WO2005073434A1 - 超高純度銅及びその製造方法 - Google Patents
超高純度銅及びその製造方法 Download PDFInfo
- Publication number
- WO2005073434A1 WO2005073434A1 PCT/JP2005/000015 JP2005000015W WO2005073434A1 WO 2005073434 A1 WO2005073434 A1 WO 2005073434A1 JP 2005000015 W JP2005000015 W JP 2005000015W WO 2005073434 A1 WO2005073434 A1 WO 2005073434A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- copper
- purity
- purity copper
- ultrahigh
- intermittently
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B15/00—Obtaining copper
- C22B15/0063—Hydrometallurgy
- C22B15/0084—Treating solutions
- C22B15/0086—Treating solutions by physical methods
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C1/00—Electrolytic production, recovery or refining of metals by electrolysis of solutions
- C25C1/12—Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25C—PROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
- C25C7/00—Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
- C25C7/06—Operating or servicing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/43—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L24/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/44—Structure, shape, material or disposition of the wire connectors prior to the connecting process
- H01L2224/45—Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
- H01L2224/45001—Core members of the connector
- H01L2224/45099—Material
- H01L2224/451—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
- H01L2224/45138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/45147—Copper (Cu) as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00011—Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/09—Use of materials for the conductive, e.g. metallic pattern
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to ultra-high purity copper of 8N (99. 999 999 wt%) or more, and a method for producing the same by dissolving and collecting raw material copper using a single electrolytic cell.
- High purity copper is characterized by low recrystallization temperature and softness, almost no brittleness in the intermediate temperature range, good workability, extremely low electrical resistance and extremely low thermal conductivity. It is also one of the features that the characteristics are improved by the addition of trace amounts of elemental elements, and that the effect of the impurity contamination power S is extremely large or very high.
- Patent Document 4 Japanese Patent Application Laid-Open No. 2-185990
- Patent Document 2 Japanese Patent Application Laid-Open No. 4-224662
- Patent Document 3 Japanese Patent Application Laid-Open No. 3-20656
- Patent Document 4 Japanese Patent Application Laid-Open No. 64-56399
- Patent Document 5 Japanese Patent Application Laid-Open No. 5-309448
- the present invention provides a technology for efficiently producing ultra-high purity copper having a purity of 8N (99. 999999 wt%) or more by electrolysis using a copper-containing solution from a copper raw material containing a large amount of impurities. It is an object of the present invention to provide ultra high purity copper obtained thereby.
- the present invention is characterized in that 1) the residual resistance ratio is 38000 or more, and the purity is 8N or more (with the exception of 0, C, N, H, S, and P gas components).
- the anode and the force sword when purifying copper by electrolysis, are partitioned by an anion exchange membrane, and the anolyte is intermittently or continuously extracted to introduce activated carbon.
- a method of producing ultra-high purity copper characterized by stirring and adsorbing impurities, and intermittently or continuously introducing the obtained high-purity copper electrolytic solution on the force-sword side intermittently or continuously, 4) electrolysis
- the anode and the force sword are partitioned by anion exchange membrane, and the aminolite is extracted intermittently or continuously, and the activated carbon is charged and agitated to adsorb impurities, and the high purity obtained is obtained.
- the present invention provides the method for producing ultra-high purity copper as described in 1 or 2 characterized in that a copper electrolytic solution is intermittently or continuously introduced on the force sword side and electrolyzed.
- a commercially available 2N-4N level copper raw material is used as an anode, and electrolysis is performed using a force saw.
- the copper raw material mainly contains a large amount of silver, selenium and the like.
- An acid solution containing no S is desirable for the electrolyte solution. Specifically, it is carried out using nitric acid, hydrochloric acid, etc.
- the raw material copper dissolves in the electrolyte from the anode (forms anolyte).
- the anode and the force sword are partitioned by an ion exchange membrane to intermittently or continuously withdraw the anolite. Catholite is separated from the outer liquid (Anolite) through the ion exchange membrane.
- the ion exchange membrane can be applied without particular limitation as long as the membrane does not allow much Cu ions to pass through.
- Activated carbon is added to the extracted aminolite and stirred. Impurities in the solution are adsorbed onto activated carbon and removed from the solution by filtration. At this time, impurities can be more effectively removed by adding a solution containing chlorine ions. If necessary, solvent extraction may be performed.
