Nothing Special   »   [go: up one dir, main page]

WO2004113258A1 - 炭素−炭素結合生成反応 - Google Patents

炭素−炭素結合生成反応 Download PDF

Info

Publication number
WO2004113258A1
WO2004113258A1 PCT/JP2004/008523 JP2004008523W WO2004113258A1 WO 2004113258 A1 WO2004113258 A1 WO 2004113258A1 JP 2004008523 W JP2004008523 W JP 2004008523W WO 2004113258 A1 WO2004113258 A1 WO 2004113258A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
general formula
carbon
salt
solvate
Prior art date
Application number
PCT/JP2004/008523
Other languages
English (en)
French (fr)
Inventor
Masaaki Uenaka
Shuhei Koshida
Makoto Kii
Shoji Shinomoto
Original Assignee
Shionogi & Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shionogi & Co., Ltd. filed Critical Shionogi & Co., Ltd.
Publication of WO2004113258A1 publication Critical patent/WO2004113258A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • C07C303/40Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids by reactions not involving the formation of sulfonamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/34Sulfur atoms

Definitions

  • the present invention relates to a Suzuki coupling suitable for an industrial process using an aqueous solvent, using economical palladium-carbon as a catalyst, considering the environment.
  • the present invention also relates to a more versatile Suzuki coupling in an aqueous solvent to which diols are added and catalyzed by palladium on carbon.
  • Non- Patent Document 1 The reaction of forming a carbon-carbon bond by reacting an aromatic halide with an aromatic boronic acid (or boronic ester) in the presence of a palladium catalyst is generally called Suzuki coupling (non- Patent Document 1).
  • This reaction is indispensable for the synthesis of biaryl sulfide compounds useful as liquid crystals and pharmaceuticals.
  • MMP inhibitors such as the following aryl-heteroarylsulfonamide derivatives (Patent Documents 1 and 2, Non-Patent Documents 2 and 3)
  • Bistriphenylphosphine palladium dichloride ((PP) PdCl) and the like are often used, and an organic solvent such as toluene is often used as a solvent.
  • organic solvent such as toluene
  • Patent Document 3 Non-patent Document 4
  • the substrate is limited to a compound having a phenolic hydroxyl group.
  • Non-Patent Document 5 reports Suzuki Riki coupling between a phenyl derivative having a carboxymethyl group and a phenylboronic acid derivative. However, the ratio of water: isopropanol is 8: 1, and the ratio of alcohol is high.
  • the substrate used in these reactions is characterized by having a hydrophilic group such as a hydroxyl group or a carboxy group as a substituent, and a substrate having only a hydrophobic group is disclosed or suggested. Not.
  • Non-Patent Document 6 describes a reaction in which ethylene glycol is added to a toluene / water-based solvent, but there is no description of the effect of the addition of a diol on the yield. In particular, there is no description of improving the yield by adding a diol in an aqueous solvent in the presence of a palladium-carbon catalyst, or that the reaction has a wide range of applications without using a substituent.
  • Patent Document 1 International Publication No. 97/27174 pamphlet
  • Patent Document 2 US Pat. No. 5,756,545
  • Patent Document 3 JP 2003-128608 A
  • Non-Patent Document 1 Norio Takaura, Akira Suzuki et al., Chemical Reviews 1995, Vol. 95, No. 7, p.2457-2483
  • Non-patent Document 2 Yoshinori Tamura et al., Journal of Medicinal Chemistry (J. Med. Chem.) 1998, Vol. 41, No. 4, p. 640-649
  • Non-Patent Document 3 Patrick M. O 'Brien et. Al., Journal of Medicinal Chemistry (J. Med. Chem.) 2000, Vol. 43, No. 2,
  • Non-Patent Document 4 Shunichi Hirao et al., Journal of Organic Chemistry (J. Org. Chem.) 2002, Vol. 67, No. 8, p.2721-2722
  • Non-Patent Document 5 D. Gala et. Al., Organic Process Researcher! ⁇ Aberoffment (Organic Process Research & Development) 1997, ⁇ ⁇ , p.163-164
  • Non-Patent Document 6 Christian Lieke et al., (Christian. Liek et. Al.) Zeitschrift fur Naturforschung B 1999, Vol. 54, No. 12, p. 1532 1542
  • R 1 is lower alkyl, hydroxy, lower alkyloxy, lower alkylthio, honolemil, acyl, acyloxy, halogen, halo-lower alkyl, halo-lower alkyloxy, nitro, carboxy, snorejo, lower alkyloxycarbonyl, Lower alkynolesulfonyl, lower alkylsulfonyloxy, optionally substituted aminocarbonyl, optionally substituted aminocarbonyl, optionally substituted aryl, or optionally substituted heteroaryl; R 2 and R 2 'is simultaneously hydrogen atom or a lower alkyl, or R 2 and R 2' it may also form a 3 to 8-membered ring together with the oxygen atom connexion adjacent such together les,; Z 1 is - Ji 11: .!
  • R 1 1 is as defined the hydrogen atom or R 1, R 11
  • m is an integer from 0 to 3, when the above m power 3 ⁇ 4, the compound represented by R 1 is selected independently)
  • the Salts, or solvates thereof and
  • R ° is lower alkyl, hydroxy, lower alkyloxy, lower alkylthio, honolemil, acyl, acyloxy, halogen, halo-lower alkyl, halo-lower alkyloxy, nitro, carboxy, snorejo, lower alkyloxycarbonyl, Lower alkynolesulfonyl, lower alkylsulfonyloxy, optionally substituted aminyl, optionally substituted aminocarbonyl, optionally substituted aryl, or optionally substituted heteroaryl;
  • R 3 is Hydrogen atom, optionally substituted lower alkyl, optionally substituted aryl, optionally substituted aralkyl, optionally substituted heteroaryl, or optionally substituted heteroarylalkyl ;
  • R 4 is hydrogen atom, lower alkyl, Ararukiru, hetero Reel alkyl or Ashiru,; Y during hydroxy or lower Arukiruokishi 1 is
  • n are the same as defined above), a salt thereof, or a solvate thereof.
  • n is the same as defined in 1)
  • R °, X 1 and Z 2 have the same meaning as in 1); p has the same meaning as in 7)), a salt thereof, or a solvate thereof.
  • lower alkyl used alone or in combination with other terms includes a straight-chain or branched-chain monovalent hydrocarbon group having 118 carbon atoms.
  • C1-C6 alkyl is used. More preferably, C1-C4 alkyl is used. More preferably, C1-C3 alkyl is mentioned.
  • lower alkyl for R 1 is preferably methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like.
  • R 2 and R 2 ′ methyl, ethyl, n-propyl, isopyryl and the like are preferable. Further, methyl is preferred.
  • methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl and the like are preferable.
  • Methyl, ethyl, isopropyl, isobutyl, sec-butyl are more preferred.
  • methyl ethyl, n-propyl, n-butyl and the like are preferable. Masire, Further, methyl is preferred.
  • R 6 and R 6 ′ methyl, ethyl, n-propyl, isopyl pill and the like are preferable. Further, methyl is preferred.
  • aryl used alone or in combination with other terms includes a monocyclic or condensed cyclic aromatic hydrocarbon.
  • phenyl, 11-naphthine, 2-naphthyl, anthryl and the like can be mentioned.
  • the term "arano quinole” is obtained by substituting the above “lower alkyl” by one or more of the above “aryl”, and these may be substituted at all possible positions.
  • benzene e.g, 2-phenylethyl
  • phenylpropyl eg, 3_phenylpropyl
  • naphthylmethyl eg, 1-naphthylmethyl, 2-naphthylmethyl, etc.
  • anthrylmethyl eg, 9-anthrylmethyl and the like.
  • R 3 and R 4 benzyl, phenylethyl, naphthylmethyl and the like are preferable.
  • Benginore is preferred.
  • heteroaryl used alone or in combination with other terms refers to an arbitrarily selected 5- to 6-membered ring containing one or more oxygen, sulfur or nitrogen atoms in the ring. Which may be fused with cycloalkyl, aryl, non-aromatic heterocycle, or other heteroaryl, which may be fused at all possible positions.
  • pyrrolyl eg, 1-pyrrolyl, 2_pyrrolyl, 3-pyrrolyl
  • furyl eg, 2-furyl, 3_furyl
  • phenyl eg, 2_phenyl, 3_phenyl
  • imidazolinole eg, 2_imidazolyl, 4-imidazolyl
  • pyrazolyl eg, 1-pyrazolyl, 3-virazolinole
  • isothiazolyl eg, 3-isothiazolyl
  • isoxazolyl eg, 3-isoxazozolyl
  • oxazolyl eg, 2-oxazolyl
  • Thiazolyl for example, 2-thiazolyl
  • pyridyl for example, 2_pyridinole, 3_pyridinole, 4_pyridyl
  • pyrazur for example, 2-pyrazuryl
  • pyrimidinyl for example, 2_pyrimidyl
  • heteroarylalkyl means one or more of the above “heteroaryl” substituted at any position of the above “lower alkyl”, and these may be substituted at all possible positions.
  • thiazolylmethyl for example, 4_thiazolylmethyl
  • thiazolylethyl for example, 5_thiazolyl-2-ethyl
  • benzothiazolylmethyl for example, (benzothiazonole_2_yl) methyl
  • indolylmethyl for example, ( Indole—3—
  • heteroarylalkyl for R 3 , indolylmethyl (eg, indolinole-3-ylmethyl), imidazolylmethyl (eg, imidazole-5-ylmethyl) and the like are preferable. Indore no_3_ylmethyl is preferred.
  • heteroarylalkyl for R 4 , indolylmethyl (eg, indole-no_3_ylmethyl) and the like are preferable.
  • the “lower alkyloxy” includes methyloxy, ethyloxy, n-propyl pyroxy, isopropyloxy, n-butyloxy, isobutyloxy, sec-butyloxy, tert-butyloxy and the like.
  • methyloxy, ethyloxy, n-propyloxy, isopropyloxy and n-butyloxy are exemplified.
  • lower alkylthio includes methylthio, ethylthio, n-propylthio and the like.
  • acyl used alone or in combination with other terms, includes an alkylcarbonyl wherein the alkyl moiety is the above “lower alkyl” or an arylcarbonyl wherein the aryl moiety is the above “aryl”. I do. For example, acetyl, propionyl, benzoyl and the like can be mentioned. “Lower alkyl” and “aryl” may be substituted by the respective substituents described below.
