Nothing Special   »   [go: up one dir, main page]

WO2005065522A1 - 被検体内位置検出システム - Google Patents

被検体内位置検出システム Download PDF

Info

Publication number
WO2005065522A1
WO2005065522A1 PCT/JP2004/014402 JP2004014402W WO2005065522A1 WO 2005065522 A1 WO2005065522 A1 WO 2005065522A1 JP 2004014402 W JP2004014402 W JP 2004014402W WO 2005065522 A1 WO2005065522 A1 WO 2005065522A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
subject
detecting
unit
intra
Prior art date
Application number
PCT/JP2004/014402
Other languages
English (en)
French (fr)
Inventor
Tetsuo Minai
Hatsuo Shimizu
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP04788430.9A priority Critical patent/EP1698265B1/en
Publication of WO2005065522A1 publication Critical patent/WO2005065522A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00029Operational features of endoscopes characterised by power management characterised by power supply externally powered, e.g. wireless

Definitions

  • the present invention relates to an intra-subject introduction device introduced into a subject and moving within the subject, and a position of the intra-subject introduction device disposed outside the subject and inside the subject.
  • the present invention relates to an in-subject position detection system including a position detection device that acquires information.
  • capsule endoscopes In recent years, in the field of endoscopes, swallowable capsule endoscopes have been proposed. This capsule endoscope is provided with an imaging function and a wireless communication function. Capsule-type endoscopes are peristaltic in body cavities, for example, inside organs such as the stomach and small intestine, after they are swallowed from the subject's mouth for observation (examination) and before they are naturally excreted. And has the function of sequentially capturing images.
  • image data captured inside the body by the capsule endoscope is sequentially transmitted to the outside by wireless communication, and is stored in a memory provided outside.
  • a receiver equipped with a wireless communication function and a memory function the subject can freely act after swallowing the capsule endoscope until it is ejected.
  • the doctor or nurse can display an image of the organ on the display based on the image data stored in the memory to make a diagnosis.
  • a function of detecting the position of the capsule endoscope within the subject is provided on the receiver side.
  • a capsule endoscope system having a large position detection function a system utilizing a wireless communication function built into the capsule endoscope is known. That is, a receiver provided outside the subject has a configuration having a plurality of antenna elements, and receives a radio signal transmitted from the capsule endoscope with the plurality of antenna elements, and receives the radio signal from each of the antenna elements. It has a mechanism to detect the position of the capsule endoscope in the subject based on the difference in the reception intensity (for example, See Patent Document 1. ).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-19111
  • the conventional capsule endoscope system has a problem in that the position detection accuracy of the capsule endoscope in the subject is low. In the following, the important issues will be described in detail.
  • the capsule endoscope system that works on the prior art detects the position of the capsule endoscope in the subject based on the reception intensity distribution of the plurality of antenna elements provided in the receiver as described above. ing.
  • the strong position detection mechanism reduces the strength of the radio signal transmitted from the capsule endoscope by reducing the strength of the capsule endoscope. It is assumed that it is uniquely determined according to the distance of the force.
  • the components of the component are different from each other.
  • the attenuation rate of the radio signal strength varies greatly depending on the type and the like. For example, if a liver, blood vessel, or the like exists between the capsule endoscope and the antenna element, a large amount of radio signals will be absorbed by the captive organ or the like. In this case, the attenuation rate of the radio signal strength is increased as compared with the case where no signal exists, which hinders accurate position detection.
  • the present invention has been made in view of the above, and in a state in which a device for introducing a subject, such as a capsule endoscope, is introduced into the subject, regardless of the presence of an organ or the like. It is an object of the present invention to realize an in-subject position detection system that can accurately detect the position of an endodontic device.
  • the present invention is introduced into a subject, an intra-subject introduction device that moves inside the subject, and is arranged outside the subject.
  • a position detecting device that acquires position information of the intra-subject introduction device inside the subject, wherein the intra-subject introduction device generates a constant magnetic field.
  • a magnetic field generating means for outputting the magnetic field to the outside of the subject, wherein the position detecting device removes a noise magnetic field component from the magnetic field detected by the magnetic field detecting means for detecting the magnetic field; Magnetic field extracting means for extracting a constant magnetic field output by the magnetic field generating means; and position information of the intra-subject introduction device in the subject based on the strength of the constant magnetic field extracted by the magnetic field extracting means. And position information deriving means.
  • the in-sample introduction device includes a magnetic field generation unit that generates a constant magnetic field, and the moving state detection device uses the in-subject introduction device based on the strength of the constant magnetic field caused by the magnetic field generation unit. Is configured to detect the position of.
  • the in-sample introduction device includes a magnetic field generating means for generating a constant magnetic field, and the moving state detecting device is based on the strength of the constant magnetic field caused by the magnetic field generating means.
  • a configuration is provided for detecting the position of the intra-subject introduction device.
  • the constant magnetic field that also generates the magnetic field has a characteristic that it attenuates uniformly according to the distance from the magnetic field generating means regardless of the relative permittivity, permeability, etc. of the components in the subject 1. Accurate position detection can be performed, and an accurate moving state can be derived based on the acquired accurate position information.
  • a noise magnetic field component is removed from the magnetic field detected by the magnetic field detecting means and a constant magnetic field output from the magnetic field generating means is provided, a noise magnetic field component such as terrestrial magnetism is removed. It is possible to perform position detection based on the removed constant magnetic field, and it is possible to perform more accurate position detection.
  • FIG. 1 is a schematic diagram showing an entire configuration of an in-subject position detecting system according to a first embodiment.
  • FIG. 2 is a schematic diagram showing a configuration of a test capsule forming the in-subject position detection system according to the first embodiment.
  • FIG. 3 is a schematic diagram showing a configuration of a position information deriving device that forms the in-subject position detection system according to the first embodiment.
  • FIG. 4 is a flowchart for explaining an operation of the position information deriving device.
  • FIG. 5 is a schematic diagram showing a mode of deriving a position of a test capsule by a position information deriving device.
  • FIG. 6 is a schematic diagram showing a configuration of a test capsule according to a modification of the first embodiment.
  • FIG. 7 is a schematic diagram showing an overall configuration of a position detection system in a subject according to the second embodiment.
  • FIG. 8 is a schematic diagram showing a configuration of a capsule endoscope forming the in-vivo position detecting system according to the second embodiment.
  • FIG. 9 is a schematic diagram showing a configuration of a position information deriving device forming the in-subject position detecting system according to the second embodiment.
  • FIG. 10 is a flowchart for explaining the operation of the position information deriving device.
  • FIG. 11 is a schematic view showing a mode of deriving a directional direction of the capsule endoscope by the position information deriving device.
  • the intra-subject position detection system according to the first embodiment detects a test capsule 2 which is introduced into the subject 1 and functions as an example of an intra-subject introduction device, and a position of the test capsule 2 inside the subject 1.
  • a portable recording medium 5 5.
  • the display device 4 is for displaying the position information of the test capsule 2 obtained by the position detection device 3, and is a workstation for displaying an image based on data obtained by the portable recording medium 5. And so on.
  • the display device 4 may be configured to directly display an image on a CRT display, a liquid crystal display, or the like, or may be configured to output an image to another medium such as a printer.
  • the portable recording medium 5 is detachable from a position information deriving device 10 and a display device 4, which will be described later, and has a structure capable of outputting and recording information when inserted into both. Specifically, while the test capsule 2 is moving inside the body cavity of the subject 1, the portable recording medium 5 is inserted into the position information deriving device 10 to record information on the position of the test capsule 2. I do. Then, after the test capsule 2 is ejected from the subject 1, the test capsule 2 is taken out of the position information deriving device 10, inserted into the display device 4, and the recorded data is read out by the display device 4.
  • the position information deriving device 10 and the display device 4 can be exchanged. Unlike the case in which the test capsule 2 is connected by wire, the subject 1 can freely move even when the test capsule 2 is moving inside the subject 1.
  • the test capsule 2 determines whether there is a stenosis or the like in the subject 1 that is difficult to pass through the capsule endoscope. This is used when conducting preliminary inspections such as. That is, the in-subject position detection system according to the first embodiment is for examining how the powerful test capsule 2 moves within the subject 1, and is highly suitable for achieving such an object. An accurate position detection mechanism is provided.
  • FIG. 2 is a schematic diagram showing the structure of the test capsule 2.
  • the cell 2 has a casing 11 having a capsule shape similar to that of the casing of the capsule endoscope, a permanent magnet 12 disposed inside the casing 11, and a gap between the inner surface of the casing 11 and the permanent magnet 12. And a filling member 13 functioning as a member for burying the water.
  • the housing 11 is formed of, for example, a biocompatible material, and has a property of being decomposed when staying within the subject 1 for several days. Even if the test capsule 2 introduced into the subject 1 is not discharged out of the subject 1 due to the case 11 being formed of the biocompatible material, It is not necessary to perform laparotomy or the like.
  • the permanent magnet 12 functions as a magnetic field generating means in the claims, and is constituted by a permanent magnet having a size that can be accommodated in the housing 11, and has a constant magnetic field intensity that can be ignored over time. It is for outputting a magnetic field.
  • a coil or the like that generates a constant magnetic field when a constant current is supplied may be used as the magnetic field generating means. It is preferable to use the permanent magnet 12 to constitute the magnetic field generating means, since it has advantages such as unnecessary.
  • the constant magnetic field generated from the permanent magnet 12 is represented by a closed curved line of magnetic force that is output from the N pole and travels outside the permanent magnet 12 and then is input again to the S pole.
  • the traveling direction of the magnetic field lines has location dependence, but the strength of the constant magnetic field represented by the magnetic field lines can be considered to be determined only according to the distance from the test capsule 2. It is. In other words, the size of the permanent magnet 12 built in the test capsule 2 is negligible compared to the distance between the test capsule 2 and the magnetic field detectors 6a-6h.
  • the magnetic field strength P at a point separated by the distance r is calculated using the proportionality coefficient OC
  • the in-subject position detection system detects the position of the test capsule 2 based on the relationship shown in Expression (1), as described later.
  • the filling member 13 fills a space between the inner surface of the housing 11 and the permanent magnet 12, and fixes the position of the permanent magnet 12.
  • the material forming the filling member 13 is The filling member 13 is formed of, for example, barium sulfate. Since barium sulfate can be used as a contrast agent in X-ray inspection, the position can be detected by X-ray inspection instead of the position detection in the first embodiment, and the detection results by both methods can be compared. Thus, more accurate position detection can be performed. It is needless to say that it is not essential to use barium sulfate as the filling member 13 in the first embodiment, as long as it functions as a filling member.
  • the position detecting device 3 is for detecting the position of the test capsule 2 inside the subject 1 based on the constant magnetic field output from the test capsule 2. Specifically, as shown in FIG. 1, the position detecting device 3 includes a magnetic field detecting device 6a to 6h for detecting the strength of a constant magnetic field output from the test force capsule 2, and a degree of inclination of the subject 1.
  • the position of the test capsule 2 is determined based on the magnetic field strength detected by the magnetic field detectors 6a-6h and the fixing member 9b that fixes the magnetic field detectors 6e-6h and the in-horizontal plane position detector 8 to the subject 1.
  • a position information deriving device 10 to be derived is provided.
  • the magnetic field detectors 6a to 6h are for detecting, for example, the direction and intensity of a detected magnetic field at a place where each is arranged.
  • the magnetic field detectors 6a to 6h are formed using, for example, an MI (Magneto Impedance) sensor.
  • the Ml sensor has a configuration in which, for example, an FeCoSiB amorphous wire is used as a magneto-sensitive medium, and when a high-frequency current is applied to the magneto-sensitive medium, the magnetic impedance of the magneto-sensitive medium changes significantly due to an external magnetic field.
  • the magnetic field intensity is detected using the Ml effect.
  • Other magnetic field sensors may be used as the magnetic field detectors 6a to 6h! However, when an Ml sensor is used, there is an advantage that the magnetic field strength can be detected with particularly high sensitivity.
  • the magnetic field detection devices 6a to 6h are arranged at positions forming the apexes of the cube, respectively, and correspond to the sides of the cube as shown in FIG.
  • An xyz coordinate system is defined. That is, magnetic field detection is performed with the magnetic field detection device 6e as the origin.
  • the direction from device 6e to magnetic field detector 6f is the x axis
  • the direction from magnetic field detector 6e to magnetic field detector 6h is the y axis
  • the direction of magnetic force from magnetic field detector 6e to magnetic field detector 6a is z. Axis.
  • the magnetic field detectors 6a to 6h output the magnetic field components parallel to the X axis, the y axis, and the z axis, respectively, to the magnetic field extracting unit 15.
  • the fixed absolute coordinate system is defined as the x'y'z 'coordinate system, and The description will be made in accordance with the following.
  • the direction of the z' axis is set to the vertical direction.
  • the tilt sensor 7 is for detecting the degree of tilt of the subject 1, and functions as one mode of the vertical direction detecting means in the claims. Specifically, the tilt sensor 7 has a function of detecting an angle between a predetermined reference direction and a vertical direction. The tilt sensor 7 is arranged in a state fixed to the subject 1 by the fixing member 9a, and the positional relationship with the magnetic field detectors 6a to 6h also fixed to the subject 1 is fixed. . Therefore, the tilt sensor 7 has a function of detecting the degree of tilt of the xyz coordinate system formed by the magnetic field detectors 6a to 6h with respect to the vertical direction. Note that the tilt sensor 7 may be configured to detect only the tilt in the one axis direction, but it is more preferable to detect the tilt in the two axis directions.
  • the in-horizontal direction detection device 8 is for detecting the directional direction of the subject 1 in the horizontal plane. More specifically, the in-horizontal plane direction detection device 8 is formed by a measuring instrument such as a gyro, and has a function of detecting an angle between a predetermined direction determined in advance and the directivity direction of the subject 1. Further, since the in-horizontal azimuth detecting device 8 is fixed to the subject 1 via the fixing member 9b, the azimuth detected by the in-horizontal azimuth detecting device 8 is determined by the magnetic field detecting devices 6a-6h. It has a function to detect azimuth fluctuations in the horizontal direction of the configured xyz coordinate system.
  • the fixing members 9a and 9b are for fixing the magnetic field detectors 6a to 6h, the inclination sensor 7, and the in-horizontal azimuth detector 8 to the subject 1.
  • the fixing members 9a and 9b are formed in an annular shape by, for example, an elastic member, and have a configuration in which the fixing members 9a and 9b are fixed in a state of being in close contact with the torso of the subject 1.
  • the magnetic field detectors 6a-6d and the tilt sensor 7 are fixed by a fixing member 9a, and the magnetic field detectors 6e-6h and the azimuth detector 8 in a horizontal plane are fixed by a fixing member 9a.
  • the members 9b are fixed at predetermined positions with respect to the subject 1, respectively.
  • the fixing members 9a and 9b to the body of the subject 1 in close contact, the relative positions of the magnetic field detectors 6a to 6h, the tilt sensor 7 and the in-horizontal direction detector 8 with respect to the subject 1 are fixed. It will be arranged in the state where it was done.
  • FIG. 3 is a block diagram showing a configuration of the position information deriving device 10.
  • the position information deriving device 10 includes a magnetic field extracting unit 15 that extracts a constant magnetic field output from the detected magnetic field capillar test capsule 2 in the magnetic field detecting devices 6a to 6h, and a magnetic field extracted by the magnetic field extracting unit 15.
  • the position information deriving device 10 includes a reference device selection unit 16 that selects a reference magnetic field detection device (hereinafter, referred to as a “reference device”) from the magnetic field detection devices 6a to 6h, and a reference device selection unit. Based on the selection result by!
  • a selector 17 that outputs the magnetic field strength obtained by a predetermined number of magnetic field detection devices, and the test capsule 2 and the reference device based on the magnetic field strength output from the selector 17
  • a position calculation that derives the position of the test capsule 2 by performing an arithmetic process using the distance deriving unit 18 that derives the distance between and the derived distance and the position coordinates of the reference device and the like used to derive the distance. It comprises a unit 19 and a storage unit 20 for recording information on the position of the test capsule 2 obtained by the position calculating unit 19 on the portable recording medium 5.
  • the noise magnetic field component database 14 is for storing a noise magnetic field such as a terrestrial magnetic component present in a region where the subject 1 introduces the test capsule 2. Specifically, the noise magnetic field component database 14 has a function of storing the intensity of the noise magnetic field and the traveling direction in the xV'z 'coordinate system, and stores the information in the magnetic field extraction unit 15 as necessary. It has a function to output.
  • the magnetic field extracting unit 15 removes a noise magnetic field component included in the magnetic field detected by the magnetic field detectors 6a to 6h, and extracts a constant magnetic field output by the permanent magnet 12 provided in the test capsule 2. It is for.
  • the magnetic field extraction unit 15 is a magnetic field detection device 6a-6h
  • the information stored in the noise magnetic field component database 14 and the detection results of the tilt sensor 7 and the in-horizontal direction detection device 8 are input, and the magnetic field is extracted based on the input information.
  • the detection results of the inclination sensor 7 and the in-horizontal direction detection device 8 are used for the following reasons.
  • the traveling direction of the noise magnetic field component stored in the noise magnetic field component database 14 is stored based on the xV′z ′ coordinate system.
  • the information stored in the noise magnetic field component database 14 is needed to remove the noise magnetic field component. Needs to be converted to the X yz coordinate system.
  • the magnetic field extraction unit 15 derives a relationship between the xyz coordinate system and the xV'z 'coordinate system at the time of magnetic field detection based on the detection results of the tilt sensor 7 and the in-horizontal direction detection device 8, Based on the relation between the derived coordinate systems, the coordinate conversion processing of the noise magnetic field component data is performed. Then, after performing a powerful coordinate transformation process, the magnetic field extraction unit 15 calculates a difference value between the magnetic field detected by the magnetic field detectors 6a-6h in each of the x, y, and z directions and the noise magnetic field component. The derived difference value is output to the reference device selecting unit 16 and the selector 17 as a constant magnetic field output by the permanent magnet 12.
  • the reference device selecting unit 16 has a function of selecting the magnetic field detecting device 6a to 6h that has the highest detected magnetic field intensity. Specifically, the magnetic field intensity values output from the magnetic field detection devices 6a to 6h are compared with each other, and the magnetic field detection device (reference device) that outputs the largest magnetic field intensity is selected, and then information (specifying the reference device) ( For example, the selector 17 outputs information as to which of the magnetic field detectors 6a to 6h is the reference device.
  • the selector 17 selects a plurality of magnetic field detecting devices based on the selection result by the reference device selecting unit 16, and selects the magnetic field strength obtained by the magnetic field detecting device (selected device) selected by itself and the reference value.
  • the purpose is to output the magnetic field strength obtained by the device to the distance deriving unit 18.
  • the selector 17 has a function of selecting three magnetic field detection devices arranged in directions orthogonal to each other with respect to the reference device. That is, as shown in FIG. 1, in the first embodiment, the powerful in-subject position detecting system is configured such that the magnetic field detecting devices 6a to 6h are arranged so as to form the vertices of a cube. , Any magnetic field detection There are always three magnetic field detection devices located in directions orthogonal to each other with respect to the device, and the selector 17 has a function of selecting the three magnetic field detection devices as devices to be selected.
  • the distance deriving unit 18 is for deriving the distance between the reference capsule and the selected capsule and the test capsule 2 based on the magnetic field strength input via the selector 17. More specifically, the distance deriving unit 18 performs an arithmetic process shown in Expression (1) on the input magnetic field strength, thereby forming a distance between the magnetic field detecting device in which the magnetic field strength is detected and the test capsule 2. It has a function to derive the distance.
  • the position calculation unit 19 performs a predetermined calculation process based on a distance between the magnetic field detection device selected as the reference device and the like and the test capsule 2 to derive the position of the test capsule 2. Things. Further, the position calculation unit 19 has a function of deriving the position of the test capsule 2 and then outputting the derivation result to the storage unit 20.
  • FIG. 4 is a flowchart showing the operation of the position information deriving device 10
  • FIG. 5 is a schematic diagram for explaining the algorithm of the position deriving operation.
  • the length of one side of the cube constituted by the magnetic field detection devices 6a to 6h is a.
  • the origin is the position of the magnetic field detector 6e selected as the reference device
  • the X direction is the direction of the force from the magnetic field detector 6e to the magnetic field detector 6f
  • the magnetic field detector 6e is the magnetic field detector 6h.
  • the direction toward is the y direction
  • the direction of the force from the magnetic field detector 6e to the magnetic field detector 6a is the z direction.
  • the positions of the magnetic field detectors 6a-6h are determined based on the powerful xyz coordinate system, and the position of the test capsule 2 in the xyz coordinate system is (x, y, z).
  • the operation of the position information deriving device 10 will be described with reference to FIGS. 4 and 5 as appropriate.
  • the position information deriving device 10 extracts the constant magnetic field output by the permanent magnet 12 from among the magnetic fields detected by the magnetic field detecting devices 6a to 6h by the magnetic field extracting unit 15 (Step S101). .
  • the magnetic field extracting unit 15 performs xyz based on the detection result obtained by the tilt sensor 7 or the like with respect to the information in the xV'z 'coordinate system regarding the noise magnetic field component input from the noise magnetic field component database 14. Convert to coordinates.
  • the constant magnetic field is extracted by deriving a difference value between the noise magnetic field component subjected to the coordinate transformation and the magnetic field detected by the magnetic field detectors 6a to 6h.
  • the position information deriving device 10 causes the reference device selecting unit 16 to select a magnetic field detecting device having the highest value of the strength of the constant magnetic field extracted by the magnetic field extracting unit 15 (Step S102).
  • the example of FIG. 5 shows a case where the magnetic field detecting device 6e is selected as the highest magnetic field detecting device, and the following description will be made with the magnetic field detecting device 6e as the reference device.
  • the position information deriving device 10 selects three selected devices based on the reference device selected in step S102 by the selector 17 (step S103), and is detected by the reference device and the selected device,
  • the strength of the constant magnetic field extracted by the magnetic field extraction unit 15 is output to the distance derivation unit 18 (Step S104).
  • the selector 17 selects these as the selected devices. I do.
  • the position information deriving device 10 uses the distance deriving unit 18 to select the strength of the constant magnetic field obtained based on the detection result of the reference device selected in step S102 and the selection in step S103. Based on the detection result of the selected device, the distance to the test capsule 2 is derived based on the obtained constant magnetic field strength (step S105). Specifically, the distance deriving unit 18 derives the distance by performing the calculation of Expression (1) using the magnetic field strength input via the selector 17. In the example of FIG. 5, the distance deriving unit 18 determines the test capsule 2 and the magnetic field detector 6e based on the strength of the constant magnetic field obtained based on the detection results of the reference device and the selected device. The distances r, r, r, and r to 6f, 6h, and 6a are derived.
  • the position information deriving device 10 derives the position of the test capsule 2 by the operation processing in the position operation unit 19 (step S106). Specifically, since the position of the test capsule 2 is derived by deriving the X, y, and z coordinates of the test capsule 2, the coordinates and steps of the magnetic field detectors 6e, 6f, 6h, and 6a are derived. The coordinates of the test capsule 2 are derived using the distance value derived in S105.
  • the position coordinates (x, y, z) of the test capsule 2 can be derived geometrically from the positional relationship shown in FIG. 5, and specifically, by solving the following equation Derived.
  • Equation (2) -Equation (5) has three unknowns, it is theoretically sufficient to have three equations. However, in the actual position detection, in order to suppress a decrease in the position detection accuracy of the test capsule 2 due to a position shift of the magnetic field detectors 6a to 6h or a distance derivation error, the following equation (2) is used. After solving equation (5), the coordinates of the magnetic field detector are corrected so that the values of x, y, and z are uniquely determined.
  • the position information deriving device 10 stores the position of the test capsule 2 derived in step S106 by the storage unit 20 (step S107). Specifically, while the test capsule 2 is introduced into the subject 1, the storage unit 20 has the portable recording medium 5 attached thereto. In step S106, the position information obtained in step S106 is recorded.
  • Steps of S102-S107 are repeated at predetermined time intervals.
  • the portable recording medium 5 determines how the test capsule 2 has moved inside the subject 1. Information will be recorded. Then, after the test capsule 2 is ejected out of the subject 1, the portable recording medium 5 is mounted on the display device 4, and the user, based on the recording result displayed on the display device 4, How the test capsule 2 moves within the subject 1 is grasped, and based on the grasped result, a determination is made as to where in the subject 1 the stenosis site exists.
  • the in-subject position detection system derives the position of the test capsule 2 based on the constant magnetic field output by the permanent magnet 12 provided in the test capsule 2.
  • the constant magnetic field has a characteristic in which the intensity attenuates almost uniquely regardless of the fluctuation of physical parameters such as the relative permittivity and magnetic permeability in the propagation region. It has the feature of being established. Therefore, even if the position is detected in a space such as the inside of the human body where there are organs with different physical parameters, the position must be detected with higher accuracy than in the case of position detection using electromagnetic waves. Is possible.
  • the in-subject position detecting system has an advantage that a decrease in position detection accuracy due to a difference in the surrounding environment of the test capsule 2 is suppressed.
  • the forceps 2 are introduced into the subject 1, there is no need to restrict food and drink, as in other test methods. Therefore, the subject 1 can live a normal life even during the test using the test capsule 2, and the burden on the subject 1 in the test can be reduced.
  • This modification has a configuration in which the arrangement of the permanent magnets 12 is devised so that the constant magnetic field output from the inside of the test capsule is always in the vertical direction.
  • FIG. 6 is a schematic diagram showing a configuration of a test capsule according to the present modification.
  • the test capsule according to the present modification has a configuration in which a permanent magnet 12 is accommodated in a case member 21 while a housing 11 and a filling member 13 are provided as in the first embodiment.
  • the permanent magnet 12 has a configuration held in a spherical body 23, and the spherical body 23 is arranged in a state of being suspended in a liquid 22 held in a case member 21.
  • a weighting member 24 is disposed in the magnetic field output direction with respect to the permanent magnet 12, and the spherical body 23 is adapted to change the directivity of the test capsule as shown in FIG. Regardless, the weight member 24 stably stays in the vertically downward position.
  • the constant magnetic field output from the permanent magnet 12 provided in the test capsule is always in the vertical direction.
  • the geomagnetic component which is the main noise magnetic field component, travels in a substantially horizontal direction, the magnetic field extraction unit 15 needs to extract only the vertical component of the magnetic field detected by the magnetic field detection devices 6a-6h. It will be enough.
  • the magnetic field extraction unit 15 determines only the component parallel to the vertical direction detected by the tilt sensor 7 with respect to the magnetic field detected by the magnetic field detectors 6a to 6h. Extraction of the constant magnetic field output from the permanent magnet 12 It is possible to complete. Therefore, in this modified example, the position information deriving device 10 that does not need to include the in-horizontal direction detecting device 8 in the position detecting device 3 can omit the noise magnetic field component database 14. Further, in the present modification, the magnetic field extraction unit 15 can omit processing such as derivation of a difference value.Therefore, by using the test force cell shown in FIG. Thus, it is possible to realize a system for detecting the position of the inside of the subject, which reduces the influence of the above.
  • the intra-subject position detection system includes a capsule endoscope having not only a constant magnetic field generation unit but also a predetermined function execution unit and a radio unit as an intra-subject introduction device; Based on the constant magnetic field generated by the means, not only the position of the capsule endoscope in the subject but also the direction of the long axis of the capsule endoscope having a spheroidal shape, that is, the directivity direction is detected. And a position information deriving device for switching a plurality of antennas for receiving a radio signal transmitted from the capsule endoscope based on the detection result.
  • FIG. 7 is a schematic diagram showing the overall configuration of the in-subject position detection system according to the second embodiment.
  • the in-subject position detection system according to the second embodiment includes a capsule endoscope 25 as an example of an in-subject introduction device, and a position detection device 26.
  • FIG. 7 illustrates components corresponding to the display device 4 and the portable recording medium 5 according to the first embodiment. However, this does not apply to the second embodiment. It is not the purpose to remove.
  • components denoted by the same reference numerals and names as those in the first embodiment are the same as those in the first embodiment unless otherwise specified below. It is assumed that it has a similar configuration 'action.
  • the position detecting device 26 includes a magnetic field detecting device 6a-6h, an inclination sensor 7, an in-plane direction detecting device 8, a magnetic field detecting device 6a-6h, etc. Fixing members 9a and 9b, a receiving antenna A1—An for receiving a radio signal transmitted from the capsule endoscope 25, a magnetic field detector 6a—6h, and a receiving antenna A1—An The obtained information is processed, and the position of the capsule endoscope 25 in the subject 1 is determined. A position information deriving device 27 for acquiring information. Although omitted in FIG. 7, the position detecting device 26 has a configuration including a feeding antenna B1-Bm described later.
  • the receiving antennas A1-An are for receiving a radio signal transmitted from the capsule endoscope 25.
  • the capsule endoscope 25 according to the second embodiment has a function of capturing an image of the inside of the subject 1 and wirelessly transmitting the image to the outside, and the receiving antenna A1-An is provided inside the capsule endoscope. It has a configuration for receiving a wireless signal transmitted from the endoscope 25 and outputting it to the position information guiding device 27.
  • the receiving antennas A1 to An include, for example, a loop antenna and a fixing means for fixing the loop antenna to the subject 1. Note that, when a radio signal is transmitted from the capsule endoscope 25, the radio signal may be received by all of the receiving antennas A1 to An. However, in the second embodiment, among the plurality of receiving antennas A1 to An, the receiving antenna determined to be most suitable for reception by the antenna selection unit 46 described later is used for reception. I'm supposed to.
  • the capsule endoscope 25 includes the permanent magnet 12 as a magnetic field generating means, like the test capsule 2 in the first embodiment. Further, the capsule endoscope 25 has a function as a function executing means for executing a predetermined function inside the subject 1 and a function as a receiving device for receiving a radio signal transmitted from the position detecting device 26. , And components corresponding to each function.
  • the capsule endoscope 25 has a function as a function executing means for executing a predetermined function and a function as a transmitting device for wirelessly transmitting information obtained by the function executing means.
  • FIG. 8 is a block diagram showing a configuration of the capsule endoscope 25.
  • the capsule endoscope 25 includes an LED 28 that functions as an illumination unit for irradiating an imaging area when imaging the inside of the subject 1, and an LED driving circuit that controls a driving state of the LED 28. 29, a CCD 30 that functions as an imaging unit that captures a reflected light image of an area irradiated by the LED 28, and a CCD drive circuit 31 that controls a driving state of the CCD 30.
  • the LED 28, the LED drive circuit 29, the CCD 30, and the CCD drive circuit 31 are defined as a function execution unit 32 that performs a predetermined function as a whole.
  • the capsule endoscope 25 includes an RF transmission unit 33 that modulates image data captured by the CCD 30 to generate an RF signal, and a radio that wirelessly transmits the RF signal output from the RF transmission unit 33. It comprises a transmission antenna section 34 as means, a system control circuit 35 for controlling the operations of the LED drive circuit 29, the CCD drive circuit 31, and the RF transmission unit 33.
  • the capsule endoscope 25 acquires image data of the test site illuminated by the LED 28 with the CCD 30 while being introduced into the subject 1. Then, the obtained image data is converted into an RF signal in the RF transmission unit 33, and then transmitted to the outside via the transmission antenna unit.
  • the capsule endoscope 25 has a configuration for receiving a wireless signal transmitted from the position detecting device 26.
  • the capsule endoscope 25 includes a receiving antenna unit 36 for receiving a radio signal transmitted from the position detecting device 26, and a separation unit for separating a power supply signal from a signal received by the receiving antenna unit 36. And a circuit 37.
  • the capsule endoscope 25 includes a power regeneration circuit 38 for reproducing power from the separated power supply signal, a booster circuit 39 for boosting the regenerated power, and a capacitor 40 for storing the boosted power. Is provided.
  • the capsule endoscope 25 detects the content of the component power control information signal separated from the power supply signal by the separation circuit 37, and outputs the detected control information signal to the system control circuit 35.
  • a detection circuit 41 is provided. Note that the system control circuit 35 also has a function of distributing the drive power supplied from the battery 40 to other components.
  • the capsule endoscope 25 first receives the radio signal transmitted from the position detection device 26 side in the reception antenna section 36 and receives the radio signal in the separation circuit 37.
  • the radio signal also separates the power supply signal and the control information signal.
  • the control information signal separated by the separation circuit 37 is output to the system control circuit 35 via the control information detection circuit 41, and is used for drive control of the LED 28, the CCD 30, and the RF transmission unit 33.
  • the power supply signal is regenerated as power by the power regeneration circuit 38, and the regenerated power is boosted by a booster circuit 39 to a potential suitable for the battery 40, and then stored in the battery 40.
  • the configuration of the position information deriving device 27 will be described.
  • the position information deriving device 27 has a function of deriving a directional direction as well as a function of deriving the position of the capsule endoscope 25, and a receiving device that receives a radio signal transmitted from the capsule endoscope 25. And a function as a transmitting device that wirelessly transmits a predetermined signal to the capsule endoscope 25.
  • a transmitting device that wirelessly transmits a predetermined signal to the capsule endoscope 25.