- Impurities are removed and highly purified copper electrolyte is introduced intermittently or continuously on the force sword side and electrolyzed using as catholyte.
- electrodeposited copper (deposited on a force sword) having a purity of 8N is obtained. That is, it is 8N (99. 999999 wt%) or more excluding gas components, and all of the metal components can be reduced to 0. Ol wt ppm or less as impurities.
- vacuum melting such as electron beam melting for electrodeposition copper obtained by electrolysis.
- alkali metals such as Na and K and other volatile impurities and gas components such as C1 can be effectively removed.
- Gas components can be further removed and reduced by degassing with a reducing gas as necessary.
- Table 1 shows the content of impurities in the raw material. The same table also shows the amount of conventional 6N copper impurities.
- the copper raw material mainly contains a large amount of selenium, silver, carbon, sulfur, chlorine and the like.
- the number of particles a large number, a small number, and a small number.
- the extracted anolite was introduced into an activated carbon treatment tank, and 13 mg of copper chloride was added. After that, 30 g of activated carbon was added to remove impurities. This solution was put on the force sword side to carry out electrolytic collection. About 8 kg of Cu was obtained on the force sword side. To obtain an ingot by vacuum melting in this 10- 3 Pa. From this, a rod of 3 mm ⁇ 100 mm was cut out and annealed in a H atmosphere at 600 ° C. for 2 hours.
- the residual resistance ratio was measured by the four-terminal method of this rod.
- the value of the residual resistance ratio was 40,000.
- the value of the residual resistance ratio was 40,000.
- the amounts of impurities are shown in Table 1.
- Zone melting was repeated 20 times for 5 kg of commercially available 4 N Cu. As a result, a residual resistance ratio of 10,000 was obtained, and high purity Cu was obtained, but it took 20 days. Moreover, the residual resistance ratio of the present invention did not satisfy the condition of 38000 or more.
- a nitric acid bath was electrolyzed using 5 kg of 4N Cu as an anode, and Cu electrodeposited on a force sword was further electroplated using nitric acid as an anode.
- the value of the residual resistance ratio is 400, which is an extremely low value, at 0.425 ⁇ ′m.
- the melting point was examined five times each using Cu of Example 1 and Comparative Example 1 and Comparative Example 2 above.
- Example 1 As a result, in Example 1, the error was ⁇ 0.C.
- Comparative Example 1 an error of ⁇ 1 ° C. occurs, and in Comparative Example 2, an error of ⁇ 2 ° C. occurs. Further, in Comparative Example 3, ⁇ 10 ° C. was also found, and it was confirmed that the influence of purity is large.
- the film forming characteristics and the stability of the film forming conditions largely depend on the purity of the target.
- the ultra-high purity obtained in Example 1 above is used to make a target, as well as the conventional A 4N copper target and a 6N high purity copper target were prepared and used for sputtering, and the amount of particles generated at that time was observed.
- the 4N copper target material was found to generate a large amount of particles, and the force 6N high purity copper target was less powerful. Furthermore, the target material of Example 1 was even smaller. From this, the ultra-high purity copper target was able to be used for its excellent film forming properties, and its industrial applicability
- anolyte of a copper-containing solution is introduced into an activated carbon treatment tank, impurities are removed by hydrochloric acid and activated carbon treatment, and the impurities are further removed.
- the high purity copper solution as a castorite, ultra high purity copper having a purity of 8N (99. 999999 wt%) or more can be efficiently produced.
- ultra high purity copper is used as a conductor for cable equipment for AV equipment, bonding wire for IC, wiring material for LSI, wire or copper foil which is repeatedly bent, copper, superconducting stabilized copper, various electronic parts such as cryo equipment etc. It can be widely used as a material and a semiconductor device material.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Electrolytic Production Of Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005517395A JP4519775B2 (ja) | 2004-01-29 | 2005-01-05 | 超高純度銅及びその製造方法 |
US10/597,449 US8192596B2 (en) | 2004-01-29 | 2005-01-05 | Ultrahigh-purity copper and process for producing the same |
US12/721,625 US8216442B2 (en) | 2004-01-29 | 2010-03-11 | Ultrahigh-purity copper and process for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004020850 | 2004-01-29 | ||
JP2004-020850 | 2004-01-29 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/597,449 A-371-Of-International US20070251545A1 (en) | 2004-05-24 | 2005-05-06 | Kit Consisting of a Sponge and a Detergent |
US12/721,625 Division US8216442B2 (en) | 2004-01-29 | 2010-03-11 | Ultrahigh-purity copper and process for producing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005073434A1 true WO2005073434A1 (ja) | 2005-08-11 |
Family
ID=34823766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2005/000015 WO2005073434A1 (ja) | 2004-01-29 | 2005-01-05 | 超高純度銅及びその製造方法 |
Country Status (3)
Country | Link |
---|---|
US (2) | US8192596B2 (ja) |
JP (1) | JP4519775B2 (ja) |
WO (1) | WO2005073434A1 (ja) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134724A1 (ja) * | 2005-06-15 | 2006-12-21 | Nippon Mining & Metals Co., Ltd. | 超高純度銅及びその製造方法並びに超高純度銅からなるボンディングワイヤ |
JP2008153625A (ja) * | 2006-11-21 | 2008-07-03 | Sumitomo Metal Mining Co Ltd | 銅ボンディングワイヤ |
WO2009098756A1 (ja) * | 2008-02-05 | 2009-08-13 | Mitsubishi Materials Corporation | 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液 |
JP2010062395A (ja) * | 2008-09-04 | 2010-03-18 | Sumitomo Metal Mining Co Ltd | 銅ボンディングワイヤ |
WO2010038641A1 (ja) * | 2008-09-30 | 2010-04-08 | 日鉱金属株式会社 | 高純度銅及び電解による高純度銅の製造方法 |
WO2010038642A1 (ja) * | 2008-09-30 | 2010-04-08 | 日鉱金属株式会社 | 高純度銅又は高純度銅合金スパッタリングターゲット、同スパッタリングターゲットの製造方法及び高純度銅又は高純度銅合金スパッタ膜 |
WO2015005348A1 (ja) * | 2013-07-11 | 2015-01-15 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット |
JP5690917B2 (ja) * | 2011-03-07 | 2015-03-25 | Jx日鉱日石金属株式会社 | 銅又は銅合金、ボンディングワイヤ、銅の製造方法、銅合金の製造方法及びボンディングワイヤの製造方法 |
JP2016125115A (ja) * | 2015-01-07 | 2016-07-11 | 三菱マテリアル株式会社 | 超伝導線、及び、超伝導コイル |
JP2016125114A (ja) * | 2015-01-07 | 2016-07-11 | 三菱マテリアル株式会社 | 超伝導安定化材、超伝導線及び超伝導コイル |
JP2016156098A (ja) * | 2016-05-26 | 2016-09-01 | 三菱マテリアル株式会社 | 超伝導安定化材、超伝導線及び超伝導コイル |
JP2016156099A (ja) * | 2016-05-26 | 2016-09-01 | 三菱マテリアル株式会社 | 超伝導線、及び、超伝導コイル |
JP6066010B1 (ja) * | 2016-06-28 | 2017-01-25 | 日立金属株式会社 | 精製銅並びに電線の製造方法 |
JP6066007B1 (ja) * | 2016-05-10 | 2017-01-25 | 日立金属株式会社 | 精製銅の製造方法及び電線の製造方法 |
JP2017043790A (ja) * | 2015-08-24 | 2017-03-02 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
WO2017033694A1 (ja) * | 2015-08-24 | 2017-03-02 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017048438A (ja) * | 2015-09-04 | 2017-03-09 | 国立大学法人秋田大学 | 銅の電解精製装置および電解精製方法 |
JP2017071834A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017071833A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017071832A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017150010A (ja) * | 2016-02-22 | 2017-08-31 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017150008A (ja) * | 2016-02-22 | 2017-08-31 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
CN111218630A (zh) * | 2020-03-11 | 2020-06-02 | 宁波江丰电子材料股份有限公司 | 一种超高纯铜铸锭缺陷消除方法 |
US10971278B2 (en) | 2016-04-06 | 2021-04-06 | Mitsubishi Materials Corporation | Superconducting wire and superconducting coil |
US11149329B2 (en) | 2016-04-06 | 2021-10-19 | Mitsubishi Materials Corporation | Stabilizer material for superconductor |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005073434A1 (ja) * | 2004-01-29 | 2005-08-11 | Nippon Mining & Metals Co., Ltd. | 超高純度銅及びその製造方法 |
WO2008030368A1 (en) * | 2006-09-08 | 2008-03-13 | Tosoh Smd, Inc. | Copper sputtering target with fine grain size and high electromigration resistance and methods of making the same |
WO2008041535A1 (en) * | 2006-10-03 | 2008-04-10 | Nippon Mining & Metals Co., Ltd. | Cu-Mn ALLOY SPUTTERING TARGET AND SEMICONDUCTOR WIRING |
WO2013031381A1 (ja) * | 2011-08-29 | 2013-03-07 | Jx日鉱日石金属株式会社 | Cu-Ga合金スパッタリングターゲット及びその製造方法 |
JP6183592B2 (ja) * | 2012-06-14 | 2017-08-23 | 三菱マテリアル株式会社 | 高純度電気銅の電解精錬方法 |
CN104047021A (zh) * | 2013-03-13 | 2014-09-17 | 江苏瑞崚新材料科技有限公司 | 一种用电解方法制备出6N-Cu的方法 |
KR101807451B1 (ko) | 2014-06-05 | 2017-12-08 | 제이엑스금속주식회사 | 염화 구리, cvd 원료, 구리 배선막 및 염화 구리의 제조 방법 |
EP3211117A4 (en) | 2015-05-21 | 2018-04-04 | JX Nippon Mining & Metals Corporation | Copper alloy sputtering target and method for manufacturing same |
JP6308278B2 (ja) * | 2016-10-07 | 2018-04-11 | 三菱マテリアル株式会社 | 円筒型スパッタリングターゲット用熱間押出素材、及び、円筒型スパッタリングターゲットの製造方法 |
WO2018221734A1 (ja) * | 2017-06-01 | 2018-12-06 | 三菱マテリアル株式会社 | 高純度電気銅の製造方法 |
TWI787275B (zh) | 2017-06-01 | 2022-12-21 | 日商三菱綜合材料股份有限公司 | 高純度電解銅之製造方法 |
TWI727586B (zh) | 2019-02-28 | 2021-05-11 | 日商Jx金屬股份有限公司 | 銅電極材料 |
CN109763140A (zh) * | 2019-03-20 | 2019-05-17 | 金川集团股份有限公司 | 一种7n超纯铜的制备方法 |
EP3950981A4 (en) * | 2019-03-29 | 2023-04-26 | Mitsubishi Materials Corporation | COPPER MATERIAL AND HEAT-DISSIPTING ELEMENT |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108251A (ja) * | 1995-05-08 | 1996-04-30 | Nikko Kinzoku Kk | 超電導用の銅管材の製造方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60223149A (ja) | 1984-04-19 | 1985-11-07 | Hitachi Ltd | 半導体装置 |
US4792369A (en) * | 1987-02-19 | 1988-12-20 | Nippon Mining Co., Ltd. | Copper wires used for transmitting sounds or images |
JPH08990B2 (ja) | 1989-01-11 | 1996-01-10 | 同和鉱業株式会社 | 超高純度銅の製造方法 |
US5206430A (en) * | 1990-10-31 | 1993-04-27 | Mitsui Toatsu Chemicals, Incorporated | Method for obtaining high-purity cinnamic acid |
JPH0747809B2 (ja) | 1991-02-14 | 1995-05-24 | 同和鉱業株式会社 | 粗大結晶粒からなる高純度銅線の製造法 |
JPH0963362A (ja) | 1995-08-17 | 1997-03-07 | Eitaro Tatsuse | オーディオ機器用ケーブル |
JP3725620B2 (ja) | 1996-06-21 | 2005-12-14 | 同和鉱業株式会社 | 高純度銅単結晶の製造方法及び製造装置 |
JP3403918B2 (ja) | 1997-06-02 | 2003-05-06 | 株式会社ジャパンエナジー | 高純度銅スパッタリングタ−ゲットおよび薄膜 |
JPH11229172A (ja) | 1998-02-16 | 1999-08-24 | Permelec Electrode Ltd | 高純度銅の製造方法及び製造装置 |
WO2001090445A1 (fr) | 2000-05-22 | 2001-11-29 | Nikko Materials Company, Limited | Procede de production de metal de purete superieure |
EP1413651A4 (en) | 2001-08-01 | 2006-10-25 | Nippon Mining Co | METHOD FOR THE PRODUCTION OF HIGH-PURITY NICKEL, HIGHLY NICKEL, THE HIGH-NICKEL CONTAINING SPUTTER TARGET AND THIN FILM SHOWN BY USING THE SPUTTER TARGET |
AU2002241512A1 (en) * | 2001-11-16 | 2003-06-10 | Honeywell International Inc. | Anodes for electroplating operations, and methods of forming materials over semiconductor substrates |
JP4794802B2 (ja) | 2002-11-21 | 2011-10-19 | Jx日鉱日石金属株式会社 | 銅合金スパッタリングターゲット及び半導体素子配線 |
WO2005073434A1 (ja) | 2004-01-29 | 2005-08-11 | Nippon Mining & Metals Co., Ltd. | 超高純度銅及びその製造方法 |
CN100567532C (zh) * | 2005-06-15 | 2009-12-09 | 日矿金属株式会社 | 超高纯度铜及其制造方法以及含有超高纯度铜的焊线 |
EP3128039B1 (en) * | 2008-09-30 | 2019-05-01 | JX Nippon Mining & Metals Corp. | High-purity copper sputtering target or high-purity copper alloy sputtering target |
EP2330224B1 (en) * | 2008-09-30 | 2013-05-29 | JX Nippon Mining & Metals Corporation | High-purity copper and process for electrolytically producing high-purity copper |
-
2005
- 2005-01-05 WO PCT/JP2005/000015 patent/WO2005073434A1/ja active Application Filing
- 2005-01-05 US US10/597,449 patent/US8192596B2/en not_active Expired - Fee Related
- 2005-01-05 JP JP2005517395A patent/JP4519775B2/ja active Active
-
2010
- 2010-03-11 US US12/721,625 patent/US8216442B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08108251A (ja) * | 1995-05-08 | 1996-04-30 | Nikko Kinzoku Kk | 超電導用の銅管材の製造方法 |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134724A1 (ja) * | 2005-06-15 | 2006-12-21 | Nippon Mining & Metals Co., Ltd. | 超高純度銅及びその製造方法並びに超高純度銅からなるボンディングワイヤ |
EP1903119A1 (en) * | 2005-06-15 | 2008-03-26 | Nippon Mining & Metals Co., Ltd. | Ultrahigh-purity copper and process for producing the same, and bonding wire comprising ultrahigh-purity copper |
EP2845915A1 (en) * | 2005-06-15 | 2015-03-11 | JX Nippon Mining & Metals Corporation | Ultrahigh-purity copper bonding wire |
EP1903119A4 (en) * | 2005-06-15 | 2014-06-18 | Jx Nippon Mining & Metals Corp | EXTREMELY HIGH PURITY COPPER AND METHOD OF MANUFACTURING THE SAME, AND BONDING YARN COMPRISING EXTREMELY HIGH PURITY COPPER |
JP4750112B2 (ja) * | 2005-06-15 | 2011-08-17 | Jx日鉱日石金属株式会社 | 超高純度銅及びその製造方法並びに超高純度銅からなるボンディングワイヤ |
JP2008153625A (ja) * | 2006-11-21 | 2008-07-03 | Sumitomo Metal Mining Co Ltd | 銅ボンディングワイヤ |
WO2009098756A1 (ja) * | 2008-02-05 | 2009-08-13 | Mitsubishi Materials Corporation | 高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液の製造方法及び製造装置、並びに高純度硫酸銅水溶液又は硫酸鉄を含む硫酸銅水溶液 |
JP2010062395A (ja) * | 2008-09-04 | 2010-03-18 | Sumitomo Metal Mining Co Ltd | 銅ボンディングワイヤ |
JP4680325B2 (ja) * | 2008-09-30 | 2011-05-11 | Jx日鉱日石金属株式会社 | 高純度銅又は高純度銅合金スパッタリングターゲット、同スパッタリングターゲットの製造方法及び高純度銅又は高純度銅合金スパッタ膜 |
JP4620185B2 (ja) * | 2008-09-30 | 2011-01-26 | Jx日鉱日石金属株式会社 | 高純度銅及び電解による高純度銅の製造方法 |
CN102165093A (zh) * | 2008-09-30 | 2011-08-24 | Jx日矿日石金属株式会社 | 高纯度铜或高纯度铜合金溅射靶、该溅射靶的制造方法及高纯度铜或高纯度铜合金溅射膜 |
KR101058765B1 (ko) | 2008-09-30 | 2011-08-24 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 고순도 구리 및 전해에 의한 고순도 구리의 제조 방법 |
JPWO2010038641A1 (ja) * | 2008-09-30 | 2012-03-01 | Jx日鉱日石金属株式会社 | 高純度銅及び電解による高純度銅の製造方法 |
KR101290856B1 (ko) | 2008-09-30 | 2013-07-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | 고순도 구리 또는 고순도 구리 합금 스퍼터링 타겟 및 동 스퍼터링 타겟의 제조 방법 |
WO2010038642A1 (ja) * | 2008-09-30 | 2010-04-08 | 日鉱金属株式会社 | 高純度銅又は高純度銅合金スパッタリングターゲット、同スパッタリングターゲットの製造方法及び高純度銅又は高純度銅合金スパッタ膜 |
WO2010038641A1 (ja) * | 2008-09-30 | 2010-04-08 | 日鉱金属株式会社 | 高純度銅及び電解による高純度銅の製造方法 |
JP5690917B2 (ja) * | 2011-03-07 | 2015-03-25 | Jx日鉱日石金属株式会社 | 銅又は銅合金、ボンディングワイヤ、銅の製造方法、銅合金の製造方法及びボンディングワイヤの製造方法 |
WO2015005348A1 (ja) * | 2013-07-11 | 2015-01-15 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット用銅素材及び高純度銅スパッタリングターゲット |
US20180005731A1 (en) * | 2015-01-07 | 2018-01-04 | Mitsubishi Materials Corporation | Superconducting wire and superconducting coil |
TWI596622B (zh) * | 2015-01-07 | 2017-08-21 | 三菱綜合材料股份有限公司 | 超導線及超導線圈 |
WO2016111173A1 (ja) * | 2015-01-07 | 2016-07-14 | 三菱マテリアル株式会社 | 超伝導安定化材、超伝導線及び超伝導コイル |
WO2016111159A1 (ja) * | 2015-01-07 | 2016-07-14 | 三菱マテリアル株式会社 | 超伝導線、及び、超伝導コイル |
JP2016125115A (ja) * | 2015-01-07 | 2016-07-11 | 三菱マテリアル株式会社 | 超伝導線、及び、超伝導コイル |
US10964454B2 (en) | 2015-01-07 | 2021-03-30 | Mitsubishi Materials Corporation | Superconducting wire and superconducting coil |
US10964453B2 (en) | 2015-01-07 | 2021-03-30 | Mitsubishi Materials Corporation | Superconducting stabilization material, superconducting wire, and superconducting coil |
JP2016125114A (ja) * | 2015-01-07 | 2016-07-11 | 三菱マテリアル株式会社 | 超伝導安定化材、超伝導線及び超伝導コイル |
WO2017033694A1 (ja) * | 2015-08-24 | 2017-03-02 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
CN107923034A (zh) * | 2015-08-24 | 2018-04-17 | 三菱综合材料株式会社 | 高纯度铜溅射靶材 |
JP2017043790A (ja) * | 2015-08-24 | 2017-03-02 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
US10889889B2 (en) | 2015-08-24 | 2021-01-12 | Mitsubishi Materials Corporation | High purity copper sputtering target material |
TWI696714B (zh) * | 2015-08-24 | 2020-06-21 | 日商三菱綜合材料股份有限公司 | 高純度銅濺鍍靶材 |
KR20180043245A (ko) * | 2015-08-24 | 2018-04-27 | 미쓰비시 마테리알 가부시키가이샤 | 고순도 구리 스퍼터링 타깃재 |
KR102327963B1 (ko) | 2015-08-24 | 2021-11-17 | 미쓰비시 마테리알 가부시키가이샤 | 고순도 구리 스퍼터링 타깃재 |
JP2017048438A (ja) * | 2015-09-04 | 2017-03-09 | 国立大学法人秋田大学 | 銅の電解精製装置および電解精製方法 |
JP2017071834A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017071833A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017071832A (ja) * | 2015-10-08 | 2017-04-13 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017150010A (ja) * | 2016-02-22 | 2017-08-31 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
JP2017150008A (ja) * | 2016-02-22 | 2017-08-31 | 三菱マテリアル株式会社 | 高純度銅スパッタリングターゲット材 |
US10971278B2 (en) | 2016-04-06 | 2021-04-06 | Mitsubishi Materials Corporation | Superconducting wire and superconducting coil |
US11149329B2 (en) | 2016-04-06 | 2021-10-19 | Mitsubishi Materials Corporation | Stabilizer material for superconductor |
US10597790B2 (en) | 2016-05-10 | 2020-03-24 | Hitachi Metals, Ltd. | Refined copper, method of producing refined copper, electric wire and method of manufacturing electric wire |
JP6066007B1 (ja) * | 2016-05-10 | 2017-01-25 | 日立金属株式会社 | 精製銅の製造方法及び電線の製造方法 |
JP2016156099A (ja) * | 2016-05-26 | 2016-09-01 | 三菱マテリアル株式会社 | 超伝導線、及び、超伝導コイル |
JP2016156098A (ja) * | 2016-05-26 | 2016-09-01 | 三菱マテリアル株式会社 | 超伝導安定化材、超伝導線及び超伝導コイル |
JP2017203210A (ja) * | 2016-06-28 | 2017-11-16 | 日立金属株式会社 | 精製銅並びに電線の製造方法 |
JP6066010B1 (ja) * | 2016-06-28 | 2017-01-25 | 日立金属株式会社 | 精製銅並びに電線の製造方法 |
CN111218630A (zh) * | 2020-03-11 | 2020-06-02 | 宁波江丰电子材料股份有限公司 | 一种超高纯铜铸锭缺陷消除方法 |
Also Published As
Publication number | Publication date |
---|---|
US20080223728A1 (en) | 2008-09-18 |
US8216442B2 (en) | 2012-07-10 |
US20100163425A1 (en) | 2010-07-01 |
JPWO2005073434A1 (ja) | 2008-04-24 |
JP4519775B2 (ja) | 2010-08-04 |
US8192596B2 (en) | 2012-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005073434A1 (ja) | 超高純度銅及びその製造方法 | |
KR101623629B1 (ko) | 구리 또는 구리 합금, 본딩 와이어, 구리의 제조 방법, 구리 합금의 제조 방법 및 본딩 와이어의 제조 방법 | |
JP4840808B2 (ja) | 高純度ニッケル、高純度ニッケルターゲット及び高純度ニッケル薄膜 | |
TWI253482B (en) | Method of producing a higher-purity metal | |
TW201026869A (en) | High-purity copper or high-purity copper alloy sputtering target, process for manufacturing the sputtering target, and high-purity copper or high-purity copper alloy sputtered film | |
JP4298712B2 (ja) | 銅の電解精製方法 | |
CN1218071C (zh) | 用于加工金属的方法和设备以及由此生产出的金属 | |
TWI639557B (zh) | Anhydrous nickel chloride and its manufacturing method | |
JPH08990B2 (ja) | 超高純度銅の製造方法 | |
KR100603131B1 (ko) | 전기동 도금방법, 전기동 도금용 순동 애노드 및 이들을사용하여 도금한 파티클 부착이 적은 반도체 웨이퍼 | |
CN101302585A (zh) | 一种制备高纯钴的方法 | |
WO2007007498A1 (ja) | 高純度ハフニウム、高純度ハフニウムからなるターゲット及び薄膜並びに高純度ハフニウムの製造方法 | |
JP5755572B2 (ja) | 電解精製用ビスマスアノードの製造方法 | |
JP2008507628A (ja) | 高純度ニッケルを生成する方法 | |
JP3825983B2 (ja) | 金属の高純度化方法 | |
JP6985678B2 (ja) | 低品位銅アノードの電解精錬方法およびそれに用いる電解液 | |
WO2003097903A1 (fr) | Procede et dispositif de production de metal hautement pur | |
JP4797163B2 (ja) | テルル含有粗鉛の電解方法 | |
JP6841969B1 (ja) | シアン化金カリウム結晶及びシアン化金カリウム溶液 | |
JP5544746B2 (ja) | 金属インジウムの製造方法 | |
JP3916134B2 (ja) | 電気銅めっき用アノード、該アノードの製造方法、該アノードを用いた電気銅めっき方法 | |
JPH03140489A (ja) | 高純度銅の製造方法 | |
JPH0258330B2 (ja) | ||
CN116103702A (zh) | 一种金属锰的熔盐电解提纯方法及其装置 | |
EP3896198A1 (en) | Electrolytic copper foil and method for producing same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005517395 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10597449 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |