Nothing Special   »   [go: up one dir, main page]

WO2004035850A1 - Superfine grain steel having nitrided layer - Google Patents

Superfine grain steel having nitrided layer Download PDF

Info

Publication number
WO2004035850A1
WO2004035850A1 PCT/JP2003/013308 JP0313308W WO2004035850A1 WO 2004035850 A1 WO2004035850 A1 WO 2004035850A1 JP 0313308 W JP0313308 W JP 0313308W WO 2004035850 A1 WO2004035850 A1 WO 2004035850A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrafine
grained steel
steel
nitrided layer
nitrided
Prior art date
Application number
PCT/JP2003/013308
Other languages
French (fr)
Japanese (ja)
Inventor
Saburo Matsuoka
Yoshiyuki Furuya
Hisashi Hirukawa
Shiro Torizuka
Hideyuki Kuwahara
Original Assignee
National Institute For Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute For Materials Science filed Critical National Institute For Materials Science
Priority to US10/531,319 priority Critical patent/US20050241733A1/en
Priority to EP03808902A priority patent/EP1580291A4/en
Publication of WO2004035850A1 publication Critical patent/WO2004035850A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces

Definitions

  • the invention of this application relates to an ultrafine grained steel having a nitrided layer. More specifically, the invention of this application relates to an ultrafine grain having a nitrided layer in which a nitrided layer is formed without adding an expensive and harmful alloying element such as Cr, Mo or the like during recycling, and has a high fatigue strength. It is about steel. BACKGROUND ART-Metal parts that are subjected to bending or torsional stress, such as rotating shafts, develop fatigue cracks from surfaces exposed to high stress, and eventually fracture. Therefore, hardening the surface and increasing the fatigue strength is effective in increasing the fatigue strength of the entire part. Hardening the surface is also effective from the viewpoints of wear resistance and corrosion resistance. The same is true for ultra-fine-grained steel having high strength and high toughness in which the ferrite crystal grain size is extremely small (for example, see Patent Document 1).
  • nitriding has been considered for surface hardening.
  • alloying elements such as Cr, Mo, Ti, and Nb are added, and heated at 450 to 590 for 0.5 to 100 hours. It was necessary to generate a nitride of an alloy element (for example, see Non-Patent Document 1).
  • a film-like iron nitride with a thickness of several to several tens of im is formed on its surface, and hardening is only about Hv250 at most. There is little or no precipitation of iron nitride inside and hardly contributes to hardening.
  • Patent document 1 Japanese Patent Application Laid-Open No. 2000-309850
  • Non-Patent Document 1 Hideyuki Kuwahara, Ph.D. Dissertation, "Study on Surface Modification of Iron Alloy by Plasma", November 1992, Kyoto University, Invention Disclosure
  • the invention of this application has a nitride layer characterized by having a ferrite grain structure having an average particle diameter of 3 m or less and having a nitride layer formed on the surface.
  • a nitride layer characterized by having a ferrite grain structure having an average particle diameter of 3 m or less and having a nitride layer formed on the surface.
  • the invention of this application is that the crystal grain growth during nitriding is suppressed by either precipitation of carbide or addition of a solid solution element (Claim 2 C content is 0.01 mass or more.
  • Caim 3 At least one element selected from the group consisting of Mn, Cr, Mo, Ti, Nb, V and P is added.
  • Caim 4 Mn content is 0.4 mass or more.
  • Claim 5 P content is not less than 0.035 inass3 ⁇ 4 (Claim 6 Carbon steel having a total content of Cr, Mo, Ti, Nb, and V of not more than 0.1 lmass% (Claim 7)
  • the minimum limit is 1.6 times or more the Vickers hardness of the base material (Claim 8), and the molded product, part or member (Claim 9) formed from the ultrafine grained steel having the above nitrided layer Provided as one embodiment.
  • Figure 1 is a FE-SEM photograph showing the nitrided layer structure of Fe-C-Mn-based 0.002C coarse-grained steel plasma-nitrided at 550 "CX for 26 hours.
  • Figure 2 shows the material of Fe-C-Mn-based 0.002C coarse grain steel and Fe-C-Mn-based 0.055C ultrafine grained steel plasma-nitrided under the conditions of 550 x 26 hours and the pick-up of the nitrided layer surface.
  • 5 is a bar graph showing hardness.
  • Fig. 3 is a graph showing the hardness distribution after nitriding in a fatigue test specimen of an Fe-C-Mn-based 0.05C ultrafine-grained steel.
  • Figure 4 is a FE-SEM photograph showing the matrix structure after nitriding of a Fe-C-Mn-based 0.05C ultrafine-grained steel plasma-nitrided at 550 ⁇ X for 26 hours.
  • FIG. 5 is a graph showing the hardness distribution of Fe—C—Mn—Si-based 0.25C coarse-grained steel containing 0.37 mass% of Mn after nitriding under the condition of SOO X for 16 hours.
  • Figure 6 is a graph showing the hardness distribution of Fe-C-Mn-Si-based 0.45C coarse-grained steel containing 0.83 mass% of Mn after nitriding under the condition of 50 (TC X 16 hours). .
  • FIG. 7 is a graph showing a comparison between the results of a fatigue test of a Fe-C-Mn-based 0.05C ultrafine-grained steel material and a nitride material.
  • Fig. 8 is a graph showing the effect of Fe3C on the grain growth suppression of Fe-C-Mn-Si ultrafine grained steel.
  • Figure 9 shows (a) and (b) FE-SEM showing the microstructures of the Fe-C-Mn-Si-based 0.15C ultrafine-grained steel and 0.45C ultrafine-grained steel before nitriding, respectively. It is a photograph.
  • Figure 10 shows the effect of suppressing grain growth in a 0.15C-0.1P ultrafine grained steel with 0.1lmass% P added to an Fe-C-Mn-Si based 0.15C ultrafine grained steel. It is a graph.
  • FIG. 11 is a graph showing a hardness distribution after nitriding Fe-C-Mn-Si ultrafine grain steel 0.45C-0.1P. BEST MODE FOR CARRYING OUT THE INVENTION
  • Ultra fine-grained steel with a simple composition and a ferrite grain structure with an average grain size of 3 / m or less is maintained at a temperature of 450 to 590 in an ammonia gas atmosphere or an atmosphere containing ammonia gas for 0.5 to 100 hours.
  • a nitride layer is formed on the surface, surface hardening occurs, and the fatigue strength is increased.
  • the ferrite grain structure means a structure mainly composed of ferrite grains. In this sense, the ferrite grain structure is
  • the two phases may include carbide, pearlite, martensite, austenite, and the like.
  • the Mn content is preferably set to 0.4 mass% or more.
  • nitriding at 500 for 16 hours causes hardening of the surface
  • the Mn content is 0.83 mass%
  • the surface of the ultrafine grained steel hardens and a deep nitride layer is formed.
  • at least 0.4 mass% of Mn is added as a measure against MnS.
  • the Mn content is preferably set to 0.4 nias s% or more.
  • the amount of C is increased to precipitate carbides such as Fe3C, NbC, and TiC, or to form solid solution elements such as P (phosphorus) and V (vanadium).
  • the grain growth can be inhibited or suppressed by adding or both. For example, nitriding for as long as 26 hours at temperatures around 50ITC is possible. This prolonged nitridation forms a nitrided layer that is deeper and effective for increasing fatigue strength.
  • the preferred amount of C is at least 0.05 mass.
  • the amount of P is preferably set to 0.035 mass% or more.
  • the hardened layer by nitriding that is, the nitrided layer is about 0.5 im to 1.0 yard.
  • the coarse grained steel starts from the base immediately below the nitrided layer. Fatigue rupture occurs.
  • the fatigue strength of the entire nitrided material is determined by the strength governed by the stress at the starting point of fatigue rupture and the fatigue strength of the base metal. Fatigue strength much higher than expected from the above rules can be obtained. This is because the nitrided layer formed on the ultra-fine grained steel by nitriding is This is because the paste hardens. Therefore, the ultrafine-grained steel not only has high strength and high toughness but also has high fatigue strength by nitriding.
  • the ultrafine-grained steel having a nitrided layer according to the invention of the present application can be in either a pulp or powder form.
  • the strength of the powders is comparable to that of the nitrided layer formed in the ulcer-like ultrafine-grained steel. Therefore, the pulp obtained by sintering the nitrided powder can also be a high-strength material.
  • the sintering is performed, for example, in an atmosphere in which nitrogen gas or ammonia gas is used alone or as a mixture, or a hydrogen gas is added to any of these gases, and the total pressure is 2 atm or less. It can be carried out by applying a compressive stress of 1,200 to the following temperature range.
  • sintering not all the powders need to be nitrided.
  • pure iron powder can be blended as a sintering aid.
  • a ceramic powder such as TiN or TiC having a particle size of 2 or less can be added in order to exhibit the above-described effect of suppressing grain growth.
  • the ultrafine-grained steel having a nitrided layer according to the invention of the present application has high fatigue strength and excellent wear resistance in addition to high strength and high toughness, and various molded products, parts, and members. Practical application is expected to expand the scope of application to Example
  • Table 1 shows the chemical composition and ferrite grain size of the materials used in the examples, and Table 2 shows the mechanical properties.
  • the Fe-C-Mn coarse-grained steel 0.002C and the Fe-C-Mn-Si coarse-grained steel 0.25C have a ferrite grain size of about 20 m and a ferrite-pearlite structure.
  • 0.45C Fe-C-Mn-Si coarse-grained steel has a tempered martensitic structure.
  • Ultrafine-grained steel has a ferrite structure in which fine ferrite grains and carbides are dispersed. This ultrafine-grained steel was formed into a square bar of 18 mm X 18 mm by groove roll rolling.
  • FIG. 1 is a FE-SEM photograph showing the structure of the nitrided layer of the Fe-C-Mn-based 0.002C coarse-grained steel. From this FE-SEM photograph, it is confirmed that streak-like nitride is formed in the ferrite grains.
  • Figure 2 is a bar graph showing the Vickers hardness of the material and nitrided layer surfaces of the Fe-C- ⁇ -based 0.002C coarse-grained steel and the Fe-C-Mn-based 0.05C ultrafine-grained steel.
  • the picker hardness was measured by applying a load of 1 kg to the surface of a 1-mm-thick plasma-nitrided plate. It is confirmed that even a simple composition Fe-C-Mn-based steel is hardened by nitriding, and that ultrafine-grained steel is hardened more.
  • Fig. 3 is a graph showing the hardness distribution after nitriding in a fatigue test specimen of an Fe-C-Mn-based 0.05C ultrafine grained steel.
  • the nitriding conditions were plasma nitriding at 550: x26 hours, the same as above, and the fatigue test piece was a sand clock type with a test part having a diameter ⁇ of 6.
  • the Vickers hardness was measured under a load of 0.2 kg. From the hardness distribution shown in the graph of Fig. 3, it is estimated that the nitrided layer is about 1 place. Ma Also, it is confirmed that the hardness of the matrix after nitriding is lower than that of the material before nitriding.
  • the surface hardness of 0.25C coarse-grained steel with an Mn content of 0.37 mass% is high, but the hardness is not increased inside other than the surface.
  • 0.45C coarse-grained steel with an Mn content of 0.83 mass% the internal hardness also increased, confirming that a deep nitride layer of about l mm was formed.
  • nitriding is also possible in the Fe-C-Mn-Si system steel.
  • all other coarse-grained and fine-grained steels had Mn contents of 1.43 mass% or more, but all had a nitride layer of about 1 band. Therefore, in a Fe-C-Mn or Fe-C-Mii-Si based ultrafine-grained steel with a simple composition, the amount of Mn should be 0.37 mass to form a deep effective nitrided layer, that is, a hardened layer. It is understood that more than% is necessary.
  • Fig. 7 is a graph showing a comparison between the results of a fatigue test of a Fe-C-Mn-based 0.05C ultrafine-grained steel material and a nitride material.
  • a fatigue test a Clause-type rotary bending fatigue tester and an hourglass type test piece with a test section diameter of 6 mm were used.
  • the surface of the nitride material was removed by polishing to about 0.1 mm, and the defects introduced during nitridation were removed.
  • the nitrided material has significantly improved fatigue strength compared to the material, despite the fact that the matrix is coarse, and the fatigue limit of the material is 375MPa.
  • the fatigue limit of the nitrided material was 640 MPa.
  • the hardness of the base material of the nitride material is about HV160.
  • Fatigue limit 1.6 X Vickers hardness
  • the base material maintain the ultrafine grain structure and maintain its strength even by nitriding.
  • Fig. 8 shows the results of examining the grain growth effect of Fe3C. Specifically, using a fatigue test specimen with a test part with a diameter of 6 band made of Fe-C-Mn-Si-based ultrafine-grained steel, simulating high temperature and long-time holding during nitriding, The hardness change after holding at 500 for up to 30 hours using an oven was measured. As shown in the graph of Fig. 8, the hardness of 0.05C (0.05Cnmss3 ⁇ 4) ultra-fine grained steel and 0.15C (0.15Cmass%) Decreased to about Hv200, and coarsening was confirmed.
  • Figures 9 (a) and (b) are FE-SEM photographs showing the base metal structures of the Fe-C-Mn-Si series 0.15C ultrafine grained steel and 0.45C ultrafine grained steel before nitriding, respectively. It is. As described above, a large number of Fe3Cs (white spots) are precipitated in 0.45C ultrafine-grained steel. This It is presumed that the 0.45C ultrafine-grained steel did not coarsen due to the effect of Fe3C precipitates on grain growth suppression. In addition, it is confirmed that the ferrite grain size is 11 or less in both ultrafine-grained steels.
  • Fig. 10 shows the effect of suppressing grain growth in a 0.15C-0.1P ultrafine grained steel with 0.1lmass% P added to an Fe-C-Mn-Si based 0.15C ultrafine grained steel. It is a graph. As can be seen from Fig. 10, the hardness of the 0.15C-0.1P ultrafine-grained steel is smaller than that of the 0.15C ultrafine-grained steel, and coarsening is suppressed. . This is presumed to be due to the effect of solid solution of P on grain growth suppression. From the above results, it is concluded that coarsening can be prevented or suppressed by the grain growth effect of carbides or solid solution elements to maintain an ultrafine grain structure, and that long-term nitriding is possible while maintaining high strength. .
  • FIG. 11 is a graph showing the hardness distribution after nitriding of 0.45C-0.1P Fe-C-Mn-Si ultrafine grained steel. As can be seen from the graph shown in Fig. 11, the 0.45C-0.1P nitrided material shows a Hv of about 300 even in the matrix, and the ultrafine grained structure is maintained. Table 3 shows the fatigue test results for each nitrided material.
  • Nitride 700 700 780 The fatigue limit after nitriding was 700MPa for 0.45C ultrafine grained steel, 780MPa for 0.15C-0. IP ultrafine grained steel, and 700MPa for 0.45C-0. IP ultrafine grained steel. As shown in Table 2, the Vickers hardness of each base is 300, 308, and 339, so the ratio of fatigue limit / Pickers hardness of the base is 2.33, 2.53, 2.06, respectively. All are 1.6 or higher.
  • the difference in hardness between the material and the nitrided layer is more than twice as large for ultrafine-grained steel as for coarse-grained steel. This means, in other words, that the nitriding of the ultrafine-grained steel results in a higher hardness than expected for coarse-grained steel, and that the ultrafine-grained steel has excellent wear resistance.
  • the precipitation of carbides such as Fe3C and the addition of solid solution elements such as P increase the hardness of the nitrided layer by precipitation strengthening and solid solution strengthening, respectively. It is expected that the wear resistance of ultrafine-grained steel will be further improved.
  • a nitrided layer is formed without adding an alloy element that is harmful to recycling at a high price such as Cr, Mo, etc. Grain steel is provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

A superfine grain steel having a nitrided layer, characterized in that it has a ferrite grain structure having an average grain diameter of 3 μm or less and has a nitrided layer formed on the surface thereof. In the superfine grain steel, a nitrided layer is formed without the addition of alloying elements which are expensive and are detrimental to the recycling of steel, such as Cr or Mo, and also provides a steel having high fatigue strength.

Description

明 細 書 窒化層を有する超微細粒鋼 技術分野  Description Ultra-fine grained steel with nitrided layer Technical field
この出願の発明は、 窒化層を有する超微細粒鋼に関するものである。 さらに詳しくは、 この出願の発明は、 Cr, Mo 等の高価でリサイクルに 際し有害となる合金元素を添加せずに窒化層が形成され、 高疲労強度化 した、 窒化層を有する超微細粒鋼に関するものである。 背景技術 - 回転軸等の曲げやねじり応力を受ける金属製部品では、 高応力にさら される表面から疲労き裂が発生し、 やがて疲労破壊する。 このため、 表 面を硬化させ、 高疲労強度化することは、 部品全体を高疲労強度化する のに有効である。 また、 表面を硬化させることは、 耐摩耗性、 耐腐食性 の観点からも有効である。 このことは、 フェライト結晶粒径を非常に小 さくした高強度、 高靱性を有する超微細粒鋼 (たとえば、 特許文献 1参 照) についても同様である。  The invention of this application relates to an ultrafine grained steel having a nitrided layer. More specifically, the invention of this application relates to an ultrafine grain having a nitrided layer in which a nitrided layer is formed without adding an expensive and harmful alloying element such as Cr, Mo or the like during recycling, and has a high fatigue strength. It is about steel. BACKGROUND ART-Metal parts that are subjected to bending or torsional stress, such as rotating shafts, develop fatigue cracks from surfaces exposed to high stress, and eventually fracture. Therefore, hardening the surface and increasing the fatigue strength is effective in increasing the fatigue strength of the entire part. Hardening the surface is also effective from the viewpoints of wear resistance and corrosion resistance. The same is true for ultra-fine-grained steel having high strength and high toughness in which the ferrite crystal grain size is extremely small (for example, see Patent Document 1).
従来、 表面硬化のために窒化が考えられているが、そのためには、 Cr, Mo, Ti, Nb等の合金元素を添加し、 450 〜 590でで 0. 5〜100時間加熱 保持し、 これら合金元素の窒化物を生成させる必要があった(たとえば、 非特許文献 1参照)。現に、アンモニアガスを用いて純鉄を窒化すると、 その表面に数/ mから十数 i mの厚さの膜状の鉄窒化物が形成される にとどまり、 硬化は高々 Hv250程度に過ぎない。 内部には鉄窒化物の析 出がほとんどないか、 あるいはわずかに析出しても硬化にはほとんど寄 与しない。  Conventionally, nitriding has been considered for surface hardening. For this purpose, alloying elements such as Cr, Mo, Ti, and Nb are added, and heated at 450 to 590 for 0.5 to 100 hours. It was necessary to generate a nitride of an alloy element (for example, see Non-Patent Document 1). Actually, when pure iron is nitrided using ammonia gas, a film-like iron nitride with a thickness of several to several tens of im is formed on its surface, and hardening is only about Hv250 at most. There is little or no precipitation of iron nitride inside and hardly contributes to hardening.
しかしながら、 Cr, Mo等の合金元素は高価であり、 また、 リサイクル に際し有害となるため、 その添加は避けることが望ましい。 この出願の発明は、 このような事情に鑑みてなされたものであり、 Cr, o 等の高価でリサイクルに際し有害となる合金元素を添加せずに窒化 層が形成され、 高疲労強度化した、 窒化層を有する超微細粒鋼を提供す ることを解決すべき課題としている。 However, alloying elements such as Cr and Mo are expensive and harmful during recycling, so it is desirable to avoid their addition. The invention of this application was made in view of such circumstances, and a nitrided layer was formed without adding an expensive alloy element such as Cr or o, which would be harmful at the time of recycling. The task to be solved is to provide ultra-fine grained steel having a nitrided layer.
特許文献 1 : 特開 2000— 309850号公報  Patent document 1: Japanese Patent Application Laid-Open No. 2000-309850
非特許文献 1 : 桑原秀行、 博士論文 「プラズマによる鉄合金の表 面改質に関する研究」、 1992年 11月、 京都大学 発明の開示  Non-Patent Document 1: Hideyuki Kuwahara, Ph.D. Dissertation, "Study on Surface Modification of Iron Alloy by Plasma", November 1992, Kyoto University, Invention Disclosure
この出願の発明は、 上記の課題を解決するものとして、 平均粒径が 3 m以下のフェライ卜粒組織を有し、 表面に窒化層が形成されているこ とを特徴とする窒化層を有する超微細粒鋼 (請求項 1 ) を提供する。 またこの出願の発明は、 炭化物の析出若しくは固溶元素の添加のいず れか又は両方により窒化時の結晶粒成長が抑制されていること (請求項 2 C量が 0. 01mass 以上であること (請求項 3 )、 Mn, Cr, Mo, Ti, Nb, V及び Pからなる群から選択される元素が少なくとも一種類添加された こと (請求項 4 Mn量が 0. 4mass 以上であること (請求項 5 P量が 0. 035inass¾以上であること (請求項 6 Cr, Mo, Ti, Nb, Vの含有量が 合計で 0. lmass%以下の炭素鋼であること (請求項 7 )、 疲労限が母材の ビッカース硬さの 1. 6倍以上であること (請求項 8 )、 以上の窒化層を 有する超微細粒鋼から形成される成型品、 部品又は部材 (請求項 9 ) を それぞれ一態様として提供する。  In order to solve the above-mentioned problems, the invention of this application has a nitride layer characterized by having a ferrite grain structure having an average particle diameter of 3 m or less and having a nitride layer formed on the surface. Provide ultra-fine grained steel (Claim 1). Further, the invention of this application is that the crystal grain growth during nitriding is suppressed by either precipitation of carbide or addition of a solid solution element (Claim 2 C content is 0.01 mass or more. (Claim 3) At least one element selected from the group consisting of Mn, Cr, Mo, Ti, Nb, V and P is added. (Claim 4 Mn content is 0.4 mass or more. Claim 5 P content is not less than 0.035 inass¾ (Claim 6 Carbon steel having a total content of Cr, Mo, Ti, Nb, and V of not more than 0.1 lmass% (Claim 7) The minimum limit is 1.6 times or more the Vickers hardness of the base material (Claim 8), and the molded product, part or member (Claim 9) formed from the ultrafine grained steel having the above nitrided layer Provided as one embodiment.
以下、 実施例を示しつつ、 この出願の発明の窒化層を有する超.微細粒 鋼についてさらに詳しく説明する。 図面の簡単な説明  Hereinafter, the ultrafine grained steel having a nitrided layer according to the invention of the present application will be described in more detail with reference to examples. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 550"C X 26時間の条件でプラズマ窒化した Fe- C-Mn系 0. 002C 粗粒鋼の窒化層組織を示した FE-SEM写真である。 図 2は、 550 x 26時間の条件でプラズマ窒化した Fe-C-Mn系 0. 002C 粗粒鋼と Fe-C-Mn系 0. 05C超微細粒鋼の素材と窒化層表面のピツカ一ス 硬さを示した棒グラフである。 Figure 1 is a FE-SEM photograph showing the nitrided layer structure of Fe-C-Mn-based 0.002C coarse-grained steel plasma-nitrided at 550 "CX for 26 hours. Figure 2 shows the material of Fe-C-Mn-based 0.002C coarse grain steel and Fe-C-Mn-based 0.055C ultrafine grained steel plasma-nitrided under the conditions of 550 x 26 hours and the pick-up of the nitrided layer surface. 5 is a bar graph showing hardness.
図 3は、 Fe-C- Mn系 0. 05C超微細粒鋼の疲労試験片における窒化後の 硬さ分布を示したグラフである。  Fig. 3 is a graph showing the hardness distribution after nitriding in a fatigue test specimen of an Fe-C-Mn-based 0.05C ultrafine-grained steel.
図 4は、 550^ X 26時間の条件でプラズマ窒化した Fe- C-Mn系 0. 05C 超微細粒鋼の窒化後の母地組織を示した FE-SEM写真である。  Figure 4 is a FE-SEM photograph showing the matrix structure after nitriding of a Fe-C-Mn-based 0.05C ultrafine-grained steel plasma-nitrided at 550 ^ X for 26 hours.
図 5は、 M n量 0. 37mass%含有の Fe- C- Mn-Si系 0. 25C粗粒鋼に SOO X 16時間の条件で窒化した後の硬さ分布を示したグラフである。  FIG. 5 is a graph showing the hardness distribution of Fe—C—Mn—Si-based 0.25C coarse-grained steel containing 0.37 mass% of Mn after nitriding under the condition of SOO X for 16 hours.
図 6は、 M n量 0. 83mass¾;含有の Fe-C- Mn- Si系 0. 45C粗粒鋼に 50(TC X 16時間の条件で窒化した後の硬さ分布を示したグラフである。  Figure 6 is a graph showing the hardness distribution of Fe-C-Mn-Si-based 0.45C coarse-grained steel containing 0.83 mass% of Mn after nitriding under the condition of 50 (TC X 16 hours). .
図 7は、 Fe- C-Mn系 0. 05C超微細粒鋼の素材と窒化材の疲労試験の結 果を比較して示したグラフである。  FIG. 7 is a graph showing a comparison between the results of a fatigue test of a Fe-C-Mn-based 0.05C ultrafine-grained steel material and a nitride material.
図 8は、 Fe-C-Mn-Si系超微細粒鋼の Fe3Cによる粒成長抑制効果を示 したグラフである。  Fig. 8 is a graph showing the effect of Fe3C on the grain growth suppression of Fe-C-Mn-Si ultrafine grained steel.
図 9は、 (a) (b)は、それぞれ、 Fe-C-Mn-Si系 0. 15C 超微細粒鋼、 0. 45C 超微細粒鋼の窒化前の母材組織を示した FE- SEM写真である。  Figure 9 shows (a) and (b) FE-SEM showing the microstructures of the Fe-C-Mn-Si-based 0.15C ultrafine-grained steel and 0.45C ultrafine-grained steel before nitriding, respectively. It is a photograph.
図 1 0は、 Fe-C-Mn- Si系 0. 15C超微細粒鋼に 0. lmass%の Pを添加し た 0. 15C - 0. 1P超微細粒鋼における粒成長抑制効果を示したグラフであ る。  Figure 10 shows the effect of suppressing grain growth in a 0.15C-0.1P ultrafine grained steel with 0.1lmass% P added to an Fe-C-Mn-Si based 0.15C ultrafine grained steel. It is a graph.
図 1 1は、 Fe-C - Mn - Si系超微細粒鋼 0. 45C - 0. 1Pを窒化した後の硬さ 分布を示したグラフである。 発明を実施するための最良の形態  FIG. 11 is a graph showing a hardness distribution after nitriding Fe-C-Mn-Si ultrafine grain steel 0.45C-0.1P. BEST MODE FOR CARRYING OUT THE INVENTION
単純組成の、 平均粒径が 3 / m以下のフェライト粒組織を有する超微 細粒鋼は、 アンモニアガス雰囲気若しくはアンモニアガスを含む雰囲気 中で 450 〜 590での温度に 0. 5- 100時間保持することにより、 表面に 窒化層が形成され、 表面硬化が起こり、 高疲労強度化する。 ここで、 フェライ卜粒組織とは、 フェライト粒が主体の組織を意味す る。 この意味では、 フェライト粒組織は、 フェライト単相組織でも、 第Ultra fine-grained steel with a simple composition and a ferrite grain structure with an average grain size of 3 / m or less is maintained at a temperature of 450 to 590 in an ammonia gas atmosphere or an atmosphere containing ammonia gas for 0.5 to 100 hours. As a result, a nitride layer is formed on the surface, surface hardening occurs, and the fatigue strength is increased. Here, the ferrite grain structure means a structure mainly composed of ferrite grains. In this sense, the ferrite grain structure is
2相として炭化物、 パーライト、 マルテンサイト、 オーステナィ卜など を含んでもよい。 The two phases may include carbide, pearlite, martensite, austenite, and the like.
なお、 この出願の発明の窒化層を有する超微細粒鋼では、 Mn 量は 0. 4mass%以上とするのが好ましい。 Mn量が 0. 37mass%の Fe - C-Mn系若し くは Fe- C-Mn-S i系の超微細粒鋼では、 500で, 16時間の窒化により表面 の硬化が起こるが、深い硬化層までは形成されにくレ^ Mn量が 0. 83mass¾ の場合、 超微細粒鋼の表面は硬化し、 深い窒化層が形成される。 ところ で、 通常の鋼では MnS対策として最低 0. 4mass¾の Mnが添加される。 以 上を考慮してこの出願の発明の窒化層を有する超微細粒鋼では、 Mn量は 0. 4nias s%以上とするのが好ましい。  In the ultrafine grained steel having a nitrided layer according to the invention of the present application, the Mn content is preferably set to 0.4 mass% or more. In the case of Fe-C-Mn-based or Fe-C-Mn-Si-based ultrafine-grained steel with a Mn content of 0.37 mass%, nitriding at 500 for 16 hours causes hardening of the surface, If the Mn content is 0.83 mass%, the surface of the ultrafine grained steel hardens and a deep nitride layer is formed. However, in ordinary steel, at least 0.4 mass% of Mn is added as a measure against MnS. In view of the above, in the ultrafine grained steel having a nitrided layer of the invention of this application, the Mn content is preferably set to 0.4 nias s% or more.
C量が 0. 05mass 〜 0. 15mas s%の超微細粒鋼では、 550で前後の温度に 長時間保持すると、粒成長が生じ、超微細粒組織が崩れやすい。そこで、 この出願の発明の鋼の高疲労強度化方法では、 C量を高め、 Fe3C, NbC, Ti C等の炭化物を析出させるか、 若しくは P (リン) , V (バナジウム) 等の固溶元素を添加するか、 又はその両方により粒成長を阻止若しくは 抑制することができる。 たとえば、 50ITC前後の温度で 26時間にも及ぶ 長時間の窒化が可能となる。 この長時間の窒化により、 より深く、 高疲 労強度化に有効な窒化層が形成される。 好ましい C量は 0. 05mass 以上 である。 また、 P量は 0. 035mass%以上とするのが好ましい。  In ultrafine grained steel with a C content of 0.05 mass to 0.15 mass%, if the temperature is maintained at about 550 for about a long time, grain growth occurs, and the ultrafine grain structure easily collapses. Therefore, in the method for increasing the fatigue strength of steel according to the invention of the present application, the amount of C is increased to precipitate carbides such as Fe3C, NbC, and TiC, or to form solid solution elements such as P (phosphorus) and V (vanadium). The grain growth can be inhibited or suppressed by adding or both. For example, nitriding for as long as 26 hours at temperatures around 50ITC is possible. This prolonged nitridation forms a nitrided layer that is deeper and effective for increasing fatigue strength. The preferred amount of C is at least 0.05 mass. Further, the amount of P is preferably set to 0.035 mass% or more.
通常、疲労を考えた場合、窒化による硬化層、すなわち窒化層は、 0. 5im 〜1. 0廳程度であり、 十分に表面を硬化させた場合、 粗粒鋼では窒化層 直下の母地から疲労破壌が生じる。 窒化材全体の疲労強度は、 一般に、 疲労破壌の起点部の応力と母地の疲労強度から律則される強度で決ま るが、 この出願の発明の窒化層を有する超微細粒鋼は、 上記法則から期 待される疲労強度よりもはるかに高い疲労強度が得られる。 それという のも、 窒化により超微細粒鋼に形成される窒化層は、 粗粒鋼の窒化層よ りも硬化するためである。 したがって、 超微細粒鋼は、 高強度、 高靱性 をあわせ持つばかりでなく、 窒化により高疲労強度が付与される。 Normally, when fatigue is considered, the hardened layer by nitriding, that is, the nitrided layer is about 0.5 im to 1.0 yard.When the surface is sufficiently hardened, the coarse grained steel starts from the base immediately below the nitrided layer. Fatigue rupture occurs. Generally, the fatigue strength of the entire nitrided material is determined by the strength governed by the stress at the starting point of fatigue rupture and the fatigue strength of the base metal. Fatigue strength much higher than expected from the above rules can be obtained. This is because the nitrided layer formed on the ultra-fine grained steel by nitriding is This is because the paste hardens. Therefore, the ultrafine-grained steel not only has high strength and high toughness but also has high fatigue strength by nitriding.
そして、 表面硬さの上昇は耐摩耗性の向上に繋がる。 つまり、 窒化層 には大きな圧縮応力が付与されているのであり、 残存する圧縮応力が摺 動による引張応力を打ち消し、 超微細粒鋼表面に負荷される引張応力が 相対的に小さくなるのである。 また、 この出願の発明の窒化層を有する 超微細粒鋼は、 窒化温度において結晶粒の成長が阻止若しくは抑制され るため、 摩擦により発生する熱に対しても特性劣化が起こりにくい。 し たがって、 この出願の発明の窒化層を有する超微細粒鋼は、 良好な耐摩 耗性を示す。  An increase in surface hardness leads to an improvement in wear resistance. In other words, a large compressive stress is applied to the nitride layer, and the remaining compressive stress cancels out the tensile stress due to sliding, and the tensile stress applied to the surface of the ultrafine-grained steel becomes relatively small. Further, in the ultrafine-grained steel having a nitrided layer according to the invention of the present application, the growth of crystal grains is prevented or suppressed at the nitriding temperature, so that the characteristics are hardly deteriorated even by heat generated by friction. Therefore, the ultrafine-grained steel having a nitrided layer according to the invention of this application shows good wear resistance.
この出願の発明の窒化層を有する超微細粒鋼は、 パルク状、 粉末状の いずれとすることができる。  The ultrafine-grained steel having a nitrided layer according to the invention of the present application can be in either a pulp or powder form.
Fe-C-Mn系若しくは Fe- C- Mn- S i系の鋼粉末を窒化すると、粉末の強度 は、 パルク状の超微細粒鋼に形成される窒化層と同程度の強度を示す。 したがって、 窒化粉末を焼結することにより得られるパルク体もまた高 強度材料となり得る。 この場合、 焼結は、 たとえば、 窒素ガス、 アンモ ニァガスを単独若しくは混合したガス、 又はそのいずれかのガスに水素 ガスを添加し、全圧力を 2気圧以下とした雰囲気中で、 0. IMPa以上の圧 縮応力を負荷し、 1200で以下の温度域にして行うことができる。 また、 焼結を行う際には、 すべての粉末が窒化されている必要はなく、 たとえ ば、 焼結助剤として純鉄粉末を配合することができる。 さらに、 鋼粉末 の粒径が 20 i m以下の粉末を用いる場合、前述の粒成長抑制効果を発現 させるために、 2 以下の粒径の TiN, TiC等のセラミックス粉末を 添加することができる。  When Fe-C-Mn-based or Fe-C-Mn-Si-based steel powders are nitrided, the strength of the powders is comparable to that of the nitrided layer formed in the ulcer-like ultrafine-grained steel. Therefore, the pulp obtained by sintering the nitrided powder can also be a high-strength material. In this case, the sintering is performed, for example, in an atmosphere in which nitrogen gas or ammonia gas is used alone or as a mixture, or a hydrogen gas is added to any of these gases, and the total pressure is 2 atm or less. It can be carried out by applying a compressive stress of 1,200 to the following temperature range. When sintering, not all the powders need to be nitrided. For example, pure iron powder can be blended as a sintering aid. Further, when a steel powder having a particle size of 20 im or less is used, a ceramic powder such as TiN or TiC having a particle size of 2 or less can be added in order to exhibit the above-described effect of suppressing grain growth.
このように、この出願の発明の窒化層を有する超微細粒鋼は、高強度、 高靱性に加え、 高疲労強度、 優れた耐摩耗性が付与されたものとなり、 各種成型品、 部品、 部材への適用範囲を広げるものとして実用化が期待 される。 実 施 例 As described above, the ultrafine-grained steel having a nitrided layer according to the invention of the present application has high fatigue strength and excellent wear resistance in addition to high strength and high toughness, and various molded products, parts, and members. Practical application is expected to expand the scope of application to Example
(a)粗粒鋼(a) Coarse grain steel
Figure imgf000007_0001
Figure imgf000007_0001
表 2  Table 2
(a)粗粒鋼 (a) Coarse grain steel
材料 引張強度 (MPa) 全伸び (%) ビッカース硬さ Material Tensile strength (MPa) Total elongation (%) Vickers hardness
Fe-C-Mn 0.002C 114Fe-C-Mn 0.002C 114
Fe-C-Mn-Si 0.25C 51 1 34 155 Fe-C-Mn-Si 0.25C 51 1 34 155
0.45C 706 25 230  0.45C 706 25 230
(b)超微細粒鋼 (b) Ultra fine grain steel
材料 引張強度 (MPa) 全伸び (%) ビッカース硬さ Material Tensile strength (MPa) Total elongation (%) Vickers hardness
Fe-C-Mn 0.05C 645 13 216 Fe-C-Mn 0.05C 645 13 216
0.15C 842 17 286 0.15C 842 17 286
0.45C 952 17 3000.45C 952 17 300
Fe-C-Mn-Si 0J5C 1 143 12 360 Fe-C-Mn-Si 0J5C 1 143 12 360
0.90C 364 0.90C 364
0.15C-0.1 P 926 13 3080.15C-0.1 P 926 13 308
0.45C-0.1 P 1048 15 339 表 1に実施例で使用した材料の化学成分とフェライト粒径を、 表 2に 機械的性質を示した。 Fe-C-Mn系粗粒鋼 0. 002Cと Fe-C-Mn-Si系粗粒鋼 0. 25Cは、 フェライト粒径が約 20 ^ mで、 フェライト ·パーライト組織 を有する。 Fe- C-Mn-Si系粗粒鋼 0. 45Cは焼戻しマルテンサイト組織を有 する。 超微細粒鋼は、 微細フェライト粒と炭化物が分散したフェライ卜 組織を有する。 この超微細粒鋼については、 溝ロール圧延により 18mm X 18mmの角棒に成形した。 0.45C-0.1 P 1048 15 339 Table 1 shows the chemical composition and ferrite grain size of the materials used in the examples, and Table 2 shows the mechanical properties. The Fe-C-Mn coarse-grained steel 0.002C and the Fe-C-Mn-Si coarse-grained steel 0.25C have a ferrite grain size of about 20 m and a ferrite-pearlite structure. 0.45C Fe-C-Mn-Si coarse-grained steel has a tempered martensitic structure. Ultrafine-grained steel has a ferrite structure in which fine ferrite grains and carbides are dispersed. This ultrafine-grained steel was formed into a square bar of 18 mm X 18 mm by groove roll rolling.
表 2に示したように、 Fe- C- Mn系超微細粒鋼 0. 05C並びに Fe-C- Mn-Si 系粗粒鋼 0. 15C, 0. 45C, 0. 75C, 0. 90C においては、 炭素量の増加にと もない、 図 9 (a) (b)に示したように、 粒状の炭化物が増加するため、 炭 化物の析出強化により引張強度及ぴビッカース硬さは増加している。  As shown in Table 2, in the case of Fe-C-Mn ultrafine grained steel 0.055C and Fe-C-Mn-Si based coarse grained steel 0.15C, 0.45C, 0.75C, 0.90C However, as the amount of carbon increases, as shown in Fig. 9 (a) and (b), the amount of granular carbide increases, and the tensile strength and Vickers hardness increase due to the strengthening of precipitation of carbon. .
Fe-C-Mn-Si系超微細粒鋼 0. 15C-0. 1Pと 0. 45-0. 1Pにおいては、 同じ C 量を有する P無添加超微細粒鋼と比べると、 引張強度及びピツカ一ス硬 さは大きくなつている。 これは、 Pの固溶強化による。 In 0.15C-0.1P and 0.45-0.1P of Fe-C-Mn-Si ultrafine-grained steel, the tensile strength and pitch The hardness is increasing. This is due to solid solution strengthening of P.
Fe- C- Mn系 0. 002C粗粒鋼と Fe-C- Mn系 0. 05C超微細粒鋼を 550^ X 26 時間の条件でプラズマ窒化した。 図 1は、 Fe-C-Mn系 0. 002C粗粒鋼の窒 化層組織を示した FE-SEM写真である。 この FE-SEM写真からフェライト 粒内に筋状の窒化物が形成されていることが確認される。  The Fe-C-Mn-based 0.002C coarse-grained steel and the Fe-C-Mn-based 0.05C ultrafine-grained steel were plasma-nitrided at 550 ^ X for 26 hours. Figure 1 is a FE-SEM photograph showing the structure of the nitrided layer of the Fe-C-Mn-based 0.002C coarse-grained steel. From this FE-SEM photograph, it is confirmed that streak-like nitride is formed in the ferrite grains.
図 2は、 Fe- C- Μπ系 0. 002C粗粒鋼と Fe-C- Mn系 0. 05C超微細粒鋼の素 材と窒化層表面のビッカース硬さを示した棒グラフである。 ピツカ一ス 硬さは、 プラズマ窒化した厚さ 1 mmの板の表面に 1 kgの荷重を加えて 測定した。 単純組成の Fe- C-Mn系鋼でも窒化により硬化し、 超微細粒鋼 はより大きく硬化することが確認される。  Figure 2 is a bar graph showing the Vickers hardness of the material and nitrided layer surfaces of the Fe-C-Μπ-based 0.002C coarse-grained steel and the Fe-C-Mn-based 0.05C ultrafine-grained steel. The picker hardness was measured by applying a load of 1 kg to the surface of a 1-mm-thick plasma-nitrided plate. It is confirmed that even a simple composition Fe-C-Mn-based steel is hardened by nitriding, and that ultrafine-grained steel is hardened more.
図 3は、 Fe- C-Mn系 0. 05C超微細粒鋼の疲労試験片における窒化後の 硬さ分布を示したグラフである。 窒化条件は、 上記と同じ 550 : x 26時 間のプラズマ窒化であり、 疲労試験片は、試験部の直径 Φが 6匪の砂時 計型とした。 ビッカース硬さの測定は、 0. 2kgの荷重下で行った。 図 3 のグラフに示した硬さ分布より、 窒化層は約 1廳程度と推定される。 ま た、 窒化後の母地は、 窒化前の素材よりも硬さが低下していることが確 認される。 これは、窒化の際に母地が粗粒化したことが原因と考えられ、 実際、 図 4の窒化後の母地組織を示した FE-SEM写真から確認されるよ うに、 フェライト粒径が 5 m~ 10 mの大きさまで粗大化していた。 図 5、 図 6は、 それぞれ、 Mil が 0. 37mass 0. 83mass¾添加された Fe-C-Mn-Si系 0. 25C, 0. 45C粗粒鐧(いずれも直径 16匪の丸棒)に 500で X 16時間の条件で窒化した後の硬さ分布を示したグラフである。純鉄と 同様に、 M n量が 0. 37mass%である 0. 25C粗粒鋼においては、 表面の硬 さは高くなつているが、 表面以外の内部では硬さは上昇していない。 こ れに対し、 Mn量が 0. 83mass%である 0. 45C粗粒鋼においては内部の硬さ も上昇し、 l mm程度の深い窒化層が形成されていることが確認される。 Fig. 3 is a graph showing the hardness distribution after nitriding in a fatigue test specimen of an Fe-C-Mn-based 0.05C ultrafine grained steel. The nitriding conditions were plasma nitriding at 550: x26 hours, the same as above, and the fatigue test piece was a sand clock type with a test part having a diameter Φ of 6. The Vickers hardness was measured under a load of 0.2 kg. From the hardness distribution shown in the graph of Fig. 3, it is estimated that the nitrided layer is about 1 place. Ma Also, it is confirmed that the hardness of the matrix after nitriding is lower than that of the material before nitriding. This is thought to be due to the coarsening of the matrix during nitriding.In fact, as can be seen from the FE-SEM photograph showing the matrix structure after nitriding in Fig. 4, the ferrite grain size was reduced. It was coarsened to a size of 5 m to 10 m. Fig. 5 and Fig. 6 show that Fe-C-Mn-Si-based 0.25C and 0.45C coarse particles with 0.37mass 0.83mass of Mil added (both round bars of 16 band diameter) 3 is a graph showing the hardness distribution after nitriding under the condition of X 16 hours. As with pure iron, the surface hardness of 0.25C coarse-grained steel with an Mn content of 0.37 mass% is high, but the hardness is not increased inside other than the surface. On the other hand, in 0.45C coarse-grained steel with an Mn content of 0.83 mass%, the internal hardness also increased, confirming that a deep nitride layer of about l mm was formed.
Fe-C-Mn-S i系鋼においても窒化が可熊であることが理解される。 また、 表 1に示したように、他のすべての粗粒鋼と細粒鋼は Mn量が 1. 43mass¾ 以上であるが、 すべて 1匪 程度の窒化層が形成された。 したがって、 Fe - C- Mn系や Fe- C-Mii- Si系の単純組成の超微細粒鋼では、深い有効な窒 化層、 すなわち硬化層を形成するためには、 Mn量が 0. 37mass%以上必要 であると理解される。 It is understood that nitriding is also possible in the Fe-C-Mn-Si system steel. In addition, as shown in Table 1, all other coarse-grained and fine-grained steels had Mn contents of 1.43 mass% or more, but all had a nitride layer of about 1 band. Therefore, in a Fe-C-Mn or Fe-C-Mii-Si based ultrafine-grained steel with a simple composition, the amount of Mn should be 0.37 mass to form a deep effective nitrided layer, that is, a hardened layer. It is understood that more than% is necessary.
図 7は、 Fe- C- Mn系 0. 05C超微細粒鋼の素材と窒化材の疲労試験の結 果を比較して示したグラフである。 疲労試験には、 クラウゼ型回転曲げ 疲労試験機及び試験部の直径 Φが 6 mmの砂時計型試験片を使用した。な お、 窒化材は、 研磨により表面を 0. lmm程度除去し、 窒化の際に導入さ れた欠陥を除去した。 図 7から確認されるように、 窒化材は、 母地が粗 大化しているにもかかわらず、 疲労強度が素材に比べて大きく向上して おり、素材の疲労限が 375MPaであるのに対し、窒化材の疲労限は 640MPa となった。 窒化材の母地の硬さは HV160程度であり、 実験式  Fig. 7 is a graph showing a comparison between the results of a fatigue test of a Fe-C-Mn-based 0.05C ultrafine-grained steel material and a nitride material. For the fatigue test, a Clause-type rotary bending fatigue tester and an hourglass type test piece with a test section diameter of 6 mm were used. The surface of the nitride material was removed by polishing to about 0.1 mm, and the defects introduced during nitridation were removed. As can be seen from Fig. 7, the nitrided material has significantly improved fatigue strength compared to the material, despite the fact that the matrix is coarse, and the fatigue limit of the material is 375MPa. The fatigue limit of the nitrided material was 640 MPa. The hardness of the base material of the nitride material is about HV160.
疲労限 = 1. 6 Xビッカース硬さ  Fatigue limit = 1.6 X Vickers hardness
を用いると、 母材の疲労限は、 1. 6 X l60=256 [MPa]と推定される。 窒化 層の厚さを l mmとし、 直径 Φ 6 mm (半径 3mm) の試験片の回転曲げ試験 における応力勾配を考慮すると、 窒化層直下に作用する応力振幅 σ a' は、表面の公称応力振幅 に対し、 a a' / σ a= (3-1) /3 = 0. 67となる。 したがって、 母地硬さと応力勾配から見積もられる窒化材の疲労限は、 256/0. 67=382 [MP a]程度であるが、 実際の窒化材の疲労限は上記のとお り 640MPaであり、 母地硬さから予想される疲労限よりはるかに大きく 高疲労強度化されていることが確認される。 上記と同様な見積もりを素 材について測定された疲労限の 376MPa を用いて行うと、 図 3に示した 結果より素材と同じ硬さを示す窒化深さは約 0. 6ππιι であり、 o a ' / σ a= (3-0. 6) /3=0. 8となり、 したがって、.予測される窒化材の疲労限は、 375/0. 8=469 [MPa]となる。 実際の窒化材の疲労限 640MPaはこの予想値 よりも大きいことが理解される。 Is used, the fatigue limit of the base metal is estimated to be 1.6 X l60 = 256 [MPa]. Rotating bending test of a specimen with a diameter of Φ 6 mm (radius of 3 mm) with the thickness of the nitride layer as l mm Considering the stress gradient at, the stress amplitude σ a 'acting immediately below the nitride layer is aa' / σ a = (3-1) / 3 = 0.67 with respect to the nominal stress amplitude of the surface. Therefore, the fatigue limit of the nitrided material estimated from the matrix hardness and the stress gradient is about 256 / 0.67 = 382 [MPa], but the actual fatigue limit of the nitrided material is 640 MPa as described above. It is confirmed that the fatigue strength is much higher than the fatigue limit expected from the hardness of the mother ground, and the fatigue strength has been increased. When the same estimation as above is performed using the fatigue limit of 376 MPa measured for the material, the nitriding depth that shows the same hardness as the material is about 0.6ππιι from the results shown in Fig. 3, and oa '/ σ a = (3−0.6) /3=0.8. Therefore, the predicted fatigue limit of the nitrided material is 375 / 0.8 = 469 [MPa]. It is understood that the actual fatigue limit of nitrided material, 640MPa, is larger than this expected value.
以上のように、 超微細粒鋼では窒化にともない多少粗粒化しても、 疲 労強度に関し、 大きな窒化の効果が得られる。 ただ、 実際の部品 ·部材 を考慮すると、 母材は窒化によっても超微細粒組織を維持し、 強度を保 つことが望まれる。  As described above, even in the case of ultra-fine-grained steel, even if it is coarsened somewhat with nitriding, a large nitriding effect can be obtained in terms of fatigue strength. However, in consideration of actual parts and members, it is desirable that the base material maintain the ultrafine grain structure and maintain its strength even by nitriding.
そこで、図 8に Fe3Cによる粒成長効果について調べた結果を示した。 具体的には、 Fe-C- Mn- S i系超微細粒鋼から作製した、試験部の直径 6匪 の疲労試験片を用い、 窒化時の高温 ·長時間保持を模擬し、 通常の電気 炉を使って 30時間まで 500でに保持した後の硬さ変化を測定した。図 8 のグラフに示したように、 C量が低い 0. 05C (0. 05Cnmss¾)超微細粒鋼、 0. 15C (0. 15Cmass%)超微細粒鋼では 3時間程度の高温保持で硬さが Hv200 程度まで低下し、 粗粒化が確認された。 これに対し、 C量の高い 0. 45 (0. 45Cmass%)超微細粒鋼では、 30時間保持しても硬さの低下はわず かであり、 粗粒化の兆候を示さない。 0. 75C超微細粒鋼、 0. 90C超微細 粒鋼についても同様の結果が得られた。  Therefore, Fig. 8 shows the results of examining the grain growth effect of Fe3C. Specifically, using a fatigue test specimen with a test part with a diameter of 6 band made of Fe-C-Mn-Si-based ultrafine-grained steel, simulating high temperature and long-time holding during nitriding, The hardness change after holding at 500 for up to 30 hours using an oven was measured. As shown in the graph of Fig. 8, the hardness of 0.05C (0.05Cnmss¾) ultra-fine grained steel and 0.15C (0.15Cmass%) Decreased to about Hv200, and coarsening was confirmed. On the other hand, in the case of 0.45 (0.45Cmass%) ultrafine grained steel with a high C content, the hardness is slightly reduced even after being maintained for 30 hours, and there is no sign of coarsening. Similar results were obtained for 0.75C ultrafine grained steel and 0.90C ultrafine grained steel.
図 9 (a) (b)は、 それぞれ、 Fe-C- Mn - S i系 0. 15C超微細粒鋼、 0. 45C超 微細粒鋼の窒化前の母材組織を示した FE- SEM写真である。 前述のとお り、 0. 45C超微細粒鋼では多数の Fe3C (白い斑点) が析出している。 こ の Fe3C析出物の粒成長抑制効果により 0. 45C超微細粒鋼は粗粒化しな かったと推定される。 また、 両超微細粒鋼においてフェライト粒径は 1 1以下であることが確認される。 Figures 9 (a) and (b) are FE-SEM photographs showing the base metal structures of the Fe-C-Mn-Si series 0.15C ultrafine grained steel and 0.45C ultrafine grained steel before nitriding, respectively. It is. As described above, a large number of Fe3Cs (white spots) are precipitated in 0.45C ultrafine-grained steel. This It is presumed that the 0.45C ultrafine-grained steel did not coarsen due to the effect of Fe3C precipitates on grain growth suppression. In addition, it is confirmed that the ferrite grain size is 11 or less in both ultrafine-grained steels.
図 1 0は、 Fe-C-Mn- Si系 0. 15C超微細粒鋼に 0. lmass%の Pを添加し た 0. 15C-0. 1P超微細粒鋼における粒成長抑制効果を示したグラフであ る。 図 1 0から確認されるように、 0. 15C - 0. 1P超微細粒鋼では、 0. 15C 超微細粒鋼に比べ、 硬さの低下はわずかであり、 粗粒化が抑制されてい る。 これは、 固溶した Pの粒成長抑制効果によるものと推定される。 以上の結果から、 炭化物若しくは固溶元素の粒成長効果により粗粒化 を阻止若しくは抑制して超微細粒組織を維持し、 高強度を保ったままで 長時間の窒化が可能であると結論される。  Fig. 10 shows the effect of suppressing grain growth in a 0.15C-0.1P ultrafine grained steel with 0.1lmass% P added to an Fe-C-Mn-Si based 0.15C ultrafine grained steel. It is a graph. As can be seen from Fig. 10, the hardness of the 0.15C-0.1P ultrafine-grained steel is smaller than that of the 0.15C ultrafine-grained steel, and coarsening is suppressed. . This is presumed to be due to the effect of solid solution of P on grain growth suppression. From the above results, it is concluded that coarsening can be prevented or suppressed by the grain growth effect of carbides or solid solution elements to maintain an ultrafine grain structure, and that long-term nitriding is possible while maintaining high strength. .
粒成長抑制効果を利用した超微細粒鋼の窒化の有効性をさらに確認 するために、 Fe 3 C析出物を利用した Fe- C-Mn- Si 系超微細粒鋼 0. 45C、 Pの固溶を利用した 0. 15C-0. 1P及びその両方を利用した 0. 45C-0. 1Pを 実際に窒化し、 疲労試験を行った。 窒化は、 500^ X 16時間の条件のプ ラズマ窒化とした。疲労試験には、試験部の直径 6 mmの砂時計型試験片、 クラウゼ型回転曲げ試験機を使用し、 1本の試験片にっき 107回を単位 とするステップワイズ試験を行い、 疲労限のみを求めた。 図 1 1は、 Fe-C-Mn-Si系超微細粒鋼 0. 45C-0. 1Pを窒化した後の硬さ分布を示した グラフである。 この図 1 1に示したグラフから確認されるように、 0. 45C-0. 1P窒化材では、母地でも Hv300程度を示しており、超微細粒組 織が維持されている。 また、 各窒化材の疲労試験結果は表 3に示したと おりである。  In order to further confirm the effectiveness of nitriding of ultrafine grained steel using the grain growth suppression effect, the solidification of Fe-C-Mn-Si ultrafine grained steel 0.45C and P using Fe3C precipitates was investigated. The 0.15C-0.1P using melting and the 0.45C-0.1P using both were actually nitrided and subjected to a fatigue test. Nitriding was plasma nitriding under the condition of 500 ^ X 16 hours. In the fatigue test, an hourglass type test piece with a diameter of 6 mm at the test part and a Clause type rotary bending tester were used, and a stepwise test was carried out on a single test piece in units of 107 times to obtain only the fatigue limit. Was. Fig. 11 is a graph showing the hardness distribution after nitriding of 0.45C-0.1P Fe-C-Mn-Si ultrafine grained steel. As can be seen from the graph shown in Fig. 11, the 0.45C-0.1P nitrided material shows a Hv of about 300 even in the matrix, and the ultrafine grained structure is maintained. Table 3 shows the fatigue test results for each nitrided material.
表 3 疲労限 (MPa)  Table 3 Fatigue limit (MPa)
0.45C 0.15C - 0.1 P 0.45C-0.1 P  0.45C 0.15C-0.1 P 0.45C-0.1 P
素材 500 520 580  Material 500 520 580
Fe-C-Mn-Si ¾  Fe-C-Mn-Si ¾
窒化材 700 700 780 窒化後の疲労限は 0. 45C超微細粒鋼で 700MPa、 0. 15C-0. IP超微細粒 鋼で 780MPa、 0. 45C-0. IP超微細粒鋼で 700MPaとなった。 表 2に示した ように、それぞれの母地のビッカース硬さは 300, 308, 339であるので、 疲労限/母地のピッカース硬さの比はそれぞれ 2. 33, 2. 53, 2. 06 とな り、 すべて 1. 6以上となっている。 Nitride 700 700 780 The fatigue limit after nitriding was 700MPa for 0.45C ultrafine grained steel, 780MPa for 0.15C-0. IP ultrafine grained steel, and 700MPa for 0.45C-0. IP ultrafine grained steel. As shown in Table 2, the Vickers hardness of each base is 300, 308, and 339, so the ratio of fatigue limit / Pickers hardness of the base is 2.33, 2.53, 2.06, respectively. All are 1.6 or higher.
ところで、 超微細粒鋼 0. 45C及ぴ 0. 15C-0. 1Pは表面起点の疲労破壌 であったのに対し、 0. 45C-0. 1P超微細粒鋼は内部の介在物起点の疲労破 壌であった。 このことから、 超微細粒鋼 0. 45C及び 0. 15C - 0. 1Pでは窒 化組織のもつ本来の疲労限が得られたが、 0. 45C-0. 1P超微細粒鋼は、 上 記のとおり、 介在物起点型の疲労破壊が起こったため、 疲労限が低下し ていると理解される。 たとえば高清浄化技術を利用するなどして介在物 の寸法を小さくし、 介在物起点型の疲労破壊が生じないようにすれば、 0. 45C - 0. 1P超微細粒鋼は、 硬さが高いことから、 0. 15C - 0. 1P超微細粒 鋼の 780MPaを上回る疲労限が得られると期待される。  By the way, ultrafine grained steel 0.45C and 0.15C-0.1P were fatigue fractures originating from the surface, whereas 0.45C-0.1P ultrafine grained steel It was a fatigue rupture. From this, the original fatigue limit of the nitrided structure was obtained in 0.45C and 0.15C-0.1P ultrafine-grained steel, but 0.45C-0.1P ultrafine-grained steel It can be understood that the fatigue limit has been reduced due to the inclusion-initiated fatigue fracture as shown in the figure. For example, if the size of inclusions is reduced by using high-purification technology, etc. to prevent inclusion-originated fatigue fracture, the 0.45C-0.1P ultrafine-grained steel has high hardness Therefore, it is expected that the fatigue limit exceeding 780MPa of 0.15C-0.1P ultrafine grained steel will be obtained.
なお、 硬さが高いほど優れた耐摩耗性が得られる。 図 2に示したよう に、 素材と窒化層の硬さの差は、 粗粒鋼より超微細粒鋼の方が 2倍以上 大きい。 このことは、 換言すれば、 超微細粒鋼を窒化すると、 粗粒化鋼 に期待される以上の硬さの上昇が起こり、 超微細粒鋼は優れた耐摩耗性 を有することを意味する。 また、 図 2と図 1 1の比較から、 Fe3C等の炭 化物の析出、 P等の固溶元素の添加は、 それぞれ、 析出強化、 固溶強化 により窒化層の硬さを上昇させるため、 より一層超微細粒鋼の耐摩耗性 が向上することが見込まれる。  The higher the hardness, the better the wear resistance. As shown in Fig. 2, the difference in hardness between the material and the nitrided layer is more than twice as large for ultrafine-grained steel as for coarse-grained steel. This means, in other words, that the nitriding of the ultrafine-grained steel results in a higher hardness than expected for coarse-grained steel, and that the ultrafine-grained steel has excellent wear resistance. From the comparison between Fig. 2 and Fig. 11, the precipitation of carbides such as Fe3C and the addition of solid solution elements such as P increase the hardness of the nitrided layer by precipitation strengthening and solid solution strengthening, respectively. It is expected that the wear resistance of ultrafine-grained steel will be further improved.
しかも、 図 8、 図 1 0及び図 1 1に示したように、 窒化温度において も粒成長はしない。 このことから、 摩擦により熱が発生しても、 窒化温 度程度までの摩擦面の温度上昇に対しては超微細粒組織を維持可能で あり、 強度の低下はない若しくは小さく、 良好な耐摩耗性が得られると 考えられる。  Moreover, as shown in FIGS. 8, 10, and 11, no grain growth occurs even at the nitriding temperature. From this, even if heat is generated by friction, it is possible to maintain an ultra-fine grain structure with respect to the temperature rise of the friction surface up to the nitriding temperature, and there is no or small strength reduction and good wear resistance. It is thought that the property can be obtained.
もちろん、 この出願の発明は、 以上の実施形態及び実施例によって限 定されるものではない。 鋼の化学成分、 窒化条件、 窒化方式などの細部 については様々な態様が可能であることはいうまでもない。 産業上の利用可能性 Of course, the invention of this application is limited by the above-described embodiments and examples. It is not specified. It goes without saying that various aspects are possible for details such as the chemical composition of the steel, the nitriding conditions, and the nitriding method. Industrial applicability
以上詳しく説明した通り、 この出願の発明によって、 Cr, Mo 等の高 価でリサイクルに際し有害となる合金元素を添加せずに窒化層が形成 され、 高疲労強度化した、 窒化層を有する超微細粒鋼が提供される。  As described in detail above, according to the invention of this application, a nitrided layer is formed without adding an alloy element that is harmful to recycling at a high price such as Cr, Mo, etc. Grain steel is provided.

Claims

請求の範囲 The scope of the claims
1 . 平均粒径が 3 m以下のフェライト粒組織を有し、 表面に窒化層 が形成されていることを特徴とする窒化層を有する超微細粒鋼。 1. Ultra-fine grained steel having a nitrided layer characterized by having a ferrite grain structure with an average grain size of 3 m or less and a nitrided layer formed on the surface.
2 . 炭化物の析出若しくは固溶元素の添加のいずれか又は両方により 窒化時の結晶粒成長が抑制されている請求項 1記載の窒化層を有する 超微細粒鋼。  2. The ultrafine-grained steel having a nitrided layer according to claim 1, wherein crystal grain growth during nitriding is suppressed by either or both of precipitation of a carbide and addition of a solid solution element.
3 . C量が 0. 01iiiass¾以上である請求項 1又は 2記載の窒化層を有す る超微細粒鋼。  3. The ultrafine-grained steel having a nitrided layer according to claim 1, wherein the C content is 0.01 iiiass¾ or more.
4 . Mn, Cr, Mo, Ti, Nb, V及び Pからなる群から選択される元素が 少なくとも一種類添加された請求項 1、 2又は 3いずれかに記載の窒化 層を有する超微細粒鋼。  4. The ultrafine grained steel having a nitrided layer according to any one of claims 1, 2 and 3, wherein at least one element selected from the group consisting of Mn, Cr, Mo, Ti, Nb, V and P is added. .
5 . Mil量が 0. 4mass%以上である請求項 4記載の窒化層を有する超微 細粒鋼。  5. The ultrafine-grained steel having a nitrided layer according to claim 4, wherein the amount of Mil is 0.4 mass% or more.
6 . P量が 0. 035mass¾以上である請求項 4又は 5記載の窒化層を有す る超微細粒鋼。  6. The ultrafine grained steel having a nitrided layer according to claim 4 or 5, wherein the P content is 0.035 mass% or more.
7 . Cr, Mo, Ti, Nb, Vの含有量が合計で 0. lmass 以下の炭素鋼であ る請求項 4、 5又は 6いずれかに記載の窒化層を有する超微細粒鋼。 7. The ultrafine-grained steel having a nitrided layer according to any one of claims 4, 5 and 6, wherein the carbon steel has a total content of Cr, Mo, Ti, Nb and V of 0.1 lmass or less.
8 . 疲労限が母材のビッカース硬さの 1. 6倍以上である請求項 1、 2、 3、 4、 5、 6又は 7いずれかに記載の窒化層を有する超微細粒鋼。8. The ultrafine grained steel having a nitrided layer according to any one of claims 1, 2, 3, 4, 5, 6, and 7, wherein the fatigue limit is 1.6 times or more of the Vickers hardness of the base material.
9 . 請求項 1、 2、 3、 4、 5、 6、 7又は 8いずれかに記載の窒化 層を有する超微細粒鋼から形成される成型品、 部品又は部材。 9. A molded product, component or member formed from the ultrafine grained steel having a nitrided layer according to any one of claims 1, 2, 3, 4, 5, 6, 7 and 8.
PCT/JP2003/013308 2002-10-17 2003-10-17 Superfine grain steel having nitrided layer WO2004035850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/531,319 US20050241733A1 (en) 2002-10-17 2003-10-17 Superfine grain steel having nitrided layer
EP03808902A EP1580291A4 (en) 2002-10-17 2003-10-17 Superfine grain steel having nitrided layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/303658 2002-10-17
JP2002303658A JP3931230B2 (en) 2002-10-17 2002-10-17 Ultrafine grained steel with nitrided layer

Publications (1)

Publication Number Publication Date
WO2004035850A1 true WO2004035850A1 (en) 2004-04-29

Family

ID=32105079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/013308 WO2004035850A1 (en) 2002-10-17 2003-10-17 Superfine grain steel having nitrided layer

Country Status (6)

Country Link
US (1) US20050241733A1 (en)
EP (1) EP1580291A4 (en)
JP (1) JP3931230B2 (en)
KR (1) KR20050067184A (en)
CN (1) CN100359033C (en)
WO (1) WO2004035850A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006093167A1 (en) * 2005-02-28 2006-09-08 National Institute For Metals Science High-strength molded product comprising ultrafine grain structure steel and process for producing the same
JP4009313B2 (en) * 2006-03-17 2007-11-14 株式会社神戸製鋼所 High strength steel material excellent in weldability and method for producing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219393A (en) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd Steel material for soft-nitriding, soft-nitrided parts, and their production
EP0987340A1 (en) * 1998-08-31 2000-03-22 Japan as represented by Director General of National Research Institute for Metals High strength phosphorus-containing steel and method for producing the same
JP2000246301A (en) * 1999-02-26 2000-09-12 Natl Res Inst For Metals Method of manufacturing p-added low-carbon steel of high strength and high toughness
JP2001073035A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of steel having superfine structure
JP2003313637A (en) * 2002-02-19 2003-11-06 Nippon Steel Corp High-strength steel sheet having fine structure superior in formability, plating property and toughness, and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917167B2 (en) * 1980-06-09 1984-04-19 株式会社不二越 How to harden steel
JPH07216497A (en) * 1994-02-03 1995-08-15 Sumitomo Metal Ind Ltd Steel sheet or steel sheet parts with high fatigue strength and their production
JP2979987B2 (en) * 1994-12-20 1999-11-22 住友金属工業株式会社 Steel for soft nitriding
CN1121502C (en) * 1997-09-22 2003-09-17 科学技术厅金属材料技术研究所 Super fine organization steel and method for mfg. same
US6386810B1 (en) * 1999-05-21 2002-05-14 Hiroshi Onoe High strength screw
JP3845696B2 (en) * 2000-02-25 2006-11-15 独立行政法人物質・材料研究機構 Method for producing ultrafine-grained ferritic steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10219393A (en) * 1997-02-04 1998-08-18 Sumitomo Metal Ind Ltd Steel material for soft-nitriding, soft-nitrided parts, and their production
EP0987340A1 (en) * 1998-08-31 2000-03-22 Japan as represented by Director General of National Research Institute for Metals High strength phosphorus-containing steel and method for producing the same
JP2000246301A (en) * 1999-02-26 2000-09-12 Natl Res Inst For Metals Method of manufacturing p-added low-carbon steel of high strength and high toughness
JP2001073035A (en) * 1999-08-31 2001-03-21 Natl Res Inst For Metals Production of steel having superfine structure
JP2003313637A (en) * 2002-02-19 2003-11-06 Nippon Steel Corp High-strength steel sheet having fine structure superior in formability, plating property and toughness, and manufacturing method therefor

Also Published As

Publication number Publication date
EP1580291A4 (en) 2006-01-18
US20050241733A1 (en) 2005-11-03
EP1580291A1 (en) 2005-09-28
JP3931230B2 (en) 2007-06-13
JP2004137561A (en) 2004-05-13
KR20050067184A (en) 2005-06-30
CN100359033C (en) 2008-01-02
CN1705762A (en) 2005-12-07

Similar Documents

Publication Publication Date Title
Davis Alloying: understanding the basics
EP2578717B1 (en) Steel for nitriding purposes, and nitrided member
EP1403391B1 (en) Martensitic stainless steel
CN112210704A (en) Cobalt-rich wear-resistant alloys and methods of making and using the same
EP1721999A1 (en) Corrosion and wear resistant alloy
EP3561128A1 (en) High-hardness wear-resistant steel and method for manufacturing same
Wang Effect of alloying elements and processing factors on the microstructure and hardness of sintered and induction-hardened Fe–C–Cu alloys
Abd El-Aziz et al. Mechanical and microstructure characteristics of heat-treated of high-Cr WI and AISI4140 steel bimetal beams
JP2003113449A (en) High-strength/high-toughness stainless steel sheet superior in delayed fracture resistance and manufacturing method therefor
Lentz et al. Microstructures, heat treatment, and properties of boron‐alloyed tool steels
WO1994027764A1 (en) Alloy steel powder for sinter with high strength, high fatigue strength and high toughness, sinter, and process for producing the sinter
EP3594375B1 (en) Steel alloy, bearing component, bearing, process for the manufacture of a bearing component
JPH083629A (en) Carburizing and quenching method
WO2004035850A1 (en) Superfine grain steel having nitrided layer
JPH05263183A (en) Carburizing case hardening steel excellent in delayed fracture resistance
JP3471576B2 (en) Surface high hardness, high corrosion resistance, high toughness martensitic stainless steel
Kim et al. Effect of phase transformation on wear of high-nitrogen austenitic 18Cr–18Mn–2Mo–0.9 N steel
Toktaş et al. Effect of boronizing parameters and matrix structures on the wear property of ductile iron
JPH05255733A (en) Production of carburized and case hardened steel material having delayed fracture resistance
US8298313B2 (en) Cold-forming steel article
Zendron et al. Vacuum heat treatment of sintered Mn steels: influence of martensite content on impact properties
JPH10140236A (en) Production of high damping alloy
US7828910B2 (en) Method and process for thermochemical treatment of high-strength, high-toughness alloys
Chinese Society for Metals (CSM) et al. Microalloyed engineering steels with improved performance
Hossain et al. Effects of composition and cooling rates (annealing and normalizing) on the microstructure and tensile properties of plain carbon low alloy steels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038A15127

Country of ref document: CN

Ref document number: 1020057006535

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003808902

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10531319

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1020057006535

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003808902

Country of ref document: EP