  • FIG. 9 is a block diagram showing a configuration of the position information deriving device 27.
  • the position information deriving device 27 in the second embodiment includes a noise magnetic field component database 14, a magnetic field extracting unit 15, a reference device selecting unit 16, and a component for detecting the position of the capsule endoscope 25 in the subject 1. It has a configuration including a selector 17, a distance deriving unit 18, and a position calculating unit 19.
  • the reference device selection unit 16 The magnetic field strength is extracted from the information output from the devices 6a to 6h to select the reference device, and the distance deriving unit 18 selects the reference device and the selected device from the information input from the selector 17.
  • Embodiment 2 is different from Embodiment 1 in that it has a function of extracting a received magnetic field strength to derive a distance.
  • the operation of detecting the position of the capsule endoscope 25 in the second embodiment is substantially the same as that in the first embodiment, and a detailed description thereof will be omitted.
  • the position information deriving device 27 includes a directional direction database 44 used when detecting the directional direction of the capsule endoscope 25, and a predetermined magnetic field detection output from the selector 17.
  • a direction detection unit 45 for detecting the direction of the capsule endoscope 25 based on the direction of the magnetic field in the device 6 is provided.
  • the pointing direction database 44 previously stores data on the strength of the magnetic field received by the magnetic field detecting device 6 and the pointing direction of the capsule endoscope 25 with respect to the positional relationship between the magnetic field detecting device 6 and the capsule endoscope 25. It was done.
  • the specific contents of the operation of the directional direction database 44 and the directional direction detection unit 45 will be described later in detail.
  • the position information deriving device 27 has a configuration as a receiving device that receives image data inside the subject 1 wirelessly transmitted from the capsule endoscope 25.
  • the position The information deriving device 27 includes an antenna selecting unit 46 that selects one of the receiving antennas A1 to An to be used for data reception, and a predetermined process such as demodulation of the selected radio signal received by the receiving antenna.
  • the RF receiver unit 47 extracts and outputs image data acquired by the capsule endoscope 25, and the image processing unit 48 performs necessary processing on the output image data.
  • a storage unit 49 for recording image data subjected to image processing.
  • the antenna selection unit 46 is for selecting a reception antenna most suitable for receiving a radio signal transmitted from the capsule endoscope 25. More specifically, the antenna selection unit 46 grasps the position of the receiving antennas A1 to An in a rough manner, and obtains information on the position of the capsule endoscope 25 derived by the position calculation unit 19 and information. And information on the directional direction of the capsule endoscope 25 derived by the directional direction detection unit 45 is input. For this reason, the antenna selection unit 46 selects a receiving antenna which is estimated to have the best reception sensitivity in relation to the position and the directional direction of the capsule endoscope 25, and selects the selected reception antenna. And a function of outputting a radio signal received by the antenna for RF to the RF receiving unit 47.
  • the storage unit 49 stores the image data output from the image processing unit 48 in association with the position and the directional direction of the capsule endoscope 25 when the output image data is captured. Having. That is, the position information deriving device 27 has a configuration in which information obtained in the position calculation unit 19, the directional direction detection unit 45, and the image processing unit 48 is output to the storage unit 49 as shown in FIG. In addition, the storage unit 49 has a function of storing these pieces of information in an associated state. As a result, the storage unit 49 stores the image data of the predetermined area inside the subject 1 in a state where the position and the directional direction of the capsule endoscope 25 at the time of capturing the image data are associated with each other. ing.
  • the position information deriving device 27 has a configuration in which a power supply signal or the like to be transmitted to the capsule endoscope 25 is generated and output to the power supply antennas B1 to Bm.
  • the position information deriving device 27 includes an oscillator 50 having a function of generating a power supply signal and a function of defining an oscillation frequency, and a core for controlling a driving state of the capsule endoscope 25.
  • a control information input unit 51 for generating a control information signal, a superimposing circuit 52 for synthesizing a power supply signal and a control information signal, and an amplifier circuit 53 for amplifying the intensity of the synthesized signal are provided.
  • the signal amplified by the amplifier circuit 53 is sent to the power feeding antennas B1 to Bm and transmitted to the capsule endoscope 25.
  • the position information deriving device 27 includes a power supply unit 54 including a predetermined power storage device or an AC power adapter, and each component of the position information deriving device 27 drives the power supplied from the power supply unit 54. As energy.
  • the capsule endoscope 25 includes the predetermined function executing unit, and detects the information acquired by the function executing unit. It has a configuration for wireless transmission to the device 26 side. Therefore, the position detecting device 26 has a plurality of receiving antennas A1—An for receiving the transmitted radio signal, and is most suitable for receiving from among the plurality of receiving antennas A1—An activated by the antenna selector 46. It has a configuration for selecting a suitable receiving antenna.
  • an algorithm for selecting an optimum receiving antenna from among the plurality of receiving antennas A 1 -An it is first determined according to a positional relationship with the capsule endoscope 25. For example, the radio signal transmitted from the capsule endoscope 25 is attenuated according to the distance, and the position detection mechanism similar to that of the first embodiment is used for the capsule endoscope 25. The use of the receiving antenna closest to the derived position can be avoided.
  • the transmission antenna unit 34 used for wireless transmission from the capsule endoscope 25 transmits a wireless signal with uniform intensity in all directions due to, for example, being configured by a loop antenna or the like. It has a configuration to transmit radio signals with a certain degree of directivity. Therefore, the most suitable receiving antenna for receiving the radio signal from the capsule endoscope is determined only by the positional relationship with the capsule endoscope. It is preferable that the determination be made in consideration of the directivity of the radio signal transmitted from the transmission antenna unit 34.
  • the capsule endoscope 25 in the subject 1 Since the transmitting antenna section 34 is fixed in the capsule endoscope 25, in order to detect the directional direction of the transmitted radio signal, the capsule endoscope 25 in the subject 1 is detected. It is important to know the direction of the direction. Based on this situation, in the second embodiment, in addition to a mechanism for detecting the position of the capsule endoscope 25 in the subject 1 as in the first embodiment, The directional direction detection unit 45 is newly provided to detect the directional direction of the capsule endoscope 25.
  • FIG. 10 is a flowchart for explaining the operation of detecting the directional direction of capsule endoscope 25 in directional direction detecting section 45 in the second embodiment.
  • FIG. 11 is a schematic diagram showing the relationship between the pointing direction of the capsule endoscope and the magnetic field detection device 6.
  • the operation of the directional direction detection unit 45 will be described with reference to FIGS. 10 and 11 as appropriate.
  • the directional detection unit 45 detects the position of the capsule endoscope 25 and the magnetic field detection device selected from the plurality of magnetic field detection devices 6a to 6h, and extracts the position by the magnetic field extraction unit 15.
  • the direction of the set constant magnetic field is input (step S201).
  • the algorithm for selecting the magnetic field detector 6 may be arbitrary. In the second embodiment, for example, the magnetic field detector 6 having the largest received magnetic field strength is selected.
  • the pointing direction detection unit 45 indicates the coordinates (a, a, a) of the selected magnetic field detection device 6 and an arrow.
  • the magnetic field direction represented by the indicated direction vector is grasped.
  • the pointing direction detection unit 45 derives the relative position of the magnetic field detection device 6 selected in step S201 with respect to the capsule endoscope 25 (step S202). Specifically, the directional direction detection unit 45 receives the position of the capsule endoscope 25 derived by the position calculation unit 19 and inputs the position of the magnetic field detection device 6 selected in step S201 to the capsule endoscope. Derive coordinates relative to 25. In the example of FIG. 11, the capsule type endoscope 25 is based on the coordinates (a, a, a) of the magnetic field detection device 6 and the coordinates (x, y, z) of the capsule endoscope 25.
  • the directivity detection unit 45 determines the direction of the magnetic field input in step S 201 and the direction of the magnetic field.
  • the relative position of the magnetic field detector 6 selected in step S202 is input to the directional direction database 44, and data on the directional direction of the capsule endoscope 25 is obtained (step S203).
  • the direction of the constant magnetic field output from the permanent magnet 12 provided in the capsule endoscope 25 is uniquely determined by the direction of the capsule endoscope 25 and the position with respect to the capsule endoscope 25. Since the directional direction database 44 has a fixed characteristic, the directional direction of the capsule endoscope 25, the relative coordinates with respect to the capsule endoscope 25, and the direction of the constant magnetic field in the relative coordinates are previously associated with the directional database 44.
  • the directional direction of the capsule endoscope 25 can be extracted.
  • the pointing direction of the capsule endoscope 25 is (X, y, z).
  • the directional direction detection unit 45 outputs the obtained data regarding the directional direction of the capsule endoscope 25 to the antenna selection unit 46 and the storage unit 49 (Step S204).
  • the antenna selection unit 46 selects an optimal reception antenna for reception based on the data on the directional direction and the information on the position output from the position calculation unit 19, and the storage unit 49 is
  • the directional direction of the capsule endoscope 25 at a predetermined time is stored in association with the image data and the position information of the capsule endoscope 25.
  • the in-subject position detecting system according to the second embodiment includes the permanent magnet 12 in the capsule endoscope 25 as in the first embodiment, and outputs the detected magnetic field from the permanent magnet 12.
  • the extracted constant magnetic field is extracted, and the position of the capsule endoscope 25 is detected based on the extracted constant magnetic field.
  • the constant magnetic field has a characteristic that it attenuates almost uniformly according to the distance regardless of the difference in the relative permittivity and conductivity of the organs and the like in the subject 1. This has an advantage that the position of the capsule endoscope 25 can be accurately detected as compared with the case where the position detection is performed using a wireless signal.
  • the in-subject position detecting system has a configuration for detecting the directivity of the capsule endoscope 25 based on the constant magnetic field output from the permanent magnet 12.
  • the constant magnetic field output from the permanent magnet 12 is hardly affected by the components in the subject 1, and the direction of the magnetic field at a predetermined position is determined by the pointing direction of the capsule endoscope 25. And has a characteristic that it is almost uniquely determined based on the relative position to the capsule endoscope 25. Therefore, the azimuth distribution of the constant magnetic field output by the permanent magnet 12 is derived and stored in the directional database 44, and based on the information obtained by the magnetic field detector 6, the directional database 44 is used. By referring to, it is possible to accurately detect the directional direction of the capsule endoscope 25.
  • the in-subject position detecting system according to the second embodiment has a configuration for detecting the directional direction of the capsule endoscope 25 based on a constant magnetic field as in the case of position detection. Therefore, there is an advantage that the system can be realized with a simple configuration. That is, the in-subject position detection system according to the second embodiment adds a new component to the capsule endoscope 25 in providing the function of detecting the direction of the capsule endoscope 25. It is possible to build a small and low-cost position information detection system that does not need to be installed.
  • the antenna selecting unit 46 selects a receiving antenna based on the derived position and pointing direction of the capsule endoscope 25. It has the configuration to do.
  • the receiving sensitivity of the radio signal at the receiving antenna depends on the distance from the capsule endoscope 25 and the directivity of the transmitting antenna unit 34 provided in the capsule endoscope 25. Therefore, it is possible to accurately select the receiving antenna to be used based on the position and the directional direction of the capsule endoscope 25, and to always receive the radio signal transmitted from the capsule endoscope 25 with high sensitivity. It is possible to realize a simple position information detection system.
  • the captured image data of the inside of the subject 1 and the derived position and orientation of the capsule endoscope 25 are It has a configuration to output to the storage unit 49. Therefore, it is possible to store the image data acquired by the capsule endoscope 25 in association with the derived position and orientation at the time of imaging of the capsule endoscope 25, and the display device 4 When displaying image data, specify that only image data located within a specified range be displayed It is possible to do. That is, it is possible to display a region of interest for the user, for example, only the image data of the small intestine, rather than displaying all kinds of image data on the display device 4, and a position information detection system that is convenient for doctors and the like. Can be realized.
  • the in-subject position detection system according to the first embodiment may include a configuration for deriving the directional direction of the test capsule 2 as in the second embodiment, or a test in a modification of the first embodiment.
  • the configuration of the capsule may be applied to the configuration of the forceps endoscope 25 according to the second embodiment.
  • each of the plurality of magnetic field detection devices 6 and the magnetic field detection devices 6 is arranged on the outer surface of the subject 1 so as to detect a vertex of a cube.
  • the magnetic field detector 6 and the like it is sufficient for the magnetic field detector 6 and the like to know the relative position with respect to the subject 1 in advance, and if such a relative position is used, it is possible to detect the position and the directional direction without being arranged in a cubic shape. is there.
  • the number of magnetic field detectors 6 and the like need not be limited to eight. A system using a single magnetic field detector 6 and the like can be constructed as the simplest configuration.
  • the test capsule 2 or the capsule endoscope 25, which is a device to be introduced into the subject, follows a certain fixed path in a predetermined organ such as the esophagus, stomach, small intestine, and large intestine, which does not move arbitrarily in the subject 1. It has a moving configuration. Therefore, it is possible to know in advance the movement path of the intra-subject introduction device to some extent in advance, and the path information obtained in advance and the intensity of the constant magnetic field received by a single magnetic field detection device can be obtained.
  • the position detection of the intra-subject introduction device may be performed using the above.
  • the reference device and the selected device are selected using the reference device selection unit 42 and the selector 17, and the position is detected based on the magnetic field strength detected by these devices.
  • a powerful configuration is not essential to the present invention.
  • the distance between the test capsule 2 or the capsule endoscope 24 based on the detected intensity is derived for all of the magnetic field detectors 6a to 6h.
  • (2) Formula 1 Same procedure as formula (5) It is also possible to form eight equations to derive the position of the test capsule 2 and the like. With such a configuration, for example, an arithmetic operation using the least squares method can be performed, so that there is an advantage that an error in deriving the position of the test capsule 2 or the like can be further reduced.
  • the directional direction of the capsule endoscope 25 may be derived using a plurality of magnetic field detection devices 6.
  • a configuration in which the directional direction is derived by the above-described method for a plurality of magnetic field detectors 6 and a method of deriving an average of the directional directions obtained by each of the methods is used to derive a more accurate directional direction.
  • This is the same for the position detection of the intra-subject introduction device.A configuration is adopted in which position detection is performed multiple times using different combinations of magnetic field detectors 6 and the like, and the obtained positions are averaged. You may.
  • the function execution unit 32 including the CCD 30 and the like as the imaging means and the LED 28 and the like as the illumination means has been described. It may be configured to acquire information on pH and temperature within 1. Further, the intra-subject introduction device may be configured to include an oscillator, and may be configured to acquire an ultrasonic image in the subject 1. Further, a configuration may be adopted in which a plurality of pieces of information are obtained from the in-subject information.
  • the radio signal output from the power feeding antennas B1 to Bm does not necessarily have to be a control information signal and a power feeding signal superimposed on each other, and furthermore, the radio signal output from the position detection device card is not necessary.
  • a configuration in which wireless transmission is not performed to the capsule endoscope may be adopted.
  • a configuration may be adopted in which the power supply signal and a signal other than the control information signal are superimposed and transmitted.
  • the position detecting device 26 may be configured to only receive the radio signal output from the capsule endoscope, or may be provided with a storage unit in the capsule endoscope and ejected to the outside of the subject 1. It is also possible to adopt a configuration in which the storage unit information is retrieved later.
  • the position and position of the capsule endoscope 25 are similar to the case of the receiving antennas A1-An. It is also possible to select the most suitable one based on the directivity direction and perform wireless transmission. In other words, in order to improve the efficiency of supplying the power supply signal, etc., the directivity of the capsule endoscope 25 is used instead of transmitting the radio signal uniformly from all power supply antennas. Accordingly, it is also possible to select an antenna corresponding to the direction of the receiving antenna unit 36 provided in the capsule endoscope 25.
  • the in-subject position detection system that is useful in the present invention is useful for, for example, a swallowable capsule endoscope used in the medical field, and in particular, position detection inside a subject such as a patient. It is suitable for an intra-subject introduction device such as a capsule endoscope that performs the following.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Human Computer Interaction (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Endoscopes (AREA)
  • Studio Devices (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

 永久磁石が内蔵されたテストカプセル(2)と、テストカプセル(2)に内蔵された永久磁石から生じる定磁場の強度に基づいてテストカプセル(2)の位置を検出する位置検出装置(3)とを備える。位置検出装置(3)は、磁場検出装置(6a~6h)と、傾斜センサ(7)と、水平面内方位検出装置(8)と、磁場検出装置(6a~6h)等を被検体(1)に対して固定する固定部材(9a、9b)と、磁場検出装置(6a~6h)によって検出された磁場強度に基づいてテストカプセル(2)と磁場検出装置(6a~6h)との間の距離を導出し、導出した距離に基づいてテストカプセル(2)の位置を導出する位置情報導出装置(10)とを備える。

Description

明 細 書
被検体内位置検出システム 技術分野
[0001] この発明は、被検体内に導入され、該被検体内を移動する被検体内導入装置と、 前記被検体外部に配置され、前記被検体内部における前記被検体内導入装置の位 置情報を取得する位置検出装置とを備えた被検体内位置検出システムに関するもの である。
背景技術
[0002] 近年、内視鏡の分野にお!、ては、飲込み型のカプセル型内視鏡が提案されて 、る 。このカプセル型内視鏡には、撮像機能と無線通信機能とが設けられている。カプセ ル型内視鏡は、観察 (検査)のために被検体の口から飲込まれた後、自然排出される までの間、体腔内、例えば胃、小腸などの臓器の内部をその蠕動運動に従って移動 し、順次撮像する機能を有する。
[0003] 体腔内を移動する間、カプセル型内視鏡によって体内で撮像された画像データは 、順次無線通信により外部に送信され、外部に設けられたメモリに蓄積される。無線 通信機能とメモリ機能とを備えた受信機を携帯することにより、被検体は、カプセル型 内視鏡を飲み込んだ後、排出されるまでの間に渡って、自由に行動できる。カプセル 型内視鏡が排出された後、医者もしくは看護士においては、メモリに蓄積された画像 データに基づいて臓器の画像をディスプレイに表示させて診断を行うことができる。
[0004] 力かるカプセル型内視鏡に関して、例えば被検体内部の特定臓器の内視鏡画像 を撮像するために、受信機側にカプセル型内視鏡の被検体内における位置検出を 行う機能を持たせたものが提案されて!、る。カゝかる位置検出機能を備えたカプセル 型内視鏡システムの一例としては、カプセル型内視鏡に内蔵された無線通信機能を 流用したものが知られている。すなわち、被検体外部に設けられた受信機が複数の アンテナ素子を備えた構成を有し、カプセル型内視鏡から送信された無線信号を複 数のアンテナ素子で受信し、それぞれのアンテナ素子における受信強度の違いに基 づ 、て被検体内におけるカプセル型内視鏡の位置を検出する機構を有する(例えば 、特許文献 1参照。)。
[0005] 特許文献 1 :特開 2003— 19111号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、従来のカプセル型内視鏡システムは、被検体内におけるカプセル型 内視鏡の位置検出の精度が低いという課題を有する。以下、力かる課題について詳 細に説明する。
[0007] 従来技術に力かるカプセル型内視鏡システムは、上記したように受信機が備える複 数のアンテナ素子における受信強度分布に基づいてカプセル型内視鏡の被検体内 における位置検出を行っている。力かる位置検出メカニズムは、特開 2003— 19111 号公報の [0018]段落にも記載されているように、カプセル型内視鏡から送信される 無線信号の強度の減衰が、カプセル型内視鏡力もの距離に応じて一意に定まること を前提として行われている。
[0008] し力しながら、現実にはカプセル型内視鏡とアンテナ素子との間に存在する臓器等 の構成物は、それぞれ比誘電率、導電率等の値が異なることから、構成物の種類等 に応じて無線信号強度の減衰率は大きく異なる値となる。例えば、カプセル型内視 鏡とアンテナ素子との間に肝臓、血管等が存在している場合には、カゝかる臓器等に よって無線信号が大量に吸収されることから、こられの臓器等が存在しな ヽ場合と比 較して無線信号強度の減衰率が大きくなり、正確な位置検出の妨げとなる。
[0009] 本発明は、上記に鑑みてなされたものであって、カプセル型内視鏡等の被検体内 導入装置が被検体内部に導入された状態において、臓器等の存在にかかわらず被 検体内導入装置の位置検出を正確に行うことのできる被検体内位置検出システムを 実現することを目的とする。
課題を解決するための手段
[0010] 上述した課題を解決し、目的を達成するために、本発明は、被検体内に導入され、 該被検体内を移動する被検体内導入装置と、前記被検体外部に配置され、前記被 検体内部における前記被検体内導入装置の位置情報を取得する位置検出装置とを 備えた被検体内位置検出システムであって、前記被検体内導入装置は、定磁場を 前記被検体外部に出力する磁場発生手段を備え、前記位置検出装置は、磁場を検 出する磁場検出手段と、前記磁場検出手段によって検出された磁場の中から雑音磁 場成分を除去し、前記磁場発生手段によって出力された定磁場を抽出する磁場抽 出手段と、前記磁場抽出手段によって抽出された定磁場の強度に基づいて、前記被 検体内における前記被検体内導入装置の位置情報を導出する位置情報導出手段と を備えたことを特徴とする。
[0011] この発明によれば、検体内導入装置が定磁場を発生する磁場発生手段を備え、移 動状態検出装置が磁場発生手段に起因した定磁場の強度に基づいて被検体内導 入装置の位置を検出する構成を有する。磁場発生手段から生じる定磁場は、被検体
1内の構成物の比誘電率、透磁率等の相違にかかわらず、磁場発生手段からの距 離に応じて一様に減衰する特性を有することから、正確な位置検出を行うことが可能 であり、取得される正確な位置情報に基づいた正確な移動状態の導出が可能である 。また、磁場検出手段によって検出された磁場の中から雑音磁場成分を除去し、磁 場発生手段カゝら出力された定磁場を抽出する磁場抽出手段を備えることとしたため、 地磁気等の雑音磁場成分を除去した定磁場に基づいて位置検出を行うことが可能 であり、さらに正確な位置検出を行うことが可能である。
発明の効果
[0012] 本発明にかかる被検体内位置検出システムは、検体内導入装置が定磁場を発生 する磁場発生手段を備え、移動状態検出装置が磁場発生手段に起因した定磁場の 強度に基づ!ヽて被検体内導入装置の位置を検出する構成を有する。磁場発生手段 力も生じる定磁場は、被検体 1内の構成物の比誘電率、透磁率等の相違にかかわら ず、磁場発生手段からの距離に応じて一様に減衰する特性を有することから、正確 な位置検出を行うことが可能であり、取得される正確な位置情報に基づ 、た正確な 移動状態の導出が可能である。また、磁場検出手段によって検出された磁場の中か ら雑音磁場成分を除去し、磁場発生手段から出力された定磁場を抽出する磁場抽 出手段を備えることとしたため、地磁気等の雑音磁場成分を除去した定磁場に基づ いて位置検出を行うことが可能であり、さらに正確な位置検出を行うことが可能である という効果を奏する。 図面の簡単な説明
[0013] [図 1]図 1は、実施の形態 1にかかる被検体内位置検出システムの全体構成を示す模 式図である。
[図 2]図 2は、実施の形態 1にかかる被検体内位置検出システムを形成するテストカブ セルの構成を示す模式図である。
[図 3]図 3は、実施の形態 1にかかる被検体内位置検出システムを形成する位置情報 導出装置の構成を示す模式図である。
[図 4]図 4は、位置情報導出装置の動作を説明するためのフローチャートである。
[図 5]図 5は、位置情報導出装置によるテストカプセルの位置導出の態様を示す模式 図である。
[図 6]図 6は、実施の形態 1の変形例におけるテストカプセルの構成を示す模式図で ある。
[図 7]図 7は、実施の形態 2にかかる被検体内位置検出システムの全体構成を示す模 式図である。
[図 8]図 8は、実施の形態 2にかかる被検体内位置検出システムを形成するカプセル 型内視鏡の構成を示す模式図である。
[図 9]図 9は、実施の形態 2にかかる被検体内位置検出システムを形成する位置情報 導出装置の構成を示す模式図である。
[図 10]図 10は、位置情報導出装置の動作を説明するためのフローチャートである。
[図 11]図 11は、位置情報導出装置によるカプセル型内視鏡の指向方向導出の態様 を示す模式図である。
符号の説明
[0014] 1 被検体
2 テストカプセル
3 位置検出装置
4 表示装置
5 携帯型記録媒体
6a-6h 磁場検出装置 傾斜センサ
水平面内方位検出装置a、 9b 固定部材
0 位置情報導出装置
1 筐体
2 永久磁石
3 充填部材
4 雑音磁場成分データベース5 磁場抽出部
6 基準装置選択部
7 セレクタ
8 距離導出部
9 位置演算部
0 憶ュ -ッ卜
1 ケース部材
2 液体
3 球状体
4 加重部材
5 カプセル型内視鏡
6 位置検出装置
7 位置情報導出装置
8 LED
9 LED駆動回路
0 CCD
1 CCD駆動回路
2 機能実行部
3 RF送信ユニット
送信アンテナ部 35 システムコントロール回路
36 受信アンテナ部
37 分離回路
38 電力再生回路
39 昇圧回路
40 蓄電器
41 コントロール情報検出回路
44 指向方向データベース
45 指向方向検出部
46 アンテナ選択部
47 RF受信ユニット
48 画像処理ユニット
49 憶ユニット
50 発振器
51 コントロール情報入力ユニット
52 重畳回路
53 増幅回路
54 電力供給ユニット
ΑΙ'一 An 受信用アンテナ
Bl、一 Bm 給電用アンテナ
発明を実施するための最良の形態
[0015] 以下、この発明を実施するための最良の形態である被検体内位置検出システムに ついて説明する。なお、図面は模式的なものであり、各部分の厚みと幅との関係、そ れぞれの部分の厚みの比率などは現実のものとは異なることに留意すべきであり、図 面の相互間にお!/、ても互!、の寸法の関係や比率が異なる部分が含まれて!/、ることは もちろんである。
[0016] (実施の形態 1)
まず、実施の形態 1にかかる被検体内位置検出システムについて説明する。本実 施の形態 1にかかる被検体内位置検出システムは、被検体 1の内部に導入され、被 検体内導入装置の一例として機能するテストカプセル 2と、テストカプセル 2の被検体 1内部における位置の検出を行う位置検出装置 3と、位置検出装置 3によって検出さ れたテストカプセル 2の位置情報を表示する表示装置 4と、位置検出装置 3と表示装 置 4との間の情報の受け渡しを行うための携帯型記録媒体 5とを備える。
[0017] 表示装置 4は、位置検出装置 3によって取得されたテストカプセル 2の位置情報を 表示するためのものであり、携帯型記録媒体 5によって得られるデータに基づいて画 像表示を行うワークステーション等のような構成を有する。具体的には、表示装置 4は 、 CRTディスプレイ、液晶ディスプレイ等によって直接画像を表示する構成としても良 いし、プリンタ等のように、他の媒体に画像を出力する構成としても良い。
[0018] 携帯型記録媒体 5は、後述する位置情報導出装置 10および表示装置 4に対して 着脱可能であって、両者に対する挿着時に情報の出力および記録が可能な構造を 有する。具体的には、携帯型記録媒体 5は、テストカプセル 2が被検体 1の体腔内を 移動している間は位置情報導出装置 10に挿着されてテストカプセル 2の位置に関す る情報を記録する。そして、テストカプセル 2が被検体 1から排出された後に、位置情 報導出装置 10から取り出されて表示装置 4に挿着され、記録したデータが表示装置 4によって読み出される構成を有する。位置情報導出装置 10と表示装置 4との間の データの受け渡しをコンパクトフラッシュ (登録商標)メモリ等の携帯型記録媒体 5によ つて行うことで、位置情報導出装置 10と表示装置 4との間が有線接続された場合と異 なり、テストカプセル 2が被検体 1内部を移動中であっても、被検体 1が自由に行動す ることが可能となる。
[0019] テストカプセル 2は、カプセル型内視鏡等を被検体 1内に導入するに先立って、被 検体 1内にカプセル型内視鏡の通過が困難な狭窄部等が存在するか否か等の事前 検査を行う際に用いられるものである。すなわち、本実施の形態 1にかかる被検体内 位置検出システムは、力かるテストカプセル 2が被検体 1内でどのように移動するのか を調べるためのものであり、かかる目的を達成するために高精度の位置検出機構を 設けている。
[0020] 図 2は、テストカプセル 2の構造を示す模式図である。図 2に示すように、テストカブ セル 2は、カプセル型内視鏡の筐体と同様のカプセル形状を有する筐体 11と、筐体 11内部に配置された永久磁石 12と、筐体 11内面と永久磁石 12との間の隙間を埋 める部材として機能する充填部材 13とを備える。
[0021] 筐体 11は、例えば、生体適合性材料によって形成されており、被検体 1内に数日 間に渡って留まった場合に分解されるという特性を有する。筐体 11が生体適合性材 料によって形成されることによって、万一被検体 1内に導入したテストカプセル 2が被 検体 1の外部に排出されないような場合であっても、被検体 1に対して開腹手術等を 行う必要がな 、と 、う利点を有する。
[0022] 永久磁石 12は、特許請求の範囲における磁場発生手段として機能するものであり 、筐体 11内に収容可能なサイズの永久磁石によって構成され、磁場強度の時間変 動が無視しうる定磁場を出力するためのものである。なお、永久磁石 12の代わりに、 例えば定電流が供給されることによって定磁場を発生するコイル等を磁場発生手段 として用いることとしても良いが、永久磁石 12を用いることとした場合には駆動電力が 不要等の利点を有することから、永久磁石 12を用いて磁場発生手段を構成すること が好ましい。
[0023] 永久磁石 12から生じる定磁場は、図 2に示すように、 N極側から出力されて永久磁 石 12外部を進行した後に再び S極側に入力する閉曲線状の磁力線によって表現さ れる。ここで、図 2に示すように磁力線の進行方向は場所依存性を有するが、磁力線 によって表される定磁場の強度は、テストカプセル 2からの距離のみに応じて定まるも のとみなすことが可能である。すなわち、テストカプセル 2に内蔵される永久磁石 12 のサイズは、テストカプセル 2と磁場検出装置 6a— 6hとの間の距離と比較して無視で きる程度に微小であることから、テストカプセル 2から距離 rだけ離れた地点における 磁場強度 Pは、比例係数 OCを用いて、
P= a /r3 · · · (1)
と表される。本実施の形態 1にかかる被検体内位置検出システムは、後述するように( 1)式に示す関係に基づいてテストカプセル 2の位置を検出することとしている。
[0024] 充填部材 13は、筐体 11の内面と永久磁石 12との間を充填し、永久磁石 12の位置 を固定するためのものである。なお、充填部材 13を形成する材料は被検体 1に対し て悪影響を与えないものであって、例えば、硫酸バリウムによって充填部材 13は形 成される。硫酸バリウムは、 X線検査における造影剤として利用することが可能である ため、本実施の形態 1における位置検出にカ卩えて X線検査による位置検出が可能と なり、両者による検出結果を対比することによって、より正確な位置検出を行うことが 可能である。なお、本実施の形態 1において充填部材 13として硫酸バリウムを用いる ことは必須ではなぐ充填部材として機能するものであれば任意のものを用いることが 可能なのはいうまでもない。
[0025] 次に、位置検出装置 3について説明する。位置検出装置 3は、テストカプセル 2から 出力される定磁場に基づいて、被検体 1内部におけるテストカプセル 2の位置を検出 するためのものである。具体的には、位置検出装置 3は、図 1に示すように、テスト力 プセル 2から出力される定磁場の強度を検出する磁場検出装置 6a— 6hと、被検体 1 の傾斜の程度を検出する傾斜センサ 7と、水平面内における被検体 1の指向方向を 検出する水平面内方位検出装置 8と、磁場検出装置 6a— 6dおよび傾斜センサ 7を 被検体 1に対して固定する固定部材 9aと、磁場検出装置 6e— 6hおよび水平面内方 位検出装置 8を被検体 1に対して固定する固定部材 9bと、磁場検出装置 6a— 6hに よって検出された磁場強度に基づいてテストカプセル 2の位置を導出する位置情報 導出装置 10とを備える。
[0026] 磁場検出装置 6a— 6hは、例えば、それぞれが配置された場所における検出磁場 の方向および強度を検出するためのものである。具体的には、磁場検出装置 6a— 6 hは、例えば、 MI (Magneto Impedance)センサを用いて形成されている。 Mlセンサは 、例えば FeCoSiB系アモルファスワイヤを感磁媒体として用いた構成を有し、感磁媒 体に高周波電流を通電した際に、外部磁界に起因して感磁媒体の磁気インピーダン スが大きく変化する Ml効果を利用して磁場強度の検出を行っている。磁場検出装置 6a— 6hとして他の磁場センサを用いることとしても良!、が、 Mlセンサを用いた場合 には、特に高い感度で磁場強度検出が行えるという利点を有する。
[0027] また、磁場検出装置 6a— 6hは、本実施の形態 1においてはそれぞれ立方体の頂 点を形成する位置に配置されており、力かる立方体の辺に対応して図 1に示すように xyz座標系が定められている。すなわち、磁場検出装置 6eを原点として、磁場検出 装置 6eから磁場検出装置 6fに向力う方向を x軸とし、磁場検出装置 6eから磁場検出 装置 6hに向力 方向を y軸とし、磁場検出装置 6eから磁場検出装置 6aに向力 方向 を z軸とする。また、磁場検出装置 6a— 6hは、磁場抽出部 15に対して、上記の X軸、 y軸、 z軸とそれぞれ平行な磁場成分を出力するものとする。なお、後述するように、 被検体 1の姿勢の変化等によって xyz座標系の絶対的な方向は変化するため、固定 した絶対的な座標系を x'y'z'座標系と定義し、必要に応じて区別して説明する。また 、 x'y'z'座標系にお 、て z'軸の方向は鉛直方向に設定することとする。
[0028] 傾斜センサ 7は、被検体 1の傾斜程度を検出するためのものであり、特許請求の範 囲における鉛直方向検出手段の一態様として機能するものである。具体的には、傾 斜センサ 7は、所定の基準方向と鉛直方向とがなす角度を検出する機能を有する。 傾斜センサ 7は、固定部材 9aによって被検体 1に対して固定された状態で配置され ており、同じく被検体 1に対して固定された磁場検出装置 6a— 6hとの位置関係が固 定される。従って、傾斜センサ 7は、磁場検出装置 6a— 6hによって構成される xyz座 標系の鉛直方向に対する傾斜の程度を検出する機能を有する。なお、傾斜センサ 7 は、 1軸方向の傾斜のみを検出する構成としても良いが、より好ましくは 2軸方向に関 する傾斜を検出することとする。
[0029] 水平面内方位検出装置 8は、水平面内における被検体 1の指向方向を検出するた めのものである。具体的には、水平面内方位検出装置 8は、ジャイロ等の計測器によ つて形成されており、あらかじめ定めた所定方向と被検体 1の指向方向とがなす角度 を検出する機能を有する。また、水平面内方位検出装置 8は、固定部材 9bを介して 被検体 1に対して固定されていることから、水平面内方位検出装置 8によって検出さ れる方位角は、磁場検出装置 6a— 6hによって構成される xyz座標系の水平方向に 関する方位変動を検出する機能を有する。
[0030] 固定部材 9a、 9bは、磁場検出装置 6a— 6h、傾斜センサ 7および水平面内方位検 出装置 8を被検体 1に対して固定するためのものである。具体的には、固定部材 9a、 9bは、例えば弾性部材によって環状に形成されており、被検体 1の胴部に密着した 状態で固定される構成を有する。磁場検出装置 6a— 6dおよび傾斜センサ 7は、固定 部材 9aによって、磁場検出装置 6e— 6hおよび水平面内方位検出装置 8は、固定部 材 9bによって、それぞれ被検体 1に対して所定の位置に固着されている。従って、固 定部材 9a、 9bを被検体 1の胴部に密着固定することによって、磁場検出装置 6a— 6 h、傾斜センサ 7および水平面内方位検出装置 8は、被検体 1に対する相対位置が 固定された状態で配置されることとなる。
[0031] 次に、位置情報導出装置 10について説明する。位置情報導出装置 10は、磁場検 出装置 6a— 6hによって検出された磁場強度力もテストカプセル 2によって出力され た定磁場の強度を抽出し、抽出した磁場強度に基づ 、てテストカプセル 2の位置を 導出するためのものである。図 3は、位置情報導出装置 10の構成を示すブロック図 である。図 3に示すように、位置情報導出装置 10は、磁場検出装置 6a— 6hにおける 検出磁場カゝらテストカプセル 2から出力された定磁場を抽出する磁場抽出部 15と、 磁場抽出部 15による磁場抽出の際に用いられるデータをあら力じめ記憶する雑音磁 場成分データベース 14とを備える。また、位置情報導出装置 10は、磁場検出装置 6 a— 6hの中から基準となる磁場検出装置 (以下、「基準装置」と称する)を選択する基 準装置選択部 16と、基準装置選択部 16による選択結果に基づ!/、て所定数の磁場 検出装置において得られた磁場強度を出力するセレクタ 17と、セレクタ 17から出力 された磁場強度に基づいて、テストカプセル 2と基準装置等との間の距離を導出する 距離導出部 18と、導出された距離と距離の導出に用いた基準装置等の位置座標と を用いて演算処理を行うことによってテストカプセル 2の位置を導出する位置演算部 19と、位置演算部 19によって得られたテストカプセル 2の位置に関する情報を携帯 型記録媒体 5に記録するための記憶ユニット 20とを備える。
[0032] 雑音磁場成分データベース 14は、被検体 1がテストカプセル 2を導入する領域に 存在する地磁気成分等の雑音磁場について記憶するためのものである。具体的に は、雑音磁場成分データベース 14は、雑音磁場の強度および xV'z'座標系におけ る進行方向にっ 、て記憶する機能を有し、必要に応じて磁場抽出部 15に対して出 力する機能を有する。
[0033] 磁場抽出部 15は、磁場検出装置 6a— 6hによって検出された磁場の中に含まれる 雑音磁場成分を除去し、テストカプセル 2内に備わる永久磁石 12によって出力され た定磁場を抽出するためのものである。磁場抽出部 15は、磁場検出装置 6a— 6h〖こ おける検出結果のみならず、雑音磁場成分データベース 14に記憶された情報およ び傾斜センサ 7、水平面内方位検出装置 8の検出結果を入力する構成を有し、入力 情報に基づいて磁場抽出を行う機能を有する。傾斜センサ 7および水平面内方位検 出装置 8の検出結果を用いるのは以下の理由である。
[0034] すなわち、雑音磁場成分データベース 14に記憶される雑音磁場成分は、その進行 方向が xV'z'座標系に基づいて記憶されている。一方で、磁場検出装置 6a— 6hに よって検出される磁場は、 xyz座標系に基づいて検出されることから、雑音磁場成分 の除去を行うためには、雑音磁場成分データベース 14に記憶された情報について X yz座標系に変換する必要がある。
[0035] このため、磁場抽出部 15は、傾斜センサ 7および水平面内方位検出装置 8の検出 結果に基づいて、磁場検出時における xyz座標系と xV'z'座標系との関係を導出し、 導出した座標系間の関係に基づいて雑音磁場成分のデータの座標変換処理を行つ ている。そして、磁場抽出部 15は、力かる座標変換処理を行った後、 x、 y、 zの各方 向に関して磁場検出装置 6a— 6hによって検出された磁場と、雑音磁場成分との差 分値を導出し、導出した差分値を永久磁石 12によって出力された定磁場として基準 装置選択部 16およびセレクタ 17に出力して 、る。
[0036] 基準装置選択部 16は、磁場検出装置 6a— 6hの中から、検出した磁場強度の値が 最も大きいものを選択する機能を有する。具体的には、磁場検出装置 6a— 6hから出 力された磁場強度値を互いに比較し、最も大きな磁場強度を出力した磁場検出装置 (基準装置)を選択した後、基準装置を特定する情報 (例えば、磁場検出装置 6a— 6 hの中でいずれの装置が基準装置であるかの情報)をセレクタ 17に出力する。
[0037] セレクタ 17は、基準装置選択部 16による選択結果に基づいて複数の磁場検出装 置を選択し、自己が選択した磁場検出装置 (被選択装置)によって得られた磁場強 度と、基準装置によって得られた磁場強度とを距離導出部 18に出力するためのもの である。具体的には、セレクタ 17は、基準装置に対して互いに直交する方向に配置 された 3個の磁場検出装置を選択する機能を有する。すなわち、本実施の形態 1〖こ 力かる被検体内位置検出システムは、図 1にも示したように、磁場検出装置 6a— 6h は、それぞれが立方体の頂点を形成するよう配置されているため、任意の磁場検出 装置に対して、互いに直交する方向に位置する磁場検出装置が必ず 3個存在し、セ レクタ 17は、かかる 3個の磁場検出装置を被選択装置として選択する機能を有する。
[0038] 距離導出部 18は、セレクタ 17を介して入力された磁場強度に基づいて、基準装置 および被選択装置とテストカプセル 2との間の距離を導出するためのものである。具 体的には、距離導出部 18は、入力された磁場強度に対して、(1)式に示す演算処理 を行うことによって、磁場強度が検出された磁場検出装置とテストカプセル 2との間の 距離を導出する機能を有する。
[0039] 位置演算部 19は、基準装置等として選択された磁場検出装置とテストカプセル 2と の間の距離に基づいて所定の演算処理を行うことによって、テストカプセル 2の位置 を導出するためのものである。また、位置演算部 19は、テストカプセル 2の位置を導 出した後、導出結果を記憶ユニット 20に出力する機能を有する。
[0040] 次に、本実施の形態 1における位置情報導出装置 10の動作について説明する。図 4は、位置情報導出装置 10の動作を示すフローチャートであり、図 5は、位置導出動 作のアルゴリズムを説明するための模式図である。なお、図 5において、磁場検出装 置 6a— 6hによって構成される立方体の 1辺の長さを aとする。また、後述するように基 準装置として選択される磁場検出装置 6eの位置を原点とし、磁場検出装置 6eから磁 場検出装置 6fに向力 方向を X方向、磁場検出装置 6eから磁場検出装置 6hに向か う方向を y方向、磁場検出装置 6eから磁場検出装置 6aに向力 方向を z方向とする。 力かる xyz座標系に基づいて磁場検出装置 6a— 6hの位置を定めると共に、 xyz座 標系におけるテストカプセル 2の位置を (x、 y、 z)とする。以下、図 4および図 5を適宜 参照して位置情報導出装置 10の動作について説明を行う。
[0041] まず、位置情報導出装置 10は、磁場抽出部 15によって、磁場検出装置 6a— 6hに よって検出された磁場の中から永久磁石 12によって出力された定磁場の抽出を行う (ステップ S101)。具体的には、磁場抽出部 15は、雑音磁場成分データベース 14か ら入力された雑音磁場成分に関する xV'z'座標系における情報に対して傾斜センサ 7等によってえられた検出結果に基づいて xyz座標に変換する。そして、座標変換を 施した雑音磁場成分と磁場検出装置 6a— 6hによって検出された磁場との差分値を 導出することで定磁場の抽出を行っている。 [0042] そして、位置情報導出装置 10は、基準装置選択部 16によって、磁場抽出部 15に よって抽出された定磁場の強度が最も高い値となる磁場検出装置を選択する (ステツ プ S102)。図 5の例では、最も高い磁場検出装置として磁場検出装置 6eが選択され た場合を示しており、以下の説明でも磁場検出装置 6eを基準装置として説明を行う。
[0043] そして、位置情報導出装置 10は、セレクタ 17によって、ステップ S102で選択した 基準装置に基づいて 3個の被選択装置を選択し (ステップ S103)、基準装置および 被選択装置によって検出され、磁場抽出部 15によって抽出された定磁場の強度を 距離導出部 18に出力する (ステップ S104)。図 5の例では、基準装置たる磁場検出 装置 6eに対して、磁場検出装置 6f、 6h、 6aがそれぞれ互いに直交する方向に配置 されていることから、セレクタ 17は、これらを被選択装置として選択する。
[0044] その後、位置情報導出装置 10は、距離導出部 18によって、ステップ S102におい て選択した基準装置の検出結果に基づいて得られた定磁場の強度と、ステップ S 10 3にお 、て選択した被選択装置の検出結果に基づ!/、て得られた定磁場の強度とに 基づいてテストカプセル 2との間の距離を導出する(ステップ S105)。具体的には、 距離導出部 18は、セレクタ 17を介して入力された磁場強度を用いて(1)式の演算を 行うことによって距離の導出を行う。図 5の例では、距離導出部 18は、基準装置およ び被選択装置の検出結果に基づ 、て得られた定磁場の強度に基づ 、て、テストカブ セル 2と磁場検出装置 6e、 6f、 6h、 6aとの距離 r、 r、 r、 rを導出している。
1 2 3 4
[0045] そして、位置情報導出装置 10は、位置演算部 19における演算処理によってテスト カプセル 2の位置の導出を行う(ステップ S106)。具体的には、テストカプセル 2の X 座標、 y座標および z座標を導出することによってテストカプセル 2の位置が導出され ることとなるため、磁場検出装置 6e、 6f、 6h、 6aの座標およびステップ S 105におい て導出された距離の値とを用いてテストカプセル 2の座標を導出して ヽる。
[0046] 例えば、テストカプセル 2の位置座標(x、 y、 z)は、図 5に示す位置関係から幾何的 に導出することが可能であって、具体的には以下の方程式を解くことによって導出さ れる。
(x-0) 2+ (y-0) 2+ (z-0) 2=r 2 · · · (2)
1
(x-a) 2+ (y-0) 2+ (z-0) 2=r 2 · · · (3) (x-0) 2+ (y-a) 2+ (z-0) 2=r 2
3 …(4)
(x-0) 2+ (y-0) 2+ (z-a) 2=r 2
4 …(5)
[0047] なお、(2)式一(5)式にぉ 、て、未知数は 3個であることから、理論上は方程式の数 も 3個あれば十分である。し力しながら、実際の位置検出の際には、磁場検出装置 6a 一 6hの位置ずれや、距離導出誤差等によってテストカプセル 2の位置検出精度の低 下を抑制するため、(2)式一(5)式を解いた後に、 x、 y、 zの値が一意に定まるよう磁 場検出装置の座標等を補正することとしている。
[0048] 最後に、位置情報導出装置 10は、記憶ユニット 20によって、ステップ S106におい て導出されたテストカプセル 2の位置を記憶する (ステップ S107)。具体的には、テス トカプセル 2が被検体 1内に導入されている間は、記憶ユニット 20には携帯型記録媒 体 5が装着されていることから、記憶ユニット 20は、携帯型記録媒体 5に対してステツ プ S 106にお 、て得られた位置情報を記録させる。
[0049] 力かるステップ S102— S107の工程は、所定時間間隔ごとに繰り返し行われ、この 結果、携帯型記録媒体 5は、テストカプセル 2が被検体 1内をどのように移動したかに ついての情報を記録することとなる。そして、テストカプセル 2が被検体 1の外部に排 出された後、携帯型記録媒体 5は表示装置 4に装着され、使用者は、表示装置 4に 表示された記録結果に基づ 、て、テストカプセル 2が被検体 1内でどのように移動し たかを把握し、把握した結果により、被検体 1内のいかなる場所に狭窄部位が存在す るか等の判断を行う。
[0050] 次に、本実施の形態 1にかかる被検体内位置検出システムの利点について説明す る。まず、本実施の形態 1にかかる被検体内位置検出システムは、テストカプセル 2内 に備わる永久磁石 12によって出力される定磁場に基づいてテストカプセル 2の位置 を導出することとしている。電磁波等と異なり、定磁場は、伝播領域における比誘電 率および透磁率等の物理的パラメータの変動にかかわらずほぼ一意に強度が減衰 する特性を有することから、(1)式の関係が良好に成立するという特徴を有する。従 つて、人体内部のように、物理的パラメータが互いに異なる臓器等が存在する空間内 における位置検出であつても、電磁波等による位置検出の場合と比較して高 、精度 で位置検出を行うことが可能という利点を有する。 [0051] 力かる定磁場による利点としては、テストカプセル 2を被検体 1内に導入する際に、 被検体 1の負担を軽減することも挙げられる。すなわち、上述の理由により、本実施 の形態 1にかかる被検体内位置検出システムでは、テストカプセル 2の周囲環境の相 違による位置検出精度の低下が抑制されるという利点があるため、例えば、テスト力 プセル 2を被検体 1内に導入する際に、他の検査方法のように飲食を控える等の制 限を行う必要がない。従って、被検体 1はテストカプセル 2を用いた検査時においても 通常生活を営むことが可能となり、検査における被検体 1の負担を低減することが可 能である。
[0052] (変形例)
次に、実施の形態 1にかかる被検体内位置検出システムの変形例について説明す る。本変形例では、テストカプセル内から出力される定磁場が常に鉛直方向となるよ う永久磁石 12の配置を工夫した構成を有する。
[0053] 図 6は、本変形例におけるテストカプセルの構成について示す模式図である。図 6 に示すように、本変形例におけるテストカプセルは、実施の形態 1と同様に筐体 11お よび充填部材 13を備える一方で、永久磁石 12がケース部材 21内に収容された構成 を有する。具体的には、永久磁石 12は、球状体 23内に保持された構成を有し、球状 体 23はケース部材 21内に保持される液体 22内に浮遊した状態で配置されて 、る。 また、球状体 23内には、永久磁石 12に対して、磁場出力方向に加重部材 24が配置 されており、球状体 23は、図 6に示すように、テストカプセルの指向方向の変動等に かかわらず加重部材 24が鉛直下方向に位置した状態で安定して 、る。
[0054] 力かる構成を有することにより、本変形例では、テストカプセル内に備わる永久磁石 12から出力される定磁場は常に鉛直方向となる。一方で、主要な雑音磁場成分であ る地磁気成分はほぼ水平方向に進行することから、磁場抽出部 15は、磁場検出装 置 6a— 6hによって検出された磁場について、鉛直方向成分のみを抽出すれば足り ることとなる。
[0055] 検出磁場の鉛直方向成分を抽出するためには、磁場抽出部 15は、磁場検出装置 6a— 6hによって検出された磁場について、傾斜センサ 7によって検出された鉛直方 向と平行な成分のみを抽出することで、永久磁石 12から出力された定磁場の抽出を 完了することが可能である。従って、本変形例においては、位置検出装置 3は水平面 内方位検出装置 8を備える必要が無ぐ位置情報導出装置 10は、雑音磁場成分デ ータベース 14を省略することが可能となる。さらに、本変形例において磁場抽出部 1 5は、差分値導出等の処理を省略することが可能となることから、図 6に示すテスト力 プセルを使用することによって、簡易な構成で雑音磁場成分の影響を低減した被検 体内位置検出システムを実現することが可能である。
[0056] (実施の形態 2)
次に、実施の形態 2にかかる被検体内位置検出システムについて説明する。本実 施の形態 2にかかる被検体内位置検出システムは、被検体内導入装置として定磁場 発生手段のみならず所定の機能実行部および無線部を備えたカプセル型内視鏡と 、定磁場発生手段より生じる定磁場に基づいて、被検体内におけるカプセル型内視 鏡の位置検出のみならず、回転楕円体状の形状を有するカプセル型内視鏡の長軸 の向き、すなわち指向方向をも検出し、検出結果に基づいてカプセル型内視鏡から 送信された無線信号を受信する複数のアンテナを切り替える位置情報導出装置とを 備えた構成を有する。
[0057] 図 7は、本実施の形態 2にかかる被検体内位置検出システムの全体構成を示す模 式図である。図 7に示すように、本実施の形態 2にかかる被検体内位置検出システム は、被検体内導入装置の一例たるカプセル型内視鏡 25と、位置検出装置 26とを備 える。なお、図 7には実施の形態 1における表示装置 4および携帯型記録媒体 5に相 当する構成要素を図示して 、な 、が、このことは本実施の形態 2にお 、てこれらを除 外する趣旨ではない。また、本実施の形態 2にかかる被検体内位置検出システムに おいて、実施の形態 1と同様の符号、名称を付した構成要素については、以下で特 に言及しない限り、実施の形態 1と同様の構成'作用を有するものとする。
[0058] 位置検出装置 26は、図 7に示すように、磁場検出装置 6a— 6hと、傾斜センサ 7と、 水平面内方位検出装置 8と、磁場検出装置 6a— 6h等を被検体 1に対して固定する 固定部材 9a、 9bと、カプセル型内視鏡 25から送信される無線信号を受信するため の受信用アンテナ A1— Anと、磁場検出装置 6a— 6hおよび受信用アンテナ A1— A nによって得られた情報を処理し、カプセル型内視鏡 25の被検体 1内における位置 情報を取得する位置情報導出装置 27とを備える。なお、図 7では省略したが、位置 検出装置 26は後述する給電用アンテナ B1— Bmも備えた構成を有する。
[0059] 受信用アンテナ A1— Anは、カプセル型内視鏡 25から送信される無線信号を受信 するためのものである。後述するように本実施の形態 2におけるカプセル型内視鏡 25 は、被検体 1内部の画像を撮像して外部に無線送信する機能を有し、受信用アンテ ナ A1— Anは、カプセル型内視鏡 25から送信される無線信号を受信し、位置情報導 出装置 27に出力する構成を有している。受信用アンテナ A1— Anは、具体的には例 えば、ループアンテナと、ループアンテナを被検体 1に固定するための固着手段とに よって構成されている。なお、カプセル型内視鏡 25から無線信号が送信された際に 受信用アンテナ A1— Anのすべてによって受信する構成としても良い。しかしながら 、本実施の形態 2では、複数存在する受信用アンテナ A1— Anのうち、後述するアン テナ選択部 46によって受信に最も適して 、ると判断される受信用アンテナを用 V、て 受信することとしている。
[0060] カプセル型内視鏡 25は、実施の形態 1におけるテストカプセル 2と同様に、磁場発 生手段としての永久磁石 12を備える。また、カプセル型内視鏡 25は、被検体 1内部 に対して所定機能を実行する機能実行手段としての機能と、位置検出装置 26から送 信される無線信号を受信する受信装置としての機能とを備え、各機能に対応した構 成要素を備える。
[0061] まず、カプセル型内視鏡 25は、あらかじめ定められた所定機能を実行する機能実 行手段としての機能と、機能実行手段によって得られた情報を無線送信する送信装 置としての機能とを実現するための構成を有する。図 8は、カプセル型内視鏡 25の 構成を示すブロック図である。具体的には、カプセル型内視鏡 25は、被検体 1の内 部を撮影する際に撮像領域を照射するための照明手段として機能する LED28と、 L ED28の駆動状態を制御する LED駆動回路 29と、 LED28によって照射された領域 力もの反射光像の撮像を行う撮像手段として機能する CCD30と、 CCD30の駆動状 態を制御する CCD駆動回路 31とを備える。なお、 LED28、 LED駆動回路 29、 CC D30および CCD駆動回路 31は、全体として所定の機能を果たす機能実行部 32とし て定義される。 [0062] また、カプセル型内視鏡 25は、 CCD30によって撮像された画像データを変調して RF信号を生成する RF送信ユニット 33と、 RF送信ユニット 33から出力された RF信号 を無線送信する無線手段としての送信アンテナ部 34と、 LED駆動回路 29、 CCD駆 動回路 31および RF送信ユニット 33の動作を制御するシステムコントロール回路 35と を備える。
[0063] これらの機構を備えることにより、カプセル型内視鏡 25は、被検体 1内に導入され ている間、 LED28によって照明された被検部位の画像データを CCD30によって取 得する。そして、取得された画像データは、 RF送信ユニット 33において RF信号に変 換された後、送信アンテナ部 34を介して外部に送信される。
[0064] また、カプセル型内視鏡 25は、位置検出装置 26から送信される無線信号を受信 するための構成を有する。具体的には、カプセル型内視鏡 25は、位置検出装置 26 側から送られてきた無線信号を受信する受信アンテナ部 36と、受信アンテナ部 36で 受信した信号から給電用信号を分離する分離回路 37とを備える。さらに、カプセル 型内視鏡 25は、分離された給電用信号から電力を再生する電力再生回路 38と、再 生された電力を昇圧する昇圧回路 39と、昇圧された電力を蓄積する蓄電器 40とを 備える。また、カプセル型内視鏡 25は、分離回路 37で給電用信号と分離された成分 力 コントロール情報信号の内容を検出し、検出したコントロール情報信号をシステ ムコントロール回路 35に対して出力するコントロール情報検出回路 41を備える。なお 、システムコントロール回路 35は、蓄電器 40から供給される駆動電力を他の構成要 素に対して分配する機能も有する。
[0065] これらの機構を備えることにより、カプセル型内視鏡 25は、まず、位置検出装置 26 側から送られてきた無線信号を受信アンテナ部 36において受信し、分離回路 37に よって、受信した無線信号力も給電用信号およびコントロール情報信号を分離する。 分離回路 37によって分離されたコントロール情報信号は、コントロール情報検出回 路 41を経てシステムコントロール回路 35に出力され、 LED28、 CCD30および RF 送信ユニット 33の駆動制御に使用される。一方、給電用信号は、電力再生回路 38 によって電力として再生され、再生された電力は昇圧回路 39によって電位を蓄電器 40に適した電位にまで昇圧された後、蓄電器 40に蓄積される。 [0066] 次に、位置情報導出装置 27の構成について説明する。位置情報導出装置 27は、 カプセル型内視鏡 25の位置を導出する機能のみならず指向方向を導出する機能を 有し、さらにカプセル型内視鏡 25から送信された無線信号を受信する受信装置とし ての機能と、カプセル型内視鏡 25に対して所定の信号を無線送信する送信装置とし ての機能とを備える。以下、位置情報導出装置 27の構成について、各機能に対応し た構成要素ごとに説明を行う。
[0067] 図 9は、位置情報導出装置 27の構成を示すブロック図である。本実施の形態 2に おける位置情報導出装置 27は、カプセル型内視鏡 25の被検体 1内における位置を 検出する構成要素として、雑音磁場成分データベース 14、磁場抽出部 15基準装置 選択部 16、セレクタ 17、距離導出部 18および位置演算部 19を備えた構成を有する 。ここで、本実施の形態 2では磁場検出装置 6a— 6hが磁場強度のみならず磁場方 向についても位置情報導出装置 27に対して出力する構成を有するため、基準装置 選択部 16は、磁場検出装置 6a— 6hから出力された情報のうち、磁場強度を抽出し て基準装置の選択を行うこととし、距離導出部 18は、セレクタ 17から入力された情報 のうち、基準装置および被選択装置において受信された磁場強度を抽出して距離の 導出を行う機能を有する点で実施の形態 1と相違する。なお、本実施の形態 2におけ るカプセル型内視鏡 25の位置の検出動作については実施の形態 1とほぼ同様であ ることとし、詳細な説明については省略する。
[0068] さらに、位置情報導出装置 27は、後述するようにカプセル型内視鏡 25の指向方向 を検出する際に使用される指向方向データベース 44と、セレクタ 17から出力された、 所定の磁場検出装置 6における磁場方向とに基づ!/、てカプセル型内視鏡 25の指向 方向を検出する指向方向検出部 45とを備える。指向方向データベース 44は、磁場 検出装置 6において受信される磁場の強度および磁場検出装置 6とカプセル型内視 鏡 25の位置関係に対するカプセル型内視鏡 25の指向方向に関するデータをあらか じめ記憶したものである。なお、指向方向データベース 44および指向方向検出部 45 の動作の具体的内容については、後に詳細に説明する。
[0069] また、位置情報導出装置 27は、カプセル型内視鏡 25から無線送信された、被検体 1内部の画像データを受信する受信装置としての構成を有する。具体的には、位置 情報導出装置 27は、受信用アンテナ A1— Anの中からデータ受信に使用するもの を選択するアンテナ選択部 46と、選択した受信用アンテナ受信された無線信号に対 して復調等の所定の処理を行い、無線信号の中力もカプセル型内視鏡 25によって 取得された画像データを抽出し、出力する RF受信ユニット 47と、出力された画像デ ータに必要な処理を行う画像処理ユニット 48と、画像処理が施された画像データを 記録するための記憶ユニット 49とを備える。
[0070] アンテナ選択部 46は、カプセル型内視鏡 25から送信される無線信号を受信する のに最も適した受信用アンテナを選択するためのものである。具体的には、アンテナ 選択部 46は、あら力じめ受信用アンテナ A1— Anの位置を把握していると共に、位 置演算部 19によって導出されたカプセル型内視鏡 25の位置に関する情報と、指向 方向検出部 45によって導出されたカプセル型内視鏡 25の指向方向に関する情報と が入力される構成を有する。このため、アンテナ選択部 46は、カプセル型内視鏡 25 の位置および指向方向との関係にお 、て、最も良好な受信感度を有するものと推定 される受信用アンテナを選択し、選択した受信用アンテナにおいて受信された無線 信号を RF受信ユニット 47に出力する機能を有する。
[0071] 記憶ユニット 49は、画像処理ユニット 48から出力される画像データと、出力される 画像データが撮像された時点におけるカプセル型内視鏡 25の位置および指向方向 とを対応づけて記憶する機能を有する。すなわち、位置情報導出装置 27は、図 9〖こ も示すように記憶ユニット 49に位置演算部 19、指向方向検出部 45および画像処理 ユニット 48において得られた情報が出力される構成を有しており、記憶ユニット 49は 、これらの情報を対応づけた状態で記憶する機能を有する。この結果、記憶ユニット 49は、被検体 1内部の所定領域の画像データと、かかる画像データを撮像した時点 におけるカプセル型内視鏡 25の位置および指向方向とが対応づけられた状態で記 憶されている。
[0072] また、位置情報導出装置 27は、カプセル型内視鏡 25に対して送信する給電用信 号等を生成し、給電用アンテナ B1— Bmに対して出力する構成を有する。具体的に は、位置情報導出装置 27は、給電用信号を生成する機能および発振周波数を規定 する機能を有する発振器 50と、カプセル型内視鏡 25の駆動状態の制御のためのコ ントロール情報信号を生成するコントロール情報入力ユニット 51と、給電用信号とコ ントロール情報信号とを合成する重畳回路 52と、合成された信号の強度を増幅する 増幅回路 53とを備える。増幅回路 53で増幅された信号は、給電用アンテナ B1— B mに送られ、カプセル型内視鏡 25に対して送信される。なお、位置情報導出装置 27 は、所定の蓄電装置または AC電源アダプタ等を備えた電力供給ユニット 54を備え、 位置情報導出装置 27の各構成要素は、電力供給ユニット 54から供給される電力を 駆動エネルギーとして ヽる。
[0073] 次に、本実施の形態 2にかかる被検体内位置検出システムにおける、カプセル型 内視鏡 25の指向方向を検出することの意義および指向方向検出動作の内容につい て説明する。上述したように、本実施の形態 2にかかる被検体内位置検出システムは 、カプセル型内視鏡 25が所定の機能実行手段を備え、かかる機能実行手段によつ て取得された情報を位置検出装置 26側に無線送信する構成を有する。そのため、 位置検出装置 26は、送信された無線信号を受信するための複数の受信用アンテナ A1— Anを備え、アンテナ選択部 46によって力かる複数の受信用アンテナ A1— An の中から受信に最適な受信用アンテナを選択する構成を有する。
[0074] 複数の受信用アンテナ A1— Anの中から最適な受信用アンテナを選択するァルゴ リズムとしては、第 1にカプセル型内視鏡 25との位置関係によって決定することが挙 げられる。例えば、カプセル型内視鏡 25から送信される無線信号は、距離に応じて 減衰するとの過程のもとで、実施の形態 1と同様の位置検出機構を用 Vヽてカプセル 型内視鏡 25の位置を導出し、導出された位置に最も近い受信用アンテナを使用す ることが考免られる。
[0075] し力しながら、カプセル型内視鏡からの無線信号を受信する場合には、アンテナと の位置関係のみによって受信用アンテナを選択することは必ずしも適切ではない。 すなわち、カプセル型内視鏡 25からの無線送信に用いられる送信アンテナ部 34は 、例えばループアンテナ等によって構成されること等に起因して、あらゆる方向に均 等な強度で無線信号を送信するのではなぐある程度の指向性を持って無線信号を 送信する構成を有する。従って、カプセル型内視鏡からの無線信号を受信するのに 最も適した受信用アンテナは、カプセル型内視鏡との位置関係のみによって決定さ れるのではなぐ送信アンテナ部 34から送信される無線信号の指向性をも考慮して 決定されることが好ましい。そして、送信アンテナ部 34は、カプセル型内視鏡 25内に 固定されていることから、送信される無線信号の指向方向を検出するためには、被検 体 1内におけるカプセル型内視鏡 25の指向方向を把握することが重要となる。协 る事情に基づいて、本実施の形態 2では、実施の形態 1と同様にカプセル型内視鏡 25の被検体 1内における位置を検出する機構を備えるのみならず、指向方向データ ベース 44および指向方向検出部 45を新たに備えることによって、カプセル型内視鏡 25の指向方向を検出することとしている。
[0076] 図 10は、本実施の形態 2において、指向方向検出部 45におけるカプセル型内視 鏡 25の指向方向の検出動作を説明するためのフローチャートである。また、図 11は 、カプセル型内視鏡の指向方向と磁場検出装置 6との関係について示す模式図であ る。以下図 10および図 11を適宜参照しつつ指向方向検出部 45の動作を説明する。
[0077] まず、指向方向検出部 45は、カプセル型内視鏡 25の位置と、複数存在する磁場 検出装置 6a— 6hの中から選択された磁場検出装置によって検出され、磁場抽出部 15によって抽出された定磁場の方向とを入力する (ステップ S201)。磁場検出装置 6 の選択アルゴリズムは任意のものとして良いが、本実施の形態 2では、例えば最も受 信磁場強度の大きい磁場検出装置 6を選択するものとする。図 11の例では、指向方 向検出部 45によって、選択された磁場検出装置 6の座標(a、 a、 a )および矢印で
1 2 3
示す方向ベクトルによって表現される磁場方向が把握される。
[0078] そして、指向方向検出部 45は、ステップ S201において選択された磁場検出装置 6 のカプセル型内視鏡 25に対する相対位置を導出する (ステップ S202)。具体的には 、指向方向検出部 45は、位置演算部 19によって導出されたカプセル型内視鏡 25の 位置を入力され、ステップ S 201において選択された磁場検出装置 6についてカプセ ル型内視鏡 25に対する相対座標を導出する。図 11の例では、磁場検出装置 6の座 標(a、 a、 a )と、カプセル型内視鏡 25の座標(x、 y、 z)に基づいて、カプセル型内
1 2 3
視鏡 25の位置を原点とした磁場検出装置 6の相対位置座標 (a -X, a y, a z)が
1 2 3 導出される。
[0079] その後、指向方向検出部 45は、ステップ S 201において入力された磁場方向と、ス テツプ S202において選択された磁場検出装置 6の相対位置とを指向方向データべ ース 44に入力し、カプセル型内視鏡 25の指向方向に関するデータを取得する (ステ ップ S 203)。図 11に示すように、カプセル型内視鏡 25内に備わる永久磁石 12から 出力される定磁場の方向は、カプセル型内視鏡 25の指向方向およびカプセル型内 視鏡 25に対する位置によって一意に定まる性質を有することから、指向方向データ ベース 44には、あらかじめカプセル型内視鏡 25の指向方向、カプセル型内視鏡 25 に対する相対座標および相対座標における定磁場の方向が対応づけられた状態で 記憶されている。このため、指向方向データベース 44に対して磁場検出装置 6の相 対座標および検出された定磁場の方向を入力することによって、カプセル型内視鏡 25の指向方向を抽出することが可能である。図 11の例では、指向方向データベース 44の出力結果に基づいて、カプセル型内視鏡 25の指向方向が(X、 y、 z )であるこ
1 1 1 とが導出される。
[0080] 最後に、指向方向検出部 45は、取得したカプセル型内視鏡 25の指向方向に関す るデータをアンテナ選択部 46および記憶ユニット 49に出力する (ステップ S204)。ァ ンテナ選択部 46は、指向方向に関するデータと、位置演算部 19から出力された位 置に関する情報とに基づ 、て受信に最適な受信用アンテナを選択し、記憶ュ-ット 4 9は、所定時刻におけるカプセル型内視鏡 25の指向方向を、画像データおよびカブ セル型内視鏡 25の位置情報と対応づけて記憶する。
[0081] 次に、本実施の形態 2にかかる被検体内位置検出システムの利点について説明す る。まず、本実施の形態 2にかかる被検体内位置検出システムでは、実施の形態 1と 同様にカプセル型内視鏡 25内に永久磁石 12を備え、検出された磁場カゝら永久磁石 12から出力される定磁場を抽出し、抽出した定磁場に基づ ヽてカプセル型内視鏡 2 5の位置検出を行っている。既に述べたように定磁場は、被検体 1内の臓器等におけ る比誘電率、導電率等の値の違いに関わらず距離に応じてほぼ一様に減衰する特 性を有することから、無線信号を用いて位置検出を行った場合と比較して、カプセル 型内視鏡 25の位置を正確に検出できるという利点を有する。
[0082] また、本実施の形態 2にかかる被検体内位置検出システムは、永久磁石 12から出 力される定磁場に基づいてカプセル型内視鏡 25の指向方向を検出する構成を有す る。位置検出の場合と同様に、永久磁石 12から出力される定磁場は、被検体 1内の 構成物による影響を受けにくいと共に、所定の位置における磁場方向は、カプセル 型内視鏡 25の指向方向およびカプセル型内視鏡 25に対する相対位置に基づいて ほぼ一意に定まるという特性を有する。従って、あら力じめ永久磁石 12によって出力 される定磁場の方位分布を導出して指向方向データベース 44に記憶し、磁場検出 装置 6によって得られた情報に基づ!/、て指向方向データベース 44を参照することに よって、カプセル型内視鏡 25の指向方向を正確に検出することが可能である。
[0083] さらに、本実施の形態 2にかかる被検体内位置検出システムは、位置検出の場合と 同様に定磁場に基づいてカプセル型内視鏡 25の指向方向を検出する構成を有す ることから、簡易な構成でシステムを実現できるという利点を有する。すなわち、本実 施の形態 2にかかる被検体内位置検出システムは、カプセル型内視鏡 25の指向方 向を検出する機能を備えるにあたってカプセル型内視鏡 25内に新たな構成要素を 追加する必要がなぐ小型かつ低コストの位置情報検出システムを構築することが可 能である。
[0084] また、本実施の形態 2にかかる被検体内位置検出システムでは、導出されたカプセ ル型内視鏡 25の位置および指向方向に基づいて、アンテナ選択部 46が受信用ァ ンテナを選択する構成を有する。受信用アンテナにおける無線信号の受信感度は、 カプセル型内視鏡 25からの距離およびカプセル型内視鏡 25内に備わる送信アンテ ナ部 34の指向性に依存する。従って、カプセル型内視鏡 25の位置および指向方向 に基づいて使用する受信用アンテナを的確に選択することが可能となり、カプセル型 内視鏡 25から送信される無線信号を常に高感度で受信可能な位置情報検出システ ムを実現することが可能である。
[0085] さらに、本実施の形態 2にかかる被検体内位置検出システムでは、撮像された被検 体 1内の画像データと、導出されたカプセル型内視鏡 25の位置および指向方向とを 、記憶ユニット 49に出力する構成を有する。従って、カプセル型内視鏡 25によって 取得された画像データと、導出されたカプセル型内視鏡 25の撮像時における位置 および指向方向とを対応づけて記憶することが可能であり、表示装置 4によって画像 データを表示する際に、所定の範囲に位置する画像データのみを表示するよう指定 することが可能である。すなわち、表示装置 4においてあらゆる画像データを表示す るのではなぐ使用者にとって関心のある領域、例えば小腸のみの画像データを表 示させることが可能となり、医師等にとって利便性を有する位置情報検出システムを 実現することが可能である。
[0086] 以上、実施の形態 1、 2に渡って本発明を説明したが、本発明は上記のものに限定 されず、当業者であれば様々な実施例、変形例および応用例に想到することが可能 である。例えば、実施の形態 1にかかる被検体内位置検出システムにおいて、実施の 形態 2と同様にテストカプセル 2の指向方向を導出する構成を備えることとしても良い し、実施の形態 1の変形例におけるテストカプセルの構成を実施の形態 2における力 プセル型内視鏡 25の構成に流用しても良い。
[0087] また、実施の形態 1、 2では、複数の磁場検出装置 6および磁場検出装置 6につい て、それぞれが立方体の頂点を検出するよう被検体 1の外表面上に配置する構成と しているが、力かる配置態様に限定する必要はない。すなわち、磁場検出装置 6等に ついては、あらかじめ被検体 1に対する相対位置が把握されていれば足り、かかる相 対位置を用いれば、立方体状に配置されなくとも位置検出および指向方向の検出は 可能である。また、磁場検出装置 6等の個数についても 8個に限定する必要はなぐ 最も簡易な構成としては単一の磁場検出装置 6等を用いたシステムを構築することが 可能である。すなわち、被検体内導入装置たるテストカプセル 2またはカプセル型内 視鏡 25は、被検体 1内を任意に移動するのではなぐ食道、胃、小腸および大腸等 の所定臓器内のある程度定まった経路に従って移動する構成を有する。従って、あ らかじめ被検体内導入装置の移動経路を前もってある程度把握しておくことは可能 であり、事前に把握した経路情報と、単一の磁場検出装置によって受信された定磁 場の強度とを用いて被検体内導入装置の位置検出を行うこととしても良い。
[0088] さらに、実施の形態 1、 2では、基準装置選択部 42およびセレクタ 17を用いて基準 装置および被選択装置を選択し、これらによって検出された磁場強度に基づいて位 置検出を行うこととしている。しかしながら、力かる構成は本発明に必須ではなぐ例 えば、磁場検出装置 6a— 6hのすべてについて検出強度に基づくテストカプセル 2ま たはカプセル型内視鏡 24との間の距離の導出を行い、(2)式一(5)式と同様の方程 式を 8通り形成し、テストカプセル 2等の位置を導出することとしても良い。かかる構成 とした場合、例えば最小二乗法を用いた演算が可能となることから、テストカプセル 2 等の位置の導出誤差をさらに低減できるという利点を有する。
[0089] 同様に、例えば実施の形態 2において、複数の磁場検出装置 6を用いてカプセル 型内視鏡 25の指向方向を導出することとしても良い。すなわち、上記した手法による 指向方向の導出を複数の磁場検出装置 6について行い、それぞれによって得られた 指向方向の平均を導出する等の手法を用いることで、より正確な指向方向の導出を 行う構成とすることも好ましい。このことは被検体内導入装置の位置検出についても 同様であって、異なる組み合わせの磁場検出装置 6等を用いて複数回の位置検出 を行い、それぞれによって得られた位置を平均化する構成を採用しても良い。
[0090] また、実施の形態 2にお 、て、撮像手段たる CCD30等および照明手段たる LED2 8等を備えた機能実行部 32について説明したが、機能実行部としてはこれらの他に 、被検体 1内における pH、温度に関する情報を取得する構成としても良い。また、被 検体内導入装置が振動子を備える構成として、被検体 1内の超音波画像を取得する 構成としても良い。さらに、これらの被検体内情報の中から複数の情報を取得する構 成としても良い。
[0091] また、給電用アンテナ B1— Bmから出力される無線信号としては、必ずしもコント口 ール情報信号と給電用信号とを重畳したものとする必要はないし、さらには位置検出 装置カゝらカプセル型内視鏡に対して無線送信を行わない構成としても良い。また、給 電用信号と、コントロール情報信号以外の信号とを重畳して送信する構成としても良 い。さらに、位置検出装置 26は、カプセル型内視鏡から出力される無線信号の受信 のみを行う構成としても良いし、カプセル型内視鏡内に記憶部を設け、被検体 1外部 に排出された後に記憶部力 情報を取り出す構成としても良い。
[0092] また、実施の形態 2では、給電用アンテナ B1— Bmの選択に関して特に言及してい ないが、受信用アンテナ A1— Anの場合と同様に、カプセル型内視鏡 25の位置およ び指向方向に基づ ヽて最適なものを選択して無線送信を行う構成としても良 ヽ。す なわち、給電用信号等の供給効率を向上させるために、すべての給電用アンテナか ら一様に無線信号を送信するのではなぐカプセル型内視鏡 25の指向方向等を用 いることで、カプセル型内視鏡 25内に備わる受信アンテナ部 36の指向方向等に対 応したアンテナ選択を行うことも可能である。
産業上の利用可能性
以上のように、本発明に力かる被検体内位置検出システムは、例えば医療分野に て用いられる飲込み型のカプセル型内視鏡に関して有用であり、特に、患者等の被 検体内部における位置検出を行うカプセル型内視鏡等の被検体内導入装置に関し て適している。

Claims

請求の範囲
[1] 被検体内に導入され、該被検体内を移動する被検体内導入装置と、前記被検体 外部に配置され、前記被検体内部における前記被検体内導入装置の位置情報を取 得する位置検出装置とを備えた被検体内位置検出システムであって、
前記被検体内導入装置は、定磁場を前記被検体外部に出力する磁場発生手段を 備え、
前記位置検出装置は、
磁場を検出する磁場検出手段と、
前記磁場検出手段によって検出された磁場の中から雑音磁場成分を除去し、前記 磁場発生手段によって出力された定磁場を抽出する磁場抽出手段と、
前記磁場抽出手段によって抽出された定磁場の強度に基づいて、前記被検体内 における前記被検体内導入装置の位置情報を導出する位置情報導出手段と、 を備えたことを特徴とする被検体内位置検出システム。
[2] 前記位置検出装置は、前記磁場検出手段によって検出される雑音磁場成分の方 向および強度を記憶する雑音磁場成分記憶手段をさらに備え、
前記磁場抽出手段は、前記磁場検出手段によって検出された磁場と、前記雑音磁 場成分記憶手段に記憶された雑音磁場成分との差分値を導出することによって前記 磁場発生手段から出力された定磁場の抽出を行うことを特徴とする請求項 1に記載 の被検体内位置検出システム。
[3] 前記雑音磁場成分記憶手段は、前記雑音磁場成分として少なくとも地磁気成分を 記憶することを特徴とする請求項 2に記載の被検体内位置検出システム。
[4] 前記位置検出装置は、
鉛直方向と、前記磁場検出手段における座標系との対応関係を検出する鉛直方 向検出手段と、
基準水平面内方位と、前記磁場検出手段における座標系との対応関係を検出す る水平面内方位検出手段とをさらに備え、
前記磁場抽出手段は、
前記水平方向検出手段および前記方位検出手段によって検出された対応関係に 基づいて、前記磁場検出手段によって検出された磁場と前記雑音磁場成分記憶手 段に記憶された雑音磁場成分との各方位における差分値を導出することを特徴とす る請求項 2に記載の被検体内位置検出システム。
[5] 前記磁場検出手段は、前記被検体に対して固定された状態で配置され、
前記鉛直方向検出手段は、前記被検体の鉛直方向に対する傾斜を検出する傾斜 センサ手段を備えることを特徴とする請求項 1に記載の被検体内位置検出システム。
[6] 前記磁場発生手段は、定磁場の出力方向が鉛直方向となるよう前記被検体内導 入装置内に配置され、
前記磁場抽出手段は、前記磁場検出手段によって検出された磁場成分から、鉛直 方向の磁場成分を抽出することを特徴とする請求項 1に記載の被検体内位置検出シ ステム。
[7] 前記位置検出装置は、前記磁場検出手段を複数備え、
前記位置情報導出手段は、
前記複数の磁場検出手段の検出結果力 前記磁場抽出手段によって抽出された 定磁場の強度に基づいて前記被検体内導入装置と前記複数の磁場検出手段のそ れぞれとの間の距離を導出する距離導出手段と、
導出された距離に基づいて所定の演算処理を行うことによって前記被検体内導入 装置の位置を導出する位置演算手段と、
を備えたことを特徴とする請求項 1に記載の被検体内位置検出システム。
[8] 前記磁場発生手段は、前記被検体内導入装置に磁場出力方向が固定された状態 で配置され、
前記位置検出装置は、
前記磁場抽出手段によって抽出された定磁場の進行方向に基づ!/、て、前記被検 体内における前記被検体内導入装置の指向方向を検出する指向方向検出手段をさ らに備えたことを特徴とする請求項 1に記載の被検体内位置検出システム。
[9] 前記位置検出装置は、前記磁場発生手段からの距離、前記磁場抽出手段によつ て抽出される磁場成分の方向および前記被検体内導入装置の指向方向の対応関 係をあら力じめ記録した指向方向データベースをさらに備え、 前記指向方向検出手段は、前記指向方向データベースに記憶された対応関係に 基づいて前記被検体内導入装置の指向方向を検出することを特徴とする請求項 8に 記載の被検体内位置検出システム。
[10] 前記被検体内導入装置は、
前記被検体内情報を取得する所定の機能実行手段と、
前記機能実行手段によって取得された前記被検体内情報を無線送信する無線送 信手段とをさらに備え、
前記位置検出装置は、
前記無線送信手段力 送信された無線信号を受信する受信手段をさらに備えたこ とを特徴とする請求項 1に記載の被検体内位置検出システム。
[11] 前記受信手段は複数配置され、
前記位置検出装置は、前記位置情報導出手段によって導出された前記被検体内 導入装置の位置および指向方向に基づいて、無線信号の受信に使用する前記受信 手段を選択する選択手段をさらに備えることを特徴とする請求項 10に記載の被検体 内位置検出システム。
[12] 前記機能実行手段は、
前記被検体内を照射する照明手段と、
前記照明手段によって照射された領域の画像を取得する撮像手段と、 を備えたことを特徴とする請求項 10に記載の被検体内位置検出システム。
[13] 前記位置検出装置は、前記撮像手段によって取得された画像と、該画像の取得時 における前記被検体内導入装置の位置とを対応づけて記憶する記憶手段をさらに 備えることを特徴とする請求項 12に記載の被検体内位置検出システム。
PCT/JP2004/014402 2003-12-26 2004-09-30 被検体内位置検出システム WO2005065522A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04788430.9A EP1698265B1 (en) 2003-12-26 2004-09-30 System for sensing position in subject

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-435556 2003-12-26
JP2003435556A JP4422476B2 (ja) 2003-12-26 2003-12-26 被検体内位置検出システム

Publications (1)

Publication Number Publication Date
WO2005065522A1 true WO2005065522A1 (ja) 2005-07-21

Family

ID=34697809

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/014402 WO2005065522A1 (ja) 2003-12-26 2004-09-30 被検体内位置検出システム

Country Status (4)

Country Link
US (1) US7398117B2 (ja)
EP (1) EP1698265B1 (ja)
JP (1) JP4422476B2 (ja)
WO (1) WO2005065522A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520198B2 (ja) * 2004-04-07 2010-08-04 オリンパス株式会社 被検体内位置表示システム
JP4914574B2 (ja) * 2005-04-18 2012-04-11 オリンパスメディカルシステムズ株式会社 内視鏡形状検出装置
EP3424421A3 (en) * 2005-07-20 2019-03-06 Neil R. Euliano Electronic pill for monitoring medication compliance
US9047746B1 (en) 2005-07-20 2015-06-02 Neil Euliano Electronic medication compliance monitoring system and associated methods
KR20080077182A (ko) * 2005-12-16 2008-08-21 올림푸스 가부시키가이샤 피검체 내 위치 검출 시스템
JP4885881B2 (ja) * 2005-12-27 2012-02-29 オリンパスメディカルシステムズ株式会社 医療装置用収納装置
WO2007077895A1 (ja) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp. 被検体内導入システムおよび被検体内導入装置の誘導方法
US20090131784A1 (en) * 2005-12-29 2009-05-21 Ido Betesh System and method of in-vivo magnetic position determination
WO2007123217A1 (ja) * 2006-04-21 2007-11-01 Olympus Medical Systems Corp. 医療装置誘導システム及びその位置補正方法
CA2649447A1 (en) * 2006-04-25 2007-11-08 Dow Global Technologies Inc. Oral drug compliance monitoring using magnetic-field sensors
DE102006060421B4 (de) * 2006-12-20 2016-12-22 Siemens Healthcare Gmbh Medizinisches System zur bildgestützten Diagnose oder Therapie des Körpers eines Patienten sowie von dem System durchgeführtes Verfahren
WO2008095003A2 (en) * 2007-01-31 2008-08-07 Hadasit Medical Research Services And Development Ltd. Magnetic levitation based devices, systems and techniques for probing and operating in confined space, including performing medical diagnosis and surgical procedures
US8803961B2 (en) * 2008-05-27 2014-08-12 Capso Vision, Inc. Multi-stream image decoding apparatus and method
DE102009013354B4 (de) * 2009-03-16 2011-02-17 Siemens Aktiengesellschaft Spulensystem, medizinische Vorrichtung sowie Verfahren zur berührungslosen magnetischen Navigation eines magnetischen Körpers in einem Arbeitsraum
US8684010B2 (en) 2009-12-08 2014-04-01 Magnetecs Corporation Diagnostic and therapeutic magnetic propulsion capsule and method for using the same
JP4932971B2 (ja) * 2010-03-26 2012-05-16 オリンパスメディカルシステムズ株式会社 カプセル型医療装置用誘導システム
WO2012056323A2 (en) * 2010-10-29 2012-05-03 Check-Cap Ltd. Intra body capsule motion sensing and position determination systems and methods
JP6018620B2 (ja) 2011-03-22 2016-11-02 ギブン イメージング リミテッドGiven Imaging Ltd. 生体内装置と局限化システムとを同期するためのシステムおよび方法
US10521561B1 (en) 2013-12-17 2019-12-31 Etectrx, Inc. Electronic compliance system and associated methods
CN103932654B (zh) * 2014-04-17 2015-11-04 上海交通大学 基于永磁和三轴力传感器的胶囊内镜控制系统及控制方法
JP6121065B2 (ja) * 2015-03-16 2017-04-26 オリンパス株式会社 位置検出システム及び位置検出方法
CN108827133B (zh) * 2018-06-15 2020-05-01 北京理工大学 一种检测移动磁源位姿的方法
CN109324298B (zh) * 2018-09-06 2020-05-15 北京理工大学 一种基于检测阵列运动规划的磁源磁场信号检测方法
CN109620104B (zh) * 2019-01-10 2021-04-02 深圳市资福医疗技术有限公司 胶囊内窥镜及其定位方法及系统
CN110292347B (zh) * 2019-07-24 2022-06-03 河南省人民医院 消化内科辅助检查装置
WO2023244820A1 (en) * 2022-06-17 2023-12-21 G.I. Windows, Inc. Anastomosis device with sensor for extracorporeal sensing and manipulation

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048341A (ja) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd 内視鏡用被検体内挿入装置
JPH0928662A (ja) * 1995-07-17 1997-02-04 Olympus Optical Co Ltd 内視鏡形状検出装置
JPH10230016A (ja) * 1996-12-18 1998-09-02 Masahiro Ogami 医療器具の位置検出方法と、それに用いる医療器具セットと、それらに使用する医療器具、医療器具先端位置検出用部材及び医療器具先端位置検出装置
JP2001046357A (ja) * 1999-08-06 2001-02-20 Asahi Optical Co Ltd ラジオカプセル受信システム
JP2001179700A (ja) * 1999-12-28 2001-07-03 Tohoku Techno Arch Co Ltd 移動可能なマイクロマシンおよびその移動制御システム
US20020171669A1 (en) 2001-05-18 2002-11-21 Gavriel Meron System and method for annotation on a moving image
US20030073935A1 (en) 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Capsulated medical equipment
JP2003117004A (ja) * 2001-10-15 2003-04-22 Uchihashi Estec Co Ltd 生体組織内への医療用挿入具の先端位置及び先端方向検出装置並びにその検出方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5681260A (en) 1989-09-22 1997-10-28 Olympus Optical Co., Ltd. Guiding apparatus for guiding an insertable body within an inspected object
US5902238A (en) * 1993-09-14 1999-05-11 University Of Washington Medical tube and apparatus for locating the same in the body of a patient
US5558091A (en) * 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
IL108352A (en) * 1994-01-17 2000-02-29 Given Imaging Ltd In vivo video camera system
JPH0994257A (ja) 1995-09-29 1997-04-08 Olympus Optical Co Ltd 医療機器収納用トロリー
US20010034475A1 (en) * 1995-11-13 2001-10-25 Flach Terry E. Wireless lan system with cellular architecture
US6263230B1 (en) * 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US7039453B2 (en) * 2000-02-08 2006-05-02 Tarun Mullick Miniature ingestible capsule
IL143260A (en) 2001-05-20 2006-09-05 Given Imaging Ltd Array and method for locating an intra-body signal source
US6939292B2 (en) * 2001-06-20 2005-09-06 Olympus Corporation Capsule type endoscope
CN100354889C (zh) * 2001-09-05 2007-12-12 吉温成象有限公司 用于体腔的三维显示的系统和方法
JP2003090872A (ja) * 2001-09-18 2003-03-28 Fujitsu Ltd 位置測定装置、それを備えた端末及び位置測定方法
JP4796275B2 (ja) * 2001-09-24 2011-10-19 ギブン イメージング リミテッド 生体内の装置を制御するためのシステムおよび方法
US20040143182A1 (en) * 2002-08-08 2004-07-22 Pavel Kucera System and method for monitoring and stimulating gastro-intestinal motility
JP4198045B2 (ja) * 2003-12-25 2008-12-17 オリンパス株式会社 被検体内位置検出システム

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH048341A (ja) * 1990-04-25 1992-01-13 Olympus Optical Co Ltd 内視鏡用被検体内挿入装置
JPH0928662A (ja) * 1995-07-17 1997-02-04 Olympus Optical Co Ltd 内視鏡形状検出装置
JPH10230016A (ja) * 1996-12-18 1998-09-02 Masahiro Ogami 医療器具の位置検出方法と、それに用いる医療器具セットと、それらに使用する医療器具、医療器具先端位置検出用部材及び医療器具先端位置検出装置
JP2001046357A (ja) * 1999-08-06 2001-02-20 Asahi Optical Co Ltd ラジオカプセル受信システム
JP2001179700A (ja) * 1999-12-28 2001-07-03 Tohoku Techno Arch Co Ltd 移動可能なマイクロマシンおよびその移動制御システム
US20020171669A1 (en) 2001-05-18 2002-11-21 Gavriel Meron System and method for annotation on a moving image
JP2003117004A (ja) * 2001-10-15 2003-04-22 Uchihashi Estec Co Ltd 生体組織内への医療用挿入具の先端位置及び先端方向検出装置並びにその検出方法
US20030073935A1 (en) 2001-10-16 2003-04-17 Olympus Optical Co., Ltd. Capsulated medical equipment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1698265A4

Also Published As

Publication number Publication date
EP1698265A1 (en) 2006-09-06
US20050143642A1 (en) 2005-06-30
US7398117B2 (en) 2008-07-08
JP4422476B2 (ja) 2010-02-24
JP2005192631A (ja) 2005-07-21
EP1698265B1 (en) 2015-07-01
EP1698265A4 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4286127B2 (ja) 被検体内位置検出システム
JP4198045B2 (ja) 被検体内位置検出システム
WO2005065522A1 (ja) 被検体内位置検出システム
JP4150663B2 (ja) 被検体内位置検出システム
JP4520198B2 (ja) 被検体内位置表示システム
EP1731093B1 (en) System for detecting position in examinee
WO2005065521A1 (ja) 被検体内移動状態検出システム
JP4373204B2 (ja) 被検体内位置検出システム
JP4488294B2 (ja) 被検体内位置検出システム
JP4547181B2 (ja) 被検体内位置検出システム
JP4523322B2 (ja) 位置検出装置、被検体内位置検出システム
JP4578881B2 (ja) 被検体内方位検出システム
JP2005278817A (ja) 被検体内位置検出システム

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004788430

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2004788430

Country of ref document: EP