  • examples of "asyloxy” include acetyloxy, propionyloxy, benzoyloxy and the like.
  • halogen refers to fluorine, chlorine, bromine, and iodine. Preference is given to chlorine and bromine. More preferably, chlorine is used.
  • ⁇ halo lower alkynole '' used alone or in combination with other terms refers to the above-mentioned ⁇ lower alkyl '' substituted at 118 places, preferably at 115 places by the above-mentioned ⁇ halogen ''.
  • ⁇ halo lower alkynole '' used alone or in combination with other terms refers to the above-mentioned ⁇ lower alkyl '' substituted at 118 places, preferably at 115 places by the above-mentioned ⁇ halogen ''.
  • trifluoromethyl, trichloromethyl, difluoroethyl, trifluoroethyl, dichloroethynole, trichloroethyl and the like can be mentioned.
  • trifluoromethyl is used.
  • halo lower alkyl for R 5 , trifluoromethyl is preferable.
  • halo lower alkyloxy includes trifluoromethyloxy and the like.
  • lower alkyloxycarbonyl includes methyloxycarbonyl, ethyloxycarbonyl, n-propyloxycarbonyl, isopropyloxycarbonyl and the like.
  • the “lower alkylsulfonyl” includes methylsulfonyl, ethylsulfonyl, propylsulfonyl and the like.
  • the “lower alkylsulfonyloxy” includes methanesulfonyloxy, ethanesulfonylsulfonyloxy, propanesulfonyloxy and the like.
  • the term “optionally substituted amino” used alone or in combination with other terms refers to an unsubstituted amino or the above-mentioned “lower alkyl", “aralkyl”, “heteroarylalkyl”, Or amino substituted one or two times with “acyl”.
  • amino, methinoleamino, dimethylamino, ethylmethylamino, getylamino, benzylamino, acetylamino, benzoylamino and the like can be mentioned.
  • amino, methylinoamino, dimethylamino, ethylmethylamino, getylamino, and acetylamino are exemplified.
  • the “optionally substituted aminocarbonyl” includes aminocarbyl (forcebamoyl), methylaminocarbonyl, dimethylaminocarbonyl, ethylmethylaminocarbonyl, getylaminocarbonyl and the like.
  • amino carbonyl and dimethylamino carbonyl are mentioned.
  • examples of the substituent in the "optionally substituted lower alkyl” include cycloalkyl (for example, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl), hydroxy, and lower alkyloxy (for example, methoxy).
  • aryl eg, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl
  • lower alkenyl eg, bier, propenyl, butenyl
  • Lower alkynyl ethynyl, propyninole
  • hydroxy lower alkyloxy (eg, methoxy, ethoxy, t-butoxy)
  • mercapto lower alkylthio (eg, methylthio, ethylthio), halogen, nitro, cyano, carboxy, sulfo, lower alkyl Oxycarbonyl (eg, methoxycarbonyl,
  • R 3 is substituted, good Rere Ariru be", "substituted been, even if good records, Heteroari Le”, “may be substituted Ararukiru”, and "to which may be substituted Hydroxy or halogen is preferred as the substituent in “teroarylalkyl”. Also preferred are “unsubstituted aryl”, “unsubstituted heteroaryl”, “unsubstituted aralkyl”, and “unsubstituted heteroarylalkyl”.
  • R 2 and R 2 ' may be taken together to form a 38-membered ring containing an adjacent oxygen atom
  • R 6 and R 6 ' are taken together. May form a 38-membered ring each containing an adjacent oxygen atom ", and includes the following rings.
  • diol as used herein means an alcohol having two hydroxyl groups bonded to different carbon atoms in C2-C6, preferably C2-C4 alkanediyl. Examples include ethylene glycol, 2,3_butanediol, 2,3_dimethyl-2,3_butanediol, and 1,3-propanediol. Ethylene glycol is preferred.
  • BEST MODE FOR CARRYING OUT THE INVENTION [0018] When referring to a “compound”, the compound is not limited to a specific isomer, but includes all possible isomers (eg, optical isomers) and racemates. Further, a pharmaceutically acceptable salt or a solvate thereof is also included.
  • salt of the compound used in the present invention refers to alkali metals (lithium, sodium, potassium, cesium, etc.), alkaline earth metals (magnesium, calcium, barium, etc.), ammonium, organic bases and amino acids.
  • organic acids acetic acid, citric acid, maleic acid, fumaric acid, benzenesulfonic acid, p-toluenesulfonic acid, etc.
  • inorganic acids hydroochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid, etc.
  • Contains salt can be formed by a commonly used method.
  • solvate of the compound used in the present invention includes, for example, solvates with organic solvents, hydrates and the like. When forming a hydrate, it may be coordinated with any number of water molecules.
  • This step is a step of coupling the compound represented by the general formula (IV) and the compound represented by the general formula (V) as starting materials using the Schotten-Baumann method.
  • the solvent a mixed solvent of acetone and water is preferable.
  • the base include sodium carbonate, sodium hydrogencarbonate, potassium carbonate, potassium hydrogencarbonate, cesium carbonate, cesium hydrogencarbonate, lithium carbonate, lithium hydrogencarbonate, rubidium carbonate, and rubidium hydrogencarbonate.
  • inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, norrebidium hydroxide, cesium hydroxide and ammonium carbonate, and tertiary amines such as triethylamine, tributylamine and diisopropylethylamine.
  • Sodium carbonate, potassium carbonate, cesium carbonate, sodium hydroxide, triethylamine, etc. are preferred (second step).
  • This step is a step of performing a coupling reaction in the presence of palladium-carbon on the compound represented by the general formula (II) and the compound represented by the general formula (III) as starting materials.
  • the solvent water or a mixed solvent of water and an organic solvent is preferable.
  • Water or water split A mixed solvent with an organic solvent having a high compatibility is more preferable.
  • the mixing ratio of water and the organic solvent is preferably 100: 0-85: 15, more preferably 100: 0-90: 10, even more preferably 100: 0-93: 7, and particularly preferably.
  • the solvent is water. In particular, water is preferred.
  • the organic solvent of the mixed solvent the force due to the solubility of the substrate S, benzene, toluene, N, N-dimethylphenol, amide, dimethoxyethane, tetrahydrofuran, dioxane, methanol, ethanol, isopropanol, and the like are preferable.
  • Basic substances include sodium hydroxide, sodium methoxide, potassium hydroxide, ammonia, lithium hydroxide, cesium hydroxide, rubidium hydroxide, barium hydroxide, lithium methoxide, potassium methoxide, cesium methoxide, and sodium ethoxide.
  • Sodium carbonate, potassium carbonate and disodium hydrogen phosphate are preferred.
  • the palladium carbon catalyst preferably contains water.
  • the water content is preferably 70% -30%. Further, 60% to 40% is preferable.
  • the content of palladium carried on the palladium carbon is preferably 13% to 1%. 7% -3% is more preferred.
  • 0.1 to 5 equivalents, preferably 0.3 to 2 equivalents of a diol such as ethylene daryl it is preferable to add 0.1 to 5 equivalents, preferably 0.3 to 2 equivalents of a diol such as ethylene daryl to the reaction system in order to suppress a side reaction.
  • Solvent power W Sopropanol- 17 (main) mixed solvent, 5% palladium-carbon catalyst containing water as the catalyst, and reaction conditions in which the basic substance is potassium carbonate are preferable.
  • the reaction conditions, which are in the presence of, are preferred.
  • This step is a step of performing a coupling reaction in the presence of a diol using a compound represented by the general formula (VI) and a compound represented by the general formula (VII) as starting materials.
  • water or a mixed solvent of water and an organic solvent is preferable.
  • Water or a mixed solvent with an organic solvent having a high percentage of water is more preferable.
  • the mixing ratio of water and the organic solvent is preferably 100: 085: 15, more preferably 100: 0-90: 10, even more preferably 100: 0-93: 7, and particularly preferably a solvent.
  • the organic solvent of the mixed solvent benzene, toluene, N, N-dimethylformamide, dimethoxyethane, tetrahydrofuran, dioxane, methanol, ethanol, isopropanol, etc. are preferred.
  • Examples of the basic substance and the nodium-carbon catalyst include those used in the second step.
  • the diols include ethylene glycol, 2,3_butanediol, 2,3_dimethyl-2,
  • the pH of the reaction solution is usually pH 7-11, but the type of boronic acid represented by the general formula (VI) is Depending on the pH, pH 4-6 may be optimal. In such a case, the reaction is preferably performed in the presence of acetic acid, sodium dihydrogen phosphate or sodium monohydrogen phosphate.
  • reaction conditions in which the solvent is an aqueous solvent, the catalyst is 5% palladium-carbon containing water, the basic substance is disodium hydrogen phosphate, and the diol is ethylene glycol are more preferable.
  • This step is a step of performing a coupling reaction using the compound represented by the general formula (IX) and the compound represented by the general formula (VII) as starting materials.
  • boronic ester represented by the general formula (IX) a commercially available product can be used.
  • References (Sudersan M. Tuladhar et. Al.), Tetrahedron Letters 1992, Vol. 33, No. 2, p. 265-268, etc. Can also be synthesized from the reaction of a boronic acid derivative with an alcohol. Further The compound can also be synthesized by the method described in the literature (Miyaura et al., Journal of Organic Chemistry (J. Org. Chem.) 1995, Vol. 60, No. 23, p. 7508-7510).
  • Examples of the solvent, basic substance, catalyst and the like include the solvents, basic substances, catalysts and the like described in the second and third steps.
  • reaction conditions in which the solvent is an aqueous solvent, the catalyst is 5% palladium-carbon containing water, and the basic substance is disodium hydrogen phosphate.
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 mL), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol) and phenylboronic acid (2a, 0.728 g, 5.97 mmol) was added at room temperature.
  • the suspension was mixed with ethylene glycol (3.0 ml, 53.8 mmol) and 5% palladium-carbon (2 mg, 0.456 ol) as a catalyst, and stirred at 95 ° C under a nitrogen stream for 8 hours.
  • Disodium hydrogenphosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol), phenylboronic acid (2a, 0.728 g, 5.97 mmol) was added at room temperature.
  • Sodium bromide (0.512 g, 4.98 mmol), ethylene glycol (3.0 ml, 53.8 mmol), 5% palladium-carbon (2 mg, 0.456 nmol) were added to the suspension, and the mixture was stirred at 95 ° C for 8 hours under a nitrogen stream. Stirred.
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol) and phenylboronic acid (2a, 0.728 g, 5.97 mmol) was added at room temperature. 2, 3-butanediol (3.0 ml, 33.1 mmol) and 5% palladium-carbon (2 mg, 0.456 nmol) were added to the suspension, and the mixture was stirred at 95 ° C under a nitrogen stream for 8 hours.
  • Table 1 summarizes the results of Examples 13 and 13 and Comparative Example 1. Even when the reaction does not proceed with phenylboronic acid alone, the reaction proceeds smoothly in the presence of the diol, and the desired product is obtained in good yield. In particular, in the presence of diol and sodium bromide, the yield is significantly improved.
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol) and phenylboronic acid ethylene glycol ester (2b, 0.883 g, 5.97 mmol) was added at room temperature.
  • 4_bromobenzoic acid la, 1.00 g, 4.97 mmol
  • phenylboronic acid ethylene glycol ester (2b, 0.883 g, 5.97 mmol
  • the reaction solution was allowed to cool to room temperature, 2 mol / L hydrochloric acid (10 ml) was added, the mixture was stirred at room temperature for 30 minutes, and the precipitated crystals were collected by filtration.
  • Disodium hydrogenphosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol), phenylboronic acid 2,3 butanediol ester (2c, 1.051 g, 5.97 mmol) was added at room temperature.
  • the suspension was quenched with 5% palladium carbon (2 mg, 0.456 nmol) and stirred at 95 ° C. for 8 hours under a nitrogen stream.
  • the reaction solution was allowed to cool to room temperature, 2 mol / L hydrochloric acid (10 ml) was added, the mixture was stirred at room temperature for 30 minutes, and the precipitated crystals were collected by filtration.
  • the obtained crude crystals were dissolved in tetrahydrofuran (100 ml), and a solution in which acetonitrile was added to 1 ml of the solution and the total amount was 50 ml was prepared. Using this solution, a quantitative test (UV 230 nm) was performed by HPLC. The yield of 4-bicarboxylic acid 3 was 86.6%.
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4-bromobenzoic acid (la, 1.00 g, 4.97 mmol), 4-acetylphenylboronic acid (2d, 0.979 g, 5.97 mmol) was added at room temperature.
  • Sodium bromide (0.512 g, 4.98 mmol), ethylene glycol (3.0 ml, 53.8 mmol), 5% palladium on carbon (21 mg, 4.79 nmol) were added to the suspension, and the mixture was stirred at 95 ° C under a nitrogen stream for 1.5 hours. Stirred.
  • reaction solution was allowed to cool to room temperature, 2 mol / L hydrochloric acid (10 ml) was added thereto, and the mixture was stirred at room temperature for 30 minutes.
  • the precipitated crystals were collected by filtration and recrystallized from tetrahydrofuran Z-hexane to obtain the desired product (4, 1.142 g, 95.5%).
  • Disodium disodium hydrogen phosphate (1.786 g, 12.6 mmol) was dissolved in water (28 ml), and 4-bromoisole (lb, 0.63 ml, 5.03 mmol) and phenylboronic acid (2a, 0.736 g, 6.04 mmol) were added at room temperature. Added in. Sodium bromide (0.518 g, 5.03 mmol), ethylene glycol (2.8 ml, 50.2 mmol), 5% palladium-carbon (221 mg, 50.1 nmol) were added to the suspension, and the mixture was stirred at 95 ° C for 8 hours under a nitrogen stream. Stirred.
  • reaction solution was allowed to cool to room temperature, extracted twice with ethyl acetate (50 ml, 30 ml), and the organic layer was dried over magnesium sulfate.
  • the solvent was distilled off under reduced pressure, the residue was crystallized from methanol / water, and the obtained crude crystals were recrystallized from isopropanol Z water to obtain the desired product (5, 0.486 g, 52.5%). .
  • Disodium dihydrogen phosphate (1.783 g, 12.6 mmol) was dissolved in water (30 ml), and 4-bromoacetylethylbenzene (lc, 1.00 g, 5.02 mmol) and phenylenoboronic acid (2a, 0.735 g, 6.03 mmol) were added. Added at room temperature. To the suspension were added sodium bromide (0.517 g, 5.02 mmol), ethylene glycol (3.0 ml, 53.8 mmol), and 5% palladium on carbon (220 mg, 50.1 nmol), and the mixture was added with 95. The mixture was stirred under a nitrogen stream with C for 3 hours.
  • Disodium hydrogenphosphate (1.786 g, 12.6 mmol) was dissolved in water (28 ml), and 4-bromodisole (lb, 0.63 ml, 5.03 mmol), 4-acetylphenylboronic acid (2d, 0.990 g, 6.04 mmol) was added at room temperature.
  • Sodium bromide (0.518 g, 5.03 mmol), ethylene glycol (2.8 ml, 50.2 mmol) and 5% palladium on carbon (221 mg, 50.1 mmol) were added to the suspension, and the mixture was stirred at 95 ° C for 8 hours under a nitrogen stream. Stirred.
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol) and 4_fluorophenylboronic acid (2e, 0.835 g, 5.97 mmol) was added at room temperature.
  • Sodium bromide (0.512 g, 4.98 mmol), ethylene glycol (3.0 ml, 53.8 mmol) and 5% palladium on carbon (21 mg, 4.79 nmol) were added to the suspension, and the mixture was stirred at 95 ° C for 2 hours under a nitrogen stream. Stirred.
  • the reaction solution was allowed to cool to room temperature, and the precipitated crystals were collected by filtration.
  • the crude product was recrystallized from ethyl acetate / hexane to obtain the desired product (8, 1.015 g, 95.2%).
  • reaction solution was allowed to cool to room temperature, extracted twice (150 ml, 100 ml) with ethyl acetate, and the organic layer was dried over magnesium sulfate.
  • the solvent was distilled off under reduced pressure, and the residue was crystallized from acetone / water to obtain the desired product (9, 0.502 g, 63.2%).
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4-bromobenzoic acid (la, 1.00 g, 4.97 mmol) and 4-methylthiophenenylboronic acid (2f, 1.00 mmol) were dissolved. g, 5.97 mmol) at room temperature.
  • Sodium bromide (0.512 g, 4.98 mmol), ethylene glycol (3.0 ml, 53.8 mmol) and 5% palladium on carbon (221 mg, 50.1 nmol) were added to the suspension, and the mixture was stirred at 95 ° C for 28 hours under a nitrogen stream. Stirred.
  • reaction solution was allowed to cool to room temperature, extracted twice with ethyl acetate (150 ml, 100 ml), and the organic layer was dried over magnesium sulfate. The solvent was evaporated under reduced pressure, and the residue was crystallized from ethyl acetate / hexane to give the desired product (10, 0.268 g, 22.1%).
  • Disodium hydrogen phosphate (1.765 g, 12.4 mmol) was dissolved in water (30 ml), and 4_bromobenzoic acid (la, 1.00 g, 4.97 mmol) and 4_tolylboronic acid (2 g, 0.812 g, 5.97 g) were dissolved. mmol) at room temperature.
  • Sodium bromide (0.512 g, 4.98 mmol), ethylene glycol (3.0 ml, 53.8 mmol), 5% palladium-carbon (21 mg, 4.79 nmol) were added to the suspension, and the mixture was stirred at 95 ° C for 3 hours under a nitrogen stream. Stirred.
  • reaction solution was allowed to cool to room temperature, and 2 mol / L hydrochloric acid (10 ml) was stirred at room temperature for 30 minutes.
  • the precipitated crystals were collected by filtration and recrystallized from ethyl acetate / hexane to obtain the desired product (11, 0.969 g, 91.8%).
  • Disodium hydrogenphosphate (1.777 g, 12.5 mmol) was dissolved in water (26 ml), and 4-bromophenololebenzene (If, 0.55 ml, 5.01 mmol) and phenylboronic acid (2a, 0.733 g, 6.01 mmol) were added at room temperature. added.
  • sodium bromide 0.515 g, 5.01 mmol
  • ethylene glycol 2.6 ml, 46.6 mmol
  • 5% palladium on carbon (220 mg, 50.1 nmol). Stirred for hours.
  • the reaction solution was allowed to cool to room temperature and twice with ethyl acetate (200 ml, 100 ml), and the organic layer was dried over magnesium sulfate.
  • the solvent was distilled off under reduced pressure, and the residue was crystallized from methanol / water to obtain the desired product (12, 0.613 g, 71.1%).
  • the reaction solution was concentrated under reduced pressure, and the obtained slurry (108.4 g) was extracted with water (59 mL), acetone (2.8 mL), and ethyl acetate (57 mL). After the organic layer was extracted with water (13 mL), the aqueous layers were combined, acidified with concentrated hydrochloric acid (13 mL), and extracted with ethyl acetate (60 mL). The organic layer is washed with water (20 mL) and concentrated under reduced pressure. After dissolving the residue in isopropanol (26 mL), the solution was concentrated once more to obtain an isopropanol solution of compound 16 (25.0 g), and this solution was directly used in the next step. Purified samples for analysis were obtained by crystallization of acetone tonoleenca. Melting point: 123-125 ° C
  • Carbonic acid was added to a suspension of Compound 16 (25.0 g, Compound 14; isopropanol solution obtained from 38.0 mol) and Compound 2f (6.38 g, 1.0 eq) in isopropanol (7.8 mL) and water (128 mL). Potassium (13.1 g, 2.5 eq) was added in portions. Wet 5% palladium on carbon (51.5%, 2.5 g, 0.015 eq) was added to the suspension and the mixture was degassed by purging three times with vacuum-nitrogen. The mixture was heated at 7580 ° C for 5 hours, and then cooled to room temperature.
  • the filtrate was washed sequentially with ethyl acetate (50 mL, 30 mL), and the organic layer was back-extracted with water (30 mL).
  • 35% hydrochloric acid (3.8 mL) was added dropwise at about 25 ° C, and the pH was adjusted to 2.2.
  • the precipitated crystals were collected by filtration and washed with isopropanol / water (50 mL / 50 mL).
  • the crystals were dried to obtain crude IB (8.26 g).
  • the crystals were dissolved in tetrahydrofuran (50 mL), activated carbon (500 mg) was added, and the mixture was filtered. After concentrating the solvent, the precipitated crystals were collected by filtration and washed with cold isopropyl. Dried and purified I-B (8.2 g, 73.6%) was obtained.
  • Non-isolated method for intermediate D-valine (15, 8.4 g, 71.7 mmol, 1.1 eq) was dissolved in a 2% aqueous sodium hydroxide solution (129.6 g, 1.0 eq), and isopropanol (102 mL) was obtained.
  • Compound 6 (17 g, 65.0 mmol) was added at about 7 ° C, and the pH was maintained at 11 to 12 by adding a 17% aqueous sodium hydroxide solution (17.3 g, 1.1 eq). The reaction solution was stirred at around 7 ° C for 5 hours.
  • the reaction solution was concentrated to 127.9 g to distill off isopropanol, and a 3.7% aqueous sodium hydroxide solution (69.4 g, l.Oeq) was added.
  • Compound 2d (11.6 g, 70.6 mmol, 1.1 eq), acetic acid (5.84 g, 96.4 mmol, 1.5 eq), 5% palladium-carbon (51.6% wet) (7.07 g, 1.6 mmol, 0.025 eq) were added sequentially. 90. The temperature rose to C. The reaction solution was stirred at the same temperature for 4 hours.
  • the desired product and a solid containing water are obtained.
  • the moist solid is dissolved in acetone at 50 ° C. Filter off insolubles and wash with acetone / water (9/1). The filtrate and the washing solution are combined and treated with activated carbon. After filtering the activated carbon, it is washed with acetone / water (9/1). Slowly add water to the combined solution of filtrate and washings. After further stirring at 22 ° C for 20 minutes, water is added to the slurry at 22-24 ° C. After cooling the slurry to 18, filtration, washing with water and drying, a crude product is obtained. The crude product is recrystallized with tetrahydrofuran / acetone power to obtain the desired crystal (g).
  • An economical Suzuki coupling suitable for an industrial process using an aqueous solvent can be performed using palladium-carbon as a catalyst, considering the environment.
  • diols it is possible to improve the yield of Suzuki coupling in a nodium-carbon catalyst and aqueous system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
炭素 -炭素結合生成反応
技術分野
[0001] 経済的なパラジウム一炭素を触媒とし、環境に配慮し、水系溶媒を用いる工業的製 法に適した鈴木カップリングに関する。また、ジオール類を添加した、パラジウム一炭 素を触媒とした水系溶媒における、より汎用性の高い鈴木カップリングに関する。 背景技術
[0002] 芳香族ハロゲン化物と芳香族ボロン酸(またはボロン酸エステル)をパラジウム触媒 の存在下で反応させることにより炭素 -炭素結合を生成する反応は、一般に鈴木カツ プリングと呼ばれている(非特許文献 1)。液晶や医薬品として有用なビアリールイ匕合 物の合成に欠かせない反応である。たとえば、次のような MMP阻害剤として知られ るビアリールスルホンアミド誘導体ゃァリール一へテロァリールスルホンアミド誘導体の 合成に用いられている(特許文献 1、 2、非特許文献 2、 3)
[化 1]
HCI H。N C02Me
Figure imgf000003_0001
THF
MeO S- C02Me - MeO S-N CO H
Figure imgf000004_0001
(72%)
Figure imgf000004_0002
パラジウム触媒としては、テトラキストリフエニルホ
ビストリフエニルホスフィンパラジウムジクロリド((PP] PdCl )等が用レ'られること力 s多 ぐまた、溶媒としてはトルエン等の有機溶媒が用いられることが多い。し力 ながら、 工業化の際には、これらの触媒が高価であるという点、有機溶媒の使用が与える環 境への影響などが、問題になることが多かった。このような観点から、より安価なパラ ジゥム触媒や、環境に配慮した溶媒の探索がおこなわれてレ、る。
たとえば、フヱノール性水酸基を有するフヱノール誘導体とフヱニルボロン酸との鈴 木カップリングが、パラジウム一炭素触媒存在下、水溶媒中で進行することが報告さ れている。 (特許文献 3、非特許文献 4)しかしながら、基質はフエノール性水酸基を 有する化合物に限定されている。
[化 3]
Figure imgf000004_0003
カルボキシメチル基を有するフヱニル誘導体とフヱニルボロン酸誘導体との鈴木力 ップリングが非特許文献 5に報告されている。し力 ながら、水:イソプロパノールの比 が 8 : 1であり、アルコールの占める割合が高い。
[化 4]
Figure imgf000004_0004
これらの反応に用いられている基質は、置換基として水酸基やカルボキシ基のよう な親水性基を有していることが特徴であり、疎水性基のみを有する基質は、開示も示 唆もされていない。
一方、非特許文献 6には、エチレングリコールをトルエン/水系溶媒に加えた反応 が記載されているが、ジオールの添加が、収率に与える効果についての記載は全く ない。特に、パラジウム一炭素触媒存在下、水溶媒中でジオールを添加することによ る収率の向上や、置換基によらない、応用範囲が広い反応であることについては全く 記載していない。
[0004] 特許文献 1 :国際公開第 97/27174パンフレット
特許文献 2:米国特許 5756545号明細書
特許文献 3:特開 2003 - 128608号公報
非特許文献 1:宫浦のりお、鈴木章ら、ケミカル レビュー(Chemical Reviews) 1995年 、第 95卷、第 7号、 p.2457-2483
非特許文献 2 :田村嘉則ら、ジャーナル ォブ メディシナル ケミストリー(J. Med. Chem.) 1998年、第 41卷、第 4号、 p.640-649
非特許文献 3 :パトリック ェム ォブリンら(Patrick M. O ' Brien et. al.)ジャーナル ォブ メディシナル ケミストリー (J. Med. Chem.) 2000年、第 43卷、第 2号、
p.156 - 16ο
非特許文献 4 :平尾俊一ら、ジャーナル ォブ オーガニック ケミストリー(J. Org. Chem.) 2002年、第 67卷、第 8号、 p.2721-2722
非特許文献 5 :ディー ガラら、(D. Gala et. al.)、オーガニック プロセス リサーチ ァ ン!^ アベロッフメント (Organic Process Research & Development) 1997年、 丄卷、 p.163-164
非特許文献 6 :クリスティアン リーキら、(Christian. Liek et. al.)、ツァイチュリフト フユ ァー ナトウルフォルシユング ビー(Zeitschrift fur Naturforschung B) 1999年、第 54 卷、 12号、 p.1532-1542
発明の開示
[0005] 経済的なパラジウム一炭素を触媒とし、環境に配慮し、水系溶媒を用いる工業的製 法に適した鈴木カップリングの開発が望まれている。また、該カップリング反応が基質 によらない、より一般的な反応条件で行われることも望まれている。
本発明者らは以上の点に鑑み、鋭意検討を重ねた結果、経済的なパラジウム一炭 素を触媒とし、環境に配慮し、水系溶媒を用いる工業的製法に適した鈴木カップリン グを見出した。また、パラジウム一炭素を触媒として用いた水系溶媒における鈴木カツ プリングにおいて、ジオール類を添加することにより飛躍的に収率が向上することを 見出した。
すなわち、本発明は、 1)一般式 (II):
[化 5]
(II)
Figure imgf000006_0001
(式中、 R1は低級アルキル、ヒドロキシ、低級アルキルォキシ、低級アルキルチオ、ホ ノレミル、ァシル、ァシルォキシ、ハロゲン、ハロ低級アルキル、ハロ低級アルキルォキ シ、ニトロ、シァ入カルボキシ、スノレホ、低級アルキルォキシカルボニル、低級アルキ ノレスルホニル、低級アルキルスルホニルォキシ、置換されていてもよいアミ入置換さ れていてもよいアミノカルボニル、置換されていてもよいァリール、または置換されて いてもよいへテロアリール; R2および R2'は同時に水素原子もしくは低級アルキル、ま たは R2および R2'が一緒になつて隣接する酸素原子とともに 3 8員環を形成してもよ レ、; Z1は—じ 11 :。!^1—、— S―、—〇—、— CR" = N―、または— N = CR"— (式中、 R1 1は水素原子または R1と同意義であり、 R11が 2個以上存在する場合は互いに独立し て選ばれる); mは 0から 3の整数であり、 m力 ¾以上の場合、 R1はそれぞれ独立して 選ばれる)で表わされる化合物、その塩、またはその溶媒和物、および
一般式 (III) : (I'D
Figure imgf000007_0001
(式中、 R°は低級アルキル、ヒドロキシ、低級アルキルォキシ、低級アルキルチオ、ホ ノレミル、ァシル、ァシルォキシ、ハロゲン、ハロ低級アルキル、ハロ低級アルキルォキ シ、ニトロ、シァ入カルボキシ、スノレホ、低級アルキルォキシカルボニル、低級アルキ ノレスルホニル、低級アルキルスルホニルォキシ、置換されていてもよいアミ入置換さ れていてもよいアミノカルボニル、置換されていてもよいァリール、または置換されて いてもよいへテロアリール; R3は水素原子、置換されていてもよい低級アルキル、置 換されていてもよいァリール、置換されていてもよいァラルキル、置換されていてもよ いへテロァリール、または置換されていてもよいへテロアリールアルキル; R4は水素原 子、低級アルキル、ァラルキル、ヘテロァリールアルキル、またはァシル; Yはヒドロキ シまたは低級アルキルォキシ 1はハロゲンまたは R5S〇—(式中、 R5は低級アルキ
3
ルまたはハロ低級アルキル); Z2は— CR12= CR12_、— S―、—〇_、— CR12=N―、また は- N = CR12- (式中、 R12は水素原子または R。と同意義であり、 R12が 2個以上存在 する場合は互いに独立して選ばれる); nは 0から 2の整数であり、 nが 2の場合、 R°は それぞれ独立して選ばれる)で表わされる化合物、その塩、またはその溶媒和物を、 パラジウム一炭素の存在下、水を含む溶媒中で反応させることを特徴とする、 一般式 (I) :
[化 7]
Figure imgf000007_0002
よび nは前記と同意義)で表わされる化合 物、その塩、またはその溶媒和物の製造方法。
さらに詳しくは、以下の 2)から 10)に関する。 2)—般式 (IV)
[化 8]
Figure imgf000008_0001
(式中、 X2はハロゲン、 R° X1 Z2および nは 1)と同意義)で表わされる化合物、その 塩、またはその溶媒和物、および一般式 (V)
[化 9]
Figure imgf000008_0002
(式中、 R3
Figure imgf000008_0003
および Yは 1)と同意義)で表わされる化合物、その塩、またはその溶 媒和物を反応させることにより、一般式 (III)
[化 10]
Figure imgf000008_0004
および nは 1)と同意義)で表わされる化合物、その塩 、またはその溶媒和物を得る工程 Aおよび、得られた一般式 (III)で表わされる化合 物、その塩、またはその溶媒和物、および、
一般式 (II) :
[化 11]
(II)
Figure imgf000008_0005
(式中、
Figure imgf000009_0001
および mは 1)と同意義)で表わされる化合物、その塩、また はその溶媒和物を、
パラジウム一炭素存在下、水を含む溶媒中で反応させることにより、一般式 (I): [化 12]
(l)
Figure imgf000009_0002
、および nは 1)と同意義)で表わされる化合物 、その塩、またはその溶媒和物を製造する工程 Bを包含する 1)記載の製造方法。
3)溶媒が水のみである 1)または 2)記載の製造方法。
4)パラジウム一炭素の存在下での反応が、酢酸およびパラジウム一炭素の存在下で の反応である 1)一 3)のレ、ずれかに記載の製造方法。
5)パラジウム一炭素の存在下での反応力 ジオールおよびパラジウム一炭素の存在 下での反応である 1)一 4)のレ、ずれかに記載の製造方法。
6)ジオールがエチレングリコールである 5)記載の製造方法。
7)—般式 (VI) :
[化 13]
Figure imgf000009_0003
(式中、
Figure imgf000009_0004
および mは 1)と同意義)で表わされる化合物、その塩、またはその溶 媒和物、および
一般式 (VII):
[化 14] ノ (R。)p
?2 (、 り (式中、
Figure imgf000010_0001
X1、および Z2は 1 )と同意義; pは 0から 3の整数であり、 pが 2以上の場合 、 R°はそれぞれ独立して選ばれる)で表わされる化合物、その塩、またはその溶媒和 物を、
ジオールおよびパラジウム一炭素の存在下、水を含む溶媒中、反応させることを特徴 とする、
一般式 (VIII):
[化 15]
Figure imgf000010_0002
(式中、
Figure imgf000010_0003
Z2、および mは 1 )と同意義、 pは前記と同意義)で表わされる化 合物、その塩、またはその溶媒和物の製造方法。
8)ジオールがエチレングリコールである 7)記載の製造方法。
9)ジオールの量が一般式 (VI)で表わされる化合物に対して 0. 5から 15当量である 7)または 8)記載の製造方法。
10)—般式 (IX):
[化 16]
Figure imgf000010_0004
(式中、
Figure imgf000010_0005
および mは 1 )と同意義、 R6および R6は同時に低級アルキルまたは R6および R6'は一緒になつて隣接する酸素原子とともに 3— 8員環を形成する)で表 わされる化合物、その塩、またはその溶媒和物、および
一般式 (VII):
[化 17]
Figure imgf000011_0001
(式中、 R°、 X1、および Z2は 1)と同意義; pは 7)と同意義)で表わされる化合物、その 塩、またはその溶媒和物を、
パラジウム一炭素の存在下、水を含む溶媒中、反応させることを特徴とする、 一般式 (VIII):
[化 18]
Figure imgf000011_0002
(式中、
Figure imgf000011_0003
Z2、および mは請求項 1と同意義、 pは 7)と同意義)で表わされる 化合物、その塩、またはその溶媒和物の製造方法。
本明細書中、単独でもしくは他の用語と組み合わせて用いられる「低級アルキル」 なる用語は、炭素原子数 1一 8の直鎖または分枝鎖の 1価の炭化水素基を包含する 。例えば、メチノレ、ェチル、 n_プロピル、イソプロピル、 n—ブチル、イソブチル、 sec— ブチノレ、 tert—ブチノレ、 n—ペンチノレ、イソペンチノレ、 neo_ペンチノレ、 n_へキシノレ、ィ ソへキシル、 n—へプチル、 n—ォクチル等が挙げられる。好ましくは、 C1一 C6アルキ ルが挙げられる。より好ましくは、 C1一 C4アルキルが挙げられる。さらに好ましくは、 C1一 C3アルキルが挙げられる。
R。および R1における「低級アルキル」としてはメチル、ェチル、 n—プロピル、イソプロ ピル、 n—ブチル、イソブチル、 sec—ブチル、 tert—ブチル等が好ましい。
R2および R2'における「低級アルキル」としてはメチル、ェチル、 n-プロピル、イソプ 口ピル等が好ましい。さらにメチルが好ましい。
R3における「低級アルキノレ」としてはメチル、ェチル、 n—プロピル、イソプロピル、 n— ブチル、イソブチル、 sec—ブチル、 tert—ブチル等が好ましレ、。メチル、ェチル、イソ プロピル、イソブチル、 sec-ブチルがさらに好ましい。
R4における「低級アルキル」としてはメチル、ェチル、 n-プロピル、 n-ブチル等が好 ましレ、。さらにメチルが好ましい。
R5における「低級アルキル」としてはメチルが好ましい。
R6および R6'における「低級アルキル」としてはメチル、ェチル、 n-プロピル、イソプ 口ピル等が好ましレ、。さらにメチルが好ましい。
[0010] 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ァリール」とは、 単環状もしくは縮合環状芳香族炭化水素を包含する。例えば、フエニル、 1一ナフチ ノレ、 2_ナフチル、アントリル等が挙げられる。
R°、
Figure imgf000012_0001
および R3における「ァリール」としてはフエニル、 1一ナフチル、 2_ナフチル 等が挙げられる。フエニルが好ましい。
本明細書中、「ァラノレキノレ」とは、前記「低級アルキル」に前記「ァリール」が 1または それ以上置換したもので、これらは可能な全ての位置で置換しうる。例えば、ベンジ ノレ、フエニルェチル(例えば、 2—フエニルェチル等)、フエニルプロピル(例えば、 3_ フエニルプロピル等)、ナフチルメチル(例えば、 1一ナフチルメチル、 2—ナフチルメチ ル等)、アントリルメチル (例えば、 9-アントリルメチル等)等が挙げられる。
R3および R4における「ァラルキル」としてはベンジル、フエニルェチル、ナフチルメ チル等が好ましレ、。さらにべンジノレが好ましレ、。
[0011] 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ヘテロァリール」 とは、任意に選ばれる、酸素原子、硫黄原子又は窒素原子を環内に 1個以上含む 5 一 6員の芳香環を包含し、これはシクロアルキル、ァリール、非芳香族複素環、もしく は他のへテロアリールと縮合していてもよぐこれらは可能な全ての位置で縮合しうる 。例えば、ピロリル(例えば、 1_ピロリル、 2_ピロリル、 3—ピロリル)、フリル(例えば、 2 —フリル、 3_フリル)、チェニル(例えば、 2_チェニル、 3_チェニル)、イミダゾリノレ(例 えば、 2_イミダゾリル、 4一イミダゾリル)、ピラゾリル(例えば、 1_ピラゾリル、 3—ビラゾリ ノレ)、イソチアゾリル(例えば、 3—イソチアゾリル)、イソォキサゾリル(例えば、 3—イソォ キサゾリル)、ォキサゾリル(例えば、 2—ォキサゾリル)、チアゾリル(例えば、 2—チアゾ リル)、ピリジル(例えば、 2_ピリジノレ、 3_ピリジノレ、 4_ピリジル)、ピラジュル(例えば 、 2—ピラジュル)、ピリミジニル(例えば、 2_ピリミジェル、 4—ピリミジニル)、ピリダジニ ノレ(例えば、 3_ピリダジニル)、テトラゾリル(例えば、 1H—テトラゾリル)、ォキサジァゾ リル(例えば、 1, 3, 4ーォキサジァゾリノレ)、チアジアゾリノレ(例えば、 1 , 3, 4ーチアジ ァゾリル)、インドリジニル(例えば、 2 インドリジニル、 6 インドリジニル)、イソインドリ ル(例えば、 2_イソインドリル)、インドリル(例えば、 1 インドリル、 2_インドリル、 3—ィ ンドリル)、インダゾリル(例えば、 3_インダゾリル)、プリニル(例えば、 8_プリ二ル)、 キノリジニル(例えば、 2_キノリジニル)、イソキノリル(例えば、 3_イソキノリル)、キノリ ル(例えば、 2_キノリル、 5_キノリル)、フタラジュル(例えば、 1_フタラジュル)、ナフ チリジニル(例えば、 2_ナフチリジニル)、キノキサリニル(例えば、 2_キノキサリニル) 、キナゾリニル(例えば、 2—キナゾリニル)、シンノリニル(例えば、 3_シンノリ二ル)、 プテリジニル(例えば、 2—プテリジニル)、カルバゾリル(例えば、 2_カルバゾリル、 3- カルバゾリル)、フエナントリジニル(例えば、 2—フエナントリジニル、 3—フエナントリジ 二ル)、アタリジニル(例えば、 1—アタリ二ジル、 2—アタリ二ジル)、ジベンゾフラ二ル( 例えば、 1—ジベンゾフラニル、 2—ジベンゾフラニル)、ベンゾイミダゾリル(例えば、 2 一べンゾイミダゾリノレ)、ベンゾイソォキサゾリノレ(例えば、 3—べンゾイソォキサゾリノレ)、 ベンゾォキサゾリル(例えば、 2—べンゾォキサゾリル)、ベンゾォキサジァゾリル(例え ば、 4一べンゾォキサジァゾリル)、ベンゾイソチアゾリル(例えば、 3—べンゾイソチアゾ リル)、ベンゾチアゾリル(例えば、 2-ベンゾチアゾリル)、ベンゾフリル(例えば、 3-ベ ンゾフリル)、ベンゾチェニル(例えば、 2-ベンゾチェニル)、ベンゾトリァゾリル(例え ば、 1-ベンゾトリアゾリル)等が挙げられる。
R°、
Figure imgf000013_0001
および R3における「ヘテロァリール」としては、ピリジル、チェニル、フリル、 インドリル、イミダゾリル等が好ましい。
本明細書中、「ヘテロァリールアルキル」とは、前記「低級アルキル」の任意の位置 に前記「ヘテロァリール」が 1または 2以上置換したもので、これらは可能な全ての位置 で置換しうる。例えば、チアゾリルメチル(例えば、 4_チアゾリルメチル)、チアゾリルェ チル(例えば、 5_チアゾリルー 2—ェチル)、ベンゾチアゾリルメチル(例えば、(ベンゾ チアゾーノレ _2_ィル)メチル)、インドリルメチル(例えば、 (インドール— 3—
)、イミダゾリルメチル(例えば、 4_イミダゾリルメチル)、ベンゾチアゾリルメ
ば、 2_ベンゾチアゾリルメチル)、インダゾリルメチル( ^ ザ 1ーノソ々 / Π
、ΠΤ、/1 レ^キ ン ( 万 il 1 _べソゾ ァ、 /II ノレ(例えば、 2_ベンゾキノリルメチル)、ベンゾイミダゾリルメチル(例えば、 2_ベンゾィ ミダゾリルメチル)、ピリジルメチル(例えば、 2 ピリジルメチル、 3 ピリジルメチル、 4 ピリジルメチル)等が挙げられる。
R3における「ヘテロァリールアルキル」としては、インドリルメチル(例えば、インドー ノレ一 3—ィルメチル)、イミダゾリルメチル(例えば、イミダゾールー 5—ィルメチル)等が好 ましい。インドーノレ _3_ィルメチルが好ましい。
R4における「ヘテロァリールアルキル」としては、インドリルメチル(例えば、インドー ノレ _3_ィルメチル)等が好ましレ、。
本明細書中、「低級アルキルォキシ」としては、メチルォキシ、ェチルォキシ、 n—プ 口ピルォキシ、イソプロピルォキシ、 n—ブチルォキシ、イソブチルォキシ、 sec—ブチル ォキシ、 tert—ブチルォキシ等が挙げられる。好ましくは、メチルォキシ、ェチルォキ シ、 n—プロピルォキシ、イソプロピルォキシ、 n—ブチルォキシが挙げられる。
本明細書中、「低級アルキルチオ」としては、メチルチオ、ェチルチオ、 n プロピル チォ等が挙げられる。
本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ァシル」なる用語 は、アルキル部分が前記「低級アルキル」であるアルキルカルボニルまたはァリール 部分が前記「ァリール」であるァリールカルボニルを包含する。例えば、ァセチル、プ 口ピオニル、ベンゾィル等が挙げられる。 「低級アルキル」および「ァリール」は後述の それぞれの置換基によって置換されてレ、てもよレ、。
本明細書中、「ァシルォキシ」としては、ァセチルォキシ、プロピオニルォキシ、ベン ゾィルォキシ等が挙げられる。
本明細書中、「ハロゲン」とはフッ素、塩素、臭素、およびヨウ素を意味する。好まし くは、塩素、および臭素が挙げられる。さらに好ましくは、塩素があげられる。
本明細書中、単独でもしくは他の用語と組み合わせて用いられる「ハロ低級アルキ ノレ」なる用語は、前記「ハロゲン」によって 1一 8個所、好ましくは 1一 5個所置換された 前記「低級アルキル」を包含する。例えば、トリフルォロメチル、トリクロロメチル、ジフ ノレォロェチル、トリフルォロェチル、ジクロロェチノレ、トリクロ口ェチル等が挙げられる。 好ましくは、トリフルォロメチルが挙げられる。 R5における「ハロ低級アルキル」としては、トリフルォロメチルが好ましい。
本明細書中、「ハロ低級アルキルォキシ」としては、トリフルォロメチルォキシ等が挙 げられる。
[0014] 本明細書中、「低級アルキルォキシカルボニル」としては、メチルォキシカルボニル 、ェチルォキシカルボニル、 n—プロピルォキシカルボニル、イソプロピルォキシカル ボニル等が挙げられる。
本明細書中、「低級アルキルスルホ二ノレ」としては、メチルスルホニル、ェチルスル ホニル、プロピルスルホニル等が挙げられる。
本明細書中、「低級アルキルスルホニルォキシ」としては、メタンスルホニルォキシ、 エタンスルホニルスルホニルォキシ、プロパンスルホニルォキシ等が挙げられる。 本明細書中、単独でもしくは他の用語と組み合わせて用いられる「置換されていて もよぃァミノ」とは、非置換アミノまたは前記「低級アルキル」、「ァラルキル」、「ヘテロ ァリールアルキル」、もしくは「ァシル」で 1または 2個所置換されているアミノを包含す る。例えば、ァミノ、メチノレアミノ、ジメチルァミノ、ェチルメチルァミノ、ジェチルァミノ、 ベンジルァミノ、ァセチルァミノ、ベンゾィルァミノ等が挙げられる。好ましくはァミノ、メ チノレアミノ、ジメチルァミノ、ェチルメチルァミノ、ジェチルァミノ、ァセチルァミノが挙 げられる。
本明細書中、「置換されていてもよいアミノカルボニル」としては、ァミノカルボ二ル( 力ルバモイル)、メチルァミノカルボニル、ジメチルァミノカルボニル、ェチルメチルアミ ノカルボニル、ジェチルァミノカルボニル等が挙げられる。好ましくは、ァミノカルボ二 ノレ、ジメチルァミノカルボニルが挙げられる。
[0015] 本明細書中、「置換されていてもよい低級アルキル」における置換基としては、シク 口アルキル(例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロへキシル) 、ヒドロキシ、低級アルキルォキシ(例えば、メトキシ、エトキシ、 t—ブトキシ)、メルカプ ト、低級アルキルチオ(例えば、メチルチオ、ェチルチオ)、ハロゲン、ニトロ、シァノ、 カルボキシ、スルホ、低級アルキルォキシカルボニル(例えば、メトキシカルボニル、 エトキシカルボニル、 t—ブトキシカルボ二ル)、ハロ低級アルキル(例えば、トリフノレオ ロメチル)、ハロ低級アルキルォキシ(例えば、トリフルォロメチルォキシ)、低級アルキ ルで置換されていてもよいアミノ(例えば、ァミノ、メチルァミノ、ジメチルァミノ、ェチル ァミノ、ジメチルァミノ、メチルェチルァミノ)、力ルバモイル、ホルミル、ァシル(例えば 、ァセチル、ベンゾィル)、ァシルォキシ(例えば、ァセチルォキシ、ベンゾィルォキシ )、非芳香族複素環基 (例えば、ピロリジル、ピベリジニル、ピぺラジュル、モリホリニル 、テトラヒドロフラニル、テトラヒドロビラ二ル)、ァリールォキシ(例えば、フエニルォキシ )、ァラルキルォキシ(例えば、ベンジルォキシ)、低級アルキルスルホニル(例えば、 メタンスルホ二ル)、グァニジ入ァゾ基、ウレイド等が挙げられる。これらは、全ての可 能な位置で 1個以上置換しうる。
R3における「置換されていてもよい低級アルキル」の置換基としては、ヒドロキシ、低 級アルキルチオ、カルボキシ、または力ルバモイルが好ましい。
「置換されていてもよいァリール」、「置換されていてもよいへテロアリール」、「置換さ れてレ、てもよレ、ァラルキル」、および「置換されてレ、てもよレ、ヘテロァリールアルキル」 における置換基としては、置換されていてもよい低級アルキル、シクロアルキル(例え ば、シクロプロピル、シクロブチル、シクロペンチル、シクロへキシル)、低級アルケニ ノレ(例えば、ビエル、プロぺニル、ブテニル)、低級アルキニル(ェチニル、プロピニノレ )、ヒドロキシ、低級アルキルォキシ(例えば、メトキシ、エトキシ、 t—ブトキシ)、メルカ プト、低級アルキルチオ(例えば、メチルチオ、ェチルチオ)、ハロゲン、ニトロ、シァノ 、カルボキシ、スルホ、低級アルキルォキシカルボニル(例えば、メトキシカルボニル、 エトキシカルボニル、 t—ブトキシカルボ二ル)、ハロ低級アルキル(例えば、トリフルォ ロメチル)、ハロ低級アルキルォキシ(例えば、トリフルォロメチルォキシ)、低級アルキ ルで置換されていてもよいアミノ(例えば、ァミノ、メチルァミノ、ジメチルァミノ、ェチル ァミノ、ジメチルァミノ、メチルェチルァミノ)、力ルバモイル、ホルミル、ァシル(例えば 、ァセチルォキシ、ベンゾィルォキシ)、ァシルォキシ(例えば、ァセチルォキシ、ベン ゾィルォキシ)、ァリール、ヘテロァリール、非芳香族複素環(例えば、ピロリジル、ピぺ リジニノレ、ピぺラジュル、モリホリニノレ、テトラヒドロフラニル、テトラヒドロビラ二ル)、ァ ラルキル、ァリールォキシ(例えば、フエ二ルォキシ)、ァラルキルォキシ(例えば、ベ ンジルォキシ)、低級アルキルスルホニル(例えばメタンスルホ二ル)、グァニジ入ァ ゾ基、またはウレイド等が挙げられる。これらは、全ての可能な位置で 1個以上置換し うる。
R3における「置換されてレ、てもよレヽァリール」、「置換されてレ、てもよレ、ヘテロァリー ル」、「置換されていてもよいァラルキル」、および「置換されていてもよいへテロアリー ルアルキル」における置換基としては、ヒドロキシまたはハロゲンが好ましレ、。また「無 置換のァリール」、「無置換のへテロアリール」、「無置換のァラルキル」、および「無置 換のヘテロァリールアルキル」も好ましい。
本明細書中、「R2および R2'が一緒になつてそれぞれ隣接する酸素原子を含む 3 8員環を形成してもよレ、」または「R6および R6'が一緒になつてそれぞれ隣接する酸素 原子を含む 3 8員環を形成してもよい」で表わされる環は、以下に示す環を包含す る。
[化 19]
Figure imgf000017_0001
特に、「 および R6'が一緒になつてそれぞれ隣接する酸素原子を含む 3— 8員環 を形成してもよい」で表わされる環としては、以下に示す環が好ましい。
[化 20]
Figure imgf000017_0002
,または 本明細書中、「ジオール」とは C2— C6、好ましくは C2— C4アルカンジィルにおい て異なった炭素原子に水酸基が 2個結合したアルコールを意味する。例えば、ェチ レングリコール、 2, 3_ブタンジオール、 2, 3_ジメチルー 2, 3_ブタンジオール、 1、 3 一プロパンジオールが挙げられる。エチレングリコールが好ましい。 発明を実施するための最良の形態 [0018] 「化合物」という場合には、化合物は特定の異性体に限定するものではなぐ全ての 可能な異性体 (例えば、光学異性体等)やラセミ体を含むものである。さらに、製薬上 許容される塩、またはその溶媒和物も含まれる。
また本発明に使用する化合物の「塩」という場合には、アルカリ金属(リチウム、ナトリ ゥム、カリウム、セシウム等)、アルカリ土類金属(マグネシウム、カルシウム、バリウム等 )、アンモニゥム、有機塩基およびアミノ酸との塩、または無機酸 (塩酸、臭化水素酸、 リン酸、硫酸等)、および有機酸(酢酸、クェン酸、マレイン酸、フマル酸、ベンゼンス ルホン酸、 p—トルエンスルホン酸等)との塩が含まれる。これらの塩は、通常行われる 方法によって形成させることができる。
本発明に使用する化合物の「溶媒和物」とは、例えば有機溶媒との溶媒和物、水和 物等を包含する。水和物を形成する時は、任意の数の水分子と配位していてもよい。
[0019] [化 21]
Figure imgf000018_0001
(IV)
Figure imgf000018_0002
(ii) (i)
(式中、 R°、
Figure imgf000018_0003
R2、 R2'、 R3、 R4、 X1、 X2、 Y、 Z2、 m、および nは前記と同意義) (第 1工程)
本工程は、一般式 (IV)で表される化合物と一般式 (V)で表される化合物とを出発 原料として、 Schotten—Baumann法を用いてカップリングする工程である。水—ァセ トン混合溶媒、水 1 , 4ージォキサン混合溶媒、水ーテトラヒドロフラン混合溶媒、水 ジメトキシェタン混合溶媒、水 -ァセトニトリル混合溶媒、水 -メタノール混合溶媒、水 -エタノール混合溶媒、水 -プロパノール混合溶媒、水 -イソプロパノール混合溶媒、 水ーブタノール混合溶媒、水一イソブタノール混合溶媒、水一 sec-ブタノール混合溶 媒等の水一アルコール混合溶媒、 N, N—ジメチルホルムアミド、 N, N_ジメチルァセ トアミド、ジメチルスルホキシド等の溶媒中、一般式 (IV)で表される化合物と 0. 9 2 当量、好ましくは 1. 0当量一 1. 2当量の一般式 (V)で表される化合物を 2当量一 10 当量、好ましくは 2当量一 3当量の塩基の存在下、一 20°C 30°C、好ましくは _5°C 一 10°Cで 1一 20時間、好ましくは 1時間一 3時間反応させ、通常行われる後処理を 行うことにより一般式 (III)で表される化合物を得ることができる。
溶媒としては、アセトン一水の混合溶媒が好ましい。混合比率としては、アセトン:水 = 5 : 1— 1 : 5が好ましい。さらに 3 : 1— 1 : 3が好ましい。特に、 2 : 1— 1 : 2が好ましい 塩基としては、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム 、炭酸セシウム、炭酸水素セシウム、炭酸リチウム、炭酸水素リチウム、炭酸ルビジゥ ム、炭酸水素ルビジウム、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化 ノレビジゥム、水酸化セシウム、炭酸アンモニゥム等の無機塩基や、トリェチルァミン、ト リブチルァミン、ジイソプロピルェチルァミン等の第 3ァミン等が例示される。炭酸ナト リウム、炭酸カリウム、炭酸セシウム、水酸化ナトリウム、トリェチルァミン等が好ましレ、 (第 2工程)
本工程は、一般式 (II)で表される化合物と一般式 (III)で表される化合物とを出発 原料としてパラジウム一炭素の存在下でカップリング反応を行う工程である。
溶媒中、 0. 001当量一 0. 5当量、好ましくは 0. 002当量一 0. 1当量の触媒の存 在下、一般式 (III)で表される化合物と 0. 8— 5当量、好ましくは 1当量一 1. 5当量の 一般式 (II)で表される化合物と 0. 5 8当量、好ましくは 1当量一 4当量の塩基性物 質とを 30°C— 200°C、好ましくは 50°C— 100°Cで 1時間一 30時間、好ましくは 1. 5 時間一 5時間反応させ、通常行われる後処理を行うことにより一般式 (I)で表される化 合物を得ること力 Sできる。
溶媒としては、水、または水と有機溶媒との混合溶媒が好ましい。水、または水の割 合が高い有機溶媒との混合溶媒がより好ましい。水と有機溶媒の混合比は、好ましく は 100 : 0— 85 : 15であり、より好ましくは 100 : 0— 90 : 10であり、さらに好ましくは 10 0 : 0— 93 : 7であり、特に好ましい溶媒は、水である。特に、水が好ましい。混合溶媒 の有機溶媒としては、基質の溶解性による力 S、ベンゼン、トルエン、 N, N-ジメチルホ ノレムアミド、ジメトキシェタン、テトラヒドロフラン、ジォキサン、メタノーノレ、エタノール、 イソプロパノール等が好ましレ、。
塩基性物質としては水酸化ナトリウム、ナトリウムメトキシド、水酸化カリウム、アンモ ニァ、水酸化リチウム、水酸化セシウム、水酸化ルビジウム、水酸化バリウム、リチウム メトキシド、カリウムメトキシド、セシウムメトキシド、ナトリウムエトキシド、リチウムェトキ シド、カリウムエトキシド、セシウムエトキシド、炭酸リチウム、炭酸水素リチウム、炭酸 ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸水素カリウム、炭酸ノレビジゥム、炭 酸水素ルビジウム、炭酸セシウム、炭酸水素セシウム、リン酸ナトリウム、リン酸水素二 ナトリウム等が挙げられる。炭酸ナトリウム、炭酸カリウム、リン酸水素ニナトリウムが好 ましい。
パラジウム 炭素触媒は水分を含んでいる物が好ましい。水分の含量は 70%— 30% が好ましい。さらに、 60%— 40%が好ましい。また、パラジウム 炭素のうち担持されてい るパラジウムの含量は 13%— 1%が好ましレ、。 7%— 3%がより好ましい。
反応速度を上昇させるため、 0. 2— 5当量、好ましくは 0. 8当量から 2当量の酢酸 を反応系中に加えると好ましレ、場合がある。
副反応を抑えるため、 0. 1— 5当量、好ましくは 0. 3当量から 2当量のエチレンダリ コール等のジオールを反応系中に加えると好ましレ、場合もある。
溶媒力 Wソプロパノール一 7 (主)混合溶媒、触媒が水分を含んだ 5%パラジウム一 炭素、および塩基性物質が炭酸カリウムである反応条件が好ましい。また、溶媒がィ ソプロパノール一水(主)混合溶媒、触媒が水分を含んだ 5。/0パラジウム一炭素、およ び塩基性物質が水酸化ナトリウムである反応条件、または溶媒が水溶媒、触媒が水 分を含んだ 5%パラジウム一炭素、塩基性物質が水酸化ナトリウム、および酢酸の存 在下である反応条件が好ましレ、。 [化 22]
•(R°)P 第 3工程
ヽ-'》 、Z2
Figure imgf000021_0001
(vi) (VII) (viii)
(式中、 R°、
Figure imgf000021_0002
Z2、 m、および pは前記と同意義)
(第 3工程)
本工程は、一般式 (VI)で表される化合物と一般式 (VII)で表される化合物とを出 発原料として、ジオールの存在下で、カップリング反応を行う工程である。
溶媒中、 0. 00005当量一 0. 1当量、好ましく ίま 0. 00007当量一 0. 05当量のノヽ° ラジウム一炭素触媒の存在下、一般式 (VII)で表される化合物と 0. 8— 5当量、好ま しくは 1当量一 1. 5当量の一般式 (VI)で表される化合物と 0. 5— 8当量、好ましくは 1当量一 4当量の塩基性物質、 0. 5— 30当量、好ましくは、 1一 15当量のジオール を 30°C 200°C、好ましくは 50°C— 150°Cで 1時間一 40時間、好ましくは 1. 5時間 一 15時間反応させ、通常行われる後処理を行うことにより一般式 (VIII)で表される 化合物を得ることができる。
溶媒としては、水、または水と有機溶媒との混合溶媒が好ましい。水、または水の割 合が高い有機溶媒との混合溶媒がより好ましい。水と有機溶媒の混合比は、好ましく は 100 : 0 85 : 15であり、より好ましくは 100 : 0— 90 : 10であり、さらに好ましくは 10 0 : 0— 93 : 7であり、特に好ましい溶媒は、水である。混合溶媒の有機溶媒としては、 基質の溶解性による力 ベンゼン、トルエン、 N, N—ジメチルホルムアミド、ジメトキシ ェタン、テトラヒドロフラン、ジォキサン、メタノーノレ、エタノール、イソプロパノール等が 好ましい。
塩基性物質、ノ ジウム-炭素触媒としては、第 2工程と同じものがあげられる。 ジオールとしては、エチレングリコール、 2, 3_ブタンジオール、 2, 3_ジメチルー 2,
3—ブタンジオール、 1、 3—プロパンジオールが好ましぐ特に、エチレングリコールが 好ましい。
反応液の液性は、通常 pH 7-11で行うが、一般式 (VI)で表されるボロン酸の種類 によって pH 4-6が最適な場合がある。このような場合には、酢酸や、リン酸第二水素 ナトリウムまたはリン酸第一水素ナトリウムの存在下での反応が好ましい。
収率の向上ため、 0. 5— 10当量、好ましくは、 0. 7— 3当量の臭化ナトリウムの存 在下で反応を行なう方が好ましい場合もある。
溶媒が水溶媒、触媒が水分を含んだ 5%パラジウム -炭素、および塩基性物質がリ ン酸水素ニナトリウム、ジオールがエチレングリコールである反応条件が好ましい。さ らに、溶媒が水溶媒、触媒が水分を含んだ 5%パラジウム一炭素、および塩基性物質 が水酸化ナトリウム、ジオールがエチレングリコール、臭化ナトリウムの存在下である 反応条件がより好ましい。
[化 23]
XI ノ ( 1)n
R。)P IT一 -(R°)p ,p 第第 44工工程程 ) I7I
Figure imgf000022_0001
、で. Z2
(IX) (VII) (VIII)
(式中、 R°、
Figure imgf000022_0002
Z2、 m、および pは前記と同意義)
(第 4工程)
本工程は、一般式 (IX)で表される化合物と一般式 (VII)で表される化合物とを出 発原料として、カップリング反応を行う工程である。
溶媒中、 0. 00005当量一 0. 01当量、好ましくは 0. 00007当量一 0. 005当量の 触媒の存在下、一般式 (VII)で表される化合物と 0. 8— 5当量、好ましくは 1当量一 1 . 5当量の一般式 (IX)で表される化合物と 0· 5— 8当量、好ましくは 1当量一 4当量 の塩基性物質、 30°C— 200°C、好ましくは 50°C— 150°Cで 1時間一 40時間、好まし くは 1. 5時間一 15時間反応させ、通常行われる後処理を行うことにより一般式 (VIII )で表される化合物を得ることができる。
一般式 (IX)で表されるボロン酸エステルは、市販品のものを用いることができる。ま た、文献(スダ一サン ェム トウラダールら(Sudersan M. Tuladhar et. al.)、テトラへド ロン レターズ(Tetrahedron Letters) 1992年、第 33卷、第 2号、 p.265-268)等の報告 にあるように、ボロン酸誘導体とアルコールとの反応からも合成することができる。さら に、文献(宮浦ら、ジャーナル ォブ オーガニック ケミストリー (J. Org. Chem.) 1995 年、第 60卷、第 23号、 p.7508-7510)等記載の方法によっても合成できる。
溶媒、塩基性物質、触媒等としては、第 2工程および第 3工程に記載の溶媒、塩基 性物質、触媒等があげられる。
溶媒が水溶媒、触媒が水分を含んだ 5%パラジウム -炭素、および塩基性物質がリ ン酸水素ニナトリウムである反応条件が好ましい。
実施例
[0023] 実施例中、以下の略号を使用する。
Pd-C :パラジウム—炭素
Me :メチル
DME :ジメトキシェタン
DMF : N, N—ジメチルホルムアミド
DMSO:ジメチルスルホキシド
Ph:フエニル
THF :テトラヒドロフラン
[0024] 比較例 1
[化 24]
Figure imgf000023_0001
(1a) (2a) (3) リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 mL)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、フエニルボロン酸(2a, 0.728 g, 5.97 mmol)を室温 で加えた。その懸濁液に触媒として 5%パラジウム一炭素(2 mg, 0.456 nmol)を加え、 95 °Cで窒素気流下 8時間攪拌した。 HPLCを用いた反応試験の結果、 目的物である 4_ビフヱ二ルカルボン酸 3の生成は痕跡量であった。 (HPLC Peak Area% at UV 230 nm : 0.09%)
[0025] 実施例 1 [化 25]
Figure imgf000024_0001
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 mL)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、フエニルボロン酸(2a, 0.728 g, 5.97 mmol)を室温 で加えた。その懸濁液にエチレングリコール(3.0 ml, 53.8 mmol)、触媒として 5%パラ ジゥム-炭素(2 mg, 0.456 匪 ol)をカ卩え、 95 °Cで窒素気流下 8時間攪拌した。反応液 を室温まで放冷し、 2 mol/L塩酸(10 ml)を加え室温で 30分間攪拌し、析出結晶を濾 取した。得られた粗結晶をテトラヒドロフラン(100 ml)に溶解させ、その溶液の 1 mL にァセトニトリルを加え全量 50 mlとした溶液を調製した。この溶液を用いて HPLCで 定量試験(UV 230 nm)を行った。 目的物である 4一ビフヱ二ルカルボン酸 3の収率は 53.2%であった。
実施例 2
[化 26]
Figure imgf000024_0002
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、フエニルボロン酸(2a, 0.728 g, 5.97 mmol)を室温 で加えた。その懸濁液に臭化ナトリウム(0.512 g, 4.98 mmol)、エチレングリコール( 3.0 ml, 53.8 mmol)、 5%パラジウム—炭素(2 mg, 0.456 nmol)を加え、 95 °Cで窒素気 流下 8時間攪拌した。反応液を室温まで放冷し、 2 mol/L塩酸(10 ml)をカ卩ぇ室温で 30分間攪拌し、析出結晶を濾取した。得られた粗結晶をテトラヒドロフラン(100 ml)に 溶解させ、その溶液の 1 mLにァセトニトリルをカ卩ぇ全量 50 mlとした溶液を調製した 。この溶液を用いて HPLCで定量試験(UV 230 nm)を行った。 目的物である 4—ビフエ 二ルカルボン酸 3の収率 92.8%であった。また、得られた粗結晶を酢酸: キサンで再結晶化することによって 4—ビフエ二ルカルボン酸(3, 0.880 g, 89.2%)を得 ¾ NMR δ (CDC1 ): 7.39-7.52 (m, 3H), 7.65 (ddd, J = 7.2 Hz, 1.6 Hz, 2H), 7.71
3
(ddd, J = 8.8 Hz, 1.9 Hz, 2H), 8.19 (ddd, J = 8.5 Hz, 1.9 Hz, 2H)
[0027] 実施例 3
[化 27]
Figure imgf000025_0001
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸 (la, 1.00 g, 4.97 mmol)、フエニルボロン酸 (2a, 0.728 g, 5.97 mmol)を室温 で加えた。その懸濁液に 2、 3_ブタンジオール(3.0 ml, 33.1 mmol)、 5%パラジウム一 炭素(2 mg, 0.456 nmol)をカ卩え、 95 °Cで窒素気流下 8時間攪拌した。反応液を室温 まで放冷し、 2 mol/L塩酸(10 ml)をカ卩ぇ室温で 30分間攪拌し、析出結晶を濾取した 。得られた粗結晶をテトラヒドロフラン(100 ml)に溶解させ、その溶液の 1 mlにァセト 二トリルを加え全量 50 mlとした溶液を調製した。この溶液を用いて HPLCで定量試験 (UV 230 nm)を行った。 4—ビフエ二ルカルボン酸 3の収率は 59.5%であった。
[0028] 実施例 1一 3および比較例 1の結果を表 1にまとめる。フエニルボロン酸のみでは反 応が進行しない場合でも、ジオールの存在下では、反応がスムーズに進行し、良好 な収率で目的物が得られている。特に、ジオールと臭化ナトリウムの共存下では、著 しく収率が向上する。
[0029] [表 1] HPLC
No. 添加物 収率 (¾) 比較例 1 2a <0.1
Figure imgf000026_0001
実施例 1 エチレングリコール -B(OH)2 2a 53.2 M 2 エチレングリコール
Λ施例 2 臭化ナトリウム -B(OH)2 2a 92.8
実施例 3 2, 3-ブタンジオール 2a 59.5
Figure imgf000026_0002
[0030] 実施例 4
[化 28]
Figure imgf000026_0003
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸 (la, 1.00 g, 4.97 mmol)、フエニルボロン酸エチレングリコールエステル(2b, 0.883 g, 5.97 mmol)を室温で加えた。その懸濁液に 5%パラジウム一炭素(2 mg, 0.456 nmol)をカ卩え、 95 °Cで窒素気流下 8時間攪拌した。反応液を室温まで放冷し、 2 mol/L塩酸(10 ml)を加え室温で 30分間攪拌し、析出結晶を濾取した。得られた粗 結晶をテトラヒドロフラン(100 ml)に溶解させ、その溶液の 1 mlにァセトニトリルをカロえ 全量 50 mlとした溶液を調製した。この溶液を用いて HPLCで定量試験(UV 230 nm) を行った。 4_ビフヱ二ルカルボン酸 3の収率は 92.7%であった。
[0031] 実施例 5
[化 29]
Figure imgf000027_0001
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、フエニルボロン酸 2、 3 ブタンジオールエステル( 2c, 1.051 g, 5.97 mmol)を室温で加えた。その懸濁液に 5%パラジウム 炭素(2 mg, 0.456 nmol)をカ卩え、 95 °Cで窒素気流下 8時間攪拌した。反応液を室温まで放冷し、 2 mol/L塩酸(10 ml)を加え室温で 30分間攪拌し、析出結晶を濾取した。得られた粗 結晶をテトラヒドロフラン(100 ml)に溶解させ、その溶液の 1 mlにァセトニトリルをカロえ 全量 50 mlとした溶液を調製した。この溶液を用いて HPLCで定量試験(UV 230 nm) を行った。 4 ビフヱ二ルカルボン酸 3の収率は 86.6%であった。
[0032] 実施例 6
[化 30]
Figure imgf000027_0002
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、 4—ァセチルフエニルボロン酸(2d, 0.979 g, 5.97 mmol)を室温で加えた。その懸濁液に臭化ナトリウム(0.512 g, 4.98 mmol)、エチレン グリコール(3.0 ml, 53.8 mmol)、 5%パラジウム一炭素(21 mg, 4.79 nmol)を加え、 95 °Cで窒素気流下 1.5時間攪拌した。反応液を室温まで放冷し、 2 mol/L塩酸(10 ml) をカロえ室温で 30分間攪拌した。析出結晶を濾取し、テトラヒドロフラン Zへキサンで再 結晶化することによって目的物(4, 1.142 g, 95.5%)を得た。
JH NMR δ (DMSO-d ): 2.63 (s, 3H), 7.87-7.91 (m, 4H), 8.05—8.09 (m, 4H)
6
[0033] 実施例 7
[化 31]
Figure imgf000028_0001
リン酸水素ニナトリウム(1.786 g, 12.6 mmol)を水(28 ml)に溶解させ、 4ーブロモア 二ソール(lb, 0.63 ml, 5.03 mmol)、フエニルボロン酸(2a, 0.736 g, 6.04 mmol)を室 温で加えた。その懸濁液に臭化ナトリウム(0.518 g, 5.03 mmol)、エチレングリコール (2.8 ml, 50.2 mmol)、 5%パラジウム—炭素(221 mg, 50.1 nmol)を加え、 95 °Cで窒素 気流下 8時間攪拌した。反応液を室温まで放冷し、酢酸ェチルで 2回(50 ml, 30 ml) 抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をメタノ ール/水によって結晶化させ、得られた粗結晶をイソプロパノール Z水で再結晶化 することによって目的物(5, 0.486 g, 52.5%)を得た。
'Η NMR δ (CDC1 ): 3.85 (s, 3H), 6.98 (ddd, J = 8.8 Hz, 2.6 Hz, 2H), 7.30 (ddd, J
= 7.3 Hz, 1.6 Hz, 1H), 7.41 (ddd, J = 7.4 Hz, 1.5 Hz, 2H), 7.51—7.56 (m, 4H) 実施例 8
[化 32]
Figure imgf000028_0002
リン酸水素ニナトリウム(1.783 g, 12.6 mmol)を水(30 ml)に溶解させ、 4ーブロモア セチルベンゼン(lc, 1.00 g, 5.02 mmol) ,フエ二ノレボロン酸(2a, 0.735 g, 6.03 mmol) を室温で加えた。その懸濁液に臭化ナトリウム(0.517 g, 5.02 mmol)、エチレングリコ ール(3.0 ml, 53.8 mmol)、 5%パラジウム一炭素(220 mg, 50.1 nmol)を加え、 95。Cで 窒素気流下 3時間攪拌した。反応液を室温まで放冷し、酢酸ェチルで 2回(100 ml, 80 ml)抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣を 酢酸ェチル /へキサンで結晶化することによって目的物(6, 0.858 g, 87.0%)を得た。 'Η NMR δ (CDC1 ): 2.64 (s, 3H), 7.38-7.51 (m, 3H), 7.63 (ddd, J = 6.9 Hz, 1.7
Hz, 2H), 7.69 (ddd, J = 8.5 Hz, 1.9 Hz, 2H), 8.04 (ddd, J = 8.8 Hz, 1.9 Hz, 2H) [0035] 実施例 9
[化 33]
Figure imgf000029_0001
リン酸水素ニナトリウム(1.786 g, 12.6 mmol)を水(28 ml)に溶解させ、 4ーブロモア 二ソール(lb, 0.63 ml, 5.03 mmol)、 4—ァセチルフエニルボロン酸(2d, 0.990 g, 6.04 mmol)を室温で加えた。その懸濁液に臭化ナトリウム(0.518 g, 5.03 mmol)、エチレン グリコール(2.8 ml, 50.2 mmol)、 5%パラジウム一炭素(221 mg, 50.1 mmol)を加え、 95 °Cで窒素気流下 8時間攪拌した。反応液を室温まで放冷し、酢酸ェチル(100 ml)で 2回抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣を酢 酸ェチル /へキサンで結晶化することによって目的物(7, 0.876 g, 76.9%)を得た。 'Η NMR δ (CDC1 ): 2.63 (s, 3H), 3.86 (s, 3H), 7.00 (ddd, J = 9.0 Hz, 2.6 Hz, 2H),
7.58 (ddd, J = 9.0 Hz, 2.7 Hz, 2H), 7.65 (ddd, J = 9.0 Hz, 2.4 Hz, 2H), 8.01 (ddd, J = 8.4 Hz, 1.8 Hz, 2H)
[0036] 実施例 10
[化 34]
Figure imgf000029_0002
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、 4_フルオロフヱニルボロン酸(2e, 0.835 g, 5.97 mmol)を室温で加えた。その懸濁液に臭化ナトリウム(0.512 g, 4.98 mmol)、エチレン グリコール(3.0 ml, 53.8 mmol)、 5%パラジウム一炭素(21 mg, 4.79 nmol)を加え、 95 °Cで窒素気流下 2時間攪拌した。反応液を室温まで放冷し、析出結晶を濾取した。 粗結晶を酢酸ェチル /へキサンで再結晶化することによって目的物(8, 1.015 g, 95.2%)を得た。
JH NMR δ (DMSO-d ): 7.34 (dd, J = 9.0 Hz, 2.1 Hz, 2H), 7.77-7.82 (m, 4H), 8.02 (ddd, J = 8.5 Hz, 1.9 Hz, 2H)
[0037] 実施例 11
[化 35]
Figure imgf000030_0001
(1d) (2a) (9) リン酸水素ニナトリウム(1.760 g, 12.4 mmol)を水(24 ml)に溶解させ、 2—ブロモチ 才フェン(Id, 0.48 ml, 4.96 mmol)、フエニルボロン酸(2a, 0.725 g, 5.95 mmol)を室 温で加えた。その懸濁液に臭化ナトリウム(0.510 g, 4.96 mmol)、エチレングリコール (2.4 ml, 43.0 mmol)、 5%パラジウム—炭素(218 mg, 49.7 nmol)を加え、 95 °Cで窒素 気流下 8時間攪拌した。反応液を室温まで放冷し、酢酸ェチルで 2回(150 ml, 100 ml)抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をァ セトン/水で結晶化することによって目的物(9, 0.502 g, 63.2%)を得た。
'Η NMR δ (DMSO-d ): 7.08 (dd, J = 3.6 Hz, 4.9 Hz, 1H), 7.27—7.32 (m, 3H),
6
7.35-7.40 (m, 2H), 7.62 (d, J = 7.2 Hz, 2H)
[0038] 実施例 12
[化 36]
HOOC
Figure imgf000030_0002
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、 4ーメチルチオフエニルボロン酸(2f, 1.00 g, 5.97 mmol)を室温で加えた。その懸濁液に臭化ナトリウム(0.512 g, 4.98 mmol)、エチレン グリコール(3.0 ml, 53.8 mmol)、 5%パラジウム一炭素(221 mg, 50.1 nmol)を加え、 95 °Cで窒素気流下 28時間攪拌した。反応液を室温まで放冷し、酢酸ェチルで 2回( 150 ml, 100 ml)抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去 し、残渣を酢酸ェチル /へキサンで結晶化することによって目的物(10, 0.268 g, 22.1%)を得た。
'Η NMR δ (DMSO-d ): 2.53 (s, 3H), 7.38 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 8.5 Hz,
6
2H), 7.79 (d, J = 8.2 Hz, 2H), 8.01 (d, J = 8.2 Hz)
[0039] 実施例 13
[化 37]
HOOC
Figure imgf000031_0001
リン酸水素ニナトリウム(1.765 g, 12.4 mmol)を水(30 ml)に溶解させ、 4_ブロモ安 息香酸(la, 1.00 g, 4.97 mmol)、 4_トリルボロン酸(2g, 0.812 g, 5.97 mmol)を室温 で加えた。その懸濁液に臭化ナトリウム(0.512 g, 4.98 mmol)、エチレングリコール( 3.0 ml, 53.8 mmol)、 5%パラジウム—炭素(21 mg, 4.79 nmol)を加え、 95 °Cで窒素気 流下 3時間攪拌した。反応液を室温まで放冷し、 2 mol/L塩酸(10 ml)をカ卩ぇ室温で 30分間攪拌した。析出結晶を濾取し、酢酸ェチル /へキサンで再結晶化することに よって目的物(11, 0.969 g, 91.8%)を得た。
'Η NMR δ (DMSO-d ): 2.36 (s, 3H), 7.31 (d, J = 7.7 Hz, 2H), 7.64 (d, J = 8.2 Hz,
6
2H), 7.78 (ddd, J = 8.8 Hz, 1.8 Hz, 2H), 8.01 (ddd, J = 8.5 Hz, 1.9 Hz, 2H)
[0040] 実施例 14
[化 38]
Figure imgf000031_0002
リン酸水素ニナトリウム(1.777 g, 12.5 mmol)を水(26 ml)に溶解させ、 4—ブロモフ ノレォロベンゼン(If, 0.55 ml, 5.01 mmol)、フエニルボロン酸(2a, 0.733 g, 6.01 mmol) を室温で加えた。その懸濁液に臭化ナトリウム(0.515 g, 5.01 mmol)、エチレングリコ ール(2.6 ml, 46.6 mmol)、 5%パラジウム一炭素(220 mg, 50.1 nmol)を加え、 95でで 窒素気流下 8時間攪拌した。反応液を室温まで放冷し、酢酸ェチルで 2回(200 ml, 100 ml)抽出し、有機層を硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣 をメタノール/水で結晶化することによって目的物(12, 0.613 g, 71.1%)を得た。
¾ NMR δ (CDC1 ): 7.12 (ddd, J = 8.8 Hz, 2.2 Hz, 2H), 7.34 (ddd, J = 7.3 Hz, 1.4
Hz, 1H), 7.43 (ddd, J = 7.6 Hz, 1·8Ηζ, 2H), 7.51-7.59 (m, 4H)
実施例 15
[化 39]
Figure imgf000032_0001
(14) (15) (16) 第 1工程
窒素雰囲気下、 n—ブチルリチウム (1.57 mol/L in hexane, 40 mL, 1.2 eq)のテトラ ヒドロフラン溶液(74 mL)に 4—ブロモチオア二ソール(13, 10.63 g, 52.3 mmol)のテ トラヒドロフラン (32 mL)溶液を- 73—- 65 °Cで 8分かけて滴下した。 -67—- 75 °Cで 1 時間攪拌した後、トリイソプロピルボレート(18.1 mL, d 0.815, 1.5 eq)を一度にこの 混合溶液に加えた。生じた淡黄色の溶液を- 38—- 15 °Cで 33分間攪拌した。水(27 mL)を反応液に- 15— 9 °Cで 9分かけて加えた後、混合溶液を 1時間 20分攪拌した。 濃塩酸(約 1.4 mL)および 1 mol/L HC1 (30 mL)により、混合物の pHを 3.7に調整した 。 目的物は酢酸ェチル(2 X 60 mL)で抽出した後、それぞれの有機層を水(30 mL)、 食塩水(20 mL)により洗浄後、合わせて乾燥、減圧下で濃縮後、スラリー (15.6 g)を 得た。得られたスラリーを n—へキサン(90 mL)で希釈後、 5 °Cで終夜放置した。沈澱 をろ過後、へキサン(2 X 15 mL)で洗浄、乾燥することにより、化合物(2f, 8.01 g, 91.0 % yield)を白色固体として得た。
融点: 202-209 。C
'Η NMR δ (CDC1 -DMSO-d ), 2.49 (s, 3H), 6.49 (s, 2H), 7.22 (d, 2H, J=8.4 Hz),
7.76 (d, 2H, J=8.4 Hz)
元素分析(C H BO Sとして) 計算値: C, 50.04; H, 5.40; S, 19.08
実測値: C,49.24; H, 5.32; S, 18.74
[0042] 第 2工程
炭酸カリウム (13.13 g, 2.5eq)および D_パリン (15, 4.90 g, 1.1 eq)の水 (68 mL)— アセトン(57 mL)の混合溶液に、 4_ブロモベンゼンスルホユルク口ライド (14, 9.71 g, 38.0 mmol)を 5回に分け、 4一 5 °Cで 11分力けてカロえる。得られた懸濁液を 3— 5 °C で 1時間攪拌した後、 1時間かけて徐々に 20 °Cまで温度を上げた。反応液を減圧下 濃縮して、得られたスラリー (108.4 g)を水(59 mL)、アセトン(2.8 mL)、酢酸ェチル (57 mL)で抽出した。有機層を水(13 mL)で抽出した後、水層を合わせて、濃塩酸 (13 mL)で酸性とし、酢酸ェチル(60 mL)で抽出した。有機層を水(20 mL)で洗浄 後、減圧下で濃縮する。残查をイソプロパノール(26 mL)に溶解させた後、さらにもう 一度濃縮をして化合物 16のイソプロパノール液 (25.0 g)を得、この溶液を直接次の 工程に用いた。分析用精製試料はアセトンートノレエンカも結晶化することにより得た。 融点: 123-125°C
JH NMR δ (CDC1 ), 0.88 (d, 3H, J=6.9Hz), 0.99 (d, 3H, J=6.6Hz), 2.15 (m, 1H),
3
3.83 (dd, 1H, J=9.9, 4.5 Hz), 7.61-7.72 (m, 4H)
元素分析(C H NBrO Sとして)
11 14 4
計算値: C,39.30; H, 4.20; N, 4.17; Br, 23.77; S, 9.54
実測値: C,39.18; H, 3.93; N, 4.13; Br, 23.51 ; S, 9.40
[0043] 第 3工程
化合物 16 (25.0 g,化合物 14; 38.0 molから得られたイソプロパノール溶液)および 化合物 2f (6.38 g, 1.0 eq)のイソプロパノーノレ (7.8 mL)と水 (128 mL)の懸濁液に炭 酸カリウム(13.1 g, 2.5 eq)を分けて加えた。水分を含んだ 5%パラジウム一炭素(51.5 %, 2.5 g, 0.015 eq)をこの懸濁液に加え、混合液を真空—窒素のパージを 3回行なう ことにより脱気した。混合液を 75 80 °Cで 5時間加熱した後、室温まで冷却した。反 応混合物を濃塩酸(13.6 mL)で PH 1.9に調整し、 30分間攪拌した。沈澱物をろ過 、水(2 X 30 mL)で洗浄後、 目的物(29.5 g)を含む水分を含んだ固体が得られた。 この水分を含んだ固体を 50 °Cでアセトン(137 mL)に溶力 た。不溶物をろ過して除 き、アセトン/水(9/1, 13.2 mL)で洗浄した。濾液と洗浄液をあわせ、活性炭(0.64 g)処理を行なった。活性炭をろ過後、アセトン/水(9/1, 13.2 mL)で洗浄した。ろ液 と洗浄液を合わせた溶液に水(60 mL)をゆっくり加えた。 22 °Cで 20分さらに攪拌を 続けた後、水(84 mL)をスラリーに 22-24 °Cで加えた。このスラリーを 18 °Cまで冷却 後、ろ過、水(20 mL)で洗浄、乾燥後、粗生成物(13.3 g)を得た。粗生成物をテトラ ヒドロフラン/アセトンから再結晶を行なうと目的物 I-Aの第 1晶(9.08 g, 62.9 %)、第 2 晶 (1.25 g, 8.7 %)、第 3晶 (0.50 g, 3.5 %)を得た。
融点: 207.5 °C
'Η NMR δ (CDC1 -DMSO-d ), 0.89 (d, 3H, J=6.9Hz), 1.00 (d, 3H, J=6.6Hz), 2.11
3 6
(m, 1H), 2.53 (s,3H), 3.75 (dd, 1H, J=9.3, 4.5 Hz), 5.53 (d, 1H, J=9.3 Hz), 7.34 (d, 2H, J=8.1 Hz), 7.55 (d, 2H, J=8.4 Hz), 7.67 (d, 2H, J=8.4 Hz), 7.90 (d, 2H, J=8.1
Hz)
元素分析(C H NO Sとして)
18 21 4 2
計算値: C, 56.97; H, 5.58; N, 3.69; S, 16.90
実測値: C, 56.82; H, 5.53; N, 3.73; S, 16.83
実施例 16
[化 40]
Figure imgf000034_0001
(2d) .
(第 1工程)
炭酸カリウム (34.6 g,250 mmol, 2.5 eq)を水 (235 mL)に溶解させ、 D_バリン (15, 12.9 g, 110 mmol, 1.1 eq)を 25°C付近で加えた。同温度で D-バリン溶解後、アセトン (210 mL)を加え、 0-5°Cまで冷却した。化合物 (17, 26.2 g, 100 mmol)を 0_5°C下で 5 分割投入し、同温度で 1.5時間撹拌した。反応液に酢酸ェチル(250 mL),水(200 mL)を加え分液後、有機層を 0.6%食塩水(100 mL)で逆抽出した。合併水層に酢酸 ェチル(200 mL)をカロえ、 6 mol/L塩酸(100 mL)で化合物 18を酸転用した。分液 後、有機層を 5%食塩水(100 mL)で 2回洗浄した。溶媒を濃縮後、残渣をトルエンより 結晶化を行い目的物 (18, 25.7g, 75.1%)を得た。
mp. 197.0-197.5°C (dec.)
'Η NMR δ (CDC1 ), 0.91 (d, J = 6.9 Hz, 3H), 1.03 (d, J = 6.6 Hz, 3H), 2.11-2.25
3
(m, 1H), 3.88-3.93 (m, 1H), 5.33 (d, d, J = 4.8, 9.9 Hz, 1H), 7.03 (m, 1H), 7.34 (m, 1H), 7.60 (br, 1H)
[0045] (第 2工程)
水酸化ナトリウム (2.9 g, 73.1 mmol, 2.5 eq)を水 (80 mL)に溶解させ、イソプロパノ ール (10 mL)を加えた。化合物 (18, 10 g, 29.2 mmol),化合物 (2d, 5.7 g, 35.0 mmol, 1.2eq)、 5%パラジウム—炭素 (51.5%wet) (6.0 g, 1.5 mmol, 0.05eq)を順次カロえ 、 90°Cまで昇温した。反応液を同温度にて 8時間撹拌させ、パラジウム一炭素をろ過 後、パラジウム一炭素をテトラヒドロフラン/水(50 mL/50 mL)で洗浄した。ろ過液を 酢酸ェチル(50 mL, 30 mL)で順次洗浄後、有機層を水(30 mL)で逆抽出した。合 併した水層に 35%塩酸(3.8 mL)を 25 °C付近で滴下し、 pHを 2.2に調整した。 25 °C 付近で 1時間撹拌後、析出晶を濾取しイソプロパノール/水(50 mL/50 mL)で洗浄 した。結晶を乾燥し、粗 I-B (8.26 g)を得た。結晶をテトラヒドロフラン (50 mL)に溶解さ せた後、活性炭(500 mg)を加えろ過した。溶媒を濃縮後、析出晶を濾取、冷イソプロ 'ールで洗浄した。乾燥して精製した I-B (8.2 g, 73.6 %)を得た。
元素分析(C H NO S として)
1 19 5 2
計算値: C,53.53; H,5.02; N,3.67; S, 16.81,
実測値: C,53.46; Η,5·08; Ν,3·61; S, 16.70; Η Οく 0.1%
2 ,
'Η NMR δ (DMSO-d ), 0.83, 0.88 (d, J = 6.6 Hz, 6H), 1.95-2.06 (m, 1H), 2.61 (s,
6
3H), 3.62-3.67 (m, 1H), 7.57-8.04 (m, 6H), 8.42 (d, J = 9.0 Hz, 1H),
IR v (Nujol), : 3229, 1714, 1650, 1439, 1341, 1168 cm—1
UV (THF), v max: 235.0 nm ( ε 6,900), 320.5 nm ( ε 27,300),
mp:233.3 °C
[0046] ぐ中間体非単離法 > D-バリン (15, 8.4 g, 71.7 mmol, 1.1 eq)を 2%水酸化ナトリウム水溶液 (129.6 g, 1.0 eq)に溶解させ、イソプロパノール (102 mL)をカロえた。化合物 6 (17 g, 65.0 mmol) を 7°C付近で加え、 17%水酸化ナトリウム水溶液 (17.3 g, 1.1 eq)を加えて、 pHを 11か ら 12に保った。反応液を 7 °C付近で 5時間撹拌した。反応液を 127.9 gまで濃縮するこ とでイソプロパノールを留去し、 3.7%水酸化ナトリウム水溶液(69.4 g, l.Oeq)を加えた 。化合物 2d (11.6 g, 70.6 mmol, 1.1 eq)、酢酸 (5.84 g, 96.4 mmol, 1.5eq)、 5%パラ ジゥム—炭素 (51.6 %wet) (7.07 g, 1.6 mmol, 0.025eq)を順次加え、 90 。Cまで昇温し た。反応液を同温度にて 4時間撹拌した。 6.4%水酸化ナトリウム水溶液(98 加え、 60 °C付近でろ過し、ノ ラジウム一炭素を 4%水酸化ナトリウム水溶液(23.1 g)で洗浄し た。反応ろ過液にイソプロパノール(52.3 g)をカ卩え、 55 °C付近まで昇温し、 9.9%塩酸 (76 mL)を 1時間で滴下し pHを 3.5に調整した。 25°C付近で 1時間撹拌後、析出晶を 濾取、水 (66 mL)で洗浄後、 wet粗ト B (102.9 g)を得た。 wet粗ト B (102.9 g)に 5.2% 水酸化ナトリウム水溶液(64.0 g)、イソプロパノール(185 mL)を加え溶解後、活性炭 (2.2 g)を加えた。活性炭ろ過後、活性炭を水/イソプロパノール(28 mL/35 mL)で洗 浄した。ろ過液を 55 °C付近に昇温し、 9.9%塩酸を 1時間で滴下し pHを 3.5に調整した 。 25 °C付近で 1時間撹拌後、析出晶を濾取、水/イソプロパノール(28 mL/35 mL)で 洗浄した。乾燥して精製された I-B (20.5 g, 82.6%)を得た。
実施例 17
[化 41]
Figure imgf000036_0001
(2g) (16) (l_c) 化合物 16 (1.25 g,化合物 14; 1.90 mm (^から得られたイソプロパノール溶液)およ び化合物 2g (0.288g, 1.0 eq)のイソプロパノーノレ (1.56 mL)と水 (25.6 mし)の懸濁 液に炭酸カリウム(0.657g, 2.5 eq)を分けて加える。水分を含んだ 5%パラジウム 炭 素(51.5 %, 0.125g, 0.015 eq)をこの懸濁液に加え、混合液を真空 窒素のパージを 3回行なうことにより脱気する。混合液を 75— 80 °Cで 5時間加熱した後、室温まで冷 却する。反応混合物を濃塩酸で pH 2付近に調整し、 30分間攪拌する。沈澱物をろ 過、水で 2回洗浄後、 目的物および水分を含んだ固体が得られる。この水分を含んだ 固体を 50 °Cでアセトンに溶かす。不溶物をろ過して除き、アセトン/水(9/1)で洗浄 する。濾液と洗浄液をあわせ、活性炭処理を行なう。活性炭をろ過後、アセトン/水 (9/1)で洗浄する。ろ液と洗浄液を合わせた溶液に水をゆっくり加える。 22 °Cで 20分 さらに攪拌を続けた後、水をスラリーに 22— 24 °Cで加える。このスラリーを 18でまで 冷却後、ろ過、水で洗浄、乾燥後、粗生成物を得る。粗生成物をテトラヒドロフラン/ アセトン力も再結晶を行なうと目的物の結晶(ト C)を得る。
[0048] 実施例 18
[化 42] OOH
Figure imgf000037_0001
化合物 16 (1.25 g,化合物 14; 1.90 mm (^から得られたイソプロパノール溶液)およ び化合物 2e (0.269g, 1.0 eq)のイソプロパノーノレ (1.56 mL)と水 (25.6 mL)の懸濁 液に炭酸カリウム(0.657g, 2.5 eq)を分けて加える。水分を含んだ 5%パラジウム-炭 素(51.5 %, 0.125g, 0.015 eq)をこの懸濁液に加え、混合液を真空一窒素のパージを 3回行なうことにより脱気する。混合液を 75— 80 °Cで 5時間加熱した後、室温まで冷 却する。反応混合物を濃塩酸(0.682 mL)で pH 2付近に調整し、 30分間攪拌する。 沈澱物をろ過、水で洗浄後、 目的物および水分を含んだ固体が得られる。この水分 を含んだ固体を 50 °Cでアセトンに溶かす。不溶物をろ過して除き、アセトン/水
(9/1)で洗浄する。濾液と洗浄液をあわせ、活性炭処理を行なう。活性炭をろ過後、 アセトン/水(9/1)で洗浄する。ろ液と洗浄液を合わせた溶液に水をゆっくり加える。
22 °Cで 20分さらに攪拌を続けた後、水をスラリーに 22— 24 °Cでカ卩える。このスラリー を 18 °Cまで冷却後、ろ過、水で洗浄、乾燥後、粗生成物(0.66 g)を得る。粗生成物 をテトラヒドロフラン/アセトン力 再結晶を行なうと目的物の結晶(I-D,)を得る。
[0049] 実施例 19
[化 43] -B(OH)2
Figure imgf000038_0001
(2a) (18) (l-E) 水酸化ナトリウム (0.29 g, 7.31 mmol, 2.5 eq)を水 (8.0 mL)に溶解させ、イソプロパ ノール (1.0 mL)を加える。化合物 18 (1.0 g, 2.92 mmol),化合物 2a (0.43 g, 3.53 mmol, 1.2eq)、 5%パラジウム一炭素 (51.5%wet) (0.60 g, 0.145 mmol, 0.05eq)を順次 加え、 90 °Cまで昇温する。反応液を同温度にて 8時間撹拌させ、パラジウム一炭素を ろ過後、パラジウム-炭素をテトラヒドロフラン/水(1/1)で洗浄する。ろ過液を酢酸 ェチル 2回順次洗浄後、有機層を水で逆抽出する。合併水層に 35%塩酸を 25 °C付 近で滴下し、 pHを 2付近に調整する。 25 °C付近で 1時間撹拌後、析出晶を濾取しイソ プロパノール/水(1/1)で洗浄する。結晶を乾燥し、粗ト Eを得る。結晶をテトラヒドロ フランに溶解させた後、活性炭を加えろ過する。溶媒を濃縮後、析出晶を濾取、冷ィ ソプロパノールで洗浄する。乾燥して精製した I-Eを得る。
実施例 20
[化 44]
Figure imgf000038_0002
水酸化ナトリウム (0.29 g, 7.31 mmol, 2.5 eq)を水 (8.0 mL)に溶解させ、イソプロパ ノーノレ (1.0 mL)を加える。ィ匕合物 18 (1.0 g, 2.92 mmol),ィ匕合物 2g (0.4.3 g, 3.53 mmol, 1.2eq)、 5%パラジウム—炭素 (51.5%wet) (0.60 g, 0.145 mmol, 0.05eq)を順次 加え、 90 °Cまで昇温する。反応液を同温度にて 8時間撹拌させ、パラジウム一炭素を ろ過後、パラジウム一炭素をテトラヒドロフラン Z水(1/1)で洗浄する。ろ過液を酢酸 ェチル 2回順次洗浄後、有機層を水で逆抽出した。合併水層に 35%塩酸を 25 °C付 近で滴下し、 pHを 2付近に調整する。 25 °C付近で 1時間撹拌後、析出晶を濾取しイソ プロパノール/水(1/1)で洗浄する。結晶を乾燥し、粗ト Fを得る。結晶をテトラヒドロ フランに溶解させた後、活性炭を加えろ過する。溶媒を濃縮後、析出晶を濾取、冷ィ ソプロパノールで洗浄する。乾燥して精製した I-Fを得る。
産業上の利用可能性
経済的なパラジウム一炭素を触媒とし、環境に配慮し、水系溶媒を用いる工業的製 法に適した鈴木カップリングを行なうことができる。また、ジオール類を添カ卩することに より、ノ ジウム一炭素触媒、水系における鈴木カップリングの収率が向上させること が可能になる。

Claims

請求の範囲
[1] 一般式 (π) :
[化 1]
Figure imgf000040_0001
(式中、 R1は低級アルキル、ヒドロキシ、低級アルキルォキシ、低級アルキルチオ、ホ ノレミル、ァシル、ァシルォキシ、ハロゲン、ハロ低級アルキル、ハロ低級アルキルォキ シ、ニトロ、シァノ、カルボキシ、スノレホ、低級アルキルォキシカルボニル、低級アルキ ノレスルホニル、低級アルキルスルホニルォキシ、置換されていてもよいアミ入置換さ れていてもよいアミノカルボニル、置換されていてもよいァリール、または置換されて いてもよいへテロアリール; R2および R2'は同時に水素原子もしくは低級アルキル、ま たは R2および R2'が一緒になつて隣接する酸素原子とともに 3— 8員環を形成してもよ レ、; Z1は— CR11 :^^11- — S -、—〇_、— CR" = N―、または— N = CR"_ (式中、 R1 1は水素原子または R1と同意義であり、 R11が 2個以上存在する場合は互いに独立し て選ばれる); mは 0から 3の整数であり、 m力 以上の場合、 R1はそれぞれ独立して 選ばれる)で表わされる化合物、その塩、またはその溶媒和物、および
一般式 (III) :
[化 2] H)
Figure imgf000040_0002
(式中、 R°は低級アルキル、ヒドロキシ、低級アルキルォキシ、低級アルキルチオ、ホ ノレミル、ァシル、ァシルォキシ、ハロゲン、ハロ低級アルキル、ハロ低級アルキルォキ シ、ニトロ、シァ入カルボキシ、スノレホ、低級アルキルォキシカルボニル、低級アルキ ノレスルホニル、低級アルキルスルホニルォキシ、置換されていてもよいアミ入置換さ れていてもよいアミノカルボニル、置換されていてもよいァリール、または置換されて いてもよいへテロアリール; R3は水素原子、置換されていてもよい低級アルキル、置 換されていてもよいァリール、置換されていてもよいァラルキル、置換されていてもよ いへテロァリール、または置換されていてもよいへテロアリールアルキル; R4は水素原 子、低級アルキル、ァラルキル、ヘテロァリールアルキル、またはァシル; Yはヒドロキ シまたは低級アルキルォキシ 1はハロゲンまたは R5S〇—(式中、 R5は低級アルキ
3
ルまたはハロ低級アルキル); Z2は— CR12= CR12_、— S―、—〇_、— CR12= N―、また は- N = CR12- (式中、 R12は水素原子または R°と同意義であり、 R12が 2個以上存在 する場合は互いに独立して選ばれる); nは 0から 2の整数であり、 nが 2の場合、 R°は それぞれ独立して選ばれる)で表わされる化合物、その塩、またはその溶媒和物を、 パラジウム一炭素の存在下、水を含む溶媒中で反応させることを特徴とする、 一般式 (I) :
[化 3]
(
Figure imgf000041_0001
および nは前記と同意義)で表わされる化合 物、その塩、またはその溶媒和物の製造方法。
[2] 一般式 (IV) :
[化 4]
Figure imgf000041_0002
(式中、 X2はハロゲン、 、 X1、 Z2および nは請求項 1と同意義)で表わされる化合物 、その塩、またはその溶媒和物、および一般式 (V):
[化 5] (V)
Figure imgf000042_0001
(式中、 R3、 および Yは請求項 1と同意義)で表わされる化合物、その塩、または その溶媒和物を反応させることにより、一般式 (III):
[化 6]
( )
(
Figure imgf000042_0002
式中、 R°、 R3、 R4、 Y、 および nは請求項 1と同意義)で表わされる化合物、 その塩、またはその溶媒和物を得る工程 Aおよび、得られた一般式 (III)で表わされ る化合物、その塩、またはその溶媒和物、および、
一般式 (II) :
[化 7]
(
Figure imgf000042_0003
式中、 R2、 R2'、 Z1および mは請求項 1と同意義)で表わされる化合物、その塩、 またはその溶媒和物を、
パラジウム一炭素存在下、水を含む溶媒中で反応させることにより、一般式 (I): [化 8]
Figure imgf000042_0004
、および nは請求項 1と同意義)で表わされる 化合物、その塩、またはその溶媒和物を製造する工程 Bを包含する請求項 1記載の 製造方法。
[3] 溶媒が水のみである請求項 1または 2記載の製造方法。
[4] パラジウム-炭素の存在下での反応が、酢酸およびパラジウム-炭素の存在下での 反応である請求項 1一 3のいずれかに記載の製造方法。
[5] パラジウム一炭素の存在下での反応力 ジオールおよびパラジウム一炭素の存在下で の反応である請求項 1一 4のいずれかに記載の製造方法。
[6] ジオールがエチレングリコールである請求項 5記載の製造方法。
[7] 一般式 (VI) :
[化 9]
(VI)
(
Figure imgf000043_0001
mは請求項 1と同意義)で表わされる化合物、その塩、または その溶媒和物、および
一般式 (VII):
[化 10]
Figure imgf000043_0002
(式中、 R°、 X1および Z2は請求項 1と同意義; pは 0から 3の整数であり、 pが 2以上の 場合、 R°はそれぞれ独立して選ばれる)で表わされる化合物、その塩、またはその溶 媒和物を、
ジオールおよびパラジウム一炭素の存在下、水を含む溶媒中、反応させることを特徴 とする、
一般式 (VIII):
[化 11]
Figure imgf000044_0001
(式中、
Figure imgf000044_0002
Z2、および mは請求項 1と同意義、 pは前記と同意義)で表わさ れる化合物、その塩、またはその溶媒和物の製造方法。
[8] ジオールがエチレングリコールである請求項 7記載の製造方法。
[9] ジオールの量が一般式 (VI)で表わされる化合物に対して 0. 5から 15当量である請 求項 7または 8記載の製造方法。
[10] 一般式 (IX) :
[化 12]
Figure imgf000044_0003
(式中、 R1
Figure imgf000044_0004
および mは請求項 1と同意義、 R6および R6'は同時に低級アルキルま たは R6および R6'は一緒になつて隣接する酸素原子とともに 3— 8員環を形成する)で 表わされる化合物、その塩、またはその溶媒和物、および
一般式 (VII):
[化 13]
Figure imgf000044_0005
(式中、
Figure imgf000044_0006
X1および Z2は請求項 1と同意義; Pは請求項 7と同意義)で表わされるィ匕 合物、その塩、またはその溶媒和物を、
パラジウム一炭素の存在下、水を含む溶媒中、反応させることを特徴とする、 一般式 (VIII):
[化 14] (VIII)
Figure imgf000045_0001
(式中、
Figure imgf000045_0002
Z2、および mは請求項 1と同意義、 pは請求項 7と同意義)で表わ される化合物、その塩、またはその溶媒和物の製造方法。
PCT/JP2004/008523 2003-06-20 2004-06-17 炭素−炭素結合生成反応 WO2004113258A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003176239 2003-06-20
JP2003-176239 2003-06-20

Publications (1)

Publication Number Publication Date
WO2004113258A1 true WO2004113258A1 (ja) 2004-12-29

Family

ID=33534890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/008523 WO2004113258A1 (ja) 2003-06-20 2004-06-17 炭素−炭素結合生成反応

Country Status (1)

Country Link
WO (1) WO2004113258A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298727A (ja) * 2008-06-13 2009-12-24 Shiratori Pharmaceutical Co Ltd ビアリール化合物の製造方法
US8884034B2 (en) 2009-07-08 2014-11-11 Dermira (Canada), Inc. TOFA analogs useful in treating dermatological disorders or conditions
JP2016222661A (ja) * 2015-05-29 2016-12-28 北興化学工業株式会社 新規なヒドロキシフェニルボロン酸エステルとその製造方法、およびヒドロキシビフェニル化合物の製造法
US10457679B2 (en) 2015-09-17 2019-10-29 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027174A1 (fr) * 1996-01-23 1997-07-31 Shionogi & Co., Ltd. Derives d'acides amines sulfones et inhibiteurs de metalloproteinases contenant ces derives
US5756545A (en) * 1997-04-21 1998-05-26 Warner-Lambert Company Biphenysulfonamide matrix metal alloproteinase inhibitors
JP2002537369A (ja) * 1999-02-24 2002-11-05 クラリアント・ゲーエムベーハー [1,1’:4’,1”]−テルフェニル化合物の製造法
JP2003128608A (ja) * 2001-10-18 2003-05-08 Shunichi Hirao ヒドロキシビアリール化合物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997027174A1 (fr) * 1996-01-23 1997-07-31 Shionogi & Co., Ltd. Derives d'acides amines sulfones et inhibiteurs de metalloproteinases contenant ces derives
US5756545A (en) * 1997-04-21 1998-05-26 Warner-Lambert Company Biphenysulfonamide matrix metal alloproteinase inhibitors
JP2002537369A (ja) * 1999-02-24 2002-11-05 クラリアント・ゲーエムベーハー [1,1’:4’,1”]−テルフェニル化合物の製造法
JP2003128608A (ja) * 2001-10-18 2003-05-08 Shunichi Hirao ヒドロキシビアリール化合物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CONLON D. ET AL: "Suzuki-Miyaura Cross-coupling with quasi-heterogeneous palladium", ADV. SYNTH. CATAL., vol. 345, no. 8, 2003, pages 931 - 935, XP002981860 *
DICKERSON T.J. ET AL: "Catalysis of the photo-fries reaction: antibody-mediated stabilization of high energy states", J. AM. CHEM. SOC., vol. 125, no. 50, 2003, pages 15395 - 15401, XP002981859 *
MARCK G. ET AL: "Aryl couplings with heterogeneous palladium catalysts", TETRAHEDRON LETTERS, vol. 35, no. 20, 1994, pages 3277 - 3280, XP002161074 *
SAKURAI H. ET AL: "Pd/C as reusable catalyst for the coupling reaction of halophenols and arylboronic acids in aquenous media", J. ORG. CHEM., vol. 67, no. 8, 2002, pages 2721 - 2722, XP002981861 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009298727A (ja) * 2008-06-13 2009-12-24 Shiratori Pharmaceutical Co Ltd ビアリール化合物の製造方法
US8884034B2 (en) 2009-07-08 2014-11-11 Dermira (Canada), Inc. TOFA analogs useful in treating dermatological disorders or conditions
US9434718B2 (en) 2009-07-08 2016-09-06 Dermira (Canada), Inc. TOFA analogs useful in treating dermatological disorders or conditions
US9782382B2 (en) 2009-07-08 2017-10-10 Dermira (Canada), Inc. TOFA analogs useful in treating dermatological disorders or conditions
JP2016222661A (ja) * 2015-05-29 2016-12-28 北興化学工業株式会社 新規なヒドロキシフェニルボロン酸エステルとその製造方法、およびヒドロキシビフェニル化合物の製造法
US10457679B2 (en) 2015-09-17 2019-10-29 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
US10882858B2 (en) 2015-09-17 2021-01-05 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
US11613539B2 (en) 2015-09-17 2023-03-28 Astrazeneca Ab Imidazo[4,5-c]quinolin-2-one compounds and their use in treating cancer
US11926616B2 (en) 2018-03-08 2024-03-12 Incyte Corporation Aminopyrazine diol compounds as PI3K-γ inhibitors
US11046658B2 (en) 2018-07-02 2021-06-29 Incyte Corporation Aminopyrazine derivatives as PI3K-γ inhibitors

Similar Documents

Publication Publication Date Title
RU2647851C2 (ru) Способы получения некоторых 2-(пиридин-3-ил)тиазолов
CA2942871A1 (en) Ror-gamma modulators and uses thereof
WO1996037481A1 (fr) Nouveau reactif de synthese de tetrazole et son emploi dans un procede de production de tetrazoles
JP2023162264A (ja) 細胞毒性ベンゾジアゼピン誘導体の調製方法
JP5863789B2 (ja) ピラゾール誘導体の製造方法
JP5610599B2 (ja) N−フェニル−n’−フェニルスルホニルピペラジン誘導体の製造方法
CN116964058A (zh) Kras g12d抑制剂及其在医药上的应用
WO2003076374A1 (fr) Procede de production de derive d&#39;acide trans-4-amino-1-cyclohexanecarboxylique
WO2004113258A1 (ja) 炭素−炭素結合生成反応
JP4139334B2 (ja) 新規ボロネートエステル
ES2391501T3 (es) Procedimientos para preparar sunitinib y sales del mismo
CN112888674A (zh) 多环化合物作为可溶性环氧化物水解酶抑制剂
WO2022107755A1 (ja) 新規アクリジニウム塩およびその製造方法
WO2005105755A1 (ja) 5-ジフルオロメトキシ-4-チオメチルピラゾール化合物の製造方法
WO1998057923A1 (fr) Nouveau procede de preparation
ES2312162T3 (es) Procedimiento para la obtencion de una sal de valsartan util para la preparacion de valsartan.
JP4886948B2 (ja) ビフェニルエチルアミン誘導体およびその製造方法
JP2004224714A (ja) イソオキサゾリジン−3−チオン誘導体の製造法
WO1998032736A1 (fr) Procede de production de derives d&#39;acide benzylsuccinique
CN111100063B (zh) 一种合成2-氟甲基取代的吡咯烷、哌啶以及哌嗪衍生物的制备方法
CN110172062B (zh) 一种单氟代螺环化合物的合成方法及其中间体
CA2712385A1 (en) Process for the manufacture of a 6-fluoro-1,2-dihydro-2-oxo-3h-indol-3-ylidene derivative
JPS6325589B2 (ja)
WO2006043595A1 (ja) 2-シアノ-4-フルオロピロリジン誘導体の製造法
JP4061333B2 (ja) 2−(ピラゾール−1−イル)ピリジン誘導体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP