"Dispositif d'injection en carburant sous pression comportant des moyens antivibratoires" La présente invention concerne un dispositif d'injection en carburant sous pression. La présente invention concerne plus particulièrement un dispositif d'injection en carburant sous pression notamment pour un moteur à combustion interne de véhicule automobile, du type comportant des tuyaux d'injection pour le raccordement des injecteurs à une rampe commune et/ou une pompe d'injection. On connaît de nombreux exemples de dispositif conventionnel de ce type dans l'état de la technique, notamment des dispositifs d'injection en carburant Diesel haute pression à rampe commune (« common rail » en terminologie anglo- saxonne). Lorsqu'un moteur à combustion interne « tourne », c'est-à- dire est en fonctionnement, il émet des vibrations qui ont des effets indésirables, tant du point de vue mécanique qu'acoustique. On a plus particulièrement constaté que certaines de ces vibrations, localisées au voisinage du dispositif d'injection et du capot protégeant la rampe commune, provoquent des dysfonctionnements du dispositif d'injection et affectent par exemple la fiabilité des injecteurs en carburant. De plus, ces vibrations ont un impact non négligeable sur la prestation acoustique du moteur car elles engendrent des brutts, tels que des bourdonnements, qui sont souvent perçus négativement sur le plan qualitatif par les occupants du véhicule. Pour de tels dispositifs d'injection, il est notamment connu pour maintenir les tuyaux d'utiliser un pont rigide constitué par le capot de protection du dispositif d'injection ou un élément solidaire dudit capot. Ainsi, le pont rigide s'étend globalement transversalement et de manière rectiligne pour relier entre eux au moins deux tronçons de tuyau d'injection ou un tronçon du tuyau à un autre composant du dispositif d'injection.
Cependant, l'utilisation d'un pont rigide ne donne pas entière satisfaction et ne permet notamment pas d'atténuer ou de supprimer les vibrations de manière à obtenir une prestation acoustique acceptable. Afin de résoudre ces problèmes, l'invention propose un dispositif du type de celui décrit précédemment, caractérisé en ce qu'au moins un des tuyaux d'injection comporte des moyens antivibratoires de manière à modifier la fréquence propre de résonance dudit tuyau et/ou d'en diminuer l'amplitude. Avantageusement, on détermine à l'aide de moyens de mesure appropriés le bruit provoqué par chacun des tuyaux d'injection ainsi que leur fréquence propre de résonance afin de déterminer le positionnement et les caractéristiques des moyens antivibratoires. Grâce à l'invention, les effets mécaniques et acoustiques provoqués par les vibrations sont atténués et la fiabilité du dispositif d'injection améliorée. Avantageusement, les moyens antivibratoires selon l'invention sont, notamment par rapport à un pont rigide selon l'état de la technique, économique, léger et plus compact. En effet, ces moyens sont plus faciles a monter permettant par conséquent de réduire le temps de montage et cela tout en permettant une grande liberté de conception pour la géométrie des parcours des tuyaux. Selon d'autres caractéristiques de l'invention : - les moyens antivibratoîres forment un lest porté par le tuyau ; - les moyens antivibratoires sont constitués par un manchon qui est traversé par un tronçon dudit tuyau ; - le manchon est fendu axialement de manière à permettre son montage sur le tuyau selon une direction radiale et en ce que le manchon est déformable élastiquement en vue de son montage ;
- le manchon est monté serré radialement sur ledit tronçon du tuyau d'injection ; - la position longitudinale du manchon sur le tuyau est réglable ; - le manchon est monté sur un tronçon globalement rectiligne du tuyau ; - les moyens antivibratoires sont réalisés en matière élastomère ou analogue, telle que du caoutchouc naturel ou synthétique. L'invention propose aussi un ou des tuyaux d'injection, notamment pour dispositif d'injection en carburant sous pression de moteur à combustion interne d'un véhicule automobile, caractérisé en ce qu'ils comportent des moyens antivibratoires selon l'une quelconque des caractéristiques précédentes. D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée qui suit pour la compréhension de laquelle on se reportera aux dessins annexés dans lesquels : - la figure 1 est une vue schématique de trois-quarts en perspective qui illustre un premier mode de réalisation de l'invention dans lequel le dispositif d'injection du moteur à combustion interne comporte un premier manchon monté sur un des tuyaux d'injection, et qui représente en éclaté un second manchon avant son montage et un capot de protection du dispositif. - la figure 2 est une vue de dessus d'un dispositif d'injection selon la figure 1 dans laquelle deux manchons sont montés respectivement sur les troisième et quatrième tuyaux du dispositif d'injection. Dans la description qui va suivre, les éléments identiques, similaires ou analogues seront désignés par les mêmes chiffres de référence. Dans la description et dans les revendications, on utilisera les expressions telles que « supérieur » et « inférieur »,
« axial » et « radial », ainsi que les directions en référence aux figures et selon le trièdre (L, V, T) de la figure 1 pour en faciliter la compréhension et ceci à titre non limitatif. La figure 1 représente partiellement !a partie supérieure d'un moteur 10 à combustion interne, plus précisément un dispositif d'injection 12 d'un tel moteur et un capot de protection 14 destiné à recouvrir ledit dispositif d'injection 12. Le moteur 10 comporte ici quatre cylindres alignés transversalement qui sont alimentés en carburant sous pression par l'intermédiaire des injecteurs 16. Le dispositif d'injection 12 a pour fonction d'alimenter en carburant sous pre_ssion, par exemple en gasoil, les injecteurs 16 du moteur 10. À cet effet, le dispositif d'injection 12 comporte des tuyaux d'injection 18 pour raccorder de manière étanche une rampe commune 20 aux têtes des injecteurs 16. Les tuyaux d'injection 18 sont pourvus à chacune de leurs extrémités de moyens de raccordement 22, bien connus de l'état de technique, qui comportent par exemple une tête de liaison solidaire du tuyau 18 et un organe de serrage 24, tel qu'un écrou. La tête de liaison, encore appelée "olive", comporte une partie inférieure dans laquelle débouche un canal d'écoulement du carburant sous pression et qui est destinée à coopérer de manière étanche avec un siège de forme complémentaire. Le siège, généralement de forme tronconique, appartient à un embout de raccordement 26 qui est solidaire soit de la rampe 20, soit de la tête d'un injecteur 16. L'écrou 24 est monté de manière imperdable et traversé à jeu radial par le tuyau 18 et la tête de liaison et comporte une partie inférieure taraudée destinée à coopérer avec un filetage complémentaire du l'embout de raccordement. Sur la figure 1 , le tuyau d'injection 18 est représenté en position serrée, c'est-à-dire en position de fonctionnement après raccordement de chacune de ses extrémités.
La rampe commune 20 est elle-même alimentée en carburant sous pression par un tuyau d'alimentation 28 dont l'autre extrémité est raccordée à une pompe d'injection (non représentée). En variante, le dispositif 12 ne comporte pas de rampe commune 20 et les tuyaux d'injection 18 relient alors directement la pompe d'injection aux injecteurs 16. Les tuyaux d'injection 18 s'étendent globalement dans la direction longitudinale et comportent successivement des tronçons rectilignes et des tronçons coudés en fonction de leur parcours. En effet, chaque tuyau d'injection 18 relie, selon un parcours déterminé, un des embouts 26 de la rampe commune 20 à une tête d'un injecteur 16 de sorte que chaque tuyau 18 présente des caractéristiques de forme, de poids et de longueur qui lui sont propres. Lorsque le moteur 10 tourne, chaque tuyau 18 du dispositif d'injection 12 vibre à une fréquence de résonance donnée pouvant provoquer des dysfonctionnements du dispositif d'injection 12 et une dégradation de la prestation acoustique. Grâce à des mesures et des analyses, on détermine la fréquence de résonance de chacun des tuyaux 18 et, conformément à l'invention, on modifie au besoin ces fréquences propre de résonance grâce à des moyens antivibratoires. Plus précisément, les moyens antivibratoires forment un lest et un dispositif amortissant qui est porté par le tuyau 18. Selon un premier mode de réalisation illustré aux figures 1 et 2, ces moyens antivibratoires sont constitués par au moins un manchon 30 formant un élément antivibratile, c'est-à-dire un élément permettant de réduire plus ou moins fortement l'amplitude des vibrations matérielles suivant leur fréquence, quand il est placé sur le chemin de ces vibrations.
Lorsqu'il est monté, le manchon 30, ici globalement de forme cylindrique, est traversé par un tronçon 32 du tuyau 18, de préférence par un tronçon rectïligne. Le manchon 30 est d'une part fendu axialement et d'autre part déformable élastiquement de manière à permettre son montage sur le tronçon rectïligne 32 du tuyau 18 selon une direction radiale. Pour procéder au montage du manchon 30 sur le tuyau 18, on écarte radialement vers l'extérieur tes bords délimitant la fente de manière à ouvrir le manchon 30 et on gaine ainsi le tronçon rectiligne 32 du tuyau 18. Avantageusement, le manchon 30 est réalisé en matière élastomère ou analogue, tels que du caoutchouc naturel ou synthétique, présentant de bonnes propriétés d'élasticité. De plus, le diamètre intérieur du manchon cylindrique 30 est de préférence sensiblement égal au diamètre externe du corps tubulaire du tuyau d'injection 18. Le manchon 30 est donc monté serré radialement sur le tronçon rectiligne 32 du tuyau 18. Les manchons 30 sont ici des composants standardisés, analogues pour chacun des tuyaux 18. Dans ce premier mode de réalisation, les manchons 30 sont avantageusement prémontés sur les tuyaux 18, c'est-à-dire montés préalablement au montage des tuyaux 18 sur le dispositif d'injection 12 qui s'effectue par serrage des moyens de raccordement 22 de chaque extrémité du tuyau 18 sur les embouts 26 respectivement de la rampe 20 et de l'injecteur 16. Les manchons 30 sont alors avantageusement positionnés longitudinalement globalement au milieu du tuyau d'injection 18 de manière à ne pas interférer avec la douille de serrage d'une visseuse qui intervient lors du montage des tuyaux 18 sur le dispositif 12 pour réaliser l'opération de serrage des écrous 24 des moyens de raccordement 22.
En variante, le manchon 30 est rapporté sur le tuyau 18 postérieurement à l'opération de serrage des écrous 24 par la visseuse. Il est alors possible de disposer le manchon 30 à l'une ou l'autre des extrémités du tuyau 18 sur le tronçon rectiligne s'éteπdant au dessus des moyens de raccordement 22, de préférence au voisinage des injecteurs 16 qui transmettent aux tuyaux 18 les vibrations du moteur 10. Enfin, lorsque l'opérateur doit procéder au montage d'au moins deux manchons 30 postérieurement à celui des tuyaux 18, il est possible que ces manchons 30 soient reliés entre eux par un lien souple pour former un sous-ensemble de manière à supprimer une des deux étapes d'approvisionnement effectuées auparavant par l'opérateur.
"Pressure fuel injection device comprising anti-vibration means" The present invention relates to a pressure fuel injection device. The present invention relates more particularly to a device for injecting pressurized fuel, in particular for an internal combustion engine of a motor vehicle, of the type comprising injection pipes for connecting the injectors to a common rail and / or a pump. injection. Numerous examples of conventional device of this type are known in the state of the art, in particular high pressure diesel fuel injection devices with common rail (“common rail” in English terminology). When an internal combustion engine "rotates", that is to say in operation, it emits vibrations which have undesirable effects, both mechanically and acoustically. It has more particularly been observed that some of these vibrations, located in the vicinity of the injection device and of the cover protecting the common rail, cause malfunctions of the injection device and affect for example the reliability of the fuel injectors. In addition, these vibrations have a significant impact on the acoustic performance of the engine because they generate harsh sounds, such as buzzing, which are often perceived negatively on the qualitative level by the occupants of the vehicle. For such injection devices, it is known in particular to hold the pipes using a rigid bridge constituted by the protective cover of the injection device or an element integral with said cover. Thus, the rigid bridge extends generally transversely and in a rectilinear manner to connect together at least two sections of injection pipe or a section of the pipe to another component of the injection device. However, the use of a rigid bridge is not entirely satisfactory and in particular does not make it possible to attenuate or eliminate the vibrations so as to obtain an acceptable acoustic performance. In order to solve these problems, the invention provides a device of the type described above, characterized in that at least one of the injection pipes includes anti-vibration means so as to modify the natural frequency of resonance of said pipe and / or to reduce the amplitude. Advantageously, the noise caused by each of the injection pipes as well as their natural frequency of resonance is determined using appropriate measuring means in order to determine the positioning and the characteristics of the anti-vibration means. Thanks to the invention, the mechanical and acoustic effects caused by vibrations are reduced and the reliability of the injection device improved. Advantageously, the antivibration means according to the invention are, in particular with respect to a rigid bridge according to the state of the art, economical, light and more compact. In fact, these means are easier to assemble therefore making it possible to reduce the assembly time and this while allowing great freedom of design for the geometry of the paths of the pipes. According to other characteristics of the invention: - the anti-vibration means form a ballast carried by the pipe; - The anti-vibration means consist of a sleeve which is crossed by a section of said pipe; - The sleeve is split axially so as to allow its mounting on the pipe in a radial direction and in that the sleeve is elastically deformable for its mounting; - The sleeve is mounted tightened radially on said section of the injection pipe; - the longitudinal position of the sleeve on the pipe is adjustable; - The sleeve is mounted on a generally straight section of the pipe; - The antivibration means are made of elastomeric or similar material, such as natural or synthetic rubber. The invention also provides one or more injection pipes, in particular for a fuel injection device under pressure of an internal combustion engine of a motor vehicle, characterized in that they include anti-vibration means according to any one of previous features. Other characteristics and advantages of the invention will appear on reading the detailed description which follows, for the understanding of which reference will be made to the appended drawings in which: - Figure 1 is a schematic perspective three-quarter view which illustrates a first embodiment of the invention in which the injection device of the internal combustion engine comprises a first sleeve mounted on one of the injection pipes, and which shows an exploded view of a second sleeve before its mounting and a protective cover of the device. - Figure 2 is a top view of an injection device according to Figure 1 in which two sleeves are mounted respectively on the third and fourth pipes of the injection device. In the description which follows, identical, similar or analogous elements will be designated by the same reference numbers. In the description and in the claims, the expressions such as “upper” and “lower” will be used, "Axial" and "radial", as well as the directions with reference to the figures and according to the trihedron (L, V, T) of Figure 1 to facilitate understanding and this without limitation. FIG. 1 partially represents the upper part of an internal combustion engine 10, more precisely an injection device 12 of such an engine and a protective cover 14 intended to cover said injection device 12. The engine 10 here comprises four transversely aligned cylinders which are supplied with pressurized fuel via the injectors 16. The function of the injection device 12 is to supply the injectors 16 of the engine 10 with fuel under pre_ssion, for example diesel. To this end, the injection device 12 comprises injection pipes 18 for sealingly connecting a common rail 20 to the heads of the injectors 16. The injection pipes 18 are provided at each of their ends with connection means 22 , well known from the prior art, which comprise for example a connecting head integral with the pipe 18 and a clamping member 24, such as a nut. The connection head, also called "olive", has a lower part into which opens a flow channel for pressurized fuel and which is intended to cooperate in leaktight manner with a seat of complementary shape. The seat, generally of frustoconical shape, belongs to a connection endpiece 26 which is integral either with the ramp 20, or with the head of an injector 16. The nut 24 is mounted in a captive manner and traversed in radial clearance by the pipe 18 and the connection head and has a tapped lower part intended to cooperate with a complementary thread of the connection end piece. In Figure 1, the injection pipe 18 is shown in the clamped position, that is to say in the operating position after connection of each of its ends. The common rail 20 is itself supplied with pressurized fuel by a supply pipe 28, the other end of which is connected to an injection pump (not shown). As a variant, the device 12 does not have a common rail 20 and the injection pipes 18 then directly connect the injection pump to the injectors 16. The injection pipes 18 extend generally in the longitudinal direction and successively include straight sections and bent sections according to their course. In fact, each injection pipe 18 connects, along a determined route, one of the end pieces 26 of the common rail 20 to a head of an injector 16 so that each pipe 18 has characteristics of shape, weight and length their own. When the engine 10 is running, each pipe 18 of the injection device 12 vibrates at a given resonant frequency which can cause malfunctions of the injection device 12 and a deterioration in the acoustic performance. By means of measurements and analyzes, the resonant frequency of each of the pipes 18 is determined and, in accordance with the invention, these natural resonant frequencies are modified, if necessary, by anti-vibration means. More precisely, the anti-vibration means form a ballast and a damping device which is carried by the pipe 18. According to a first embodiment illustrated in FIGS. 1 and 2, these anti-vibration means consist of at least one sleeve 30 forming an anti-vibration element, that is to say an element making it possible to more or less strongly reduce the amplitude of the material vibrations according to their frequency, when it is placed on the path of these vibrations. When mounted, the sleeve 30, here generally of cylindrical shape, is crossed by a section 32 of the pipe 18, preferably by a straight section. The sleeve 30 is on the one hand axially split and on the other hand elastically deformable so as to allow its mounting on the straight section 32 of the pipe 18 in a radial direction. To proceed with the mounting of the sleeve 30 on the pipe 18, your edges are drawn radially outward delimiting the slot so as to open the sleeve 30 and thus the straight section 32 of the pipe is sheathed. Advantageously, the sleeve 30 is produced made of elastomeric material or the like, such as natural or synthetic rubber, having good elasticity properties. In addition, the internal diameter of the cylindrical sleeve 30 is preferably substantially equal to the external diameter of the tubular body of the injection pipe 18. The sleeve 30 is therefore mounted tightened radially on the straight section 32 of the pipe 18. The sleeves 30 are here standardized components, similar for each of the pipes 18. In this first embodiment, the sleeves 30 are advantageously pre-assembled on the pipes 18, that is to say mounted prior to mounting the pipes 18 on the injection device 12 which is effected by tightening the connection means 22 of each end of the pipe 18 on the end pieces 26 respectively of the ramp 20 and of the injector 16. The sleeves 30 are then advantageously positioned longitudinally generally in the middle of the injection pipe 18 so as not to interfere with the clamping sleeve of a screwdriver which intervenes during the mounting of the pipes 18 on the device 12 to carry out the operation for tightening the nuts 24 of the connection means 22. As a variant, the sleeve 30 is attached to the pipe 18 after the operation of tightening the nuts 24 by the screwdriver. It is then possible to arrange the sleeve 30 at one or the other of the ends of the pipe 18 on the rectilinear section extending above the connection means 22, preferably in the vicinity of the injectors 16 which transmit to the pipes 18 the vibrations of the motor 10. Finally, when the operator has to mount at least two sleeves 30 after that of the pipes 18, it is possible that these sleeves 30 are connected together by a flexible link to form a sub-assembly so as to remove one of the two supply steps previously carried out by the operator.