Nothing Special   »   [go: up one dir, main page]

WO2004029312A1 - 超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法 - Google Patents

超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法 Download PDF

Info

Publication number
WO2004029312A1
WO2004029312A1 PCT/JP2003/012343 JP0312343W WO2004029312A1 WO 2004029312 A1 WO2004029312 A1 WO 2004029312A1 JP 0312343 W JP0312343 W JP 0312343W WO 2004029312 A1 WO2004029312 A1 WO 2004029312A1
Authority
WO
WIPO (PCT)
Prior art keywords
bulk material
austenitic steel
nanocrystalline
mass
austenitic
Prior art date
Application number
PCT/JP2003/012343
Other languages
English (en)
French (fr)
Inventor
Harumatsu Miura
Nobuaki Miyao
Hidenori Ogawa
Kazuo Oda
Munehide Katsumura
Masaru Mizutani
Original Assignee
Nano Technology Institute, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nano Technology Institute, Inc filed Critical Nano Technology Institute, Inc
Priority to AU2003266649A priority Critical patent/AU2003266649A1/en
Priority to EP03798524A priority patent/EP1555332A4/en
Priority to US10/529,418 priority patent/US7662207B2/en
Priority to UAA200502745A priority patent/UA77107C2/uk
Publication of WO2004029312A1 publication Critical patent/WO2004029312A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline
    • B22F9/004Making metallic powder or suspensions thereof amorphous or microcrystalline by diffusion, e.g. solid state reaction
    • B22F9/005Transformation into amorphous state by milling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/03Amorphous or microcrystalline structure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to a metal, in particular, a nanocrystalline austenitic steel plaque material having ultra-hard and tough and excellent corrosion resistance, and a method for producing the same.
  • the coercive force decreases as the crystal grain size D becomes smaller in the nano-order particle size range, as opposed to when the crystal grain size D is in the micron-order range.
  • the grain size D of many metal materials manufactured by the melting method is usually several micron to several tens of microns, and it is difficult to make D nano-order even by post-processing.
  • the lower limit of the grain size that can be reached is about 4 to 5 ⁇ m. Therefore, such an ordinary method cannot obtain a material whose particle size has been reduced to the nano-size level.
  • refractory materials N i 3 A 1 useful as super hard material, C 3 T i, N i (S i, T i), T i intermetallic compounds such as A 1 or A 1 ⁇ 3, Z R_ ⁇ 2, the T i C, C r C 2 , T i N, oxide or non-oxide ceramics such as T i B 2, both because of its brittleness at normal temperature generally difficult its plastic working Yes, forming using superplasticity in a relatively high temperature range is extremely important.
  • Chromium with a composition equivalent to SUS304 a typical austenitic stainless steel, can be added to nitrogen-based stainless steel in an amount of, for example, 0.9% (mass). Steel increases its resistance (yield strength) to about three times that of SUS304 stainless steel, and this is not accompanied by a decrease in crushing toughness, and it also increases pitting resistance in terms of corrosion resistance. And significantly reduces stress corrosion cracking susceptibility.
  • nitrogen is an extremely strong austenitic stabilizing element, it can not only replace expensive nickel without deteriorating the strength characteristics and corrosion resistance of austenitic steel, but also work under strong cold working. It shows excellent properties such as suppressing induced martensitic transformation.
  • high-manganese austenitic steel which has attracted much attention as a steel type that supports the next-generation large-scale technology (peripheral technologies such as magnetic levitation trains and superconducting applied equipment), is not suitable for chromium-nickel or chromium-manganese austenitic steel As with, no material with a nano-order grain structure has been provided. Disclosure of the invention
  • the present invention solves the above problems, and is the following invention.
  • the present invention basically provides mechanical milling (MM) or mechanical alloying (MA) treatment using a ball mill or the like of elemental metal powder alone or a mixed powder obtained by adding other elements to the metal powder.
  • MM mechanical milling
  • MA mechanical alloying
  • MA mechanical alloying
  • the present invention is an austenitic steel bulk material having the following configuration and a method for producing the same or use.
  • An austenitic steel bulk material consisting of an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution nitrogen,
  • a nanocrystalline austenitic steel bulk material that is characterized by becoming ultra-hard and tough and has excellent corrosion resistance.
  • An austenitic steel bulk material comprising an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen,
  • a metal or metalloid nitride is present as a crystal growth inhibitor between the nanocrystal particles (between the particles), inside the particles, or between the particles and inside the particles.
  • a nanocrystalline austenitic steel bulk material that is characterized by being ultra-hard and tough and having excellent corrosion resistance.
  • a porcelain austenitic steel comprising an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen,
  • An ultra-hard and tough nanocrystalline austenitic steel pulp material having excellent corrosion resistance characterized in that a metal or metalloid carbide is present as a crystal grain growth inhibitor between particles and inside the particles.
  • An austenitic steel bulk material comprising an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen,
  • a metal or metalloid silicide is used as a grain growth inhibitor between the particles (between the particles) of the nanocrystal particles, inside the particles, or between the particles and inside the particles.
  • a nanocrystalline austenitic steel bulk material that is characterized by being made to exist and is tough and has excellent corrosion resistance.
  • An austenitic steel bulk material comprising an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid-solution nitrogen,
  • a metal or metalloid boride (boride) is present as a crystal grain growth inhibitor between the particles (between the particles) or inside the same nanoparticle, or between the particles and inside the same particle.
  • An austenitic steel bulk material comprising an aggregate of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen,
  • Austenitic steel bulk material consisting of aggregates of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen is contained in its constituent structure.
  • (1) to (6) wherein the nanocrystalline austenite having excellent hardness and excellent corrosion resistance according to any one of the above (1) to (6), which is characterized by containing less than 50% of ferrite nanocrystal particles.
  • Steel bulk material consisting of aggregates of austenitic nanocrystal grains containing 0.1 to 2.0% (mass) of solid solution type nitrogen is contained in its constituent structure.
  • the superiority of the austenitic nanocrystal particles constituting the nanocrystalline austenitic steel bulk material containing 0.1% to 2.0% (mass) of solid solution nitrogen is described as follows. When the content is within the range of 0.1 to 2.0% by mass, most of the nitrogen is effectively dissolved in the matrix of the austenitic crystal (ground), and as the nitrogen concentration increases, the hardness and strength of the bulk material increase. Not only does this significantly increase, but especially when the nitrogen concentration described below is 0.1 to 0.9% (mass), a very tough nanocrystalline austenitic steel barta can be obtained.
  • a bulk material consisting of austenitic nanocrystal grains or an aggregate thereof containing 0.1 to 2.0% (mass) of solid solution nitrogen contains oxygen in the form of a metal or metalloid oxide. Characterized in that the content is from 01 to 1.0% (mass).
  • the nanocrystalline austenitic steel bulk material according to any one of (1), (6) and (7) which is ultra-hard and tough and has excellent corrosion resistance.
  • a bulk material composed of aggregates of austenitic nanocrystal particles containing 0.1 to 2.0% (mass) of solid-solution nitrogen has a nitrogen compound content of 1 to 30% (mass).
  • the nanocrystalline austenitic steel bulk material according to any one of (2), (6), (7) and (8) which is ultra-hard and tough and has excellent corrosion resistance.
  • a bulk material consisting of aggregates of austenitic nanocrystalline particles containing 0.1 to 2.0% (mass) of solid-solution type nitrogen is used to prevent nitrogen denitrification during the solidification and molding process.
  • a nitrogen-affinity metal element such as niobium, tantalum, manganese, or chromium, which has a higher chemical affinity with iron.
  • nanocrystalline austenitic copper bulk material according to any one of the above 1), which is super-hard and tough and has excellent corrosion resistance.
  • the steel-forming component and the compounding composition of the bulk material composed of aggregates of austenitic nanocrystalline particles containing 0.1 to 2.0% (mass) of solid-solution nitrogen are as follows:
  • the steel-forming component and the composition of the bulk material composed of aggregates of austenitic nanocrystalline particles containing 0.1 to 2.0% (mass) of solid-solution nitrogen are as follows:
  • the austenitic nanocrystal particles containing 0.1 to 2.0% (mass) of solid solution type nitrogen are obtained by mechanical alloying (MA) using a ball mill or the like.
  • the austenitic nanocrystal particles constituting the nanocrystalline austenitic steel bulk material preferably contain 0.3 to 1.0% (mass) of solid solution type nitrogen, particularly preferably 0.4 to 0.9% (mass).
  • the content of solid solution type nitrogen is less than 0.3%, the hardness of the bulk material cannot be increased significantly, and if it exceeds 1.0%, the bulk Although the hardness of the material increases, there is no improvement in toughness, and the content is very high at a content of 0.3 to 1.0% (mass), particularly preferably 0.4 to 0.9% (mass). It can have high hardness and high toughness.
  • the significance of setting the grain size of the austenitic nanocrystalline particles constituting the nanocrystalline austenitic steel bulk material to 50 to 1000 nm, more preferably 75 to 500 nm, and particularly preferably 100 to 300 nm is explained. If the diameter is smaller than 50 ⁇ m, the density of dislocations, which serve as a medium for promoting plastic deformation, within the nanocrystal grains becomes extremely small, and a problem arises as a practical material in that plastic working of the bulk material becomes difficult. On the other hand, if it exceeds l OOO nm, the dislocation density will increase greatly, and the plasticity of the bulk material will increase, but a reduction in the strength (strength) will be inevitable.
  • the austenite grains in the bulk material are 50-1000 nm, preferably 75-500 nm, more preferably 100-300 nm, the ideal austenite with high strength (high strength) and easy plastic working It becomes a steel bulk material. Unless particularly high strength is required, the bulk material after solidification When the annealing temperature is increased to 1200 ° C ( ⁇ 1250 ° C), austenite with large grains up to 5000 nm (5. Easy production of steel bulk materials
  • Each fine powder of austenitic steel forming components such as iron and chromium, nickel, manganese or carbon is mixed with a nitrogen source material,
  • Ultra-hard and tough consisting of aggregates of austenitic nanocrystalline particles containing 0.1 to 2.0% (mass) of solid solution nitrogen by solidification molding such as solidification molding or explosion molding
  • a method for producing a nanocrystalline austenitic steel bulk material characterized by being a corrosion-resistant austenitic steel bulk material.
  • the austenitic steel fine powder After manufacturing a high nitrogen concentration nanocrystalline austenitic steel fine powder by mechanical alloying (MA) using a ball mill etc., the austenitic steel fine powder is subjected to discharge plasma sintering in a vacuum or in an oxidation-suppressed atmosphere. It is solidified, then rolled, and quenched to contain 0.3 to 1.0% (mass), more preferably 0.4 to 0.9% (mass) of solid solution type nitrogen.
  • Austenitic steel bulk consisting of aggregates of austenitic nanocrystalline particles having a crystal grain size of 50 to; 1000 nm, more preferably 75 to 500 nm, and particularly preferably 100 to 300 nm) and having excellent corrosion resistance.
  • a method for producing nanocrystalline austenitic steel bulk material which is characterized by being made into a material.
  • the nanocrystalline austenite, wherein the solidified molded article according to the above (20) or (22) is baked at a temperature of 800 to I 200 ° C. for 60 minutes or less, and then rapidly cooled. Manufacturing method of steel bulk material.
  • an atmosphere subjected to mechanical ⁇ b queuing is, (1) an argon gas of any inert gas, (2) N 2 gas, or (3) NH 3 any one selected from a gas, or (1) -
  • Nitrogen sources include metal nitrides or nitrogen-affinity metals such as niobium, tantalum, manganese, chromium, tungsten, and molybdenum, which have a greater chemical affinity for nitrogen than 0.5 to 10% (mass) of iron.
  • dispersing the added nitride in the mechanical alloying (MA) process and the solidification molding process of the mechanical alloying (MA) treated powder, or the metal element or its nitride, carbonitriding Precipitates and disperses things, etc.
  • the method for producing a nanocrystalline austenitic steel bulk material according to any one of the above (20) to (29), characterized in that the bulk material is an austenitic steel bulk material having super-hardness, toughness, and excellent corrosion resistance.
  • Each fine powder of austenitic steel forming component of high manganese-carbon steel type mainly composed of iron, manganese and carbon is mixed with fine powder of metal nitride such as iron nitride as a nitrogen source,
  • the austenitic steel powder is subjected to heat such as sheath rolling, spark plasma sintering, and extrusion molding.
  • A is characterized in that it is made into an austenitic steel bulk material having super-hardness and toughness and excellent corrosion resistance by solidification molding treatment such as inter-solidification molding or explosion molding.
  • the amount of oxygen mixed into the high nitrogen nanocrystalline austenitic steel powder from the processing vessel, hard steel balls, etc. during mechanical alloying (MA) processing is adjusted to 0.01 to 1.0% (mass), Oxidation of metal or metal oxide, which is a compound of oxygen, promotes the refinement of one layer of crystal grains at the nano-size level in the mechanical alloying (MA) process, and improves the mechanical powder (MA) treated powder.
  • each powder when the powder material ⁇ ⁇ as a simple metal is subjected to mechanical milling (MM) or mechanical alloying (MA), each powder becomes a powder having an ultra-fine crystal grain structure.
  • MM mechanical milling
  • MA mechanical alloying
  • a Fe—N alloy powder as a nitrogen source material for example, a chromium-nickel-based or chromium-manganese-based elemental mixed powder composed of iron and chromium, nickel, manganese, carbon, or the like is used.
  • MA mechanical processing
  • the elemental elements in the raw material powder are mechanically alloyed (austenitized) without going through the melting process, and conventional techniques such as the melting method Nano size that cannot be achieved Austenitic steel powder having a grain structure of, and extremely solid solution strengthened by the solid solution of nitrogen in the austenite phase.
  • high manganese austenitic steels having a nanocrystalline structure can be easily produced by applying the same MA treatment and solidification molding technology as described above.
  • FIG. 1 shows the results obtained by adding 15 atomic% of another element (A) to the powder of each element of iron, cobalt, and nickel used in the embodiment of the present invention and subjecting to 50 hours of mechanical alloying (MA) treatment. It is the average crystal grain size of the element.
  • FIG. 2 is a diagram showing a change in coercive force He (k O e) depending on the average crystal grain size D (nm) of iron and cobalt subjected to mechanical milling (MM) used in the embodiment of the present invention. .
  • FIG. 3 is an explanatory view of the extrusion molding of the powder sample used in the embodiment of the present invention.
  • FIG. 4 is an X-ray diffraction of the mechanically treated (MA) powder used in the embodiment of the present invention. (XRD) FIG.
  • FIG. 5 is an XRD diagram of the MA-treated powder used in Examples of the present invention.
  • FIG. 6 shows the austenitization of the MA-treated powder sample used in the examples of the present invention ( This shows the situation of demagnetization) by changing the magnetization Mmax (e mu / g) with the MA processing time (t).
  • FIG. 7 is an explanatory view of a solidification molding process by spark plasma sintering (SPS) used in an example of the present invention.
  • SPS spark plasma sintering
  • FIG. 8 is an explanatory diagram of a solidification molding process by sheath rolling (SR) used in the embodiment of the present invention.
  • FIG. 9 is an XRD diagram of the MA sample before and after solidification molding of SPS at 900 ° C. used in the example of the present invention.
  • FIG. 10 is a scanning electron micrograph of a cross section of an MA sample compact (about 5 mm thick) formed by SPS at 900 ° C. used in an example of the present invention.
  • FIG. 11 is a graph showing the residual ratio R e (%) of nitrogen in the MA sample subjected to SPS molding at 900 ° C. used in the examples of the present invention.
  • FIG. 12 is an XRD diagram of a MA sample which was formed by SPS at 900 ° C. and used in Examples of the present invention.
  • FIG. 13 is a perspective view of a columnar specimen having an annular notch at the center used for the delayed fracture test. Explanation of reference numerals
  • T Molding temperature
  • t Molding time Best mode for carrying out the invention
  • iron and fine powders of austenitic steel forming components such as chromium, nickel, manganese or carbon are subjected to mechanical alloying (MA) treatment at room temperature in an atmosphere such as argon gas using a ball mill or the like. Is applied.
  • the MA-treated powder is easily refined to a grain size of about 15 to 25 nm by the mechanical energy applied by the ball mill.
  • the MA-treated powder is vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 7 mm, and the resulting material is sheathed using a rolling mill at a temperature around 800 to 100 ° C.
  • a sheet having a thickness of about 1.5 mm can be easily manufactured.
  • a chromium-nickel system or a chromium-manganese system in which elemental powders such as iron, chromium, nickel, and manganese and powders such as iron nitride serving as a nitrogen (N) source are prepared so as to have a target composition.
  • the mixed powder of the materials is subjected to mechanical alloying (MA) treatment at room temperature in an atmosphere such as argon gas using a ball mill.
  • the mechanically alloyed (MA) treated powder is mechanically alloyed without going through the melting process by the mechanical energy added by a ball mill or the like, and the mechanically alloyed (MA) treated alloy is processed.
  • the powder is refined to a level of several nm to several tens of nanometers to become a chromium-nickel or chromium-manganese high-nitrogen nanocrystalline austenitic steel powder.
  • Such austenitic steel powder is vacuum-sealed in a stainless steel tube (sheath) having an inner diameter of about 7 mm, and solidified by, for example, sheet rolling using a rolling mill at 900 ° C.
  • a high N austenitic steel sheet having a thickness of about 1.5 mm and a nanocrystalline structure composed of crystal grains of about 30 to 80 nm can be easily manufactured.
  • the amount of oxygen necessarily mixed in the form of metal or metalloid oxide into the mechanically treated (MA) powder described in the preceding paragraph in the form of metal or metalloid oxide is reduced to about 0.5% (mass). To suppress coarsening of crystal grains during the solidification molding process.
  • a particle dispersant such as A1N and NbN is added to the powder treated with mechanical alloying (MA). It is more preferable to add / 0 .
  • a particle dispersant such as A1N and NbN is added to the powder treated with mechanical alloying (MA). It is more preferable to add / 0 .
  • iron nitride as a nitrogen (N) source is added, and this mixed powder has a greater chemical affinity for N than iron. If the metal elements niobium, tantalum, chromium, manganese, etc. are added or increased as appropriate in the range of up to 10% (mass), and the mechanical alloying (MA) treatment is performed, the grain refinement in the MA process will be reduced.
  • these metal elements increase the solubility of N in the matrix (austenite) and significantly reduce the diffusion coefficient of N. By adjusting the time, etc., denitrification from the matrix phase can be almost completely prevented.
  • a high-melting element such as niobium or tantalum also has the effect of suppressing crystal grain coarsening during the solidification molding process.
  • an elemental mixed powder of iron, manganese, and carbon having a high manganese oxide steel composition containing about 20 to 30% (mass) of manganese is placed in an argon gas atmosphere using a ball mill.
  • MA mechanical alloying
  • the MA-treated alloy powder becomes a high-manganese nanocrystalline austenitic steel fine powder on the order of several nm to several tens of nm.
  • a high manganese austenitic steel having a thickness of about 1.5 mm and having a nanocrystalline structure of about 50 to 70 nm can be easily produced.
  • Figure 1 shows that powders of iron, cobalt, and nickel are added as carbon (A) to other elements.
  • C niobium
  • Nb tantalum
  • T a titanium
  • T i phosphorus
  • P boron
  • B boron
  • nitrogen N data is for iron only.
  • M iron, cobalt or nickel
  • Elemental mixed powder 5 O h hour
  • MA mechanical alloying
  • D. , Dc ,,, D Ni are each processed iron, cobalt, average crystal grain size of the nickel (nm). According to this figure, the refinement of the crystal grains of the iron, cobalt and nickel elements can be more effectively promoted by adding carbon, niobium, tantalum, titanium, etc. to the mechanical poring process. It can be seen that both elements are refined to a particle size of several nano-orders.
  • Example 2 In the case of copper, aluminum, and titanium, the addition of other elements promoted the miniaturization of crystal grains, and the effect of carbon, phosphorus, and boron was particularly large in these elements.
  • Example 2 In the case of copper, aluminum, and titanium, the addition of other elements promoted the miniaturization of crystal grains, and the effect of carbon, phosphorus, and boron was particularly large in these elements.
  • Figure 2 shows the relationship between the average grain size D (nm) and the coercive force He (k ⁇ e) of iron and cobalt treated by mechanical milling (MM).
  • Fig. 3 is an explanatory diagram of the extrusion molding process (extrusion pressure: 98MPa) at 1000 ° C performed on the powder samples (a) and (b) of TiC alone.
  • Fig. 4 shows the chromium-nickel powder blended from the elemental powders of Fe, Cr and Ni and the e-N alloy (5.85% (mass) content N) powder to achieve the target composition.
  • the symbol ⁇ ⁇ ⁇ indicates that the generated phase is austenite ( ⁇ ), and the symbol indicates that it is martensite ( ⁇ ') generated by strong working in the heat treatment process.
  • Fig. 4 when nitrogen ( ⁇ ) is not contained (a), the content of nickel (y) must be at least 14% (mass) in order to form an austenitic single phase (Fig. a)) Force Nitrogen (N) is added by 0.9% (mass), nickel content However, it can be seen that when the content is more than 6% (mass), it is almost austenite. This means that the austenitization is remarkably promoted (Fig. 2 (b)), and the amount of expensive nickel added to make the mechanically rolling (MA) product an austenitic single phase can be greatly reduced. Is shown. Fig. 5 shows the results for the chromium-manganese Fes3 ., Cr, s Mn, 5 Mo : 1 No.
  • Example 5 As mechanical solidification (MA) treatment samples for solidification molding in Example 5 and later described below, those used for each sample were confirmed to be an austenitic single phase by XRD and VSM. '' Example 5:
  • Figure 7 illustrates the solidification molding process of mechanically processed (MA) powder using a general-purpose spark plasma sintering (Spark Plasma Sintering, SPS) machine (power supply: DC 3 ⁇ 1V, 600 ⁇ 100A).
  • SPS spark Plasma Sintering
  • FIG. 8 is an explanatory view of a solidification molding process of a mechanically-alloying (MA) -treated powder by sheath rolling (Sheathr R011 ing, SR).
  • MA mechanically-alloying
  • MA mechanical alloying
  • sheath rolling temperature 650 ⁇ 1000 ° C
  • FIG. 10 is an observation diagram (SEM diagram) of the cross section of the compact by SPS of the sample, which is taken by a scanning electron microscope.
  • Table 1 shows the average grain size (D) of the treated sample before and after SPS molding at 900 ° C. It is as follows. 1] Fe 60 55 Cr 18 Mn 18 Mo 3 N 0 45 (% by mass)
  • Example 8 From the above Example 7, FIG. 9 and Table 1, it was found that according to the present invention, considerable crystal grain growth was observed during the SPS solidification molding process, but the nanostructure could be maintained after the molding.
  • Example 8 From the above Example 7, FIG. 9 and Table 1, it was found that according to the present invention, considerable crystal grain growth was observed during the SPS solidification molding process, but the nanostructure could be maintained after the molding.
  • Figure 11 shows the results of various mechanical alloying (MA) treatments of the following (a) to (g) powder samples that were SPS molded at 900 ° C.
  • MA mechanical alloying
  • N s Nitrogen content (% by mass) in the sample after SPS molding. From the same figure, the chromium-manganese-based samples (a), (b), and (c) have a Re of 100%, whereas the chromium-nickel system sample (d) (high nitrogen stainless steel equivalent to SUS 304 steel) has an R e of about 85%, indicating that nitrogen contained in the mechanical alloying (MA) treated sample Approximately 15% of the steel was lost during the SPS molding process. However, the residual nitrogen content Re increased significantly in sample (d) to which manganese was added (sample (e)) or in which chromium was added to the sample (sample (f)).
  • Example 9 according to the present invention, in the high nitrogen nanocrystalline austenitic steel (nitrogen concentration: 0.9% by mass) having a composition equivalent to SUS304, solidification by sheath rolling (SR) was performed.
  • the hardness is about 4 times that of SUS 304 stainless steel manufactured by the melting method (hardness higher than that of the high-carbon steel martensite structure), and the heat resistance is about 6 times that of ultra-high tensile strength steel. (Class value), and it was found that annealing can produce a product with considerably high elongation.
  • Example 10 In view of Example 10 and Table 3 (results of sample a), it was found that the high nitrogen Cr-Mn system Fe 6 3.. Cr, s Mn isMo 3 Nc. 9 (mass 0 / o) material also The SR + annealed material was found to be capable of producing a high-strength, highly ductile material as in the case of the high-nitrogen Cr-Ni-based material shown in Table 2.
  • the austenite-ferrite-based material (ferrite phase: about 40%) has a larger grain size during the SR forming process than the austenitic-based material (sample a). Growth is remarkably suppressed, and its hardness and strength ( ⁇ ⁇ .2 and It was also found that mechanical properties such as austenitic materials and ⁇ ⁇ ) can be manufactured.
  • Example 12 and Table 5 When the results of sample a in Example 12 and Table 5 are compared with those of the ⁇ SR + annealed '' material in Example 9 and Table 2, the mechanical properties of the SPS-molded product are further increased by further rolling. In addition to a considerable improvement, it shows high toughness (high impact value) and the effect of rolling is clear.
  • the crystal structure of the solidified molded product has a nano-size of about 90 to 200 nm even by the solidification molding treatment as shown in the same table. It was found that the solidification molding method used for Samples c and d allowed easy production of high-hardness, high-strength and tough nanocrystalline austenitic steel bulk material with high nitrogen concentration.
  • Example 13
  • Figure 13 shows a perspective view of a 5 mm diameter columnar specimen with an annular notch at the center used for the following delayed fracture test. Made by hanging.
  • test specimen was Fe 64. , Cr 2 . N i 8 Mn 5 N b 2 ⁇ . ⁇ 9 (mass 0 /.)
  • Mechanical alloying
  • Table 7 shows the relationship between the nitrogen content of the austenitic steel and the Vickers hardness Hv (effect of nitrogen solid solution).
  • SR-solidified molded sheet obtained by subjecting SUS304 stainless steel powder to MA * treatment for 10 hours, subjecting it to SR molding at 900 ° C, and then annealing (1150 ° C X 15 minutes Z water cooling).
  • Table 8 shows the relationship between the average grain size D and the Vickers hardness Hv of the austenitic steel (the effect of grain refinement by MA).
  • the properties common to high-nitrogen austenitic steels include super-strength, toughness, pitting resistance, and non-magnetic properties, as well as a 20% increase in temperature at elevated temperatures such as those found in martensitic or ferrite 1-based steel materials. It does not show rapid softening from a temperature around 0 to 300 ° C., and is unlikely to cause low-temperature brittleness at a temperature below room temperature.
  • the high-nitrogen nanocrystalline stainless steel which is an example of the present invention and contains about 0.9% (mass) of nitrogen, which is equivalent to austenitic stainless steel SUS304 steel, has a hardness of Is about four times as high as 304 stainless steel (hardness higher than the matte structure of high carbon steel) and 6 times as strong (ultra high tensile steel grade). In addition to always exhibiting a high value, such extremely high resistance to resistance does not cause the delayfailure found in martensitic or ferritic steel materials.
  • the high-nitrogen nanocrystalline austenitic steel material according to the present invention is not limited to the above-mentioned properties, and thus, for example, high-strength bolts and ballistic-resistant materials, as well as the following mechanical parts and various ultra-high-pressure hot working materials. It can be suitably and widely used as a material for hard tools and the like.
  • martensite or ferrite-based steel materials are often used for high-tensile ports and nuts, and the tensile strength of such martensite or ferrite-based materials is 70 to 8%. When it exceeds 0 kg Zmm 2 , it has the property of causing delayed fracture even under a static tensile force lower than the yield point (proof strength), so it currently has a tensile strength of 70 to 80 kg / mm 2 or more Steel is not used for high tension bolts and nuts. '
  • the high-nitrogen nanocrystalline austenitic steel according to the present invention has extremely high strength and its structure is composed of an austenitic phase, so that delayed fracture as described above may occur. Absent. Therefore, in view of the characteristics of such nanocrystalline austenitic steel, the bulk material of the nanocrystalline austenitic steel of the present invention is increasingly required to be lighter as well as the above-mentioned high-tensile bolts. The demand for components such as aircraft and automobiles is immense.
  • the weight of bulletproof vests currently used for military purposes, etc. can be as high as 40 to 50 kg per person when worn in an emergency.
  • Its material properties are required to be extremely high, such as a tensile strength of 250 kg Zmm 2 and an elongation of 5 to 10%, but materials that can meet this are still being developed. Not yet.
  • the high-nitrogen nanocrystalline austenitic steel bulk material according to the present invention not only sufficiently satisfies the high level of performance as described above, but also uses the nanocrystalline austenitic steel bulk material of the present invention for a very large lightweight. Can be measured.
  • the matrix of the friction and wear parts is a martensite structure, so the operating temperature range is limited due to the nature of the unstable phase called martensite.
  • the high-nitrogen austenitic steel according to the present invention does not cause a sharp decrease in strength or hardness up to a temperature of about 600 ° C. even in a high temperature range, so that it has a wider range. It can be used in the temperature range.
  • the high-nitrogen austenitic steel according to the present invention when used for a rotating part of a bearing, the amount of use can be greatly reduced due to the above-mentioned strength characteristics. Instead, the power used during the operation of the bearing can be greatly reduced through a large decrease in the centrifugal force of the bearing rolling element.
  • high-nitrogen nanocrystalline austenitic steel When high-nitrogen nanocrystalline austenitic steel is used for gears, it can be used in a wider temperature range than a normal gear with a tooth surface having a mantensite (unstable phase) structure.
  • the matrices consist of a tempered martensite phase that is unstable at elevated temperatures. Above a temperature of around 400 ° C, it has the property of softening rapidly.
  • the high-nitrogen nanocrystalline austenitic steel according to the present invention does not show rapid softening in such a temperature range because the matrix itself is composed of a stable phase, so that a more excellent tool material for hot working. It can be used as
  • the high-nitrogen nanocrystalline austenitic steel according to the present invention is composed of a matrix that is relatively thermally stable as described above, so that it can be used more effectively in extrusion tools that undergo rapid thermal changes during use. Can be.
  • Austenitic stainless steel such as chromium-nickel SUS 304 steel has a problem in that very small amounts of nickel ions eluted when used cause dermatitis in the human body. There is a tendency for their use to be banned. Against this background, high-nitrogen chromium-manganese austenitic stainless steel is drawing attention as nickel-free austenitic stainless copper.
  • Non-magnetic high nitrogen nanocrystalline chromium monomanganese austenitic steel according to the present invention Is superhard and tough, has excellent corrosion resistance (pitting corrosion resistance), and has characteristics that it is not brittle even at cryogenic temperatures due to the nature of the austenite phase.
  • the nonmagnetic high-nitrogen nanocrystalline chromium-manganese austenitic steel according to the present invention is, for example, a scalpel used by surgeons, medical cryogenic instruments, It is also promising as a material for other general-purpose knives, tools such as scissors and drills.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法を提供する。 固溶型窒素0.1~2.0%(質量)含有するオ−ステナイトナノ結晶粒子の集合体よりなるオ−ステナイト鋼バルク材であって、前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、結晶粒成長抑制物質として金属又は半金属の酸化物、窒化物、炭化物等を存在させてなる。 その製造は、鉄とクロム、ニッケル、マンガン又は炭素などのオ−ステナイト鋼形成成分の各微粉末を、窒素源となる物質とともに混合し、メカニカルアロイング(MA)することによって、高窒素濃度ナノ結晶オ−ステナイト鋼粉末を製造した後、同オ−ステナイト鋼粉末をシ−ス圧延、放電プラズマ焼結等で固化成形処理することによって行われる。

Description

明 細 書 超硬質 ·強靭で優れた耐食性を有するナノ結晶オーステナイ ト鋼バルク材 及びその製造方法 技術分野
本発明は、 金属、 特に超硬質 ·強靭で優れた耐食性を有するナノ結晶オース テナイト鋼パルク材及びその製造方法に関する。 発明の背景
金属材料の強さ、 硬さはホール ·ぺツチの関係式が示すように、 結晶粒径 D が小さくなるほど増大し、 このような強さの粒径依存は、 ナノサイズレベルの結 晶粒径なつても、 Dが 5 0〜1 0 0 n m付近までは同様に成立するので、 結晶粒 径をナノサイズレベルまで超微細化することは、 金属材料を強化する最も重要な 手段の一つになっている。 また Dが数 n m程度まで超微細化されると、 超塑·生が 現れるようになることも専門誌で示唆されている。
さらにまた、 鉄、 コバルト、 ニッケル等の磁性元素では、 結晶粒径 Dがミクロ ンのオーダの範囲にある場合とは逆に、 ナノオーダの粒径範囲では Dが小になる ほど、 保磁力が低下し、 軟磁性特性が向上するという報告もみられる。 し力、し、 溶解法で製造されている多くの金属材料の結晶粒径 Dは、 通常数ミク ロン〜数十ミクロンであり、 後処理によっても Dをナノオーダにすることは難し く、 例えば、 鋼の結晶粒微細化プロセスとして重要な制御圧延の場合でも、 その 到達できる粒径の下限は 4〜 5 μ m程度である。 従って、 このような通常の方 法では、 ナノサイズレベルまでに粒径を微細化した材料は得られない。 例えば、 耐熱材料、 超硬材料として有用な N i 3 A 1、 C 3 T i、 N i ( S i、 T i ) 、 T i A 1などの金属間化合物や A 1 〇3、 Z r〇2、 T i C、 C r C 2、 T i N、 T i B 2などの酸化物系又は非酸化物系セラミックスでは、 いずれ もその脆さのため、 常温では一般にはその塑性加工が困難であり、 比較的高い温 度域での超塑性を利用した成形加工が極めて重要となる。
し力 し、 超塑性を発現させるためには、 その結晶粒径をナノサイズ又はこれに 近いオーダまで微細化することが必要であるが、 このような成形加ェに応えられ る満足し得る超微細粉末の提供はなされていない。 代表的なオーステナイ ト系ステンレス鋼である S U S 3 0 4相当組成のクロム —ニッケル系ステンレス鋼に窒素 (N) を例えば 0 . 9 % (質量) ほど添加する と、 そのような高窒素濃度のステンレス鋼は、 その耐カ (降伏強さ) が S U S 3 0 4ステンレス鋼の約 3倍にあたるまで増加し、 しかもこれには破壌靱性の減少 が伴わない上、 耐食性の面でも耐孔食性を大きく向上させ、 応力腐食割れ感受性 も著しく低下させる。 さらにまた、 窒素は極めて強力なオーステナイト安定化元 素であるため、 オーステナイト鋼としての前記の強度特性や耐食性を損なうこと なく高価なニッケルを代替できるばかりでなく、 強い冷間加工のもとでも加工誘 起マルテンサイト変態を抑制をするなどの優れた特性を示す。
こうした Nの効果は、 クロム一マンガン系オーステナイ ト鋼にも同様にみられ る。 このようなことから、 高 N濃度のクロム一ニッケル系及びクロム一マンガン 系オーステナイ ト鋼は、 次世代の有望な新素材として近年になって大きな注目を 集めている。 従来、 0 . 1〜2 % (質量) 程度まで Nを含む高 Nオーステナイ ト鋼は、 通 常窒素ガス雰囲気中での溶解 ·凝固法や窒素ガス雰囲気中での高温固体拡散 · 焼結法などによって製造されてきている。 しかし、 これらの方法では目標とす る窒素濃度の高いものほど雰囲気の窒素ガス圧を上げなければならないので、 高温高圧という作業上及び安全上の難点があった。
オーステナイ ト鋼も含め、 一般の鉄鋼材料では、 他の金属と同様、 結晶粒微細 化による強度 (硬さ) の増加の効果が極めて大きく、 高 Nオーステナイ ト鋼に ついても、 結晶粒微細化のため種々改善研究が進められてきている。 しかしそ うした方法では、 ナノサイズレベルまでの結晶粒の微細化は非常に難しく、 数 十 t m程度の結晶粒組織の高 Nオーステナイ ト鋼は得られているが、 満足し得 る結晶粒の超微細化材料の提供はなされていない。
一方、 次世代の大型技術 (磁気浮上列車、 超電導応用機器などの周辺技術) を支える鋼種として大きく注目されている高マンガンオーステナイ トにおいて も、 クロム一ニッケル系、 クロム一マンガン系オーステナイ ト鋼の場合と同様 、 ナノオーダの結晶粒組織をもつ材料の提供はなされていない。 発明の開示
本発明は上記課題を解決するもので、 下記の発明である。
本発明は基本的には、 元素状の金属粉末単体、 又はこれに他元素等を添加し た混合粉末のボールミル等を用いたメカ二カルミリング (MM) 又はメカニカル ァロイング (MA) 処理と、 それにより得られたナノ結晶微粉末の固化成形処理 により、 結晶粒径をナノサイズのレベルにまで微細化した場合に達成できるその 限界に近い強さ (高強度) ないし硬さ (超硬質) をもつバルク材を提供し、 さら に鉄、 コバルト、 ニッケルなどの磁性元素については、 その結晶粒をナノサイズ のレベルにまで微細化することによって、 より優れた軟磁性を示す新規な材料を 提供することである。 まず、 鉄とクロム、 ニッケル、 マンガン又は炭素などとの元素状混合粉末を 、 N源となる物質とともに、 ボールミル等を用いたメカニカルァロイング (MA ) 処理をし、 それにより得られたナノ結晶オーステナイ ト鋼微粉末を固化成形処 理により、 固溶型窒素を 0. 1〜2. 0% (質量) 、 好ましくは 0. 3〜: . 0 % (質量) 、 特に好ましくは 0. 4〜0. 9. 0% (質量) 、 含有する超硬質で 強靱かつ優れた耐食性 (耐孔食性) を有する非磁性な高 Nナノ結晶オーステナイ ト鋼材料の新規な製造方法を提供するものである。
また、 高マンガンオーステナイト鋼についても、 上記と同様の MA処理.固 化成形処理技術を適用することによって、 そのナノオーダの結晶糸且織をもつ材料 を提供するものである。 すなわち本発明は、 下記構成のオーステナイト鋼バルク材及びその製造方法 あるいは用途である。
(1) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に.、 結晶粒成長抑制物質として金属又は半金属の酸化物 を存在させてなることを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結 晶オーステナイト鋼バルク材。
(2) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に、 結晶粒成長抑制物質として金属又は半金属の窒化物 を存在させてなることを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結 晶オーステナイト鋼バルク材。
(3) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼パルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に、 結晶粒成長抑制物質として金属又は半金属の炭化物 を存在させてなることを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結 晶オーステナイト鋼パルク材。
(4) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に、 結晶粒成長抑制物質として金属又は半金属のケィ化 物 (シリサイド) を存在させてなることを特徴とする超硬質'強靱で優れた耐食 性を有するナノ結晶オーステナイト鋼バルク材。
(5) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に、 結晶粒成長抑制物質として金属又は半金属の硼化物 (ボライド) を存在させてなることを特徴とする超硬質 ·強靱で優れた耐食性を 有するナノ結晶オーステナイト鋼バルク材。
(6) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間 (粒子と粒子の間) 又は同粒子の内部に、 あるいは 粒子間及び同粒子の内部に、 結晶粒成長抑制物質として、 (1) 金属又は半金属 の酸化物、 (2) 金属又は半金属の窒化物、 (3) 金属又は半金属の炭化物、 ( 4) 金属又は半金属のケィ化物 (シリサイド) 又は (5) 金属又は半金属の硼化 物 (ボライド) の (1) 〜 (5) 力 ら選ばれる 2種以上を存在させてなることを 特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バル ク材。
(7) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材が、 その構成組織中にフ ェライ トナノ結晶粒子を 50%未満含有するものであることを特舉とする前記 '( 1) 〜 (6) のいずれか 1項に記載の超硬質.強靱で優れた耐食性を有するナノ 結晶オーステナイ ト鋼バルク材。
(8) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイ トナ ノ結晶粒子の集合体よりなるバルク材が、 窒素を 0. 1〜5. 0% (質量) 含有 するものであることを特徴とする前記 (1) 〜 (7) のいずれか 1項に記載の超 硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイ 1、鋼バルク材。 以上においてナノ結晶オーステナイ ト鋼バルク材が窒素を 0. 1〜5. 0質量 %含有することの意義について説明すると、 窒素が 0. 1%未満の含有量では同 バルク材の硬さはあまり大きく上昇しないが窒素の含有量が 0. 1〜5. 0質量 %の範囲内では、 その硬さは窒素含有量の増加とともに上昇する。
し力、し、 窒素の含有量が 5. 0%を越えると、 バルク材の硬さの大きな増加は 見られなくなり、 その靭性も大きく低下するようになる。
また、 ナノ結晶オーステナイ ト鋼バルク材を構成するオーステナイトナノ結晶 粒子が、 固溶型窒素を 0. 1〜2. 0% (質量) 含有することの優位性について 説明すると、 固溶型窒素濃度 (含有量) が 0. 1〜2. 0質量%の範囲内では 窒素の多くはオーステナイ ト結晶のマトリックス (地) に効果的に固溶し、 窒素 濃度の増加とともに同バルク材の硬さや強さが大きく増大するばかりでなく、 特 に後記の窒素濃度が 0. 1〜0. 9% (質量) のものでは、 極めて靭性に富む状 態のナノ結晶オーステナイ ト鋼バルタが得られる。
(9) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子又はその集合体よりなるバルク材が、 金属又は半金属の酸化物の形態 で酸素を 0. 01〜1. 0% (質量) 含有したものであることを特徴とする前記
(1) 、 (6) 又は (7) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性 を有するナノ結晶オーステナイ ト鋼バルク材。 (10) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材が、 窒素化合物を 1〜30% (質量) 含 有したものであることを特徴とする前記 (2) 、 (6) 、 (7) 又は (8) のい ずれか 1項に記載の超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイ ト鋼バルク材。
(1 1) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材が、 その固化成形過程での脱窒を防ぐた めの、 窒素との化学的親和力が鉄より大きいニオブ、 タンタル、 マンガン、 クロ ムなどの窒素親和性金属元素を含有してなることを特徴とする前記 (1) 〜 (1
0) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性を有するナノ結晶ォー ステナイト銅バルク材。
(12) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
C r : 12〜 30 % (質量) 、 N i : 0〜 20 % (質量) 、 Mn : 0〜 30 % ( 質量) 、 N: 0. 1〜5% (質量) 、 C: 0. 02〜: 1. 0% (質量) 、 残部: F eであることを特微とする前記 (1) 〜 (1 1) のいずれか 1項に記載の超硬 質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(13) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
C r : 12-30% (質量) 、 N i : 0〜 20 % (質量) 、 Mn : 0〜 30 % ( 質量) 、 N (化合物型) : 30 % (質量) 以下、 C : 0. 01〜 1. 0 % (質量 ) 、 残部: F eであることを特微とする前記 (1) 〜 (9) のいずれか 1項に記 載の超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(14) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト 結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
Mn : 4〜40% (質量) 、 N : 0. :!〜 5。/。 (質量) 、 C : 0. 1〜2. 0% (質量) 、 C r : 3〜10% (質量) 、 残部 F eであることを特徴とする前記 ( 1) 〜 (11) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性を有するナ ノ結晶オーステナイト鋼バルク材。 .
(15) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
Mn : 4〜40% (質量) 、 N (化合物型) : 30% (質量) 以下、 C: 0. 1 〜2. 0% (質量) 、 C r : 3〜: 10% (質量) 、 残部 F eであることを特徴と する前記 (1) 〜 (1 1) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性 を有するナノ結晶オーステナイト鋼バルク材。
(16) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子が、 ボールミル等を用いるメカニカルァロイング (MA) によって 得られたものであることを特徴とする前記 (1) 〜 (1 5) のいずれか 1項に記 載の超硬質 ·強靭で優れた耐食性を有するナノ結曰曰曰オーステナイト鋼バルク材。
(1 7) 前記 (1) 〜 (16) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 3〜1. 0% (質量) 含有する結晶粒径 50〜1000 nmのオーステナイトナノ結晶粒子の集合体よりなるものである ことを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト 鋼バルク材。
(18) 前記 (1) 〜 (1 6) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 4〜0. 9% (質量) 含有する結晶粒径 75〜500 nmのオーステナイトナノ結晶粒子の集合体よりなるものであるこ とを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼 バルク材。 (19) 前記 (1) 〜 (16) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 4〜0. 9% (質量) 含有する結晶粒径 100〜300 nmのオーステナイトナノ結晶粒子の集合体よりなるものである ことを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト 鋼バルク材。 なお、 以上においてナノ結晶オーステナイト鋼バルク材を構成するオーステナ イトナノ結晶粒子が、 好ましくは固溶型窒素を 0. 3〜1. 0% (質量) 、 特に 好ましくは 0. 4〜0. 9% (質量) 含有することの優位性について説明すると 、 固溶型窒素が 0. 3 %未満の含有量では同バルク材の硬度を大きく増加させる ことができず、 また 1. 0%を越えると同バルク材の硬度は上昇するものの靭性 の面での向上はみられず、 0. 3〜1. 0% (質量) 、 特に好ましくは 0. 4〜 0. 9% (質量) の含有量において非常に高い硬度と高い靭性を具備することが できるのである。
また、 ナノ結晶オーステナイ ト鋼バルク材を構成するオーステナイトナノ結晶 粒子の結晶粒径が、 50〜: 1000nm、 より好ましくは 75〜 500 n m、 特 に好ましくは 100〜300 nmにすることの意義について説明すると、 50η mより小さいと、 ナノ結晶粒内において、 塑性変形を進める媒体となる転位の密 度が極端に小さくなり、 同バルク材の塑性加工が行いにくくなるという実用材料 としての問題が生じる。 一方、 l O O O nmを超えると、 転位密度が大きく増加 し同バルク材の塑性加ェはしゃすくなるが耐カ (強さ) の低下は避けられないこ ととなる。 バルク材におけるオーステナイ ト結晶粒が 50〜1000 nm、 好ま しくは 75〜500 nm、 より好ましくは 100〜 300 n mであれば、 高耐カ (高強度) で塑性加工を行いやすい理想的なオーステナイ ト鋼バルク材となる。 なお、 特に極端に高い強度を要求しないのであれば、 固化成形後のバルク材の 焼なまし温度を 1200° ( 〜 1250°C程度にまで上げると、 より短い時間で、 溶解法ではその製造が難しい 5000 nm ( 5 . m) 程度までの又はそれ以上の 大きい結晶粒を有するオーステナイト鋼バルク材を製造することも容易にできる
(20) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルァロイング (MA) することによって高窒素濃 度ナノ結晶オーステナイ ト鋼微粉末を製造した後、
同オーステナイ ト鋼微粉末を (1) 圧延、 (2) 放電プラズマ焼結、 (3) 押出 成形、 (4) 熱間等方加圧焼結 (HI P) 、 (5) 冷間等方加圧成形 (C I P) 、 (6) 冷間プレス成形、 (7) ホットプレス、 (8) 鍛造、 又は (9) スエー ジングの (1) 〜 (9) 力 ら選択される 1又は 2以上の組合せによる固化成形又 は爆発成形などの固化成形処理することにより、 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイ トナノ結晶粒子の集合体よりなる超硬質 ·強靱で 優れた耐食性を有するオーステナイト鋼バルク材となすことを特微とするナノ結 晶オーステナイ ト鋼バルク材の製造方法。
(21) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイ ト 鋼形成成分の各微粉末を、 窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルァロイング (MA) することによって、 高窒素 濃度ナノ結晶オーステナイト鋼微粉末を製造した後、
同オーステナイ ト鋼微粉末を、 空気中又は酸化抑制雰囲気中あるいは真空中で ( 1) 圧延、 (2) 放電プラズマ焼結、 (3) 押出成形、 (4) 熱間等方加圧焼結 (H I P) 、 (5) ホッ トプレス、 (6) 鍛造、 又は (7) スエージングの (1 ) 〜 (7) 力 ら選択される 1又は 2以上の組合せによる熱間固化成形又は爆発成 形などの固化成形処理し、 その後急冷することにより、 固溶型窒素を 0. 1〜2· . 0% (質量) 含有するオーステナイ トナノ結晶粒子の集合体よりなる超硬質 - 強靱で優れた耐食性を有するオーステナイ ト鋼バルク材となすことを特微とする ナノ結晶オーステナイ ト鋼バルク材の製造方法。
(22) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源とともに混合し、
ボールミル等を用いてメカニカルァロイング (ΜΑ) することによって、 髙窒素濃度ナノ結晶オーステナイ ト鋼微粉末を製造した後、 同オーステナイ ト鋼 微粉末を真空中又は酸化抑制雰囲気中で放電ブラズマ焼結して固化成形すること により、 固溶型窒素を 0. 3〜1. 0% (質量) 、 より好ましくは 0. 4〜0. 9 % (質量) 含有する結晶粒径 50〜 1000 n m、 よ,り好ましくは 75〜 50 0 nm、 特に好ましくは 100〜300 nmのオーステナイ トナノ結晶粒子の集 合体よりなる超硬質 ·強靱で優れた耐食性を有するオーステナイ ト鋼バルク材と なすことを特微とするナノ結晶オーステナイ ト鋼バルク材の製造方法。
(23) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源とともに混合し、 ,
ボールミル等を用いてメカニカルァロイング (MA) することによって、 高窒素濃度ナノ結晶オーステナイト鋼微粉末を製造した後、 同オーステナイト鋼 微粉末を真空中又は酸化抑制雰囲気中で放電プラズマ焼結して固化成形し、 次い で圧延加工処理し、 急冷することにより、 固溶型窒素を 0. 3〜1. 0% (質量 ) 、 より好ましくは 0. 4〜0. 9% (質量) 含有する結晶粒径 50〜; 1000 nm、 より好ましくは 75〜500 nm、 特に好ましくは 100〜 300 n mの ) のオーステナイ トナノ結晶粒子の集合体よりなる超硬質 ·強靱で優れた耐食性 を有するオーステナイ ト鋼バルク材となすことを特微とするナノ結晶オーステナ ィ ト鋼バルク材の製造方法。 (24) 前記 ( 20 ) 又は ( 22 ) に記載の固化成形体を 800〜: I 20 0°Cの温度にて 60分間以下焼なました後、 更に急冷することを特徴とするナノ 結晶オーステナイト鋼バルク材の製造方法。
(25) 前記 ( 21 ) 又は ( 23 ) に記載の急冷された成形体を 800〜 1 200°Cの温度にて 60分間以下焼なました後、 更に急冷することを特徴とす るナノ結晶オーステナイ ト鋼バルク材の製造方法。
(26) 窒素源となる物質が、 N2ガス、 NH3ガス、 窒化鉄、 窒化クロ ム又は窒化マンガンから選択される 1種又は 2種以上であることを特徴とする前 記 (20) 〜 (25) のいずれか 1項に記載のナノ結晶オーステナイト鋼バルタ 材の製造方法。
(27) メカニカルァロイングを施す雰囲気が、 (1) アルゴンガスな どの不活性ガス、 (2) N2ガス、 又は (3) NH3ガスから選ばれるいずれか 1種、 又は (1) 〜 (3) から選ばれる 2種以上の混合ガスの雰囲気であるこ とを特徴とする前記 (20) 〜 (26) のいずれか 1項に記載のナノ結晶ォー ステナイ ト鋼パルク材の製造方法。
(28) メカニカルァロイングを施す雰囲気が、 若干の H2ガスなどの還 元性物質を加えたガスの雰囲気であることを特徴とする前記 (20) 〜 (27 ) のいずれか 1項に記載のナノ結晶オーステナイト鋼バルク材の製造方法。
(29) メカ-カルァロイングを施す雰囲気が、 真空又は真空中に若干 の H2ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とす る前記 (20) 〜 (26) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼 バルク材の製造方法。
(30) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイ ト鋼形成成分の各微粉末と、 1〜1 0体積%の八 1 、 NbN、 C r 2Nなどの 金属窒化物又は 0. 5〜1 0% (質量) の鉄より窒素との化学的親和力の大き いニオブ、 タンタル、 マンガン、 クロム、 タングステン、 モリブデンなどの窒 素親和性金属あるいはコバルトを、 窒素源となる物質とともに混合し、 メカニカルァロイング (MA) 過程及びメカニカルァロイング (MA) 処理粉 末の固化成形過程で前記添加窒化物を分散させるか、 前記金属元素又はその窒 化物、 炭窒化物等を析出 ·分散させ、
超硬質 ·強靭で優れた耐食性を有するオーステナイ ト鋼バルク材となすことを 特微とする前記 (20) 〜 (29) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材の製造方法。
(3 1) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイ ト鋼形成成分の各微粉末と、 A 1 N、 NbN、 T a N、 S i 3 N4、 T i Nなど の金属窒化物からなる粒子分散剤 1〜10体積%を、 窒素源となる物質ととも に混合し、
メカニカルァロイング (MA) 過程におけるナノサイズレベルでの結晶粒の一 層の微細化の促進とメカニカルァロイング (MA) 処理粉末の固化成形過程で の結晶粒粗大化を抑制し、
超硬質 ·強靱で優れた耐食性を有するオーステナイト鋼パルク材となすことを 特微とする前記 (20) 〜 (30) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材の製造方法。
(32) 鉄とマンガン及び炭素を主体とする高マンガン一炭素鋼タイプの オーステナイト鋼形成成分の各微粉末を、 窒素源としての窒化鉄等の金属窒化物 微粉末とともに混合し、
アルゴンガスなどの不活性ガスあるいは真空または真空中に若干の H 2ガスなど の還元性物質を加えた真空又は還元雰囲気のもとで、 メカニカルァロイング (MA) することによって、 Mn : 4〜40% (質量) 、 N: 0. 1〜 5. 0 % (質量) 、 C : 0. :!〜 2. 0% (質量) 、 C r : 3. 0 〜10. 0% (質量) 、 残部 F eからなるナノ結晶オーステナイ ト鋼粉末を製造 した後、 同オーステナイ ト鋼粉末をシース圧延、 放電プラズマ焼結、 押出成形等 の熱間固化成形又は爆発成形などの固化成形処理することにより超硬質 ·強靱で 優れた耐食性を有するオーステナイト鋼バルク材となすことを特微とする前記 (
20) 〜 (29) 又は (31) のいずれか 1項に記載のナノ結晶オーステナイト 鋼バルク材の製造方法。
(33) オーステナイ ト鋼形成成分及び配合,組成が、
C r : 12〜 30 % (質量) 、 N i : 0〜 20 % (質量) 、 Mn : 0〜 30 % ( 質量) 、 N: 0. :!〜 5. 0 % (質量) 、 C : 0. 02〜 1. 0 % (質量) 、 残 部: F eであり、
固化成形の温度が 600〜1 250°Cであることを特微とする前記 (20) 〜 (
32) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼バルク材の製造方法。
(34) メカニカルァロイング (MA) 処理時に処理容器、 硬質鋼ボール 等から高窒素ナノ結晶オーステナイト鋼粉末に混入する酸素の量を 0. 01〜1 . 0% (質量) に調整し、 その酸素の化合物である金属又は半金の酸化物により 、 メカニカルァロイング (MA) 過程におけるナノサイズレベルでの結晶粒の一 層の微細化の促進とメカ二カルァ口イング (MA) 処理粉末の固化成形過程での 結晶粒粗大化を抑制することを特微とする前記 (20) 〜 (31) のいずれか 1 項に記載のナノ結晶オーステナイ ト鋼バルク材の製造方法。
(35) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材で製作された、 高張力ボルト、 ナット等の機械的締結材料、 防 弹鋼板、 防弾チョッキ等の耐弾材料、 ダイス、 ドリル、 スプリング、 歯車等の機 械工具 ·機械部材、 人工骨、 人工関節、 人工歯根等の人工医療材料、 注射針、 手 術用メス、 カテーテル等の医療用機械器具、 金型、 水素貯蔵タンク (特に耐水素 性に優れているため) 、 包丁、 剃刀、 鋏等の利器、 タービンフィン、 タービンブ レード等のタービン部材、 要塞、 防弾壁、 銃砲、 戦車等の防衛用兵器、 スケート 部材、 そり部材等のスポーツ材料、 配管、 タンク、 バルブ、 海水の淡水化装置等 の化学プラント材料、 化学反応容器、 原子力発電装置用部材、 ロケット、 ジエツ ト機、 宇宙ステーション等の飛行物体部材、 パソコン、 アタッシュケース等の軽 量ハウジング材料、 又は自動車、 船舶、 磁気浮上列車、 深海艇等の移送装置用部 材、 その他耐寒性部材、 船舶用リフト、 サッシュ、 構造材、 トラップ等。 本発明によれば、 金属単体の粉末材枓をメカニカルミリング (MM) あるいは メカニカルァロイング (MA) 処理すると、 いずれも超微細結晶粒組織をもつ粉 末となり、 同粉末の 9 0 0〜 1 0 0 0 °C付近の温度での固化成形により、 そのバ ルク材の製造をより容易に達成できる。
鉄、 コバルト、 ニッケル、 アルミニウムなどの実用金属単体の粉末に炭素、 二 ォブ、 チタンなどを添加した混合粉末をメカニカルァロイング (MA) 処理する と、 より超微細な結晶粒組織となり、 前記のような固化成形により、 容易にナノ 結晶粒組織をもつバルク材となって、 その強さ、 硬さは溶解法よるものに比べ、 はるかに高い値を示す。 また、 鉄、 コバルトなどの磁性元素では、 MM処理により、 ナノオーダレベル の結晶粒径になると、 粒径が小さくなるほどその軟磁性特性が向上する。
また、 本発明によれば、 鉄とクロム、 ニッケル、 マンガン、 炭素などとからな る例えば、 クロム一ニッケル系又はクロム一マンガン系の元素状混合粉末を窒素 源物質としての F e—N合金粉末等とともにメカニカルァロイング(MA) 処理 すると、 溶解過程を経ないで、 原料粉末中の成分元素同士が機械的に合金化 (ォ ーステナイ ト化) して、 溶解法のような従来の技術では達成できないナノサイズ の結晶粒組織をもち、 かつ窒素のオーステナイト相への固溶により極度に固溶強 化されたオーステナイト鋼粉末となり、 次のオーステナイト鋼粉末の固化成形過 程においても、 メカニカルァロイング (MA) 処理粉末に存在する若干量の金属 又は半金属の酸化物などのオーステナイト結晶粒界のピン止め効果により、 ある 程度の結晶粒の成長はあるもののナノ結晶組織が保持されることから、 前記の窒 素による固溶強化と結晶粒微細化強化の相乗効果に加え、 オーステナイト相特有 の強靱な特性によって超硬質 ·超強度で強靱かつ優れた耐食性 (耐孔食性) を有 する非磁 1"生の高窒素ナノ結晶オーステナイト鋼 (ナノ結晶オーステナイトステン レス鋼) 材料を容易に製造することができる。
さらにまた、 高マンガンオーステナイト鋼についても、 上記と同様の MA処理 •固化成形処理技術の適用により、 ナノ結晶粒組織を有する高マンガンオーステ ナイト鋼を容易に製造することができる。 図面の簡単な説明
第 1図は、 本発明実施例で用いられる鉄、 コバルト、 ニッケル各元素の粉末 に他元素 (A) を 1 5原子%添加して 5 0 hメカニカルァロイング (MA) 処理 したときの各元素の平均結晶粒径である。
第 2図は、 本発明実施例で用いられるメカ二カルミリング (MM)処理した鉄 、 コバルトの平均結晶粒径 D ( n m) による保磁力 H e ( k O e ) の変化を示す 図である。
第 3図は、 本発明実施例で用いられる粉末試料の押出成形加工の説明図である 第 4図は、 本発明実施例で用いられるメカェカルァロイング (MA) 処理粉末 の X線回折 (X R D) 図である。
第 5図は、 本発明実施例で用いられる M A処理粉末の X R D図である。
第 6図は、 本発明実施例で用いられる MA処理粉末試料のオーステナイト化 ( 非磁性化) の状況を MA処理時間 ( t ) による磁化 Mm a x (e mu/g) の変 化により示したものである。
第 7図は、 本発明実施例で用いられる放電プラズマ焼結 (SPS) による固化 成形プロセスの説明図である。
第 8図は、 本発明実施例で用いられるシース圧延 (SR) による固化成形プロ セスの説明図である。
第 9図は、 本発明実施例で用いられる 900°Cでの S P S固化成形前後の MA 試料の XRD図である。
第 10図は、 本発明実施例で用いられる 900°Cにて S P S成形した MA試料 成形体 (約 5 mm厚さ) の断面の走査電顕写真である。
第 1 1図は、 本発明実施例で用いられる 900°Cにて S P S成形した MA試料 における窒素の残存率 R e (%) を示すグラフ図である。
第 12図は、 本発明実施例で用いられる 900°Cにて S P S成形した MA試料 の XRD図である。
第 1 3図は、 遅れ破壊試験に用いられた中央部に環状の切り欠き部を有する柱 状の試験体の斜視図である。 符号の説明
1 :押出ダイス、 2 :試料、 3 :ダミーブロック
4 :容器、 5 : ラム、
T :成形温度、 t :成形時間 発明を実施するための最良の形態
本発明では、 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイ ト 鋼形成成分の各微粉末をボールミル等を用いて、 アルゴンガスなどの雰囲気中に て室温でのメカニカルァロイング (MA) 処理を施す。 MA処理された粉末は、 ボールミルによつて付加された機械的エネルギーによ り、 約 1 5〜 2 5 n mの結晶粒径まで容易に微細化される。
次いで、 そのような MA処理粉末を約 7 mm内径のステンレス鋼チューブ (シ —ス) に真空封入し、 これを 8 0 0〜 1 0 0 0 °C付近の温度にて圧延機を用いた シース圧延により固化成形すると、 厚さ 1 . 5 mm程度のシートを容易に製造す ることができる。
さらにまた、 鉄、 コバルト、 ニッケル各元素の単体の粉末をボールミル等を用 いてメカニカルミリング (MM) 処理を施すと、 ナノオーダまで超微細化された これらの MM処理粉末では、 いずれも 2 0 n m付近の粒径 Dを境にして、 Dの減 少とともに保磁力が減少するので、 このことを利用することによって、 より優れ た軟磁性材料を製造することができる。 本発明では、 鉄、 クロム、 ニッケル、 マンガンなどの元素状粉末と窒素 (N) 源となる窒化鉄などの粉末とを目標組成となるように調合した例えばクロム一二 ッケル系又はクロム一マンガン系材料の混合粉末に、 ボールミルを用いてァルゴ ンガスなどの雰囲気中にて室温でのメカニカルァロイング(MA) 処理を施す。 すると、 メカニカルァロイング (MA) 処理された粉末はボールミルなどによ つて付加された機械的エネルギーにより、 溶解過程を経ないで機械的に合金化し 、 メカニカルァロイング (MA) 処理された合金粉末は数 n m〜数十 n mのレべ ルまで超微細化して、 クロム一ニッケル系又はクロム一マンガン系の高窒素ナノ 結晶オーステナイ ト鋼粉末となる。
次いで、 このようなオーステナイト鋼粉末を 7 mm程度の内径のステンレス鋼 チューブ (シース) に真空封入し、 これを例えば 9 0 0 °Cにて圧延機を用いたシ ース圧延により固化成形すると、 3 0〜8 0 n m程度の結晶粒からなるナノ結晶 組織をもつ厚さ 1 . 5 mm程度の高 Nオーステナイ ト鋼シートを容易に製造する ことができる。 また、 前項に記載のメカニカルァロイング (MA) 処理粉末に通常、 MA処理 過程で金属又は半金属の酸化物の形態で必然的に混入する酸素の量を 0 . 5 % ( 質量) 程度までに調整し、 固化成形過程での結晶粒粗大化を抑制する。 このよう な抑制効果を高めるため、 メカニカルァロイング (MA) 処理粉末に A 1 N、 N b Nなどの粒子分散剤を 1〜 1 0体積%、 特に 3〜 5体積。 /0添加することはより 好ましい。 前項に記載の鉄とクロム、 ニッケル、 マンガン又は炭素などの元素状混合粉末 に、 例えば窒素 (N) 源としての窒化鉄を添加し、 さらにこの混合粉末に鉄より Nとの化学的親和力の大きい金属元素ニオブ、 タンタル、 クロム、 マンガンなど を 1 0 % (質量) までの範囲で適宜、 新規に添加するか又は増量してメカニカル ァロイング (MA) 処理すると、 MA過程での結晶粒の微細化が一層促進され、 さらにまた、 固化成形過程においては、 これらの金属元素はマトリ ックス (ォー ステナイ ト) 中への Nの溶解度を増加させかつ Nの拡散係数を著しく低下させる ので、 固化成形温度 ·時間等の調整により、 マトリックス相からの脱窒をほとん ど完全に防ぐことができる。 なお、 ニオブ、 タンタルなどの高融点元素を添加す ると、 固化成形過程での結晶粒粗大化を抑制する効果も現れる。
しかしながら、 前記の金属元素の添加ないし増量においては、 マンガン以外の 金属元素はフェライト安定化元素であるため、 オーステナイ ト母相の安定性を損 なわなレ、範囲内での添加なレ、し増量でないとその効果は生じない。 また、 本発明では、 2 0〜3 0 % (質量) 前後のマンガンを含む高マンガンォ ーステナイ ト鋼組成の鉄、 マンガン、 炭素からなる元素状混合粉末を、 ボールミ ルを用いてアルゴンガス雰囲気中にて室温でのメカニカルァロイング (MA) 処 理を施す。 すると、 MA処理された合金粉末は、 数 n mから数十 n mオーダの高マンガン ナノ結晶オーステナイ ト鋼微粉末となる。 次いで、 前項と同様の固化成形により 、 5 0〜 7 0 n m程度のナノ結晶粒組織を有する厚さ 1 . 5 mm程度の高マンガ ンオーステナイト鋼を容易に製造することができる。
