Nothing Special   »   [go: up one dir, main page]

WO2005041515A1 - Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses - Google Patents

Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses Download PDF

Info

Publication number
WO2005041515A1
WO2005041515A1 PCT/US2004/035042 US2004035042W WO2005041515A1 WO 2005041515 A1 WO2005041515 A1 WO 2005041515A1 US 2004035042 W US2004035042 W US 2004035042W WO 2005041515 A1 WO2005041515 A1 WO 2005041515A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
slots
symbol
slot
interlaces
Prior art date
Application number
PCT/US2004/035042
Other languages
English (en)
Inventor
Rajiv Vijayan
Kent G. Walker
Raghuraman Krishnamoorthi
Ramaswamy Murali
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/932,586 external-priority patent/US7221680B2/en
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2006536827A priority Critical patent/JP2007509586A/ja
Priority to AU2004307449A priority patent/AU2004307449C1/en
Priority to BRPI0415840-7A priority patent/BRPI0415840A/pt
Priority to CA2543771A priority patent/CA2543771C/fr
Priority to CN200480038711.2A priority patent/CN101019397B/zh
Priority to EP04817335A priority patent/EP1678906A1/fr
Publication of WO2005041515A1 publication Critical patent/WO2005041515A1/fr
Priority to IL175101A priority patent/IL175101A0/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0037Inter-user or inter-terminal allocation
    • H04L5/0039Frequency-contiguous, i.e. with no allocation of frequencies for one user or terminal between the frequencies allocated to another
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • the present invention relates generally to communication, and more specifically to techniques for multiplexing multiple data steams in a wireless multi- carrier communication system.
  • a multi-carrier communication system utilizes multiple carriers for data transmission. These multiple carriers may be provided by orthogonal frequency division multiplexing (OFDM), some other multi-carrier modulation techniques, or some other construct. OFDM effectively partitions the overall system bandwidth into multiple (N) orthogonal frequency subbands. These subbands are also referred to as tones, carriers, subcarriers, bins, and frequency channels. With OFDM, each subband is associated with a respective subcarrier that may be modulated with data.
  • OFDM orthogonal frequency division multiplexing
  • N orthogonal frequency division multiplexing
  • each subband is associated with a respective subcarrier that may be modulated with data.
  • a base station in a multi-carrier communication system may simultaneously transmit multiple data streams.
  • Each data stream may be processed (e.g., coded and modulated) separately at the base station and may thus be recovered (e.g., demodulated and decoded) independently by a wireless device.
  • the multiple data streams may have fixed or variables data rates and may use the same or different coding and modulation schemes.
  • Multiplexing multiple data streams for simultaneous transmission may be challenging if these streams are variable in nature (e.g., have data rates and/or coding and modulation schemes that change over time).
  • the multiple data streams are allocated different time slots or symbol periods using time division multiplexing (TDM). For this TDM scheme, only one data stream is sent at any given moment, and this data stream uses all subbands available for data transmission. This TDM scheme has certain undesirable characteristics.
  • the amount of data that may be sent in the smallest time unit allocable to a given data stream is dependent on the coding and modulation scheme used for the data stream. Different coding and modulation schemes may then be associated with different granularities, which may complicate the allocation of resources to the data streams and may result in inefficient resource utilization.
  • FDM frequency division multiplexing
  • M disjoint or non-overlapping "interlaces" are formed with U subbands usable for transmission, where M > 1 and U > 1.
  • the interlaces are non-overlapping in that each usable subband is included in only one interlace.
  • This interlaced subband structure can provide frequency diversity and simplify processing at a receiver.
  • the receiver may perform a "partial" S' -point fast Fourier transform (FFT) for each interlace of interest, instead of a full N-point FFT.
  • FFT fast Fourier transform
  • the M interlaces may be used to transmit the multiple data streams in an FDM manner.
  • each interlace is used by only one data stream in each symbol period, and up to M data streams may be sent on the M interlaces in each symbol period.
  • the multiple data streams are allocated "slots", where each slot is a unit of transmission that may be equal to one interlace in one symbol period.
  • M slots are then available in each symbol period and may be assigned slot indices 1 through M.
  • Each slot index may be mapped to one interlace in each symbol period based on a slot-to-interlace mapping scheme.
  • One or more slot indices may be used for an FDM pilot, and the remaining slot indices may be used for data transmission.
  • the slot-to-interlace mapping may be such that the interlaces used for pilot transmission have varying distances to the interlaces used for each slot index in different OFDM symbol periods. This allows all slot indices used for data transmission to achieve similar channel estimation performance.
  • Each data stream may be processed as data packets of a fixed size. In this case, different numbers of slots may be used for each data packet depending on the coding and modulation scheme used for the data packet.
  • each data stream may be processed as data packets of variable sizes. For example, the packet sizes may be selected such that an integer number of data packets is sent in each slot. In any case, if multiple data packets are sent in a given slot, then the data symbols for each data packet may be distributed across all subbands used for the slot, so that frequency diversity is achieved for each data packet sent in the slot.
  • FIG. 1 shows a block diagram of a base station and a wireless device
  • FIG. 2 shows an exemplary super-frame structure
  • FIG. 3 shows an interlaced subband structure
  • FIGS. 4A and 4B show "staggered” and “cycled” FDM pilots, respectively;
  • FIG. 5 shows an exemplary mapping of slot indices to interlaces
  • FIG. 6 illustrates coding of a data block with an outer code
  • FIGS. 7A and 7B show transmission of packets for different modes
  • FIGS. 8A and 8B show partitioning of different numbers of packets into slots
  • FIG. 9A shows a block diagram of a transmit (TX) data processor
  • FIG. 9B shows a block diagram of a modulator
  • FIG. 10A shows a block diagram of a demodulator
  • FIG. 10B shows a block diagram of a receive (RX) data processor.
  • the multiplexing techniques described herein may be used for various wireless multi-carrier communication systems. These techniques may also be used for the downlink as well as the uplink.
  • the downlink (or forward link) refers to the communication link from the base stations to the wireless devices
  • the uplink (or reverse link) refers to the communication link from the wireless devices to the base stations. For clarity, these techniques are described below for the downlink in an OFDM-based system.
  • FIG. 1 shows a block diagram of a base station 110 and a wireless device 150 in a wireless system 100 that utilizes OFDM.
  • Base station 110 is generally a fixed station and may also be referred to as a base transceiver system (BTS), an access point, a transmitter, or some other terminology.
  • Wireless device 150 may be fixed or mobile and may also be referred to as a user terminal, a mobile station, a receiver, or some other terminology.
  • Wireless device 150 may also be a portable unit such as a cellular phone, a handheld device, a wireless module, a personal digital assistant (PDA), and so on.
  • PDA personal digital assistant
  • a TX data processor 120 receives multiple (T) data streams (or “traffic” data) and processes (e.g., encodes, interleaves, and symbol maps) each data stream to generate data symbols.
  • T data symbols
  • a "data symbol” is a modulation symbol for traffic data
  • a "pilot symbol” is a modulation symbol for pilot (which is data that is known a priori by both the base station and wireless devices)
  • a modulation symbol is a complex value for a point in a signal constellation for a modulation scheme (e.g., M-PSK, M-QAM, and so on).
  • TX data processor 120 also multiplexes the data symbols for the T data streams and pilot symbols onto the proper subbands and provides a composite symbol stream.
  • a modulator 130 performs OFDM modulation on the multiplexed symbols in the composite symbol stream to generate OFDM symbols.
  • a transmitter unit (TMTR) 132 converts the OFDM symbols into analog signals and further conditions (e.g., amplifies, filters, and frequency upconverts) the analog signals to generate a modulated signal.
  • Base station 110 then transmits the modulated signal from an antenna 134 to wireless devices in the system. [0028] At wireless device 150, the transmitted signal from base station 110 is received by an antenna 152 and provided to a receiver unit (RCVR) 154.
  • RCVR receiver unit
  • Receiver unit 154 conditions (e.g., filters, amplifies, and frequency downconverts) the received signal and digitizes the conditioned signal to generate a stream of input samples.
  • a demodulator 160 performs OFDM demodulation on the input samples to obtain received symbols for one or more data streams of interest, and further performs detection (e.g., equalization or matched filtering) on the received symbols to obtain detected data symbols, which are estimates of the data symbols sent by base station 110.
  • An RX data processor 170 then processes (e.g., symbol demaps, deinterleaves, and decodes) the detected data symbols for each selected data stream and provides decoded data for that stream.
  • the processing by demodulator 160 and RX data processor 170 is complementary to the processing by modulator 130 and TX data processor 120, respectively, at base station 110.
  • Controllers 140 and 180 direct operation at base station 110 and wireless device 150, respectively.
  • Memory units 142 and 182 provide storage for program codes and data used by controllers 140 and 180, respectively.
  • Controller 140 or a scheduler 144 may allocate system resources for the T data streams.
  • Base station 110 may transmit the T data streams for various services such as broadcast, multicast, and/or unicast services.
  • a broadcast transmission is sent to all wireless devices within a designated coverage area, a multicast transmission is sent to a group of wireless devices, and a unicast transmission is sent to a specific wireless device.
  • base station 110 may broadcast a number of data streams for multimedia (e.g., television) programs and for multimedia content such as video, audio, teletext, data, video/audio clips, and so on.
  • a single multimedia program may be broadcast as three separate data streams for video, audio, and data. This allows for independent reception of the video, audio, and data portions of the multimedia program by a wireless device.
  • FIG. 2 shows an exemplary super-frame structure 200 that may be used for system 100.
  • the T data streams may be transmitted in super-frames, with each super- frame having a predetermined time duration.
  • a super-frame may also be referred to as a frame, a time slot, or some other terminology.
  • each super-frame includes a field 212 for one or more TDM pilots, a field 214 for overhead/control data, and a field 216 for traffic data.
  • the TDM pilot(s) may be used by a wireless device for synchronization (e.g., frame detection, frequency error estimation, timing acquisition, and so on).
  • the overhead/control data may indicate various parameters for the T data streams (e.g., the coding and modulation scheme used for each data stream, the specific location of each data stream within the super-frame, and so on).
  • the T data streams are sent in field 216.
  • each super-frame may be divided into multiple (e.g., four) equal-sized frames to facilitate data transmission.
  • Other frame structures may also be used for system 100.
  • FIG. 3 shows an interlaced subband structure 300 that may be used for system 100.
  • System 100 utilizes an OFDM structure having N total subbands. U subbands may be used for data and pilot transmission and are called "usable" subbands, where U ⁇ N .
  • the U usable subbands may be arranged into M interlaces or disjoint subband sets.
  • the M interlaces are disjoint or non-overlapping in that each of the U usable subbands belongs to only one interlace.
  • group 1 may contain subbands 1, M + 1 , 2M -+ ⁇ 1 , and so on
  • group 2 may contain subbands 2, M + 2 , 2M 4- 2 , and so on
  • group M may contain subbands M, 2M, 3M, and so on.
  • S of the S' subbands are usable subbands and the remaining S'-S subbands are guard subbands.
  • Each interlace may then contain the S usable subbands in the group associated with the interlace.
  • the S usable subbands in each interlace are thus interlaced with the S usable subbands in each of the other M -l interlaces.
  • the system may utilize any OFDM structure with any number of total, usable, and guard subbands. Any number of interlaces may also be formed. Each interlace may contain any number of usable subbands and any one of the U usable subbands. The interlaces may also contain the same or different numbers of usable subbands. For simplicity, the following description is for the interlaced subband structure shown in FIG. 3 with M interlaces and each interlace containing S uniformly distributed usable subbands. This interlaced subband structure provides several advantages. First, frequency diversity is achieved since each interlace contains usable subbands taken from across the entire system bandwidth. Second, a wireless device may recover data/pilot symbols sent on a given interlace by performing a partial S' - point FFT instead of a full N-point FFT, which can simplify the processing by the wireless device.
  • Base station 110 may transmit an FDM pilot on one or more interlaces to allow the wireless devices to perform various functions such as, for example, channel estimation, frequency tracking, time tracking, and so on.
  • Base station 110 may transmit the FDM pilot and traffic data in various manners.
  • FIG. 4A shows a data and pilot transmission scheme 400 with a "staggered" FDM pilot.
  • the FDM pilot is sent on two designated interlaces in an alternating manner such that pilot symbols are sent on one interlace (e.g., interlace 3) in odd-numbered symbol periods and on another interlace (e.g., interlace 7) in even-numbered symbol periods.
  • FIG. 4B shows a data and pilot transmission scheme 410 with a "cycled" FDM pilot.
  • the FDM pilot is sent on all eight interlaces in a cycled manner such that pilot symbols are sent on a different interlace in each M-symbol period duration.
  • the FDM pilot may be sent on interlace 1 in symbol period 1, then interlace 5 in symbol period 2, then interlace 2 in symbol period 3, and so on, then interlace 8 in symbol period 8, then back to interlace 1 in symbol period 9, and so on. This cycling allows the wireless devices to observe the channel response for all usable subbands.
  • an FDM pilot may be sent on any number of interlaces and on any one of the M interlaces in each symbol period.
  • the FDM pilot may also be sent using any pattern, two of which are shown in FIGS. 4A and 4B.
  • Base station 110 may transmit the T data streams on the M interlaces in various manners.
  • each data stream is sent on the same one or more interlaces in each symbol period in which the data stream is sent.
  • the interlaces are statically assigned to each data stream.
  • each data stream may be sent on different interlaces in different symbol periods in which the data stream is sent.
  • the interlaces are dynamically assigned to each data stream, which may improve frequency diversity and also ensure that the quality of the channel estimate is independent of the slot index or indices assigned to the data stream.
  • the second embodiment may be viewed as a form of frequency hopping and is described in further detail below.
  • transmission scheme 410 may be used for the first embodiment with statically assigned interlaces, and either transmission scheme 400 or 410 may be used for the second embodiment with dynamically assigned interlaces. If the FDM pilot is sent on the same one interlace (which is called the pilot interlace) in each symbol period and is used to obtain channel estimates for all M interlaces, then the channel estimate for an interlace that is closer to the pilot interlace is typically better than the channel estimate for an interlace that is further away from the pilot interlace. Detection performance for a data stream may be degraded if the stream is consistently allocated interlaces that are far away from the pilot interlace. The allocation of interlaces with varying distances (or spacing or offset) to the pilot interlace can avoid this performance degradation due to channel estimation bias.
  • M slots may be defined for each symbol period, and each slot may be mapped to one interlace in one symbol period.
  • a slot usable for traffic data is also called a data slot, and a slot usable for the FDM pilot is also called a pilot slot.
  • the M slots in each symbol period may be given indices 1 through M. Slot index 1 may be used for the FDM pilot, and slot indices 2 through M may be used for data transmission.
  • the T data streams may be allocated slots with indices 2 through M in each symbol period. The use of slots with fixed indices can simplify the allocation of slots to data streams.
  • the M slot indices may be mapped to the M interlaces in each symbol period based on any mapping scheme that can achieve the desired frequency diversity and channel estimation performance.
  • the slot indices are mapped to interlaces in a peimutated manner.
  • the mapping may be performed as follows.
  • the eight interlaces maybe denoted " by an original sequence ⁇ , I 2 , 1 3 , Lj, I 5 , 1 6 , I , 1 8 ⁇ .
  • a peimutated sequence may be formed as ⁇ L . , I 5 , I 3 , I , I , I 6 , L t , I 8 ⁇ .
  • the z ' -th interlace in the original sequence is placed in the t &r -th position in the peimutated sequence, where i e ⁇ 1...8 ⁇ , i br e ⁇ 1...8 ⁇ , and (i br - 1) is a bit-reverse index of (z - 1) .
  • the shortened interlace sequence is circularly shifted to the right by two positions and wraps around to the left.
  • the &-th data slot index is again mapped to the (k - 1) -th interlace in the circularly shifted shortened interlace sequence.
  • FIG. 5 shows the mapping of slot indices to interlaces for the first mapping scheme described above.
  • Slot index 1 which is used for the FDM pilot, is mapped to interlaces 3 and 7 on alternating symbol periods for transmission scheme 400.
  • Data slot indices 2 through 8 are mapped to the seven interlaces in the shortened interlace sequence ⁇ I ls I 5 , I / , I 2 , I 6 , L, I 8 ⁇ for the first symbol period, to the circularly or cyclically shifted shortened interlace sequence ⁇ I 4 , I 8 , Ii, I 5 , I 3/7 , I 2 , I 6 ⁇ for the second symbol period, and so on.
  • each data slot index is mapped to seven different interlaces in seven consecutive symbol periods, where one of the seven interlaces is either interlace 3 or 7. All seven data slot indices should then achieve similar performance.
  • PN pseudo-random number
  • LFSR linear feedback shift register
  • LSBs V least significant bits
  • the &-th data slot index for k e ⁇ 2... M ⁇ , may be mapped to interlace [(PN ( ) + £) mod M] + l, if this interlace is not used for the FDM pilot, and to interlace [(PN j) + k + ⁇ ) mod M] + 1 , otherwise.
  • the slot indices are mapped to interlaces in a circular manner.
  • the £-th data slot index for k e ⁇ 2... M ⁇ , may be mapped to interlace [(j + k) mod M] + l , if this interlace is not used for the FDM pilot, and to interlace [(j + k + 1) mod M] + 1 , otherwise.
  • the M slot indices may thus be mapped to the M interlaces in various manners.
  • the slots may be allocated to the T data streams in various manners.
  • each data stream is allocated a sufficient number of slots in each super-frame to transmit a non-negative integer number of data packets (i.e., zero or more data packets).
  • the data packets may be defined to have a fixed size (i.e., a predetermined number of information bits), which can simplify the coding and decoding for the data packets.
  • Each fixed-size data packet may be coded and modulated to generate a coded packet having a variable size that is dependent on the coding and modulation scheme used for the packet. The number of slots needed to transmit the coded packet is then dependent on the coding and modulation scheme used for the packet.
  • each data stream may be allocated a non- negative integer number of slots in each super-frame, and an integer number of data packets may be sent in each allocated slot.
  • the same coding and modulation scheme may be used for all data packets sent in any given slot.
  • Each data packet may have a size that is dependent on (1) the number of data packets being sent in the slot and (2) the coding and modulation scheme used for that slot. For this scheme, the data packets may have variable sizes.
  • the slots may also be allocated to the data streams in other manners. For clarity, the following description assumes that the first slot allocation scheme is used by the system.
  • Each data stream may be coded in various manners.
  • each data stream is coded with a concatenated code comprised of an outer code and an inner code.
  • the outer code may be a block code such as a Reed-Solomon (RS) code or some other code.
  • the inner code may be a Turbo code, a convolutional code, or some other code.
  • FIG. 6 shows an exemplary outer coding scheme using a Reed-Solomon outer code.
  • a data stream is partitioned into data packets.
  • each data packet has a fixed size and contains a predetermined number of information bits or L information bytes (e.g., 1000 bits or 125 bytes).
  • L information bytes e.g. 1000 bits or 125 bytes.
  • the data packets for the data stream are written into rows of a memory, one packet per row.
  • block coding is performed column-wise, one column at a time.
  • each column contains K rs bytes (one byte per row) and is coded with an (N rs , K rs ) Reed-Solomon code to generate a corresponding codeword that contains N rs bytes.
  • the first K rs bytes of the codeword are data bytes (which are also called systematic bytes) and the last N n - K ⁇ bytes are parity bytes (which may be used by a wireless device for error correction).
  • the Reed-Solomon coding generates N re - K IS parity bytes for each codeword, which are written to rows N re - K ⁇ through N rs of the memory after the K rs rows of data.
  • An RS block contains K rs rows of data and N ⁇ -K ⁇ rows of parity.
  • N re 16 and K rs is a configurable parameter, e.g., K ⁇ . e ⁇ 12, 14, 16 ⁇ .
  • the Reed-Solomon code is disabled when
  • a code block contains N rs coded packets for the N rs rows of the RS block.
  • each code block may be transmitted in one super-frame.
  • Each super- frame may be partitioned into multiple (e.g., four) frames.
  • Each code block may then be partitioned into multiple (e.g., four) sub-blocks, and each sub-block of the code block may be sent in one frame of the super-frame.
  • the transmission of each code block in multiple parts across a super-frame can provide time diversity.
  • Each data stream may be transmitted with or without hierarchical coding, where the term "coding" in this context refers to channel coding rather than data coding at a transmitter.
  • a data stream may be comprised of two substreams, which are called a base stream and an enhancement stream.
  • the base stream may carry base information and may be sent to all wireless devices within the coverage area of the base station.
  • the enhancement stream may carry additional information and may be sent to wireless devices observing better channel conditions.
  • the base stream is coded and modulated to generate a first modulation symbol stream
  • the enhancement stream is coded and modulated to generate a second modulation symbol stream.
  • the same or different coding and modulation schemes may be used for the base stream and enhancement stream.
  • the two modulation symbol streams may then be scaled and combined to obtain one data symbol stream.
  • Table 1 shows an exemplary set of eight "modes" that may be supported by system 100. These eight modes are given indices of 1 through 8. Each mode is associated with a specific modulation scheme (e.g., QPSK or 16-QAM) and a specific inner code rate (e.g., 1/3, 1/2, or 2/3). The first five modes are for "regular" coding with only the base stream, and the last three modes are for hierarchical coding with the base and enhancement streams. For simplicity, the same modulation scheme and inner code rate are used for both the base and enhancement streams for each hierarchical coding mode.
  • a specific modulation scheme e.g., QPSK or 16-QAM
  • a specific inner code rate e.g., 1/3, 1/2, or 2/3
  • the fourth column of Table 1 indicates the number of slots needed to transmit one fixed-size data packet for each mode.
  • S 500
  • Each slot has a capacity of S data symbols since the slot is mapped to one interlace with S usable subbands and each subband can carry one data symbol.
  • a data packet with 2-S information bits is coded with a rate 1/3 inner code to generate 6-S code bits, which are then mapped to 3 • S data symbols using QPSK.
  • the 3 • S data symbols for the data packet may be sent in three slots, with each slot carrying S data symbols. Similar processing may be performed for each of the other modes in Table 1.
  • Table 1 shows an exemplary design.
  • Data packets of other sizes e.g., 500 information bits, 2000 information bits, and so on
  • Multiple packet sizes may also be used, for example, so that each packet may be sent in an integer number of slots.
  • a packet size of 1000 information bits may be used for modes 1, 2, and 4, and a packet size of 1333 information bits may be used for modes 3 and 5.
  • the system may also support any number of modes for any number of coding and modulation schemes, any number of data packet sizes, and any packet size.
  • FIG. 7A shows transmission of a minimum integer number of data packets, using one slot in each of an integer number of symbol periods, for each of the first five modes listed in Table 1.
  • One data packet may be sent using one slot in (1) three symbol periods for mode 1, (2) two symbol periods for mode 2, and (3) one symbol period for mode 4. Two data packets may be sent using one slot in three symbol periods for mode 3, since each data packet takes 1.5 slots to send. Four data packets may be sent using one slot in three symbol periods for mode 5, since each data packet takes 0.75 slots to send.
  • FIG. 7B shows transmission of a minimum integer number of data packets, using an integer number of slots in one symbol period, for each of the first five modes listed in Table 1.
  • One data packet may be sent in one symbol period using (1) three slots for mode 1, (2) two slots for mode 2, and (3) one slot for mode 4.
  • Two data packets may be sent in one symbol period using three slots for mode 3.
  • Four data packets may be sent in one symbol period using three slots for mode 5.
  • the minimum number of data packets may be transmitted in several manners for each mode (except for mode 4). Transmitting the minimum number of data packets in a shorter time period reduces the amount of ON time required to receive the data packets but provides less time diversity.
  • FIG. 8A shows the partitioning of a single coded packet into three slots for mode 1.
  • the three slots may be for three different interlaces in one symbol period or one interlace in three different symbol periods.
  • the three slots may observe different channel conditions.
  • the bits in the coded packet may be interleaved (i.e., reordered) prior to the partitioning into three slots.
  • the interleaving for each coded packet can randomize the signal-to-noise ratios (SNRs) of the bits across the coded packet, which may improve decoding performance.
  • the interleaving may be performed in various manners, as is known in the art.
  • the interleaving may also be such that adjacent bits in the coded packet are not sent in the same data symbol.
  • FIG. 8B shows the partitioning of four coded packets into three slots for mode 5.
  • the three slots may be sequentially filled by the four coded packets, as shown in FIG. 8B.
  • all of the bits to be sent in the slot may be interleaved such that the bits for each coded packet sent in the slot are distributed across the subbands used for the slot.
  • the interleaving across each slot provides frequency diversity for each coded packet sent in the slot and may improve decoding performance.
  • the interleaving across a slot may be performed in various manners.
  • the bits for all coded packets to be sent in a given slot are first mapped to data symbols, and the data symbols are then mapped to the subbands used for the slot in a peimutated manner.
  • a first sequence with S' sequential values, 0 through S'-l is initially formed.
  • a second sequence of S' values is then created such that the z ' -th value in the second sequence is equal to the bit reverse of the z ' -th value in the first sequence. All values that are equal to or greater than S' in the second sequence are removed to obtain a third sequence with S values ranging from 0 through S - 1 .
  • Each value in the third sequence is then incremented by one to obtain a sequence of S permutated index values ranging from 1 through S, which is denoted as F j) .
  • They-th data symbol in the slot may be mapped to the F j) -th subband in the interlace used for the slot.
  • the first sequence is ⁇ 0, 1, 2, 3, ..., 510, 511 ⁇
  • the second sequence is ⁇ 0, 256, 128, 384, ..., 255, 511 ⁇
  • the third sequence is ⁇ 0, 256, 128, 384, ... 255 ⁇ .
  • the sequence F (j) only needs to be computed once and may be used for all slots.
  • each data stream may carry any number of data packets in each super-frame, depending on the data rate of the stream.
  • Each data stream is allocated a sufficient number of slots in each super- frame based on its data rate, subject to the availability of slots and possibly other factors.
  • each data stream may be constrained to a specified maximum number of slots in each symbol period, which may be dependent on the mode used for the data stream.
  • Each data stream may be limited to a specified maximum data rate, which is the maximum number of information bits that may be transmitted in each symbol period for the data stream. The maximum data rate is typically set by the decoding and buffering capabilities of the wireless devices.
  • Constraining each data stream to be within the maximum data rate ensures that the data stream can be recovered by wireless devices having the prescribed decoding and buffering capabilities.
  • the maximum data rate limits the number of data packets that may be transmitted in each symbol period for the data stream. The maximum number of slots may then be determined by the maximum number of data packets and the mode used for the data stream.
  • each data stream may be allocated an integer number of slots in any given symbol period, and multiple data streams do not share an interlace.
  • up to M - 1 data streams may be sent on the M - 1 data slots in each symbol period, assuming that one slot is used for the FDM pilot.
  • multiple data streams may share an interlace.
  • FIG. 9 A shows a block diagram of an embodiment of TX data processor 120 at base station 110.
  • TX data processor 120 includes T TX data stream processors 910a through 9 lOt for the T data streams, a TX overhead data processor 930 for overhead/control data, a pilot processor 932 for the TDM and FDM pilots, and a multiplexer (Mux) 940.
  • Each TX data stream processor 910 processes a respective data stream ⁇ d ; ⁇ to generate a corresponding data symbol stream ⁇ Y ; ⁇ , for i e ⁇ 1... T ⁇ .
  • an encoder 912 receives and encodes data packets for its data stream ⁇ d t ⁇ and provides coded packets.
  • Encoder 912 performs encoding in accordance with, for example, a concatenated code comprised of a Reed-Solomon outer code and a Turbo or convolutional inner code.
  • encoder 912 encodes each block of K ⁇ data packets to generate N ⁇ coded packets, as shown in FIG. 6. The encoding increases the reliability of the transmission for the data stream.
  • Encoder 912 may also generate and append a cyclic redundancy check (CRC) value to each coded packet, which may be used by a wireless device for error detection (i.e., to determine whether the packet is decoded correctly or in error). Encoder 912 may also shuffle the coded packets.
  • CRC cyclic redundancy check
  • An interleaver 914 receives the coded packets from encoder 912 and interleaves the bits in each coded packet to generate an interleaved packet. The interleaving provides time and/or frequency diversity for the packet.
  • a slot buffer 916 is then filled with interleaved packets for all the slots allocated to the data stream, e.g., as shown in FIG. 8A or 8B.
  • a scrambler 918 receives and scrambles the bits for each slot with a PN sequence to randomize the bits.
  • M different PN sequences may be used for the M slot indices.
  • the LFSR may be loaded with a different 15-bit initial value for each slot index. Furthermore, the LFSR may be reloaded at the start of each symbol period.
  • Scrambler 918 may perform an exclusive-OR. on each bit in a slot with a bit in the PN sequence to generate a scrambled bit.
  • a bit-to-symbol mapping unit 920 receives the scrambled bits for each slot from scrambler 918, maps these bits to modulation symbols in accordance with a modulation scheme (e.g., QPSK or 16-QAM) selected for the data stream, and provides data symbols for the slot.
  • the symbol mapping may be achieved by (1) grouping sets of B bits to form B-bit binary values, where B > 1 , and (2) mapping each B-bit binary value to a complex value for a point in a signal constellation for the modulation scheme.
  • the outer and inner codes for encoder 912 and the modulation scheme for mapping unit 920 are determined by the mode used for the data stream.
  • the base sfream may be processed by one set of processing units 912 through 920 to generate a first stream of modulation symbols
  • the enhancement stream may be processed by another set of processing units 912 through 920 to generate a second sfream of modulation symbols (not shown in FIG. 9 for simplicity).
  • the same coding and modulation scheme may be used for both the base stream and the enhancement stream, as shown in Table 1, or different coding and modulation schemes may be used for the two streams.
  • a combiner may then receive and combine the first and second modulation symbol streams to generate the data symbols for the data stream.
  • the hierarchical coding may also be performed in other manners. For example, the scrambled bits for both the base stream and enhancement stream may be provided to a single bit-to-symbol mapping unit that provides the data symbols for the data stream.
  • a slot-to-interlace mapping unit 922 maps each slot assigned to data sfream ⁇ d t ⁇ to the proper interlace based on the slot-to-interlace mapping scheme used by the system (e.g., as shown in FIG. 5).
  • a symbol-to-subband mapping unit 924 then maps the S data symbols in each slot to the proper subbands in the interlace to which the slot is mapped.
  • the symbol-to-subband mapping may be performed in a manner to distribute the S data symbols across the S subbands used for the slot, as described above.
  • Mapping unit 924 provides data symbols for data sfream ⁇ d ⁇ ⁇ , which are mapped to the proper subbands used for the data stream.
  • TX overhead data processor 930 processes overhead/control data in accordance with a coding and modulation scheme used for overhead/control data and provides overhead symbols.
  • Pilot processor 932 performs processing for the TDM and FDM pilots and provides pilot symbols.
  • Multiplexer 940 receives the mapped data symbols for the T data streams from TX data stream processors 910a through 910t, the overhead symbols from TX overhead data processor 930, the pilot symbols from pilot processor 932, and guard symbols.
  • Multiplexer 940 provides the data symbols, overhead symbols, pilot symbols, and guard symbols onto the proper subbands and symbol periods based on a MUX_TX control from controller 140 and outputs a composite symbol stream, ⁇ Y c ⁇ .
  • FIG. 9B shows a block diagram of an embodiment of modulator 130 at base station 110.
  • Modulator 130 includes an inverse fast Fourier transform (IFFT) unit 950 and a cyclic prefix generator 952.
  • IFFT inverse fast Fourier transform
  • LFFT unit 950 transforms the N symbols for the N total subbands to the time domain with an N-point LFFT to obtain a "transformed" symbol that contains N time-domain samples.
  • cyclic prefix generator 952 repeats a portion (or C samples) of each transformed symbol to form a corresponding OFDM symbol that contains N + C samples. The repeated portion is often called a cyclic prefix or guard interval.
  • Each OFDM symbol is transmitted in one OFDM symbol period (or simply, symbol period), which is N + C sample periods.
  • Cyclic prefix generator 952 provides an output sample stream ⁇ ⁇ for the composite symbol stream ⁇ Y c ⁇ .
  • FIG. 10A shows a block diagram of an embodiment of demodulator 160 at wireless device 150.
  • Demodulator 160 includes a cyclic prefix removal unit 1012, a Fourier transform unit 1014, a channel estimator 1016, and a detector 1018.
  • Cyclic prefix removal unit 1012 removes the cyclic prefix in each received OFDM symbol and provides a sequence of N input samples, ⁇ x(n) ⁇ , for the received OFDM symbol.
  • Fourier transform unit 1014 performs a partial Fourier transform on the input sample sequence ⁇ x(n) ⁇ for each selected interlace m and provides a set of S received symbols,
  • Channel estimator 1016 derives channel gain estimate ⁇ H m (k) ⁇ for each selected interlace m based on the input sample sequence ⁇ x(n) ⁇ .
  • Detector 1018 performs detection (e.g., equalization or matched filtering) on the set of S received symbols ⁇ X m (k) ⁇ for each selected interlace with the channel gain estimate ⁇ H m (k) ⁇ for that interlace and provides S detected data symbols ⁇ Y m (k) ⁇ for the interlace.
  • FIG. 10B shows a block diagram of an embodiment of RX data processor 170 at wireless device 150.
  • a multiplexer 1030 receives the detected data symbols for all interlaces from detector 1018, performs multiplexing of the detected data and overhead symbols for each symbol period based on the MUX_RX control, provides each detected data symbol sfream of interest to a respective RX data stream processor 1040, and provides a detected overhead symbol stream to an RX overhead data processor 1060.
  • a subband-to-symbol demapping unit 1042 maps the received symbol on each subband in a selected interlace to the proper position within a slot.
  • An interlace-to-slot demapping unit 1044 maps each selected interlace to the proper slot.
  • a symbol-to-bit demapping unit 1046 maps the received symbols for each slot to code bits.
  • a descrambler 1048 descrambles the code bits for each slot and provides descrambled data.
  • a slot buffer 1050 buffers one or more slots of descrambled data, performs reassembly of packets as needed, and provides descrambled packets.
  • a deinterleaver 1052 deinterleaves each descrambled packet and provides a deinterleaved packet.
  • a decoder 1054 decodes the deinterleaved packets and provides decoded data packets for data stream ⁇ d ; ⁇ .
  • the processing performed by the units within RX data stream processor 1040 is complementary to the processing performed by the corresponding units within TX data stream processor 910 in FIG. 9A.
  • the symbol-to-bit demapping and the decoding are performed in accordance with the mode used for the data stream.
  • RX overhead data processor 1060 processes the received overhead symbols and provides decoded overhead data.
  • Fourier transform unit 1014 may perform a partial S' -point Fourier transform for each selected interlace m to obtain the set of S received symbols ⁇ X m (k) ⁇ for that interlace.
  • N M • S' .
  • a partial S' -point Fourier transform for interlace m may be performed as follows. Each of the N input samples in the sequence ⁇ x(n) ⁇ for one symbol period is first rotated by WTM , as shown in equation (2), to obtain a sequence of N rotated samples ⁇ x m (n) ⁇ . The rotated samples are then accumulated, in S' sets of M rotated samples, to obtain S' time-domain values ⁇ g m (n) ⁇ , as shown in equation (3). Each set contains every S'-th rotated sample in the sequence ⁇ x m (n) ⁇ , with the S' sets being associated with different starting rotated samples in the sequence ⁇ x m (n) ⁇ .
  • S' -point Fourier transform is then performed on the S' time-domain values ⁇ g m (n) ⁇ to obtain the S' received symbols for interlace m.
  • the received symbols for the S usable subbands are retained, and the received symbols for the S'-S unused subbands are discarded.
  • a partial S' -point Fourier transform may be performed on the N input samples for interlace p used for the FDM pilot to obtain a set of S received pilot symbols, ⁇ X p (k) ⁇ or X(M -k + p) .
  • the modulation on the received pilot symbols is then removed to obtain channel gain estimates ⁇ H p (k) ⁇ for the subbands in interlace p, as follows:
  • Equation (5) assumes that all S' subbands are used for pilot transmission. An S' -point IFFT is then performed on the channel gain estimates
  • the channel gain estimates for the subbands in interlace m may then be expressed as:
  • H m (k) H(M -k + m) ,
  • the channel gain estimates for the subbands in interlace m may be obtained by first multiplying each derotated time-domain channel gain value in the sequence ⁇ h(n) ⁇ by WTM to obtain a sequence of S' rotated channel gain values,
  • channel estimation has been described above.
  • the channel estimation may also be performed in other manners.
  • the channel estimates obtained for different interlaces used for pilot transmission may be filtered (e.g., over time) and/or post-processed (e.g., based on a least square estimate of the impulse response ⁇ h(n) ⁇ ) to obtain a more accurate channel estimate for each interlace of interest.
  • the multiplexing techniques described herein may be implemented by various means. For example, these techniques may be implemented in hardware, software, or a combination thereof.
  • the processing units used to perform the multiplexing at a base station may be implemented within one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, other electronic units designed to perform the functions described herein, or a combination thereof.
  • the processing units used to perform the complementary processing at a wireless device may also be implemented within one or more ASIC
  • the multiplexing techniques may be implemented with modules (e.g., procedures, functions, and so on) that perform the functions described herein.
  • the software codes may be stored in a memory unit (e.g., memory unit 142 or 182 in FIG. 1) and executed by a processor (e.g., controller 140 or 180).
  • the memory unit may be implemented within the processor or external to the processor, in which case it can be communicatively coupled to the processor via various means as is known in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

L'invention porte sur des techniques de multiplexage de multiples flux de données en utilisant le multiplexage en fréquences dans un système MROF. A cet effet on forme M 'entrelacements' disjoints avec U sous-bandes utilisables. Chaque entrelacement est un ensemble différent de S sous-bandes et les sous-bandes de chaque entrelacement sont entrelacées avec les sous-bandes de chacun des autres entrelacements. M créneaux peuvent être définis pour chaque période de symboles et les indices des créneaux, qui vont de 1 à M, peuvent être mis en correspondance avec les entrelacements de manière: (1) à pouvoir atteindre une diversité de fréquences pour chaque indice de créneau et (2) et à conférer aux entrelacements utilisés pour la transmission des pilotes des distances variables avec les entrelacements utilisés pour chaque indice de créneau, afin d'améliorer les résultats de l'évaluation des canaux. On peut ainsi traiter chaque flux de données comme un paquet de données de taille fixe et utiliser un indice différent de créneaux pour chaque paquet de données en fonction du codage et du schéma de modulation utilisé pour le paquet de données.
PCT/US2004/035042 2003-10-24 2004-10-21 Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses WO2005041515A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2006536827A JP2007509586A (ja) 2003-10-24 2004-10-21 マルチ−キャリア通信システムにおける複数データストリームの周波数分割多重方式
AU2004307449A AU2004307449C1 (en) 2003-10-24 2004-10-21 Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
BRPI0415840-7A BRPI0415840A (pt) 2003-10-24 2004-10-21 multiplexação por divisão de freqüência de múltiplos fluxos de dados em um sistema de comunicação de multi-portadora sem fio
CA2543771A CA2543771C (fr) 2003-10-24 2004-10-21 Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses
CN200480038711.2A CN101019397B (zh) 2003-10-24 2004-10-21 无线多载波通信系统中多个数据流的频分复用
EP04817335A EP1678906A1 (fr) 2003-10-24 2004-10-21 Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses
IL175101A IL175101A0 (en) 2003-10-24 2006-04-23 Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US51431503P 2003-10-24 2003-10-24
US60/514,315 2003-10-24
US55974004P 2004-04-05 2004-04-05
US60/559,740 2004-04-05
US10/932,586 US7221680B2 (en) 2003-09-02 2004-09-01 Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US10/932,586 2004-09-01

Publications (1)

Publication Number Publication Date
WO2005041515A1 true WO2005041515A1 (fr) 2005-05-06

Family

ID=34527959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2004/035042 WO2005041515A1 (fr) 2003-10-24 2004-10-21 Multiplexage en frequences de flux multiples de donnees dans un systeme sans fil de communication a plusieurs porteuses

Country Status (7)

Country Link
EP (1) EP1678906A1 (fr)
JP (1) JP2007509586A (fr)
KR (1) KR100944821B1 (fr)
AU (1) AU2004307449C1 (fr)
BR (1) BRPI0415840A (fr)
CA (1) CA2543771C (fr)
WO (1) WO2005041515A1 (fr)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005114940A1 (fr) * 2004-05-18 2005-12-01 Qualcomm Incorporated Convertisseurs fentes-entrelacements et entrelacements-fentes pour systeme ofdm
JP2006324859A (ja) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd 基地局装置、移動局装置、およびセルサーチ方法
WO2006138336A1 (fr) * 2005-06-16 2006-12-28 Qualcomm Incorporated Entrelacement en canal de commande ofdm
WO2007024932A1 (fr) * 2005-08-22 2007-03-01 Qualcomm Incorporated Pilotes configurables dans un systeme de communication sans fil
WO2007051028A1 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil de modulation de r-dpich dans des systemes de communication sans fil
WO2007050957A2 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil destines a transmettre et recevoir des messages d'accuse de reception d'entrelacement dans des systemes de communication sans fil
WO2007024091A3 (fr) * 2005-08-23 2008-07-31 Korea Electronics Telecomm Emetteur pour systeme de communication amrf et procede destine a la configuration d'une voie pilote
WO2008112682A3 (fr) * 2007-03-12 2008-11-06 Qualcomm Inc Multiplexage de circuits de retour dans un système de communication sans fil
EP1819118A3 (fr) * 2006-02-11 2008-11-19 Samsung Electronics Co., Ltd. Procédé et appareil d'attribution de ressources de transmission et de signalement des ressources de transmission attribuées pour une diversité de fréquences
WO2008154768A1 (fr) * 2007-06-18 2008-12-24 Alcatel Shanghai Bell Co., Ltd. Procédé et dispositif pour l'assignation de pilote en mode de multiplexage de services de monodiffusion et de diffusion/multidiffusion
JP2009504032A (ja) * 2005-07-27 2009-01-29 クゥアルコム・インコーポレイテッド Forwardlinkonly物理層のためのシステムおよび方法
WO2009018180A2 (fr) * 2007-07-26 2009-02-05 Qualcomm Incorporated Multiplexage et transmission de trains de données multiples dans un système de communication sans fil à porteuse multiple
WO2009059252A2 (fr) * 2007-10-31 2009-05-07 Qualcomm Incorporated Multiplexage et transmission de flux de données multiples dans un système de communication sans fil à ondes porteuses multiples
JP2009213168A (ja) * 2009-06-18 2009-09-17 Ntt Docomo Inc 送信装置、送信方法、ユーザ装置及び通信方法
JP2009542163A (ja) * 2006-06-26 2009-11-26 クゥアルコム・インコーポレイテッド 送信ドライバデータ通信
EP2184872A1 (fr) * 2007-08-02 2010-05-12 Fujitsu Limited Procédé d'arrangement pilote dans un système de communication radio mobile et émetteur/récepteur adoptant celui-ci
KR100959333B1 (ko) 2006-09-29 2010-05-20 삼성전자주식회사 무선통신 시스템에서 보조대역을 이용한 양방향 통신 장치
US7962141B2 (en) 2004-12-22 2011-06-14 Qualcomm Incorporated Methods and apparatus for flexible forward-link and reverse-link handoffs
US7983674B2 (en) 2005-06-16 2011-07-19 Qualcomm Incorporated Serving base station selection in a wireless communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8199661B2 (en) 2005-10-27 2012-06-12 Qualcomm Incorporated Method and apparatus for processing supplemental and non supplemental assignments
US8203978B2 (en) 2002-10-25 2012-06-19 Qualcomm Incorporated Multi-mode terminal in a wireless MIMO system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
JP2012151854A (ja) * 2005-10-27 2012-08-09 Qualcomm Inc 可変ガードバンドを使用する柔軟な帯域幅を達成する方法および装置
US8274878B2 (en) 2008-06-04 2012-09-25 Sony Corporation Frame and training pattern structure for multi-carrier systems
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8375261B2 (en) 2008-07-07 2013-02-12 Qualcomm Incorporated System and method of puncturing pulses in a receiver or transmitter
US8406323B2 (en) 2006-06-14 2013-03-26 Agere Systems Llc Orthogonal frequency division multiplexing using subsymbol processing
US8457092B2 (en) 2005-06-16 2013-06-04 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8472363B2 (en) 2006-01-18 2013-06-25 Ntt Docomo, Inc. Transmission device and transmission method for generating fixed-length subframe including multiple OFDM symbols
US8477809B2 (en) 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
RU2494552C2 (ru) * 2009-02-24 2013-09-27 Квэлкомм Инкорпорейтед Гибкое мультиплексирование данных и управления
US8559536B2 (en) 2007-06-22 2013-10-15 Panasonic Corporation Transmission device, reception device, and OFDM transmission method
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
EA018825B1 (ru) * 2008-06-04 2013-11-29 Сони Корпорейшн Передача и приём цифрового сигнала
US8599764B2 (en) 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US8605705B2 (en) 2003-09-02 2013-12-10 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
CN103647737A (zh) * 2013-12-20 2014-03-19 东南大学 Mppsk调制的跳时多址实现方法
US8693540B2 (en) 2005-03-10 2014-04-08 Qualcomm Incorporated Method and apparatus of temporal error concealment for P-frame
US8730877B2 (en) * 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US8761080B2 (en) 2005-03-15 2014-06-24 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US8837305B2 (en) 2007-11-27 2014-09-16 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
US8873365B2 (en) 2002-10-25 2014-10-28 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US9002315B2 (en) 2009-05-01 2015-04-07 Qualcomm Incorporated Systems, apparatus and methods for facilitating emergency call service in wireless communication systems
US9036520B2 (en) 2006-11-01 2015-05-19 Qualcomm Incorporated Multiplexing of control and data with varying power offsets in a SC-FDMA system
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
US9077444B2 (en) 2013-09-12 2015-07-07 Motorola Solutions, Inc. Method and apparatus for late entry in asynchronous frequency hopping systems using random permutation sequences
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
US9154274B2 (en) 2002-10-25 2015-10-06 Qualcomm Incorporated OFDM communication system with multiple OFDM symbol sizes
US9312935B2 (en) 2002-10-25 2016-04-12 Qualcomm Incorporated Pilots for MIMO communication systems
JP2016054502A (ja) * 2005-03-07 2016-04-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated 周波数分割多重化を利用する通信システムのパイロット送信およびチャネル推定
US9344973B2 (en) 2007-09-21 2016-05-17 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
CN103338099B (zh) * 2007-08-02 2016-06-29 富士通株式会社 移动通信系统和移动通信系统中的通信方法
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
EP2624480A3 (fr) * 2005-05-09 2017-12-06 QUALCOMM Incorporated Transmission de données avec amélioration des formats créneaux et blocs dans un système de communication sans fil
EA037933B1 (ru) * 2018-11-12 2021-06-09 Открытое акционерное общество "Межгосударственная Корпорация Развития" Передатчик

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7555074B2 (en) * 2005-02-01 2009-06-30 Telefonaktiebolaget L M Ericsson (Publ) Interference estimation in the presence of frequency errors
US9867187B2 (en) * 2014-08-04 2018-01-09 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
KR102200091B1 (ko) * 2014-10-29 2021-01-08 한국전자통신연구원 프레임 헤더 전송 장치 및 이를 이용한 프레임 헤더 전송 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002009455A2 (fr) * 2000-07-24 2002-01-31 Runcom Communications Ltd. Systeme et procede de communication cellulaire
US20020060984A1 (en) * 1994-06-16 2002-05-23 France Telecom OFDM signal organized so as to simplify reception
WO2002049306A2 (fr) 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Communications a ondes porteuses multiples avec attribution d'ondes porteuses basee sur des groupes
WO2002087104A2 (fr) * 2001-04-19 2002-10-31 Diseño De Sistemas En Silicio, S.A. Procede d'acces et de transmission multiples dans un systeme point a multipoint sur reseau electrique

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1066039A (ja) * 1996-08-23 1998-03-06 Sony Corp 通信方法、送信装置、送信方法、受信装置及び受信方法
US20020154705A1 (en) * 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6424678B1 (en) * 2000-08-01 2002-07-23 Motorola, Inc. Scalable pattern methodology for multi-carrier communication systems
JP2002111631A (ja) * 2000-10-04 2002-04-12 Yrp Mobile Telecommunications Key Tech Res Lab Co Ltd 無線通信システム及び無線通信装置
US6801580B2 (en) * 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020060984A1 (en) * 1994-06-16 2002-05-23 France Telecom OFDM signal organized so as to simplify reception
WO2002009455A2 (fr) * 2000-07-24 2002-01-31 Runcom Communications Ltd. Systeme et procede de communication cellulaire
WO2002049306A2 (fr) 2000-12-15 2002-06-20 Broadstorm Telecommunications, Inc. Communications a ondes porteuses multiples avec attribution d'ondes porteuses basee sur des groupes
WO2002087104A2 (fr) * 2001-04-19 2002-10-31 Diseño De Sistemas En Silicio, S.A. Procede d'acces et de transmission multiples dans un systeme point a multipoint sur reseau electrique
EP1388954A2 (fr) * 2001-04-19 2004-02-11 Diseno de Sistemas en Silicio S.A. Procede d'acces et de transmission multiples dans un systeme point a multipoint sur reseau electrique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TAKAMURA K ET AL: "FIELD TRIAL RESULTS OF A BAND HOPPING OFDM SYSTEM", VTC 1999-FALL. IEEE VTS 50TH. VEHICULAR TECHNOLOGY CONFERENCE. GATEWAY TO THE 21ST. CENTURY COMMUNICATIONS VILLAGE. AMSTERDAM, SEPT. 19 - 22, 1999, IEEE VEHICULAR TECHNOLGY CONFERENCE, NEW YORK, NY : IEEE, US, vol. VOL. 1 CONF. 50, September 1999 (1999-09-01), pages 310 - 314, XP000929061, ISBN: 0-7803-5436-2 *

Cited By (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8462643B2 (en) 2002-10-25 2013-06-11 Qualcomm Incorporated MIMO WLAN system
US9048892B2 (en) 2002-10-25 2015-06-02 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8355313B2 (en) 2002-10-25 2013-01-15 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US9154274B2 (en) 2002-10-25 2015-10-06 Qualcomm Incorporated OFDM communication system with multiple OFDM symbol sizes
US8873365B2 (en) 2002-10-25 2014-10-28 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US9013974B2 (en) 2002-10-25 2015-04-21 Qualcomm Incorporated MIMO WLAN system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US9240871B2 (en) 2002-10-25 2016-01-19 Qualcomm Incorporated MIMO WLAN system
US8203978B2 (en) 2002-10-25 2012-06-19 Qualcomm Incorporated Multi-mode terminal in a wireless MIMO system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US9967005B2 (en) 2002-10-25 2018-05-08 Qualcomm Incorporated Pilots for MIMO communication systems
US8483188B2 (en) 2002-10-25 2013-07-09 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US10382106B2 (en) 2002-10-25 2019-08-13 Qualcomm Incorporated Pilots for MIMO communication systems
US8934329B2 (en) 2002-10-25 2015-01-13 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8711763B2 (en) 2002-10-25 2014-04-29 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US9312935B2 (en) 2002-10-25 2016-04-12 Qualcomm Incorporated Pilots for MIMO communication systems
US8605705B2 (en) 2003-09-02 2013-12-10 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8477809B2 (en) 2003-09-02 2013-07-02 Qualcomm Incorporated Systems and methods for generalized slot-to-interlace mapping
US8599764B2 (en) 2003-09-02 2013-12-03 Qualcomm Incorporated Transmission of overhead information for reception of multiple data streams
US8509051B2 (en) 2003-09-02 2013-08-13 Qualcomm Incorporated Multiplexing and transmission of multiple data streams in a wireless multi-carrier communication system
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US10742358B2 (en) 2003-12-01 2020-08-11 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US9876609B2 (en) 2003-12-01 2018-01-23 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
WO2005114940A1 (fr) * 2004-05-18 2005-12-01 Qualcomm Incorporated Convertisseurs fentes-entrelacements et entrelacements-fentes pour systeme ofdm
KR100877318B1 (ko) 2004-05-18 2009-01-09 콸콤 인코포레이티드 직교 주파수 분할 다중화 시스템의 슬롯-인터레이스 및인터레이스-슬롯 변환기
US7693124B2 (en) 2004-05-18 2010-04-06 Qualcomm Incorporated Slot-to-interlace and interlace-to-slot converters for an OFDM system
US7962141B2 (en) 2004-12-22 2011-06-14 Qualcomm Incorporated Methods and apparatus for flexible forward-link and reverse-link handoffs
JP2016054502A (ja) * 2005-03-07 2016-04-14 クゥアルコム・インコーポレイテッドQualcomm Incorporated 周波数分割多重化を利用する通信システムのパイロット送信およびチャネル推定
US8693540B2 (en) 2005-03-10 2014-04-08 Qualcomm Incorporated Method and apparatus of temporal error concealment for P-frame
US8761080B2 (en) 2005-03-15 2014-06-24 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
EP2624480A3 (fr) * 2005-05-09 2017-12-06 QUALCOMM Incorporated Transmission de données avec amélioration des formats créneaux et blocs dans un système de communication sans fil
US8855226B2 (en) 2005-05-12 2014-10-07 Qualcomm Incorporated Rate selection with margin sharing
JP2006324859A (ja) * 2005-05-18 2006-11-30 Matsushita Electric Ind Co Ltd 基地局装置、移動局装置、およびセルサーチ方法
JP4612467B2 (ja) * 2005-05-18 2011-01-12 パナソニック株式会社 基地局装置、移動局装置、およびセルサーチ方法
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
WO2006138336A1 (fr) * 2005-06-16 2006-12-28 Qualcomm Incorporated Entrelacement en canal de commande ofdm
US8730877B2 (en) * 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US8254360B2 (en) 2005-06-16 2012-08-28 Qualcomm Incorporated OFDMA control channel interlacing
US8457092B2 (en) 2005-06-16 2013-06-04 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US7983674B2 (en) 2005-06-16 2011-07-19 Qualcomm Incorporated Serving base station selection in a wireless communication system
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
JP2009504032A (ja) * 2005-07-27 2009-01-29 クゥアルコム・インコーポレイテッド Forwardlinkonly物理層のためのシステムおよび方法
US8170059B2 (en) 2005-07-27 2012-05-01 Qualcomm Incorporated System and method for mobile multimedia messages
JP4870762B2 (ja) * 2005-07-27 2012-02-08 クゥアルコム・インコーポレイテッド Forwardlinkonly物理層のためのシステムおよび方法
US8130778B2 (en) 2005-07-27 2012-03-06 Qualcomm Incorporated System and method for a wireless network protocol suite
KR101007485B1 (ko) 2005-08-22 2011-01-12 콸콤 인코포레이티드 무선 통신 시스템에서 구성가능한 파일럿들
JP2011254488A (ja) * 2005-08-22 2011-12-15 Qualcomm Incorporated 無線通信システムにおける設定可能なパイロット
US8718036B2 (en) 2005-08-22 2014-05-06 Qualcomm Incorporated Configurable pilots in a wireless communication system
EP2256985A3 (fr) * 2005-08-22 2013-02-20 Qualcomm Incorporated Pilotes configurables dans un système de communication sans fil
US7903628B2 (en) 2005-08-22 2011-03-08 Qualcomm Incorporated Configurable pilots in a wireless communication system
CN101292487B (zh) * 2005-08-22 2013-11-27 高通股份有限公司 以有效方式传输导频的方法和设备
WO2007024932A1 (fr) * 2005-08-22 2007-03-01 Qualcomm Incorporated Pilotes configurables dans un systeme de communication sans fil
JP2009506655A (ja) * 2005-08-22 2009-02-12 クゥアルコム・インコーポレイテッド 無線通信システムにおける設定可能なパイロット
WO2007024091A3 (fr) * 2005-08-23 2008-07-31 Korea Electronics Telecomm Emetteur pour systeme de communication amrf et procede destine a la configuration d'une voie pilote
US7822007B2 (en) 2005-08-23 2010-10-26 Electronics And Telecommunications Research Institute Transmitter in FDMA communication system and method for configuring pilot channel
CN101346894B (zh) * 2005-10-27 2012-07-04 高通股份有限公司 一种在无线通信系统中为反向链路跳变产生排列的方法和装置
KR100942406B1 (ko) * 2005-10-27 2010-02-17 퀄컴 인코포레이티드 무선 통신 시스템에서 순방향 링크 홉핑을 위한 순열을생성하는 방법 및 장치
JP2012151854A (ja) * 2005-10-27 2012-08-09 Qualcomm Inc 可変ガードバンドを使用する柔軟な帯域幅を達成する方法および装置
US8265066B2 (en) 2005-10-27 2012-09-11 Qualcomm Incorporated Method and apparatus for reducing power consumption in wireless communication systems
WO2007051028A1 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil de modulation de r-dpich dans des systemes de communication sans fil
US8289897B2 (en) 2005-10-27 2012-10-16 Qualcomm Incorporated Method and apparatus for processing open state in wireless communication system
US8289908B2 (en) 2005-10-27 2012-10-16 Qualcomm Incorporated Method and apparatus for processing simultaneous assignment in wireless communication systems
US8300751B2 (en) 2005-10-27 2012-10-30 Qualcomm Incorporated Method and apparatus for transmitting and receiving a timing correction message in a wireless communication system
CN101346893B (zh) * 2005-10-27 2012-11-07 高通股份有限公司 一种在无线通信系统中为正向链路跳变产生排列的方法和装置
US8218479B2 (en) 2005-10-27 2012-07-10 Qualcomm Incorporated Method and apparatus for processing a multi-code word assignment in wireless communication systems
US8326330B2 (en) 2005-10-27 2012-12-04 Qualcomm Incorporated Method and apparatus for updating configuration attributes using FastRepage attribute in wireless communication systems
US8331285B2 (en) 2005-10-27 2012-12-11 Qualcomm Incorporated Method and apparatus of establishing access channel in wireless communication systems
US8923211B2 (en) 2005-10-27 2014-12-30 Qualcomm Incorporated Method and apparatus of processing an access grant block in wireless communication systems
US8971222B2 (en) 2005-10-27 2015-03-03 Qualcomm Incorporated Method and apparatus for decrementing assignments in wireless communication systems
US8199661B2 (en) 2005-10-27 2012-06-12 Qualcomm Incorporated Method and apparatus for processing supplemental and non supplemental assignments
JP4824763B2 (ja) * 2005-10-27 2011-11-30 クゥアルコム・インコーポレイテッド 無線通信システムにおいてオープン状態において選択インタレース状態に関してプロシージャを処理する方法及び装置
US8027302B2 (en) 2005-10-27 2011-09-27 Qualcomm Incorporated Method and apparatus for transmitting and receiving selected interlace acknowledgement messages in wireless communication systems
JP2015046901A (ja) * 2005-10-27 2015-03-12 クゥアルコム・インコーポレイテッドQualcomm Incorporated 可変ガードバンドを使用する柔軟な帯域幅を達成する方法および装置
WO2007050840A1 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et dispositif de generation d'une permutation pour saut de liaison inverse dans un systeme de communication sans fil
US8457042B2 (en) 2005-10-27 2013-06-04 Qualcomm Incorporated Method and apparatus for transmitting and receiving a sectorparameters message in an active state in wireless communication system
US7974355B2 (en) 2005-10-27 2011-07-05 Qualcomm Incorporated Method and apparatus for generating a permutation for forwarding link hopping in wireless communication system
KR100994085B1 (ko) 2005-10-27 2010-11-12 퀄컴 인코포레이티드 무선 통신 시스템에 있어서 선택된 인터레이스 확인메세지를 생성, 송신, 수신 및 프로세싱하는 방법 및 장치
WO2007050957A2 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil destines a transmettre et recevoir des messages d'accuse de reception d'entrelacement dans des systemes de communication sans fil
EP2205034A3 (fr) * 2005-10-27 2010-07-21 Qualcom Incorporated Attribution d'un mode d'entrelacement selectionné dans des systèmes de communication sans fil
KR100965450B1 (ko) * 2005-10-27 2010-06-24 퀄컴 인코포레이티드 무선 통신 시스템에 있어서 선택된 인터레이스 모드를요청하는 방법 및 장치
WO2007050910A2 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil destines a demander un mode d'entrelacement selectionne dans des systemes de communication sans fil
KR100965448B1 (ko) * 2005-10-27 2010-06-24 퀄컴 인코포레이티드 무선 통신 시스템에서 개방 상태인 선택된 인터레이스상태에서 절차를 처리하는 방법 및 장치
WO2007050855A2 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et appareil pour traiter des procedures dans des etats d'entrelacement specifiques, en etat ouvert, dans un systeme de communication sans fil
US8520628B2 (en) 2005-10-27 2013-08-27 Qualcomm Incorporated Method and apparatus for monitoring other channel interference in wireless communication system
WO2007051029A1 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et dispositif de generation de permutation pour saut de liaison inverse dans un systeme de communication sans fil
US8248950B2 (en) 2005-10-27 2012-08-21 Qualcomm Incorporated Method of transmitting and receiving a redirect message in a wireless communication system
WO2007051039A1 (fr) 2005-10-27 2007-05-03 Qualcomm Incorporated Procédé et appareil pour traiter une opération selectedinterlace en état ouvert dans un système de communication sans fil
WO2007050854A1 (fr) * 2005-10-27 2007-05-03 Qualcomm Incorporated Procede et dispositif d'attribution d'un mode d'entrelacement selectionne dans des systemes de communication sans fil
KR100910955B1 (ko) 2005-10-27 2009-08-05 퀄컴 인코포레이티드 무선 통신 시스템에서 역방향 링크 홉핑을 위한 순열을생성하는 방법 및 장치
US8744444B2 (en) 2005-10-27 2014-06-03 Qualcomm Incorporated Method and apparatus for transmitting a pilot report (PilotReport) message in wireless communication systems
US8599712B2 (en) 2005-10-27 2013-12-03 Qualcomm Incorporated Method and apparatus for setting reverse link CQI reporting modes in wireless communication system
JP2009514426A (ja) * 2005-10-27 2009-04-02 クゥアルコム・インコーポレイテッド 無線通信システムにおいてオープン状態でSelectedInterlace動作を処理する方法及び装置
WO2007050957A3 (fr) * 2005-10-27 2007-06-21 Qualcomm Inc Procede et appareil destines a transmettre et recevoir des messages d'accuse de reception d'entrelacement dans des systemes de communication sans fil
WO2007050910A3 (fr) * 2005-10-27 2007-06-21 Qualcomm Inc Procede et appareil destines a demander un mode d'entrelacement selectionne dans des systemes de communication sans fil
US8675549B2 (en) 2005-10-27 2014-03-18 Qualcomm Incorporated Method of serving sector maintenance in a wireless communication systems
WO2007050855A3 (fr) * 2005-10-27 2007-06-28 Qualcomm Inc Procede et appareil pour traiter des procedures dans des etats d'entrelacement specifiques, en etat ouvert, dans un systeme de communication sans fil
US9125078B2 (en) 2005-10-27 2015-09-01 Qualcomm Incorporated Method and apparatus for setting reverse link CQI reporting modes in wireless communication system
US8472363B2 (en) 2006-01-18 2013-06-25 Ntt Docomo, Inc. Transmission device and transmission method for generating fixed-length subframe including multiple OFDM symbols
US8737283B2 (en) 2006-01-18 2014-05-27 Ntt Docomo, Inc. Transmission device and transmission method
US8976723B2 (en) 2006-01-18 2015-03-10 Ntt Docomo, Inc. Transmission device and transmission method
EP1819118A3 (fr) * 2006-02-11 2008-11-19 Samsung Electronics Co., Ltd. Procédé et appareil d'attribution de ressources de transmission et de signalement des ressources de transmission attribuées pour une diversité de fréquences
CN101461203B (zh) * 2006-06-14 2013-03-27 艾格瑞系统有限公司 调制数据符号集的方法和设备及相应的解调方法和设备
US8406323B2 (en) 2006-06-14 2013-03-26 Agere Systems Llc Orthogonal frequency division multiplexing using subsymbol processing
JP2009542163A (ja) * 2006-06-26 2009-11-26 クゥアルコム・インコーポレイテッド 送信ドライバデータ通信
KR100959333B1 (ko) 2006-09-29 2010-05-20 삼성전자주식회사 무선통신 시스템에서 보조대역을 이용한 양방향 통신 장치
US9036520B2 (en) 2006-11-01 2015-05-19 Qualcomm Incorporated Multiplexing of control and data with varying power offsets in a SC-FDMA system
US9609659B2 (en) 2006-11-01 2017-03-28 Qualcomm Incorporated Multiplexing of control and data with varying power offsets in a SC-FDMA system
US9398597B2 (en) 2006-11-01 2016-07-19 Qualcomm Incorporated Multiplexing of control and data with varying power offsets in a SC-FDMA system
TWI406546B (zh) * 2007-03-12 2013-08-21 Qualcomm Inc 於無線通訊系統中反饋頻道多工
WO2008112682A3 (fr) * 2007-03-12 2008-11-06 Qualcomm Inc Multiplexage de circuits de retour dans un système de communication sans fil
WO2008154768A1 (fr) * 2007-06-18 2008-12-24 Alcatel Shanghai Bell Co., Ltd. Procédé et dispositif pour l'assignation de pilote en mode de multiplexage de services de monodiffusion et de diffusion/multidiffusion
US8345610B2 (en) 2007-06-18 2013-01-01 Alcatel Lucent Method and apparatus for mapping pilot signals in multiplexing mode of unicast and broadcast/multicast services
US8559536B2 (en) 2007-06-22 2013-10-15 Panasonic Corporation Transmission device, reception device, and OFDM transmission method
WO2009018180A2 (fr) * 2007-07-26 2009-02-05 Qualcomm Incorporated Multiplexage et transmission de trains de données multiples dans un système de communication sans fil à porteuse multiple
WO2009018180A3 (fr) * 2007-07-26 2009-07-09 Qualcomm Inc Multiplexage et transmission de trains de données multiples dans un système de communication sans fil à porteuse multiple
EP2209250A3 (fr) * 2007-08-02 2010-10-27 Fujitsu Limited Arrangement de pilotes pour des systèmes de communication mobiles hertziennes
US8619541B2 (en) 2007-08-02 2013-12-31 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
CN103338099B (zh) * 2007-08-02 2016-06-29 富士通株式会社 移动通信系统和移动通信系统中的通信方法
US8503284B2 (en) 2007-08-02 2013-08-06 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
US9485067B2 (en) 2007-08-02 2016-11-01 Fujitsu Limited Pilot arrangement method in mobile radio communication system and transmitter/receiver adopting same
EP2184872A4 (fr) * 2007-08-02 2010-11-03 Fujitsu Ltd Procédé d'arrangement pilote dans un système de communication radio mobile et émetteur/récepteur adoptant celui-ci
EP2184872A1 (fr) * 2007-08-02 2010-05-12 Fujitsu Limited Procédé d'arrangement pilote dans un système de communication radio mobile et émetteur/récepteur adoptant celui-ci
US9374791B2 (en) 2007-09-21 2016-06-21 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US8824979B2 (en) 2007-09-21 2014-09-02 Qualcomm Incorporated Interference management employing fractional frequency reuse
US9344973B2 (en) 2007-09-21 2016-05-17 Qualcomm Incorporated Interference management utilizing power and attenuation profiles
US9078269B2 (en) 2007-09-21 2015-07-07 Qualcomm Incorporated Interference management utilizing HARQ interlaces
US9066306B2 (en) 2007-09-21 2015-06-23 Qualcomm Incorporated Interference management utilizing power control
US9137806B2 (en) 2007-09-21 2015-09-15 Qualcomm Incorporated Interference management employing fractional time reuse
WO2009059252A2 (fr) * 2007-10-31 2009-05-07 Qualcomm Incorporated Multiplexage et transmission de flux de données multiples dans un système de communication sans fil à ondes porteuses multiples
WO2009059252A3 (fr) * 2007-10-31 2009-07-09 Qualcomm Inc Multiplexage et transmission de flux de données multiples dans un système de communication sans fil à ondes porteuses multiples
US8848619B2 (en) 2007-11-27 2014-09-30 Qualcomm Incorporated Interface management in a wireless communication system using subframe time reuse
US9288814B2 (en) 2007-11-27 2016-03-15 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US8867456B2 (en) 2007-11-27 2014-10-21 Qualcomm Incorporated Interface management in wireless communication system using hybrid time reuse
US9119217B2 (en) 2007-11-27 2015-08-25 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US8837305B2 (en) 2007-11-27 2014-09-16 Qualcomm Incorporated Interference management in a wireless communication system using beam and null steering
US8948095B2 (en) 2007-11-27 2015-02-03 Qualcomm Incorporated Interference management in a wireless communication system using frequency selective transmission
US9077598B2 (en) 2008-06-04 2015-07-07 Sony Corporation Digital signal transmission and reception
EA018825B1 (ru) * 2008-06-04 2013-11-29 Сони Корпорейшн Передача и приём цифрового сигнала
US8274878B2 (en) 2008-06-04 2012-09-25 Sony Corporation Frame and training pattern structure for multi-carrier systems
US8687716B2 (en) 2008-06-04 2014-04-01 Sony Corporation Digital signal transmission and reception
US8897120B2 (en) 2008-06-04 2014-11-25 Sony Corporation Frame and training pattern structure for multi-carrier systems
US8375261B2 (en) 2008-07-07 2013-02-12 Qualcomm Incorporated System and method of puncturing pulses in a receiver or transmitter
RU2494552C2 (ru) * 2009-02-24 2013-09-27 Квэлкомм Инкорпорейтед Гибкое мультиплексирование данных и управления
US9002315B2 (en) 2009-05-01 2015-04-07 Qualcomm Incorporated Systems, apparatus and methods for facilitating emergency call service in wireless communication systems
JP2009213168A (ja) * 2009-06-18 2009-09-17 Ntt Docomo Inc 送信装置、送信方法、ユーザ装置及び通信方法
US9077444B2 (en) 2013-09-12 2015-07-07 Motorola Solutions, Inc. Method and apparatus for late entry in asynchronous frequency hopping systems using random permutation sequences
CN103647737B (zh) * 2013-12-20 2016-09-21 东南大学 Mppsk调制的跳时多址实现方法
CN103647737A (zh) * 2013-12-20 2014-03-19 东南大学 Mppsk调制的跳时多址实现方法
EA037933B1 (ru) * 2018-11-12 2021-06-09 Открытое акционерное общество "Межгосударственная Корпорация Развития" Передатчик

Also Published As

Publication number Publication date
JP2007509586A (ja) 2007-04-12
BRPI0415840A (pt) 2007-01-02
EP1678906A1 (fr) 2006-07-12
KR100944821B1 (ko) 2010-03-03
CA2543771C (fr) 2010-04-20
CA2543771A1 (fr) 2005-05-06
KR20060086439A (ko) 2006-07-31
AU2004307449B2 (en) 2008-11-20
AU2004307449C1 (en) 2009-04-30
AU2004307449A1 (en) 2005-05-06

Similar Documents

Publication Publication Date Title
AU2004307449B2 (en) Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US8526412B2 (en) Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7693124B2 (en) Slot-to-interlace and interlace-to-slot converters for an OFDM system
KR101964653B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법, 및 방송 신호 수신 방법
JP5642618B2 (ja) 無線マルチキャリアにおける複数のデータストリームの多重化と送信
JP6513858B2 (ja) 放送信号送信装置、放送信号受信装置、放送信号送信方法及び放送信号受信方法
KR101830744B1 (ko) 방송 신호 송신 장치, 방송 신호 수신 장치, 방송 신호 송신 방법 및 방송 신호 수신 방법
US9954709B2 (en) Apparatus for transmitting broadcast signals, apparatus for receiving broadcast signals, method for transmitting broadcast signals and method for receiving broadcast signals
WO2009059252A2 (fr) Multiplexage et transmission de flux de données multiples dans un système de communication sans fil à ondes porteuses multiples
AU2007289323A1 (en) Method and apparatus for communicating network identifiers in a communication system
EP2220806A2 (fr) Multiplexage et transmission de trains de données multiples dans un système de communication sans fil à porteuse multiple
CN111510251A (zh) 发送和接收广播信号的装置和方法
EP2028785A2 (fr) Systèmes et procédés pour mappage généralisé de créneaux temporels sur des entrelacements
MXPA06004518A (en) Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480038711.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 175101

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 2543771

Country of ref document: CA

Ref document number: 2004817335

Country of ref document: EP

Ref document number: 2006536827

Country of ref document: JP

Ref document number: PA/a/2006/004518

Country of ref document: MX

Ref document number: 12006500817

Country of ref document: PH

Ref document number: 2004307449

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2340/DELNP/2006

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2004307449

Country of ref document: AU

Date of ref document: 20041021

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2004307449

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020067009990

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006117781

Country of ref document: RU

Ref document number: 1200600823

Country of ref document: VN

WWP Wipo information: published in national office

Ref document number: 2004817335

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020067009990

Country of ref document: KR

ENP Entry into the national phase

Ref document number: PI0415840

Country of ref document: BR

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)