Nothing Special   »   [go: up one dir, main page]

WO2005081587A1 - 白色系有機エレクトロルミネッセンス素子 - Google Patents

白色系有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2005081587A1
WO2005081587A1 PCT/JP2005/002442 JP2005002442W WO2005081587A1 WO 2005081587 A1 WO2005081587 A1 WO 2005081587A1 JP 2005002442 W JP2005002442 W JP 2005002442W WO 2005081587 A1 WO2005081587 A1 WO 2005081587A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
nuclear
Prior art date
Application number
PCT/JP2005/002442
Other languages
English (en)
French (fr)
Inventor
Hiroshi Tokairin
Kenichi Fukuoka
Mineyuki Kubota
Masakazu Funahashi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to JP2006510219A priority Critical patent/JPWO2005081587A1/ja
Priority to EP05719244A priority patent/EP1718124A4/en
Priority to KR1020067008168A priority patent/KR101169812B1/ko
Priority to US10/573,661 priority patent/US20070063638A1/en
Publication of WO2005081587A1 publication Critical patent/WO2005081587A1/ja

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B1/00Dyes with anthracene nucleus not condensed with any other ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/001Pyrene dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine

Definitions

  • the present invention relates to a white organic electroluminescent (EL) device, and more particularly to a white organic electroluminescent device having a small chromaticity change, a high luminous efficiency, and a high heat resistance and a very long life. .
  • EL white organic electroluminescent
  • organic EL elements for displays have been actively developed.
  • white organic EL devices are being actively pursued because they can be used for monocolor display devices, lighting applications such as knock lights, and full color display devices using color filters.
  • the conventional white organic EL has a problem that the blue tends to decrease and the chromaticity changes. Also, by doping a blue dopant and a yellow-red dopant at the same time and adjusting the doping ratio, white light emission can be obtained. , Tend to be reddish white. Therefore, in order to obtain a white color, it is necessary to dope the yellow-red dopant very dilutely, which again has a problem that reproducibility is difficult. Further, there is a laminated type in which the light emitting layer is divided into two, in which the anode side light emitting layer is a yellow-red light emitting layer and the cathode side is a blue light emitting layer.
  • the efficiency is excellent, but in order to obtain white light, yellow-red light emission is suppressed, so that the yellow-red light-emitting layer is compared with the blue light-emitting layer.
  • it is necessary to reduce the film thickness and the doping concentration, which has made it difficult to manufacture devices. Specifically, unless the thickness of the yellow-red light-emitting layer was set to about 112 nm, white light was not emitted. It is extremely difficult to control the force that this film thickness is as thin as the molecular size of ordinary low molecular organic EL.
  • Patent Document 2 discloses a type in which a light-emitting layer is divided into two, and a light-emitting layer on the anode side where the light-emitting region of the light-emitting layer tends to be biased is a blue light-emitting layer. There has been disclosed a white organic EL device in which the tendency of the color to be biased toward red is canceled.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2001-52870
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2003-272857
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide an extremely long-life organic EL device having a small chromaticity change, a high luminous efficiency, and a high heat resistance. I do.
  • the inventors of the present invention have conducted intensive studies to achieve the above object, and as a result, when producing a white organic EL device, the light emitting layer was formed of a blue light emitting layer and a yellow-red light emitting layer.
  • the present invention was found to be able to remarkably prolong the life of the light-emitting layer by forming the light-emitting layer from a lamination and further containing an asymmetric condensed ring-containing compound in the light-emitting layer, thereby completing the present invention.
  • the present invention provides an organic EL device in which one or more organic thin film layers including at least a light-emitting layer are sandwiched between a cathode and an anode, wherein the light-emitting layer comprises a blue light-emitting layer and a yellow-red light-emitting layer. And a white organic EL device in which the light-emitting layer contains an asymmetric condensed ring-containing compound.
  • the white organic EL element of the present invention has high luminous efficiency and heat resistance with little change in chromaticity, has an extremely long life, and is highly practical.
  • the white organic EL device of the present invention is an organic EL device in which one or more organic thin film layers including at least a light emitting layer are sandwiched between a cathode and an anode, and the light emitting layer is a blue light emitting device. Layer and a stack of a yellow-red light-emitting layer, and the light-emitting layer contains an asymmetric condensed ring-containing compound.
  • Examples of the layer configuration of the white organic EL device of the present invention include those having the following configurations.
  • the white organic EL device of the present invention may have a structure in which the light-emitting layer is divided into a blue light-emitting layer and a yellow-red light-emitting layer.
  • Each red-light emitting layer may have a multilayer structure composed of two or more layers, but it is preferable that the light-emitting layer has a two-layer structure of a blue light-emitting layer and a yellow-red light emitting layer.
  • the white organic EL device of the present invention preferably has a (1)-(7) layer configuration in which a blue light-emitting layer is stacked on the anode side and a yellow-red light-emitting layer is stacked on the cathode side.
  • the thickness of each of the blue light emitting layer and the yellow-red light emitting layer is preferably 5 nm or more.
  • the blue light emitting layer is more preferably 5 to 30 nm, particularly preferably 7 to 30 nm, and most preferably 10 to 30 nm. 30 nm. If the thickness of the blue light-emitting layer is 5 nm or more, it is difficult to form the light-emitting layer or adjust the chromaticity. If it is 30 nm or less, the driving voltage does not increase.
  • the thickness of the yellow-red light emitting layer is more preferably 10 to 50 nm, particularly preferably 20 to 50 nm, and most preferably 30 to 50 nm. If the thickness of the yellow-red light emitting layer is 5 nm or more, the luminous efficiency does not decrease. If the thickness is 50 nm or less, there is no possibility that the driving voltage increases.
  • the blue light emitting layer is made of a blue host material and a blue dopant, and the blue host material and the blue dopant are not particularly limited. It is preferable that the system host material also has an asymmetric condensed ring-containing compound power.
  • asymmetric condensed ring-based compound examples include an asymmetric anthracene-based compound and an asymmetric pyrene-based compound.
  • asymmetric anthracene compound is a compound represented by the following general formula (I). [0010] [Formula 1]
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. However, Ar 1 and Ar 2 are not identical in structure.
  • R 1 one R 8 are each independently a hydrogen atom, a substituted or unsubstituted Ariru group with carbon number 6 50, a substituted or unsubstituted atoms 5 50 aromatic heterocyclic group, a substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom number of 5 to 5 An aryloxy group of 50, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarboxy group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, A nitro group and a hydroxyl group. ]
  • Examples of the aryl groups of Ar 1 and Ar 2 in the general formula (I) include a phenyl group, a 1-naphthyl group, a 2 naphthyl group, a 1 anthryl group, a 2 anthryl group, a 9-anthryl group, and a 1-phenylene group Tolyl group, 2 phenanthryl group, 3 phenanthryl group, 4 phenanthryl group, 9 phenanthryl group, 1 naphthacyl group, 2 naphthacyl group, 9 naphthacyl group, 1-pyrethyl group, 2-pyrylyl group , 4-pyryl, 2-biphenyl, 3-biphenyl, 4-biphenyl, p-ferru 4-yl, p-terphenyl 3-yl, p-terphenyl Lu 2-yl group, m-Tafer-Ru 4-yl group, m-Tafer-Ru 3-yl group, m-Tafer-
  • Examples of the aryl group of R 1 to R 8 in the general formula (I) include the same groups as those of Ar 1 and Ar 2 described above.
  • Examples of the aromatic heterocyclic group represented by R 1 to R 8 in the general formula (I) include 1 pyrrolyl group, 2-pyrrolyl group, 3 pyrrolyl group, virazinyl group, 2 pyridinyl group, 3 pyridyl group, 4 pyridyl, 1 indolyl, 2 indolyl, 3 indolyl, 4 indolyl, 5 indolyl, 6 indolyl, 7 indolyl, 1 isoindolyl, 2 isoindolyl, 3 isoindolyl, 4 isoindolyl , 5-isoindolyl group, 6-isoindolyl group, 7-isoindolyl group, 2-furyl group, 3-furyl group, 2-benzofurol group, 3-benzofuryl group, 4-benzofuryl group, 5-benzofural group Benzofura, 6-benzofura, 7-benzofura, 1 iso
  • alkyl group of R 1 to R 8 in the general formula (I) examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an s-butyl group, an isobutyl group, an t-butyl group, n-pentyl, n-hexyl, n-heptyl, n-octyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2-hydroxyisobutyl, 1, 2- Dihydroxyxetyl, 1,3-dihydroxyisopropyl, 2,3-dihydroxy-tert-butyl, 1,2,3-trihydroxypropyl, chloromethyl, 1-chloroethyl, 2-chloroethyl, 2-isobutyl isobutyl, 1,2-dichloroethyl, 1,3-dichloroisopropyl, 2,3-dichloro
  • the alkoxy group of R 1 to R 8 in the general formula (I) is represented by —OY, and examples of Y include the same as the above-mentioned alkyl group.
  • Examples of the aralkyl group represented by R 1 to R 8 in the general formula (I) include the aforementioned alkyl group substituted with the aforementioned aryl group.
  • the aryloxy group of R 1 — R 8 in the general formula (I) is represented as OY, and examples of ⁇ , And the above-mentioned aryl groups.
  • the arylthio group of R 1 —R 8 in the general formula (I) is represented by —OY, and examples of ⁇ include the same aryl groups as described above.
  • the alkoxycarbonyl group of R 1 to R 8 in the general formula (I) is represented by COOY, and examples of ⁇ include the same as the above-mentioned alkyl group.
  • halogen atom examples include fluorine, chlorine, bromine and iodine.
  • the asymmetric anthracene compound used in the white organic EL device of the present invention is a compound represented by the following formula (II)-(IV).
  • Ar is a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. Ar, may be plural.
  • X is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms Substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, substituted or unsubstituted Arylthio group having 5 to 50 nuclear atoms, substituted or unsubstituted Are alkoxycarbonyl groups, carboxyl groups, halogen atoms, cyano groups, nitro groups, and hydroxyl groups having 1 to 50 carbon atoms.
  • a, b and c are each an integer of 0-4, and n is an integer of 1-3. ]
  • Examples of the condensed aromatic ring residue of Ar in the general formula (II) include 1 naphthyl group, 2-naphthyl group, 1 anthryl group, 2-anthryl group, 9 anthryl group, 1 phenanthryl group, and 2-phenanthryl group , 3-phenanthryl group, 4 phenanthryl group, 9-phenanthryl group, 1 naphthacyl group, 2 naphthacyl group, 9 naphthacyl group, 1-pyrenyl group, 2-pyrenyl group, 4-pyrenyl group, 3 —Methyl-2 naphthyl group, 4-methyl-1 naphthyl group, 4-methyl-1 anthryl group and the like.
  • Examples of the aryl group of Ar ′ in the general formula (II) include the same examples as described above.
  • Examples of the aryl group, the aromatic heterocyclic group, the alkyl group, the alkoxy group, the aralkyl group, the aryloxy group, the arylthio group and the alkoxycarbol group of X in the general formula (II) are the same as those described above.
  • a 1 and A 2 are each independently a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms.
  • Ar 1 and Ar 2 are each independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. Ar 1 and Ar 2 may each be plural.
  • R 1 one R 1Q are each independently a hydrogen atom, a substituted or unsubstituted Ariru group with carbon number 6 50, a substituted or unsubstituted atoms 5 50 aromatic heterocyclic group, a substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom number of 5 to 5 An aryloxy group of 50, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarboxy group
  • Examples of the condensed aromatic ring residue of A 1 and A 2 in the general formula (III) include those having the same valence as those of the condensed aromatic ring residue of Ar in the general formula (II).
  • Examples of the aryl groups of Ar 1 and Ar 2 in the general formula (III) include the same examples as described above.
  • Ar 1 ′ and Ar 2 ′ are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms. Ar 1 ′ and Ar 2 ′ may each be plural.
  • R 1 one R 1Q are each independently a hydrogen atom, a substituted or unsubstituted Ariru group with carbon number 6 50, a substituted or unsubstituted atoms 5 50 aromatic heterocyclic group, a substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom number of 5 to 5 An aryloxy group of 50, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarboxy group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, A nitro group and a hydroxyl group.
  • R 9 one R 1 (
  • Examples of the aryl groups of Ar 1 ′ and Ar 2 ′ in the general formula (IV) include the same examples as described above.
  • R 1 —R 1Q represents an aryl group, an aromatic heterocyclic group, an alkyl group, an alkoxy group, an aralkyl group, an aryloxy group, an arylthio group or an alkoxycarbo group.
  • alkyl group include the same examples as described above.
  • the substituents of the above groups include a halogen atom, a hydroxyl group, a nitro group, a cyano group, an alkyl group, an aryl group, a cycloalkyl group, an alkoxy group, an aromatic heterocyclic group, an aralkyl group, an aryloxy group, Examples include an arylthio group, an alkoxycarbonyl group, and a sulfoxyl group.
  • asymmetric anthracene-based compound represented by the general formula (I)-(IV) are shown below. The compounds are not limited to these exemplified compounds.
  • the asymmetric pyrene compound is preferably a compound represented by the following general formula (V).
  • Ar 3 and Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. However, Ar 3 and Ar 4 are not identical in structure.
  • R 11 to R 18 each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, substituted or unsubstituted Substituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom number of 5 to 5 An aryloxy group of 50, a substituted or unsubstituted arylthio group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarboxy group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, A nitro group and a hydroxyl group. ]
  • Examples of the aryl groups of Ar 3 and Ar 4 in the general formula (V) include those similar to Ar 1 and Ar 2 in the general formula (I).
  • Examples of the aryl group, the aromatic heterocyclic group, the alkyl group, the alkoxy group, the aralkyl group, the aryloxy group, the arylthio group and the alkoxycarbol group represented by R 11 to R 18 in the general formula (V) are as defined above. Examples are the same as R 1 to R 8 in the formula (I).
  • the asymmetric pyrene compound used in the white organic EL device of the present invention is preferably a compound represented by the following formula (VI)-(IX).
  • Ar 5 is a substituted or unsubstituted fused aromatic ring residue having 10 to 50 nuclear carbon atoms.
  • Ar 6 is a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. Ar 6 may be plural.
  • X 1 and X 2 each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon atom; Alkyl group of 1 to 50, substituted or unsubstituted alkoxy group of 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group of 6 to 50 carbon atoms, substituted or unsubstituted aralkyl group of 5 to 50 carbon atoms A substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group. .
  • d is an integer from 0 to 8
  • e is an integer from 0 to 4
  • n 1 is an integer from 1 to 3.
  • Examples of the condensed aromatic ring residue of Ar 5 in the general formula (VI) include those similar to Ar in the general formula (II).
  • Examples of the aryl group of Ar 6 in the general formula (VI) include the same examples as described above.
  • Examples of the aryl group, the aromatic heterocyclic group, the alkyl group, the alkoxy group, the aralkyl group, the aryloxy group, the arylthio group and the alkoxycarbonyl group represented by X 1 and X 2 in the general formula (VI) are respectively as described above. A similar example is given. [0028] [Dani 9]
  • Ar 7 and Ar 8 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. Ar 7 and Ar 8 may each be plural.
  • X 3 , X 4 and X 5 are each independently a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, Substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom Aryloxy group having the number of 5-50, substituted or unsubstituted arylthio group having the number of nuclear atoms of 5-50, substituted or unsubstituted alkoxycarboxy group having 1 to 50 carbon atoms, carboxyl group, halogen atom, cyano group , A nitro group and a hydroxyl group.
  • f and g are each 0 4 integer, h is an integer of 0 8, n 2 is an integer of 1 one 3.
  • a symmetric group is bonded to the 1- and 6-positions of the central pyrene.
  • Examples of the aryl groups of Ar 7 and Ar 8 in the general formula (VII) include the same examples as described above.
  • a 3 and A 4 are each independently a substituted or unsubstituted fused aromatic ring residue having 10 to 20 nuclear carbon atoms.
  • Ar 9 and Ar 1Q are each independently a hydrogen atom or a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms. Ar 9 and Ar 1Q may each be plural.
  • R 11 — R 2 ° each independently represent a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, Unsubstituted alkyl group having 1 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 carbon atoms, substituted or unsubstituted nuclear atom number 5 — 50 aryloxy groups, substituted or unsubstituted 5 to 50 aryloxy groups, substituted or unsubstituted 1 to 50 alkoxycarboyl groups, carboxyl groups, halogen atoms, cyano groups , -Toro and hydroxyl.
  • R 19 — R 2 ° may be plural each.
  • Examples of the condensed aromatic ring residue of A 3 and A 4 in the general formula (VIII) include those having the same valence as those of the condensed aromatic ring residue of Ar in the general formula (II). .
  • Examples of the aryl groups of Ar 9 and Ar 1Q in the general formula (VIII) include the same examples as described above.
  • Examples of an aryl group, an aromatic heterocyclic group, an alkyl group, an alkoxy group, an aralkyl group, an aryloxy group, an arylthio group and an alkoxycarbol group represented by R 11 —R 2 ° in the general formula (VIII) are as described above. An example similar to the above is given.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms.
  • X 6 and X 7 each independently represent a substituted or unsubstituted aryl group having 6 to 50 nuclear carbon atoms, a substituted or unsubstituted aromatic heterocyclic group having 5 to 50 nuclear atoms, a substituted or unsubstituted carbon atom; Alkyl group of 1 to 50, substituted or unsubstituted alkoxy group of 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group of 6 to 50 carbon atoms, substituted or unsubstituted aralkyl group of 5 to 50 carbon atoms A substituted or unsubstituted aryloxy group having 5 to 50 nuclear atoms, a substituted or unsubstituted alkoxycarbon group having 1 to 50 carbon atoms, a carboxyl group, a halogen atom, a cyano group, a nitro group, and a hydroxyl group. .
  • L is a substituted or unsubstituted arylene group having 6 to 50 nuclear carbon atoms or a substituted or unsubstituted divalent aromatic heterocyclic group having 3 to 50 nuclear atoms.
  • i and j are integers of 0-8, respectively, and n 3 and n 4 are integers of 1-3. ]
  • Examples of the aryl groups of Ar 11 and Ar 12 in the general formula (IX) include the same examples as described above.
  • X 6 and X 7 are an aryl group, an aromatic heterocyclic group, an alkyl group, an alkoxy group, an aralkyl group, an aryloxy group, an arylthio group and an alkoxycarboxy group.
  • alkyl group include the same examples as described above.
  • Examples of the arylene group of L and the divalent aromatic heterocyclic group in the general formula (IX) include the aryl group and the aromatic heterocyclic group of Ar 1 and Ar 2 of the general formula (I). Is divalent.
  • asymmetric pyrene-based compound represented by the general formulas (VI) to (IX) are shown below, but are not limited to these exemplified compounds.
  • the blue dopant used in the white organic EL device of the present invention is not particularly limited, but is selected from styrylamine, an amine-substituted styryl compound, an amine-substituted condensed aromatic ring and a condensed aromatic ring-containing compound.
  • the compound is at least one compound.
  • the styrylamine and the amine-substituted styrylid conjugate include, for example, the following general formula (i)
  • Examples of the condensed aromatic ring-containing compound in which the compound represented by ii] is the compound represented by the following general formula [iii] include:
  • Ar 1 ”, Ar 2 ” and Ar 3 each independently represent a substituted or unsubstituted aromatic group having 6 to 40 carbon atoms, and at least one of them represents styryl. And p represents an integer of 1 to 3.
  • aromatic group examples include the same as described above.
  • Ar "and Ar 5" each independently represent a substituted or unsubstituted Ariren group with carbon number 6- 30, E 1 and E 2 each independently represent a substituted or unsubstituted carbon
  • U and Z or V are substituents containing an amino group, and the amino group is preferably an arylamino group.
  • Specific examples of the aryl group and the alkyl group include the same as described above, and specific examples of the arylene group include an example in which one of the aryl group-based hydrogen atoms is removed.
  • A is a substituted or unsubstituted alkyl or alkoxy group having 1 to 16 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 carbon atoms, a substituted or unsubstituted 6 to 30 carbon atoms.
  • a substituted alkylamino group or a substituted or unsubstituted arylamino group having 6 to 30 carbon atoms B represents a condensed aromatic ring residue having 10 to 40 carbon atoms, and r represents an integer of 14 to 14.
  • Specific examples of each group such as an alkyl group include the same as those described above.
  • the white organic EL device of the present invention is a white organic EL device including an anode, a blue light emitting layer, a yellow-red light emitting layer, and a cathode in this order. It is preferable to include the same host material as the blue light emitting layer and a yellow-red dopant.
  • the yellow-red dopant is preferably a compound having a fluoranthene skeleton or a perylene skeleton, and is a compound having a plurality of fluoranthene skeletons. It is even more preferred. Further, it is preferable that the compound is a compound having a fluorescence peak wavelength of the yellow-red dopant power of 540 nm to 700 nm.
  • Examples of the compound having a fluoranthene skeleton or perylene skeleton include a compound represented by the following general formula [1]-[17].
  • each of X 1 and X 2 ° independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, Straight-chain, branched or cyclic C1-C20 alkoxy group, substituted or unsubstituted C6-C30 aryl group, substituted or unsubstituted C6-C30 aryloxy group, substituted or unsubstituted C6-C30 arylamino group, substituted or unsubstituted C1-C30 alkylamino group, substituted or unsubstituted C7-30 arylalkylamino group, or substituted or unsubstituted carbon It is an alkenyl group of the number 8-30, and the adjacent substituent and X 1 -X 2Q may combine to form a cyclic structure. When adjacent substituents are aryl groups, the substituents may be the same. ]
  • the compound of the general formula [1]-[15] preferably contains an amino group or an alkenyl group.
  • R 1 -R 4 are each independently an alkyl group having 1-20 carbon atoms or a substituted or unsubstituted aryl group having 6-30 carbon atoms. Yes, R 1 and R 2 and / or R 4 may be bonded via a carbon-carbon bond or O-, 1-S-.
  • R 5 — R 16 are a hydrogen atom, a linear, branched or cyclic alkyl group having 120 carbon atoms, a linear, branched or cyclic alkoxy group having 120 carbon atoms, a substituted or unsubstituted carbon number 6-30 aryl group, substituted or unsubstituted 6-30 aryloxy group, substituted or unsubstituted 6-30 arylamino group, substituted or unsubstituted alkylamino group having 1-30 carbon atoms
  • the fluorescent compound having a fluoranthene skeleton as described above preferably contains an electron-donating group in order to obtain high efficiency and long life, and the electron-donating group is preferably replaced or unsubstituted. Is an arylamino group.
  • the fluorescent conjugate having a fluoranthene skeleton preferably has 6 or more condensed rings, more preferably 5 or more condensed rings. This is because the fluorescent compound shows a fluorescent peak wavelength of 540-700 nm, and the blue light emitting material and the fluorescent compound This is because the strong light emission overlaps to give a white color.
  • the fluorescent compound preferably has a plurality of fluoranthene skeletons, and a particularly preferable fluorescent conjugate has an electron donating group and a fluoranthene skeleton or a perylene skeleton, and has a fluorescence peak wavelength of 540 to 700 nm. It is a thing.
  • the white organic EL device of the present invention is manufactured on a light-transmitting substrate.
  • the translucent substrate referred to here is a substrate that supports the organic EL element.
  • a transmissive substrate having a transmittance of 50% or more in a visible region of 400 to 700 nm of 50% or more is preferred.
  • Polymer plates are examples. Examples of the glass plate include soda lime glass, norium-strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, norium borosilicate glass, and quartz. Examples of the polymer plate include polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, and polysulfone.
  • a hole injection layer, a hole transport layer, an organic semiconductor layer, and the like can be provided between the anode and the light emitting layer.
  • the hole injection layer and the hole transport layer are layers that help inject holes into the light-emitting layer and transport the holes to the light-emitting region.
  • the hole mobility is large and the ionization energy is usually as small as 5.5 eV or less.
  • the hole injection layer is provided to adjust the energy level, for example, to alleviate a sudden change in the energy level.
  • a material that transports holes to the light-emitting layer with a lower electric field strength is preferable.
  • the hole mobility force is, for example, 10 4 to 10 6 VZcm. during application, it is preferable a least be 10- 6 cm 2 ZV 'seconds.
  • the material for forming the hole injection layer and the hole transport layer is not particularly limited as long as it has the above-mentioned preferable properties. Conventionally, it is commonly used as a hole charge transport material for photoconductive materials. Any known material used for the hole injection layer of the organic EL device or the organic EL device can be selected and used.
  • a material for forming such a hole injection layer and a hole transport layer specifically, for example, a triazole derivative (see US Pat. No. 3,112,197) and an oxaziazole derivative (US Patent No. 3,189,447), imidazole derivative (Japanese Patent Publication No. 37-1) No. 6096), polyarylalkane derivatives (U.S. Pat. Nos. 3,615,402, 3,820,989, 3,542,544, and JP-B-45-555).
  • No. 36656 pyrazoline derivatives and pyrazolone derivatives
  • No. 5 No. 49-105537, No. 55-51086, No. 56-80051, No. 56-88141, No. 57-45545, No. 54-112637, No. 55-74546 ), Phenylenediamine derivatives (U.S.
  • Pat. No. 3,615,404 Japanese Patent Publication Nos. 51-10105, 46-3712, 47-25336, and 54-336). Five Nos. 3435, 54-110536, 54-119925, etc., arylamine derivatives (U.S. Pat. Nos. 3,567,450, 3,180,703 and 3,180,703). No. 3,240,597, No. 3,658,520, No. 4,232,103, No. 4,175,961, No. 4,012,376 Specification, JP-B-49-35702, JP-A-39-27577, JP-A-55-144250, JP-A-56-119132, JP-A-56-22437, West German Patent No.
  • the hole injection layer or the hole transport layer in the present invention may be composed of one or more layers of the above-mentioned materials, or may be a hole injection layer or a layer of another compound. A layer in which a hole transport layer is laminated may be used.
  • the thickness of the hole injection layer or the hole transport layer is not particularly limited, but is preferably 20 to 200 nm.
  • the organic semiconductor layer is a layer which assists hole injection or electron injection into the light emitting layer, and preferably has a conductivity of 10-1 QS / cm or more.
  • the material for such an organic semiconductor layer include thiophene-containing oligomers, conductive oligomers such as arylamine-containing oligomers described in JP-A-8-193191, and conductive dendrimers such as arylamine-containing dendrimers. Is mentioned.
  • the thickness of the organic semiconductor layer is not particularly limited, but is preferably 10-1, OOOnm.
  • an electron injection layer, an electron transport layer, an adhesion improving layer, and the like can be provided between the cathode and the light emitting layer.
  • the electron injection layer and the electron transport layer are layers that help inject electrons into the light emitting layer, and have high electron mobility.
  • the electron injection layer is provided to adjust the energy level, for example, to alleviate sudden changes in the energy level.
  • the adhesion improving layer is a layer made of a material having a particularly good adhesion to the cathode in the electron injection layer.
  • Materials used for the electron injection layer and the electron transport layer include 8-hydroxyquinoline and Is preferably a metal complex of a derivative thereof.
  • the metal complex of 8-hydroxyquinoline or a derivative thereof include a metal chelate oxinoid conjugate containing a chelate of oxine (generally 8-quinolinol or 8-hydroxyquinoline), for example, tris (8-quinolinol). )
  • a metal chelate oxinoid conjugate containing a chelate of oxine generally 8-quinolinol or 8-hydroxyquinoline
  • Aluminum can be used.
  • the oxadiazole derivative the following general formula (1)-(3)
  • Ar 17 , Ar 2, Ar 19 , Ar Ar and Ar 5 each represent a substituted or unsubstituted aryl group
  • Ar 17 and Ar 18 , Ar 19 and Ar 21 , Ar 22 And Ar 25 may be the same or different from each other Ar 2 °
  • Ar 23 and Ar 24 each represent a substituted or unsubstituted arylene group
  • Ar 23 and Ar 24 are the same or different from each other
  • Examples of the aryl group in the general formulas (1) and (3) include a phenyl group, a biphenyl group, an antral group, a perylenyl group, and a pyrenyl group.
  • examples of the arylene group include a phenylene group, a naphthylene group, a biphenylene group, an anthracene group, a perylenylene group, and a pyrenylene group.
  • Examples of the substituent on these include an alkyl group having 110 carbon atoms, an alkoxy group having 110 carbon atoms, and a cyano group.
  • As the electron transfer conjugate those having good thin film forming properties are preferably used.
  • a 1 -A ° are each independently a nitrogen atom or a carbon atom.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms or a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted An aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkyl group; Is an unsubstituted alkoxy group having 120 carbon atoms.
  • one of Ar 1 and Ar 2 is a substituted or unsubstituted fused ring group having 10 to 60 nuclear carbon atoms or a substituted or unsubstituted mono-hetero fused ring group having 3 to 60 nuclear carbon atoms. is there.
  • L 1 and L 2 each independently represent a single bond, a substituted or unsubstituted arylene group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroarylene group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted It is a substituted fluorenylene group.
  • R is a hydrogen atom, a substituted or unsubstituted aryl group having 6 to 60 nuclear carbon atoms, a substituted or unsubstituted heteroaryl group having 3 to 60 nuclear carbon atoms, or a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms Or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is 2 or more, a plurality of Rs may be the same or different, and May be bonded to each other to form a carbocyclic aliphatic ring or a carbocyclic aromatic ring. )
  • each group such as an alkyl group includes the same groups as described above.
  • HAr is a nitrogen-containing heterocyclic ring having 3 to 40 carbon atoms which may have a substituent
  • L is a single bond, having 6 to 60 carbon atoms which may have a substituent.
  • Ariren group has a substituent!, it also, have a Teroariren group or substituent to the carbon number of 3-60's! /, I also! /, is a full Oreniren group
  • Ar 1 is, A divalent aromatic hydrocarbon group having 6 to 60 carbon atoms which may have a substituent
  • Ar 2 represents an aryl group or a substituted group having 6 to 60 carbon atoms which may have a substituent A nitrogen-containing heterocyclic derivative having 3 to 60 carbon atoms. Specific examples of each group such as an aryl group include the same as described above. [0063]
  • X and Y are each independently a saturated or unsaturated hydrocarbon group having 16 to 16 carbon atoms, an alkoxy group, an alkoxy-alkoxy group, an alkyloxy group, a hydroxy group, a substituted or unsubstituted An unsubstituted aryl group, a substituted or unsubstituted heterocycle, or a structure in which X and Y combine to form a saturated or unsaturated ring;
  • ком ⁇ онент 14 are each independently hydrogen, a halogen atom, a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, an alkoxy group, an aryloxy group, a perfluoroalkyl group, a perfluoroalkoxy group, Amino group, alkylcarbyl group, arylcarbyl group, alkoxycarbyl group, aryloxycarbonyl group, azo group, alkylcarboxy group, arylcarboxy group, alkoxycarboxy group, aryloxy group Carboxy group, sulfyl group, sulfol group, sulfal group, silyl group, rubamoyl group, aryl group, heterocyclic group, alkenyl group, alkyl group, nitro group, formyl group , Nitroso, formyloxy, isocyano, sinate, isocyanate, thiosinate, isothi
  • R—R and Z are each independently a hydrogen atom, a saturated or unsaturated carbon
  • X represents a hydrogen group, an aromatic group, a heterocyclic group, a substituted amino group, a substituted boryl group, an alkoxy group or an aryloxy group, and X, Y and Z each independently represent a saturated or unsaturated carbon atom.
  • n Represents an integer of 1 2 to 3, and when n is 2 or more, Z may be different. Where n is 1
  • R force hydrogen atom or substituted boryl group
  • Z force S methyl group when n is 3
  • Q 1 and Q 2 each independently represent a ligand represented by the following general formula (9), and L represents a halogen atom, a substituted or unsubstituted alkyl group, A substituted cycloalkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted heterocyclic group, OR 1 (R 1 is a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, A substituted or unsubstituted aryl group or a substituted or unsubstituted heterocyclic group) or -O-Ga-Q 3 (Q 4 ) (Q 3 and Q 4 are the same as Q 1 and Q 2 ) Represents the ligand shown. ]
  • rings A 1 and A 2 are a fused 6-membered aryl ring structure which may have a substituent It is. ]
  • This metal complex has a strong electron-injecting ability, which has a strong property as an n-type semiconductor. Furthermore, since the energy generated during complex formation is low, the bond between the metal and the ligand of the formed metal complex is strengthened, and the fluorescence quantum efficiency as a luminescent material is also increased.
  • substituents of the rings A 1 and A 2 forming the ligand of the general formula (9) include chlorine, bromine, iodine, a halogen atom of fluorine, a methyl group, an ethyl group, a propyl group, Substituted or unsubstituted alkyl, phenyl, naphthyl, tert-butyl, pentyl, hexyl, heptyl, octyl, stearyl, trichloromethyl, etc.
  • Substituted or unsubstituted aryloxy groups such as pentafluorophenyl, 3-trifluoromethylphenoxy, etc., methylthio, ethylthio, tert-butylthio, hexylthio, octylthio,
  • a substituted or unsubstituted alkylthio group such as a trifluoromethylthio group, a phenylthio group, a p-trifluorophenyl group, a ptert-butylphenylthio group, a 3-fluorophenylthio group, a pentafluorophenylthio group Or 3-substituted or unsubstituted arylthio, cyano, nitro, and amino groups such as trifluoromethylphenylthio group Mono- or di-substituted amino groups such as methylamino group, acetylamino group,
  • the electron injection layer or the electron transport layer in the present invention may be composed of one or more of the above-mentioned materials, or may be composed of another compound. Layered layers may be used.
  • the thickness of the electron injecting layer or the electron transporting layer is not particularly limited, but is preferably 111 nm.
  • the white organic EL device of the present invention may contain a reducing dopant in the region for transporting electrons or in the interface region between the cathode and the organic layer.
  • a reducing dopant is defined as a substance that can reduce an electron transporting compound. Therefore, various substances having a certain reducing property are used, for example, alkali metals, alkaline earth metals, rare earth metals, oxides of alkali metals, halides of alkali metals, and alkaline earth metals.
  • At least one selected substance is preferably used.
  • preferred reducing dopants include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV) and Cs (work function: 1.95 eV). At least one alkali metal selected from the group consisting of Ca (work function: 2.9 eV), Sr (work function: 2.0-2.5 eV) and Ba (work function: 2.52 eV) If at least one alkaline earth metal is selected, the work function is 2.9 eV or less. preferable.
  • more preferred reducing dopants are at least one alkali metal selected from the group consisting of K, Rb and Cs, more preferably Rb and Cs, most preferably Cs It is.
  • the emission luminance of the organic EL device can be improved and the life can be prolonged.
  • a reducing dopant having a work function of 2.9 eV or less a combination of these two or more kinds of alkali metals is also preferable.
  • a combination containing Cs, for example, Cs and Na, Cs and K, Cs and A combination of Rb or Cs with Na and ⁇ is preferred.
  • the white organic EL device of the present invention may further include an electron injection layer composed of an insulator or a semiconductor between the cathode and the organic layer. At this time, current leakage can be effectively prevented, and the electron injection property can be improved. Further, it is preferable that the inorganic compound of the insulator or the semiconductor is a microcrystalline or amorphous insulating thin film. If the electron transporting layer is composed of these insulating thin films, a more uniform thin film is formed, so that pixel defects such as dark spots can be reduced.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, halides of alkali metals and halides of alkaline earth metals.
  • the electron injecting layer is preferably formed of such an alkali metal chalcogenide in that the electron injecting property can be further improved.
  • preferred alkali metal chalcogenides include, for example, Li0, LiO, NaS, NaSe, and NaO,
  • potassium earth metal chalcogenides include CaO, BaO, SrO, BeO, BaS and CaSe.
  • Preferred alkali metal halides include, for example, LiF, NaF, KF, LiCl, KC1, and NaCl.
  • Preferred alkaline earth metal halides include, for example, fluorine such as CaF, BaF, SrF, MgF and BeF.
  • the semiconductor Ba, Ca, Sr, Yb, Al, Ga, In, Li, Na, Cd, Mg, Si,
  • a single type or a combination of two or more types, such as an oxide, a nitride or an oxide nitride containing at least one element of Ta, Sb and Zn is exemplified.
  • At least one of the light emitting layer and the organic layer between the light emitting layer and the anode preferably contains an oxidizing agent.
  • an oxidizing agent include a Lewis acid, various quinone derivatives, a dicyanoquinodimethane derivative, and salts formed with an aromatic amamine and a Lewis acid.
  • Lewis acids include iron chloride, Examples include Shiridani antimony and Shiridani aluminum.
  • At least one of the light-emitting layer and the organic layer between the light-emitting layer and the cathode preferably contains a reducing agent.
  • Particularly preferred alkali metals are Cs, Li, Na, and K.
  • the white organic EL device of the present invention may have an inorganic compound layer in contact with the anode and the cathode or the cathode.
  • the inorganic compound layer functions as an adhesion improving layer.
  • Preferred inorganic compounds used in the inorganic compound layer include alkali metal oxides, alkaline earth oxides, rare earth oxides, alkali metal halides, alkaline earth halides, rare earth halides, SiO, AIO, SiN, SiON, AION ⁇ GeO, LiO, LiON ⁇ TiO
  • the components of the layer in contact with the anode are SiO, AIO, SiN, SiON, AION, GeO, C
  • a component of the layer in contact with the cathode LiF, MgF, CaF, MgF, and NaF are preferable.
  • the thickness of the inorganic compound layer is particularly limited.
  • it is preferably 0.1 nm to 100 nm.
  • the method of forming the organic thin film layer including the light emitting layer and the inorganic compound layer of the white organic EL device of the present invention is not particularly limited, and examples thereof include a vapor deposition method, a spin coating method, a casting method, and an LB method. Can be applied.
  • the electron injection layer is formed by the vapor deposition method.
  • the optical layer is also preferably formed by vapor deposition.
  • the anode of the white organic EL device of the present invention it is preferable to use a metal, an alloy, an electrically conductive compound having a large work function (for example, 4.OeV or more), or a mixture thereof. More specifically, one kind of indium tin oxide (ITO), indium zinc oxide, tin, zinc oxide, gold, platinum, and radium can be used alone or in combination of two or more kinds.
  • the thickness of the anode is not particularly limited, but is preferably in the range of 10-1,00 Onm, more preferably in the range of 10-200 nm. .
  • the cathode it is preferable to use a metal, an alloy, a conductive compound, or a mixture thereof having a low work function (for example, less than 4. OeV).
  • a metal, an alloy, a conductive compound, or a mixture thereof having a low work function for example, less than 4. OeV.
  • one kind of magnesium, aluminum, indium, lithium, sodium, silver and the like can be used alone or in combination of two or more kinds.
  • the thickness of the cathode is not particularly limited, but is preferably in the range of 10-100 nm, more preferably in the range of 10-200 nm.
  • At least one of the anode and the cathode is substantially transparent, and more specifically, has a light transmittance of 10% or more, so that light emitted from the light emitting layer can be effectively extracted to the outside.
  • Electrodes can be manufactured by vacuum evaporation, sputtering, ion plating, electron beam evaporation, CVD, MOCVD, plasma CVD, etc.
  • a 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with an ITO transparent electrode (manufactured by Geomatic) was subjected to ultrasonic cleaning in isopropyl alcohol for 5 minutes, and then to UV ozone cleaning for 30 minutes.
  • the glass substrate with the transparent electrode line after washing is mounted on the substrate holder of the vacuum evaporation apparatus, and first, the following compound is formed to a thickness of 60 nm so as to cover the transparent electrode on the surface where the transparent electrode line is formed.
  • HI1 hereinafter abbreviated as “HI1 film” was formed. This HI1 film functions as a hole injection layer.
  • TBDB film The following compound (TBDB) (hereinafter abbreviated as “TBDB film”) was formed into a film having a film thickness of 20 nm.
  • This TBDB film functions as a hole transport layer.
  • the above compound (BH1) as an asymmetrical condensed ring compound and the following compound (BD1) as a blue dopant were deposited at a weight ratio of 40: 2 at a film thickness of lOnm. This was formed into a blue light emitting layer.
  • a compound (BH1) and a compound (RD1) as a yellow-red dopant were deposited at a weight ratio of 40: 1 to form a yellow-red emitting layer at a film thickness of 30 nm.
  • a tris (8-quinolinol) aluminum film (hereinafter abbreviated as “Alq film”) having a thickness of lOnm was formed as an electron transport layer.
  • Alq film 8-quinolinol aluminum film having a thickness of lOnm was formed as an electron transport layer.
  • LiF was deposited as an electron injection layer by lnm
  • A1 was deposited as a cathode by 150nm to produce an organic EL device.
  • the chromaticity coordinates (CIE1931 chromaticity coordinates) and emission luminance were measured using a Minorta spectral luminance radiometer CS-1000.
  • the half-life is measured by measuring the time until the luminance is reduced to half by driving at room temperature and constant current with an initial luminance of lOOOOnit.
  • the initial luminance was 300 nit
  • the constant current was maintained
  • the luminance retention rate after driving at 85 ° C for 500 hours was measured.
  • Example 1 the compound (BH2) (Example 2), the compound (BH3) (Example 3), the compound (BH4) (Example Example 4)
  • the organic EL was prepared in exactly the same manner except that the compound (BH5) (Example 5), the compound (BH6) (Example 6), and the compound (BH7) (Example 7) were used.
  • a device was manufactured, and the obtained device was subjected to initial performance, half-life, and heat resistance tests in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 In Example 1, except that the above compound (BH14) (Example 8) and the above compound (BH15) (Example 9) were used instead of the compound (BH1) as the asymmetric condensed ring-containing compound.
  • An organic EL device was prepared in the same manner, and the obtained device was subjected to the initial performance, half-life, and heat resistance tests in the same manner as in Example 1. Table 1 shows the results.
  • An organic EL device was prepared in exactly the same manner as in Example 1 except that the following compound (BD2) was used in place of the compound (BD1) as the blue dopant, and the obtained device was prepared as in Example 1.
  • the initial performance, the half life and the heat resistance test were performed in the same manner as described above. Table 1 shows the results.
  • Example 1 instead of forming the blue light emitting layer and the yellow-red light emitting layer of Example 1, on the TBDB film, the following anthracene derivative DPVDPAN and a compound (BD1) were used as a blue dopant at a film thickness of lOnm. Was deposited at a weight ratio of 40: 1 to form a blue light-emitting layer. Further, a 30 nm-thick anthracene derivative DPVDPAN and a compound (rdl) as a red dopant were deposited at a weight ratio of 40: 1 to form a yellow film. An organic EL device was prepared in the same manner except that the device was formed as a monochromatic light emitting layer. The obtained device was subjected to the initial performance, half life, and heat resistance tests in the same manner as in Example 1. Table 1 shows the results.
  • Example 1 Except for using the following compound (bhl), the following compound (b h2), the following compound (bh3), the following compound (bh4), and the following compound (bh5) in place of the compound (BH1) in Example 1, An organic EL device was produced in the same manner, and the obtained device was subjected to the initial performance, half-life and heat resistance tests in the same manner as in Example 1. Table 1 shows the results.
  • the organic EL devices of Examples 1 to 10 have a small chromaticity change due to a heat resistance test, high luminous efficiency, and an extremely long lifetime, as compared with Comparative Examples 1 to 16.
  • the white organic EL device of the present invention has a very long life due to a small change in chromaticity, a high luminous efficiency and a high heat resistance, and is highly practical.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

 本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、発光層が青色系発光層と黄色~赤色系発光層との積層からなり、該発光層が非対称含縮合環系化合物を含む白色系有機エレクトロルミネッセンス素子であり、色度変化が少なく、発光効率及び耐熱性が高く、極めて長寿命な白色系有機エレクトロルミネッセンス素子を提供する。

Description

白色系有機エレクト口ルミネッセンス素子
技術分野
[0001] 本発明は、白色系有機エレクト口ルミネッセンス (EL)素子に関し、特に、色度変化 が少なぐ発光効率及び耐熱性が高ぐ極めて長寿命な白色系有機エレクトロルミネ ッセンス素子に関するものである。
背景技術
[0002] 近年、ディスプレイ用の有機 EL素子の開発力 盛んに行われている。特に、白色 系有機 EL素子の開発は、モノカラー表示装置としての用途、ノ ックライト等の照明用 途及びカラーフィルターを使用したフルカラー表示装置等に使用できるため積極的 に行われている。
有機 ELにより白色発光を得る方法は数多く開示されている。これらの方法は、 1種 類の発光材料だけで白色を得るものは少なぐ通常は 2種類又は 3種類の発光材料 を一つの有機 ELの中で、同時に発光させている。 3種類の発光材料を使用する場 合は、光の三原色に対応する赤、青、緑の発光の組み合わせで白色にするが、色度 制御が困難であり繰り返し再現性が悪いという問題があった。 2種類の発光材料を使 用する場合は、青系とその補色となる黄色一赤色系の発光材料を選択するが、黄色 一赤色系の発光が強くなることが多ぐ色度変化を引き起こし易い。例えば、特許文 献 1の参考例 1及び 2に示されているように、従来の白色有機 ELは青色が低下し易く 、色度変化の問題点を有していた。また、青色系ドーパントと黄色一赤色系ドーパン トを同時にドープし、ドープ比を調整することでも、白色発光が得られるが、赤が強く なりやすいことに加え、青力 赤へエネルギー移動し易いため、赤味を帯びた白色に なりがちである。従って、白色を得るには、黄色一赤色系ドーパントを非常に希薄にド ープする必要があり、やはり再現性が難しいという問題があった。さらに、発光層を 2 分割するタイプにおいて、陽極側発光層を黄色一赤色系発光層、陰極側を青色系 発光層とした積層型がある。この場合、効率の面で優れているが、白色を得るために は黄色一赤色系発光を押さえるため、黄色一赤色系発光層を青色系発光層に比べ て、膜厚を薄くしたり、ドープ濃度を薄くする必要があり、素子作製が難しくなつてい た。具体的には黄色一赤色系発光層の膜厚を、 1一 2nm程度にしなければ、白色発 光とならないことが多力つた。この膜厚は、通常の低分子系有機 ELの分子サイズと同 等レベルの薄さであること力も制御が極めて難しいと言える。
これらの課題を解決するものとして、特許文献 2には、発光層を 2分割するタイプに おいて、発光層の発光領域が偏りやすい陽極側の発光層を青色系発光層とすること で、発光色が赤色に偏りがちな傾向を打ち消した白色系有機 EL素子が開示されて いる。
しカゝしながら、この白色系有機 EL素子を、フルカラーディスプレイ用途或いは車載 向けなどの様々な表示機器への適用を考えた場合、連続駆動時の輝度安定性、す なわち寿命が必ずしも十分とは ヽえなかった。
特許文献 1:特開 2001— 52870号公報
特許文献 2:特開 2003— 272857号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明は、前記の課題を解決するためになされたもので、色度変化が少なぐ発光 効率及び耐熱性が高ぐ極めて長寿命な白色系有機 EL素子を提供することを目的 とする。
課題を解決するための手段
[0004] 本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、白色系有機 E L素子を製造する際に、発光層を青色系発光層と黄色一赤色系発光層との積層から なるようにし、さらに発光層に非対称含縮合環系化合物を含有させることにより、著し く寿命を延ばすことができることを見出し本発明を完成したものである。
すなわち、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層から なる有機薄膜層が挟持されている有機 EL素子において、発光層が青色系発光層と 黄色一赤色系発光層との積層からなり、該発光層が非対称含縮合環系化合物を含 む白色系有機 EL素子を提供するものである。 発明の効果
[0005] 本発明の白色系有機 EL素子は、色度変化が少なぐ発光効率及び耐熱性が高く 、極めて長寿命であり、実用性が高い。
発明を実施するための最良の形態
[0006] 本発明の白色系有機 EL素子は、陰極と陽極間に少なくとも発光層を含む一層又 は複数層からなる有機薄膜層が挟持されている有機 EL素子において、発光層が青 色系発光層と黄色一赤色系発光層との積層からなり、該発光層が非対称含縮合環 系化合物を含む。
[0007] 本発明の白色系有機 EL素子の層構成としては、例えば、以下のような構成を有し ているものが挙げられる。
(1)陽極 Z青色系発光層 Z黄一赤色系発光層 Z陰極
(2)陽極 Z正孔輸送層 Z青色系発光層 Z黄一赤色系発光層 Z陰極
(3)陽極 Z青色系発光層 Z黄一赤色系発光層 Z電子輸送層 Z陰極
(4)陽極 Z正孔輸送層 Z青色系発光層 Z黄一赤色系発光層 Z電子輸送層 Z陰極
(5)陽極 Z正孔注入層 Z正孔輸送層 Z青色系発光層 Z黄一赤色系発光層 Z電子 輸送層 Z陰極
(6)陽極 Z正孔輸送層 Z青色系発光層 Z黄一赤色系発光層 Z電子輸送層 Z電子 注入層 z陰極
(7)陽極 Z正孔注入層 Z正孔輸送層 Z青色系発光層 Z黄一赤色系発光層 Z電子 輸送層 Z電子注入層 Z陰極
(8)陽極 Z黄一赤色系発光層 Z青色系発光層 Z陰極
(9)陽極 Z正孔輸送層 Z黄一赤色系発光層 Z青色系発光層 Z陰極
(10)陽極 Z黄一赤色系発光層 Z青色系発光層 Z電子輸送層 Z陰極
(11)陽極 Z正孔輸送層 Z黄一赤色系発光層 Z青色系発光層 Z電子輸送層 Z陰極
(12)陽極 z正孔注入層 Z正孔輸送層 Z黄一赤色系発光層 Z青色系発光層 Z電子 輸送層 Z陰極
(13)陽極 z正孔輸送層 Z黄一赤色系発光層 Z青色系発光層 Z電子輸送層 Z電子 注入層 z陰極 (14)陽極 Z正孔注入層 Z正孔輸送層 Z黄一赤色系発光層 Z青色系発光層 Z電子 輸送層 Z電子注入層 Z陰極
[0008] 本発明の白色系有機 EL素子は、このように発光層が青色系発光層と黄色一赤色 系発光層とに 2分割された構造であれば良ぐ例えば、青色系発光層や黄色一赤色 系発光層が、それぞれ 2層以上からなる多層構造であってもよいが、前記発光層が、 青色系発光層と黄色一赤色系発光層との 2層力 なるものが好ましい。
また、本発明の白色系有機 EL素子は、青色系発光層が陽極側、黄色一赤色系発 光層が陰極側に積層している (1)一 (7)の層構成のものが好ましい。
青色系発光層及び黄一赤色系発光層の膜厚は、それぞれ 5nm以上であると好ま しぐ青色系発光層は、さらに好ましくは 5— 30nm、特に好ましくは 7— 30nm、最も 好ましくは 10— 30nmである。青色系発光層の膜厚が 5nm以上であれば発光層形 成や色度の調整が困難となることがなぐ 30nm以下であれば駆動電圧が上昇するこ とがない。また、黄色一赤色系発光層の膜厚は、さらに好ましくは 10— 50nm、特に 好ましくは 20— 50nm、最も好ましくは 30— 50nmである。黄色一赤色系発光層の 膜厚が 5nm以上であれば発光効率が低下することがなぐ 50nm以下であれば駆動 電圧が上昇する恐れがな!、。
[0009] また、本発明の白色系有機 EL素子は、前記青色系発光層が青色系ホスト材料及 び青色系ドーパントからなり、青色系ホスト材料及び青色系ドーパントは特に限定さ れないが、青色系ホスト材料が非対称含縮合環系化合物力もなると好ましい。
前記非対称含縮合環系化合物としては、代表的なものとして、非対称アントラセン 系化合物及び非対称ピレン系化合物等が挙げられる。
以下、本発明で用いられる非対称アントラセン系化合物について説明する。
前記非対称アントラセン系化合物としては、下記一般式 (I)で表される化合物であ ると好まし ヽ。 [0010] [化 1]
Figure imgf000006_0001
[0011] [一般式 (I)中、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭素数 6 一 50のァリール基である。ただし、 Ar1と Ar2は構造が同一ではない。
R1一 R8は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 ]
[0012] 一般式 (I)における Ar1及び Ar2のァリール基の例としては、フエ-ル基、 1 ナフチ ル基、 2 ナフチル基、 1 アントリル基、 2 アントリル基、 9 アントリル基、 1 フエナン トリル基、 2 フエナントリル基、 3 フエナントリル基、 4 フエナントリル基、 9 フエナン トリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレ -ル基 、 2—ピレ-ル基、 4ーピレ-ル基、 2—ビフエ-ルイル基、 3—ビフエ-ルイル基、 4ービフ ェ-ルイル基、 p ターフェ-ルー 4ーィル基、 p—ターフェ-ルー 3—ィル基、 p ターフェ 二ルー 2—ィル基、 m ターフェ-ルー 4ーィル基、 m ターフェ-ルー 3—ィル基、 m—タ 一フエ-ルー 2—ィル基、 o トリル基、 m トリル基、 ρ トリル基、 p— t ブチルフエ-ル 基、 p— (2 フエ-ルプロピル)フエ-ル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1— ナフチル基、 4ーメチルー 1 アントリル基、 4'ーメチルビフエ-ルイル基、 4" t ブチル p ターフェ二ルー 4 ィル基等が挙げられる。
一般式 (I)における R1— R8のァリール基の例としては、前記 Ar1及び Ar2と同様の ものが挙げられる。
一般式 (I)における R1— R8の芳香族複素環基の例としては、 1 ピロリル基、 2—ピ 口リル基、 3 ピロリル基、ビラジニル基、 2 ピリジニル基、 3 ピリジ-ル基、 4 ピリジ -ル基、 1 インドリル基、 2 インドリル基、 3 インドリル基、 4 インドリル基、 5 インド リル基、 6 インドリル基、 7 インドリル基、 1 イソインドリル基、 2 イソインドリル基、 3 イソインドリル基、 4 イソインドリル基、 5—イソインドリル基、 6—イソインドリル基、 7— イソインドリル基、 2 フリル基、 3 フリル基、 2—べンゾフラ-ル基、 3—べンゾフラ-ル 基、 4一べンゾフラ-ル基、 5—べンゾフラ-ル基、 6—べンゾフラ-ル基、 7—ベンゾフラ -ル基、 1 イソべンゾフラ-ル基、 3 イソべンゾフラ-ル基、 4 イソべンゾフラ-ル 基、 5—イソべンゾフラ-ル基、 6—イソべンゾフラ-ル基、 7—イソべンゾフラ-ル基、キ ノリル基、 3—キノリル基、 4 キノリル基、 5—キノリル基、 6—キノリル基、 7—キノリル基、 8 キノリル基、 1 イソキノリル基、 3 イソキノリル基、 4 イソキノリル基、 5 イソキノリ ル基、 6 イソキノリル基、 7 イソキノリル基、 8 イソキノリル基、 2 キノキサリニル基、 5 キノキサリニル基、 6 キノキサリニル基、 1一力ルバゾリル基、 2—力ルバゾリル基、 3 一力ルバゾリル基、 4一力ルバゾリル基、 9一力ルバゾリル基、 1 フエナンスリジ-ル基、 2 フエナンスリジ-ル基、 3 フエナンスリジ-ル基、 4 フエナンスリジ-ル基、 6 フエ ナンスリジ-ル基、 7—フエナンスリジ-ル基、 8—フエナンスリジ-ル基、 9 フエナンス リジ-ル基、 10 フ ナンスリジ-ル基、 1 アタリジ-ル基、 2—アタリジ-ル基、 3—ァ タリジ-ル基、 4—アタリジ-ル基、 9—アタリジ-ル基、 1, 7 フエナンスロリンー2—ィル 基、 1, 7 フエナンスロリン 3—ィル基、 1, 7 フエナンスロリン 4ーィル基、 1, 7 フエ ナンスロリン 5—ィル基、 1, 7—フエナンスロリン 6—ィル基、 1, 7 フエナンスロリン 8—ィル基、 1, 7—フエナンスロリンー9ーィル基、 1, 7 フエナンスロリン— 10—ィル基、 1, 8 -フエナンスロリンー2 -ィル基、 1, 8 -フエナンスロリンー3 -ィル基、 1, 8 -フエナ ンスロリン 4ーィル基、 1, 8 フエナンスロリン 5—ィル基、 1, 8 フエナンスロリン 6— ィル基、 1, 8 -フエナンスロリンー7 -ィル基、 1, 8 -フエナンスロリンー9ーィル基、 1, 8 —フエナンスロリン 10—ィル基、 1, 9—フエナンスロリン 2—ィル基、 1, 9 フエナンス 口リン 3—ィル基、 1, 9 フエナンスロリン 4ーィル基、 1, 9—フエナンスロリン 5—ィ ル基、 1, 9 フエナンスロリン— 6—ィル基、 1, 9 フエナンスロリン 7—ィル基、 1, 9— フエナンスロリン— 8—ィル基、 1, 9 フエナンスロリン 10—ィル基、 1, 10 フエナンス 口リンー2—ィル基、 1, 10 フエナンスロリンー3—ィル基、 1, 10—フエナンスロリン 4— ィル基、 1, 10 フエナンスロリン 5—ィル基、 2, 9 フエナンスロリン 1ーィル基、 2, 9—フエナンスロリン 3—ィル基、 2, 9—フエナンスロリン 4ーィル基、 2, 9 フエナンス 口リン 5—ィル基、 2, 9 フエナンスロリン 6—ィル基、 2, 9—フエナンスロリン 7—ィ ル基、 2, 9 フエナンスロリン— 8—ィル基、 2, 9 フエナンスロリン 10—ィル基、 2, 8— フエナンスロリン— 1ーィル基、 2, 8 フエナンスロリン 3—ィル基、 2, 8 フエナンスロリ ンー 4ーィル基、 2, 8 フエナンスロリン 5—ィル基、 2, 8 フエナンスロリン 6 ィル基 、 2, 8 フエナンスロリン 7—ィル基、 2, 8 フエナンスロリン 9ーィル基、 2, 8 フエナ ンスロリン— 10—ィル基、 2, 7 フエナンスロリン 1ーィル基、 2, 7 フエナンスロリン 3 ーィル基、 2, 7—フエナンスロリン 4ーィル基、 2, 7 フエナンスロリン— 5—ィル基、 2, 7—フエナンスロリン 6—ィル基、 2, 7—フエナンスロリン 8—ィル基、 2, 7 フエナンス 口リン 9ーィル基、 2, 7 フエナンスロリン 10—ィル基、 1—フエナジ-ル基、 2 フエ ナジ-ル基、 1 フエノチアジ-ル基、 2—フエノチアジ-ル基、 3 フエノチアジ-ル基 、 4 フエノチアジ-ル基、 10—フエノチアジ-ル基、 1 フエノキサジ-ル基、 2—フエノ キサジ-ル基、 3 フエノキサジ-ル基、 4 フエノキサジ-ル基、 10 フエノキサジ- ル基、 2—才キサゾリル基、 4一才キサゾリル基、 5—才キサゾリル基、 2—ォキサジァゾリ ル基、 5 ォキサジァゾリル基、 3—フラザ-ル基、 2 チェ-ル基、 3 チェ-ル基、 2— メチルピロ一ルー 1ーィル基、 2 メチルピロ一ルー 3—ィル基、 2 メチルピロ一ルー 4ーィ ル基、 2 メチルピロ一ルー 5—ィル基、 3 メチルピロ一ルー 1ーィル基、 3 メチルピロ 一ルー 2 -ィル基、 3 -メチルピロ一ルー 4ーィル基、 3 -メチルピロ一ルー 5 -ィル基、 2 - 1 —ブチルピロール 4ーィル基、 3— (2—フエ-ルプロピル)ピロ一ルー 1ーィル基、 2—メ チルー 1 インドリル基、 4ーメチルー 1 インドリル基、 2—メチルー 3 インドリル基、 4ーメ チルー 3 インドリル基、 2 t ブチル 1 インドリル基、 4 t ブチル 1 インドリル基、 2 t ブチル 3—インドリル基、 4 t ブチル 3—インドリル基等が挙げられる。
[0014] 一般式 (I)における R1— R8のアルキル基の例としては、メチル基、ェチル基、プロ ピル基、イソプロピル基、 n ブチル基、 s ブチル基、イソブチル基、 t ブチル基、 n— ペンチル基、 n—へキシル基、 n—へプチル基、 n—ォクチル基、ヒドロキシメチル基、 1 ーヒドロキシェチル基、 2—ヒドロキシェチル基、 2—ヒドロキシイソブチル基、 1, 2—ジヒ ドロキシェチル基、 1, 3—ジヒドロキシイソプロピル基、 2, 3—ジヒドロキシー t ブチル 基、 1, 2, 3—トリヒドロキシプロピル基、クロロメチル基、 1 クロ口ェチル基、 2—クロ口 ェチル基、 2 クロ口イソブチル基、 1, 2—ジクロ口ェチル基、 1, 3—ジクロ口イソプロピ ル基、 2, 3—ジクロロー t ブチル基、 1, 2, 3 トリクロ口プロピル基、ブロモメチル基、 1 ーブロモェチノレ基、 2—ブロモェチノレ基、 2—ブロモイソブチノレ基、 1, 2—ジブ口モェチ ル基、 1, 3 ジブロモイソプロピル基、 2, 3 ジブ口モー t ブチル基、 1, 2, 3—トリブ口 モプロピル基、ョードメチル基、 1ーョードエチル基、 2—ョードエチル基、 2—ョードイソ ブチル基、 1, 2 ジョードエチル基、 1, 3—ジョードイソプロピル基、 2, 3 ジョードー t ブチル基、 1, 2, 3—トリョードプロピル基、アミノメチル基、 1 アミノエチル基、 2—ァ ミノェチル基、 2—ァミノイソブチル基、 1, 2—ジアミノエチル基、 1, 3—ジァミノイソプロ ピル基、 2, 3—ジアミノー t ブチル基、 1, 2, 3—トリァミノプロピル基、シァノメチル基、 1ーシァノエチル基、 2—シァノエチル基、 2—シァノイソブチル基、 1, 2—ジシァノエチ ル基、 1, 3—ジシァノイソプロピル基、 2, 3 ジシァノー t ブチル基、 1, 2, 3 トリシア ノプロピル基、ニトロメチル基、 1 -トロェチル基、 2—-トロェチル基、 2—-トロイソブ チル基、 1, 2—ジ-トロェチル基、 1, 3—ジ-トロイソプロピル基、 2, 3—ジ-トロー tーブ チル基、 1, 2, 3 トリ-トロプロピル基、シクロプロピル基、シクロブチル基、シクロべ ンチル基、シクロへキシル基、 4ーメチルシクロへキシル基、 1—ァダマンチル基、 2—ァ ダマンチル基、 1 ノルボル-ル基、 2—ノルボル-ル基等が挙げられる。
[0015] 一般式 (I)における R1— R8のアルコキシ基は—OYと表され、 Yの例としては、前記 アルキル基と同様のものが挙げられる。
一般式 (I)における R1— R8のァラルキル基の例としては、前記ァリール基で置換さ れた前記アルキル基等が挙げられる。
一般式 (I)における R1— R8のァリールォキシ基は OY,と表され、 Υ,の例としては 、前記ァリール基と同様のものが挙げられる。
一般式 (I)における R1— R8のァリールチオ基は- OY,と表され、 Υ,の例としては、 前記ァリール基と同様のものが挙げられる。
一般式(I)における R1— R8のアルコキシカルボ-ル基は COOYと表され、 Υの例 としては、前記アルキル基と同様のものが挙げられる。
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられる。
また、本発明の白色系有機 EL素子で用いる前記非対称アントラセン系化合物とし ては、下記一般式 (II)一 (IV)の 、ずれかで表される化合物であると好ま 、。
[化 2]
Figure imgf000010_0001
[一般式 (II)中、 Arは置換もしくは無置換の核炭素数 10— 50の縮合芳香族環残基 である。
Ar,は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar,は複数個で あってもよい。
Xは、置換もしくは無置換の核炭素数 6— 50のァリール基、置換もしくは無置換の 核原子数 5— 50の芳香族複素環基、置換もしくは無置換の炭素数 1一 50のアルキ ル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基、置換もしくは無置換の炭 素数 6— 50のァラルキル基、置換もしくは無置換の核原子数 5— 50のァリールォキ シ基、置換もしくは無置換の核原子数 5— 50のァリールチオ基、置換もしくは無置換 の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ 基、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0— 4の整数であり、 nは 1一 3の整数である。 ]
一般式 (II)における Arの縮合芳香族環残基の例としては、 1 ナフチル基、 2—ナフ チル基、 1 アントリル基、 2 -アントリル基、 9 アントリル基、 1 フエナンスリル基、 2 - フエナンスリル基、 3—フエナンスリル基、 4 フエナンスリル基、 9—フエナンスリル基、 1 ナフタセ-ル基、 2 ナフタセ-ル基、 9 ナフタセ-ル基、 1ーピレ-ル基、 2 ピレ- ル基、 4ーピレニル基、 3—メチルー 2 ナフチル基、 4ーメチルー 1 ナフチル基、 4ーメチ ルー 1 アントリル基等が挙げられる。
一般式 (II)における Ar'のァリール基の例としては、前記と同様の例が挙げられる。 一般式 (II)における Xのァリール基、芳香族複素環基、アルキル基、アルコキシ基、 ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ-ル基の例 としては、それぞれ前記と同様の例が挙げられる。
[0018] [化 3]
Figure imgf000011_0001
(III)
[0019] [一般式 (III)中、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭素数 10 一 20の縮合芳香族環残基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar1及び Ar2は、それぞれ複数個であってもよい。 R1一 R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 R9一 R1(>は、そ れぞれ複数個であってもよ 、。
ただし、中心のアントラセンの 9位及び 10位に、対称型となる基が結合する場合は ない。]
一般式 (III)における A1及び A2の縮合芳香族環残基の例としては、前記一般式 (II )の Arの縮合芳香族環残基の例において価数が合うものが挙げられる。
一般式 (III)における Ar1及び Ar2のァリール基の例としては、それぞれ前記と同様 の例が挙げられる。
一般式 (III)における R1— R1Qのァリール基、芳香族複素環基、アルキル基、アルコ キシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記と同様の例が挙げられる。
[0020] [化 4]
Figure imgf000013_0001
(IV)
[0021] [一般式 (IV)において、 Ar1'及び Ar2'は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。 Ar1'及び Ar2'は、それぞれ複数個であってもよい
R1一 R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 R9一 R1(>は、そ れぞれ複数個であってもよ 、。
ただし、中心のアントラセンの 9位及び 10位に、対称型となる基が結合する場合は ない。]
一般式 (IV)における Ar1'及び Ar2'のァリール基の例としては、それぞれ前記と同様 の例が挙げられる。
一般式 (IV)における R1— R1Qのァリール基、芳香族複素環基、アルキル基、アルコ キシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記と同様の例が挙げられる。
また、以上の各基の置換基としては、ハロゲン原子、ヒドロキシル基、ニトロ基、シァ ノ基、アルキル基、ァリール基、シクロアルキル基、アルコキシ基、芳香族複素環基、 ァラルキル基、ァリールォキシ基、ァリールチオ基、アルコキシカルボニル基、又は力 ルポキシル基などが挙げられる。
前記一般式 (I)一 (IV)で表される非対称アントラセン系化合物の具体例を以下に示 す力 これら例示化合物に限定されるものではない。
[化 5]
Figure imgf000014_0001
B H 4 B H 5 [化 6]
Figure imgf000015_0001
以下、本発明で用いられる非対称ピレン系化合物について説明する。
前記非対称ピレン系化合物としては、下記一般式 (V)で表される化合物であると好 ましい。
[化 7]
Figure imgf000016_0001
(V)
[0025] [一般式 (V)において、 Ar3及び Ar4は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。ただし、 Ar3と Ar4は構造が同一ではない。
R11— R18は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 ]
一般式 (V)における Ar3及び Ar4のァリール基の例としては、前記一般式 (I)の Ar1 及び Ar2と同様のものが挙げられる。
一般式 (V)における R11— R18のァリール基、芳香族複素環基、アルキル基、アルコ キシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記一般式 (I)の R1— R8と同様のものが挙げられる。
[0026] また、本発明の白色系有機 EL素子で用いる前記非対称ピレン系化合物としては、 下記一般式 (VI)— (IX)の 、ずれかで表される化合物であると好ま 、。
[化 8]
Figure imgf000017_0001
[一般式 (VI)において、 Ar5は置換もしくは無置換の核炭素数 10— 50の縮合芳香族 環残基である。
Ar6は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar6は複数個で あってもよい。
X1及び X2は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリール 基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無置換 の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基 、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核原子 数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリールチ ォ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
dは 0— 8の整数、 eは 0— 4の整数、 n1は 1一 3の整数である。 ]
一般式 (VI)における Ar5の縮合芳香族環残基の例としては、前記一般式 (II)の Arと 同様のものが挙げられる。
一般式 (VI)における Ar6のァリール基の例としては、前記と同様の例が挙げられる。 一般式 (VI)における X1及び X2のァリール基、芳香族複素環基、アルキル基、アル コキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記と同様の例が挙げられる。 [0028] [ィ匕 9]
Figure imgf000018_0001
(VII)
[0029] [一般式 (VII)にお ヽて、 Ar7及び Ar8は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。 Ar7及び Ar8は、それぞれ複数個であってもよい
X3、 X4及び X5は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリ ール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無 置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキ シ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核 原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリー ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキ シル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
f及び gは、それぞれ 0— 4の整数、 hは 0— 8の整数、 n2は 1一 3の整数である。 ただし、中心のピレンの 1位及び 6位に、対称型となる基が結合する場合はない。 ] 一般式 (VII)における Ar7及び Ar8のァリール基の例としては、それぞれ前記と同様 の例が挙げられる。
一般式 (VII)における X3、 X4及び X5のァリール基、芳香族複素環基、アルキル基、 アルコキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカル ボニル基の例としては、それぞれ前記と同様の例が挙げられる。 [0030] [化 10]
Figure imgf000019_0001
(VIII)
[0031] [一般式 (vm)において、 A3及び A4は、それぞれ独立に、置換もしくは無置換の核炭 素数 10— 20の縮合芳香族環残基である。
Ar9及び Ar1Qは、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素 数 6— 50のァリール基である。 Ar9及び Ar1Qは、それぞれ複数個であってもよい。
R11— R2°は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、 -トロ基、ヒドロキシル基である。 R19— R2°は、 それぞれ複数個であってもよ 、。
ただし、中心のピレンの 1位及び 6位に、対称型となる基が結合する場合はない。 ] 一般式 (VIII)における A3及び A4の縮合芳香族環残基の例としては、前記一般式( II)の Arの縮合芳香族環残基の例において価数が合うものが挙げられる。
一般式 (VIII)における Ar9及び Ar1Qのァリール基の例としては、それぞれ前記と同様 の例が挙げられる。 一般式 (VIII)における R11— R2°のァリール基、芳香族複素環基、アルキル基、アルコ キシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記と同様の例が挙げられる。
[化 11]
Figure imgf000020_0001
[一般式 (IX)において、 Ar11及び Ar12は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。
X6及び X7は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリール 基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無置換 の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基 、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核原子 数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリールチ ォ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
Lは、置換もしくは無置換の核炭素数 6— 50のァリーレン基、又は置換もしくは無置 換の核原子数 3— 50の 2価の芳香族複素環基である。
i及び jは、それぞれ 0— 8の整数、 n3及び n4は 1一 3の整数である。 ]
一般式 (IX)における Ar11及び Ar12のァリール基の例としては、それぞれ前記と同様 の例が挙げられる。
一般式 (IX)における X6及び X7のァリール基、芳香族複素環基、アルキル基、アル コキシ基、ァラルキル基、ァリールォキシ基、ァリールチオ基及びアルコキシカルボ- ル基の例としては、それぞれ前記と同様の例が挙げられる。
一般式 (IX)における Lのァリーレン基及び 2価の芳香族複素環基の例としては、前 記一般式 (I)の Ar1及び Ar2で挙げたァリール基及び芳香族複素環基の例を 2価とし たものが挙げられる。
前記一般式 (VI)— (IX)で表される非対称ピレン系化合物の具体例を以下に示すが 、これら例示化合物に限定されるものではない。
[化 12]
Figure imgf000021_0001
Figure imgf000021_0002
[0035] [化 13]
Figure imgf000022_0001
B H 2 B H 2 8
[0036] 本発明の白色系有機 EL素子で用いる前記青色系ドーパントは、特に限定されな レ、が、スチリルァミン、ァミン置換スチリル化合物、ァミン置換縮合芳香族環及び縮合 芳香族環含有化合物より選択される少なくとも一種類の化合物であると好ましい。 スチリルァミン及びアミン置換スチリルイ匕合物としては、例えば、下記一般式〔i〕一〔 ii〕で示される化合物が、前記縮合芳香族環含有ィ匕合物としては、例えば、下記一般 式〔iii〕で示される化合物が挙げられる。
[化 14]
Figure imgf000023_0001
[0038] 〔式中、 Ar1" , Ar2"及び Ar3"は、それぞれ独立に、炭素数 6— 40の置換もしくは 無置換の芳香族基を示し、それらの中の少なくとも一つはスチリル基を含み、 pは 1一 3の整数を示す。〕
芳香族基の具体例としては、前記と同様のものが挙げられる。
[0039] [化 15]
Figure imgf000023_0002
[0040] 〔式中、 Ar "及び Ar5"は、それぞれ独立に、置換もしくは無置換の炭素数 6— 30 のァリーレン基、 E1及び E2は、それぞれ独立に、置換もしくは無置換の炭素数 6— 30 のァリール基もしくはアルキル基、水素原子又はシァノ基を示し、 qは 1一 3の整数を 示す。 U及び Z又は Vはアミノ基を含む置換基であり、該ァミノ基がァリールアミノ基 であると好ましい。〕 ァリール基及びアルキル基の具体例としては、前記と同様のものが挙げられ、ァリ 一レン基の具体例としては、前記ァリール基力 水素原子を 1つ除いた例が挙げられ る。
[化 16]
Figure imgf000024_0001
[0042] 〔式中、 Aは、置換もしくは無置換の炭素数 1一 16のアルキル基もしくはアルコキシ基 、炭素数 6— 30の置換もしくは無置換のァリール基、炭素数 6— 30の置換もしくは無 置換のアルキルアミノ基、又は炭素数 6— 30の置換もしくは無置換のァリールァミノ 基、 Bは炭素数 10— 40の縮合芳香族環残基を示し、 rは 1一 4の整数を示す。〕 アルキル基等の各基の具体例としては、前記と同様のものが挙げられる。
[0043] 本発明の白色系有機 EL素子は、陽極、青色系発光層、黄色一赤色系発光層及 び陰極を、この順に含む白色系有機 EL素子において、前記黄色一赤色系発光層 が前記青色系発光層と同じホスト材料と黄色一赤色系ドーパントとを含むと好ましい また、前記黄色一赤色系ドーパントが、フルオランテン骨格又はペリレン骨格を有 する化合物であると好ましく、フルオランテン骨格を複数有する化合物であるとさらに 好ましい。さらに、前記黄色一赤色系ドーパント力 540nm— 700nmの蛍光ピーク 波長を示すィ匕合物であると好まし 、。
前記フルオランテン骨格又はペリレン骨格を有する化合物としては、例えば、下記 一般式 [ 1 ]一 [ 17]で表される化合物が挙げられる。
Figure imgf000025_0001
X ε si^X 9
Figure imgf000025_0002
[Ζΐ^ ] 濯] .8ST80/S00Z OAV
Figure imgf000026_0001
Figure imgf000026_0002
Figure imgf000026_0003
[8ΐ^ ] [SW)0] z oo/soozdf/ェ:) d 93 .8ST80/S00Z OAV [0046] [化 19]
Figure imgf000027_0001
[0047] [化 20]
Figure imgf000028_0001
[0048] 〔一般式 [1]一 [15]式中、 X1一 X2°は、それぞれ独立に、水素原子、直鎖、分岐もし くは環状の炭素原子数 1一 20のアルキル基、直鎖、分岐もしくは環状の炭素数 1一 2 0のアルコキシ基、置換もしくは無置換の炭素数 6— 30のァリール基、置換もしくは無 置換の炭素数 6— 30のァリールォキシ基、置換もしくは無置換の炭素数 6— 30のァ リールアミノ基、置換もしくは無置換の炭素数 1一 30のアルキルアミノ基、置換もしく は無置換の炭素数 7— 30のァリールアルキルアミノ基又は置換もしくは無置換炭素 数 8— 30のアルケニル基であり、隣接する置換基及び X1— X2Qは結合して環状構造 を形成していてもよい。隣接する置換基がァリール基の時は、置換基は同一であって ちょい。〕
アルキル基等の各基の具体例としては、前記と同様のものが挙げられ、アルケニル 基としては、アルキル基の具体例が二重結合を有するものが挙げられる。
また、一般式 [1]一 [15]式の化合物は、アミノ基又はアルケニル基を含有すると好 ましい。 [0049] [化 21]
Figure imgf000029_0001
[0050] 〔一般式 [16]— [17]式中、 R1— R4は、それぞれ独立に、炭素数 1一 20のアルキル 基、置換もしくは無置換の炭素数 6— 30のァリール基であり、 R1と R2及び/又は と R4は、炭素 炭素結合又は O -,一 S—を介して結合していてもよい。 R5— R16は、水 素原子、直鎖、分岐もしくは環状の炭素数 1一 20のアルキル基、直鎖、分岐もしくは 環状の炭素数 1一 20のアルコキシ基、置換もしくは無置換の炭素数 6— 30のァリー ル基、置換もしくは無置換の炭素数 6— 30のァリールォキシ基、置換もしくは無置換 の炭素数 6— 30のァリールアミノ基、置換もしくは無置換の炭素数 1一 30のアルキル アミノ基、置換もしくは無置換の炭素数 7— 30のァリールアルキルアミノ基又は置換も しくは無置換の炭素数 8— 30のアルケニル基であり、隣接する置換基及び R5— R16 は結合して環状構造を形成して!/ヽてもよ ヽ。各式中の置換基 R5— R16の少なくとも一 つがアミン又はァルケ-ル基を含有すると好ましい。〕
アルキル基等の各基の具体例としては、前記と同様のものが挙げられ、アルケニル 基としては、アルキル基の具体例が二重結合を有するものが挙げられる。
[0051] また、前記のようなフルオランテン骨格を有する蛍光性化合物は、高効率及び長寿 命を得るために電子供与性基を含有することが好ましぐ好ましい電子供与性基は置 換もしくは無置換のァリールアミノ基である。さらに、フルオランテン骨格を有する蛍 光性ィ匕合物は、縮合環数 5以上が好ましぐ 6以上が特に好ましい。これは、蛍光性 化合物が 540— 700nmの蛍光ピーク波長を示し、青色系発光材料と蛍光性化合物 力もの発光が重なって白色を呈するからである。前記蛍光性化合物は、フルオランテ ン骨格を複数有すると好ましぐ特に好ましい蛍光性ィ匕合物は、電子供与性基とフル オランテン骨格又はペリレン骨格を有し、 540— 700nmの蛍光ピーク波長を示すも のである。
[0052] 以下、本発明の白色系有機 EL素子を構成する発光層以外の層について説明する 本発明の白色系有機 EL素子は、透光性の基板上に作製する。ここでいう透光性 基板は有機 EL素子を支持する基板であり、 400— 700nmの可視領域の光の透過 率が 50%以上で、平滑な基板が好ましぐ具体的には、ガラス板、ポリマー板等が挙 げられる。ガラス板としては、特にソーダ石灰ガラス、ノ リウム 'ストロンチウム含有ガラ ス、鉛ガラス、アルミノケィ酸ガラス、ホウケィ酸ガラス、ノ リウムホウケィ酸ガラス、石英 等が挙げられる。ポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフ タレート、ポリエーテルサルファイド、ポリサルフォン等を挙げることができる。
[0053] 本発明の白色系有機 EL素子は、陽極と発光層との間に、正孔注入層、正孔輸送 層、有機半導体層等を設けることができる。正孔注入層及び正孔輸送層は、発光層 への正孔注入を助け発光領域まで輸送する層であって、正孔移動度が大きぐィォ ン化エネルギーが通常 5. 5eV以下と小さい。正孔注入層はエネルギーレベルの急 な変化を緩和する等、エネルギーレベルを調整するために設ける。このような正孔注 入層及び正孔輸送層としてはより低 、電界強度で正孔を発光層に輸送する材料が 好ましぐさらに正孔の移動度力 例えば 104— 106VZcmの電界印加時に、少なくと も 10— 6cm2ZV'秒であるものが好ましい。正孔注入層及び正孔輸送層を形成する材 料としては、前記の好ましい性質を有するものであれば特に制限はなぐ従来、光導 伝材料にぉ ヽて正孔の電荷輸送材料として慣用されて ヽるものや、有機 EL素子の 正孔注入層に使用されて 、る公知のものの中から任意のものを選択して用いること ができる。
[0054] このような正孔注入層及び正孔輸送層の形成材料としては、具体的には、例えばト リアゾール誘導体 (米国特許 3, 112, 197号明細書等参照)、ォキサジァゾール誘 導体 (米国特許 3, 189, 447号明細書等参照)、イミダゾール誘導体 (特公昭 37— 1 6096号公報等参照)、ポリアリールアルカン誘導体 (米国特許 3, 615, 402号明細 書、同第 3, 820, 989号明細書、同第 3, 542, 544号明細書、特公昭 45— 555号 公報、同 51— 10983号公報、特開昭 51— 93224号公報、同 55— 17105号公報、同 56— 4148号公報、同 55— 108667号公報、同 55— 156953号公報、同 56— 36656 号公報等参照)、ピラゾリン誘導体およびピラゾロン誘導体 (米国特許第 3, 180, 72 9号明細書、同第 4, 278, 746号明細書、特開昭 55— 88064号公報、同 55— 8806 5号公報、同 49— 105537号公報、同 55— 51086号公報、同 56— 80051号公報、同 56— 88141号公報、同 57— 45545号公報、同 54— 112637号公報、同 55— 74546 号公報等参照)、フエ二レンジァミン誘導体 (米国特許第 3, 615, 404号明細書、特 公昭 51— 10105号公報、同 46— 3712号公報、同 47— 25336号公報、特開昭 54— 5 3435号公報、同 54— 110536号公報、同 54— 119925号公報等参照)、ァリールァ ミン誘導体 (米国特許第 3, 567, 450号明細書、同第 3, 180, 703号明細書、同第 3, 240, 597号明細書、同第 3, 658, 520号明細書、同第 4, 232, 103号明細書 、同第 4, 175, 961号明細書、同第 4, 012, 376号明細書、特公昭 49— 35702号 公報、同 39— 27577号公報、特開昭 55— 144250号公報、同 56— 119132号公報、 同 56— 22437号公報、西独特許第 1, 110, 518号明細書等参照)、ァミノ置換カル コン誘導体 (米国特許第 3, 526, 501号明細書等参照)、ォキサゾール誘導体 (米 国特許第 3, 257, 203号明細書等に開示のもの)、スチリルアントラセン誘導体 (特 開昭 56— 46234号公報等参照)、フルォレノン誘導体 (特開昭 54— 110837号公報 等参照)、ヒドラゾン誘導体 (米国特許第 3, 717, 462号明細書、特開昭 54— 59143 号公報、同 55— 52063号公報、同 55— 52064号公報、同 55— 46760号公報、同 55 —85495号公報、同 57— 11350号公報、同 57— 148749号公報、特開平 2— 31159 1号公報等参照)、スチルベン誘導体 (特開昭 61— 210363号公報、同第 61— 2284 51号公報、同 61— 14642号公報、同 61— 72255号公報、同 62— 47646号公報、同 62— 36674号公報、同 62— 10652号公報、同 62— 30255号公報、同 60— 93455 号公報、同 60— 94462号公報、同 60— 174749号公報、同 60— 175052号公報等 参照)、シラザン誘導体 (米国特許第 4, 950, 950号明細書)、ポリシラン系 (特開平 2-204996号公報)、ァ-リン系共重合体 (特開平 2-282263号公報)、特開平 1— 211399号公報に開示されている導電性高分子オリゴマー(特にチォフェンオリゴマ 一)、ボルフイリンィ匕合物(特開昭 63— 2956965号公報等に開示のもの)、芳香族第 三級アミン化合物およびスチリルアミンィ匕合物 (米国特許第 4, 127, 412号明細書、 特開昭 53— 27033号公報、同 54— 58445号公報、同 54— 149634号公報、同 54— 64299号公報、同 55— 79450号公報、同 55— 144250号公報、同 56— 119132号 公報、同 61— 295558号公報、同 61— 98353号公報、同 63— 295695号公報等参 照)、芳香族第三級アミンィ匕合物、米国特許第 5, 061, 569号に記載されている 2個 の縮合芳香族環を分子内に有する、例えば 4, 4' ビス (N—(1 ナフチル) N フ -ルァミノ)ビフエ-ル、また特開平 4 308688号公報に記載されているトリフエ-ル ァミンユニットが 3つスターバースト型に連結された 4, 4', 4'しトリス(N— (3-メチルフ ェ -ル) N フエ-ルァミノ)トリフエ-ルァミン等を挙げることができる。さらに、 p型 Si 、 p型 SiC等の無機化合物も使用することができる。
[0055] 本発明における正孔注入層又は正孔輸送層は、上述した材料の 1種又は 2種以上 力もなる一層で構成されてもよいし、また、別種の化合物力もなる正孔注入層又は正 孔輸送層を積層したものであってもよい。正孔注入層又は正孔輸送層の膜厚は、特 に限定されな 、が、好ましくは 20— 200nmである。
また、前記有機半導体層は、発光層への正孔注入または電子注入を助ける層であ つて、 10—1QS/cm以上の導電率を有するものが好適である。このような有機半導体 層の材料としては、含チォフェンオリゴマー、特開平 8— 193191号公報に記載の含 ァリールァミンオリゴマー等の導電性オリゴマー、含ァリールァミンデンドリマー等の 導電性デンドリマー等が挙げられる。有機半導体層の膜厚は、特に限定されないが 、好ましくは 10— 1, OOOnmである。
[0056] 本発明の白色系有機 EL素子は、陰極と発光層との間に、電子注入層、電子輸送 層、付着改善層等を設けることができる。電子注入層及び電子輸送層は、発光層へ の電子の注入を助ける層であって、電子移動度が大きい。電子注入層はエネルギー レベルの急な変化を緩和する等、エネルギーレベルを調整するために設ける。また、 付着改善層は、この電子注入層の中で特に陰極との付着がよい材料カゝらなる層であ る。電子注入層及び電子輸送層に用いられる材料としては、 8—ヒドロキシキノリン又 はその誘導体の金属錯体が好適である。上記 8—ヒドロキシキノリン又はその誘導体 の金属錯体の具体例としては、ォキシン(一般に 8—キノリノール又は 8—ヒドロキシキノ リン)のキレートを含む金属キレートォキシノイドィ匕合物、例えばトリス(8—キノリノール )アルミニウムを用いることができる。また、ォキサジァゾール誘導体として下記一般式 (1)一 (3)
[0057] [化 22]
Figure imgf000033_0001
[0058] (式中、 Ar17、 Ar , Ar19、 Ar Ar 及び Ar 5は、それぞれ置換もしくは無置換のァリ 一ル基を示し、 Ar17と Ar18、 Ar19と Ar21、 Ar22と Ar25は、たがいに同一でも異なってい てもよい。 Ar2°、 Ar23及び Ar24は、それぞれ置換もしくは無置換のァリーレン基を示し 、 Ar23と Ar24は、たがいに同一でも異なっていてもよい。)で表される電子伝達化合物 が挙げられる。
これら一般式(1)一(3)におけるァリール基としては、フエ-ル基、ビフエ-ル基、ァ ントラ-ル基、ペリレニル基、ピレニル基などが挙げられる。また、ァリーレン基として は、フエ-レン基、ナフチレン基、ビフエ-レン基、アントラ-レン基、ペリレニレン基、 ピレニレン基などが挙げられる。そして、これらへの置換基としては炭素数 1一 10のァ ルキル基、炭素数 1一 10のアルコキシ基またはシァノ基等が挙げられる。この電子伝 達ィ匕合物は、薄膜形成性の良好なものが好ましく用いられる。
これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。 [0059] [化 23]
Figure imgf000034_0001
[0060] さらに、電子注入層及び電子輸送層に用いられる材料として、下記一般式 (4)一 (
8)で表されるちのち用いることがでさる。
[化 24]
Figure imgf000034_0002
[0061] (式中、 A1 -A°は、それぞれ独立に、窒素原子又は炭素原子である。
Ar1は、置換もしくは無置換の核炭素数 6— 60のァリール基、又は置換もしくは無 置換の核炭素数 3— 60のへテロァリール基であり、 Ar2は、水素原子、置換もしくは 無置換の核炭素数 6— 60のァリール基、置換もしくは無置換の核炭素数 3— 60のへ テロアリール基、置換もしくは無置換の炭素数 1一 20のアルキル基、又は置換もしく は無置換の炭素数 1一 20のアルコキシ基である。ただし、 Ar1及び Ar2のいずれか一 方は、置換もしくは無置換の核炭素数 10— 60の縮合環基、又は置換もしくは無置換 の核炭素数 3— 60のモノへテロ縮合環基である。
L1及び L2は、それぞれ独立に、単結合、置換もしくは無置換の核炭素数 6— 60の ァリーレン基、置換もしくは無置換の核炭素数 3— 60のへテロァリーレン基、又は置 換もしくは無置換のフルォレニレン基である。
Rは、水素原子、置換もしくは無置換の核炭素数 6— 60のァリール基、置換もしくは 無置換の核炭素数 3— 60のへテロァリール基、置換もしくは無置換の炭素数 1一 20 のアルキル基、又は置換もしくは無置換の炭素数 1一 20のアルコキシ基であり、 nは 0— 5の整数であり、 nが 2以上の場合、複数の Rは同一でも異なっていてもよぐまた 、隣接する複数の R基同士で結合して、炭素環式脂肪族環又は炭素環式芳香族環 を形成していてもよい。 )
アルキル基等の各基の具体例としては、前記と同様のものが挙げられる。
HAr-L-Ar -Ar2 (5)
(式中、 HArは、置換基を有していてもよい炭素数 3— 40の含窒素複素環であり、 L は、単結合、置換基を有していてもよい炭素数 6— 60のァリーレン基、置換基を有し て!、てもよ 、炭素数 3— 60のへテロァリーレン基又は置換基を有して!/、てもよ!/、フル ォレニレン基であり、 Ar1は、置換基を有していてもよい炭素数 6— 60の 2価の芳香族 炭化水素基であり、 Ar2は、置換基を有していてもよい炭素数 6— 60のァリール基又 は置換基を有して 、てもよ 、炭素数 3— 60のへテロァリール基である。 )で表される 含窒素複素環誘導体。ァリール基等の各基の具体例としては、前記と同様のものが 挙げられる。 [0063] [化 25]
Figure imgf000036_0001
Figure imgf000036_0002
[0064] (式中、 X及び Yは、それぞれ独立に炭素数 1一 6の飽和若しくは不飽和の炭化水素 基、アルコキシ基、ァルケ-ルォキシ基、アルキ-ルォキシ基、ヒドロキシ基、置換若 しくは無置換のァリール基、置換若しくは無置換のへテロ環又は Xと Yが結合して飽 和又は不飽和の環を形成した構造であり、 R— R
1 4は、それぞれ独立に水素、ハロゲ ン原子、置換もしくは無置換の炭素数 1から 6までのアルキル基、アルコキシ基、ァリ ールォキシ基、パーフルォロアルキル基、パーフルォロアルコキシ基、アミノ基、アル キルカルボ-ル基、ァリールカルボ-ル基、アルコキシカルボ-ル基、ァリールォキ シカルボニル基、ァゾ基、アルキルカルボ-ルォキシ基、ァリールカルボ-ルォキシ 基、アルコキシカルボ-ルォキシ基、ァリールォキシカルボ-ルォキシ基、スルフィ- ル基、スルフォ-ル基、スルファ-ル基、シリル基、力ルバモイル基、ァリール基、へ テロ環基、ァルケ-ル基、アルキ-ル基、ニトロ基、ホルミル基、ニトロソ基、ホルミル ォキシ基、イソシァノ基、シァネート基、イソシァネート基、チオシァネート基、イソチォ シァネート基もしくはシァノ基又は隣接した場合には置換若しくは無置換の環が縮合 した構造である。)アルキル基等の各基の具体例としては、前記と同様のものが挙げ られる。 [0065] [化 26]
Figure imgf000037_0001
[0066] (式中、 R -R及び Z は、それぞれ独立に、水素原子、飽和もしくは不飽和の炭化
1 8 2
水素基、芳香族基、ヘテロ環基、置換アミノ基、置換ボリル基、アルコキシ基又はァリ 一ルォキシ基を示し、 X、 Y及び Z は、それぞれ独立に、飽和もしくは不飽和の炭化
1
水素基、芳香族基、ヘテロ環基、置換アミノ基、アルコキシ基またはァリールォキシ基 を示し、 Z と Zの置換基は相互に結合して縮合環を形成してもよぐ nは 1
1 2 一 3の整数 を示し、 nが 2以上の場合、 Z は異なってもよい。但し、 nが 1
1 、 X、 Y及び R力 Sメチル
2 基であって、 R力 水素原子又は置換ボリル基の場合、及び nが 3で Z 力 Sメチル基の
8 1
場合を含まない。)
[0067] [化 27]
Figure imgf000038_0001
[0068] [式中、 Q1及び Q2は、それぞれ独立に、下記一般式(9)で示される配位子を表し、 L は、ハロゲン原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロア ルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基、 OR 1 (R1は、水素原子、置換もしくは無置換のアルキル基、置換もしくは無置換のシクロ アルキル基、置換もしくは無置換のァリール基、置換もしくは無置換の複素環基であ る。)または- O-Ga-Q3 (Q4 ) (Q3及び Q4は、 Q1及び Q2と同じ)で示される配位子 を表す。]
[0069] [化 28]
Figure imgf000038_0002
[式中、環 A1および A2は、置換基を有してよい互いに縮合した 6員ァリール環構造 である。 ]
この金属錯体は、 n型半導体としての性質が強ぐ電子注入能力が大きい。さらに は、錯体形成時の生成エネルギーも低いために、形成した金属錯体の金属と配位子 との結合性も強固になり、発光材料としての蛍光量子効率も大きくなつている。
一般式 (9)の配位子を形成する環 A1及び A2の置換基の具体的な例を挙げると、 塩素、臭素、ヨウ素、フッ素のハロゲン原子、メチル基、ェチル基、プロピル基、プチ ル基、 sec ブチル基、 tert ブチル基、ペンチル基、へキシル基、ヘプチル基、オタ チル基、ステアリル基、トリクロロメチル基等の置換もしくは無置換のアルキル基、フエ -ル基、ナフチル基、 3—メチルフエ-ル基、 3—メトキシフエ-ル基、 3—フルオロフェ -ル基、 3—トリクロロメチルフエ-ル基、 3—トリフルォロメチルフエ-ル基、 3—-トロフ ェニル基等の置換もしくは無置換のァリール基、メトキシ基、 n ブトキシ基、 tert ブト キシ基、トリクロロメトキシ基、トリフルォロエトキシ基、ペンタフルォロプロポキシ基、 2 , 2, 3, 3—テトラフルォロプロポキシ基、 1, 1, 1, 3, 3, 3 キサフルォロ— 2 プロ ポキシ基、 6— (パーフルォロェチル)へキシルォキシ基等の置換もしくは無置換のァ ルコキシ基、フエノキシ基、 p トロフエノキシ基、 p— tert ブチルフエノキシ基、 3—フ ルオロフエノキシ基、ペンタフルォロフエ-ル基、 3—トリフルォロメチルフエノキシ基等 の置換もしくは無置換のァリールォキシ基、メチルチオ基、ェチルチオ基、 tert—ブチ ルチオ基、へキシルチオ基、ォクチルチオ基、トリフルォロメチルチオ基等の置換もし くは無置換のアルキルチオ基、フエ-ルチオ基、 p トロフエ-ルチオ基、 ptert—ブ チルフヱ-ルチオ基、 3—フルオロフヱ-ルチオ基、ペンタフルオロフヱ-ルチオ基、 3 —トリフルォロメチルフエ-ルチオ基等の置換もしくは無置換のァリールチオ基、シァ ノ基、ニトロ基、アミノ基、メチルァミノ基、ジェチルァミノ基、ェチルァミノ基、ジェチル アミノ基、ジプロピルアミノ基、ジブチルァミノ基、ジフエニルァミノ基等のモノまたはジ 置換アミノ基、ビス(ァセトキシメチル)アミノ基、ビス(ァセトキシェチル)アミノ基、ビス ァセトキシプロピル)アミノ基、ビス(ァセトキシブチル)アミノ基等のァシルァミノ基、水 酸基、シロキシ基、ァシル基、メチルカルバモイル基、ジメチルカルバモイル基、ェチ ルカルバモイル基、ジェチルカルバモイル基、プロィピルカルバモイル基、ブチルカ ルバモイル基、フエ-ルカルバモイル基等の力ルバモイル基、カルボン酸基、スルフ オン酸基、イミド基、シクロペンタン基、シクロへキシル基等のシクロアルキル基、フエ -ル基、ナフチル基、ビフエ-ル基、アントラ-ル基、フエナントリル基、フルォレ -ル 基、ピレニル基等のァリール基、ピリジ-ル基、ビラジニル基、ピリミジニル基、ピリダ ジニル基、トリアジニル基、インドリ-ル基、キノリニル基、アタリジ-ル基、ピロリジ- ル基、ジォキサニル基、ピベリジ-ル基、モルフオリジ-ル基、ピペラジニル基、トリア チニル基、カルバゾリル基、フラニル基、チオフェニル基、ォキサゾリル基、ォキサジ ァゾリル基、ベンゾォキサゾリル基、チアゾリル基、チアジアゾリル基、ベンゾチアゾリ ル基、トリァゾリル基、イミダゾリル基、ベンゾイミダゾリル基、ブラニル基等の複素環基 等がある。また、以上の置換基同士が結合してさらなる 6員ァリール環もしくは複素環 を形成しても良い。
[0071] 本発明における電子注入層又は電子輸送層は、上述した材料の 1種又は 2種以上 力もなる一層で構成されてもよいし、また、別種の化合物力もなる電子注入層又は電 子輸送層を積層したものであってもよい。電子注入層又は電子輸送層の膜厚は、特 に限定されないが、好ましくは 1一 1 OOnmである。
[0072] 本発明の白色系有機 EL素子は、電子を輸送する領域または陰極と有機層の界面 領域に、還元性ドーパントを含有してもよい。ここで、還元性ドーパントとは、電子輸 送性化合物を還元ができる物質と定義される。したがって、一定の還元性を有するも のであれば、様々なものが用いられ、例えば、アルカリ金属、アルカリ土類金属、希土 類金属、アルカリ金属の酸化物、アルカリ金属のハロゲン化物、アルカリ土類金属の 酸化物、アルカリ土類金属のハロゲンィ匕物、希土類金属の酸化物または希土類金属 のハロゲンィ匕物、アルカリ金属の有機錯体、アルカリ土類金属の有機錯体、希土類 金属の有機錯体からなる群から選択される少なくとも一つの物質を好適に使用するこ とがでさる。
好ましい還元性ドーパントの具体例としては、 Na (仕事関数: 2. 36eV)、 K (仕事 関数: 2. 28eV)、Rb (仕事関数: 2. 16eV)及び Cs (仕事関数: 1. 95eV)力 なる 群から選択される少なくとも一つのアルカリ金属や、 Ca (仕事関数: 2. 9eV)、 Sr (仕 事関数: 2. 0-2. 5eV)及び Ba (仕事関数: 2. 52eV)力 なる群力 選択される少 なくとも一つのアルカリ土類金属が挙げられる仕事関数が 2. 9eV以下のものが特に 好ましい。これらのうち、より好ましい還元性ドーパントは、 K、 Rb及び Csからなる群か ら選択される少なくとも一つのアルカリ金属であり、さらに好ましくは、 Rb及び Csであ り、最も好ましのは、 Csである。これらのアルカリ金属は、特に還元能力が高ぐ電子 注入域への比較的少量の添加により、有機 EL素子における発光輝度の向上や長寿 命化が図られる。また、仕事関数が 2. 9eV以下の還元性ドーパントとして、これら 2 種以上のアルカリ金属の組合わせも好ましぐ特に、 Csを含んだ組み合わせ、例え ば、 Csと Na、 Csと K、 Csと Rbあるいは Csと Naと Κとの組み合わせであることが好まし い。 Csを組み合わせて含むことにより、還元能力を効率的に発揮することができ、電 子注入域への添加により、有機 EL素子における発光輝度の向上や長寿命化が図ら れる。
本発明の白色系有機 EL素子は、陰極と有機層の間に絶縁体や半導体で構成され る電子注入層をさらに設けてもよい。この時、電流のリークを有効に防止して、電子注 入性を向上させることができる。また、この絶縁体や半導体の無機化合物が、微結晶 または非晶質の絶縁性薄膜であることが好ましい。電子輸送層がこれらの絶縁性薄 膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画 素欠陥を減少させることができる。
このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲ ナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる 群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層 力 Sこれらのアルカリ金属カルコゲナイド等で構成されて ヽれば、電子注入性をさらに 向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲナイ ドとしては、例えば、 Li 0、 LiO、 Na S、 Na Se及び NaOが挙げられ、好ましいアル
2 2 2
カリ土類金属カルコゲナイドとしては、例えば、 CaO、 BaO、 SrO、 BeO、 BaS及び C aSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、 LiF 、 NaF、 KF、 LiCl、 KC1及び NaCl等が挙げられる。また、好ましいアルカリ土類金属 のハロゲン化物としては、例えば、 CaF 、 BaF、 SrF、 MgF及び BeFといったフッ
2 2 2 2 2
化物や、フッ化物以外のハロゲン化物が挙げられる。
また、前記半導体としては、 Ba、 Ca、 Sr、 Yb、 Al、 Ga、 In、 Li、 Na、 Cd、 Mg、 Si、 Ta、 Sbおよび Znの少なくとも一つの元素を含む酸ィ匕物、窒化物または酸ィ匕窒化物 等の一種単独または二種以上の組み合わせが挙げられる。
[0074] 本発明の白色系有機 EL素子において、発光層及び発光層と陽極の間の有機層 の少なくとも一層が、酸化剤を含有していることが好ましぐ好ましい酸化剤としては、 電子吸引性又は電子ァクセプターであり、具体的には、ルイス酸、各種キノン誘導体 、ジシァノキノジメタン誘導体、芳香族ァミンとルイス酸で形成された塩類等が挙げら れ、ルイス酸は、塩化鉄、塩ィ匕アンチモン、塩ィ匕アルミニウム等が挙げられる。
本発明の白色系有機 EL素子において、発光層及び発光層と陰極の間の有機層 の少なくとも一層が、還元剤を含有していることが好ましぐ好ましい還元剤としては、 アルカリ金属、アルカリ土類金属、アルカリ金属酸化物、アルカリ土類酸ィ匕物、希土 類酸化物、アルカリ金属ハロゲン化物、アルカリ土類ノ、ロゲン化物、希土類ハロゲン 化物、アルカリ金属と芳香族化合物で形成される錯体等が挙げられ、特に好ましいァ ルカリ金属は Cs、 Li、 Na、 Kである。
[0075] さらに、本発明の白色系有機 EL素子は、陽極及び Ζ又は陰極に接して無機化合 物層を有していてもよい。無機化合物層は、付着改善層として機能する。無機化合 物層に使用される好ましい無機化合物としては、アルカリ金属酸化物、アルカリ土類 酸化物、希土類酸化物、アルカリ金属ハロゲンィ匕物、アルカリ土類ハロゲンィ匕物、希 土類ハロゲン化物、 SiO、 AIO 、 SiN、 SiON、 AIONゝ GeO 、 LiO 、 LiONゝ TiO
X X X X X
、 TiON、 TaO 、 TaON、 TaN、 C等各種酸化物、窒化物、酸化窒化物である。特
X X X
に陽極に接する層の成分としては、 SiO 、 AIO 、 SiN、 SiON、 AION, GeO、 C
X X X X
が安定な注入界面層を形成して好ましい。また、特に陰極に接する層の成分として は、 LiF、 MgF、 CaF、 MgF、 NaFが好ましい。無機化合物層の膜厚は、特に限
2 2 2
定されないが、好ましくは、 0. lnm— lOOnmである。
[0076] 本発明の白色系有機 EL素子の発光層を含む有機薄膜層及び無機化合物層を形 成する方法は、特に限定されないが、例えば、蒸着法、スピンコート法、キャスト法、 L B法等の公知の方法を適用することができる。また、得られる有機 EL素子の特性が 均一となり、また、製造時間が短縮できることから、電子注入層と発光層とは同一方 法で形成することが好ましぐ例えば、電子注入層を蒸着法で製膜する場合には、発 光層も蒸着法で製膜することが好ま U ヽ。
[0077] 本発明の白色系有機 EL素子の陽極としては、仕事関数の大きい(例えば、 4. OeV 以上)金属、合金、電気伝導性化合物又はこれらの混合物を使用することが好ましい 。具体的には、インジウムチンオキサイド (ITO)、インジウムジンクオキサイド、スズ、 酸化亜鉛、金、白金、ノ ラジウム等の 1種を単独で、又は 2種以上を組み合わせて使 用することができる。また、陽極の厚さは特に制限されるものではないが、 10-1, 00 Onmの範囲内の値とするのが好ましぐ 10— 200nmの範囲内の値とするのがより好 ましい。
また、陰極としては、仕事関数の小さい(例えば、 4. OeV未満)金属、合金、電気電 導性ィ匕合物又はこれらの混合物を使用することが好ましい。具体的には、マグネシゥ ム、アルミニウム、インジウム、リチウム、ナトリウム、銀等の 1種を単独で、又は 2種以 上を組み合わせて使用することができる。また、陰極の厚さも特に制限されるもので はないが、 10— lOOOnmの範囲内の値とするのが好ましぐ 10— 200nmの範囲内 の値とするのがより好まし 、。
また、陽極又は陰極の少なくとも一方は、発光層から放射された光を外部に有効に 取り出すことが出来るように、実質的に透明、より具体的には、光透過率が 10%以上 の値であることが好ましい。電極は、真空蒸着法、スパッタリング法、イオンプレーティ ング法、電子ビーム蒸着法、 CVD法、 MOCVD法、プラズマ CVD法等により製造で さる
実施例
[0078] 次に、実施例を用いて本発明をさらに詳しく説明する。
実施例 1 (白色系有機 EL素子の製造)
25mm X 75mm X 1. 1mm厚の ITO透明電極付きガラス基板(ジォマティック社製 )をイソプロピルアルコール中で超音波洗浄を 5分間行なった後、 UVオゾン洗浄を 3 0分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホ ルダ一に装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を 覆うようにして膜厚 60nmに下記化合物 (HI1) (以下「HI1膜」と略記する。)を成膜し た。この HI1膜は、正孔注入層として機能する。 HI1膜の成膜に続けて、この HI1膜 上に膜厚 20nmに下記化合物 (TBDB) (以下「TBDB膜」と略記する。)を成膜した。 この TBDB膜は正孔輸送層として機能する。さらに、 TBDB膜の成膜に続けて、膜厚 lOnmにて非対称含縮合環系化合物として上記化合物(BH1)と青色系ドーパントと して下記化合物 (BD1)を 40 : 2の重量比で蒸着し成膜し、青色系発光層とした。次 V、で、膜厚 30nmにて化合物(BH1)と黄色一赤色系ドーパントとして化合物 (RD1) を 40 : 1の重量比で蒸着し成膜し、黄色一赤色系発光層とした。この膜上に電子輸 送層として膜厚 lOnmのトリス(8-キノリノール)アルミニウム膜 (以下「Alq膜」と略記 する。)を成膜した。この後、 LiFを電子注入層として lnm蒸着し、さらに A1を陰極とし て 150nm蒸着し、有機 EL素子を作製した。
[化 29]
Figure imgf000044_0001
T B D B
Figure imgf000044_0002
R D 1
(Meはメチル基) [0080] 得られた素子につ!ヽて、初期性能及び半減寿命、耐熱試験を行った。それらの結 果を表 1に示す。
初期性能は、 5. 5Vの電圧印加時の発光効率 (電流密度辺りの発光輝度)、色度 座標を測定した。
なお、色度座標 (CIE1931色度座標)及び発光輝度はミノルタ社製分光輝度放射 計 CS— 1000を用いて測定した。
半減寿命は初期輝度 lOOOnitで室温、定電流駆動し、輝度が半減するまでの時間 を測定したものである。
耐熱試験は、初期輝度 300nitで定電流、 85°C, 500時間駆動後の輝度の保持率 、色度座標変化量を測定したものである。
[0081] 実施例 2— 7
実施例 1において、非対称含縮合環系化合物として化合物(BH1)の代わりに、上 記化合物(BH2) (実施例 2)、上記化合物(BH3) (実施例 3)、上記化合物(BH4) ( 実施例 4)、上記化合物(BH5) (実施例 5)、上記化合物(BH6) (実施例 6)、上記化 合物 (BH7) (実施例 7)を用いたこと以外は全く同様にして有機 EL素子を作製し、得 られた素子について、実施例 1と同様にして初期性能及び半減寿命、耐熱試験を行 つた。それらの結果を表 1に示す。
[0082] 実施例 8— 9
実施例 1において、非対称含縮合環系化合物として化合物(BH1)の代わりに、上 記化合物(BH14) (実施例 8)、上記化合物(BH 15) (実施例 9)を用いたこと以外は 全く同様にして有機 EL素子を作製し、得られた素子について、実施例 1と同様にし て初期性能及び半減寿命、耐熱試験を行った。それらの結果を表 1に示す。
[0083] 実施例 10
実施例 1において、青色系ドーパントとして化合物(BD1)の代わりに、下記化合物 (BD2)を用いたこと以外は全く同様にして有機 EL素子を作製し、得られた素子につ いて、実施例 1と同様にして初期性能及び半減寿命、耐熱試験を行った。それらの 結果を表 1に示す。
[化 30]
Figure imgf000046_0001
比較例 1
実施例 1において、実施例 1の青色系発光層及び黄色一赤色系発光層を形成する 代わりに、 TBDB膜の上に、膜厚 lOnmにて下記アントラセン誘導体 DPVDPANと 青色系ドーパントとして化合物(BD1)を 40: 1の重量比で蒸着し青色系発光層とし、 さらに膜厚 30nmにてアントラセン誘導体 DPVDPANと赤色系ドーパントとして化合 物 (rdl)を 40 : 1の重量比で蒸着し成膜し、黄色一赤色系発光層としたこと以外は同 様にして有機 EL素子を作製し、得られた素子について、実施例 1と同様にして初期 性能及び半減寿命、耐熱試験を行った。それらの結果を表 1に示す。
[化 31]
Figure imgf000047_0001
Figure imgf000047_0002
r d 比較例 2— 6
実施例 1において、化合物(BH1)の代わりに、下記化合物 (bhl)、下記化合物 (b h2)、下記化合物 (bh3)、下記化合物 (bh4)、下記化合物 (bh5)を用いたこと以外 は全く同様にして有機 EL素子を作製し、得られた素子について、実施例 1と同様に して初期性能及び半減寿命、耐熱試験を行った。それらの結果を表 1に示す。
[化 32]
Figure imgf000048_0001
Figure imgf000048_0002
(tBuは t ブチル基) 表 1]
表 1
Figure imgf000049_0001
表 1に示したように、実施例 1一 10の有機 EL素子は、比較例 1一 6に比べ、耐熱試 験による色度変化が少なぐ発光効率が高ぐ寿命が極めて長い。
産業上の利用可能性
以上詳細に説明したように、本発明の白色系有機 EL素子は、色度変化が少なぐ 発光効率及び耐熱性が高ぐ極めて長寿命であり、実用性が高い。
このため、フルカラーディスプレイ、情報表示機器、車載表示機器、照明器具として 極めて実用的かつ有用である。

Claims

請求の範囲 [1] 陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる有機薄膜層が挟 持されて!、る有機エレクト口ルミネッセンス素子にお 、て、発光層が青色系発光層と 黄色一赤色系発光層との積層からなり、該発光層が非対称含縮合環系化合物を含 む白色系有機エレクト口ルミネッセンス素子。 [2] 前記発光層が、青色系発光層と黄色一赤色系発光層との 2層からなる請求項 1に 記載の白色系有機エレクト口ルミネッセンス素子。 [3] 前記青色系発光層が青色系ホスト材料及び青色系ドーパントからなり、青色系ホス ト材料が非対称含縮合環系化合物からなる請求項 1に記載の白色系有機エレクト口 ルミネッセンス素子。 [4] 前記非対称含縮合環系化合物が、下記一般式 (I)で表される非対称アントラセン 系化合物である請求項 1に記載の白色系有機エレクト口ルミネッセンス素子。
[化 1]
Figure imgf000050_0001
( I )
[一般式 (I)において、 Ar1及び Ar2は、それぞれ独立に、置換もしくは無置換の核炭 素数 6— 50のァリール基である。ただし、 Ar1と Ar2は構造が同一ではない。
R1一 R8は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 ]
前記非対称含縮合環系化合物が、下記一般式 (II)一 (IV)の 、ずれかで表される 非対称アントラセン系化合物である請求項 1に記載の白色系有機エレクト口ルミネッ センス素子。
[化 2]
Figure imgf000051_0001
[一般式 (II)において、 Arは置換もしくは無置換の核炭素数 10— 50の縮合芳香族 環残基である。
Ar'は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar'は複数個で あってもよい。
Xは、置換もしくは無置換の核炭素数 6— 50のァリール基、置換もしくは無置換の 核原子数 5— 50の芳香族複素環基、置換もしくは無置換の炭素数 1一 50のアルキ ル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基、置換もしくは無置換の炭 素数 6— 50のァラルキル基、置換もしくは無置換の核原子数 5— 50のァリールォキ シ基、置換もしくは無置換の核原子数 5— 50のァリールチオ基、置換もしくは無置換 の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル基、ハロゲン原子、シァノ 基、ニトロ基、ヒドロキシル基である。
a、 b及び cは、それぞれ 0— 4の整数であり、 nは 1一 3の整数である。 ]
[化 3]
Figure imgf000052_0001
[一般式 (III)において、 A1及び A2は、それぞれ独立に、置換もしくは無置換の核炭 素数 10— 20の縮合芳香族環残基である。
Ar1及び Ar2は、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar1及び Ar2は、それぞれ複数個であってもよい。
R1一 R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 R9一 R1Qは、そ れぞれ複数個であってもよ 、。
ただし、中心のアントラセンの 9位及び 10位に、対称型となる基が結合する場合は ない。]
[化 4]
Figure imgf000053_0001
(IV)
[一般式 (IV)において、 Ar1'及び Ar2'は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。 Ar1'及び Ar2'は、それぞれ複数個であってもよい
R1一 R1Qは、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 R9一 R1(>は、そ れぞれ複数個であってもよ 、。
ただし、中心のアントラセンの 9位及び 10位に、対称型となる基が結合する場合は ない。]
前記非対称含縮合環系化合物が、下記一般式 (V)で表される非対称ピレン系化 合物である請求項 1に記載の白色系有機エレクト口ルミネッセンス素子。
[化 5]
Figure imgf000054_0001
[一般式 (V)にお ヽて、 Ar3及び Ar4は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。ただし、 Ar3と Ar4は構造が同一ではない。
R11— R18は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。 ]
前記非対称含縮合環系化合物が、下記一般式 (VI)— (IX)の 、ずれかで表される 非対称ピレン系化合物である請求項 1に記載の白色系有機エレクト口ルミネッセンス 素子。
[化 6]
Figure imgf000055_0001
[一般式 (VI)において、 Ar5は置換もしくは無置換の核炭素数 10— 50の縮合芳香族 環残基である。
Ar6は置換もしくは無置換の核炭素数 6— 50のァリール基である。 Ar6は複数個で あってもよい。
X1及び X2は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリール 基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無置換 の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基 、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核原子 数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリールチ ォ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
dは 0— 8の整数、 eは 0— 4の整数、 n1は 1一 3の整数である。 ]
[化 7]
Figure imgf000056_0001
[一般式 (VII)において、 Ar7及び Ar8は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。 Ar7及び Ar8は、それぞれ複数個であってもよい
X3、 X4及び X5は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリ ール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無 置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキ シ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核 原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリー ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキ シル基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
f及び gは、それぞれ 0— 4の整数、 hは 0— 8の整数、 n は 1一 3の整数である。 ただし、中心のピレンの 1位及び 6位に、対称型となる基が結合する場合はない。 ] [化 8]
Figure imgf000057_0001
(VI I I)
[一般式 (vm)において、 A3及び A4は、それぞれ独立に、置換もしくは無置換の核炭 素数 10— 20の縮合芳香族環残基である。
Ar9及び Ar1Qは、それぞれ独立に、水素原子、又は置換もしくは無置換の核炭素 数 6— 50のァリール基である。 Ar9及び Ar1Qは、それぞれ複数個であってもよい。
R11— R2°は、それぞれ独立に、水素原子、置換もしくは無置換の核炭素数 6— 50の ァリール基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは 無置換の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコ キシ基、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の 核原子数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリ 一ルチオ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カル ボキシル基、ハロゲン原子、シァノ基、 -トロ基、ヒドロキシル基である。 R19— R2°は、 それぞれ複数個であってもよ 、。
ただし、中心のピレンの 1位及び 6位に、対称型となる基が結合する場合はない。 ] [化 9]
Figure imgf000058_0001
[一般式 (IX)において、 Ar11及び Ar12は、それぞれ独立に、置換もしくは無置換の核 炭素数 6— 50のァリール基である。
X6及び X7は、それぞれ独立に、置換もしくは無置換の核炭素数 6— 50のァリール 基、置換もしくは無置換の核原子数 5— 50の芳香族複素環基、置換もしくは無置換 の炭素数 1一 50のアルキル基、置換もしくは無置換の炭素数 1一 50のアルコキシ基 、置換もしくは無置換の炭素数 6— 50のァラルキル基、置換もしくは無置換の核原子 数 5— 50のァリールォキシ基、置換もしくは無置換の核原子数 5— 50のァリールチ ォ基、置換もしくは無置換の炭素数 1一 50のアルコキシカルボ-ル基、カルボキシル 基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基である。
Lは、置換もしくは無置換の核炭素数 6— 50のァリーレン基、又は置換もしくは無置 換の核原子数 3— 50の 2価の芳香族複素環基である。
i及び jは、それぞれ 0— 8の整数、 n3及び n4は 1一 3の整数である。 ]
[8] 前記青色系ドーパントが、スチリルァミン、ァミン置換スチリルイ匕合物、ァミン置換縮 合芳香族環及び縮合芳香族環含有化合物より選択される少なくとも一種類の化合物 である請求項 3に記載の白色系有機エレクト口ルミネッセンス素子。
[9] 陽極、青色系発光層、黄色一赤色系発光層及び陰極を、この順に含む白色系有 機エレクト口ルミネッセンス素子において、前記黄色一赤色系発光層が前記青色系 発光層と同じホスト材料と黄色一赤色系ドーパントとを含む請求項 1に記載の白色系 有機エレクト口ルミネッセンス素子。
[10] 前記黄色一赤色系ドーパントが、フルオランテン骨格を複数有する化合物である請 求項 9に記載の白色系有機エレクト口ルミネッセンス素子。
[11] 前記黄色一赤色系ドーパントが、 540nm— 700nmの蛍光ピーク波長を示す化合 物である請求項 9に記載の白色系有機エレクト口ルミネッセンス素子。
[12] 前記青色系発光層及び黄色一赤色系発光層の膜厚が、それぞれ 5nm以上である 請求項 1に記載の白色系有機エレクト口ルミネッセンス素子。
PCT/JP2005/002442 2004-02-19 2005-02-17 白色系有機エレクトロルミネッセンス素子 WO2005081587A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006510219A JPWO2005081587A1 (ja) 2004-02-19 2005-02-17 白色系有機エレクトロルミネッセンス素子
EP05719244A EP1718124A4 (en) 2004-02-19 2005-02-17 ORGANIC LIGHT EMITTING DEVICE WITH WHITE COLOR
KR1020067008168A KR101169812B1 (ko) 2004-02-19 2005-02-17 백색계 유기 전기발광 소자
US10/573,661 US20070063638A1 (en) 2004-02-19 2005-02-17 White color organic electroluminescence device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004042694 2004-02-19
JP2004-042694 2004-02-19

Publications (1)

Publication Number Publication Date
WO2005081587A1 true WO2005081587A1 (ja) 2005-09-01

Family

ID=34879271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/002442 WO2005081587A1 (ja) 2004-02-19 2005-02-17 白色系有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US20070063638A1 (ja)
EP (1) EP1718124A4 (ja)
JP (1) JPWO2005081587A1 (ja)
KR (1) KR101169812B1 (ja)
CN (1) CN1879454A (ja)
TW (1) TW200533230A (ja)
WO (1) WO2005081587A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103916A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007072741A1 (en) 2005-12-20 2007-06-28 Canon Kabushiki Kaisha Organic light-emitting device
WO2007099802A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 赤色系有機エレクトロルミネッセンス素子
WO2007099872A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2008111543A1 (en) * 2007-03-09 2008-09-18 Canon Kabushiki Kaisha Organic light-emitting device
JP2010053131A (ja) * 2008-08-26 2010-03-11 Sfc Co Ltd ピレン系化合物及びそれを利用した有機電界発光素子
US8546844B2 (en) 2008-06-26 2013-10-01 E I Du Pont De Nemours And Company Process for forming an organic light-emitting diode luminaires having a single light-emitting layer with at least two light-emitting dopants
US8674343B2 (en) 2009-10-29 2014-03-18 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
JP2015065325A (ja) * 2013-09-25 2015-04-09 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960957A (zh) 2004-05-27 2007-05-09 出光兴产株式会社 不对称芘衍生物以及使用该衍生物的有机电致发光器件
US7531959B2 (en) * 2005-06-29 2009-05-12 Eastman Kodak Company White light tandem OLED display with filters
US8115378B2 (en) * 2006-12-28 2012-02-14 E. I. Du Pont De Nemours And Company Tetra-substituted chrysenes for luminescent applications
US8257836B2 (en) 2006-12-29 2012-09-04 E I Du Pont De Nemours And Company Di-substituted pyrenes for luminescent applications
TW200907022A (en) * 2007-06-01 2009-02-16 Du Pont Chrysenes for green luminescent applications
WO2008150872A1 (en) * 2007-06-01 2008-12-11 E.I. Du Pont De Nemours And Company Chrysenes for deep blue luminescent applications
EP2197981B1 (en) 2007-06-01 2013-04-03 E. I. Du Pont de Nemours and Company Green luminescent materials
ATE536340T1 (de) * 2007-06-01 2011-12-15 Du Pont Blaue lumineszente materialien
WO2009008357A1 (ja) * 2007-07-07 2009-01-15 Idemitsu Kosan Co., Ltd. 有機el素子
US8129039B2 (en) 2007-10-26 2012-03-06 Global Oled Technology, Llc Phosphorescent OLED device with certain fluoranthene host
US8076009B2 (en) 2007-10-26 2011-12-13 Global Oled Technology, Llc. OLED device with fluoranthene electron transport materials
US8431242B2 (en) 2007-10-26 2013-04-30 Global Oled Technology, Llc. OLED device with certain fluoranthene host
US8420229B2 (en) 2007-10-26 2013-04-16 Global OLED Technologies LLC OLED device with certain fluoranthene light-emitting dopants
KR101420475B1 (ko) * 2007-11-19 2014-07-16 이데미쓰 고산 가부시키가이샤 모노벤조크리센 유도체, 이것을 포함하는 유기 전계 발광 소자용 재료, 및 이것을 사용한 유기 전계 발광 소자
US8877350B2 (en) 2007-12-11 2014-11-04 Global Oled Technology Llc White OLED with two blue light-emitting layers
KR101121703B1 (ko) 2007-12-28 2012-03-13 이데미쓰 고산 가부시키가이샤 방향족 아민 유도체 및 그것을 이용한 유기 전기발광 소자
US8192848B2 (en) 2008-01-11 2012-06-05 E I Du Pont De Nemours And Company Substituted pyrenes and associated production methods for luminescent applications
WO2009158558A2 (en) * 2008-06-26 2009-12-30 E. I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
US7931975B2 (en) 2008-11-07 2011-04-26 Global Oled Technology Llc Electroluminescent device containing a flouranthene compound
US8088500B2 (en) 2008-11-12 2012-01-03 Global Oled Technology Llc OLED device with fluoranthene electron injection materials
CN102216417A (zh) * 2008-11-19 2011-10-12 E.I.内穆尔杜邦公司 用于蓝色或绿色发光应用的*化合物
US7968215B2 (en) 2008-12-09 2011-06-28 Global Oled Technology Llc OLED device with cyclobutene electron injection materials
WO2010068865A2 (en) * 2008-12-12 2010-06-17 E. I. Du Pont De Nemours And Company Photoactive composition and electronic device made with the composition
US8263973B2 (en) * 2008-12-19 2012-09-11 E I Du Pont De Nemours And Company Anthracene compounds for luminescent applications
US8932733B2 (en) * 2008-12-19 2015-01-13 E I Du Pont De Nemours And Company Chrysene derivative host materials
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
JP2012513680A (ja) * 2008-12-22 2012-06-14 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 光活性組成物、および、この組成物で形成された電子素子
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
EP2414481A4 (en) 2009-04-03 2013-02-20 Du Pont ELECTROACTIVE MATERIALS
CN102232068B (zh) 2009-04-24 2015-02-25 出光兴产株式会社 芳香族胺衍生物和使用其的有机电致发光元件
EP2432849B1 (en) 2009-05-19 2015-02-25 E. I. du Pont de Nemours and Company Chrysene compounds for luminescent applications
JP2012532111A (ja) 2009-07-01 2012-12-13 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途のクリセン化合物
US8968883B2 (en) * 2009-08-13 2015-03-03 E I Du Pont De Nemours And Company Chrysene derivative materials
KR20120068882A (ko) * 2009-08-24 2012-06-27 이 아이 듀폰 디 네모아 앤드 캄파니 유기 발광 다이오드 조명기구
JP5726877B2 (ja) * 2009-08-24 2015-06-03 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company 有機発光ダイオード照明器具
TW201121116A (en) * 2009-08-24 2011-06-16 Du Pont Organic light-emitting diode luminaires
KR20120055713A (ko) * 2009-08-24 2012-05-31 이 아이 듀폰 디 네모아 앤드 캄파니 유기 발광 다이오드 조명기구
CN102484213A (zh) * 2009-08-24 2012-05-30 E.I.内穆尔杜邦公司 有机发光二极管灯具
WO2011028482A2 (en) * 2009-08-24 2011-03-10 E. I. Du Pont De Nemours And Company Organic light-emitting diode luminaires
TWI448534B (zh) * 2009-09-28 2014-08-11 Ritdisplay Corp 有機電致發光元件
KR101790854B1 (ko) * 2009-09-29 2017-10-26 이 아이 듀폰 디 네모아 앤드 캄파니 발광 응용을 위한 중수소화된 화합물
CN102574773B (zh) 2009-10-19 2014-09-17 E.I.内穆尔杜邦公司 用于电子应用的三芳基胺化合物
KR20120086319A (ko) 2009-10-19 2012-08-02 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 트라이아릴아민 화합물
KR101761435B1 (ko) 2009-10-29 2017-07-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자 응용을 위한 중수소화된 화합물
WO2011071507A1 (en) * 2009-12-09 2011-06-16 E. I. Du Pont De Nemours And Company Deuterated compound as part of a combination of compounds for electronic applications
US9331285B2 (en) 2009-12-16 2016-05-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element using same
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
CN101859879A (zh) * 2010-05-26 2010-10-13 上海大学 一种白色有机电致发光器件及其制备方法
CN103124711A (zh) 2010-08-11 2013-05-29 E·I·内穆尔杜邦公司 电活性化合物和组合物以及用该组合物制成的电子装置
KR20140000672A (ko) 2010-08-24 2014-01-03 이 아이 듀폰 디 네모아 앤드 캄파니 광활성 조성물 및 그 조성물로 제조된 전자 소자
TW201229010A (en) 2010-12-13 2012-07-16 Du Pont Electroactive materials
WO2012082593A2 (en) 2010-12-15 2012-06-21 E.I. Du Pont De Nemours And Company Electroactive material and devices made with such materials
TW201229204A (en) 2010-12-17 2012-07-16 Du Pont Anthracene derivative compounds for electronic applications
TW201229003A (en) * 2010-12-17 2012-07-16 Du Pont Anthracene derivative compounds for electronic applications
US20130248843A1 (en) 2010-12-17 2013-09-26 E I Du Pont De Nemours And Company Anthracene derivative compounds for electronic applications
TW201231459A (en) 2010-12-20 2012-08-01 Du Pont Electroactive compositions for electronic applications
KR101547410B1 (ko) 2010-12-20 2015-08-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자적 응용을 위한 조성물
WO2012087960A1 (en) 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Triazine derivatives for electronic applications
JP5926286B2 (ja) 2010-12-21 2016-05-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company ピリミジン化合物を含む電子デバイス
CN103875092A (zh) 2011-10-19 2014-06-18 E.I.内穆尔杜邦公司 用于照明的有机电子装置
WO2014130597A1 (en) 2013-02-25 2014-08-28 E. I. Du Pont De Nemours And Company Electronic device including a diazachrysene derivative
KR102188028B1 (ko) 2013-06-18 2020-12-08 삼성디스플레이 주식회사 유기 발광 소자
WO2015089304A1 (en) 2013-12-13 2015-06-18 E. I. Du Pont De Nemours And Company System for forming an electroactive layer
KR102203102B1 (ko) 2014-03-05 2021-01-15 삼성디스플레이 주식회사 화합물 및 이를 포함한 유기 발광 소자
US9944846B2 (en) 2014-08-28 2018-04-17 E I Du Pont De Nemours And Company Compositions for electronic applications
CN106170474B (zh) 2014-09-19 2018-11-06 出光兴产株式会社 新型化合物
US9972783B2 (en) 2015-03-25 2018-05-15 E I Du Pont De Nemours And Company High energy triarylamine compounds for hole transport materials
US10804473B2 (en) 2015-05-21 2020-10-13 Lg Chem, Ltd. Electron transport materials for electronic applications
US9966542B2 (en) 2016-06-02 2018-05-08 E I Du Pont De Nemours And Company Electroactive materials

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129271A (ja) * 1990-09-19 1992-04-30 Toshiba Corp 有機薄膜素子
JPH11228951A (ja) * 1998-02-12 1999-08-24 Nec Corp 有機エレクトロルミネッセンス素子
JPH11323323A (ja) * 1998-05-20 1999-11-26 Toppan Printing Co Ltd 発光材料
JP2000182776A (ja) * 1998-12-09 2000-06-30 Eastman Kodak Co 有機系多層型エレクトロルミネセンス素子
JP2001052870A (ja) * 1999-06-03 2001-02-23 Tdk Corp 有機el素子
JP2001097897A (ja) * 1999-09-30 2001-04-10 Idemitsu Kosan Co Ltd 有機化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2003086380A (ja) * 2001-08-15 2003-03-20 Eastman Kodak Co 有機発光ダイオードデバイス
JP2003146951A (ja) * 2001-08-06 2003-05-21 Mitsubishi Chemicals Corp アントラセン系化合物、その製造方法および有機電界発光素子
JP2003272857A (ja) * 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
JP2003306454A (ja) * 2002-04-17 2003-10-28 Idemitsu Kosan Co Ltd 新規芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP2003313156A (ja) * 2002-04-19 2003-11-06 Idemitsu Kosan Co Ltd 新規アントラセン化合物及びそれを利用した有機エレクトロルミネッセンス素子

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6582837B1 (en) * 1997-07-14 2003-06-24 Nec Corporation Organic electroluminescence device
ATE360892T1 (de) * 1999-09-21 2007-05-15 Idemitsu Kosan Co Organische elektrolumineszens und organisch lumineszierendes medium
KR100842989B1 (ko) * 1999-09-30 2008-07-01 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자
JP4255610B2 (ja) * 1999-12-28 2009-04-15 出光興産株式会社 白色系有機エレクトロルミネッセンス素子
JP4067259B2 (ja) * 2000-01-12 2008-03-26 富士フイルム株式会社 縮環多環式炭化水素化合物、発光素子材料およびそれを使用した発光素子
CN1226250C (zh) * 2000-03-29 2005-11-09 出光兴产株式会社 蒽衍生物和使用此衍生物的电致发光器件
US7053255B2 (en) * 2000-11-08 2006-05-30 Idemitsu Kosan Co., Ltd. Substituted diphenylanthracene compounds for organic electroluminescence devices
JP3870102B2 (ja) * 2001-02-22 2007-01-17 キヤノン株式会社 有機発光素子
KR100888424B1 (ko) * 2001-05-16 2009-03-11 더 트러스티즈 오브 프린스턴 유니버시티 고효율 다칼라 전기 유기 발광 장치
CN1302087C (zh) * 2001-07-11 2007-02-28 富士胶片株式会社 发光设备和芳香化合物
US20030215667A1 (en) * 2001-11-02 2003-11-20 Shuang Xie Electroluminescent devices
JP2004075567A (ja) * 2002-08-12 2004-03-11 Idemitsu Kosan Co Ltd オリゴアリーレン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
US20080067928A1 (en) * 2003-07-28 2008-03-20 Idemitsu Kosan Co., Ltd. White Organic Electroluminescence Element
US7252893B2 (en) * 2004-02-17 2007-08-07 Eastman Kodak Company Anthracene derivative host having ranges of dopants
EP1753271A4 (en) * 2004-05-27 2009-01-28 Idemitsu Kosan Co WHITE ORGANIC ELECTROLUMINESCENT DEVICE

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04129271A (ja) * 1990-09-19 1992-04-30 Toshiba Corp 有機薄膜素子
JPH11228951A (ja) * 1998-02-12 1999-08-24 Nec Corp 有機エレクトロルミネッセンス素子
JPH11323323A (ja) * 1998-05-20 1999-11-26 Toppan Printing Co Ltd 発光材料
JP2000182776A (ja) * 1998-12-09 2000-06-30 Eastman Kodak Co 有機系多層型エレクトロルミネセンス素子
JP2001052870A (ja) * 1999-06-03 2001-02-23 Tdk Corp 有機el素子
JP2001097897A (ja) * 1999-09-30 2001-04-10 Idemitsu Kosan Co Ltd 有機化合物及びそれを用いた有機エレクトロルミネッセンス素子
JP2003146951A (ja) * 2001-08-06 2003-05-21 Mitsubishi Chemicals Corp アントラセン系化合物、その製造方法および有機電界発光素子
JP2003086380A (ja) * 2001-08-15 2003-03-20 Eastman Kodak Co 有機発光ダイオードデバイス
JP2003272857A (ja) * 2002-03-19 2003-09-26 Idemitsu Kosan Co Ltd 白色系有機エレクトロルミネッセンス素子
JP2003306454A (ja) * 2002-04-17 2003-10-28 Idemitsu Kosan Co Ltd 新規芳香族化合物及びそれを利用した有機エレクトロルミネッセンス素子
JP2003313156A (ja) * 2002-04-19 2003-11-06 Idemitsu Kosan Co Ltd 新規アントラセン化合物及びそれを利用した有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1718124A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103916A1 (ja) * 2005-03-25 2006-10-05 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
EP1866985A4 (en) * 2005-12-20 2010-04-28 Canon Kk ORGANIC LIGHT-EMITTING DEVICE
WO2007072741A1 (en) 2005-12-20 2007-06-28 Canon Kabushiki Kaisha Organic light-emitting device
KR101036514B1 (ko) * 2005-12-20 2011-05-24 캐논 가부시끼가이샤 유기발광소자
JP2007318063A (ja) * 2005-12-20 2007-12-06 Canon Inc 有機発光素子
EP1866985A1 (en) * 2005-12-20 2007-12-19 Canon Kabushiki Kaisha Organic light-emitting device
KR101036513B1 (ko) * 2005-12-20 2011-05-24 캐논 가부시끼가이샤 유기발광소자
WO2007099872A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007099802A1 (ja) * 2006-02-23 2007-09-07 Idemitsu Kosan Co., Ltd. 赤色系有機エレクトロルミネッセンス素子
WO2008111543A1 (en) * 2007-03-09 2008-09-18 Canon Kabushiki Kaisha Organic light-emitting device
US8084147B2 (en) 2007-03-09 2011-12-27 Canon Kabushiki Kaisha Organic light-emitting device
US8546844B2 (en) 2008-06-26 2013-10-01 E I Du Pont De Nemours And Company Process for forming an organic light-emitting diode luminaires having a single light-emitting layer with at least two light-emitting dopants
JP2010053131A (ja) * 2008-08-26 2010-03-11 Sfc Co Ltd ピレン系化合物及びそれを利用した有機電界発光素子
US8674343B2 (en) 2009-10-29 2014-03-18 E I Du Pont De Nemours And Company Organic light-emitting diodes having white light emission
JP2015065325A (ja) * 2013-09-25 2015-04-09 出光興産株式会社 有機エレクトロルミネッセンス素子、および電子機器

Also Published As

Publication number Publication date
KR101169812B1 (ko) 2012-07-30
TW200533230A (en) 2005-10-01
US20070063638A1 (en) 2007-03-22
EP1718124A4 (en) 2009-06-24
CN1879454A (zh) 2006-12-13
KR20060115372A (ko) 2006-11-08
EP1718124A1 (en) 2006-11-02
JPWO2005081587A1 (ja) 2008-01-17

Similar Documents

Publication Publication Date Title
WO2005081587A1 (ja) 白色系有機エレクトロルミネッセンス素子
JP4995475B2 (ja) ベンズアントラセン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子
KR101422864B1 (ko) 복소환 함유 아릴아민 유도체를 이용한 유기 전계발광 소자
US7501189B2 (en) White organic electroluminescent device
JP5258562B2 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
US20070090753A1 (en) Organic electroluminescent device
JP5032317B2 (ja) ビフェニル誘導体、有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP2008150310A (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
KR20100106415A (ko) 유기 전계 발광 소자
WO2004047499A1 (ja) 有機エレクトロルミネッセンス素子
KR20080105113A (ko) 함질소 복소환 유도체 및 그것을 이용한 유기 전기 발광 소자
KR20090051225A (ko) 방향족 아민 유도체 및 그들을 이용한 유기 전기발광 소자
JPWO2007058127A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
WO2007099983A1 (ja) フルオランテン誘導体及びインデノペリレン誘導体を用いた有機エレクトロルミネッセンス素子
WO2006059512A1 (ja) 有機電界発光素子
JP2007186461A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2007039405A (ja) 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2007125714A1 (ja) 芳香族アミン誘導体及びそれらを用いた有機エレクトロルミネッセンス素子
KR20080105112A (ko) 함질소 복소환 유도체 및 그것을 이용한 유기 전기발광 소자
WO2005121057A1 (ja) アントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JPWO2008102740A1 (ja) 有機エレクトロルミネッセンス素子
WO2007116828A1 (ja) ビスアントラセン誘導体及びそれを利用した有機エレクトロルミネッセンス素子
JP5084208B2 (ja) 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子用材料
WO2007105448A1 (ja) ナフタセン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2008111554A1 (ja) 有機el素子及び表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001270.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006510219

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2005719244

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007063638

Country of ref document: US

Ref document number: 10573661

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020067008168

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005719244

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067008168

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10573661

Country of ref document: US