 4, and the signal line 73b is connected to the UPD unit 76 and the transmitting / receiving unit 77 (via the power unit 75) Connected to unit 66. The transmission / reception unit 77 is connected to an antenna for transmitting / receiving radio waves by radio.
[0066] 電源ユニット 75からチューブユニット 19内を揷通された電源線 73aにより供給され る交流の電力は、コネクタ部 52において前記 1次側のコイル Claに供給される。コネ クタ部 51の外装ケースの内側には、 2次側のコイル Clbが配置され、前記 1次側のコ ィル Claと 2次側のコイル Clbとは近接して磁束漏れが少ない状態で電磁結合するト ランス T1を形成する。 The AC power supplied from the power supply unit 75 via the power supply line 73 a passed through the tube unit 19 is supplied to the primary side coil Cla in the connector section 52. A secondary coil Clb is disposed inside the outer case of the connector part 51, and the primary coil Cla and the secondary coil Clb are in close proximity to each other with little magnetic flux leakage and electromagnetically. Forming a binding trans T1.
そして、この電磁結合によって、このコイル Claに供給された交流の電力が効率良 く、 2次側のコイル Clbに伝達される。このコイル Clbは、制御回路 57内の電源回路 78に接続され、電源回路 78により制御回路 57側で必要とされる直流電力を生成す る。  By this electromagnetic coupling, the AC power supplied to the coil Cla is efficiently transmitted to the secondary coil Clb. The coil Clb is connected to a power supply circuit 78 in the control circuit 57, and the power supply circuit 78 generates DC power required on the control circuit 57 side.
[0067] 電源回路 78は、整流用のダイオード D及び平滑用コンデンサを介して整流された 直流電圧を、例えば 3端子電源用 IC79及び平滑用コンデンサにより、制御回路 57 の動作に必要な直流電圧に変換して、制御回路 57に供給する。  The power supply circuit 78 converts the DC voltage rectified through the rectifying diode D and the smoothing capacitor into a DC voltage required for the operation of the control circuit 57 by, for example, the three-terminal power supply IC 79 and the smoothing capacitor. The signal is converted and supplied to the control circuit 57.
[0068] また、制御回路 57に接続された (共通の信号伝送手段を形成する)信号線 71bは、 上述したようにコイル C2aに接続され、このコイル C2aに近接して対向するコイル C2b はチューブユニット 19内を揷通された信号線 73bと接続されている。つまり、トランス T1の場合とほぼ同様に、コイル C2aと C2bとによる電磁結合するトランス T2が形成さ れる。  [0068] The signal line 71b (forming a common signal transmission means) connected to the control circuit 57 is connected to the coil C2a as described above, and the coil C2b, which is close to and opposed to the coil C2a, is a tube. It is connected to the signal line 73b passed through the unit 19. That is, almost in the same manner as in the case of the transformer T1, the transformer T2 that is electromagnetically coupled by the coils C2a and C2b is formed.
電磁結合するコイル C2a及び C2bを経て信号線 7 lb側力も信号線 73b側に信号が 伝達されると共に、逆方向にも信号が伝達される。  The signal on the signal line 7 lb side is also transmitted to the signal line 73b side via the coils C2a and C2b that are electromagnetically coupled, and also transmitted in the opposite direction.
[0069] 本実施形態では、図 13にてその内部構成を説明するように、制御回路 57により各 種の操作手段及び撮像手段等を集中的に制御ないしは管理する構成にすることに より、チューブユニット 19内を揷通する電気信号線の本数を削減できるようにして 、る 。また、内視鏡 3に設ける機能を変更した場合においても、チューブユニット 19内の 信号線 73bをそのまま変更無しで使用することができる。つまり、信号線 73bは、各種 の信号を共通して伝送する共通の信号伝送手段を形成している。 In the present embodiment, as described in FIG. 13, the control circuit 57 is configured to centrally control or manage various kinds of operation means and image pickup means, so that the tube The number of electric signal lines passing through the unit 19 can be reduced. Further, even when the function provided to the endoscope 3 is changed, the signal line 73b in the tube unit 19 can be used without any change. That is, the signal line 73b To form a common signal transmission means for transmitting these signals in common.
なお、図 12に示すように、例えばトランス T2に隣接して、磁石 Ml及び M2とが異な る磁極同士が対向するように配置され、コネクタ部 51に総合コネクタ部 52を接続する 際に、コイル Claと Clb、コイル C2aと C2bとが近接して対向する状態で着脱自在に 取り付けられるようにしている。なお、磁石 Ml及び M2の代わりに、両コネクタ部 51、 52に互 ヽに嵌合して位置決めする凹凸部を設けるようにしても良!、。  As shown in FIG. 12, for example, adjacent to the transformer T2, the magnets Ml and M2 are arranged so that different magnetic poles are opposed to each other. Cla and Clb and coils C2a and C2b can be detachably mounted in close proximity to each other. Note that, instead of the magnets Ml and M2, the connector portions 51 and 52 may be provided with concave and convex portions for positioning by fitting each other.
このように本実施形態における内視鏡 3は、内視鏡本体 18に対してチューブュ-ッ ト 19を着脱自在にするとともに、内視鏡本体 18にチューブユニット 19を装着する際、 内視鏡本体 18とチューブユニット 19との間の電源および信号の授受を、金属電極同 士の接続に拠らない接続手段によって行うことを特徴とするものである。  As described above, the endoscope 3 according to the present embodiment makes the tube guide 19 detachable from the endoscope main body 18, and when the tube unit 19 is mounted on the endoscope main body 18, the endoscope 3 The transmission and reception of power and signals between the main body 18 and the tube unit 19 are performed by connection means that does not rely on the connection between metal electrodes.
[0070] 図 13は、前記第 1実施形態の内視鏡システムにおける内視鏡の電気的構成を示し たブロック図である。 FIG. 13 is a block diagram showing an electrical configuration of the endoscope in the endoscope system according to the first embodiment.
[0071] 図 13における左側の下部に示す揷入部 21の先端部 24には、 CCD25と LED56と が配置され、図面中その上に記載された湾曲部 27にはアングル用ァクチユエ一タ( 本実施形態では具体的には EPAM) 27a及びエンコーダ 27cが配置されて!、る。  A CCD 25 and an LED 56 are arranged at the tip 24 of the insertion section 21 shown in the lower part on the left side in FIG. 13, and a bending section 27 described above in the drawing has an angle actuator (this embodiment). In the embodiment, specifically, an EPAM) 27a and an encoder 27c are arranged!
[0072] また、軟性部 53には硬度可変用ァクチユエータ 54及びエンコーダ 54c (本実施形 態では具体的には EPAMによる硬度可変用ァクチユエータ 54A、 54Bであるが、簡 略ィ匕して 1つで代表して示している)がそれぞれ配置されている。また、この軟性部 5 3には UPDコイル 58が配置されている。  Further, the flexible portion 53 includes a hardness variable actuator 54 and an encoder 54c (specifically, in this embodiment, the hardness variable actuators 54A and 54B by EPAM are used. (Represented as representatives) are arranged. Further, an UPD coil 58 is arranged in the flexible portion 53.
また、挿入部 21の軟性部 53の上に記載された操作部 22の表面には、トラックボー ル 69、送気送水 SW(SW4)、吸引 SW(SW5)、スコープ SW(SW1— 3)が配置され る。なお、後述するようにトラックボール 69は、アングル操作と他の機能の選択設定 等に利用される。  Also, on the surface of the operation section 22 described above the flexible section 53 of the insertion section 21, a track ball 69, an air supply / water supply switch (SW4), a suction switch (SW5), and a scope switch (SW1-3) are provided. Will be placed. As will be described later, the trackball 69 is used for an angle operation, selection setting of other functions, and the like.
図 13の左側に示したこれらは、信号線を介してその右側に示した操作部 22に設け た制御回路 57 (なお、 UPDコイル駆動ユニット 59は操作部 22内)と接続され、制御 回路 57は、それらの機能の駆動制御や信号処理等を行う。  These components shown on the left side of FIG. 13 are connected to a control circuit 57 provided in the operation unit 22 shown on the right side of the operation unit 22 (the UPD coil drive unit 59 is in the operation unit 22) via a signal line. Performs drive control and signal processing of those functions.
[0073] 制御回路 57は、制御状態を管理する CPU等により構成される状態管理部 81を有 し、この状態管理部 81は、各部の状態を保持 (記憶)する状態保持メモリ 82と接続さ れている。この状態保持メモリ 82は、制御情報格納手段としてのプログラム格納メモリ 82aを有し、このプログラム格納メモリ 82aに格納される制御情報としてのプログラム データを書き換えることにより、図 13に示す構成要素を変更した場合にも、状態管理 部 81 (を構成する CPU)は、その変更した構成に対応した制御 (管理)を行えるように している。 The control circuit 57 has a state management unit 81 composed of a CPU or the like that manages a control state. The state management unit 81 is connected to a state holding memory 82 that holds (stores) the state of each unit. It is. This state holding memory 82 has a program storage memory 82a as control information storage means, and the components shown in FIG. 13 are changed by rewriting program data as control information stored in the program storage memory 82a. In this case as well, the state management unit 81 (the CPU constituting the state management unit 81) can perform control (management) corresponding to the changed configuration.
[0074] また、この状態保持メモリ 82或いは少なくともプログラム保持メモリ 82aは、例えば不 揮発性で電気的に書き換え可能なフラッシュメモリ或いは EEPROM等で構成され、 状態管理部 81を介してプログラムデータの変更を簡単に行えるようにして!/、る。  The state holding memory 82 or at least the program holding memory 82 a is composed of, for example, a non-volatile, electrically rewritable flash memory or EEPROM, and changes program data via the state management unit 81. Make it easy!
[0075] 例えば信号線 71bを介して、つまり以下の有線による送受信ユニット 83を介して状 態管理部 81に対して、プログラムデータの変更のコマンドを送り、そのコマンドの後 に書き換えるプログラムデータを AWSユニット 4側力も送信することによりプログラム データの変更を行えるようにしている。また、バージョンアップ等も信号線 71bを介し て容易に行えるようにして ヽる。 For example, a command for changing program data is sent to the state management unit 81 via the signal line 71b, that is, via the following wired transmission / reception unit 83, and the program data to be rewritten after the command is sent to the AWS. Unit 4 also sends the force to change program data. Also, version upgrades and the like can be easily performed via the signal line 71b.
また、この状態保持メモリ 82に、以下のように各内視鏡 3に固有な機種情報や使用 状況に対応した個体情報を書き込んで保持し、その情報を有効利用できるようにして も良い。具体的には、状態保持メモリ 82には、例えば内視鏡 3の機種情報 (例えば、 CCD25の種類、挿入部長などの情報)を保持すると共に、内視鏡検査等の使用状 況によって異なる各内視鏡 3の個体別情報 (例えば、使用時間(内視鏡検査の通算 或いは積算の使用時間)、洗浄回数、調整値、保守履歴などの情報)が保持され、こ れらの情報はシステム動作の決定やユーザへの情報提供などに利用される。  In addition, it is also possible to write and hold the model information unique to each endoscope 3 and the individual information corresponding to the use status in the state holding memory 82 as described below so that the information can be effectively used. Specifically, the state holding memory 82 holds, for example, the model information of the endoscope 3 (for example, information on the type of the CCD 25, the length of the insertion section, etc.), and also varies depending on the usage state of the endoscope inspection or the like. Individual information of the endoscope 3 (for example, information such as use time (total use time of endoscopy or total use time), number of cleaning times, adjustment value, maintenance history, etc.) is retained, and this information is stored in the system. It is used for deciding operations and providing information to users.
またこれらの情報は、内視鏡システム制御装置 5や図示しな 、洗浄装置など外部か らの編集も可能としている。  Further, such information can be edited from outside such as the endoscope system control device 5 or a cleaning device (not shown).
このようにすることにより、状態保持メモリ 82を従来のスコープ IDの機能を兼ねるこ とで共有して利用することで、スコープ IDに持たす情報 (データ)を有効に活用できる また、この状態保持メモリ 82を有しているので、別途スコープ IDを設ける必要がな いし、既存のスコープ IDよりも高機能化でき、より詳細に適切な設定、調整、管理、処 理等を行うことが可能となる。 [0076] また、この状態管理部 81は、(本実施形態では) AWSユニット 4と有線で通信を行う 有線方式の送受信ユニット 83と接続されている(この送受信ユニット 83は、図 2 (B) に該当するので、その構成要素は図 2 (B)の符号を付けて示している。但し、電気コ ネクタ 15は、操作部 22内では電磁結合接続部 72a、 72bであり、チューブユニット 1 9の端部では電気コネクタ 74となる)。 In this way, by sharing and using the state holding memory 82 as the function of the conventional scope ID, the information (data) of the scope ID can be effectively used. Since there are 82, there is no need to provide a separate scope ID, it can be more advanced than the existing scope ID, and it is possible to perform more detailed appropriate setting, adjustment, management, processing, etc. . Further, the state management unit 81 is connected to a wired transmission / reception unit 83 (in this embodiment) that performs wired communication with the AWS unit 4 (this transmission / reception unit 83 is configured as shown in FIG. 2 (B) 2 (B), the electrical connectors 15 are electromagnetic coupling connectors 72a and 72b in the operation unit 22, and the tube unit 19 At the end is an electrical connector 74).
[0077] また、この状態管理部 81は、照明を制御する照明制御部 84を介して、この照明制 御部 84により制御される LED駆動部 85を制御する。この LED駆動部 85は、照明手 段となる LED56を発光させる LED駆動信号を LED56に印加する。  The state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination. The LED driving section 85 applies an LED driving signal for causing the LED 56 serving as a lighting means to emit light to the LED 56.
この LED56の発光により、照明された患部等の被写体は、観察窓に取り付けられ た図示しない対物レンズにより、その結像位置に配置された CCD25の撮像面に結 像され、この CCD25により光電変換される。  By the light emission of the LED 56, the illuminated subject such as the affected part is imaged by the objective lens (not shown) attached to the observation window onto the imaging surface of the CCD 25 arranged at the image forming position, and photoelectrically converted by the CCD 25. You.
この CCD25は、状態管理部 81により制御される CCD駆動部 86からの CCD駆動 信号の印加により、光電変換して蓄積した信号電荷を撮像信号として出力する。この 撮像信号は、 AZDコンバータ (ADCと略記) 87によりアナログ信号力もデジタル信 号に変換された後、状態管理部 81に入力されると共に、デジタル信号 (画像データ) が画像メモリ 88に格納される。この画像メモリ 88の画像データは、送受信ユニット 83 のデータ送信部 1^ に送られる。  The CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by applying a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81. The image signal is converted into a digital signal by an AZD converter (abbreviated as ADC) 87 and then input to the state management unit 81, and the digital signal (image data) is stored in the image memory 88. . The image data of the image memory 88 is sent to the data transmission section 1 ^ of the transmission / reception unit 83.
[0078] そして、電気コネクタ 15 (本実施形態では伝送ユニット 51b)からチューブユニット 1 9内の信号線 73bを経て AWSユニット 4側に伝送される。さらに AWSユニット 4から 無線で内視鏡システム制御装置 5に伝送される。 上記 ADC87の出力信号は、明る さ検出部 89に送られ、明るさ検出部 89により検出された画像の明るさの情報は、状 態管理部 81に送られる。状態管理部 81は、この情報により、照明制御部 84を介して LED56による照明光量を適正な明るさとなるように調光制御を行う。  Then, the signal is transmitted from the electrical connector 15 (the transmission unit 51b in the present embodiment) to the AWS unit 4 via the signal line 73b in the tube unit 19. Further, the data is transmitted from the AWS unit 4 to the endoscope system controller 5 by radio. The output signal of the ADC 87 is sent to the brightness detection unit 89, and information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the amount of illumination by the LED 56 becomes appropriate.
また、状態管理部 81は、アングル制御部 91を介してァクチユエータ駆動部 92を制 御し、このァクチユエータ駆動部 92によりアングル用ァクチユエータ(EPAM) 27aを 駆動する管理をする。なお、このアングル用ァクチユエータ(EPAM) 27aの駆動量 はエンコーダ 27cにより検出され、駆動量が指示値に対応する値に一致するように制 御される。 [0079] また、状態管理部 81は、硬度可変制御部 93を介してァクチユエータ駆動部 94を制 御し、このァクチユエータ駆動部 94により硬度可変用ァクチユエータ 54を駆動する管 理を行う。なお、この硬度可変用ァクチユエータ 54の駆動量はエンコーダ 54cにより 検出され、その駆動量が指示値に対応する値となるように制御される。 Further, the state management unit 81 controls an actuator driving unit 92 via an angle control unit 91, and manages driving of the angle actuator (EPAM) 27a by the actuator driving unit 92. The drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c, and is controlled so that the drive amount matches a value corresponding to the indicated value. Further, the state management unit 81 controls the actuator driving unit 94 via the hardness varying control unit 93, and manages driving of the hardness varying actuator 54 by the actuator driving unit 94. The drive amount of the hardness variable actuator 54 is detected by the encoder 54c, and is controlled so that the drive amount becomes a value corresponding to the indicated value.
また、この状態管理部 81には、操作部 22に設けられたトラックボール 69等力もの 操作量に対応する操作信号がトラックボール変位検出部 95を介して入力される。 また、送気送水 SW、吸引 SW、スコープ SWによる ON等のスィッチ押しの操作は、 スィッチ押し検出部 96により検出され、その検出された情報は状態管理部 81に入力 される。 EPAMは、外力による変形により起電力を発生する特性があり、駆動する EP AMの反対側に配置した EPAMをェンコーダとして用いても良い。  Further, an operation signal corresponding to the operation amount of the trackball 69 provided on the operation unit 22 is input to the state management unit 81 via the trackball displacement detection unit 95. Further, a switch press operation such as an ON operation by the air / water supply switch, suction switch, and scope switch is detected by the switch press detection unit 96, and the detected information is input to the state management unit 81. EPAM has a characteristic of generating an electromotive force by deformation due to an external force, and an EPAM arranged on the opposite side of a driving EPAM may be used as an encoder.
また、制御回路 57は、電源伝送受信部 97及び電源発生部 98とを有する。電源伝 送受信部 97は、具体的には操作部 22においては電磁結合接続部 72aである。そし て、電源発生部 98に伝送された交流電源は、この電源発生部 98において、直流電 源に変換される。この電源発生部 98は、図 11の電源回路 78に相当する。電源発生 部 98により生成された直流電源は、制御回路 57内部の各部に、その動作に必要な 電力を供給する。  The control circuit 57 includes a power transmission / reception unit 97 and a power generation unit 98. The power transmission / reception unit 97 is, specifically, the electromagnetic coupling connection unit 72a in the operation unit 22. Then, the AC power transmitted to the power generation unit 98 is converted into a DC power in the power generation unit 98. This power generation section 98 corresponds to the power supply circuit 78 in FIG. The DC power generated by the power generation unit 98 supplies power required for its operation to each unit in the control circuit 57.
[0080] 図 14は内視鏡システム制御装置 5における図 8の送受信ユニット 101及び画像処 理ユニット 116の内部構成を示す。  FIG. 14 shows an internal configuration of the transmission / reception unit 101 and the image processing unit 116 of FIG. 8 in the endoscope system control device 5.
この内視鏡システム制御装置 5は、例えば無線方式の送受信ュ-ット 101を有する 。 AWSユニット 4力も無線により送信される画像信号等のデータは、アンテナ部 13 により取り込まれて、データ受信部 14に送られ、増幅された後、復調処理される。こ のデータ受信部 14は、データ通信制御部 11によりその動作が制御され、受信された データはバッファメモリ 102に順次蓄積される。  The endoscope system control device 5 has, for example, a transmission / reception cut 101 of a wireless system. The data such as image signals transmitted wirelessly by the AWS unit 4 is taken in by the antenna unit 13, sent to the data receiving unit 14, amplified, and demodulated. The operation of the data receiving unit 14 is controlled by the data communication control unit 11, and the received data is sequentially stored in the buffer memory 102.
このバッファメモリ 102の画像データは、画像データの処理を行う画像処理部 103 に送られる。この画像処理部 103には、バッファメモリ 102からの画像データの他に、 キーボード 104のキー入力により文字情報を発生する文字生成部 105からの文字情 報も入力され、画像データに文字情報をスーパインポーズ等することができる。  The image data in the buffer memory 102 is sent to an image processing unit 103 that processes the image data. The image processing unit 103 receives, in addition to the image data from the buffer memory 102, character information from a character generation unit 105 that generates character information by key input of a keyboard 104, and superimposes the character information on the image data. You can impose.
[0081] 画像処理部 103は、入力された画像データ等を画像メモリ制御部 106に送り、この 画像メモリ制御部 106を介して画像メモリ 107に画像データ等を一時格納すると共に 、記録メディア 158に記録する。 [0081] The image processing unit 103 sends the input image data and the like to the image memory control unit 106. The image data and the like are temporarily stored in the image memory 107 via the image memory control unit 106 and are also recorded on the recording medium 158.
また、画像メモリ制御部 106は、画像メモリ 107に一時格納された画像データを読 み出されてデジタルエンコーダ 108に送り、デジタルエンコーダ 108は画像データを 所定の映像方式にエンコードし、 DZ Aコンバータ(DACと略記) 109に出力する。こ の DAC109は、デジタルの映像信号をアナログの映像信号に変換する。このアナ口 グの映像信号は、さらにラインドライバ 110を経て映像出力端から観察モニタ 6に出 力され、観察モニタ 6には映像信号に対応する画像が表示される。  Further, the image memory control unit 106 reads out the image data temporarily stored in the image memory 107 and sends it to the digital encoder 108. The digital encoder 108 encodes the image data into a predetermined video format, and Output to 109). This DAC 109 converts a digital video signal into an analog video signal. The analog video signal is further output from the video output terminal to the observation monitor 6 via the line driver 110, and an image corresponding to the video signal is displayed on the observation monitor 6.
また、画像メモリ 107に一時格納された画像データは、読み出されて DVデータ生 成部 111にも入力され、この DVデータ生成部 111により DVデータが生成され、 DV データ出力端力 DVデータが出力される。  The image data temporarily stored in the image memory 107 is read out and input to the DV data generating unit 111, where the DV data is generated by the DV data generating unit 111, and the DV data output terminal DV data is output. Is output.
[0082] また、この内視鏡システム制御装置 5には、映像入力端及び DVデータ入力端とが 設けてあり、映像入力端子力も入力された映像信号は、ラインレシーバ 112、 ADC1 13を経てデジタル信号に変換された映像信号は、デジタルデコーダ 114により復調 されて、画像メモリ制御部 106に入力される。 Further, the endoscope system control device 5 is provided with a video input terminal and a DV data input terminal, and the video signal to which the power of the video input terminal is also input is digitally transmitted through the line receiver 112 and the ADC 113. The converted video signal is demodulated by the digital decoder 114 and input to the image memory control unit 106.
また、 DVデータ入力端とに入力された DVデータは、画像データ抽出部 115により 画像データが抽出(デコード)され、画像メモリ制御部 106に入力される。  Further, the image data is extracted (decoded) by the image data extraction unit 115 from the DV data input to the DV data input terminal, and is input to the image memory control unit 106.
画像メモリ制御部 106は、映像入力端或いは DVデータ入力端力も入力される映像 信号 (画像データ)に対しても、画像メモリ 107に一時記憶したり、記録メディア 158に 記録したり、或 、は映像出力端から観察モニタ 6に出力したりする。  The image memory control unit 106 also temporarily stores the video signal (image data) to which the video input terminal or the DV data input terminal is also input in the image memory 107, records it in the recording medium 158, or For example, output to the observation monitor 6 from the video output terminal.
本実施形態においては、 AWSユニット 4側から、内視鏡 3の CCD25により撮像さ れた画像データと UPDユニット 76により生成された UPD画像データとが無線で内視 鏡システム制御装置 5に入力され、内視鏡システム制御装置 5は、これらの画像デー タを所定の映像信号に変換して観察モニタ 6に出力する。なお、内視鏡システム制御 装置 5は、 UPD画像データの代わりに UPDコイル位置データを受信し、画像処理部 103内で UPD画像データを生成しても良い。  In the present embodiment, the AWS unit 4 side wirelessly inputs the image data captured by the CCD 25 of the endoscope 3 and the UPD image data generated by the UPD unit 76 to the endoscope system controller 5. Then, the endoscope system control device 5 converts these image data into a predetermined video signal and outputs it to the observation monitor 6. Note that the endoscope system control device 5 may receive the UPD coil position data instead of the UPD image data, and generate the UPD image data in the image processing unit 103.
[0083] 図 15は AWSユニット 4の内部構成を示す。 FIG. 15 shows the internal configuration of AWS Unit 4.
内視鏡 3の制御回路 57からスコープ用の電気コネクタ 43に入力された画像データ 及びスィッチ等の操作データは、送受信ユニット 77のデータ通信制御部 11に出力さ れ、 UPDユニット 76からの UPD画像データと共に、アンテナ部 13から内視鏡システ ム制御装置 5のアンテナ部 13に送信する。 Image data input from control circuit 57 of endoscope 3 to electrical connector 43 for scope And operation data of the switches and the like are output to the data communication control unit 11 of the transmission / reception unit 77 and transmitted from the antenna unit 13 to the antenna unit 13 of the endoscope system control device 5 together with the UPD image data from the UPD unit 76. I do.
一方、内視鏡 3の操作部 22に設けた送気送水スィッチや吸引スィッチの操作等の AWS関連情報は、送気送水制御部 122にも送られ、この送気送水制御部 122は、 操作された情報に対応してポンプ 65及び電磁弁ユニット 124の動作を制御する。電 磁弁ユニット 124には、 AWSアダプタ 42を介して送気送水チューブ 60b、 61b力 S接 続される。また、電磁弁ユニット 124及び AWSアダプタ 42には、送水タンク 48が接 続され、また AWSアダプタ 42には吸引タンク 49bが接続される。  On the other hand, AWS-related information such as the operation of the air supply / water supply switch and the suction switch provided on the operation unit 22 of the endoscope 3 is also sent to the air supply / water supply control unit 122, and this air supply / water supply control unit 122 The operation of the pump 65 and the solenoid valve unit 124 is controlled in accordance with the received information. The air valve / water supply tube 60b, 61b is connected to the electromagnetic valve unit 124 via the AWS adapter 42. The water supply tank 48 is connected to the solenoid valve unit 124 and the AWS adapter 42, and the suction tank 49b is connected to the AWS adapter 42.
[0084] また、 AWSユニット 4には商用電源が供給され、この商用電源は絶縁トランス 126 を介して電源伝送出力部 127に送られる。この電源伝送出力部 127は、商用電源と は絶縁された交流電源を、電気コネクタ 43からこの電気コネクタ 43に接続される内 視鏡 3の電源線 73aに供給する。 [0084] Further, commercial power is supplied to the AWS unit 4, and the commercial power is sent to the power transmission output unit 127 via the insulating transformer 126. The power transmission output section 127 supplies AC power insulated from commercial power from the electric connector 43 to the power line 73a of the endoscope 3 connected to the electric connector 43.
上記電源伝送出力部 127は、データ通信制御部 11と接続された電力伝送制御部 128により、電力伝送出力が制御される。  The power transmission output of the power transmission output unit 127 is controlled by a power transmission control unit 128 connected to the data communication control unit 11.
本実施形態を備えた内視鏡システム 1では、電源を投入した場合には観察モニタ 6 には、例えば図 16 (A)のように各種の画像が表示される。この場合、患者情報等を 表示する情報表示領域 Rj、内視鏡画像の表示領域 Ri、 UPD画像の表示領域 Ru、 フリーズ画像の表示領域 Rf、及びアングル形状の表示領域 Raの他にメニュー表示 領域 Rmが設けてあり、メニュー表示領域 Rmには、メニューが表示される。なお、アン ダル形状の表示領域 Raは、アングル用ァクチユエータ 27aのアングル操作量をェン コーダ 27cにより検出し、その場合のアングル形状を表示する。  In the endoscope system 1 provided with the present embodiment, when the power is turned on, various images are displayed on the observation monitor 6 as shown in FIG. 16A, for example. In this case, in addition to the information display area Rj for displaying patient information, etc., the endoscope image display area Ri, the UPD image display area Ru, the freeze image display area Rf, and the angle display area Ra, the menu display area Rm is provided, and a menu is displayed in the menu display area Rm. The under-shaped display area Ra detects the amount of angle operation of the angle actuator 27a by the encoder coder 27c, and displays the angle shape in that case.
[0085] メニュー表示領域 Rmに表示されるメニューとしては、図 16 (B)に示すメインメ-ュ 一が表示される。このメインメニューには、スコープスィッチ、アングル感度、挿入部硬 度、ズーム、画像強調、送気量と共に、前のメニュー画面に戻る操作指示を行う戻る と、メニューの終了の操作指示をする終了の項目が表示される。 As the menu displayed in the menu display area Rm, the main menu shown in FIG. 16B is displayed. This main menu includes the scope switch, angle sensitivity, insertion section hardness, zoom, image enhancement, and air volume, as well as an instruction to return to the previous menu screen. The item is displayed.
そして、ユーザは、トラックボール 69等の操作により選択枠をスコープスィッチの項 目に移動選択すると、そのスコープスィッチの項目の枠が太く表示されて選択されて いることを示す表示となり、さらにトラックボール 69を押して決定操作を行うことにより、 図 16 (C)に示すように 5つのスコープスィッチ SW1から SW5に割り当てる機能を選 択設定することができる。 Then, when the user moves and selects the selection frame to the item of the scope switch by operating the trackball 69 or the like, the frame of the item of the scope switch is displayed in bold and selected. Then, by pressing the trackball 69 and performing a decision operation, the functions assigned to the five scope switches SW1 to SW5 can be selectively set as shown in FIG. 16 (C).
[0086] 次に、このような構成による内視鏡システム 1の作用を説明する。 Next, the operation of the endoscope system 1 having such a configuration will be described.
内視鏡検査を実施する前準備として、まず内視鏡本体 18の操作部 22のコネクタ部 51にディスポタイプのチューブユニット 19側の総合コネクタ部 52を接続する。この場 合、電磁結合接続部 72a、 72bを形成するトランス Tl, T2は、互いに絶縁かつ防水 状態で電磁的的に接続されることになる。この接続により、内視鏡 3の準備は完了す る。  As a preparation for performing the endoscope inspection, first, the general connector section 52 of the disposable tube unit 19 is connected to the connector section 51 of the operation section 22 of the endoscope body 18. In this case, the transformers Tl and T2 forming the electromagnetic coupling connection sections 72a and 72b are electromagnetically connected to each other in an insulated and waterproof state. With this connection, the preparation of the endoscope 3 is completed.
[0087] 次に、チューブユニット 19のスコープコネクタ 41を AWSユニット 4のコネクタ 43に接 続する。この部分はワンタッチ接続により、各種管路、電源線、信号線、光接続が一 度の接続動作で完了する。従来の内視鏡システムのように各種管路の接続や、電気 コネクタの接続などをその都度それぞれ行う必要はない。  Next, the scope connector 41 of the tube unit 19 is connected to the connector 43 of the AWS unit 4. In this part, various conduits, power lines, signal lines, and optical connections are completed in one connection operation by one-touch connection. Unlike the conventional endoscope system, it is not necessary to connect various conduits and electrical connectors each time.
[0088] また、ユーザは、 AWSユニット 4を UPDコイルユニット 8と接続し、内視鏡システム 制御装置 5を、観察モニタ 6に接続する。また、必要に応じて、内視鏡システム制御 装置 5を画像記録ユニット 7等と接続することにより、内視鏡システム 1のセットアップ が完了する。  Further, the user connects the AWS unit 4 to the UPD coil unit 8 and connects the endoscope system control device 5 to the observation monitor 6. In addition, if necessary, the endoscope system control device 5 is connected to the image recording unit 7 or the like, thereby completing the setup of the endoscope system 1.
[0089] 次に AWSユニット 4及び内視鏡システム制御装置 5の電源をオンする。すると、 A WSユニット 4内の各部が動作状態になり電源ユニット 75は、電源線 73a等を介して 内視鏡 3側に電源を供給できる状態になる。  Next, the power of the AWS unit 4 and the endoscope system control device 5 is turned on. Then, each unit in the AWS unit 4 is activated, and the power supply unit 75 can supply power to the endoscope 3 via the power supply line 73a and the like.
この場合の AWSユニット 4及び内視鏡 3の起動時の動作を図 17及び図 18を参照 して説明する。  The operation at the time of starting the AWS unit 4 and the endoscope 3 in this case will be described with reference to FIG. 17 and FIG.
[0090] 図 15に示す AWSユニット 4の電源ユニット 75内の電力伝送制御部 128は、起動処 理を開始すると、図 17に示すように、最初のステップ S1において、電源伝送出力部 127の状態を電力供給を停止、つまり電力供給を OFFにする。  [0090] When the power transmission control unit 128 in the power supply unit 75 of the AWS unit 4 shown in Fig. 15 starts the start-up processing, as shown in Fig. 17, in the first step S1, the state of the power transmission output unit 127 is changed. To stop the power supply, that is, turn off the power supply.
その後、ステップ S2において、監視タイマを ONにした後、ステップ S3に示すように 電源伝送出力部 127の状態を電力供給する状態、つまり電力供給を ONにする。電 源伝送出力部 127が電力供給する状態となることにより、この電力がチューブュニッ ト 19内の電源線 73aを介し、さらに電磁結合接続部 72aを経て、操作部 22の制御回 路 57内の電源発生部 98に交流の電力が供給されるようになる。 Then, in step S2, after the monitoring timer is turned on, the state of the power transmission output unit 127 is supplied with power, that is, the power supply is turned on, as shown in step S3. When the power transmission output unit 127 is in a state of supplying power, the power is transmitted to the tube unit. AC power is supplied to the power generation unit 98 in the control circuit 57 of the operation unit 22 via the power supply line 73a in the switch 19 and further via the electromagnetic coupling connection unit 72a.
その後、ステップ S4に示すように電力伝送制御部 128は、チューブユニット 19内の 信号線 73bを介して内視鏡 3側からの起動メッセージの受信待ちする状態となる。そ して、電力伝送制御部 128は、起動メッセージを受信しない場合には、ステップ S5に 示すように監視タイマの時間切れかの判断を行い、時間切れでない場合には、ステツ プ S4に戻り、時間切れの場合には最初のステップ S1に戻る。  Thereafter, as shown in step S4, the power transmission control unit 128 enters a state of waiting for reception of a start message from the endoscope 3 via the signal line 73b in the tube unit 19. Then, when the power transmission control unit 128 does not receive the activation message, the power transmission control unit 128 determines whether the monitoring timer has expired as shown in step S5, and if not, returns to step S4. If the time has expired, the process returns to the first step S1.
[0091] 一方、ステップ S4において時間切れの前に起動メッセージを受信した場合には、 電力伝送制御部 128は、ステップ S6に示すように監視タイマの時間計測を OFFにす る。そして、ステップ S7に示すように継続メッセージを発行して、この起動処理を終了 する。 [0091] On the other hand, when the activation message is received before the timeout in step S4, the power transmission control unit 128 turns off the time measurement of the monitoring timer as shown in step S6. Then, a continuation message is issued as shown in step S7, and the activation process ends.
一方、内視鏡 3の制御回路 57には、電源発生部 98に交流の電力が供給されること により、制御回路 57内の動作に必要な電力が供給され、起動処理を開始する。そし て、図 13に示す状態管理部 81は、最初のステップ S 11において電源発生部 98の電 源電圧が安定ィ匕するのを待つ。  On the other hand, the control circuit 57 of the endoscope 3 is supplied with AC power to the power generation unit 98, so that the power required for the operation in the control circuit 57 is supplied, and the start process is started. Then, the state management unit 81 shown in FIG. 13 waits for the power supply voltage of the power generation unit 98 to stabilize in the first step S11.
そして、電源電圧が安定ィ匕した場合には次のステップ S 12において、状態管理部 8 1は、制御回路 57各部のシステム初期化を行う。このシステム初期化の後、ステップ S 13に示すように状態管理部 81は、起動メッセージを送受信ユニット 83を介し、さらに チューブユニット 19内の信号線 73bを経て電力伝送制御部 128に送信する。  Then, when the power supply voltage is stabilized, in the next step S12, the state management unit 81 performs system initialization of each unit of the control circuit 57. After the system initialization, as shown in step S13, the state management unit 81 transmits a start message to the power transmission control unit 128 via the transmission / reception unit 83 and further via the signal line 73b in the tube unit 19.
[0092] この起動メッセージの送信後、ステップ S14に示すように状態管理部 81は、電力伝 送制御部 128側力もの継続メッセージを受信するのを待つ状態となり、継続メッセ一 ジを受信した場合には、起動処理を終了する。一方、継続メッセージを受信しない場 合には、ステップ S 15に示すように状態管理部 81は、リトライ終了の条件 (例えば予 め設定されたリトライ回数の条件)に達しない場合には、ステップ S 13に戻り、再度起 動メッセージを発行し、リトライ終了の条件になった場合には、エラー終了する。 上記起動処理が正常に終了すると、 CCD25による撮像が開始し、ユーザは、操作 部 22の操作手段により送気送水、吸引、アングル操作、硬度可変操作等を行うこと ができる。 これらに関する代表的な処理動作を図 19一図 22により説明する。図 19は撮像制 御処理の動作内容を示す。 [0092] After transmitting the start message, as shown in step S14, the state management unit 81 enters a state of waiting for a continuation message to be received by the power transmission control unit 128, and receives the continuation message. Then, the startup processing ends. On the other hand, if the continuation message is not received, as shown in step S15, the state management unit 81 proceeds to step S15 if the retry end condition (for example, the condition of the preset number of retry) is not reached. Return to step 13, issue a start message again, and terminate with an error if the retry end condition is met. When the start-up process ends normally, imaging by the CCD 25 starts, and the user can perform air / water feeding, suction, an angle operation, a hardness varying operation, and the like using the operation unit of the operation unit 22. Representative processing operations relating to these will be described with reference to FIGS. FIG. 19 shows the operation contents of the imaging control processing.
[0093] 図 19に示すように、撮像処理が開始するとステップ S21に示すように、内視鏡 3は、 撮像データ取得を行う。具体的には、状態管理部 81の管理 (制御)下で、 LED56は 発光すると共に、 CCD駆動部 86は CCD25を駆動する動作を開始し、 CCD25によ り撮像された撮像信号は ADC87によりデジタル信号 (撮像データ)に変換される。そ の撮像データ (画像データ)は順次、画像メモリ 88に記憶され、撮像データの取得が 行われる。 As shown in FIG. 19, when the imaging process starts, the endoscope 3 acquires imaging data as shown in step S21. Specifically, under the control (control) of the state management unit 81, the LED 56 emits light, the CCD driving unit 86 starts the operation of driving the CCD 25, and the imaging signal captured by the CCD 25 is digitally converted by the ADC 87. It is converted into a signal (imaging data). The image data (image data) is sequentially stored in the image memory 88, and the image data is obtained.
取得された画像データは、ステップ S22に示すように順次送信される。画像メモリ 8 8から読み出された画像データは、送受信ユニット 83から AWSユニット 4に有線で送 信され、この AWSユニット 4の送受信ユニット 77から無線で内視鏡システム制御装置 5側に送信され、内視鏡システム制御装置 5の内部で映像信号に変換されて観察モ ニタ 6に表示されるようになる。  The acquired image data is sequentially transmitted as shown in step S22. The image data read from the image memory 88 is transmitted from the transmission / reception unit 83 to the AWS unit 4 by wire, and is transmitted from the transmission / reception unit 77 of the AWS unit 4 to the endoscope system control device 5 wirelessly. The video signal is converted into a video signal inside the endoscope system control device 5 and displayed on the observation monitor 6.
[0094] また、 ADC87の撮像データは、明るさ検出部 89に入力される。ステップ S23に示 すようにこの明るさ検出部 89は、撮像データの輝度データの適宜の時間での平均値 を算出するなどして、撮像データの明るさ検出を行う。 The image data of the ADC 87 is input to the brightness detector 89. As shown in step S23, the brightness detecting unit 89 detects the brightness of the image data by calculating an average value of the luminance data of the image data at an appropriate time.
この明るさ検出部 89の検出データは、例えば状態管理部 81に入力され、指定の明 るさ力否かの判断が行われる (ステップ S24)。そして、指定の明るさの場合には、撮 像処理を終了し、次の撮像処理に移る。  The detection data of the brightness detection unit 89 is input to, for example, the state management unit 81, and it is determined whether or not the designated brightness power is present (step S24). Then, when the brightness is the designated brightness, the imaging process ends, and the process proceeds to the next imaging process.
一方、ステップ S24において、状態管理部 81は、指定の明るさでないと判断した場 合には、ステップ S25に示すように、照明制御部 84に照明光調整の指示信号 (制御 信号)を送り、照明制御部 84は、照明光量の調整を行う。例えば、照明制御部 84は 、LED56を発光させる駆動電流を増大或いは減少させる等して照明光量の調整を 行う。照明制御部 84は、この調整結果を状態管理部 81に返す。  On the other hand, in step S24, when the state management unit 81 determines that the brightness is not the designated brightness, it sends an instruction signal (control signal) for adjusting the illumination light to the illumination control unit 84 as shown in step S25. The illumination control unit 84 adjusts the amount of illumination light. For example, the illumination control unit 84 adjusts the amount of illumination by increasing or decreasing the drive current for causing the LED 56 to emit light. The lighting control unit 84 returns the adjustment result to the state management unit 81.
[0095] 従って状態管理部 81は、調整結果の情報により、照明制御部 84により可能な明る さ調整範囲内かの判断を行う。そして、照明制御部 84による明るさ調整で行えた場 合には、ステップ S27の処理を行わないで、この撮像処理制御を終了する。一方、照 明制御部 84による明るさ調整範囲から外れた場合には、ステップ S27に示すように 状態管理部 81は、 CCD駆動部 86に対して CCDゲイン調整の信号を出力し、 CCD 25のゲインを調整することにより撮像データの明るさ調整を行う。そして、この撮像処 理を終了する。 Therefore, the state management unit 81 determines whether or not the brightness is within the brightness adjustment range possible by the illumination control unit 84 based on the information on the adjustment result. Then, when the brightness control by the illumination control unit 84 has succeeded, the imaging process control ends without performing the process of step S27. On the other hand, if it is out of the brightness adjustment range by the illumination control unit 84, as shown in step S27. The state management unit 81 outputs a CCD gain adjustment signal to the CCD drive unit 86 and adjusts the gain of the CCD 25 to adjust the brightness of the imaging data. Then, the imaging process ends.
次に図 20の送気送水処理を説明する。図 11に示したように通常は、操作部 22に おけるトラックボール 69の両側に送気送水スィッチと吸引スィッチとの機能が割り付 けられる。  Next, the air / water supply processing of FIG. 20 will be described. As shown in FIG. 11, normally, the functions of the air supply / water supply switch and the suction switch are assigned to both sides of the trackball 69 in the operation unit 22.
送気送水の処理が開始すると、図 20のステップ S31に示すように、制御回路 57の 状態管理部 81は、送気送水スィッチの状態データの取得を行う。  When the air / water supply processing is started, the state management unit 81 of the control circuit 57 acquires the state data of the air / water supply switch as shown in step S31 of FIG.
[0096] 送気送水スィッチの操作は、図 13に示すスィッチ押し検出部 96によりその操作が 検出され、その検出結果の情報が入力されることにより、状態管理部 81は、送気送 水スィッチの状態データの取得を行う。 [0096] The operation of the air / water supply switch is detected by the switch press detection unit 96 shown in Fig. 13 and information on the detection result is input. Acquires status data.
そして、ステップ S32に示すように状態管理部 81は、送気送水スィッチの状態変化 を判断する。ステップ S32において、送気送水スィッチの状態変化があつたと判断し た場合には、ステップ S33に示すように状態管理部 81は、ユーザにより操作された送 気送水スィッチの指示に対応する送気送水制御データを送受信ユニット 83を介して AWSユニット 4側に送信する。  Then, as shown in step S32, the state management unit 81 determines a change in the state of the air / water switch. When it is determined in step S32 that the state of the air / water switch has been changed, as shown in step S33, the state management unit 81 transmits the air / water switch corresponding to the instruction of the air / water switch operated by the user. The control data is transmitted to the AWS unit 4 via the transmission / reception unit 83.
AWSユニット 4における送気送水制御部 122は、この送気送水制御データに対応 して、ポンプ 65や電磁弁ユニット 124の制御動作を行う。そして、この送気送水処理 動作を終了する。一方、ステップ S32において、送気送水スィッチの状態変化がない と判断された場合には、ステップ S33の処理を行うことなぐこの送気送水処理動作を 終了する。なお、吸引処理は、送気送水処理とほぼ同様であるので、その処理を省 略する。  The air / water control unit 122 in the AWS unit 4 controls the pump 65 and the solenoid valve unit 124 in accordance with the air / water control data. Then, the air supply / water supply processing operation ends. On the other hand, when it is determined in step S32 that there is no change in the state of the air / water switch, the air / water processing operation without performing the processing in step S33 is ended. Note that the suction process is almost the same as the air supply / water supply process, and thus the process is omitted.
[0097] 次に図 21を参照してアングル操作制御の処理を説明する。アングル制御の処理が 開始すると、ステップ S41に示すように状態管理部 81は、アングル制御が有効力否 かの判断を行う。  Next, with reference to FIG. 21, the processing of the angle operation control will be described. When the angle control process starts, the state management unit 81 determines whether or not the angle control is effective, as shown in step S41.
本実施形態においては、トラックボール 69には、このトラックボール 69が押圧されて いる力否かにより、状態管理部 81は、ステップ S41に示すようにアングル制御有効か 否かの判断を行う。具体的には、状態管理部 81は、トラックボール変位検出部 95の 出力により、トラックボール 69の変位操作と押圧操作とを検出することができる。なお 、トラックボール 69が押圧されて 、るとアングル制御が OFFにされる。 In the present embodiment, the state management section 81 determines whether or not the angle control is valid, as shown in step S41, based on whether or not the trackball 69 is pressed against the trackball 69. Specifically, the state management unit 81 From the output, the displacement operation and the pressing operation of the trackball 69 can be detected. When the trackball 69 is pressed, the angle control is turned off.
状態管理部 81は、トラックボール変位検出部 95の出力により、アングル制御が有 効か否力の判断を行う。  The state management unit 81 determines whether or not the angle control is valid based on the output of the trackball displacement detection unit 95.
[0098] そして、アングル制御が有効でな 、と判断した場合には、ステップ S45に移り、前の 指令値を保持する。一方、アングル制御が有効と判断した場合には、次のステップ S 42に進み、状態管理部 81は、トラックボール 69の操作によるその状態データの取得 を行う。そして、次のステップ S43において、状態管理部 81は、トラックボール変位検 出部 95の出力により、さらに状態変化が有りか否かの判断を行う。  [0098] When it is determined that the angle control is not valid, the process proceeds to step S45, and the previous command value is held. On the other hand, when it is determined that the angle control is valid, the process proceeds to the next step S42, and the state management unit 81 acquires the state data by operating the trackball 69. Then, in the next step S43, the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
[0099] この場合、状態管理部 81は、状態変化がないと判断した場合には、ステップ S45に 移り、逆に状態変化が有ると判断した場合には、次のステップ S44において、トラック ボール 69の回転方向、回転量に対応する指令値を算出する。  [0099] In this case, when the state management unit 81 determines that there is no state change, the process proceeds to step S45. Conversely, when the state management unit 81 determines that there is a state change, in the next step S44, the track ball 69 The command value corresponding to the rotation direction and the rotation amount is calculated.
[0100] ステップ S44或いは S45の処理の後、ステップ S46に示すように状態管理部 81は、 指令値をアングル制御部 91を介してァクチユエータ駆動部 92に送り、アングル用ァ クチユエータをサーボ処理する。  After the processing in step S44 or S45, as shown in step S46, the state management unit 81 sends the command value to the actuator driving unit 92 via the angle control unit 91, and performs servo processing on the angle actuator.
[0101] つまり、ァクチユエータ駆動部 92は、指令値に基づいてその指令値に対応するアン ダル状態 (湾曲角)となるようにアングル用ァクチユエータを駆動する。その際、アング ル用ァクチユエータのアングル状態をエンコーダにより検出し、このエンコーダにより 検出される値が指令値に一致するようにァクチユエータ駆動部 92は、アングル用ァク チユエータを駆動する。このようにして、アングル制御処理を終了する。  [0101] In other words, the actuator drive unit 92 drives the angle actuator based on the command value so as to be in an under state (curved angle) corresponding to the command value. At this time, the angle state of the angle actuator is detected by the encoder, and the actuator driving unit 92 drives the angle actuator so that the value detected by the encoder matches the command value. Thus, the angle control process ends.
なお、図 21では、ステップ S46のサーボ処理の際に、実施形態 2で説明する接触 センサを設けた場合の処理動作 (ステップ S47及び S48)も示して 、る。ステップ S47 及びステップ S48の処理は実施形態 2において説明する。  FIG. 21 also shows the processing operation (steps S47 and S48) when the contact sensor described in the second embodiment is provided in the servo processing in step S46. The processing in step S47 and step S48 will be described in the second embodiment.
[0102] 次に図 22を参照して、硬度可変操作の制御処理を説明する。この制御処理は、図 21と基本的に同様の制御処理を行う。  Next, with reference to FIG. 22, a description will be given of the control processing of the hardness changing operation. This control process basically performs the same control process as FIG.
硬度可変操作の制御処理が開始すると、ステップ S51に示すように状態管理部 81 は、硬度可変制御が有効力否かの判断を行う。  When the control process of the variable hardness operation starts, the state management unit 81 determines whether the variable hardness control is effective or not, as shown in step S51.
具体的には、図 16 (B)に示したようにメインメニューにより挿入部硬度がスコープス イッチ SW1— SW5に割り付けられており、状態管理部 81は、挿入部硬度のスコープ スィッチが押されて有効にされたか否かの判断を行う。 そして、状態管理部 81は、 硬度可変制御が有効でないと判断した場合には、ステップ S55に移り、前の指令値 を保持する。一方、硬度可変制御が有効と判断した場合には、次のステップ S52に 進み、状態管理部 81は、トラックボール 69の操作によるその状態データの取得を行 Specifically, as shown in Fig. 16 (B), the insertion part hardness is Assigned to switches SW1 to SW5, the state management unit 81 determines whether or not the scope switch of the insertion portion hardness has been pressed and activated. Then, when the state management unit 81 determines that the hardness variable control is not valid, the process proceeds to step S55, and holds the previous command value. On the other hand, if it is determined that the hardness variable control is valid, the process proceeds to the next step S52, where the state management unit 81 acquires the state data by operating the trackball 69.
[0103] そして、次のステップ S53において、状態管理部 81は、トラックボール変位検出部 9 5の出力により、さらに状態変化が有りか否かの判断を行う。 [0103] Then, in the next step S53, the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
この場合、状態管理部 81は、状態変化がないと判断した場合には、ステップ S55に 移り、逆に状態変化が有ると判断した場合には、次のステップ S54において、トラック ボール 69の回転方向、回転量に対応する指令値を算出する。  In this case, if the state management unit 81 determines that there is no state change, the process proceeds to step S55. Conversely, if it determines that there is a state change, in the next step S54, the rotation direction of the trackball 69 is changed. , A command value corresponding to the rotation amount is calculated.
[0104] ステップ S54或いは S55の処理の後、ステップ S56に示すように状態管理部 81は、 指令値を硬度可変制御部 93を介してァクチユエータ駆動部 94に送り、硬度可変用 ァクチユエータ 54A或!、は 54Bをサーボ処理する。  After the processing in step S54 or S55, as shown in step S56, the state management unit 81 sends the command value to the actuator driving unit 94 via the hardness varying control unit 93, and the hardness varying actuator 54A or! Servos 54B.
[0105] つまり、ァクチユエータ駆動部 94は、指令値に基づいてその指令値に対応する目 的硬度となるように硬度可変用ァクチユエータ 54A或いは 54Bを駆動する。その際、 硬度可変用ァクチユエータ 54A或いは 54Bの硬度可変状態をエンコーダ 54cにより 検出し、このエンコーダ 54cにより検出される値が目的硬度に到達するようにァクチュ エータ駆動部 94は、硬度可変用ァクチユエータ 54A或いは 54Bを駆動する。  That is, the actuator driving unit 94 drives the hardness varying actuator 54A or 54B based on the command value so as to attain the target hardness corresponding to the command value. At this time, the hardness changing state of the hardness changing actuator 54A or 54B is detected by the encoder 54c, and the actuator driving unit 94 controls the hardness changing actuator 54A or 54A so that the value detected by the encoder 54c reaches the target hardness. Drive 54B.
[0106] このようなサーボ処理を行う最中となるステップ S57において、硬度可変制御部 93 或いは状態管理部 81は、ァクチユエータ駆動部 94により硬度可変用ァクチユエータ 54A或いは 54Bの可変範囲内か否かの判断を行い、この可変範囲から逸脱した場 合にはこの硬度可変制御の処理を終了する。  In step S57 during the execution of such servo processing, the hardness variable control section 93 or the state management section 81 determines whether or not the actuator is in the variable range of the hardness variable actuator 54A or 54B by the actuator driving section 94. A determination is made, and if it deviates from this variable range, the process of the hardness variable control ends.
[0107] また、ステップ S57において、硬度可変用ァクチユエータ 54A或いは 54Bの可変範 囲内の場合には、さらに次のステップ S58において、硬度可変制御部 93或いは状態 管理部 81は、 目的硬度に到達した力否かの判断を行い、 目的硬度に到達していな い場合にはステップ S56に戻り、サーボ処理を続行する。このようにして、 目的硬度 に到達した場合には、硬度可変の制御処理を終了する。 [0108] また、 UPDユニット 76は、 UPDコイルユニット 8により、内視鏡 3の揷入部 21の内部 に配置された UPDコイル 58に位置を検出して、挿入部 21の挿入形状を算出し、観 察モニタ 6の表示画面に挿入部形状、つまり UPD画像を表示する。 [0107] Further, in step S57, if the hardness is within the variable range of the hardness variable actuator 54A or 54B, in the next step S58, the hardness variable control section 93 or the state management section 81 outputs the force reaching the target hardness. A determination is made as to whether or not the target hardness has been reached, and the flow returns to step S56 to continue the servo processing. In this way, when the target hardness has been reached, the hardness variable control process is terminated. [0108] Further, the UPD unit 76 detects the position of the UPD coil 58 disposed inside the insertion section 21 of the endoscope 3 by the UPD coil unit 8, calculates the insertion shape of the insertion section 21, The shape of the insertion part, that is, the UPD image, is displayed on the display screen of the observation monitor 6.
[0109] 図 23 (A)一 (D)は、それぞれ右側のメニュー画面と左側の UPD画像とが対応する 状態で示しており、ユーザ力 Sメニュー画面により、硬度可変用ァクチユエータ 54A、 5 4Bの硬度を選択設定した場合における複数箇所 (具体例では 2つの箇所)に設けた 硬度可変用ァクチユエータ 54A、 54Bの硬度部分を設定した硬度に対応する色で表 示することにより、その部分の硬度を識別し易くした様子を示す。  [0109] Figs. 23 (A) and 1 (D) show the menu screen on the right side and the UPD image on the left side in a corresponding state, respectively. The user force S menu screen allows the hardness variable actuators 54A and 54B to be displayed. When the hardness is selected and set, the hardness of the hardness variable actuators 54A and 54B provided at a plurality of locations (two locations in the specific example) is displayed in a color corresponding to the set hardness. This shows how identification is facilitated.
[0110] 図 23 (A)はメインメニューの表示状態を示し、この表示状態でユーザが挿入部硬 度可変を選択するを示す。この場合には、 UPD画像は、挿入部硬度可変が選択さ れる直前となるため、硬度可変用ァクチユエータ 54A、 54Bの区間 A、 Bは、この区間 A、 B以外の部分と区別されないで表示される。  FIG. 23 (A) shows the display state of the main menu, and shows that the user selects the variable insertion part hardness in this display state. In this case, the UPD image is displayed immediately before the variable insertion portion hardness is selected, so that the sections A and B of the hardness variable actuators 54A and 54B are displayed without being distinguished from the sections other than the sections A and B. You.
[0111] 図 23 (B)のように挿入部硬度可変が選択されると、 2箇所の硬度可変用ァクチユエ ータ 54A、 54Bの区間 A、 Bに対して設定する硬度の区間範囲を示し、その区間 A、 Bでは硬度が(柔らか!/、)軟の状態力 硬 、硬の状態における!/、ずれの硬度に設定 するかの硬度設定画面となり、現在の硬度の位置がそれぞれ丸で示される。この場 合、軟から硬まで、それぞれ異なる表示色で表示される。  When the variable insertion portion hardness is selected as shown in FIG. 23 (B), the section ranges of the hardness set for the sections A and B of the two hardness variable actuators 54A and 54B are shown. In the sections A and B, the hardness setting screen is displayed as to whether the hardness is set to (soft! /,) Soft state, hard /! / In the hard state, or the deviation hardness. The current hardness position is indicated by a circle. It is. In this case, the colors are displayed in different display colors from soft to hard.
[0112] 従って、対応する UPD画像は、硬度可変用ァクチユエータが設定されている硬度 に対応する表示色で、硬度可変用ァクチユエータの部分がカラー表示される。図 23 ( B)の状態では、硬度区間は軟に近い状態に設定されており、この場合における UP D画像における硬度可変用ァクチユエータ 54Aおよび 54Bの区間 A、 B部分は、黄 色で表示される。  [0112] Therefore, the corresponding UPD image is displayed in a color corresponding to the hardness for which the hardness variable factor is set, and the portion of the hardness variable factor is displayed in color. In the state shown in Fig. 23 (B), the hardness section is set to a state close to soft, and in this case, the sections A and B of the hardness varying actuators 54A and 54B in the UPD image are displayed in yellow. .
[0113] 図 23 (C)は、図 23 (B)の状態において、例えば硬度可変用ァクチユエータ 54Bの 区間 Bの硬度を中央付近の硬度に設定した場合のものであり、この場合における UP D画像における硬度可変用ァクチユエータ 54Bの区間 Bは緑色で表示される。  [0113] Fig. 23 (C) shows a case where the hardness of section B of the hardness varying actuator 54B is set to a hardness near the center in the state of Fig. 23 (B), and the UPD image in this case is shown. The section B of the hardness variable actuator 54B in is displayed in green.
[0114] また、図 23 (D)は、図 23 (B)或いは図 23 (C)の状態において、例えば硬度可変用 ァクチユエータ 54Bの区間 Bの方の硬度を硬 (硬い値)の硬度に設定した場合のもの であり、この場合における UPD画像における硬度可変用ァクチユエータ 54Bの Bは、 青色で表示される。 Further, FIG. 23 (D) shows that, for example, in the state shown in FIG. 23 (B) or FIG. 23 (C), the hardness in section B of the hardness variable actuator 54B is set to the hardness (hard value). In this case, B of the hardness variable actuator 54B in the UPD image is Displayed in blue.
[0115] このように表示することにより、ユーザは、硬度可変用ァクチユエータ 54A、 54Bの 硬度を自由に設定できると共に、設定された硬度可変用ァクチユエータ 54A, 54B の区間 A、 B部分を設定された硬度に対応する表示色で表示するため、ユーザは硬 度可変用ァクチユエータ 54A, 54Bの硬度を簡単に識別することができる。  [0115] By displaying in this manner, the user can freely set the hardness of the hardness variable actuators 54A and 54B, and set the sections A and B of the set hardness variable actuators 54A and 54B. Since the display is performed in the display color corresponding to the hardness, the user can easily identify the hardness of the hardness variable actuators 54A and 54B.
[0116] また、 UPDコイル 58により、挿入部 21の形状が表示されるので、術者は揷入部 21 の挿入作業等を容易に行うことができる。  [0116] Further, since the shape of the insertion section 21 is displayed by the UPD coil 58, the operator can easily perform the insertion work of the insertion section 21 and the like.
[0117] 次に、ユーザによるリモコン操作を実現するヒューマンインターフェースの内視鏡 3 側及び内視鏡システム制御装置 5側での処理内容を、図 24及び図 25を参照して説 明する。なお、図 24、図 25中ではヒューマンインターフェースを HMIと略記する。 図 24に示すようにヒューマンインターフェースの処理が開始すると、状態管理部 81 は、アングル有効スィッチが OFFにされるのを待つ。つまり、トラックボール 69が押圧 されてアングル有効スィッチが OFFにされるのを待つ。  [0117] Next, processing contents of the human interface realizing the remote control operation by the user on the endoscope 3 side and the endoscope system control device 5 side will be described with reference to Figs. In Figures 24 and 25, the human interface is abbreviated as HMI. When the processing of the human interface starts as shown in FIG. 24, the state management unit 81 waits for the angle valid switch to be turned off. That is, it waits until the trackball 69 is pressed and the angle effective switch is turned off.
[0118] そして、アングル有効スィッチが OFFにされると、次のステップ S62に示すように状 態管理部 81は、 GUI (グラフィカルユーザインターフェース)表示メッセージを発行す る。この GUI表示メッセージは、内視鏡 3から AWSユニット 4を経由して無線で内視 鏡システム制御装置 5のシステム制御ユニット 117内の(制御用 CPU)に送られる。 状態管理部 81は、 GUI表示メッセージを発行した後、次のステップ S63において、 内視鏡システム制御装置 5側力 GUIの表示完了メッセージの受信待ちの状態とな る。そして、状態管理部 81は、この GUIの表示完了メッセージの受信できない場合 には、ステップ S64に進みリトライ終了の条件に該当するか否かの判断を行い、リトラ ィ終了の条件に該当しない場合にはステップ S63に戻り、逆にリトライ終了の条件に 該当する場合にはエラー終了する。  Then, when the angle valid switch is turned off, the state management unit 81 issues a GUI (graphical user interface) display message as shown in the next step S62. This GUI display message is wirelessly sent from the endoscope 3 via the AWS unit 4 to the (control CPU) in the system control unit 117 of the endoscope system control device 5. After issuing the GUI display message, the state management unit 81 waits for a display completion message of the endoscope system control device 5 side GUI display in the next step S63. If the GUI completion message cannot be received, the state management unit 81 proceeds to step S64 to determine whether the retry end condition is satisfied. Returns to step S63, and conversely terminates with an error if the retry end condition is met.
[0119] ステップ S63の処理において、状態管理部 81は、表示完了メッセージを受信した 場合には、ステップ S65に移り、アングル有効スィッチが ONされたか否かの判断を 行う。そして、状態管理部 81は、アングル有効スィッチが ONにされた場合には、ステ ップ S66に示すように GUI終了メッセージを発行する。  [0119] In the process of step S63, when receiving the display completion message, the state management unit 81 proceeds to step S65 and determines whether or not the angle valid switch has been turned ON. Then, when the angle valid switch is turned ON, the state management unit 81 issues a GUI end message as shown in step S66.
この GUI終了メッセージは、 GUI表示メッセージの場合と同様に、内視鏡 3力も AW Sユニット 4を経由して無線で内視鏡システム制御装置 5に送信される。そして、この GUI終了メッセージを発行した後、状態管理部 81は、次のステップ S67において、 内視鏡システム制御装置 5側力 GUIの表示終了メッセージの受信待ちの状態とな る。そして、状態管理部 81は、この GUIの表示終了メッセージを受信した場合には、 このヒューマンインターフェース処理を終了する。 This GUI end message is the same as the GUI display message. It is transmitted to the endoscope system control device 5 wirelessly via the S unit 4. After issuing the GUI end message, the state management unit 81 waits for a display end message of the endoscope system control device 5 side power GUI to be received in the next step S67. Then, when receiving the GUI display end message, the state management unit 81 ends the human interface processing.
[0120] 一方、状態管理部 81は、この GUIの表示終了メッセージを受信できない場合には 、ステップ S68に進み、リトライ終了の条件に該当する力否かの判断を行い、リトライ 終了の条件に該当しない場合にはステップ S66に戻り、逆にリトライ終了の条件に該 当する場合にはエラー終了する。 [0120] On the other hand, when the GUI display end message cannot be received, the state management unit 81 proceeds to step S68, determines whether or not the force satisfies the retry end condition, and satisfies the retry end condition. If not, the process returns to step S66. Conversely, if the retry end condition is satisfied, the process ends with an error.
また、ステップ S65において、アングル有効スィッチが ONにされない場合には、ス テツプ S69側のメニュー画面での処理に移り、このステップ S69において、状態管理 部 81は、トラックボール 69の状態の変化が有るか否かの判断をトラックボール変位検 出部 95の出力力もある閾値以上の変化量が有る力否かによって判断する。  If the angle valid switch is not turned on in step S65, the process proceeds to the menu screen of step S69, and in this step S69, the state management unit 81 determines that the state of the trackball 69 has changed. It is determined whether or not the output force of the trackball displacement detection unit 95 has a change amount equal to or greater than a certain threshold.
そして、ステップ S70に示すように状態管理部 81は、トラックボール 69の状態の変 化が有ると判断した場合には、そのトラックボール 69の状態データ (変化データ)を取 得する。  Then, as shown in step S70, when determining that there is a change in the state of the trackball 69, the state management unit 81 acquires the state data (change data) of the trackball 69.
[0121] この場合、ユーザは、図 16 (B)のメインメニューの画面において、トラックボール 69 の操作に対応して動くカーソルにより、所望とする項目の機能を選択指示することが できる。  In this case, the user can select and instruct the function of a desired item on the main menu screen of FIG. 16B using a cursor that moves in response to the operation of the trackball 69.
そして、ステップ S71に示すように状態管理部 81は、ユーザによるトラックボール 69 の操作に対応した状態データを送信する。この状態データは、内視鏡 3から CCD25 の撮像データと同期してパケットデータとして AWSユニット 4を経て内視鏡システム 制御装置 5に送信される。この状態データの送信後、ステップ S65の処理に戻る。 ステップ S69において、状態管理部 81は、トラックボール 69の状態変化が無いと判 断した場合には、ステップ S72に示すようにスィッチ状態 (スィッチ SW1— SW5)の 変化が有る力否かをスィッチ押し検出部 96による検出出力により判断する。  Then, as shown in step S71, the state management unit 81 transmits state data corresponding to the operation of the trackball 69 by the user. This state data is transmitted from the endoscope 3 to the endoscope system controller 5 via the AWS unit 4 as packet data in synchronization with the imaging data of the CCD 25. After transmitting this status data, the process returns to step S65. In step S69, when the state management unit 81 determines that there is no change in the state of the trackball 69, as shown in step S72, the switch pushes the switch state (switch SW1-SW5) to determine whether or not there is a change. The determination is made based on the detection output from the detection unit 96.
[0122] このステップ S72において、スィッチ状態の変化がないと判断した場合にはステップ S65に戻り、逆にスィッチ状態の変化があると判断した場合にはステップ S73に示す ように、状態管理部 81は、スィッチ押し状態データを取得し、さらに次のステップ S74 において取得したスィッチ押しデータを送信してステップ S65の処理に戻る。 In step S72, when it is determined that there is no change in the switch state, the process returns to step S65, and when it is determined that there is a change in the switch state, the process proceeds to step S73. As described above, the state management unit 81 acquires the switch pressing state data, transmits the switch pressing data acquired in the next step S74, and returns to the processing in step S65.
一方、図 25に示すようにヒューマンインターフェースの処理が開始すると、内視鏡 システム制御装置 5のシステム制御ユニット 117の CPUは、最初のステップ S81にお いて、内視鏡 3側からの GUI表示メッセージの受信待ちの状態となる。この CPUは、 図 8或いは図 14の送受信ユニット 101を介して無線による GUI表示メッセージの受 信を待つ。  On the other hand, when the processing of the human interface starts as shown in FIG. 25, the CPU of the system control unit 117 of the endoscope system control device 5 sends a GUI display message from the endoscope 3 in the first step S81. Waits for reception. This CPU waits for reception of the GUI display message wirelessly via the transmission / reception unit 101 of FIG. 8 or FIG.
そして、ステップ S82に示すようにこのシステム制御ユニット 117の CPUは、 GUI表 示メッセージを受信すると、 GUI表示の制御処理を行う。つまり、 CPUは、画像処理 ユニット 116に対して GUI表示を行う制御を行う。  Then, as shown in step S82, when the CPU of the system control unit 117 receives the GUI display message, it performs a GUI display control process. That is, the CPU controls the image processing unit 116 to perform GUI display.
[0123] ステップ S82の GUI表示の処理後、ステップ S83に示すように CPUは、表示完了メ ッセージを発行する。 CPUは、この表示完了メッセージを送受信ユニット 101を介し て送信する。次のステップ S84において、 CPUは、内視鏡 3側から GUI終了メッセ一 ジを受信したか否かの判断を行う。そして、 CPUは、この GUI終了メッセージを受信 した場合には、ステップ S85において GUI表示を終了する処理を行った後、次のス テツプ S86において GUI表示終了メッセージを発行した後、このヒューマンインター フェースの処理を終了する。 [0123] After the GUI display processing in step S82, the CPU issues a display completion message as shown in step S83. The CPU transmits this display completion message via the transmission / reception unit 101. In the next step S84, the CPU determines whether or not a GUI end message has been received from the endoscope 3. Then, when receiving the GUI end message, the CPU performs a process of ending the GUI display in step S85, issues a GUI display end message in the next step S86, and then executes the process of the human interface. The process ends.
ステップ S84において、 CPUは、 GUI終了メッセージを受信していない場合には、 ステップ S87に移り、トラックボール 69の受信データに変化が有るか否かの判断を行 う。このトラックボール 69の受信データの変化の有無の判断は、内視鏡 3側によるトラ ックボール 69の状態の変化の判断結果を受けて行う。そして、受信データに変化有 りの場合には、ステップ S88に示すようにトラックボール 69の状態データの取得を行う 。さらに次のステップ S89において、 CPUは、取得したトラックボール 69の状態デー タ(変化データ)に対応する移動量、カーソルを移動させる。そして、ステップ S84の 処理に戻る。  In step S84, if the GUI end message has not been received, the CPU proceeds to step S87 to determine whether or not the received data of the trackball 69 has changed. The determination as to whether or not the received data of the trackball 69 has changed is made based on the determination result of the change in the state of the trackball 69 by the endoscope 3. If there is a change in the received data, the state data of the trackball 69 is obtained as shown in step S88. Further, in the next step S89, the CPU moves the cursor by a moving amount corresponding to the acquired state data (change data) of the trackball 69. Then, the process returns to step S84.
[0124] また、ステップ S87の処理において、トラックボール 69の受信データに変化がない と判断した場合には、 CPUは、ステップ S90に示すようにスィッチの受信データに変 化ありか否かの判断を、内視鏡 3側での判断結果の送信データの受信した受信デー タにより行う。 If it is determined in step S87 that the received data of the trackball 69 has not changed, the CPU determines whether the received data of the switch has changed as shown in step S90. Is the received data of the transmission data of the judgment result on the endoscope 3 side. Data.
そして、スィッチの受信データに変化ありと判断した場合には、ステップ S91に示す ように CPUは、内視鏡 3側力もの送信情報からスィッチ押し状態データを取得する。 さらにステップ S91に示すように CPUは、スィッチ押しがされたスィッチに割り付けら れて機能の実行する処理を行ってステップ S84の処理に戻る。また、ステップ S90に お!、て、スィッチの受信データに変化が無 、場合にもステップ S84の処理に戻る。 このような動作を行う内視鏡システム 1を形成する本実施形態における内視鏡 3によ れば、この内視鏡 3を操作部 22において内視鏡本体 18と、チューブユニット 19とに 分離可能にして、チューブユニット 19側を使い捨てタイプにすることにより、内視鏡本 体 18の洗浄、滅菌等を容易に行うことができる。  Then, when it is determined that the received data of the switch has changed, the CPU acquires the switch pressed state data from the transmission information on the endoscope 3 side force as shown in step S91. Further, as shown in step S91, the CPU performs processing for executing the function assigned to the switch on which the switch has been pressed, and returns to the processing in step S84. Also, in step S90, if there is no change in the received data of the switch, the process returns to step S84. According to the endoscope 3 of the present embodiment that forms the endoscope system 1 performing such operations, the endoscope 3 is separated into the endoscope main body 18 and the tube unit 19 at the operation unit 22. By making the tube unit 19 side a disposable type, the endoscope body 18 can be easily cleaned and sterilized.
[0125] つまり、内視鏡本体 18における送気送水管路 60a及び吸引管路 61aは、チューブ ユニット 19に対応するユニバーサルケーブルが一体的に形成された従来例の場合 に比べてはるかに短くでき、従って洗浄や滅菌も行 ヽ易 、。  [0125] In other words, the air / water supply line 60a and the suction line 61a in the endoscope main body 18 can be much shorter than in the conventional example in which the universal cable corresponding to the tube unit 19 is integrally formed. Therefore, cleaning and sterilization are also easy.
[0126] また、この場合、チューブユニット 19に対応するユニバーサルケーブルが一体的に 形成された従来例の場合には、操作部 22からユニバーサルケーブルが屈曲されるよ うにして連設されている力 本実施形態では操作部 22のコネクタ部 51において、若 干屈曲した程度の管路コネクタ部 51aとなり、その他の部分は、ほぼ直線状に延びる 送気送水管路 60aと吸引管路 61aとなっているので、管路内の洗浄や滅菌及び乾燥 等の処理を容易かつ短時間に行うことができる。従って、内視鏡検査を行うことができ る状態に短時間に設定できる。  [0126] In this case, in the case of the conventional example in which the universal cable corresponding to the tube unit 19 is integrally formed, the force provided by the operating section 22 so as to bend the universal cable continuously. In the present embodiment, in the connector section 51 of the operation section 22, the pipe section connector section 51a is slightly bent, and the other portions become an air supply / water supply pipe 60a and a suction pipe 61a that extend substantially linearly. Therefore, processes such as washing, sterilization, and drying of the pipeline can be performed easily and in a short time. Therefore, it can be set in a short time to a state where the endoscopy can be performed.
[0127] また、本実施形態では、内視鏡本体 18とチューブユニット 19とを、いわゆる金属電 極同士の接続に拠らない接続手段を有して着脱自在としたので、内視鏡本体 18を 繰り返し洗浄、滅菌しても、接点の導通不良等の発生がなぐ信頼性を向上できる。 また、本実施形態においては、操作部 22にアングル操作手段、送気送水操作手 段、吸引操作手段、硬度可変手段、フリーズ操作手段、レリーズ操作手段等の多数 の操作手段を設けると共に、これらの操作手段を操作部 22内に設けた制御回路 57 により集約的 (集中的)に制御する構成にしている。また、この制御回路 57は、撮像 を行うための照明光を出射する発光手段及び撮像を行う撮像手段も上記操作手段と 共に集約的に制御する構成にしている。 Further, in the present embodiment, the endoscope main body 18 and the tube unit 19 are detachably provided with connecting means that does not rely on the connection between the metal electrodes. Even if it is repeatedly washed and sterilized, it is possible to improve reliability without occurrence of contact failure or the like. Further, in the present embodiment, the operating section 22 is provided with a number of operating means such as an angle operating means, an air / water supplying means, a suction operating means, a hardness varying means, a freeze operating means, a release operating means, and the like. The operation means is controlled intensively by a control circuit 57 provided in the operation unit 22. The control circuit 57 also includes a light emitting unit that emits illumination light for performing imaging and an imaging unit that performs imaging with the operating unit. Both are configured to be controlled collectively.
このように本実施形態においては、内視鏡本体 18に設けた各種機能を操作部 22 内部に設けた制御回路 57により、集約的に制御すると共に、内視鏡本体 18に接続 される AWSユニット 4及び無線で情報を送受信を行う内視鏡システム制御装置 5に 対する操作手段に対する各種機能も集約的に制御する構成にしているので、ユーザ (より具体的には術者)は、操作部 22に設けた各種の操作手段により各種の操作を 自由に行うことができ、操作性を大幅に向上できる。  As described above, in the present embodiment, various functions provided in the endoscope main body 18 are collectively controlled by the control circuit 57 provided in the operation unit 22 and the AWS unit connected to the endoscope main body 18 4 and the endoscope system control device 5 that transmits and receives information wirelessly, the various functions of the operating means are collectively controlled, so that the user (more specifically, the operator) can Various operations can be freely performed by the various operation means provided in, and the operability can be greatly improved.
[0128] 特に本実施形態においては、操作部 22内に集約的な制御を行う制御回路 57を設 けることにより、この制御回路 57から CCD25により撮像して得た画像データと、操作 手段による各種信号をパケットィ匕等して 1対の信号線 71bにより共通に伝送するよう にしているので、電気信号線の本数を削減できる(具体的には、信号を伝送する信 号線 2本と電力を伝送する電源線 2本に削減できる。また、信号線と電源線とのそれ ぞれ一方を共通に利用すれば全体で 3本にできる)。 In particular, in the present embodiment, by providing a control circuit 57 for performing intensive control in the operation unit 22, image data obtained by the CCD 25 from the control circuit 57 and various types of data by the operation means are provided. Since the signals are transmitted in common through a pair of signal lines 71b by packetizing or the like, the number of electric signal lines can be reduced (specifically, two signal lines for signal transmission and power transmission The number of power lines can be reduced to two, and if one of the signal line and the power line is used in common, the number can be reduced to three in total.)
従って、操作部 22における接続部において接続されるチューブユニット 19内に挿 通することが必要となる信号線の本数も削減でき、チューブユニット 19側を使い捨て にすることを可能にしている。  Therefore, the number of signal lines that need to be inserted into the tube unit 19 connected at the connection portion of the operation unit 22 can be reduced, and the tube unit 19 side can be made disposable.
また、チューブユニット 19内に挿通される信号線の本数を削減することにより、チュ ーブユニット 19を細径ィ匕及び屈曲し易くでき、ユーザが操作する場合における操作 性を向上できる。  In addition, by reducing the number of signal lines inserted into the tube unit 19, the tube unit 19 can be easily narrowed and bent, and operability when a user operates can be improved.
なお、本発明の第 1実施形態の内視鏡システムの変形例として、図 26に示すような 構成の内視鏡システム 1Bとしても良い。  As a modification of the endoscope system according to the first embodiment of the present invention, an endoscope system 1B having a configuration as shown in FIG. 26 may be used.
[0129] この内視鏡システム 1Bは、図 4に示す内視鏡システム 1において、 AWSユニット 4 を検査ベッド 2の上端面に設けた凹部に収納した構成にしている。 [0129] The endoscope system 1B has a configuration in which the AWS unit 4 is housed in a recess provided on the upper end surface of the examination bed 2 in the endoscope system 1 shown in FIG.
[0130] この AWSユニット 4には、図 8に示した様な無線による送受信ユニット 77が例えば その上面に設けてある。また、凹部に収納した場合、外部に露出する前面にスコープ コネクタ 40が設けてあり、内視鏡 3のスコープコネクタ 41を着脱自在に接続すること ができるようにしている。 [0130] In the AWS unit 4, a wireless transmission / reception unit 77 as shown in Fig. 8 is provided on, for example, the upper surface thereof. Further, when housed in the recess, a scope connector 40 is provided on the front surface exposed to the outside, so that the scope connector 41 of the endoscope 3 can be detachably connected.
その他の構成は、図 4の場合と同様である。この構成の場合には、内視鏡 3により内 視鏡検査等を行う場合、検査ベッド 2に AWSユニット 4が取り付けられているので、内 視鏡 3から延出されるチューブユニット 19を長く弓 Iき回すことをしな 、でも、 AWSュ- ット 4に接続することができ、術者に対して操作し易い環境を提供できる。その他は図 4の内視鏡システム 1の場合と同様の効果を有する。 Other configurations are the same as those in FIG. In this configuration, the endoscope 3 When performing an endoscopy, etc., since the AWS unit 4 is attached to the inspection bed 2, the tube unit 19 extending from the endoscope 3 does not need to be turned around for a long time. 4 can be connected to the system, providing an easy-to-operate environment for the operator. The other effects are the same as those of the endoscope system 1 shown in FIG.
[0131] 次に本発明の第 2の実施形態について説明する。  Next, a second embodiment of the present invention will be described.
図 27は、本発明の第 2実施形態の内視鏡システムにおける内視鏡の内部構成要 素の一部を透視して示した側面図であり、図 28は、前記第 2実施形態の内視鏡シス テムにおける内視鏡の透明度センサを示した要部斜視図であり、図 29は、前記第 2 実施形態の内視鏡システムにおける内視鏡の電気的構成を示すブロック図である。  FIG. 27 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the second embodiment of the present invention as seen through, and FIG. FIG. 29 is a perspective view of a main part showing a transparency sensor of the endoscope in the endoscope system, and FIG. 29 is a block diagram showing an electrical configuration of the endoscope in the endoscope system of the second embodiment.
[0132] 図 27に示すように本実施形態における内視鏡 3Bは、第 1実施形態における内視 鏡 3の信号線 71bに相当する手段を設けず、操作部 22内に設けたアンテナ部 141 により CCD25による撮像データと、各種データ等を無線で AWSユニット 4と送受信 するようにしている。すなわち、第 1実施形態における内視鏡においては、有線による 各種信号を共通の信号伝送手段としての信号線 71bで担っていたが、第 2実施形態 においては、無線による各種信号を共通の信号伝送手段を形成するアンテナ部 141 を採用している。  As shown in FIG. 27, the endoscope 3B according to the present embodiment does not include a unit corresponding to the signal line 71b of the endoscope 3 according to the first embodiment, and includes an antenna unit 141 provided in the operation unit 22. This allows image data captured by the CCD 25 and various data to be transmitted and received to and from AWS Unit 4 wirelessly. That is, in the endoscope according to the first embodiment, various wired signals are carried by the signal line 71b as a common signal transmission unit, but in the second embodiment, various signals are wirelessly transmitted by the common signal transmission means. An antenna section 141 forming means is employed.
[0133] このため、本実施形態の内視鏡本体 18の操作部 22のコネクタ部 51は、上記第 1実 施形態における信号線 71bに接続された電磁結合接続部 72bを有しない構成となつ ている。チューブユニット 19側も(図 9の場合のチューブユニット 19における)信号線 73bが揷通されな!/、構造になって!/、る。  For this reason, the connector 51 of the operation unit 22 of the endoscope main body 18 of the present embodiment does not have the electromagnetic coupling connection 72b connected to the signal line 71b in the first embodiment. ing. The signal line 73b is not passed through the tube unit 19 side (in the tube unit 19 in FIG. 9)!
従って、チューブユニット 19内には送気送水管路 60bと吸引管路 61bと電源線 73a が揷通されている。このため、コネクタ 41における電気コネクタ 74' は、電源線 73a の接続部のみ有する。  Therefore, in the tube unit 19, the air / water supply line 60b, the suction line 61b, and the power supply line 73a are connected. For this reason, the electrical connector 74 'of the connector 41 has only the connection part of the power supply line 73a.
[0134] 本実施形態によれば、チューブユニット 19内の構造を、第 1実施形態よりも簡単ィ匕 できるので、低コスト化も可能となり、チューブユニット 19をより使い捨てに適したもの にできる。  According to the present embodiment, the structure inside the tube unit 19 can be simpler than in the first embodiment, so that the cost can be reduced and the tube unit 19 can be made more suitable for disposable use.
[0135] また、本実施形態では、先端部 24の外周面に接触センサ 142を設けており、この 接触センサ 142は信号線を介して制御回路 57と接続されている。そして、アングル 操作を行った場合には、その際に接触センサ 142による検出結果により湾曲部 27の 湾曲を規制する制御を行う。この制御を行うことにより、湾曲部 27が体腔内の内壁に 対して必要以上に力を加えないように軽減し、例えば体腔内に挿入部 21を挿入する 際にお 、て、患者に与える苦痛を軽減して円滑な挿入を行えるようにして 、る。 In the present embodiment, a contact sensor 142 is provided on the outer peripheral surface of the distal end portion 24, and the contact sensor 142 is connected to the control circuit 57 via a signal line. And angle When an operation is performed, control is performed to restrict the bending of the bending portion 27 based on the detection result of the contact sensor 142 at that time. By performing this control, the bending portion 27 is reduced so as not to apply excessive force to the inner wall of the body cavity, and for example, when the insertion portion 21 is inserted into the body cavity, the pain given to the patient is reduced. To make the insertion smoother.
また、本実施形態では、挿入部 21の長手方向における途中の適宜箇所に、送気 送水管路 60aと吸引管路 61aにおける内部の流体の透明度を検出する透明度セン サ 143を設けており、この透明度センサ 143の検出信号は、制御回路 57に送られる 。なお、本第 2実施形態においては、第 1実施形態における UPDコイル 58を配置し ない構成にしている。  In the present embodiment, a transparency sensor 143 for detecting the transparency of the fluid inside the air / water supply line 60a and the suction line 61a is provided at an appropriate position in the longitudinal direction of the insertion portion 21. The detection signal of the transparency sensor 143 is sent to the control circuit 57. In the second embodiment, the configuration is such that the UPD coil 58 in the first embodiment is not provided.
[0136] 図 28は透明度センサ 143による洗浄レベル検出の作用の説明図を示す。  FIG. 28 is an explanatory diagram of the operation of detecting the cleaning level by the transparency sensor 143.
[0137] 図 28 (A)に示すように透明チューブで形成された送気送水管路 60a (吸引管路 61 aでも同様)の外周には対向するようにフォトリフレクタ 144と反射板 145とが配置され て透明度センサ 143が形成されている。  [0137] As shown in Fig. 28 (A), a photoreflector 144 and a reflection plate 145 are opposed to the outer periphery of an air / water supply pipe 60a (same for the suction pipe 61a) formed of a transparent tube. The transparency sensor 143 is formed.
そして、図 28 (B)に示すようにフォトリフレクタ 144を構成する発光素子による光は 反射板 145側に出射され、反射板 145で反射された反射光をフォトリフレクタ 144を 構成する受光素子により受光する。  Then, as shown in FIG. 28 (B), the light from the light emitting element constituting the photo reflector 144 is emitted to the reflector 145 side, and the light reflected by the reflector 145 is received by the light receiving element constituting the photo reflector 144 I do.
この場合、実際には、フォトリフレクタ 144と反射板 145との間には透明チューブで 形成された送気送水管路 60a等の透過率検出体 146が配置されているので、送気 送水管路 60aの内側に透明な洗浄液を流して送気送水管路 60aの内壁側を洗浄し た場合、内壁面が清浄な状態になると、フォトリフレクタ 144の受光素子により受光さ れる光量が増大して、洗浄具合を検知できるようにして ヽる。  In this case, since the transmittance detector 146 such as the air / water supply line 60a formed of a transparent tube is actually disposed between the photoreflector 144 and the reflection plate 145, the air / water supply line When the inner wall side of the air / water supply line 60a is cleaned by flowing a transparent cleaning liquid inside the 60a, when the inner wall surface is in a clean state, the amount of light received by the light receiving element of the photo reflector 144 increases. Make it possible to detect the degree of cleaning.
[0138] 従って、この機能により、送気送水管路 60aの内壁面と吸引管路 61aの内壁面との 洗净レベルを定量的に検出できる。 [0138] Therefore, this function can quantitatively detect the washing level between the inner wall surface of the air / water supply conduit 60a and the inner wall surface of the suction conduit 61a.
なお、この場合の説明では、洗浄液で洗浄する場合における作用で説明したが、 内視鏡検査中等において、透明度センサ 143の検出出力を参照することにより、送 気送水管路 60aの内壁面と吸弓 I管路 6 laの内壁面の汚れ具合を知ることもできる。 図 29は、本実施形態における内視鏡 3Bの場合における電気系の構成を示す。  In this case, the operation in the case of cleaning with the cleaning liquid has been described. You can also know the degree of dirt on the inner wall of bow I pipeline 6 la. FIG. 29 shows a configuration of an electric system in the case of the endoscope 3B according to the present embodiment.
[0139] 本第 2実施形態においては第 1実施形態に対して、先端部 24には、さらに接触セ ンサ 142が設けてあり、この接触センサ 142による検出出力により接触検知を行う接 触センサ検出部 147を介して状態管理部 81に接続されている。 [0139] In the second embodiment, as compared with the first embodiment, the contact portion is further provided at the distal end portion 24. A sensor 142 is provided, and is connected to the state management unit 81 via a contact sensor detection unit 147 that performs contact detection based on a detection output from the contact sensor 142.
[0140] また、例えば挿入部 21の軟性部には、さらに透明度センサ 143が設けてあり、この 透明度センサ 143の検出出力により透明度を検出する透明度検出部 148を介して 状態管理部 81に接続されて!ヽる。 [0140] Further, for example, a transparency sensor 143 is further provided on the flexible portion of the insertion section 21, and is connected to the state management section 81 via a transparency detection section 148 that detects the transparency by the detection output of the transparency sensor 143. Te!
また、本実施形態においては、図 13における有線による送受信ユニット 83の代わり に無線方式で送受信を行う送受信ユニット 149が採用されている。第 1実施形態では AWSユニット 4の電気コネクタ 43に入力されていた画像データ及びスィッチ等の操 作データを、内視鏡システム制御装置 5のデータ通信制御部 11では、第 1実施形態 と同様に全て受信する。  Further, in the present embodiment, a transmission / reception unit 149 for performing transmission / reception by a wireless system is employed instead of the transmission / reception unit 83 by wire in FIG. In the first embodiment, image data and operation data such as switches input to the electrical connector 43 of the AWS unit 4 are transmitted to the data communication control unit 11 of the endoscope system controller 5 in the same manner as in the first embodiment. Receive all.
また、 AWSユニット 4のデータ通信制御部 11では、送気送水スィッチや吸引スイツ チの操作等の AWS関連情報のみを受信した後、送気送水制御部 122に送り、ボン プ 65及び電磁弁ユニット 124を制御する。なお、本実施形態では、 UPDコイル 58を 設けてない構成にしている。  Further, the data communication control unit 11 of the AWS unit 4 receives only the AWS-related information such as the operation of the air / water switch and the suction switch, and then sends the information to the air / water control unit 122, and the pump 65 and the solenoid valve unit. Controls 124. In this embodiment, the configuration is such that the UPD coil 58 is not provided.
[0141] 本第 2実施形態では、状態管理部 81は、アングル操作に対するアングル操作制御 を行う場合には、図 21に示したようにステップ S46によるサーボ処理の開始最中にお いて、状態管理部 81は、ステップ S47に示すように接触センサ 142による検出結果 を接触センサ検出部 147を介して取り込むことにより、先端部 24が体腔内の内壁等 と適度の値以上の圧力で接触しているかの検出 (判断)を行う。 In the second embodiment, when performing the angle operation control for the angle operation, the state management unit 81 performs state management at the start of the servo processing in step S46 as shown in FIG. The unit 81 captures the detection result of the contact sensor 142 via the contact sensor detection unit 147 as shown in step S47, and determines whether the distal end portion 24 is in contact with the inner wall or the like in the body cavity at a pressure equal to or more than a moderate value. Is detected (determined).
そして、状態管理部 81は、適度の値以上では接触していないと判断した場合には 、次のステップ S48に進み、アングルの指令値に対応する目的位置に到達している か否かをエンコーダの検出値により判断し、目的位置に到達していない場合にはス テツプ S46に戻り、逆に目的位置に到達している場合にはこのアングル操作に対す る制御処理を終了する。  If the state management unit 81 determines that the contact has not been made at an appropriate value or more, the process proceeds to the next step S48, and determines whether or not the target position corresponding to the angle command value has been reached. The control returns to step S46 if the target position has not been reached, and the control processing for this angle operation ends if the target position has been reached.
一方、ステップ S47において、状態管理部 81は、適度の値以上で接触していると 判断した場合には、次のステップ S48の処理を行わないで、アングル操作に対する 制御処理を終了する。  On the other hand, in step S47, when the state management unit 81 determines that the contact is made with an appropriate value or more, the control process for the angle operation is terminated without performing the process of the next step S48.
[0142] このように、アングル操作が行われた場合、状態管理部 81は、そのアングル操作に よる指令値に対応する目的位置まで、湾曲部 27を湾曲させるように制御処理を行う 力 先端部 24が設定された値以上の圧力で体腔内の内壁等に接触した場合には、 それ以上湾曲させることを抑制するように制御する。 [0142] As described above, when an angle operation is performed, the state management unit 81 performs the angle operation. Performs control processing to bend the bending portion 27 to the target position corresponding to the command value by the force.If the distal end portion 24 comes into contact with the inner wall or the like in the body cavity with a pressure equal to or higher than the set value, it bends further. The control is performed so as to suppress the occurrence.
従って、ユーザが、挿入部 21を体腔内に挿入する場合において、屈曲した管路内 に沿って挿入させようとして、アングル操作を行った場合にも、設定された値以上の 圧力で接触することを回避できるので、患者に与える苦痛をより軽減できると共に、円 滑な挿入が可能になる。  Therefore, when the user inserts the insertion section 21 into the body cavity, even if the user performs an angle operation to insert the insertion section 21 along the bent conduit, the user should make contact with a pressure greater than the set value. Thus, pain given to the patient can be further reduced, and smooth insertion can be achieved.
なお、接触センサ 142の検出出力により、さらに硬度可変用ァクチユエータによる硬 度を変更するように制御しても良 、。  It should be noted that the hardness output may be controlled to be further changed by the hardness variable actuator based on the detection output of the contact sensor 142.
本第 2実施形態におけるその他の作用及び効果は、第 1実施形態 1とほぼ同様で ある。  Other functions and effects of the second embodiment are almost the same as those of the first embodiment.
[0143] 次に本発明の第 3の実施形態について説明する。  Next, a third embodiment of the present invention will be described.
図 30は、本発明の第 3実施形態の内視鏡システムにおける内視鏡の内部構成要 素の一部を透視して示した側面図である。  FIG. 30 is a side view showing a perspective view of some of the internal components of the endoscope in the endoscope system according to the third embodiment of the present invention.
[0144] 図 30に示すように本第 3実施形態における内視鏡 3Cは、上記第 2実施形態と同様 に上述した信号線 7 lbを設けず、代わりにアンテナ部 141を設けてこのアンテナ部 1 41により信号データの送受信を行うようにすると共に、さらに電源線 71aも設けず、操 作部 22にバッテリ 151と、これに接続された充電回路 152及び非接触充電用コイル 153とを設けている。  As shown in FIG. 30, the endoscope 3C according to the third embodiment does not include the above-described signal line 7 lb similarly to the above-described second embodiment, and instead includes the antenna unit 141 and the antenna unit 141. In addition to transmitting and receiving signal data by 141, the power supply line 71a is not provided, and the operation unit 22 is provided with a battery 151, a charging circuit 152 connected thereto, and a non-contact charging coil 153. I have.
[0145] 本第 3実施形態における操作部 22のコネクタ部 51は、送気送水コネクタ及び吸引 コネクタを有する管路コネクタ部 5 laを備える。  [0145] The connector section 51 of the operation section 22 in the third embodiment includes a pipeline connector section 5la having an air / water supply connector and a suction connector.
このため、本第 3実施形態における内視鏡本体 18に着脱自在に接続されるチュー ブユニット 19は、上述した第 1実施形態の如き電源線 73a及び信号線 73bについて はこれを設けることなぐ送気送水管路 60b及び吸引管路 61bが挿通された構造に なっている。  For this reason, the tube unit 19 detachably connected to the endoscope main body 18 in the third embodiment is provided with the power supply line 73a and the signal line 73b as in the first embodiment described above. The structure is such that the water supply line 60b and the suction line 61b are inserted.
[0146] 上記バッテリ 151は、リチウム電池等の充電が可能な 2次電池により構成され、この バッテリ 151は充電回路 152を介して操作部 22の外表面に近い部分に内蔵された 水密構造の非接触充電用コイル 153と接続されている。そして、この非接触充電用コ ィル 153が内蔵された部分の外表面に、図示しない非接触給電用コイルを対向配置 して、この非接触給電用コイルに交流電流を供給することにより、バッテリ 151を充電 できるようにしている。 The battery 151 is formed of a rechargeable secondary battery such as a lithium battery, and the battery 151 is provided with a watertight structure built in a portion near the outer surface of the operation unit 22 via a charging circuit 152. Connected to contact charging coil 153. And this contactless charging core A non-contact power supply coil (not shown) is arranged opposite to the outer surface of the portion in which the coil 153 is built in, and the battery 151 can be charged by supplying an alternating current to the non-contact power supply coil. .
つまり、操作部 22の外表面側に配置される非接触給電用コイルに交流電力を供給 することにより、操作部 22内部の非接触充電用コイル 153に対して、交流電力を電 磁結合により非接触で伝達できる。この交流電力は、さらに充電回路 152によりバッ テリ 151を充電する直流電圧に変換され、ノ ッテリ 151に供給され、バッテリ 151は充 電される。  That is, by supplying AC power to the non-contact power supply coil disposed on the outer surface side of the operation unit 22, the AC power is supplied to the non-contact charging coil 153 inside the operation unit 22 by electromagnetic coupling. Can be transmitted by contact. The AC power is further converted by the charging circuit 152 into a DC voltage for charging the battery 151, supplied to the battery 151, and the battery 151 is charged.
[0147] 本第 3実施形態では、第 1実施形態においても説明したように、照明手段として LE D56を採用しているので、ランプを用いた場合よりもはるかに消費電力を低減ィ匕でき 、かつ撮像素子としても(ゲイン可変の機能を内蔵した)超高感度の CCD25を採用 しているので、照明光量が小さい状態においても十分に明るい画像が得られる。この ため、ノ ッテリ 151を採用した場合においても、従来例に比べてはるかに長い時間、 内視鏡検査を行うことができる。また、ノ ッテリ 151も従来例の場合に比べて小型、軽 量のものを採用することもでき、操作部 22を軽量ィ匕して、良好な操作性を確保できる 本第 3実施形態における内視鏡 3Cの内部の電気系の構成は、図 29において、接 触センサ 142や透明度センサ 143等を取り除いた構成となり、また電源伝送受信部 9 7がノッテリ 151及びこれに接続された充電回路 152及び非接触充電用コイルに置 換した構成である。このため、その図面を省略する。  [0147] In the third embodiment, as described in the first embodiment, since the LED 56 is employed as the lighting means, the power consumption can be reduced far more than in the case of using a lamp. Also, as the image sensor, an ultra-sensitive CCD 25 (with a built-in variable gain function) is used, so that a sufficiently bright image can be obtained even when the amount of illumination light is small. For this reason, even when the knowledge 151 is adopted, the endoscopy can be performed for a much longer time than in the conventional example. Also, the notch 151 can be smaller and lighter than in the case of the conventional example, and the operation section 22 can be lighter in weight to ensure good operability. The configuration of the electrical system inside the endoscope 3C is such that the contact sensor 142 and the transparency sensor 143 are removed in FIG. 29, and the power transmission / reception unit 97 includes a nottery 151 and a charging circuit 152 connected thereto. And a contactless charging coil. Therefore, the drawing is omitted.
[0148] 本第 3実施形態によれば、チューブユニット 19が管路系のみからなり、より使い捨て タイプに適した構成となる。また、リサイクル (再利用)する場合にも、チューブユニット 19内に電線がないので、リサイクルもし易くなる。 また、本第 3実施形態によれば、 管路系を使用しない場合には、チューブユニット 19を内視鏡本体 18から取り外して 使用することもできる。つまり、この場合には、チューブユニット 19を不要にできるので 、チューブユニット 19が操作の邪魔になるようなことを解消でき、操作性を向上できる [0148] According to the third embodiment, the tube unit 19 includes only the conduit system, and has a configuration more suitable for a disposable type. Also, in the case of recycling (reuse), since there is no electric wire in the tube unit 19, it is easy to recycle. Further, according to the third embodiment, when the pipe system is not used, the tube unit 19 can be detached from the endoscope main body 18 and used. In other words, in this case, the tube unit 19 can be dispensed with, so that the tube unit 19 can be prevented from obstructing the operation, and the operability can be improved.
[0149] その他の作用及び効果は、第 1実施形態あるいは第 2実施形態で説明した場合と、 ほぼ同様となる。 [0149] Other functions and effects are the same as those described in the first embodiment or the second embodiment. It is almost the same.
[0150] 次に本発明の第 4の実施形態について説明する。  Next, a fourth embodiment of the present invention will be described.
図 31は、本発明の第 4実施形態の内視鏡システムにおける内視鏡の内部構成要 素の一部を透視して示した側面図であり、図 32は、前記第 4実施形態の内視鏡シス テムにおける内視鏡のバッテリユニットおよび周辺部の構成を示す主要部側面図お よび電気回路部並びに当該バッテリユニットに係る充電部の構成を示す電気回路図 である。  FIG. 31 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the fourth embodiment of the present invention in a see-through manner, and FIG. FIG. 2 is a side view of a main part showing a configuration of a battery unit and a peripheral part of the endoscope in the endoscope system, an electric circuit unit, and an electric circuit diagram showing a configuration of a charging unit according to the battery unit.
[0151] 図 31に示すように本第 4実施形態における内視鏡 3Dは、第 3実施形態における内 視鏡 3Cにおける操作部 22に内蔵したバッテリ 151及び充電回路 152の代わりに電 源回路 161を配置している。また、この電源回路 161に非接触給電用コイル 162を 接続し、操作部 22におけるこの非接触給電用コイル 162を内蔵した部分に対向した 位置に凹部 163を形成して、この凹部 163に非接触型のバッテリュ-ット 164を着脱 自在に装着できる構造にして 、る。  As shown in FIG. 31, the endoscope 3D according to the fourth embodiment is different from the power supply circuit 161 in place of the battery 151 and the charging circuit 152 incorporated in the operation unit 22 in the endoscope 3C according to the third embodiment. Is placed. A non-contact power supply coil 162 is connected to the power supply circuit 161, and a concave portion 163 is formed at a position facing the portion of the operation unit 22 in which the non-contact power supply coil 162 is built. It has a structure in which the battery 164 of the type can be detachably mounted.
[0152] 図 32 (A)は、バッテリユニット 164付近の拡大図を示し、図 32 (B)は図 32 (A)にお ける内部構成を示し、図 32 (C)はバッテリユニット 164を充電装置 165に接続して、 充電装置 165によりバッテリ 166を充電する回路構成を示す。  [0152] Fig. 32 (A) shows an enlarged view of the vicinity of the battery unit 164, Fig. 32 (B) shows the internal configuration in Fig. 32 (A), and Fig. 32 (C) charges the battery unit 164. The circuit configuration for connecting to the device 165 and charging the battery 166 by the charging device 165 is shown.
[0153] 図 32 (A)に示すように、操作部 22に設けた凹部 163に装着される水密構造の外 装ケースを備えたバッテリユニット 164内には、電源回路 161側の非接触給電用コィ ル 162に対向する部分に非接触給電用コイル 167が配置され、この非接触給電用コ ィル 167は、電源回路 168を介してバッテリ 166と接続されている。  As shown in FIG. 32 (A), a battery unit 164 provided with a watertight outer case to be mounted in a concave portion 163 provided in the operation unit 22 includes a non-contact power supply on the power supply circuit 161 side. A non-contact power supply coil 167 is disposed at a portion facing the coil 162, and the non-contact power supply coil 167 is connected to a battery 166 via a power supply circuit 168.
[0154] 図 32 (B)に示すように非接触給電用コイル 167は、電源回路 168を構成するスイツ チング回路 169と充電回路 170とに接続され、また、スイッチング回路 169及び充電 回路 170は、磁気 (磁界)に感応して ONZOFFする磁気感応スィッチとしてのリード スィッチ 171及び 172とそれぞれ接続されている。このバッテリユニット 164は、外装 ケース内に収納され、防水構造になっている。  As shown in FIG. 32 (B), the non-contact power feeding coil 167 is connected to a switching circuit 169 and a charging circuit 170 constituting a power supply circuit 168, and the switching circuit 169 and the charging circuit 170 These switches are connected to lead switches 171 and 172 as magnetically sensitive switches that turn on and off in response to magnetism (magnetic field). The battery unit 164 is housed in an outer case and has a waterproof structure.
[0155] また、他方の非接触給電用コイル 162に接続された電源回路 161は例えば図 12に より示したものと同様の構成である。非接触給電用コイル 162に伝達された交流電力 は、整流用ダイオード Dにより整流され、平滑用コンデンサを経て脈流分が除去され て平滑化されて、 3端子電源用 IC79に入力され、この 3端子電源用 IC79により所定 の電圧値に変換される。 The power supply circuit 161 connected to the other contactless power supply coil 162 has the same configuration as that shown in FIG. 12, for example. The AC power transmitted to the contactless power supply coil 162 is rectified by the rectifying diode D, and the pulsating component is removed through the smoothing capacitor. The voltage is then smoothed, input to the three-terminal power supply IC 79, and converted to a predetermined voltage value by the three-terminal power supply IC 79.
[0156] この電源回路 161により生成された所定の電圧値の直流電力は、制御回路 57の 各部に供給される。 The DC power having a predetermined voltage value generated by the power supply circuit 161 is supplied to each unit of the control circuit 57.
[0157] また、操作部 22内におけるリードスィッチ 171に対向する付近にマグネット 174が 配置され、図 32 (A)のように凹部 163にバッテリユニット 164が装着されると、このマ グネット 174の磁気によりリードスィッチ 171を ONにする。  [0157] Further, when magnet 174 is arranged near opposing reed switch 171 in operation section 22 and battery unit 164 is mounted in recess 163 as shown in FIG. To turn on reed switch 171.
[0158] 一方、他方のリードスィッチ 172側にもマグネット 175が配置されている力 このマグ ネット 175はリードスィッチ 172には磁気が作用しないで、リードスィッチ 172の側方 に磁束が向力 ようにしているので、リードスィッチ 172は OFFとなる(マグネット 175 は、図 32 (C)に示すように充電装置 165側を制御するのに利用される)。  [0158] On the other hand, a force in which a magnet 175 is also disposed on the other reed switch 172 side. This magnet 175 does not act on the reed switch 172, and the magnetic flux is directed to the side of the reed switch 172. Therefore, the reed switch 172 is turned off (the magnet 175 is used to control the charging device 165 as shown in FIG. 32 (C)).
[0159] 従って、バッテリ 166の電力は、スイッチング回路 169に供給され、このスイッチング 回路 169はスイッチング動作し、このスイッチング動作によりスイッチングされたパルス (交流)電流が非接触給電用コイル 167を介して、この非接触給電用コイル 167と非 接触で電磁結合する非接触給電用コイル 162側に伝達される。  [0159] Therefore, the power of the battery 166 is supplied to the switching circuit 169, and the switching circuit 169 performs a switching operation, and the pulse (AC) current switched by the switching operation is transmitted through the contactless power feeding coil 167, The power is transmitted to the non-contact power supply coil 162 which is electromagnetically coupled with the non-contact power supply coil 167 in a non-contact manner.
そして、この非接触給電用コイル 162に接続された電源回路 161により所定の電圧 値の直流電源が生成される。  Then, a DC power supply having a predetermined voltage value is generated by the power supply circuit 161 connected to the contactless power supply coil 162.
また、このバッテリユニット 164のバッテリ 166を充電する充電装置 165は、図 32 (C )のような回路構成である。  The charging device 165 for charging the battery 166 of the battery unit 164 has a circuit configuration as shown in FIG.
AC電源からの交流電力は、 EMIフィルタ 181を経て整流 Z平滑回路 182に入力 され、平滑化された直流電力に変換された後、スイッチング回路 169とほぼ同様に充 電制御を行うためにスイッチング動作等を行う充電制御回路 183に供給される。この 充電制御回路 183の出力端には、非接触給電用コイル 184が接続され、充電制御 回路 183によるスイッチングされた交流電力が非接触給電用コイル 184を介して非 接触給電用コイル 167側に供給される。  The AC power from the AC power supply is input to the rectifier Z smoothing circuit 182 via the EMI filter 181 and converted into smoothed DC power.After that, the switching operation is performed in substantially the same manner as the switching circuit 169 to perform charging control. Is supplied to a charge control circuit 183 for performing the above-mentioned operations. The output terminal of the charge control circuit 183 is connected to a non-contact power supply coil 184, and the AC power switched by the charge control circuit 183 is supplied to the non-contact power supply coil 167 via the non-contact power supply coil 184. Is done.
[0160] また、充電制御回路 183には、リードスィッチ 185が接続されており、この充電装置 165に設けた凹部にノ ッテリユニット 164を装着することにより、ノ ッテリユニット 164 側に設けたマグネット 175による磁気に反応してリードスィッチ 185が ONになる。ま た、充電装置 165側に設けたマグネット 186により、充電回路 170に接続されたリード スィッチ 172を ONにできるようにして!/ヽる。 [0160] A reed switch 185 is connected to the charge control circuit 183, and by mounting the nottery unit 164 in a recess provided in the charging device 165, a magnetic field generated by a magnet 175 provided on the side of the nottery unit 164 is provided. Turns on the reed switch 185. Ma Also, the reed switch 172 connected to the charging circuit 170 can be turned on by the magnet 186 provided on the charging device 165 side!
[0161] 従って、この場合には、充電制御回路 183は動作状態となり、スイッチング動作して 交流電力を非接触給電用コイル 184から非接触給電用コイル 167側に供給する。こ の非接触給電用コイル 167側に供給された交流電力は、充電回路 170により、バッ テリ 166を充電する直流電圧に変換されてバッテリ 166を充電する。  [0161] Therefore, in this case, the charging control circuit 183 is in an operating state, performs a switching operation, and supplies AC power from the contactless power feeding coil 184 to the contactless power feeding coil 167 side. The AC power supplied to the non-contact power supply coil 167 side is converted by the charging circuit 170 into a DC voltage for charging the battery 166, and charges the battery 166.
[0162] また、充電制御回路 183は、非接触給電用コイル 184から非接触給電用コイル 16 7側に供給される電流等をモニタすることにより、その値からバッテリ 166の充電状態 を検出し、所定の充電状態に達した場合には交流電力の供給を停止し、図示しない LED等を点灯させて充電完了を告知する。  [0162] The charge control circuit 183 monitors the current and the like supplied from the non-contact power supply coil 184 to the non-contact power supply coil 167, and detects the state of charge of the battery 166 from the value. When a predetermined charge state is reached, the supply of AC power is stopped, and an LED or the like (not shown) is turned on to notify the completion of charging.
このように本第 4実施形態によれば、内視鏡本体 18に着脱自在のバッテリユニット 1 64を装着することにより、操作部 22の内部に設けた制御回路 57による集約的な制 御動作を行わせることができる。  As described above, according to the fourth embodiment, by attaching the detachable battery unit 164 to the endoscope main body 18, the intensive control operation by the control circuit 57 provided inside the operation unit 22 can be performed. Can be done.
[0163] また、このバッテリユニット 164におけるバッテリ 166の電気工ネルギが消耗した場 合或いは少なくなつた場合には、図 32 (C)に示すようにこのバッテリユニット 164を充 電装置 165に非接触で装着することにより、このバッテリ 166を充電することができる  [0163] When the electric energy of the battery 166 in the battery unit 164 is exhausted or reduced, the battery unit 164 is brought into non-contact with the charging device 165 as shown in FIG. The battery 166 can be charged by mounting
[0164] 本実施形態によれば、チューブユニット 19内には、電気信号線を揷通しないで済 むため、チューブユニット 19をより低コストィ匕でき、より使い捨てタイプに適したチュー ブユニット 19を実現できる。また、チューブユニット 19自体を細径ィ匕でき、操作部 22 を操作する場合の操作性を向上できる。 According to the present embodiment, since the electric signal lines do not need to pass through the tube unit 19, the tube unit 19 can be manufactured at lower cost and the tube unit 19 more suitable for a disposable type can be realized. it can. Further, the tube unit 19 itself can be reduced in diameter, and the operability when operating the operation unit 22 can be improved.
また、本実施形態によれば、送気送水操作と吸引操作を必要としないような場合に は、第 3実施形態でも説明したようにチューブユニット 19側を内視鏡本体 18から外し て使用することもできる。  Further, according to the present embodiment, when the air supply / water supply operation and the suction operation are not required, the tube unit 19 side is detached from the endoscope main body 18 and used as described in the third embodiment. You can also.
なお、上述した各実施形態等を部分的に組み合わせる等して構成される実施形態 等も本発明に属する。また、各実施形態を変更した変形例も本発明に属する。例え ば、チューブユニット 19の接続部を、把持部 68或いは操作部 22より挿入部 21の基 端 (後端)側にずらす等して変形した構成も基本的に本発明に属する。 [0165] 次に、本発明の第 5実施形態について説明する。 Note that embodiments and the like configured by partially combining the above-described embodiments and the like also belong to the present invention. Modifications in which the embodiments are changed also belong to the present invention. For example, a configuration in which the connecting portion of the tube unit 19 is displaced from the grip portion 68 or the operating portion 22 toward the base end (rear end) of the insertion portion 21 or the like also basically belongs to the present invention. Next, a fifth embodiment of the present invention will be described.
[0166] 図 33は、本発明の第 5実施形態の内視鏡システムにおける内視鏡の内部構成要 素の一部を透視して示した側面図であり、図 34は、前記第 5実施形態の内視鏡シス テムにおける内視鏡の挿入部先端側の構成を示した要部拡大断面図であり、図 35 は、前記第 5実施形態の内視鏡システムにおける内視鏡の光学的な押圧量検出手 段の概略構成を示す図である。さら〖こ、図 36は、前記第 5実施形態の内視鏡システ ムにおける内視鏡の電気的構成を示したブロック図であり、図 37は、前記第 5実施形 態の内視鏡システムにおける内視鏡のアングル操作の制御処理を示すフローチヤ一 トである。  FIG. 33 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the fifth embodiment of the present invention in a see-through manner, and FIG. FIG. 35 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of the endoscope in the endoscope system according to the embodiment. FIG. 35 is an optical diagram of the endoscope in the endoscope system according to the fifth embodiment. FIG. 4 is a diagram showing a schematic configuration of a simple pressing amount detecting means. FIG. 36 is a block diagram showing the electrical configuration of the endoscope in the endoscope system according to the fifth embodiment. FIG. 37 is a block diagram showing the endoscope system according to the fifth embodiment. 4 is a flowchart showing a control process of an angle operation of the endoscope in FIG.
[0167] 本第 5実施形態における内視鏡は、基本的な構成は前記第 1実施形態と同様であ るので、ここでは差異のみの説明に留め、図面においても同様な構成要素について は同様の符号を付し、説明は省略する。  [0167] The endoscope according to the fifth embodiment has the same basic configuration as that of the first embodiment. Therefore, only the differences will be described here, and the same constituent elements will be the same in the drawings. And the description is omitted.
[0168] 図 33および図 34に示すように、本第 5実施形態における内視鏡 3は、挿入部 21の 先端部 24に設けた照明窓の内側には、照明手段として例えば発光ダイオード (LED と略記) 56が取り付けられ、この LED56の照明光は、この LED56に一体的に取り付 けられたレンズを介して前方に出射される。 このレンズの前には、透明な光学素子 1 61が配置され、この光学素子 161及びその前に配置された照明レンズ 162を経て前 方に照明光が出射され、患部等の被写体を照明する。  As shown in FIGS. 33 and 34, the endoscope 3 according to the fifth embodiment includes, for example, a light emitting diode (LED) as an illumination means inside an illumination window provided at the distal end portion 24 of the insertion portion 21. The illumination light of the LED 56 is emitted forward through a lens integrally attached to the LED 56. In front of the lens, a transparent optical element 161 is arranged, and illumination light is emitted forward through the optical element 161 and the illumination lens 162 arranged in front of the optical element 161 to illuminate a subject such as an affected part.
[0169] 本第 5実施形態においては、この光学素子 161の周辺部に、光分岐部 163を形成 している。図 35 (A)は、この光学素子 161を LED56側から見た概略図を示す。つま り、光学素子 161の周辺部に、透過光と反射光とに分岐する機能を持つプリズム或 いはビームスプリッタを設けて、光分岐部 163を形成して 、る。  [0169] In the fifth embodiment, a light branching portion 163 is formed around the optical element 161. FIG. 35A is a schematic view of the optical element 161 as viewed from the LED 56 side. That is, a prism or a beam splitter having a function of splitting transmitted light and reflected light is provided around the optical element 161 to form the light splitting unit 163.
[0170] そして、光分岐部 163により反射光の進路となる側面には、導光部材としての光フ ァイノ 164a、 164b, 164c, 164dの一端力 ^酉己置され、光ファイノ 164a、 164b, 164 c、 164dの他端は、例えば先端部 24の先端面の上下、左右の各角部に設けた押圧 変形部材 165a、 165b, 165c, 165dの内部に固定される((図面中では全てを示し ていない)。  [0170] Then, on the side surface on which the reflected light travels by the light branching portion 163, one end force of the optical fins 164a, 164b, 164c, and 164d as the light guide member is placed, and the optical fins 164a, 164b, The other ends of 164c and 164d are fixed inside pressing and deforming members 165a, 165b, 165c and 165d provided at, for example, the upper, lower, left and right corners of the distal end surface of the distal end portion 24. Not shown).
[0171] 押圧変形部材 165i(i=a— d)は、例えば略球形状で、押圧量に応じて変形すると 共に、適度の反射特性を有するウレタン等により形成されている。また、押圧変形部 材 165i(i=a— d)内には、光ファイバ 164iと対となる光ファイバ 166iの一方の端部 が固定されており、この光ファイバ 166iの他方の端部は光検出を行う光検出素子ァ レイ 167を構成する光検出素子エレメントに対向する位置に配置されている(なお、 図面中では、光検出素子アレイ 167のみを示している)。 [0171] The pressing deformation member 165i (i = a-d) has, for example, a substantially spherical shape, and is deformed according to the pressing amount. Both are made of urethane or the like having appropriate reflection characteristics. Also, one end of the optical fiber 166i, which is a pair with the optical fiber 164i, is fixed in the pressing deformation member 165i (i = ad), and the other end of the optical fiber 166i is an optical fiber. It is arranged at a position facing the light detecting element element constituting the light detecting element array 167 for performing detection (only the light detecting element array 167 is shown in the drawing).
[0172] そして、押圧変形部材 165iが押圧されて変形すると、押圧変形部材 165i内に光フ アイバ 164iにより導光された光の反射特性が変化し、光ファイバ 166iに入射される 光量が変化する。従って、押圧変形部材 165iが押圧されて変形すると、光ファイバ 1 66iを介して光検出素子アレイ 167の光検出素子により検出される電気信号の強度( 信号レベル)も変化する。なお、光検出素子アレイ 167は、信号線を介して制御回路 57に接続されている。 When the pressing and deforming member 165i is pressed and deformed, the reflection characteristic of the light guided by the optical fiber 164i in the pressing and deforming member 165i changes, and the amount of light incident on the optical fiber 166i changes. . Therefore, when the pressing and deforming member 165i is pressed and deformed, the intensity (signal level) of the electric signal detected by the light detecting element of the light detecting element array 167 via the optical fiber 166i also changes. The photodetector array 167 is connected to the control circuit 57 via a signal line.
[0173] そして、制御回路 57は、光検出素子アレイ 167の出力により、その出力変化量が 基準値以上変化している力否かにより所定値以上の押圧力が作用したことの判断を 行う。そして、湾曲部 27を湾曲駆動する場合、出力変化量が基準値以上変化してい ると判断した場合には、その湾曲駆動を規制する規制手段を形成している。なお、当 該動作については後に詳述する。  [0173] Then, the control circuit 57 determines, based on the output of the photodetector array 167, whether or not a pressing force equal to or greater than a predetermined value has acted on the basis of whether or not the output has changed by an amount equal to or greater than a reference value. When the bending portion 27 is driven to bend, a restricting means for restricting the bending drive is formed when it is determined that the output change amount has changed by the reference value or more. This operation will be described later in detail.
なお、図 35 (A)においては、光学素子 161の下側に光分岐部 163を細長く形成し て 、る力 図 35 (B)に示すように光学素子 161の 4角に光分岐咅 163a、 163b, 163 c、 163dを形成しても良い。このようにすると、湾曲部 27における上下、左右の各位 置に配置された押圧変形部材 165iへの導光が行い易い。  In FIG. 35 (A), a light branching portion 163 is formed to be elongated below the optical element 161 to form a light branching part 163a at four corners of the optical element 161 as shown in FIG. 35 (B). 163b, 163c and 163d may be formed. In this way, light can be easily guided to the pressing deformation members 165i disposed at the upper, lower, left, and right positions in the curved portion 27.
[0174] また、図 35 (B)の構成の場合には、照明光における周辺側の一部を利用するのみ であるので、被写体側を照明する照明光は殆ど減少させることなぐ押圧量の検知を 行うことができる。  In the case of the configuration shown in FIG. 35 (B), since only a part of the illumination light on the peripheral side is used, the amount of illumination that illuminates the subject side is hardly reduced, and the detection of the amount of pressing is performed. It can be performed.
このようにして、照明光の一部の光を利用して、先端部 24の上下、左右の各角部に 作用する押圧量を光学的に検出する押圧検出手段(図 15では簡略化して接触セン サ 142を用いる)を形成して 、る。  In this manner, the pressure detecting means (part of FIG. 15 is a simplified contact diagram) that optically detects the amount of pressure acting on each of the upper, lower, left and right corners of the distal end portion 24 by using a part of the illumination light. (Using the sensor 142).
[0175] なお、この LED56は、白色光を発生する LEDでも良いし、赤 (R) ,緑 (G) ,青(B) の各波長域の光を発生する R用 LED、 G用 LED及び B用 LEDを用いて構成しても 良い。照明手段を形成する発光素子としては、 LED56に限定されるものでなぐ LD (レーザダイオード)等を用いて形成することもできる。 [0175] The LED 56 may be an LED that generates white light, an R LED, a G LED, and a red (R), green (G), and blue (B) wavelength light. Even if it is configured with LED for B good. The light emitting element forming the illumination means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
[0176] また、この照明窓に隣接して設けた観察窓には、対物レンズ 169が取り付けられ、 その結像位置には、ゲイン可変の機能を内蔵した CCD25が配置され、被写体を撮 像する撮像手段が形成されている。本実施例における CCD25は、ゲイン可変の機 能を CCD素子自体に内蔵し、ゲイン可変の機能により CCD出力信号のゲインを数 1 00倍程度まで容易に可変できるので、 LED56による照明光のもとでも、 SZNの低 下の少ない明るい画像が得られるようにしている。また、 LED56は、ランプの場合に 比べて発光効率が良好であるので、 LED56付近の温度上昇を抑制できる。  [0176] Further, an objective lens 169 is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a built-in variable gain function is arranged at an image forming position to capture an object. An imaging means is formed. In the CCD 25 of the present embodiment, the function of varying the gain is built into the CCD element itself, and the gain of the CCD output signal can be easily varied up to about 100 times by the function of varying the gain. However, we are trying to obtain a bright image with little decrease in SZN. In addition, since the LED 56 has better luminous efficiency than a lamp, the temperature rise near the LED 56 can be suppressed.
[0177] LED56及び CCD25にそれぞれ一端が接続され、挿入部 21内に揷通された信号 線の他端は、例えば操作部 22内部に設けられ、集中制御処理 (集約制御処理)を行 う制御回路 57に接続されている。また、挿入部 21内には、その長手方向に沿って所 定間隔で UPDコイル 58が複数配置され、各 UPDコイル 58に接続された信号線は、 操作部 22内に設けた UPDコイル駆動ユニット 59を介して制御回路 57に接続されて いる。  [0177] One end is connected to each of the LED 56 and the CCD 25, and the other end of the signal line passed through the insertion section 21 is provided, for example, in the operation section 22 and performs centralized control processing (aggregated control processing). Connected to circuit 57. A plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to a UPD coil driving unit provided in the operation section 22. It is connected to the control circuit 57 via 59.
[0178] また、図 36に示すように、状態管理部 81は、照明を制御する照明制御部 84を介し て、この照明制御部 84により制御される LED駆動部 85を制御する。この LED駆動 部 85は、照明手段となる LED56を発光させる LED駆動信号を LED56に印加する この LED56の発光により、照明された患部等の被写体は、観察窓に取り付けられ た対物レンズ 169により、その結像位置に配置された CCD25の撮像面に結像され、 この CCD25により光電変換される。  As shown in FIG. 36, the state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination. The LED drive unit 85 applies an LED drive signal to the LED 56 to emit light to the LED 56 serving as illumination means. By the emission of the LED 56, the illuminated subject such as the affected part is irradiated by the objective lens 169 attached to the observation window. An image is formed on the imaging surface of the CCD 25 arranged at the image forming position, and the image is photoelectrically converted by the CCD 25.
この CCD25は、状態管理部 81により制御される CCD駆動部 86からの CCD駆動 信号の印加により、光電変換して蓄積した信号電荷を撮像信号として出力する。この 撮像信号は、 AZDコンバータ 87によりアナログ信号カゝらデジタル信号に変換された 後、状態管理部 81に入力されると共に、デジタル信号 (画像データ)が画像メモリ 88 に格納される。この画像メモリ 88の画像データは、送受信ユニット 83のデータ送信部 12' に送られる。 [0179] そして、電気コネクタ 15からチューブユニット 19内の信号線 73bを経て AWSュ-ッ ト 4側に伝送される。さらに AWSユニット 4力 無線で内視鏡システム制御装置 5に伝 送される。 The CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by applying a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81. The image signal is converted into a digital signal by an AZD converter 87 after being converted into an analog signal. The digital signal (image data) is stored in the image memory 88 while being input to the state management unit 81. The image data in the image memory 88 is sent to the data transmission unit 12 'of the transmission / reception unit 83. [0179] Then, the signal is transmitted from the electrical connector 15 to the AWS cut 4 via the signal line 73b in the tube unit 19. In addition, it is transmitted to the endoscope system controller 5 by the AWS unit 4 power wirelessly.
上記 ADC87の出力信号は、明るさ検出部 89に送られ、明るさ検出部 89により検 出された画像の明るさの情報は、状態管理部 81に送られる。状態管理部 81は、この 情報により、照明制御部 84を介して LED56による照明光量を適正な明るさとなるよう に調光制御を行う。  The output signal of the ADC 87 is sent to the brightness detection unit 89, and the information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the amount of illumination by the LED 56 becomes appropriate.
なお、以下に説明するように、光学的な押圧量検出の動作を行う場合には、上記調 光制御は、 LED56の照明光量を一定に保ち、 CCD25のゲイン可変による適正な明 るさの画像が得られるようにする。  As described below, when performing the operation of optically detecting the amount of pressure, the dimming control maintains the illumination light amount of the LED 56 constant, and adjusts the gain of the CCD 25 to obtain an image of appropriate brightness. Is obtained.
[0180] 上述したように本実施形態では、先端部 24の外周面に接触センサ 142を設けてお り、この接触センサ 142は、その検出出力により接触検出(押圧検出)を行う接触検 出部 (押圧検出部) 147を介して状態管理部 81に接続されている。  [0180] As described above, in the present embodiment, the contact sensor 142 is provided on the outer peripheral surface of the distal end portion 24, and the contact sensor 142 performs contact detection (press detection) based on the detection output. (Pressing detection unit) is connected to the state management unit 81 via 147.
[0181] そして、状態管理部 81は、アングル操作を行った場合には、その際に接触センサ 1 42による検出結果により湾曲部 27の湾曲を規制する制御を行う。この制御を行うこと により、湾曲部 27が体腔内の内壁に対して必要以上に力をカロえないように軽減し、 例えば体腔内に挿入部 21を挿入する際において、患者に与える苦痛を軽減して円 滑な挿入を行えるようにする。  Then, when an angle operation is performed, the state management unit 81 performs control for restricting the bending of the bending unit 27 based on the detection result of the contact sensor 142 at that time. By performing this control, the bending portion 27 is reduced so that the inner wall of the body cavity does not exert excessive force on the inner wall.For example, when the insertion portion 21 is inserted into the body cavity, the pain given to the patient is reduced. To ensure smooth insertion.
また、状態管理部 81は、アングル制御部 91を介してァクチユエータ駆動部 92を制 御し、このァクチユエータ駆動部 92によりアングル用ァクチユエータ(EPAM) 27aを 駆動する管理をする。なお、このアングル用ァクチユエータ(EPAM) 27aの駆動量 はエンコーダ 27cにより検出され、駆動量が指示値に対応する値に一致するように制 御される。  Further, the state management unit 81 controls an actuator driving unit 92 via an angle control unit 91, and manages driving of the angle actuator (EPAM) 27a by the actuator driving unit 92. The drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c, and is controlled so that the drive amount matches a value corresponding to the indicated value.
[0182] 次に、このような構成による本第 5実施形態の内視鏡の作用を説明する。  Next, the operation of the endoscope according to the fifth embodiment having such a configuration will be described.
本実施形態においては、以下に説明するように光学的な押圧量検出手段の出力を アングル操作に利用して挿入部 21の挿入作業等を円滑に行うことができるようにして いる。  In the present embodiment, as described below, the output of the optical pressing amount detecting means is used for the angle operation so that the insertion operation of the insertion portion 21 and the like can be smoothly performed.
[0183] ここで、図 37を参照してアングル操作制御の処理を説明する。 [0184] アングル制御の処理が開始すると、上記第 1実施形態と同様に、ステップ S41に示 すように状態管理部 81は、アングル制御が有効力否かの判断を行う。 Here, the process of the angle operation control will be described with reference to FIG. When the process of the angle control starts, the state management unit 81 determines whether the angle control is effective as shown in step S41, as in the first embodiment.
[0185] 本実施形態においては、トラックボール 69には、このトラックボール 69が押圧されて いる力否かにより、状態管理部 81は、ステップ S41に示すようにアングル制御有効か 否かの判断を行う。具体的には、状態管理部 81は、トラックボール変位検出部 95の 出力により、トラックボール 69の変位操作と押圧操作とを検出することができる。なお 、トラックボール 69が押圧されて 、るとアングル制御が OFFにされる。  In the present embodiment, the state management section 81 determines whether or not the angle control is valid as shown in step S41, based on whether or not the track ball 69 is pressed by the track ball 69. Do. Specifically, the state management unit 81 can detect a displacement operation and a pressing operation of the trackball 69 based on an output of the trackball displacement detection unit 95. When the trackball 69 is pressed, the angle control is turned off.
状態管理部 81は、トラックボール変位検出部 95の出力により、アングル制御が有 効か否力の判断を行う。  The state management unit 81 determines whether or not the angle control is valid based on the output of the trackball displacement detection unit 95.
[0186] そして、アングル制御が有効でないと判断した場合には、ステップ S45に移り、前の 指令値を保持する。一方、アングル制御が有効と判断した場合には、次のステップ S 42に進み、状態管理部 81は、トラックボール 69の操作によるその状態データの取得 を行う。そして、次のステップ S43において、状態管理部 81は、トラックボール変位検 出部 95の出力により、さらに状態変化が有りか否かの判断を行う。  [0186] If it is determined that the angle control is not valid, the process proceeds to step S45, and the previous command value is held. On the other hand, when it is determined that the angle control is valid, the process proceeds to the next step S42, and the state management unit 81 acquires the state data by operating the trackball 69. Then, in the next step S43, the state management section 81 determines whether or not there is a further state change based on the output of the trackball displacement detection section 95.
この場合、状態管理部 81は、状態変化がないと判断した場合には、ステップ S45に 移り、逆に状態変化が有ると判断した場合には、次のステップ S44において、トラック ボール 69の回転方向、回転量に対応する指令値を算出する。  In this case, if the state management unit 81 determines that there is no state change, the process proceeds to step S45, and if it determines that there is a state change, on the other hand, in the next step S44, the rotation direction of the trackball 69 is changed. , A command value corresponding to the rotation amount is calculated.
ステップ S44或いは S45の処理の後、ステップ S46に示すように状態管理部 81は、 指令値をアングル制御部 91を介してァクチユエータ駆動部 92に送り、アングル用ァ クチユエータ 27aに対してサーボ処理する。  After the process in step S44 or S45, as shown in step S46, the state management unit 81 sends the command value to the actuator driving unit 92 via the angle control unit 91, and performs servo processing on the angle actuator 27a.
[0187] つまり、ァクチユエータ駆動部 92は、指令値に基づいてその指令値に対応するアン ダル状態 (湾曲角)となるようにアングル用ァクチユエータを駆動する。  [0187] That is, the actuator drive unit 92 drives the angle actuator based on the command value so as to be in an under state (curved angle) corresponding to the command value.
[0188] また、このステップ S46によるサーボ処理の開始最中において、状態管理部 81は、 ステップ S47に示すように接触センサ 142による検出結果を接触センサ検出部 147 を介して取り込むことにより、先端部 24が体腔内の内壁等と適度の値以上の圧力で 接触して!/、るかの検出 (判断)を行う。  [0188] During the start of the servo processing in step S46, the state management unit 81 captures the detection result of the contact sensor 142 via the contact sensor detection unit 147 as shown in step S47. 24 comes into contact with the inner wall of the body cavity, etc. with a pressure equal to or more than an appropriate value!
そして、状態管理部 81は、適度の値以上では接触していないと判断した場合には 、次のステップ S48に進み、アングルの指令値に対応する目的位置に到達している か否かをエンコーダ 27cの検出値により判断し、目的位置に到達していない場合に はステップ S46に戻り、逆に目的位置に到達している場合にはこのアングル操作に 対する制御処理を終了する。 Then, when the state management unit 81 determines that the contact is not made at an appropriate value or more, the process proceeds to the next step S48, and the state management unit 81 has reached the target position corresponding to the angle command value. Is determined based on the detection value of the encoder 27c.If the target position has not been reached, the process returns to step S46.If the target position has been reached, on the other hand, the control processing for this angle operation ends. .
一方、ステップ S47において、状態管理部 81は、適度の値以上で接触していると 判断した場合には、次のステップ S48の処理を行わないで、アングル操作に対する 制御処理を終了する。  On the other hand, in step S47, when the state management unit 81 determines that the contact is made with an appropriate value or more, the control process for the angle operation is terminated without performing the process of the next step S48.
[0189] このように、アングル操作が行われた場合、状態管理部 81は、そのアングル操作に よる指令値に対応する目的位置まで、湾曲部 27を湾曲させるように制御処理を行う 力 先端部 24が設定された値以上の圧力で体腔内の内壁等に接触した場合には、 それ以上湾曲させることを抑制するように制御する。  [0189] As described above, when the angle operation is performed, the state management unit 81 performs a control process so as to bend the bending unit 27 to the target position corresponding to the command value by the angle operation. When the contact with the inner wall or the like in the body cavity or the like is made at a pressure equal to or higher than the set value of 24, control is performed so as to suppress further bending.
従って、ユーザが、挿入部 21を体腔内に挿入する場合において、屈曲した管路内 に沿って挿入させようとして、アングル操作を行った場合にも、設定された値以上の 圧力で接触することを回避できるので、患者に与える苦痛をより軽減できると共に、円 滑な挿入が可能になる。  Therefore, when the user inserts the insertion section 21 into the body cavity, even if the user performs an angle operation to insert the insertion section 21 along the bent conduit, the user should make contact with a pressure greater than the set value. Thus, pain given to the patient can be further reduced, and smooth insertion can be achieved.
このような動作を行う内視鏡システム 1を形成する本実施例の内視鏡 3によれば、照 明窓から出射される照明光における周辺側の一部の光を用いて押圧量検出 (接触 検出)を行う手段を形成しているので、照明光を有効利用して挿入作業等を円滑に 行うのに利用できる。  According to the endoscope 3 of the present embodiment that forms the endoscope system 1 performing such an operation, the amount of pressing is detected using a part of the peripheral light in the illumination light emitted from the illumination window ( Since the means for performing (contact detection) is formed, it can be used for performing insertion work and the like smoothly by effectively using the illumination light.
[0190] 次に、本発明の第 6実施形態について説明する。  Next, a sixth embodiment of the present invention will be described.
[0191] 図 38は、本発明の第 6実施形態の内視鏡システムにおける内視鏡の挿入部先端 側の構成を示した要部拡大断面図であり、図 39は、前記第 6実施形態の内視鏡シス テムにおける内視鏡挿入部先端側の構成の第 1変形例を示した要部拡大断面図で あり、図 40は、前記第 6実施形態の内視鏡システムにおける内視鏡挿入部先端側の 構成の第 2変形例を示した要部拡大斜視図であり、図 41は、前記第 6実施形態の内 視鏡システムにおける内視鏡挿入部先端側の構成の第 2変形例を示した要部拡大 断面図であり、図 42は、図 41における D— D' 線断面を示した要部拡大断面図であ る。  FIG. 38 is an enlarged cross-sectional view of a main part showing a configuration of a distal end side of an insertion portion of an endoscope in an endoscope system according to a sixth embodiment of the present invention. FIG. FIG. 40 is an enlarged cross-sectional view of a main part showing a first modification of the configuration of the endoscope insertion section distal end side in the endoscope system of FIG. 40. FIG. 40 is an endoscope of the endoscope system of the sixth embodiment. FIG. 41 is an enlarged perspective view of a main part showing a second modification of the configuration on the distal end side of the insertion section. FIG. 41 is a second modification of the configuration on the distal end side of the endoscope insertion section in the endoscope system according to the sixth embodiment. 42 is an enlarged cross-sectional view of a main part showing an example, and FIG. 42 is an enlarged cross-sectional view of a main part showing a cross section taken along line DD ′ in FIG. 41.
[0192] 前記第 5実施形態における内視鏡 3においては先端部 24の周縁における上下、左 右の各位置に接触センサ 142a— 142dを設けた力 本第 6実施形態の内視鏡 3Bに おいては、さらに湾曲部 27の後端付近と、湾曲部 27よりも後方側の位置にも接触セ ンサ 171a— 171d、 172a— 172dを設けるようにしている。 In the endoscope 3 according to the fifth embodiment, the top, bottom, left, and Force provided with contact sensors 142a-142d at each right position In the endoscope 3B of the sixth embodiment, the endoscope 3B is further provided near the rear end of the curved portion 27 and also at a position behind the curved portion 27. Contact sensors 171a-171d and 172a-172d are provided.
[0193] 前記接触センサ 171a— 171dについて以下に説明する。 [0193] The contact sensors 171a to 171d will be described below.
[0194] 湾曲部 27の後端付近の内部には、 LED173と光検出素子アレイ 174とが配置され 、 LED173の光は、光ファイバ 175iにより押圧変形部材 176i内に導光され、またこ の押圧変形部材 176i内には対となる光ファイバ 177iの一端が配置されている。そし て、この光ファイバ 177iにより検出した光は、それぞれ光検出素子アレイ 174にて受 光される。  [0194] An LED 173 and a light detection element array 174 are arranged inside the vicinity of the rear end of the curved portion 27, and the light of the LED 173 is guided into the pressing and deforming member 176i by the optical fiber 175i. One end of a pair of optical fibers 177i is arranged in the deformation member 176i. The light detected by the optical fiber 177i is received by the photodetector array 174.
[0195] LED173と光検出素子アレイ 174とは信号線により制御回路 57に接続される。接 触センサ 172a— 172dも、同様の構成であるので、その説明を省略する。  [0195] The LED 173 and the photodetector array 174 are connected to the control circuit 57 by signal lines. The contact sensors 172a to 172d also have the same configuration, and a description thereof will be omitted.
[0196] 本実施形態においては、先端部 24の周縁部(具体的には上下左右の位置)が体 腔内壁に接触して押圧変形した状態を検出できると共に、さらに湾曲部 27の後端付 近の外周面における上下左右の各位置での押圧変形した状態と、湾曲部 27よりも後 方側における外周面における上下左右の各位置での押圧変形した状態とを検出で きる。  In the present embodiment, it is possible to detect a state in which the peripheral edge portion (specifically, the upper, lower, left, and right positions) of the distal end portion 24 is in contact with the inner wall of the body cavity and is deformed by pressing. It is possible to detect a state in which the outer peripheral surface is pressed and deformed at each of the upper, lower, left, and right positions, and a state in which the outer peripheral surface behind the curved portion 27 is deformed by pressing at the upper, lower, left, and right positions.
[0197] 本実施形態【こお ヽても、接虫センサ 142a一 142d、 171a一 171d、 172a— 172d の検出出力を制御回路 57に入力して、湾曲部 27を湾曲させた場合において、押圧 量が検出された時には押圧量が検出される側への湾曲を規制することにより、円滑 な挿入等を行える。  In the present embodiment [in this case, too, when the detection outputs of the insect-contact sensors 142a-142d, 171a-171d, and 172a-172d are input to the control circuit 57 and the bending portion 27 is bent, When the amount is detected, the bending toward the side where the pressing amount is detected is regulated, so that smooth insertion or the like can be performed.
[0198] 本第 6実施形態では、第 5実施形態と同様に先端部 24に接触センサ 142a— 142d の他に湾曲部 27の後端付近とさらに後端側にも設けているので、挿入部 21におけ るより広範囲の部位での押圧状態を検出できる。その他は実施例 1と同様の作用効 果を有する。  In the sixth embodiment, similar to the fifth embodiment, in addition to the contact sensors 142a-142d, the distal end portion 24 is provided near the rear end of the curved portion 27 and further on the rear end side. It is possible to detect the pressing state in a wider range of the area 21. The other effects are the same as those of the first embodiment.
[0199] なお、本第 6実施形態においては、照明光を発生する LED56とは異なる押圧量を 検出するための光源を用いている力 LED56による光束の周辺側の光を用いて押 圧量を検出する構造にすることもできる。  [0199] In the sixth embodiment, a force using a light source for detecting a pressing amount different from that of the LED 56 for generating illumination light is used. A structure for detection can also be used.
[0200] 図 39は第 1変形例の内視鏡 3Cの先端側の構造を示す。本変形例においては、例 えば図 38に示す構成において、さらに湾曲部 27の内側の例えば上下、左右の 4箇 所に接触センサ 197a— 197dを配置した構成にしたものである。図 39では上側と下 側の接触センサ 197a、 197cを示している。そして、各接触センサ 197jの出力により 、湾曲部 27の上下、左右の湾曲状態を検出する検出手段に利用している。 FIG. 39 shows the structure of the distal end side of an endoscope 3C according to a first modification. In this modification, an example For example, in the configuration shown in FIG. 38, the contact sensors 197a to 197d are arranged at four positions inside, for example, up, down, left and right inside the curved portion 27. FIG. 39 shows the upper and lower contact sensors 197a and 197c. The output of each contact sensor 197j is used as a detecting means for detecting the vertical and horizontal bending states of the bending section 27.
[0201] つまり、湾曲部 27が例えば下方向に湾曲されると、その内部の接触センサ 197aを 押し潰すような押圧力が作用することになるため、検出される光量変化が発生し、予 め湾曲量 (湾曲角)と光量変化との関係を調べてそのデータを参照することにより、湾 曲量の検出が可能となる。  [0201] In other words, when the bending portion 27 is bent downward, for example, a pressing force acts to crush the contact sensor 197a inside the bending portion 27, so that a change in the amount of light to be detected occurs. By examining the relationship between the amount of bending (bending angle) and the change in light amount and referring to the data, the amount of bending can be detected.
図 40は第 2変形例の内視鏡 3Dの挿入部 21の先端側の形状を示す。本変形例で は、先端部 24の先端周縁部分にテーパ形状部 181を設けている。また、湾曲部 27 の後端部分に、挿入部 21の外径よりも太くした硬質大径部 182を設けている。  FIG. 40 shows the shape of the distal end side of the insertion section 21 of the endoscope 3D of the second modification. In the present modified example, a tapered portion 181 is provided on a peripheral edge portion of the distal end portion 24. Further, a hard large-diameter portion 182 which is thicker than the outer diameter of the insertion portion 21 is provided at a rear end portion of the curved portion 27.
[0202] 図 41は内視鏡 3Dの挿入部 21の先端側の内部構造を示す。本変形例においては 、硬質大径部 182内に照明用の LED184を設け、この LED184に対向するようにそ の後端 (入射端)を配置したライトガイドファイバ束 185により、 LED184の照明光を 伝送し、先端部 24の照明窓に固定された先端面力もさらに照明レンズ 186を経て前 方側に出射する。  [0202] Fig. 41 shows the internal structure of the distal end side of the insertion section 21 of the endoscope 3D. In this modified example, an LED 184 for illumination is provided in the hard large-diameter portion 182, and the illumination light of the LED 184 is provided by a light guide fiber bundle 185 having a rear end (incident end) disposed opposite to the LED 184. The light is transmitted, and the tip surface force fixed to the illumination window of the tip portion 24 is further emitted to the front side via the illumination lens 186.
[0203] また、ライトガイドファイバ束 185の最外周にもリング状にライトガイドファイバ 187a、 187b, 187c, 187dを配置して、 LED184の照明光の一部が入射されるようにして いる。  [0203] Further, light guide fibers 187a, 187b, 187c, and 187d are also arranged in a ring shape on the outermost periphery of the light guide fiber bundle 185 so that a part of the illumination light of the LED 184 is incident.
[0204] そして、各ライトガイドファイバ 187jの後端により入射された LED184の照明光を導 光して、先端面から出射する。各ライトガイドファイバ 187jの先端は、先端部 24のテ ーパ形状部 181に配置した円リング状の押圧変形部材 188の内部に配置されており 、導光した光を出射する。  [0204] Then, the illumination light of the LED 184, which is incident from the rear end of each light guide fiber 187j, is guided and emitted from the front end surface. The distal end of each light guide fiber 187j is disposed inside a circular ring-shaped pressing deformation member 188 disposed in the tapered portion 181 of the distal end portion 24, and emits the guided light.
[0205] 図 42 (A)は、図 41における D-D' 線断面により円リング状の押圧変形部材 188 の内部に配置されたライトガイドファイバ 187j (及び 18 )を示している。なお、図 42 (B)に示すように上下、左右の方向以外の方向にもライトガイドファイバ 187 (及び 18 9)を設けるようにしても良い。  FIG. 42 (A) shows a light guide fiber 187j (and 18) arranged inside a circular ring-shaped pressing deformation member 188 in a cross section taken along line DD ′ in FIG. The light guide fibers 187 (and 189) may be provided in directions other than the vertical and horizontal directions as shown in FIG.
[0206] 押圧変形部材 188の内部には、各ライトガイドファイバ 187jと対となるライトガイドフ アイバ 189jの先端面が配置され、押圧変形部材 188により反射されて入射される光 をその後端に導光する。この後端には、光検出素子アレイ 190が配置されており、導 光された光を受光して光電変換する。押圧変形部材 188の外周は、保護部材 191に より覆われている。 [0206] Inside the pressing deformation member 188, a light guide fiber paired with each light guide fiber 187j is provided. The distal end surface of the eyebar 189j is arranged, and guides the light reflected and incident by the pressing deformation member 188 to the rear end. At the rear end, a light detection element array 190 is arranged, which receives the guided light and performs photoelectric conversion. The outer periphery of the pressing deformation member 188 is covered by a protection member 191.
[0207] また、本変形例では、例えば硬質大径部 182内には、押圧変形部材 188とほぼ同 形状で殆ど同じ特性を持つレファレンス用の押圧変形部材 192が配置されている。 また、この押圧変形部材 192は、変形されない状態に設定されている。  In this modification, for example, a reference pressing deformation member 192 having substantially the same shape and almost the same characteristics as the pressing deformation member 188 is disposed in the hard large-diameter portion 182. Further, the pressing deformation member 192 is set in a state where it is not deformed.
[0208] さらに、この押圧変形部材 192内部にもライトガイドファイバ束 185の最外周のライト ガイド 19¾を用いて押圧変形部材 192内に導光している。そして、このライトガイド 19 ¾と対となるライトガイド 194jにより光検出素子アレイ 190の光検出素子に導光して いる。  [0208] Further, light is guided into the pressing deformation member 192 by using the outermost light guide 19¾ of the light guide fiber bundle 185 also inside the pressing deformation member 192. Then, light is guided to the light detecting elements of the light detecting element array 190 by the light guide 194j paired with the light guide 19 #.
[0209] また、このライトガイド 194jにより導光された光をレファレンス (基準)にして、その光 の場合の光電変換出力値力 の変化量を検出することにより、精度良く押圧 (接触) を検出できるようにしている。  [0209] Further, by using the light guided by the light guide 194j as a reference and detecting the amount of change in the photoelectric conversion output value force in the case of the light, the pressure (contact) can be detected with high accuracy. I can do it.
[0210] なお、リフエレンス側の光ファイバ 193j、 194jを 1対のみにして、簡略化した構成に しても良い。この場合には、押圧変形部材 192も、押圧変形部材 188と同じように円リ ング状に設けなくて、レファレンス用の光ファイバ 193、 194の付近のみに設けたもの にしても良い。  [0210] It should be noted that the optical fiber 193j and 194j on the reference side may be configured as a single pair to have a simplified configuration. In this case, the pressing deformation member 192 may not be provided in a circular ring shape like the pressing deformation member 188, and may be provided only near the reference optical fibers 193 and 194.
[0211] 本変形例によれば、より精度良く押圧量を検出することができる。  According to the present modification, the amount of pressing can be detected with higher accuracy.
[0212] なお、上述した各実施例等を部分的に組み合わせる等して構成される実施例等も 本発明に属する。  [0212] Note that embodiments and the like configured by partially combining the above-described embodiments and the like also belong to the present invention.
[0213] 次に、本発明の第 7実施形態について説明する。 Next, a seventh embodiment of the present invention will be described.
[0214] 図 43は、本発明の第 7実施形態である内視鏡システムの全体構成を示した図であ り、図 44は、前記第 7実施形態の内視鏡システムにおける AWSユニット周辺部の具 体的な外観形状を示した斜視図である。  FIG. 43 is a diagram showing an overall configuration of an endoscope system according to a seventh embodiment of the present invention, and FIG. 44 is a diagram showing a peripheral portion of an AWS unit in the endoscope system according to the seventh embodiment. FIG. 3 is a perspective view showing a specific external shape of the vehicle.
[0215] 図 43に示すように本発明の実施の形態を備えた内視鏡システム 1は、検査ベッド 2 に横たわる図示しない患者の体腔内に挿入して内視鏡検査を行う軟性の内視鏡 (ス コープともいう) 3と、この内視鏡 3が接続され、送気、送水及び吸引機能を備えた送 気 '送水'吸引ユニット(以下、 AWSユニットと略記) 4と、内視鏡 3に内蔵された撮像 素子に対する信号処理と、内視鏡 3に設けられた各種操作手段に対する制御処理と 映像処理等を行う内視鏡システム制御装置 5と、この内視鏡システム制御装置 5によ り生成された映像信号を表示する液晶モニタ等による観察モニタ 6とを有する。なお、 この観察モニタ 6には、タツチパネル 33が設けてある。 [0215] As shown in Fig. 43, an endoscope system 1 including an embodiment of the present invention is a flexible endoscope that is inserted into a body cavity of a patient (not shown) lying on an examination bed 2 to perform an endoscopy. A mirror (also referred to as a scope) 3 is connected to the endoscope 3 to provide air supply, water supply, and suction functions. Air 'water supply' suction unit (hereinafter abbreviated as AWS unit) 4, signal processing for the imaging device built in endoscope 3, control processing and video processing for various operating means provided in endoscope 3 And an observation monitor 6 such as a liquid crystal monitor for displaying a video signal generated by the endoscope system control device 5. The observation monitor 6 is provided with a touch panel 33.
[0216] また、この内視鏡システム 1は、内視鏡システム制御装置 5により生成された例えば デジタル映像信号をフアイリング等する画像記録ユニット 7と、 AWSユニット 4に接続 され、内視鏡 3の挿入部内に形状検出用コイル (以下、 UPDコイルと略記)が内蔵さ れた場合には、その UPDコイルにより電磁界を受信するなどして各 UPDコイルの位 置を検出して内視鏡 3の揷入部の形状を表示するための UPDコイルユニット 8とを有 する。 [0216] Further, the endoscope system 1 is connected to the image recording unit 7 for, for example, filing the digital video signal generated by the endoscope system control device 5, and the AWS unit 4, and the endoscope 3 When a shape detection coil (hereinafter abbreviated as UPD coil) is built in the insertion section, the position of each UPD coil is detected by receiving an electromagnetic field by the UPD coil, and the endoscope is used. And an UPD coil unit 8 for displaying the shape of the inlet.
[0217] 図 43の場合には、 UPDコイルユニット 8は、検査ベッド 2の上面に埋め込むようにし て設けられている。そして、この UPDコイルユニット 8は、ケーブル 8aにより AWSュ- ッ卜 4と接続される。  In the case of FIG. 43, the UPD coil unit 8 is provided so as to be embedded on the upper surface of the inspection bed 2. The UPD coil unit 8 is connected to the AWS rack 4 by a cable 8a.
[0218] また、本実施の形態においては、検査ベッド 2における長手方向の一方の端部及 びその下部の位置には、収納用凹部が形成され、トレー運搬用トロリ 38を収納できる ようにしている。このトレー運搬用トロリ 38の上部には、内視鏡 3が収納されるスコー プトレー 39が載置される。  [0218] Further, in the present embodiment, a storage recess is formed at one end of the inspection bed 2 in the longitudinal direction and at a position below the same, so that the tray transport trolley 38 can be stored. . On the upper part of the tray transport trolley 38, a scope tray 39 in which the endoscope 3 is stored is placed.
そして、滅菌或いは消毒された内視鏡 3を収納したスコープトレー 39をトレー運搬 用トロリ 38により運搬でき、検査ベッド 2の収納用凹部に収納できる。術者は、スコー プトレー 39から内視鏡 3を引き出して内視鏡検査に使用できると共に、内視鏡検査 の終了後には再びこのスコープトレー 39に収納すれば良い。その後、トレー運搬用ト ロリ 38により、使用後の内視鏡 3を収納したスコープトレー 39を運搬することにより、 滅菌或いは消毒もスムーズに行うことができる。  Then, the scope tray 39 containing the sterilized or disinfected endoscope 3 can be transported by the tray transport trolley 38 and can be stored in the storage recess of the inspection bed 2. The operator can pull out the endoscope 3 from the scope tray 39 and use it for endoscopy, and store it in the scope tray 39 again after the endoscope inspection. After that, the scope tray 39 containing the used endoscope 3 is transported by the tray transport trolley 38, so that sterilization or disinfection can be performed smoothly.
[0219] また、図 43に示す AWSユニット 4と内視鏡システム制御装置 5とは、本実施の形態 では無線で情報 (データ)の送受信を行うようにしている。なお、図 43では、内視鏡 3 は、 AWSユニット 4とチューブユニット 19で接続されている力 無線で情報(データ) の送受信 (双方向の伝送)をするようにしても良い。また、内視鏡システム制御装置 5 は、内視鏡 3と無線で情報の送受信を行うようにしても良 、。 In the present embodiment, the AWS unit 4 and the endoscope system control device 5 shown in FIG. 43 transmit and receive information (data) wirelessly. Note that in FIG. 43, the endoscope 3 may transmit and receive information (data) (bidirectional transmission) by force radio connected to the AWS unit 4 and the tube unit 19. In addition, the endoscope system controller 5 May be configured to transmit and receive information to and from the endoscope 3 wirelessly.
[0220] なお、本実施形態においても、内視鏡システム 1におけるユニット、装置間、或いは 内視鏡 3とユニット或いは装置間のデータ送受信を行う送受信ユニット(通信部)にお ける 3つの方式については上記第 1実施形態と同様である。 [0220] Also in the present embodiment, the three methods in the transmission / reception unit (communication unit) for transmitting and receiving data between units and devices in the endoscope system 1, or between the endoscope 3 and the unit or device are described. Is the same as in the first embodiment.
[0221] また、図 43に示すように実施の形態の内視鏡 3は、内視鏡本体 18と、この内視鏡 本体 18に着脱自在に接続され、例えば使!、捨てタイプ (デイスポーザブルタイプ)の チューブユニット 19とを有する。 As shown in FIG. 43, the endoscope 3 according to the embodiment is detachably connected to the endoscope main body 18 and the endoscope main body 18, for example, using a disposable type (disposer). (Bulb type) tube unit 19.
[0222] 内視鏡本体 18は、体腔内に挿入される細長で軟性の挿入部 21と、この挿入部 21 の後端に設けられた操作部 22とを有し、この操作部 22にはチューブユニット 19の基 端が着脱自在に接続される。 [0222] The endoscope main body 18 has an elongated soft insertion portion 21 inserted into a body cavity, and an operation portion 22 provided at a rear end of the insertion portion 21. The base end of the tube unit 19 is detachably connected.
[0223] また、挿入部 21の先端部 24には、撮像素子として、撮像素子内部でゲインを可変 とする電荷結合素子 (CCDと略記) 25を用いた撮像ユニットが配置されて 、る。 [0223] Further, an imaging unit using a charge-coupled device (abbreviated as CCD) 25 having a variable gain inside the imaging device is arranged at the distal end portion 24 of the insertion section 21.
また、先端部 24の後端には低力量で湾曲させることができる湾曲部 27が設けてあ り、操作部 22に設けた操作手段 (指示入力部)としてのトラックボール 69を操作する ことにより、湾曲部 27を湾曲することができる。このトラックボール 69は、アングル操作 Further, a bending portion 27 that can be bent with a small amount of force is provided at the rear end of the distal end portion 24. By operating a trackball 69 as operating means (instruction input unit) provided in the operating unit 22, The bending portion 27 can be bent. This trackball 69 is angled
(湾曲操作)と、他のスコープスィッチの機能の変更設定、例えばアングル感度、送気 量の設定等を行う場合にも使用される。 (Bending operation) and the function of changing the function of other scope switches, for example, setting the angle sensitivity, air supply amount, and the like.
[0224] また、挿入部 21には、硬度可変とする硬度可変用ァクチユエータ 54A、 54Bを設け た硬度可変部が複数箇所に形成され、挿入操作などをより円滑に行えるようにして ヽ る。 [0224] Further, the insertion portion 21 is formed with a plurality of hardness variable portions provided with hardness variable actuators 54A and 54B for varying the hardness so that an insertion operation or the like can be performed more smoothly.
[0225] 本実施の形態では AWSユニット 4と内視鏡システム制御装置 5とは、例えば上述し た図 8に示すように無線の送受信ユニット 77, 101とによりデータの送受信を行う。ま た、観察モニタ 6は、モニタケーブルにより内視鏡システム制御装置 5のモニタ用コネ クタ 35に接続される。  [0225] In the present embodiment, the AWS unit 4 and the endoscope system control device 5 transmit and receive data using the wireless transmission and reception units 77 and 101, for example, as shown in Fig. 8 described above. The observation monitor 6 is connected to the monitor connector 35 of the endoscope system control device 5 by a monitor cable.
[0226] 後述するように内視鏡システム制御装置 5には、 AWSユニット 4側力も CCD25によ り撮像した画像データと共に、 UPDコイルユニット 8を用いて検出した内視鏡 3の挿 入部形状 (UPD画像)の画像データが送信され、従って内視鏡システム制御装置 5 は、これらの画像データに対応する映像信号を観察モニタ 6に送信して、その表示面 に内視鏡画像と共に UPD画像も表示することもできるようにして 、る。 [0226] As will be described later, the endoscope system control device 5 includes the AWS unit 4 side force together with the image data captured by the CCD 25 and the shape of the insertion section of the endoscope 3 detected using the UPD coil unit 8 ( The image data of the (UPD image) is transmitted, and accordingly, the endoscope system controller 5 transmits a video signal corresponding to the In addition, the UPD image can be displayed together with the endoscope image.
[0227] 観察モニタ 6は、このように複数種類の画像をその表示面に同時に表示できるよう に、高解像度 TV (HDTV)のモニタにて構成される。 The observation monitor 6 is configured by a high-resolution TV (HDTV) monitor so that a plurality of types of images can be simultaneously displayed on the display surface.
[0228] また、図 43に示すように、例えば AWSユニット 4には、スコープコネクタ 40が設けて ある。そして、このスコープコネクタ 40には、内視鏡 3のスコープコネクタ 41が着脱自 在に接続される。 As shown in FIG. 43, for example, the AWS unit 4 is provided with a scope connector 40. Then, the scope connector 41 of the endoscope 3 is detachably connected to the scope connector 40.
[0229] この場合、 AWSユニット 4側のスコープコネクタ 40の外観形状を図 44に示す(また 図 6も参照)。その他の AWSユニット 4の構成は、上記第 1実施形態と同様である。  [0229] In this case, the external shape of the scope connector 40 on the AWS unit 4 side is shown in Fig. 44 (see also Fig. 6). Other configurations of the AWS unit 4 are the same as those in the first embodiment.
[0230] 次に、本第 7実施形態における内視鏡について説明する。 Next, an endoscope according to the seventh embodiment will be described.
[0231] 図 45は、前記第 7実施形態の内視鏡システムにおける内視鏡の内部構成要素の 一部を透視して示した側面図であり、図 46は、前記第 7実施形態の内視鏡システム における内視鏡の具体的な外観形状等を示した図である。  [0231] FIG. 45 is a side view showing a part of the internal components of the endoscope in the endoscope system according to the seventh embodiment in a see-through manner, and FIG. FIG. 2 is a diagram showing a specific external shape and the like of an endoscope in the endoscope system.
[0232] また、図 47は、前記第 7実施形態の内視鏡システムにおける内視鏡の透明度セン サの構成及び動作を示す図であり、図 48は、前記第 7実施形態の内視鏡システムに おける内視鏡の電気的構成を示すブロック図である。 FIG. 47 is a diagram showing the configuration and operation of a transparency sensor of an endoscope in the endoscope system according to the seventh embodiment. FIG. 48 is a diagram showing the endoscope according to the seventh embodiment. FIG. 2 is a block diagram showing an electrical configuration of the endoscope in the system.
[0233] なお、図 46 (A)は内視鏡 3の操作部付近を側方から示し、図 46 (B)は図 46 (A)の 右側から見た正面図を示し、図 46 (C)は図 46 (A)の左側力も見た背面図を示し、図[0233] Note that Fig. 46 (A) shows the vicinity of the operation unit of the endoscope 3 from the side, Fig. 46 (B) shows a front view seen from the right side of Fig. 46 (A), and Fig. 46 (C ) Shows the rear view of the left side force in Fig. 46 (A).
46 (D)は図 46 (A)の上から見た平面図を示す。また、図 46 (E)は、最適に近い傾 斜面の角度範囲の例を示す。 46 (D) shows a plan view seen from above in FIG. 46 (A). FIG. 46 (E) shows an example of the angle range of the slope that is close to optimal.
[0234] 図 43において、その概略を説明したように、軟性の内視鏡 3は、細長で軟性の挿入 部 21及びその後端に設けられた操作部 22を有する内視鏡本体 18と、この内視鏡本 体 18における操作部 22の基端 (前端)付近に設けた (チューブユニット接続用)コネ クタ部 51に、その基端の総合コネクタ部 52が着脱自在に接続されるディスポタイプ のチューブユニット 19とを有する In FIG. 43, as briefly described, the flexible endoscope 3 includes an endoscope main body 18 having an elongated and flexible insertion section 21 and an operation section 22 provided at the rear end thereof. A disposable type in which a general connector section 52 at the base end is detachably connected to a connector section 51 (for tube unit connection) provided near the base end (front end) of the operation section 22 of the endoscope body 18. With tube unit 19
このチューブユニット 19の末端には AWSユニット 4に着脱自在に接続される上述 のスコープコネクタ 41が設けてある。  At the end of the tube unit 19, the above-described scope connector 41 which is detachably connected to the AWS unit 4 is provided.
[0235] 挿入部 21は、この挿入部 21の先端に設けた硬質の先端部 24と、その先端部 24の 後端に設けられた湾曲自在の湾曲部 27と、この湾曲部 27の後端力も操作部 22まで の細長の軟性部(蛇管部) 53とからなる。この軟性部 53における途中の複数箇所、 具体的には 2箇所には、電圧を印加することにより伸縮し、硬度も変化させることがで きる導電性高分子人工筋肉(EPAMと略記)等により形成される硬度可変用ァクチュ エータ 54A、 54Bとが設けてある。 [0235] The insertion portion 21 includes a hard tip portion 24 provided at the tip of the insertion portion 21, a bendable bending portion 27 provided at the rear end of the tip portion 24, and a rear end of the bending portion 27. Power up to operation unit 22 And an elongated flexible portion (coil tube portion) 53. A plurality of portions, specifically two portions, in the soft portion 53 are formed of a conductive polymer artificial muscle (abbreviated as EPAM) or the like that can expand and contract by applying a voltage and change the hardness. Hardness variable actuators 54A and 54B are provided.
[0236] 挿入部 21の先端部 24に設けた照明窓の内側には、照明手段として例えば発光ダ ィオード(LEDと略記) 56が取り付けられ、この LED56の照明光はこの LED56に一 体的に取り付けた照明レンズを介して前方に出射され、患部等の被写体を照明する 。なお、照明手段を形成する発光素子としては、 LED56に限定されるものでなぐ L D (レーザダイオード)等を用いて形成することもできる。  [0236] For example, a light emitting diode (abbreviated as LED) 56 is attached as an illumination means inside the illumination window provided at the distal end portion 24 of the insertion portion 21, and the illumination light of the LED 56 is integrated with the LED 56. The light is emitted forward through the attached illumination lens and illuminates a subject such as an affected part. The light emitting element forming the lighting means is not limited to the LED 56, and may be formed using an LD (laser diode) or the like.
[0237] また、この照明窓に隣接して設けた観察窓には、図示しない対物レンズが取り付け られ、その結像位置には、ゲイン可変の機能を内蔵した CCD25が配置され、被写体 を撮像する撮像手段が形成されて 、る。  [0237] Further, an objective lens (not shown) is attached to an observation window provided adjacent to the illumination window, and a CCD 25 having a variable gain function is arranged at an image forming position to capture an image of a subject. An imaging means is formed.
[0238] LED56及び CCD25にそれぞれ一端が接続され、挿入部 21内に揷通された信号 線は、操作部 22内部に設けられ、集中制御処理 (集約制御処理)を行う制御回路 57 に接続されている。  [0238] One end is connected to each of the LED 56 and the CCD 25, and the signal line passed through the insertion section 21 is provided inside the operation section 22 and connected to a control circuit 57 that performs centralized control processing (aggregated control processing). ing.
[0239] また、挿入部 21内には、その長手方向に沿って所定間隔で UPDコイル 58が複数 配置され、各 UPDコイル 58に接続された信号線は、操作部 22内に設けた UPDコィ ル駆動ユニット 59を介して制御回路 57に接続されている。  [0239] Further, a plurality of UPD coils 58 are arranged in the insertion section 21 at predetermined intervals along the longitudinal direction, and a signal line connected to each UPD coil 58 is connected to an UPD coil provided in the operation section 22. It is connected to a control circuit 57 via a controller drive unit 59.
[0240] また、湾曲部 27における外皮内側における周方向の 4箇所には、その長手方向に EPAMを配置して形成したアングル素子(湾曲素子)としてのアングル用ァクチユエ ータ 27aが配置されている。また、このアングル用ァクチユエータ 27a及び硬度可変 用ァクチユエータ 54A、 54Bもそれぞれ信号線を介して制御回路 57に接続されて ヽ る。制御回路 57は、例えばスィッチ基板 57aとトラックボール基板 57bとに電子回路 素子を実装して構成されて!ヽる。  [0240] Angle actuators 27a as angle elements (curving elements) formed by arranging EPAMs in the longitudinal direction are arranged at four locations in the circumferential direction on the inner side of the outer skin of the bending portion 27. . The angle actuator 27a and the hardness variable actuators 54A and 54B are also connected to the control circuit 57 via signal lines. The control circuit 57 is configured by mounting electronic circuit elements on a switch board 57a and a trackball board 57b, for example.
[0241] アングル用ァクチユエータ 27a及び硬度可変用ァクチユエータ 54A、 54Bに用いら れる EPAMは、例えば板形状の両面に電極を取り付け、電圧を印加することにより、 厚み方向に収縮させ、長手方向に伸長させることができる。なお、この EPAMは、例 えば印加する電圧の略 2乗に比例して歪み量を可変することができる。 [0242] アングル用ァクチユエータ 27aとして利用する場合には、ワイヤ形状等に形成して 一方を伸長させ、反対側を収縮させることにより、通常のワイヤによる機能と同様に湾 曲部 27を湾曲させることができる。また、この伸長或いは収縮により、その硬度を可 変させることができ、硬度可変用ァクチユエータ 54A、 54Bではその機能を利用して その部分の硬度を可変可能にして 、る。 [0241] The EPAM used for the angle actuator 27a and the hardness variable actuators 54A and 54B is, for example, to attach electrodes to both sides of a plate shape and apply a voltage to cause contraction in the thickness direction and expansion in the longitudinal direction. be able to. In this EPAM, for example, the amount of distortion can be changed in proportion to the square of the applied voltage. [0242] When used as the angle actuator 27a, the curved portion 27 is bent in the same manner as a normal wire by forming a wire shape or the like and extending one side and contracting the other side. Can be. In addition, the hardness can be varied by the extension or contraction, and the hardness varying actuators 54A and 54B can use the function to vary the hardness of the portion.
[0243] また、挿入部 21内には、送気送水管路 60a及び吸引管路 61aとが挿通されており 、その後端はコネクタ部 51において開口した管路コネクタ 51aとなっている。そして、 この管路コネクタ 51には、チューブユニット 19の基端の総合コネクタ部 52における管 路コネクタ 52aが着脱自在に接続される。  [0243] Further, an air / water supply conduit 60a and a suction conduit 61a are inserted into the insertion portion 21, and a rear end thereof is a conduit connector 51a opened in the connector portion 51. The pipeline connector 51 is detachably connected to the pipeline connector 52a of the overall connector section 52 at the base end of the tube unit 19.
[0244] そして、送気送水管路 60aは、チューブユニット 19内に挿通された送気送水管路 6 Obに接続され、吸引管路 61aは、チューブユニット 19内に挿通された吸引管路 61b に接続されると共に、管路コネクタ 52a内で分岐して外部に開口し、鉗子等の処置具 を挿入可能とする挿入口(鉗子口ともいう) 62と連通する。この鉗子口 62は、鉗子栓 62aにより、使用しない場合には閉塞される。  [0244] The air / water supply line 60a is connected to the air / water supply line 6 Ob inserted into the tube unit 19, and the suction line 61a is connected to the suction line 61b inserted into the tube unit 19. In addition, it is branched into the conduit connector 52a and opened to the outside, and communicates with an insertion port (also called a forceps port) 62 through which a treatment tool such as forceps can be inserted. The forceps port 62 is closed by the forceps stopper 62a when not in use.
[0245] これら送気送水管路 60b及び吸引管路 61bの後端は、スコープコネクタ 41におい て、送気送水口金 63及び吸引口金 64となる。  The rear ends of the air / water supply pipe 60b and the suction pipe 61b serve as the air / water supply cap 63 and the suction cap 64 in the scope connector 41.
[0246] 送気送水口金 63及び吸引口金 64は、 AWSアダプタ 42の送気送水口金 42c及び 吸引口金 42dにそれぞれ接続される。そして、この AWSアダプタ 42の内部において 送気送水口金 42cは、送気管路と送水管路に分岐し、送気管路は AWSユニット 4内 部の送気用ポンプ 65に電磁弁 B1を介挿して接続され、送水管路は、送水タンク 48 に接続される。また、この送水タンク 48も、途中に電磁弁 B2を介して送気用ポンプ 6 5に接続される。  [0246] The air / water supply base 63 and the suction base 64 are connected to the air / water supply base 42c and the suction base 42d of the AWS adapter 42, respectively. Then, inside the AWS adapter 42, the air supply / water supply base 42c branches into an air supply line and a water supply line, and the air supply line is inserted into the air supply pump 65 inside the AWS unit 4 via the electromagnetic valve B1. The water supply line is connected to the water supply tank 48. The water supply tank 48 is also connected to the air supply pump 65 via the solenoid valve B2 on the way.
[0247] 送気用ポンプ 65、電磁弁 B1及び B2は、制御線 (駆動線)により AWS制御ユニット 66と接続され、この AWS制御ユニット 66により開閉が制御され、送気及び送水を行 うことができるようにしている。なお、 AWS制御ユニット 66は、ピンチバルブ 45の開閉 の制御により、吸引の動作制御も行う。  [0247] The air supply pump 65 and the solenoid valves B1 and B2 are connected to the AWS control unit 66 by control lines (drive lines), and the opening and closing are controlled by the AWS control unit 66 to perform air supply and water supply. I can do it. The AWS control unit 66 also controls the suction operation by controlling the opening and closing of the pinch valve 45.
[0248] また、内視鏡本体 18の操作部 22には、術者が把持する把持部 68が設けられてい る。本実施の形態においては、図 46 (A)—図 46 (D)に示すように、この把持部 68は 、操作部 22における (挿入部 21側と反対側となる)後端 (基端)付近の、例えば円筒 体形状の側面部分により形成されている。 [0248] The operating section 22 of the endoscope main body 18 is provided with a grip section 68 that is gripped by an operator. In the present embodiment, as shown in FIGS. It is formed by, for example, a cylindrical side portion near the rear end (base end) of the operation portion 22 (on the side opposite to the insertion portion 21 side).
[0249] この把持部 68には、この把持部 68を含むその周辺部に、レリーズ、フリーズ等のリ モートコントロール操作(リモコン操作と略記)を行う、例えば 3つのスコープスィッチ S Wl, SW2, SW3が把持部 68の長手方向の軸に沿って設けてあり、それぞれ制御 回路 57 (図 45参照)に接続されている。  [0249] The grip 68 is used to perform a remote control operation (abbreviated as a remote control operation) such as a release or a freeze on the periphery including the grip 68, for example, three scope switches SW1, SW2, and SW3. Are provided along the longitudinal axis of the grip portion 68, and are respectively connected to the control circuit 57 (see FIG. 45).
[0250] さらに把持部 68 (或いは操作部 22)の後端 (基端)に設けられた基端面 (通常、図 4 6のように基端側が上に設定されて内視鏡検査に使用されるので上端面ともいう)は 、傾斜面 Saにしてあり、この傾斜面 Saにおけるスコープスィッチ SW1, SW2, SW3 が設けられた位置と反対側に近い付近に、アングル操作 (湾曲操作)や、アングル操 作力も切り換えて他のリモコン操作の設定等を行う防水構造にしたトラックボール 69 が設けてある。なお、この場合の防水構造は、実際にはトラックボール 69を回転自在 に保持したり、その回転量を検出するエンコーダ側が防水膜で覆われ、その外側にト ラックボール 69が回転自在に保持される構造となって!/、る。  [0250] Further, a base end face provided at the rear end (base end) of the grip portion 68 (or the operation portion 22) (usually, the base end side is set up as shown in Fig. 46 and used for endoscopic examination) Therefore, it is also referred to as the upper end surface) is an inclined surface Sa. An angle operation (bending operation), an angle operation, or the like is performed near the side of the inclined surface Sa opposite to the position where the scope switches SW1, SW2, and SW3 are provided. A trackball 69 having a waterproof structure is provided to switch the operation power and set other remote control operations. In this case, the waterproof structure is such that the trackball 69 is actually rotatably held, or the encoder side that detects the amount of rotation is covered with a waterproof film, and the trackball 69 is rotatably held outside. It has a structure!
[0251] また、この操作部 22の後端付近に設けられた把持部 68における長手方向の両端 付近を連結する略 U字形状のフック 70が設けてあり、図 46 (B)に示すように術者が 右手 (或いは左手)で把持するためにフック 70の内側に手の指を入れるため、把持 部 68をしつ力りと把持しない場合においても、内視鏡 3がその重みで落下することを 有効に防止できる。  [0251] Further, a substantially U-shaped hook 70 is provided for connecting the vicinity of both ends in the longitudinal direction of the grip portion 68 provided near the rear end of the operation portion 22, as shown in FIG. 46 (B). Since the surgeon inserts his / her finger inside the hook 70 to hold with the right hand (or left hand), the endoscope 3 falls with its weight even when the holding section 68 is not held firmly. Can be effectively prevented.
[0252] つまり、内視鏡 3がその重みで落下しょうとしても、フック 70がその下側の手に当た つて、内視鏡 3の落下を防止できるようにしている。このように、本実施の形態におい ては、術者が把持部 68をしつかりと把持 (保持)しないでも、内視鏡 3がその重みで下 方に落下してしまうのを有効に防止できる。従って、術者は、把持部 68を把持して各 種の操作を行ったような場合に、その操作により把持した手或いは指が疲労した場 合においては、把持部 68を把持 (保持)することを止めてもフック 70内に手の一部を 入れておれば、内視鏡 3の脱落等を防止でき、操作性を向上できる。  That is, even if the endoscope 3 tries to fall with its weight, the hook 70 hits the lower hand to prevent the endoscope 3 from falling. As described above, in the present embodiment, it is possible to effectively prevent the endoscope 3 from falling downward due to its weight even if the operator does not grasp (hold) the grasping portion 68. . Therefore, the surgeon grasps (holds) the grasping portion 68 when the operator grasps the grasping portion 68 and performs various operations and the hand or finger grasped by the operation becomes fatigued. Even if the operation is stopped, if a part of the hand is put in the hook 70, the endoscope 3 can be prevented from falling off and the operability can be improved.
[0253] また、図 46 (A)—図 46 (C)に示すように、この傾斜面 Saにおけるトラックボール 69 の両側には、送気送水スィッチ SW4,吸引スィッチ SW5が左右対称に配置されてい る。 As shown in FIGS. 46 (A) to 46 (C), on both sides of the trackball 69 on the inclined surface Sa, the air / water supply switch SW4 and the suction switch SW5 are symmetrically arranged. The
[0254] このトラックボール 69及びスコープスィッチ SW4, SW5も制御回路 57に接続され ている。図 46 (A)—図 46 (D)によりさらに説明すると、操作部 22或いは把持部 68は 、図 46 (B)に示す正面図において、操作部 22或いは把持部 68の長手方向に延び る(基準線としての)中心線 Oに関して左右対称な形状であり、この中心線 O上となる 位置の傾斜面 Saには、トラックボール 69が配置されている。そして、このトラックボー ル 69の両側に送気送水スィッチ SW4,吸引スィッチ SW5が左右対称な位置にそれ ぞれ配置されている。  [0254] The trackball 69 and the scope switches SW4 and SW5 are also connected to the control circuit 57. 46 (A) -FIG. 46 (D), the operation unit 22 or the grip unit 68 extends in the longitudinal direction of the operation unit 22 or the grip unit 68 in the front view shown in FIG. 46 (B) ( The trackball 69 is arranged on the inclined surface Sa at a position symmetrical with respect to the center line O (as a reference line) with respect to the center line O. An air / water switch SW4 and a suction switch SW5 are arranged on both sides of the track ball 69 at symmetrical positions.
[0255] また、この正面図の反対側の背面図は、図 46 (C)となり、この背面図においても、 その中心線 Oに関して左右対称な形状であり、この中心線 O上に沿うようにして、把 持部 68の外表面に 3つのスコープスィッチ SW1, SW2, SW3が配置されている。  [0255] A rear view opposite to the front view is shown in FIG. 46 (C). In this rear view, the shape is also symmetrical with respect to the center line O. Thus, three scope switches SW1, SW2, and SW3 are arranged on the outer surface of the holding unit 68.
[0256] また、本実施の形態においては、図 46 (A)に示すように傾斜面 Saは、把持部 68の 中心線 O或いは側面と平行な線と 90° より大きい角度となる鈍角となる角度 φで形 成されている。換言すると、傾斜面 Saは、把持部 68の中心線 Oに垂直な面と Θの角 度をなす斜面状に形成されており、この傾斜面 Saにおける低部側の位置にトラックボ ール 69及び送気送水スィッチ SW4,吸引スィッチ SW5が左右対称に設けてある。 そして、図 46 (B)に示すように把持した手の親指によりトラックボール 69等を容易に 操作できるようにしている。  In the present embodiment, as shown in FIG. 46 (A), the inclined surface Sa forms an obtuse angle that is greater than 90 ° with respect to the center line O of the grip portion 68 or a line parallel to the side surface. It is formed at an angle φ. In other words, the inclined surface Sa is formed in an inclined shape having an angle of と with the surface perpendicular to the center line O of the grip portion 68, and the track ball 69 and the track ball 69 are located at the lower side of the inclined surface Sa. An air / water supply switch SW4 and a suction switch SW5 are provided symmetrically. Then, as shown in FIG. 46 (B), the trackball 69 and the like can be easily operated with the thumb of the hand grasped.
[0257] 上述のように傾斜面 Saは、中心線 Oに対して鈍角をなす角度 φ、つまり 90° 力も 1 80° の角度以内であれば良好に操作できる力 より具体的には、図 46 (E)に示すよ うに角度 Φ 1の 120° から角度 φ 2の 150° の角度以内であると、さらに良好な操作 性を確保できる。  As described above, the inclined surface Sa has an obtuse angle φ with respect to the center line O, that is, a force that can be satisfactorily operated if the 90 ° force is also within an angle of 180 °. More specifically, FIG. As shown in (E), when the angle is within 120 ° of the angle φ1 and 150 ° of the angle φ2, further excellent operability can be secured.
[0258] このように本実施の形態においては、操作部 22に設けたトラックボール 69等の操 作手段 (指示入力部)を把持部 68の長手方向の中心線 Οに関して左右対称となるよ うに配置して、術者が右手或いは左手の 、ずれの手で把持した場合にも良好に操作 できるようにして 、ることが特徴の 1つとなって!/、る。  As described above, in the present embodiment, the operation means (instruction input section) such as the trackball 69 provided on the operation section 22 is symmetrical with respect to the longitudinal centerline の of the grip section 68. One of the features is that it can be placed so that it can be operated well even if the surgeon holds it with the right or left hand or a misaligned hand! /
[0259] また、把持部 68には、その把持部 68の長手方向の略両端を略 U字形状にして連 結したフック 70を設けることにより、術者が把持部 68を仮に不十分に把持した状態に おいても、フック 70の内側に人差し指等が挿入されているので、内視鏡 3がその重量 により下方に落下しょうとした場合には、フック 70が人差し指等により規制されて、内 視鏡 3の落下を有効に防止できる機能を持つ。 [0259] In addition, by providing the hook 70 which is connected to the grip portion 68 by making both ends in the longitudinal direction of the grip portion 68 substantially U-shaped, the operator temporarily grips the grip portion 68 insufficiently. In a state However, since the index finger or the like is inserted inside the hook 70, if the endoscope 3 tries to drop downward due to its weight, the hook 70 is regulated by the index finger or the like, and the endoscope 3 is stopped. Has a function that can effectively prevent the fall of
[0260] また、本実施の形態にお!、ては、把持部 68を操作部 22の後端付近に形成し、この 把持部 68の位置よりも挿入部 21寄りの位置にチューブユニット 19との接続部を設け るようにしているので、把持部 68を把持した場合の重心の位置が、中心軸の位置か ら偏心することを低減ィ匕することができる。  [0260] In the present embodiment, the grip unit 68 is formed near the rear end of the operation unit 22, and the tube unit 19 is positioned closer to the insertion unit 21 than the grip unit 68 is. Since the connecting portion is provided, it is possible to reduce the eccentricity of the position of the center of gravity when the gripping portion 68 is gripped from the position of the center axis.
[0261] つまり、従来例における把持部の位置よりも後方側(上部側)の位置からチューブュ ニット 19を側方に延出すると、その場合の重心の位置がチューブユニットによる重量 で偏心し易くなる力 本実施の形態においては把持部 68よりも挿入部 21側、つまり 下方側の位置力もチューブユニット 19が側方に延出されることになるため、重心位置 の偏心量を小さくでき、操作性を向上できる。  That is, if the tube unit 19 is extended laterally from a position rearward (upper side) from the position of the gripping portion in the conventional example, the position of the center of gravity in that case tends to be eccentric due to the weight of the tube unit. In the present embodiment, the tube unit 19 also extends laterally with respect to the position of the insertion portion 21, that is, the position below the grip portion 68, that is, on the lower side. Can be improved.
[0262] また、本実施の形態の内視鏡 3においても、術者等の操作者 (ユーザ)が把持部 68 を左手或いは右手で把持した場合、その人差し指の側部付近にフック 70の内面側 が軽く触れるような状態となるので、仮に重心位置が偏心して、中心軸が傾く(つまり 操作部 22の長手方向が傾く)ように作用してもフック 70が手に当たり、その傾きを規 制でき、良好な操作性を確保できる。  [0262] Also in the endoscope 3 of the present embodiment, when an operator (user) such as an operator grips the grip 68 with the left or right hand, the inner surface of the hook 70 is positioned near the side of the index finger. Since the side is lightly touched, even if the center of gravity is eccentric and the central axis is inclined (that is, the longitudinal direction of the operation unit 22 is inclined), the hook 70 hits the hand and the inclination is regulated. And good operability can be secured.
[0263] 図 45に示すように、制御回路 57から延出された電源線 71a及び信号線 71bは、コ ネクタ部 51及び総合コネクタ部 52において形成される電磁結合接続部 72a、 72bを 介してチューブユニット 19内を揷通された電源線 73a及び信号線 73bと接続される。 これら電源線 73a及び信号線 73bは、スコープコネクタ 41において電気コネクタ 74を 形成する電源 &信号端子に接続されている。  As shown in FIG. 45, the power supply line 71a and the signal line 71b extending from the control circuit 57 are connected to each other via electromagnetic coupling connecting portions 72a and 72b formed in the connector portion 51 and the general connector portion 52. It is connected to the power supply line 73a and the signal line 73b passed through the tube unit 19. The power supply line 73a and the signal line 73b are connected to power supply & signal terminals forming the electric connector 74 in the scope connector 41.
[0264] そして、ユーザは、このスコープコネクタ 41を AWSユニット 4に接続することにより、 AWSユニット 4のスコープ用電気コネクタ 43を介して電源線 73aは、電源ユニット 75 に接続され、信号線 73bは、(電源ユニット 75を介して) UPDユニット 76と送受信ュ ニット 77と、 AWS制御ユニット 66に接続される。なお、送受信ユニット 77は、無線に よる電波の送受信を行うアンテナ部 77aと接続されている。  [0264] By connecting the scope connector 41 to the AWS unit 4, the user connects the power line 73a to the power unit 75 via the scope electrical connector 43 of the AWS unit 4, and connects the signal line 73b to the power unit 75. , (Via the power supply unit 75), the UPD unit 76, the transmission / reception unit 77, and the AWS control unit 66. The transmission / reception unit 77 is connected to an antenna unit 77a for transmitting and receiving radio waves by radio.
[0265] また、図 45に示すように送気送水管路 60aと吸引管路 61aの途中には、それぞれ 透明度センサ 143が設けてあり、透明管路である透明チューブでそれぞれ形成され た送気送水管路 60aと吸引管路 61aの各管路を光を透過させて管路の内壁の汚れ 具合や、管路内部を通過する流体の透明度を検出できるようにして 、る。 [0265] Further, as shown in Fig. 45, the air / water supply line 60a and the suction line 61a have A transparency sensor 143 is provided, and light is transmitted through each of the air supply / water supply conduit 60a and the suction conduit 61a formed of a transparent tube, which is a transparent conduit, so that the inner wall of the conduit is stained, The transparency of the fluid passing through the pipeline can be detected.
[0266] 透明度センサ 143は信号線により制御回路 57に接続されている。図 47は透明度 センサ 143による洗滌レベル検出の作用の説明図を示す。  [0266] The transparency sensor 143 is connected to the control circuit 57 by a signal line. FIG. 47 is an explanatory diagram of the operation of detecting the cleaning level by the transparency sensor 143.
[0267] 図 47 (A)に示すように透明チューブで形成された送気送水管路 60a (吸引管路 61 aでも同様)の外周には対向するようにフォトリフレクタ 144と反射板 145とが配置され て透明度センサ 143が形成されている。  [0267] As shown in Fig. 47 (A), a photoreflector 144 and a reflection plate 145 are opposed to the outer periphery of an air / water supply pipe 60a (same for the suction pipe 61a) formed of a transparent tube. The transparency sensor 143 is formed.
[0268] そして、図 47 (B)に示すようにフォトリフレクタ 144を構成する発光素子による光は 反射板 145側に出射され、反射板 145で反射された反射光をフォトリフレクタ 144を 構成する受光素子により受光する。  [0268] Then, as shown in FIG. 47 (B), the light from the light emitting element forming the photoreflector 144 is emitted to the reflector 145 side, and the light reflected by the reflector 145 is received by the light receiving device forming the photoreflector 144. Light is received by the element.
[0269] この場合、実際には、光検出器であるフォトリフレクタ 144と反射板 145との間には 透明チューブで形成された送気送水管路 60a等の透過率検出体 146が配置されて いるので、送気送水管路 60aの内側に透明な洗滌液を流して送気送水管路 60aの 内壁側を洗滌した場合、内壁面が清浄な状態になると、フォトリフレクタ 144の受光素 子により受光される光量が増大して、洗滌具合を検知できるようにして ヽる。  [0269] In this case, actually, a transmittance detector 146 such as an air / water supply line 60a formed of a transparent tube is disposed between the photoreflector 144, which is a photodetector, and the reflector 145. Therefore, when the inner wall side of the air / water supply line 60a is cleaned by flowing a transparent cleaning solution inside the air / water supply line 60a, the light receiving element of the photo reflector 144 is used when the inner wall surface becomes clean. The amount of light received is increased so that the degree of cleaning can be detected.
[0270] 従って、この機能により、送気送水管路 60aの内壁面と吸引管路 61aの内壁面との 洗滌レベルを定量的に検出できる。  [0270] Therefore, the washing level of the inner wall surface of the air / water supply conduit 60a and the inner wall surface of the suction conduit 61a can be quantitatively detected by this function.
[0271] なお、この場合の説明では、洗滌液で洗滌する場合における作用で説明したが、 内視鏡検査中等において、透明度センサ 143の検出出力を参照することにより、送 気送水管路 60aの内壁面と吸弓 I管路 6 laの内壁面の汚れ具合を知ることもできる。さ らに、体腔内への生理水等を送り込むときの、生理水等の透明度、逆に言うと濁り具 合を検出することもできる。  [0271] In this case, the operation in the case of washing with the washing liquid has been described. However, during an endoscopic examination or the like, the detection output of the transparency sensor 143 is referred to, and the air / water supply line 60a is connected. It is possible to know the degree of dirt on the inner wall surface and the inner surface of the bow absorption I pipe 6 la. Furthermore, when physiological water or the like is sent into the body cavity, it is possible to detect the transparency of the physiological water or the like, or conversely, the degree of turbidity.
[0272] なお、フォトリフレクタ 144は、送気送水管路 60a等の透明管路部に光を出射するよ うにして、透明管路部を透過して反射板 145から反射した光の光量を検出することが できればいいので、透明チューブの部分は、送気送水管路 60a等全体ではなぐ送 気送水管路 60a等の一部に形成するようにしてもよ!、。  [0272] The photoreflector 144 emits light to a transparent pipe section such as the air / water supply pipe 60a, and reduces the amount of light transmitted through the transparent pipe section and reflected from the reflector 145. As long as it can be detected, the portion of the transparent tube may be formed in a part of the air / water supply line 60a etc. which is not the whole of the air / water supply line 60a etc.!
[0273] 従って、内視鏡の使用中にも管路の汚れ、あるいは管路内を通過する流体の透明 度等を検出することができる。また、内視鏡の洗滌及び消毒時にも、光検出器を洗滌 レベル検出器として、その出力を、洗滌レベルを示す出力として利用することができ る。 [0273] Therefore, even when the endoscope is used, the conduit is stained, or the fluid passing through the conduit is transparent. The degree and the like can be detected. Also, at the time of cleaning and disinfecting the endoscope, the output of the photodetector can be used as a cleaning level detector and used as an output indicating the cleaning level.
[0274] 図 48は、本第 7実施形態における内視鏡本体 18の操作部 22内に配置された制御 回路 57等と、挿入部 21の各部に配置された主要構成要素における電気系の構成を 示す。  FIG. 48 is a diagram showing a configuration of a control circuit 57 and the like arranged in the operation unit 22 of the endoscope main body 18 according to the seventh embodiment and a configuration of an electric system in main components arranged in each unit of the insertion unit 21. Is shown.
[0275] 図 48における左側の下部に示す揷入部 21の先端部 24には、 CCD25と LED56と が配置され、図面中その上に記載された湾曲部 27にはアングル用ァクチユエ一タ( 本実施の形態では具体的には EPAM) 27a及びエンコーダ 27cが配置され、図面中 その上に記載された軟性部 53には硬度可変用ァクチユエータ (本実施の形態では 具体的には EPAM) 54及びエンコーダ 54cがそれぞれ配置されている。また、この 軟性部 53には、透明度センサ 143と UPDコイル 58が配置されている。  [0275] A CCD 25 and an LED 56 are arranged at the distal end 24 of the insertion section 21 shown in the lower part on the left side in Fig. 48, and the angle actuator (shown in the present embodiment) is provided on the bending section 27 described above the drawing. In the embodiment, specifically, an EPAM) 27a and an encoder 27c are arranged, and in the flexible portion 53 described above in the drawing, a hardness variable actuator (specifically, EPAM in the present embodiment) 54 and an encoder 54c Are arranged respectively. Further, a transparency sensor 143 and an UPD coil 58 are arranged in the flexible portion 53.
[0276] また、挿入部 21の軟性部 53の上に記載された操作部 22の表面には、トラックボー ル 69、送気送水 SW(SW4)、吸引 SW(SW5)、スコープ SW(SW1— SW3)が配置 される。なお、後述するようにトラックボール 69の操作により、アングル操作と他の機 能の選択設定する機能が割り付けられて 、る。  [0276] Also, on the surface of the operation section 22 described above the flexible section 53 of the insertion section 21, the track ball 69, the air / water supply SW (SW4), the suction SW (SW5), and the scope SW (SW1 SW3) is located. As will be described later, an angle operation and a function of selecting and setting other functions are assigned by operating the trackball 69.
[0277] 図 48の左側に示したように、これらは信号線を介してその右側に示した操作部 22 の内部の殆どを含む制御回路 57 (但し、 UPDコイル駆動ユニット 59等を除く)と接続 され、制御回路 57は、それらの機能の駆動制御や信号処理等を行う。  As shown on the left side of FIG. 48, these are connected to a control circuit 57 (excluding the UPD coil drive unit 59 and the like) including most of the inside of the operation unit 22 shown on the right side via signal lines. Connected, the control circuit 57 performs drive control and signal processing of those functions.
[0278] 制御回路 57は、制御状態を管理する CPU等により構成される状態管理部 81を有 し、この状態管理部 81は、各部の状態を保持 (記憶)する状態保持メモリ 82と接続さ れると共に、(本実施の形態では) AWSユニット 4と有線で通信を行う有線方式の送 受信ユニット 83と接続されて 、る。  [0278] The control circuit 57 has a state management unit 81 composed of a CPU or the like that manages the control state. The state management unit 81 is connected to a state holding memory 82 that holds (stores) the state of each unit. At the same time, (in the present embodiment) a wired transmission / reception unit 83 that communicates with the AWS unit 4 in a wired manner is connected.
[0279] また、この状態管理部 81は、照明を制御する照明制御部 84を介して、この照明制 御部 84により制御される LED駆動部 85を制御する。この LED駆動部 85は、照明手 段となる LED56を発光させる LED駆動信号を LED56に印加する。  [0279] Further, the state management unit 81 controls an LED drive unit 85 controlled by the illumination control unit 84 via an illumination control unit 84 that controls illumination. The LED driving section 85 applies an LED driving signal for causing the LED 56 serving as a lighting means to emit light to the LED 56.
[0280] この LED56の発光により、照明された患部等の被写体は、観察窓に取り付けられ た図示しない対物レンズにより、その結像位置に配置された CCD25の撮像面に結 像され、この CCD25により光電変換される。 [0280] Due to the emission of the LED 56, the illuminated subject such as the affected part is formed on the imaging surface of the CCD 25 arranged at the image forming position by an objective lens (not shown) attached to the observation window. It is imaged and photoelectrically converted by the CCD 25.
[0281] この CCD25は、状態管理部 81により制御される CCD駆動部 86からの CCD駆動 信号の印加により、光電変換して蓄積した信号電荷を撮像信号として出力する。この 撮像信号は、 AZDコンバータ (ADCと略記) 87によりアナログ信号力もデジタル信 号に変換された後、状態管理部 81に入力されると共に、デジタル信号 (画像データ) が画像メモリ 88に格納される。この画像メモリ 88の画像データは、送受信ユニット 83 のデータ送信部 1^ に送られる。 The CCD 25 outputs a signal charge that has been photoelectrically converted and accumulated as an imaging signal by application of a CCD drive signal from a CCD drive unit 86 controlled by the state management unit 81. The image signal is converted into a digital signal by an AZD converter (abbreviated as ADC) 87 and then input to the state management unit 81, and the digital signal (image data) is stored in the image memory 88. . The image data of the image memory 88 is sent to the data transmission section 1 ^ of the transmission / reception unit 83.
[0282] さらに、上述した透明度センサ 143の出力値も、図示しないが、状態管理部 81へ入 力されて、管路の汚れ、あるいは管路内を通過する流体の透明度のデータとして送 受信ユニット 83から AWSユニット 4へ供給される。 [0282] Although not shown, the output value of the above-described transparency sensor 143 is also input to the state management unit 81, and is transmitted and received by the transmission / reception unit as data on the dirt of the pipeline or the transparency of the fluid passing through the pipeline. Supplied from 83 to AWS Unit 4.
[0283] そして、電気コネクタ 15からチューブユニット 19内の信号線 73bを経て AWSュ-ッ ト 4側に伝送される。さらに AWSユニット 4力 無線で内視鏡システム制御装置 5に伝 送される。 [0283] Then, the signal is transmitted from the electrical connector 15 to the AWS cut 4 via the signal line 73b in the tube unit 19. In addition, it is transmitted to the endoscope system controller 5 by the AWS unit 4 power wirelessly.
[0284] 図 8に示すように内視鏡システム制御装置 5に伝送された画像データは、無線で送 受信ユニット 101により受信され、画像処理ユニット 116により画像処理されて映像信 号が生成され、内視鏡システム 1の全体を制御するシステム制御ユニット 117を経て モニタ用コネクタ 35から観察モニタ 6に映像信号が出力され、観察モニタ 6の表示面 には内視鏡画像が表示される。なお、図 6において、電源ユニット 100は、送受信ュ ニット 101 ,画像処理ュ-ット 116及びシステム制御ュ-ット 117に動作用の電力を 供給する。  [0284] As shown in Fig. 8, the image data transmitted to the endoscope system control device 5 is wirelessly received by the transmission / reception unit 101, image-processed by the image processing unit 116, and a video signal is generated. A video signal is output from the monitor connector 35 to the observation monitor 6 via the system control unit 117 that controls the entire endoscope system 1, and an endoscope image is displayed on the display surface of the observation monitor 6. In FIG. 6, the power supply unit 100 supplies operation power to the transmission / reception unit 101, the image processing unit 116, and the system control unit 117.
[0285] 図 48に示すように上記 ADC87の出力信号は、明るさ検出部 89に送られ、明るさ 検出部 89により検出された画像の明るさの情報は、状態管理部 81に送られる。状態 管理部 81は、この情報により、照明制御部 84を介して LED56による照明光量を適 正な明るさとなるように調光制御を行う。  As shown in FIG. 48, the output signal of the ADC 87 is sent to the brightness detection unit 89, and information on the brightness of the image detected by the brightness detection unit 89 is sent to the state management unit 81. Based on this information, the state management unit 81 performs dimming control via the illumination control unit 84 so that the illumination light amount of the LED 56 becomes appropriate brightness.
[0286] また、状態管理部 81は、アングル制御部 91を介してァクチユエータ駆動部 92を制 御し、このァクチユエータ駆動部 92によりアングル用ァクチユエータ(EPAM) 27aを 駆動する制御をする。なお、このアングル用ァクチユエータ(EPAM) 27aの駆動量 はエンコーダ 27cにより検出され、駆動量が指示値に対応する値に一致するように制 御される。 [0286] The state management unit 81 controls the actuator driving unit 92 via the angle control unit 91, and controls the angle actuator (EPAM) 27a to be driven by the actuator driving unit 92. The drive amount of the angle actuator (EPAM) 27a is detected by the encoder 27c and controlled so that the drive amount matches the value corresponding to the indicated value. Is controlled.
[0287] また、状態管理部 81は、硬度可変制御部 93を介してァクチユエータ駆動部 94を制 御し、このァクチユエータ駆動部 94により硬度可変用ァクチユエータ(EPAM) 54 (こ こでは 54A、 54Bを代表して 1つで示している)を駆動するのを制御する。なお、この 硬度可変用ァクチユエータ (EPAM) 54の駆動量はエンコーダ 54cにより検出され、 その駆動量が指示値に対応する値となるように制御される。  [0287] The state management unit 81 controls the actuator driving unit 94 via the hardness variable control unit 93, and the actuator driving unit 94 controls the hardness variable actuator (EPAM) 54 (here, 54A and 54B are connected). (Represented by one). The driving amount of the hardness variable actuator (EPAM) 54 is detected by the encoder 54c, and is controlled so that the driving amount becomes a value corresponding to the indicated value.
[0288] また、軟性部 53内に設けた透明度センサ 143による検出信号は、透明度検出部 1 48により透明度に対応する信号データに変換された後、状態管理部 81に入力され 、状態管理部 81は状態保持メモリ 82等に予め格納された透明度の基準値と比較し て、その基準値に達した場合には、その情報を送受信ユニット 83から AWSユニット 4 を経て内視鏡システム制御装置 5側に送信し、観察モニタ 6に基準値に達したことを 表示する。  [0288] The detection signal from the transparency sensor 143 provided in the flexible portion 53 is converted into signal data corresponding to the transparency by the transparency detection unit 148, and is then input to the state management unit 81, where it is input to the state management unit 81. Is compared with the reference value of transparency stored in advance in the state holding memory 82, etc., and when the reference value is reached, the information is transmitted from the transmission / reception unit 83 to the endoscope system controller 5 via the AWS unit 4 And the observation monitor 6 indicates that the reference value has been reached.
[0289] また、この状態管理部 81には、操作部 22に設けられたトラックボール 69等力もの 操作量に対応するトラックボール変位検出部 95を介して入力される。  [0289] Further, the state management unit 81 is input via a trackball displacement detection unit 95 corresponding to the operation amount of the trackball 69 or the like provided in the operation unit 22.
[0290] また、送気送水 SW、吸引 SW、スコープ SWによる ON等のスィッチ押しの操作は、 スィッチ押し検出部 96により検出され、その検出された情報は状態管理部 81に入力 される。  [0290] Further, a switch pressing operation such as an ON operation by the air / water supply SW, the suction SW, and the scope SW is detected by the switch pressing detection unit 96, and the detected information is input to the state management unit 81.
[0291] また、制御回路 57は、電源伝送受信部 97及び電源発生部 98とを有する。電源伝 送受信部 97は、具体的には操作部 22においては伝送ユニット 51b、チューブュニッ ト 19の末端では電気コネクタ 74である。そして、電源発生部 98により伝送された電 力は電源発生部 98において直流電源に変換される。電源発生部 98により生成され た電源は、制御回路 57内部の各部に、その動作に必要な電力を供給する。  The control circuit 57 has a power transmission / reception unit 97 and a power generation unit 98. The power transmission / reception unit 97 is, specifically, a transmission unit 51 b in the operation unit 22 and an electric connector 74 at the end of the tube unit 19. Then, the power transmitted by the power generation unit 98 is converted into a DC power in the power generation unit 98. The power generated by the power generation unit 98 supplies power required for its operation to each unit in the control circuit 57.
[0292] 本実施の形態を備えた内視鏡システム 1では、電源を投入した場合には観察モ- タ 6には、例えば図 16 (A)のように各種の画像が表示される。この場合、患者情報等 を表示する情報表示領域 Rj、内視鏡画像の表示領域 Ri、 UPD画像の表示領域 Ru 、フリーズ画像の表示領域 Rf、及びアングル形状の表示領域 Raの他にメニュー表示 領域 Rmとが設けてあり、このメニュー表示領域 Rmには、メニューが表示される。  In the endoscope system 1 having the present embodiment, when the power is turned on, various images are displayed on the observation motor 6 as shown in FIG. 16 (A), for example. In this case, in addition to the information display area Rj for displaying patient information, the endoscope image display area Ri, the UPD image display area Ru, the freeze image display area Rf, and the angle display area Ra, a menu display area is provided. Rm is provided, and a menu is displayed in the menu display area Rm.
[0293] メニュー表示領域 Rmに表示されるメニューとしては、図 16 (B)に示すメインメ-ュ 一が表示される。このメインメニューには、スコープスィッチ、アングル感度、挿入部硬 度、ズーム、画像強調、送気量と共に、前のメニュー画面に戻る操作指示を行う戻る と、メニューの終了の操作指示をする終了の項目が表示される。 [0293] The menu displayed in the menu display area Rm includes the main menu shown in Fig. 16 (B). One is displayed. This main menu includes the scope switch, angle sensitivity, insertion section hardness, zoom, image enhancement, and air volume, as well as an instruction to return to the previous menu screen. The item is displayed.
[0294] そして、ユーザは、トラックボール 69等の操作により選択枠をスコープスィッチの項 目に選択すると、そのスコープスィッチの項目の枠が太く表示されて選択されている ことを示す表示となり、さらにトラックボール 69を押して決定操作を行うことにより、図 1 6 (C)に示すように 5つのスコープスィッチ SW1から SW5に割り当てる機能を選択設 定することができる。  [0294] Then, when the user selects the selection frame in the item of the scope switch by operating the trackball 69 or the like, the frame of the item of the scope switch is displayed in bold to indicate that the item is selected. By pressing the trackball 69 and performing the determination operation, the functions assigned to the five scope switches SW1 to SW5 can be selectively set as shown in FIG. 16 (C).
[0295] 次に、本第 7実施形態の内視鏡システムの作用を説明する。  [0295] Next, the operation of the endoscope system according to the seventh embodiment will be described.
[0296] 内視鏡検査を実施する前準備として、まず内視鏡本体 18の操作部 22のコネクタ部 51にディスポタイプのチューブユニット 19の総合コネクタ部 52を接続する。この場合 、電磁結合接続部 72a、 72b間は、互いに直流電流的には絶縁かつ防水状態で接 続されることになる。この接続により、内視鏡 3の準備は完了する。  [0296] As a preparation for performing the endoscope inspection, first, the general connector section 52 of the disposable tube unit 19 is connected to the connector section 51 of the operation section 22 of the endoscope body 18. In this case, the electromagnetic coupling connection sections 72a and 72b are connected to each other in a DC current-insulated and waterproof state. With this connection, the preparation of the endoscope 3 is completed.
[0297] 次に、チューブユニット 19のスコープコネクタ 41を AWSユニット 4のコネクタ 40に接 続する。この部分はワンタッチ接続により、各種管路、電源線、信号線、光接続が一 度の接続動作で完了する。従来の内視鏡システムのように各種管路の接続や、電気 コネクタの接続などをその都度それぞれ行う必要はない。  Next, the scope connector 41 of the tube unit 19 is connected to the connector 40 of the AWS unit 4. In this part, various conduits, power lines, signal lines, and optical connections are completed in one connection operation by one-touch connection. Unlike the conventional endoscope system, it is not necessary to connect various conduits and electrical connectors each time.
[0298] また、ユーザは、 AWSユニット 4に UPDコイルユニット 8を接続し、内視鏡システム 制御装置 5を、観察モニタ 6に接続する。また、必要に応じて、内視鏡システム制御 装置 5を画像記録ユニット 7等と接続することにより、内視鏡システム 1のセットアップ が完了する。  [0298] The user connects the UPD coil unit 8 to the AWS unit 4, and connects the endoscope system controller 5 to the observation monitor 6. In addition, if necessary, the endoscope system control device 5 is connected to the image recording unit 7 or the like, thereby completing the setup of the endoscope system 1.
[0299] 次に AWSユニット 4及び内視鏡システム制御装置 5の電源をオンする。すると、 A Next, the power of the AWS unit 4 and the endoscope system control device 5 is turned on. Then A
WSユニット 4内の各部が動作状態になり電源ユニット 75は、電源線を介して内視鏡The power supply unit 75 is connected to the endoscope via the power supply line.
3側に電力を供給できる状態になる。 Power can be supplied to the 3 side.
[0300] この場合、 AWSユニット 4は最初は、電力の供給を OFFにして、タイマを起動して、 一定時間内に内視鏡 3側力 正しく信号が返されることを確認した後、電力を継続的 に供給するようにする。 [0300] In this case, the AWS unit 4 first turns off the power supply, starts a timer, and confirms that the endoscope 3 side force is correctly returned within a certain period of time. Ensure continuous supply.
[0301] そして、術者は、この内視鏡 3の挿入部 21を患者の体腔内に挿入することにより、 挿入部 21の先端部 24に設けられた CCD25により体腔内の患部等の被写体が撮像 される。撮像された画像データは、 AWSユニット 4を経て内視鏡システム制御装置 5 に無線で送信され、画像処理されて映像信号が生成され、被写体の画像が観察モ ユタ 6の表示面に内視鏡画像として表示される。従って、術者は、その内視鏡画像を 観察することにより、患部等に対する診断を行い、必要に応じて処置具を使用して治 療のための処置を行うこともできる。 [0301] Then, the operator inserts the insertion portion 21 of the endoscope 3 into the body cavity of the patient, A subject such as an affected part in a body cavity is imaged by a CCD 25 provided at a distal end portion 24 of the insertion portion 21. The captured image data is wirelessly transmitted to the endoscope system control device 5 via the AWS unit 4 and subjected to image processing to generate a video signal, and the image of the subject is displayed on the display surface of the observation module 6 by the endoscope. Displayed as an image. Therefore, the surgeon can diagnose the diseased part or the like by observing the endoscopic image, and can perform a treatment for treatment using a treatment tool as necessary.
[0302] 本実施の形態の内視鏡 3においては、図 46に示すように把持部 68の長手方向の 中心線 Oに対して、アングル用指示入力部の機能を持つトラックボール 69、フリーズ 指示操作等の各種の操作指示を行うスコープスィッチ SW1— SW3、送気送水スイツ チ(SW4)及び吸引スィッチ(SW5)とが左右対称に設けてある。  In the endoscope 3 of the present embodiment, as shown in FIG. 46, a trackball 69 having a function of an angle instruction input unit, a freeze instruction Scope switches SW1 to SW3 for instructing various operation such as operation, air supply / water supply switch (SW4) and suction switch (SW5) are provided symmetrically.
[0303] 従って、例えば図 46 (B)に示すように術者が右手で、操作部 22の把持部 68を把 持した場合、親指により操作し易い位置にトラックボール 69が位置し、その両側に左 右対称に配置された送気送水スィッチ(SW4)及び吸引スィッチ(SW5)も簡単に操 作することができる。  [0303] Therefore, for example, as shown in Fig. 46 (B), when the operator holds the grip 68 of the operation section 22 with the right hand, the trackball 69 is located at a position where it is easy to operate with the thumb, and both sides thereof The air / water supply switch (SW4) and suction switch (SW5), which are arranged symmetrically to the left and right, can also be operated easily.
[0304] また、把持した場合における人差し指、中指でそれぞれ把持する位置の付近にそ れぞれスコープスィッチ SW1と SW2とが位置し、さらに小指で把持する位置の付近 にスコープスィッチ SW3が位置する。従って、術者は、把持した右手により良好な操 作性のもとで各種の操作を行うことができる。  [0304] In addition, scope switches SW1 and SW2 are respectively located near the positions where the index finger and the middle finger are gripped when gripped, and scope switch SW3 is located near the position where the little finger is gripped. Therefore, the operator can perform various operations with good operability by the grasped right hand.
[0305] また、左手で把持する術者の場合にお!、ても、把持部 68を把持する外周面の把持 位置は、右手で把持する側部と対向する側部側となるが、各指の位置は、指示入力 部に対しては左手で把持する場合と同様となる。  [0305] Also, in the case of an operator holding with the left hand, the holding position of the outer peripheral surface holding the holding portion 68 is on the side facing the side holding with the right hand. The position of the finger is the same as when the user holds the instruction input unit with the left hand.
[0306] つまり、術者が左手で操作部 22の把持部 68を把持した場合、親指により操作し易 Vヽ位置にトラックボール 69が位置し、その両側に左右対称に配置された送気送水ス イッチ(SW4)及び吸引スィッチ(SW5)も操作することができる。  That is, when the operator grips the grip portion 68 of the operation portion 22 with the left hand, the trackball 69 is located at the position V ヽ which is easy to operate with the thumb, and the air supply and water supply arranged symmetrically on both sides thereof The switch (SW4) and the suction switch (SW5) can also be operated.
[0307] また、把持した場合における人差し指、中指でそれぞれ把持する位置の付近にそ れぞれスコープスィッチ SW1と SW2とが位置し、さらに小指で把持する位置の付近 にスコープスィッチ SW3が位置する。  [0307] Further, scope switches SW1 and SW2 are respectively located near the positions where the index finger and the middle finger are gripped when gripped, and scope switch SW3 is located near the position where the little finger is gripped.
[0308] 従って、術者は、把持した左手により良好な操作性のもとで各種の操作を行うことが できる。 [0308] Therefore, the operator can perform various operations with good operability using the grasped left hand. it can.
[0309] また、上述したように本実施の形態においては、把持部 68の長手方向の両側を連 結してその内側に把持する手が通されるようになるフック 70が設けてあるので、把持 部 68をしつかりと保持しなくても、内視鏡 3がその重量で落下することを有効に防止 できる。  [0309] Further, as described above, in the present embodiment, the hook 70 is provided so as to connect both sides in the longitudinal direction of the grip portion 68 so that the hand to be gripped can pass through the inside thereof. The endoscope 3 can be effectively prevented from falling due to its weight without holding the grip portion 68 tightly.
[0310] また、本実施の形態では、図 16に示したようにスコープスィッチ SW1— SW5に対 する機能の割り付けを変更設定することもできる。従って、それぞれの術者は、最も操 作し易いようにスコープスィッチ SW1— SW5に対する機能の割り付けを変更設定し て内視鏡検査を行うこともできる。  [0310] Further, in the present embodiment, as shown in Fig. 16, the assignment of functions to scope switches SW1-SW5 can be changed and set. Therefore, each operator can perform an endoscopy by changing and assigning the functions to the scope switches SW1 to SW5 so that the operator can operate the apparatus most easily.
[0311] なお、上述した実施の形態では、 AWSユニット 4側にピンチバルブ 45を設けて AW Sアダプタ 42を接続する構成で説明したが、図 49に示すように AWSユニット 4の凹 部 40aに (AWSアダプタの変形例ともなる)電磁弁ユニット 42' を着脱自在に取り付 けるようにしても良い。そして、 AWSユニット 4に、この電磁弁ユニット 42' を取り付け た状態で、内視鏡 3のスコープコネクタ 41が着脱自在に装着される。  [0311] In the above-described embodiment, the configuration in which the pinch valve 45 is provided on the AWS unit 4 side and the AWS adapter 42 is connected has been described. However, as shown in FIG. The solenoid valve unit 42 '(which may be a modification of the AWS adapter) may be detachably mounted. The scope connector 41 of the endoscope 3 is detachably attached to the AWS unit 4 with the solenoid valve unit 42 'attached.
[0312] なお、図 50 (A)は電磁弁ユニット 42' の正面図、図 50 (B)及び図 50 (C)は左及 び右側面図、図 50 (D)及び図 50 (E)は、図 50 (A)の A— A' 及び B— B' 断面図を それぞれ示す。  [0312] Fig. 50 (A) is a front view of the solenoid valve unit 42 ', Figs. 50 (B) and 50 (C) are left and right side views, and Figs. 50 (D) and 50 (E). Shows cross-sectional views taken along lines AA ′ and BB ′ in FIG. 50 (A).
[0313] 上述した AWSアダプタ 42においては、その背面(基端)側に(AWSユニット 4の前 面力も突出する)ピンチバルブ 45を収納する凹部 42fが設けてあった力 図 50に示 す電磁弁ユニット 42' においては、その内部にピンチバルブ 45を設け、このピンチ バルブ 45の内側にリリーフ管路 47aを通す構造にしている。  [0313] In the above-described AWS adapter 42, a force provided with a concave portion 42f for accommodating the pinch valve 45 (the front surface force of the AWS unit 4 also protrudes) is provided on the back (base end) side thereof. In the valve unit 42 ', a pinch valve 45 is provided therein, and a relief pipe 47a is passed through the pinch valve 45.
[0314] また、この電磁弁ユニット 42' においては、その背面側には AWSユニット 4の電磁 弁ユニット 42' に着脱自在に接続され、ピンチバルブ 45を駆動する信号を伝達する ピンチバルブ用コネクタ 42gが取り付けてある。その他の構成は上記 AWSアダプタ 4 2と同様である。  [0314] In the solenoid valve unit 42 ', a pinch valve connector 42g that is detachably connected to the back side of the solenoid valve unit 42' of the AWS unit 4 and transmits a signal for driving the pinch valve 45. Is attached. Other configurations are the same as the above AWS adapter 42.
[0315] 図 49及び図 50に示す AWSユニット 4及び電磁弁ユニット 42' を採用した場合に おける作用効果は、上記第 7実施形態における AWSユニット 4及び電磁弁ユニット 4 2の場合とほぼ同様である。 [0316] 以上のように、本第 7実施の形態によれば、管路の途中に透明度センサを設けたの で、内視鏡の洗滌及び消毒時だけでなぐ内視鏡の使用直後に行うベッドサイド洗 滌でも管路の汚れ、あるいは管路内を通過する流体の透明度等を検出することがで きる。 [0315] The operation and effect when the AWS unit 4 and the solenoid valve unit 42 'shown in Figs. 49 and 50 are adopted are almost the same as those of the AWS unit 4 and the solenoid valve unit 42 in the seventh embodiment. is there. [0316] As described above, according to the seventh embodiment, since the transparency sensor is provided in the middle of the conduit, the operation is performed immediately after use of the endoscope, which can be performed only at the time of cleaning and disinfecting the endoscope. Even in the bedside washing, it is possible to detect the contamination of the pipeline or the transparency of the fluid passing through the pipeline.
産業上の利用可能性  Industrial applicability
[0317] 本発明の内視鏡によれば、体腔内に挿入部を挿入し、操作部に設けたトラックボー ル等の各種の操作手段を操作することにより、良好な操作性のもとで内視鏡検査を 行うことができる。 [0317] According to the endoscope of the present invention, by inserting the insertion portion into the body cavity and operating various operation means such as a track ball provided on the operation portion, the endoscope can be operated with good operability. Endoscopy can be performed.

Claims

請求の範囲 The scope of the claims
[1] 被検体に挿入する挿入部と、  [1] an insertion portion to be inserted into a subject;
前記挿入部の後端に設けられた操作部と、  An operation unit provided at a rear end of the insertion unit,
前記操作部内に設けられた、被検体像を撮像する撮像手段および当該操作部に おける所定の機能を制御する制御処理手段と、  An imaging unit provided in the operation unit for imaging a subject image and a control processing unit for controlling a predetermined function of the operation unit;
前記制御処理手段から延設された信号回路と、  A signal circuit extended from the control processing means,
前記操作部に設けられた、少なくとも 1つの管路が揷通されたチューブユニットを着 脱自在に接続可能とする接続部と、  A connection unit provided on the operation unit, the connection unit enabling detachable connection of a tube unit through which at least one conduit is passed;
を具備したことを特徴とする内視鏡。  An endoscope comprising:
[2] 前記信号回路は、複数種の信号を共通して伝送する信号伝送手段で構成されるこ と特徴とする請求項 1に記載の内視鏡。  [2] The endoscope according to claim 1, wherein the signal circuit includes signal transmission means for transmitting a plurality of types of signals in common.
[3] 前記信号伝送手段は、前記接続部において前記チューブユニット内に挿通された 信号伝送線と所定の接続手段で接続されることを特徴とする請求項 2に記載の内視 鏡。 3. The endoscope according to claim 2, wherein the signal transmission means is connected to the signal transmission line inserted into the tube unit at the connection part by a predetermined connection means.
[4] 前記所定の接続手段は、金属電極による接続に拠らない接続手段であることを特 徴とする請求項 3に記載の内視鏡。  4. The endoscope according to claim 3, wherein the predetermined connection means is a connection means that does not rely on connection by a metal electrode.
[5] 前記金属電極による接続に拠らない接続手段は、互いに非接触の電磁結合による 接続であることを特徴とする請求項 4に記載の内視鏡。 5. The endoscope according to claim 4, wherein the connection means not relying on the connection by the metal electrode is a connection by non-contact electromagnetic coupling.
[6] 前記所定の接続手段は、無線による接続手段であることを特徴とする請求項 3に記 載の内視鏡。 6. The endoscope according to claim 3, wherein the predetermined connection unit is a wireless connection unit.
[7] 被検体に挿入する挿入部と、 [7] an insertion portion to be inserted into the subject;
前記挿入部の後端に設けられた操作部と、  An operation unit provided at a rear end of the insertion unit,
前記操作部内に設けられた、被検体像を撮像する撮像手段および当該操作部に おける所定の機能を制御する制御処理手段と、  An imaging unit provided in the operation unit for imaging a subject image and a control processing unit for controlling a predetermined function of the operation unit;
前記制御処理手段から延設された信号回路と、  A signal circuit extended from the control processing means,
前記操作部内の電気回路に供給される電力を伝送する電力回路と、  A power circuit for transmitting power supplied to an electric circuit in the operation unit,
前記操作部に設けられた、少なくとも 1つの管路が揷通されたチューブユニットを着 脱自在に接続可能とする接続部と、 を具備したことを特徴とする内視鏡。 A connection unit provided on the operation unit, the connection unit enabling detachable connection of a tube unit through which at least one conduit is passed; An endoscope comprising:
[8] 前記信号回路は、複数種の信号を共通して伝送する信号伝送手段で構成されるこ と特徴とする請求項 7に記載の内視鏡。  [8] The endoscope according to claim 7, wherein the signal circuit includes signal transmission means for transmitting a plurality of types of signals in common.
[9] 前記信号伝送手段および前記電気回路は、それぞれ、前記接続部にお!ヽて前記 チューブユニット内に挿通された信号伝送線および電源線と所定の接続手段で接続 されることを特徴とする請求項 8に記載の内視鏡。 [9] The signal transmission means and the electric circuit are each connected to the signal transmission line and the power supply line inserted into the tube unit at the connection part by predetermined connection means. The endoscope according to claim 8, wherein
[10] 前記所定の接続手段は、金属電極による接続に拠らない接続手段であることを特 徴とする請求項 9に記載の内視鏡。 10. The endoscope according to claim 9, wherein the predetermined connection means is a connection means that does not rely on connection by a metal electrode.
[11] 前記金属電極による接続に拠らない接続手段は、互いに非接触の電磁結合による 接続であることを特徴とする請求項 10に記載の内視鏡。 11. The endoscope according to claim 10, wherein the connection means that does not depend on the connection by the metal electrode is a connection by non-contact electromagnetic coupling.
[12] 被検体に挿入する挿入部と、 [12] an insertion portion to be inserted into the subject;
前記挿入部の後端に設けられた操作部と、  An operation unit provided at a rear end of the insertion unit,
前記操作部内に設けられた、被検体像を撮像する撮像手段および当該操作部に おける所定の機能を制御する制御処理手段と、  An imaging unit provided in the operation unit for imaging a subject image and a control processing unit for controlling a predetermined function of the operation unit;
前記制御処理手段から延設された信号回路と、  A signal circuit extended from the control processing means,
少なくとも 1つの管路が揷通されたチューブユニットと、  A tube unit through which at least one conduit is passed;
前記操作部に設けられた、前記チューブユニットを着脱自在に接続可能とする接 続部と、  A connection unit provided on the operation unit, which enables the tube unit to be detachably connected;
を具備したことを特徴とする内視鏡。  An endoscope comprising:
[13] 前記信号回路は、複数種の信号を共通して伝送する信号伝送手段で構成されるこ と特徴とする請求項 12に記載の内視鏡。 13. The endoscope according to claim 12, wherein the signal circuit includes signal transmission means for transmitting a plurality of types of signals in common.
[14] 前記信号伝送手段は、前記接続部において前記チューブユニット内に挿通された 信号伝送線と所定の接続手段で接続されることを特徴とする請求項 13に記載の内 視鏡。 14. The endoscope according to claim 13, wherein the signal transmission unit is connected to a signal transmission line inserted into the tube unit at the connection unit by a predetermined connection unit.
[15] 前記所定の接続手段は、金属電極による接続に拠らない接続手段であることを特 徴とする請求項 14に記載の内視鏡。  15. The endoscope according to claim 14, wherein the predetermined connection means is a connection means that does not rely on connection by a metal electrode.
[16] 前記金属電極による接続に拠らない接続手段は、互いに非接触の電磁結合による 接続であることを特徴とする請求項 15に記載の内視鏡。 16. The endoscope according to claim 15, wherein the connection means that does not depend on the connection by the metal electrode is a connection by non-contact electromagnetic coupling.
[17] 前記所定の接続手段は、無線による接続手段であることを特徴とする請求項 14に 記載の内視鏡。 17. The endoscope according to claim 14, wherein the predetermined connection unit is a wireless connection unit.
[18] 被検体に挿入する挿入部と、 [18] an insertion portion to be inserted into the subject,
前記挿入部の後端に設けられた操作部と、  An operation unit provided at a rear end of the insertion unit,
前記操作部内に設けられた、被検体像を撮像する撮像手段および当該操作部に おける所定の機能を制御する制御処理手段と、  An imaging unit provided in the operation unit for imaging a subject image and a control processing unit for controlling a predetermined function of the operation unit;
前記制御処理手段から延設された信号回路と、  A signal circuit extended from the control processing means,
少なくとも 1つの管路が揷通されたチューブユニットと、  A tube unit through which at least one conduit is passed;
前記操作部に設けられた、前記チューブユニットを着脱自在に接続可能とする接 続部と、  A connection unit provided on the operation unit, which enables the tube unit to be detachably connected;
を具備した内視鏡と、  An endoscope comprising:
前記内視鏡が接続され、送気、送水及び吸引機能を備えた送気 ·送水 ·吸引ュニッ トと、  An air supply / water supply / suction unit having the air supply, water supply and suction functions to which the endoscope is connected,
前記内視鏡における前記信号回路と所定の信号の授受を行うことにより当該内視 鏡に対する所定の制御を行う内視鏡システム制御装置と、  An endoscope system control device that performs predetermined control on the endoscope by transmitting and receiving a predetermined signal to and from the signal circuit in the endoscope;
を具備したことを特徴とする内視鏡システム。  An endoscope system comprising:
[19] 前記信号回路は、複数種の信号を共通して伝送する信号伝送手段で構成されるこ と特徴とする請求項 18に記載の内視鏡システム。 19. The endoscope system according to claim 18, wherein the signal circuit includes signal transmission means for transmitting a plurality of types of signals in common.
[20] 前記信号伝送手段は、前記接続部において前記チューブユニット内に挿通された 信号伝送線と所定の接続手段で接続されることを特徴とする請求項 19に記載の内 視鏡システム。 20. The endoscope system according to claim 19, wherein the signal transmission unit is connected to a signal transmission line inserted into the tube unit at the connection unit by a predetermined connection unit.
[21] 前記所定の接続手段は、金属電極による接続に拠らない接続手段であることを特 徴とする請求項 20に記載の内視鏡システム。  21. The endoscope system according to claim 20, wherein the predetermined connection means is a connection means that does not rely on connection by a metal electrode.
[22] 前記金属電極による接続に拠らない接続手段は、互いに非接触の電磁結合による 接続であることを特徴とする請求項 21に記載の内視鏡システム。 22. The endoscope system according to claim 21, wherein the connection means not relying on the connection by the metal electrode is a connection by non-contact electromagnetic coupling.
[23] 前記所定の接続手段は、無線による接続手段であることを特徴とする請求項 20〖こ 記載の内視鏡システム。 23. The endoscope system according to claim 20, wherein the predetermined connection unit is a wireless connection unit.
[24] 照明窓及び観察窓が設けられた先端部と、湾曲自在の湾曲部とが挿入部に設けら れた内視鏡において、 [24] A distal end provided with an illumination window and an observation window, and a bendable bending portion are provided in the insertion portion. Endoscope
前記湾曲部を含むその周辺部に前記照明窓から出射するための照明光の一部を 導光する第 1の導光手段と、  First light guide means for guiding a part of the illumination light to be emitted from the illumination window to a peripheral portion including the curved portion,
少なくとも前記湾曲部を含むその周辺部に配置され、前記第 1の導光手段により導 光された光が内部に出射されると共に、外部力 の押圧量に応じて形状が変化する 押圧変形部材と、  A pressure deforming member disposed at least in a peripheral portion including the curved portion, the light guided by the first light guiding means is emitted inside, and the shape is changed according to a pressing amount of an external force; ,
前記押圧変形部材の内部に出射された光を受光して導光する第 2の導光手段と、 前記第 2の導光手段により導光された光を検出する光検出手段と、  A second light guide unit that receives and guides light emitted inside the pressing deformation member, and a light detection unit that detects light guided by the second light guide unit;
を具備したことを特徴とする内視鏡。  An endoscope comprising:
[25] 前記第 1の導光手段は、前記照明窓力 出射される照明光における周辺側の照明 光を導光することを特徴とする請求項 24に記載の内視鏡。 25. The endoscope according to claim 24, wherein the first light guide unit guides peripheral illumination light in the illumination light emitted from the illumination window.
[26] 前記第 1及び第 2の導光手段は、光ファイバを用いて構成されることを特徴とする請 求項 24に記載の内視鏡。 26. The endoscope according to claim 24, wherein said first and second light guide means are configured using an optical fiber.
[27] 前記押圧変形部材は、前記湾曲部の内側に配置され、前記湾曲部の湾曲量の検 出手段を形成することを特徴とする請求項 24に記載の内視鏡。 27. The endoscope according to claim 24, wherein the pressing deformation member is disposed inside the bending portion and forms a detecting unit of a bending amount of the bending portion.
[28] 前記第 1の導光手段は、前記照明窓力 照明光を出射するライトガイドを構成する ライトガイドファイババンドルにおける周辺側に配置されるライトガイドファイバを用い て構成されることを特徴とする請求項 24に記載の内視鏡。 [28] The first light guide means is configured using a light guide fiber arranged on a peripheral side of a light guide fiber bundle constituting a light guide that emits the illumination window force illumination light. 25. The endoscope according to claim 24, wherein:
[29] 前記押圧変形部材は、前記湾曲部を含むその周辺部における挿入部の長手方向 の複数箇所に設けられることを特徴とする請求項 24に記載の内視鏡。 29. The endoscope according to claim 24, wherein the pressing deformation member is provided at a plurality of positions in a longitudinal direction of the insertion portion in a peripheral portion including the curved portion.
[30] 前記押圧変形部材は、前記湾曲部を含むその周辺部における挿入部の周方向の 複数箇所に設けられることを特徴とする請求項 24に記載の内視鏡。 30. The endoscope according to claim 24, wherein the pressing deformation member is provided at a plurality of circumferential positions of the insertion portion in a peripheral portion including the curved portion.
[31] 前記光検出手段による出力信号力 所定値以上の押圧量が作用した力否かを判 断する判断手段を有することを特徴とする請求項 24に記載の内視鏡。 31. The endoscope according to claim 24, further comprising a determination unit configured to determine whether or not the output signal force by the light detection unit is applied with a pressing amount equal to or greater than a predetermined value.
[32] 前記光検出手段による出力信号の変化により前記湾曲部の湾曲を規制する規制 手段を有することを特徴とする請求項 24に記載の内視鏡。 32. The endoscope according to claim 24, further comprising a restricting unit that restricts the bending of the bending portion based on a change in an output signal from the light detection unit.
[33] 前記第 1の導光手段は、前記照明光の一部を取り込むために光分岐手段を有する ことを特徴とする請求項 24に記載の内視鏡。 33. The endoscope according to claim 24, wherein the first light guide unit has a light branching unit for taking in a part of the illumination light.
[34] 前記押圧変形部材と略同じ特性の基準部材を変形させな!/、状態にして、前記光検 出手段は基準部材力 導光された光の検出出力を基準値としてその基準値力 の 変化量により、前記押圧変形部材に作用する押圧量を検出することを特徴とする請 求項 24に記載の内視鏡。 [34] The reference member having substantially the same characteristics as the pressing and deforming member is not to be deformed! / In a state, the light detecting means uses the detection output of the guided member as a reference value and the reference value force as the reference value. 25. The endoscope according to claim 24, wherein an amount of pressing applied to the pressing deformable member is detected based on the amount of change.
[35] 湾曲指示により湾曲部を湾曲指示の方向に湾曲駆動する第 1のステップと、 [35] a first step of driving the bending portion in the direction of the bending instruction according to the bending instruction;
前記湾曲駆動の際に前記湾曲部の周辺部に配置された光学的に押圧量検出を行 う押圧量検出の出力変化が基準値以上であるかを検出する第 2のステップと、 前記押圧量検出の出力変化が基準値以上の場合には前記湾曲駆動を規制する 第 3のステップと、  A second step of detecting whether a change in output of the pressing amount detection optically disposed at the periphery of the bending portion and performing a pressing amount detection during the bending driving is greater than or equal to a reference value; and A third step of restricting the bending drive when a change in detection output is equal to or greater than a reference value;
を備えた湾曲駆動の制御方法。  Control method for curving drive provided with:
[36] 挿入部と、該挿入部内に挿通された管路を有する内視鏡において、 [36] In an endoscope having an insertion portion and a duct inserted in the insertion portion,
前記管路に設けられた透明管路部と、  A transparent conduit portion provided in the conduit,
前記透明管路部を透過した光を検出する光検出器を有することを特徴とする内視 鏡。  An endoscope comprising a photodetector for detecting light transmitted through the transparent conduit.
[37] 前記管路は、送気送水管路であることを特徴とする請求項 36に記載の内視鏡。  37. The endoscope according to claim 36, wherein the conduit is an air supply / water supply conduit.
[38] 前記管路は、吸引管路であることを特徴とする請求項 36に記載の内視鏡。 38. The endoscope according to claim 36, wherein the conduit is a suction conduit.
PCT/JP2005/003327 2004-02-26 2005-02-28 Endoscope and endoscope system WO2005082228A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/510,767 US7942810B2 (en) 2004-02-26 2006-08-25 Endoscope and endoscopic system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004052327A JP2005237705A (en) 2004-02-26 2004-02-26 Endoscope
JP2004-052327 2004-02-26
JP2004-125758 2004-04-21
JP2004125759A JP2005304779A (en) 2004-04-21 2004-04-21 Endoscope
JP2004-125759 2004-04-21
JP2004125758A JP4364051B2 (en) 2004-04-21 2004-04-21 Endoscope

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/510,767 Continuation US7942810B2 (en) 2004-02-26 2006-08-25 Endoscope and endoscopic system

Publications (1)

Publication Number Publication Date
WO2005082228A1 true WO2005082228A1 (en) 2005-09-09

Family

ID=34916084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003327 WO2005082228A1 (en) 2004-02-26 2005-02-28 Endoscope and endoscope system

Country Status (2)

Country Link
US (1) US7942810B2 (en)
WO (1) WO2005082228A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8926502B2 (en) 2011-03-07 2015-01-06 Endochoice, Inc. Multi camera endoscope having a side service channel
US9101266B2 (en) 2011-02-07 2015-08-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US9101287B2 (en) 2011-03-07 2015-08-11 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US9101268B2 (en) 2009-06-18 2015-08-11 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9314147B2 (en) 2011-12-13 2016-04-19 Endochoice Innovation Center Ltd. Rotatable connector for an endoscope
US9320419B2 (en) 2010-12-09 2016-04-26 Endochoice Innovation Center Ltd. Fluid channeling component of a multi-camera endoscope
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US9554692B2 (en) 2009-06-18 2017-01-31 EndoChoice Innovation Ctr. Ltd. Multi-camera endoscope
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
US9655502B2 (en) 2011-12-13 2017-05-23 EndoChoice Innovation Center, Ltd. Removable tip endoscope
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US9814374B2 (en) 2010-12-09 2017-11-14 Endochoice Innovation Center Ltd. Flexible electronic circuit board for a multi-camera endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US10080486B2 (en) 2010-09-20 2018-09-25 Endochoice Innovation Center Ltd. Multi-camera endoscope having fluid channels
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US10203493B2 (en) 2010-10-28 2019-02-12 Endochoice Innovation Center Ltd. Optical systems for multi-sensor endoscopes
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US10905315B2 (en) 2013-03-28 2021-02-02 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
US11864734B2 (en) 2009-06-18 2024-01-09 Endochoice, Inc. Multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
CN118462957A (en) * 2024-07-11 2024-08-09 德州丽景园林绿化工程有限公司 Building water supply and drainage pipeline detection device

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US20040176683A1 (en) * 2003-03-07 2004-09-09 Katherine Whitin Method and apparatus for tracking insertion depth
JP4009613B2 (en) * 2004-04-08 2007-11-21 オリンパス株式会社 Endoscope
WO2005110189A1 (en) * 2004-05-14 2005-11-24 Olympus Corporation Endoscope
US8872906B2 (en) 2005-01-05 2014-10-28 Avantis Medical Systems, Inc. Endoscope assembly with a polarizing filter
US8197399B2 (en) 2006-05-19 2012-06-12 Avantis Medical Systems, Inc. System and method for producing and improving images
US8797392B2 (en) 2005-01-05 2014-08-05 Avantis Medical Sytems, Inc. Endoscope assembly with a polarizing filter
US8182422B2 (en) 2005-12-13 2012-05-22 Avantis Medical Systems, Inc. Endoscope having detachable imaging device and method of using
US8289381B2 (en) 2005-01-05 2012-10-16 Avantis Medical Systems, Inc. Endoscope with an imaging catheter assembly and method of configuring an endoscope
JP2007097767A (en) * 2005-10-03 2007-04-19 Olympus Corp Electron endoscope system
WO2007087421A2 (en) 2006-01-23 2007-08-02 Avantis Medical Systems, Inc. Endoscope
US8287446B2 (en) 2006-04-18 2012-10-16 Avantis Medical Systems, Inc. Vibratory device, endoscope having such a device, method for configuring an endoscope, and method of reducing looping of an endoscope
US7927272B2 (en) 2006-08-04 2011-04-19 Avantis Medical Systems, Inc. Surgical port with embedded imaging device
JP2008149027A (en) * 2006-12-19 2008-07-03 Olympus Corp Endoscope apparatus
US9386914B2 (en) * 2007-04-04 2016-07-12 Karl Storz Endovision, Inc. Video endoscopic device with detachable control circuit
US8064666B2 (en) 2007-04-10 2011-11-22 Avantis Medical Systems, Inc. Method and device for examining or imaging an interior surface of a cavity
DE102007026234A1 (en) * 2007-05-31 2008-12-04 Karl Storz Gmbh & Co. Kg Videoscope
WO2009015396A2 (en) * 2007-07-26 2009-01-29 Avantis Medical Systems, Inc. Endoscope system
JP5117878B2 (en) * 2008-02-13 2013-01-16 富士フイルム株式会社 Endoscope light source device
JP2011518000A (en) 2008-04-16 2011-06-23 ブラッコ・ダイアグノスティクス・インコーポレーテッド Endoscope water bottle adapter
US20100022824A1 (en) 2008-07-22 2010-01-28 Cybulski James S Tissue modification devices and methods of using the same
US20100121139A1 (en) 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Systems
US20110009694A1 (en) * 2009-07-10 2011-01-13 Schultz Eric E Hand-held minimally dimensioned diagnostic device having integrated distal end visualization
CN102686142B (en) 2009-08-31 2014-10-29 布拉蔻诊断公司 In-line gas adaptor for endoscopic apparatus
WO2011032067A1 (en) 2009-09-14 2011-03-17 Bracco Diagnostics Inc. In-line gas adaptor for endoscopic apparatus
JP5362636B2 (en) * 2010-03-31 2013-12-11 富士フイルム株式会社 Medical air supply system
JP5032646B2 (en) * 2010-11-24 2012-09-26 株式会社東芝 IMAGING DEVICE, IMAGING DEVICE OPERATING METHOD, AND ENDOSCOPE DEVICE
WO2012153703A1 (en) * 2011-05-09 2012-11-15 国立大学法人鳥取大学 Pressure sensor, endoscope and endoscope device
WO2013148311A1 (en) 2012-03-30 2013-10-03 Bracco Diagnostics Inc. Water bottle cap assemblies for an endoscopic device
WO2014063106A1 (en) * 2012-10-18 2014-04-24 The Arizona Board Of Regents On Behalf Of The University Of Arizona Multi-resolution foveated endoscope/laparoscope
US20140142383A1 (en) * 2012-11-22 2014-05-22 Gyrus Acmi, Inc. (D.B.A. Olympus Surgical Technologies America) Endoscope Camera Head Memory
US20150099925A1 (en) * 2013-10-03 2015-04-09 Endochoice, Inc. Endoscope with Integrated Sensors
US20160256040A1 (en) * 2013-10-30 2016-09-08 Faculty Physicians And Surgeons Of Loma Linda University School Of Medicine Controlled pressure endoscopic and percutaneous surgery
US9370295B2 (en) 2014-01-13 2016-06-21 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US10342579B2 (en) 2014-01-13 2019-07-09 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
US11547446B2 (en) 2014-01-13 2023-01-10 Trice Medical, Inc. Fully integrated, disposable tissue visualization device
CN103949008B (en) * 2014-04-23 2016-03-16 上海交通大学 Intelligent electric based on the external magnetic control of video image navigation stimulates capsule system
JP5855806B1 (en) * 2014-06-10 2016-02-09 オリンパス株式会社 Endoscope system, endoscope apparatus and processor
JP6106142B2 (en) * 2014-09-29 2017-03-29 富士フイルム株式会社 Endoscope system, endoscope, and connector for endoscope
JP6695871B2 (en) * 2014-10-15 2020-05-20 コヴィディエン リミテッド パートナーシップ Endoscope with multiple diameter working sections
CN106160038B (en) * 2015-03-31 2018-11-09 鸿富锦精密工业(武汉)有限公司 Charging circuit
CN108024695B (en) 2015-08-11 2021-05-04 特里斯医疗有限公司 Fully integrated disposable tissue visualization device
WO2019191705A1 (en) 2018-03-29 2019-10-03 Trice Medical, Inc. Fully integrated endoscope with biopsy capabilities and methods of use
EP3852603A4 (en) 2018-11-05 2022-06-22 Medivators Inc. Endoscope cleaning and inspection system and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623077A (en) * 1979-08-02 1981-03-04 Olympus Optical Co Ltd Endscope
JPH07327922A (en) * 1994-06-03 1995-12-19 Asahi Optical Co Ltd Electronic endoscope system
JPH10201706A (en) * 1997-01-23 1998-08-04 Olympus Optical Co Ltd Endoscope apparatus
JPH10258020A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Tubular inserter
JPH10295635A (en) * 1997-04-23 1998-11-10 Olympus Optical Co Ltd Electronic endoscope device
JPH1132988A (en) * 1997-07-23 1999-02-09 Fuji Photo Optical Co Ltd Pipeline structure for endoscope

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158310A (en) * 1978-01-30 1979-06-19 University Of Southern California Optical pressure transducer of randomly distributed fiber optics
JPS5588732A (en) * 1978-12-26 1980-07-04 Olympus Optical Co Endoscope
US4784811A (en) * 1982-09-30 1988-11-15 The Regents Of The University Of California Method of constructing improved pressure-sensitive optrode
JPS59172621A (en) * 1983-03-22 1984-09-29 Sumitomo Electric Ind Ltd Fiberscope
US4569335A (en) * 1983-04-12 1986-02-11 Sumitomo Electric Industries, Ltd. Fiberscope
US4982725A (en) * 1989-07-04 1991-01-08 Olympus Optical Co., Ltd. Endoscope apparatus
JP3055809B2 (en) 1991-02-28 2000-06-26 オリンパス光学工業株式会社 Electronic endoscope device
JP3217386B2 (en) * 1991-04-24 2001-10-09 オリンパス光学工業株式会社 Diagnostic system
JPH0513401A (en) 1991-06-28 1993-01-22 Mitsubishi Electric Corp Semiconductor substrate processing method
US5469840A (en) * 1991-12-10 1995-11-28 Olympus Optical, Ltd. Electromotive warping type endoscope with velocity control
JPH07124104A (en) 1993-11-01 1995-05-16 Olympus Optical Co Ltd Manipulator device
JP3658130B2 (en) 1997-02-14 2005-06-08 フジノン株式会社 Pipe-line separation type endoscopic device
US5891014A (en) 1997-07-18 1999-04-06 Fuji Photo Optical Co., Ltd. Passage structure in endoscope and adapter used when washing passages in endoscope
JPH11299724A (en) 1998-04-24 1999-11-02 Asahi Optical Co Ltd Endoscope device
JP4272739B2 (en) 1999-03-04 2009-06-03 Hoya株式会社 Endoscope light source device
JP4633274B2 (en) 2000-02-17 2011-02-16 オリンパス株式会社 Endoscope cleaning and disinfection device
JP2002369789A (en) 2001-06-15 2002-12-24 Olympus Optical Co Ltd Endoscope apparatus
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623077A (en) * 1979-08-02 1981-03-04 Olympus Optical Co Ltd Endscope
JPH07327922A (en) * 1994-06-03 1995-12-19 Asahi Optical Co Ltd Electronic endoscope system
JPH10201706A (en) * 1997-01-23 1998-08-04 Olympus Optical Co Ltd Endoscope apparatus
JPH10258020A (en) * 1997-03-21 1998-09-29 Olympus Optical Co Ltd Tubular inserter
JPH10295635A (en) * 1997-04-23 1998-11-10 Olympus Optical Co Ltd Electronic endoscope device
JPH1132988A (en) * 1997-07-23 1999-02-09 Fuji Photo Optical Co Ltd Pipeline structure for endoscope

Cited By (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
US11864734B2 (en) 2009-06-18 2024-01-09 Endochoice, Inc. Multi-camera endoscope
US10905320B2 (en) 2009-06-18 2021-02-02 Endochoice, Inc. Multi-camera endoscope
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
US11534056B2 (en) 2009-06-18 2022-12-27 Endochoice, Inc. Multi-camera endoscope
US11471028B2 (en) 2009-06-18 2022-10-18 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US9554692B2 (en) 2009-06-18 2017-01-31 EndoChoice Innovation Ctr. Ltd. Multi-camera endoscope
US10092167B2 (en) 2009-06-18 2018-10-09 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US10912445B2 (en) 2009-06-18 2021-02-09 Endochoice, Inc. Compact multi-viewing element endoscope system
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US11986155B2 (en) 2009-06-18 2024-05-21 Endochoice, Inc. Multi-viewing element endoscope
US9101268B2 (en) 2009-06-18 2015-08-11 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9706905B2 (en) 2009-06-18 2017-07-18 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US10799095B2 (en) 2009-06-18 2020-10-13 Endochoice, Inc. Multi-viewing element endoscope
US10791910B2 (en) 2009-06-18 2020-10-06 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US10791909B2 (en) 2009-06-18 2020-10-06 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US10638922B2 (en) 2009-06-18 2020-05-05 Endochoice, Inc. Multi-camera endoscope
US9986892B2 (en) 2010-09-20 2018-06-05 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US10080486B2 (en) 2010-09-20 2018-09-25 Endochoice Innovation Center Ltd. Multi-camera endoscope having fluid channels
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US10203493B2 (en) 2010-10-28 2019-02-12 Endochoice Innovation Center Ltd. Optical systems for multi-sensor endoscopes
US11543646B2 (en) 2010-10-28 2023-01-03 Endochoice, Inc. Optical systems for multi-sensor endoscopes
US10898063B2 (en) 2010-12-09 2021-01-26 Endochoice, Inc. Flexible electronic circuit board for a multi camera endoscope
US10182707B2 (en) 2010-12-09 2019-01-22 Endochoice Innovation Center Ltd. Fluid channeling component of a multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
US9320419B2 (en) 2010-12-09 2016-04-26 Endochoice Innovation Center Ltd. Fluid channeling component of a multi-camera endoscope
US11497388B2 (en) 2010-12-09 2022-11-15 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
US9814374B2 (en) 2010-12-09 2017-11-14 Endochoice Innovation Center Ltd. Flexible electronic circuit board for a multi-camera endoscope
US9101266B2 (en) 2011-02-07 2015-08-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US10070774B2 (en) 2011-02-07 2018-09-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US9351629B2 (en) 2011-02-07 2016-05-31 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US9854959B2 (en) 2011-03-07 2018-01-02 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US8926502B2 (en) 2011-03-07 2015-01-06 Endochoice, Inc. Multi camera endoscope having a side service channel
US10292578B2 (en) 2011-03-07 2019-05-21 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US11026566B2 (en) 2011-03-07 2021-06-08 Endochoice, Inc. Multi camera endoscope assembly having multiple working channels
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US9713415B2 (en) 2011-03-07 2017-07-25 Endochoice Innovation Center Ltd. Multi camera endoscope having a side service channel
US9101287B2 (en) 2011-03-07 2015-08-11 Endochoice Innovation Center Ltd. Multi camera endoscope assembly having multiple working channels
US9314147B2 (en) 2011-12-13 2016-04-19 Endochoice Innovation Center Ltd. Rotatable connector for an endoscope
US11291357B2 (en) 2011-12-13 2022-04-05 Endochoice, Inc. Removable tip endoscope
US9655502B2 (en) 2011-12-13 2017-05-23 EndoChoice Innovation Center, Ltd. Removable tip endoscope
US10470649B2 (en) 2011-12-13 2019-11-12 Endochoice, Inc. Removable tip endoscope
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US11793393B2 (en) 2013-03-28 2023-10-24 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10925471B2 (en) 2013-03-28 2021-02-23 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US11925323B2 (en) 2013-03-28 2024-03-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US10905315B2 (en) 2013-03-28 2021-02-02 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
CN118462957A (en) * 2024-07-11 2024-08-09 德州丽景园林绿化工程有限公司 Building water supply and drainage pipeline detection device

Also Published As

Publication number Publication date
US7942810B2 (en) 2011-05-17
US20060293562A1 (en) 2006-12-28

Similar Documents

Publication Publication Date Title
WO2005082228A1 (en) Endoscope and endoscope system
WO2005102245A1 (en) Medical bed
WO2005102144A1 (en) Endoscope
WO2005094664A1 (en) Endoscope
WO2005096912A1 (en) Endoscope
EP1927313B1 (en) Endoscope device
US7914443B2 (en) Endoscope with non-contact signal transmission and reception
WO2005102145A1 (en) Endoscope
WO2005082226A1 (en) Endoscope
WO2005082227A1 (en) Endoscope and endoscope system
JP3967731B2 (en) Capsule endoscope
JP4231805B2 (en) Capsule endoscope
CN100471440C (en) Endoscope and endoscopic system
JP2005287969A (en) Endoscope
JP4364051B2 (en) Endoscope
JP2005237817A (en) Endoscope
JP4624711B2 (en) Endoscope
JP4472416B2 (en) Endoscope connection adapter device
JP4472382B2 (en) Endoscope
JP2005304779A (en) Endoscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11510767

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580006340.4

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 11510767

Country of ref document: US

122 Ep: pct application non-entry in european phase