本高マンガン鋼においても、 窒素を 0 . 1〜5 . 0 % (質量) 含有させると、 その固溶硬化の効果は、 顕著に現れる。 本発明では、 鉄とクロム、 ニッケル、 マンガン又は炭素などからなる例えばク ロム一ニッケル系又はクロム一マンガン系の元素状混合粉末を窒素 (N) 源物質 としての窒化鉄粉末とともメカニカルァロイング (MA) 処理し、 原料粉末中の 成分元素同士を機械的に合金化 (オーステナイト化) させて、 ナノサイズの結晶 粒組織をもち、 かつ窒素のオーステナイ ト相への固溶により極度に固溶強化され た高窒素濃度のオーステナイ ト鋼粉末を製造し、 これにシース圧延、 押出加工な どの固化成形を施すと、 メカニカルァロイング (MA) 処理過程で必然的に生成 する若干量の金属又は半金属の酸化物を、 酸素量として 0 . 5 % (質量) 程度ま で調整することによって、 その酸化物などの結晶粒界に対するピン止め効果 ( p i n n i n g e f f e c t ) により、 結晶粒の粗大化が抑制されて、 高 N濃度 のナノ結晶オーステナイ ト鋼材料の製造をより効果的に行うことができる。 さらにまた、 高マンガンオーステナイ ト鋼についても、 上記と同様の MA処理 •固化成形処理技術の適用によって、 ナノ結晶粒組織をもつ高マンガンオーステ ナイ ト鋼をより効果的に製造することができる。 実施例
以下、 本発明の実施例について、 添付図面を参照しながら説明する。
実施例 1 :
図 1は、 鉄、 コバルト、 ニッケルの各元素の粉末に他元素 (A) として炭素 (C) 、 ニオブ (Nb) 、 タンタル (T a) 、 チタン (T i ) 、 リン (P) 、 ホウ素 (B) など (図中、 窒素 Nのデータは鉄のみに関するもの) を 1 5原子 %加えた MH5A,5 (原子。/。) (M =鉄、 コバルト又はニッケル) 組成の元素状 混合粉末を 5 O h (時間) メカニカルァロイング (MA) 処理したときの、 処 理済みの鉄、 コバルト、 ニッケルの各元素の平均結晶粒径の変化を示すもので ある。
ここで D 。、 Dc,,、 DNiはそれぞれ処理済みの鉄、 コバルト、 ニッケルの平 均結晶粒径 (nm) である。 本図より、 鉄、 コバルト、 ニッケルの各元素の結 晶粒微細化は、 炭素、 ニオブ、 タンタル、 チタンなどを添加してメカニカルァ 口イング処理を行うことによって、 より効果的に促進され、 三元素とも数ナノ オーダの粒径まで微細化されることが解る。
また、 銅、 アルミニウム、 チタンの場合も、 他元素添加により、 結晶粒の微 細化が促進され、 これらの元素においては、 とくに炭素、 リン、 ホウ素の効果 が大きかった。 実施例 2 :
図 2は、 メカニカルミリング (MM) 処理した鉄、 コバルトの平均結晶粒径 D (nm) と保磁力 He (k〇e) との関係を示したものである。
これより、 鉄、 コバルトいずれの場合も、 20 nm付近の粒径 Dを境にして、 Dが減少するとともに保磁力 H cが減少し、 その軟磁性特性が向上することが解 る。 実施例 3 :
図 3は、 T i C単体の粉末試料 (a) 、 (b) について行った 1000°Cでの 押出成形加工 (押出圧力: 98MP a) の説明図である。
ここで 100 hMM処理を施した試料 (a) と MM処理を施していない試料 ( b) を比較すると、 試料 (a) の場合はダイス開孔口から成形試料が押出されて いる部分の長さは約 12mmほどであるのに対して、 試料 (b) の場合のそれは :!〜 2mm程度である。 このような両試料における成形挙動の違いは、 MM処理 によりその結晶粒が超微細化されている試料 (a) にみられる超塑性によるもの と解釈される。 実施例 4 :
図 4は、 F e、 C r及び N iの元素状粉末と e— N合金 (5. 85 % (質 量) 含有 N) 粉末とから目標組成となるように調合したクロム一ニッケル系の 粉末試料 (a) F e «,-yC r ,,Ν i y (質量%) (ただし y = 8〜; 1 7) 及び ( b) F e 8。. ,- yC r , ;,N i yN。.。 (質量0 /o) (ただし y = 4〜: 1 1) を、 アル ゴン雰囲気中にて、 硬質鋼製円筒状試料容器 (内径 75 mm X高さ 9 Omm) に充填して、 汎用の遊星型ボールミル (試料容器 4個取付け) を用いて室温に て 720 k s (20 O h) メカニカルァロイング (MA) 処理した後、 これら のメカニカルァロイング (MA) 処理済み粉末における生成相を X線回折 (X RD) (X線: コノくノレト Κα線 (波長; L = 0. 1 79021 η m) ) によって 調べた結果を示している。 ここで試料容器の回転速度は 385 r pm、 試料の 全質量は 1 00 g (1個の試料容器につき 25 g装填) 、 ク口ム鋼ボールの質 量対粉末試料質量の比は 1 1. 27対 1とした。
図中〇印は生成相がオーステナイ ト (γ) であることを示し、 き印は ΜΑ処 理過程での強加工によって誘起生成したマルテンサイ ト (α' ) であることを 示している。
図 4より窒素 (Ν) を含まない場合 (a) は、 オーステナイ ト単相とするに はニッケル (y) の含有量を 1 4% (質量) 以上であることが必要である (同 図 (a) ) 力 窒素 (N) を 0. 9% (質量) 添加すると、 ニッケルの含有量 が 6% (質量) 以上ではほとんどオーステナイ トとなっていることが解る。 こ のことは、 そのオーステナイ ト化が著しく促進され (同図 (b) ) 、 メカ二力 ルァロイング (MA) 生成物をオーステナイ ト単相にするための高価なニッケ ルの添加量を大きく低減できることを示している。 図 5は、 クロム一マンガン系の F e s3. , C r , sMn , 5M o :1No. s (質量0 /o) 試料について、 クロム—ニッケル系試料 (図 4) の場合と同様のメカニカルァ 口イング (MA) 実験 (M A処理時間 : 200 h、 X線: コバルト K 線 (又 = 0. 1 7902 1 nm) ) を行い、 メカニカルァロイング (MA) 処理試料の オーストテナイトに対する窒素の効果を示したものである。
また、 X線回折 (XRD) によってオーステナイ ト (図中、 〇印はオーステ ナイ ト (Y) ) であることが同定されたメカニカルァロイング (MA) 処理粉 末については、 その磁気特性 (オーステナイ ト相が示す非磁性) の面からも調 ベ、 その結果を図 6に示した。 ■ 図 6は、 振動試料型磁気分析計 (V SM) を用いて測定した F e e9. . C r ,9 N i ' ,N。. a及び F e C r ^Mn 15Mo :3N。. H (質量0 /。) の両メカニカルァ 口イング (MA) 試料の室温における磁化 Mm a X (emuZg) をメカ二力 ルァロイング (MA) 処理時間 t (k s ) の関数として示したものである (磁 場: 15 k O e )
本図より両メカニカルァロイング (MA) 試料とも、 tが 540 k s ( 1 5 O h) 付近で Mm a xが急激に低下しオーステナイ ト (非磁性) となっていく ことが示される。 以上の実施例 4及び図 4〜図 5からみて、 本発明によれば、 N濃度 0. 9質 量。 /0程度の高 Nオーステナイ ト鋼粉末を製造するには、 鉄とクロム、 ニッケル 、 マンガンなどの混合粉末を窒素源物質としての F e— N合金粉末とともに 1 50〜200 hメカニカルァロイング (MA) 処理すればよいことが解る。 また本法と同様にして、 F e— N合金粉末の添加量を増量することにより、 5質量。 /oN濃度程度の高窒素オーステナイ ト鋼粉末を容易に製造することがで きた。
なお、 後記実施例 5以降の固化成形用メカニカルァロイング (MA) 処理試 料としては、 各試料とも XRD及び VSMにより、 オーステナイ ト単相である ことを確認したものを用いた。 ' 実施例 5 :
図 7は、 汎用の放電プラズマ焼結 (S p a r k P l a sma S i n t e r i n g、 S P S) 機 (電源: DC 3± 1V、 600± 1 00A) によるメカ 二カルァロイング (MA) 処理粉末の固化成形プロセスの説明図である。
内径 1 OmmX外径 4 OmmX高さ 4 Ommの黒鉛製ダイスに、 直径 1 Om m、 厚さ約 5 mmの円板状成形体が得られるように、 約 3〜5 gのメカニカル ァロイング (MA) 処理粉末試料を装填して、 これに上下から 49MP aの成 形圧力 (σ) をかけ、 真空中でその固化成形を実施した。 固化成形の温度 (Τ ) は 650〜1 000°C (923〜: 1 273 K) の間の温度とし、 各成形温度 での保持時間 ( t ) は 300 s ( 5分) とした。 実施例 6 :
図 8は、 メカニカルァロイング (MA) 処理粉末のシース圧延 (S h e a t h R 0 1 1 i n g、 SR) による固化成形プロセスの説明図である。
約 1 0 gのメカニカルァロイング (MA) 処理粉末を内径約 7 mmの SUS 31 6ステンレス鋼チューブ (S h e a t h) に真空封入し、 これを圧延機を 用いて、 650〜1000°Cの温度 (T) にてその固化成形を実施した。.
なお、 シース圧延温度: 650〜 1000°C、
第 1回目の圧延前の設定圧延温度保持時間: 900 S ( 15分) 、
第 2回目の圧延前の設定圧延温度保持時間: 300 S ( 5分) とした。 実施例 7 :
図 9は、 F e 60.55 C r 18Mn l 8Mo 3No.45 (質量0 /o) メカニカルァロイング (MA) 処理試料の 900°Cでの S P S成形前と成形後のの XRD ( X線: コ バルト Κα線 (λ =0. 179021 η m) ) 図形である。 これより同試料は 、 S P S成形後もオーステナイ ト (γ) 単相のままであることが示される。 な お、 図において (a s MA e d) は S P S成形前のもの、 (a s S P S e d) は S P S成形後のものを示す。
図 1 0は前記試料の S P Sによる成形体断面の走査電顕による観察図 (SE M図) である。
F e 60. ssC r isMn ,8Mo 3No.45 (質量0 /o) メカニカルァロイング (MA) 処理試料の 900°Cでの S P S成形前後の平均結晶粒経 (D) については表 1 のとおりである。 1] Fe60 55 Cr18 Mn18 Mo3 N0 45(質量%)
メカニカルァロイング(MA)処理試料の 900°Cでの
SPS成形前後の平均結晶粒経 (D)
Figure imgf000028_0001
表 1中、 Dの値は、 図 9の X線図形から S c h e r r e rの式を用いて計算し た。 成形後の値は図 10の S E M図から観察される粒径ともほぼ対応するもので める。
以上の実施例 7、 図 9及び表 1からみて、 本発明によれば、 S PS固化成形過 程でかなりの結晶粒の成長はみられるが成形後もそのナノ組織は保持できること が解った。 実施例 8 :
図 1 1は、 下記 (a) 〜 (g) の種々のメカニカルァロイング (MA) 処理 粉末試料を 900°Cにて S P S成形したものの、 成形後の窒素の残存率 R e ( %) を示したグラフ図である。
(a) F e 60. ssC r isMn isMo aNo.45 (質量0 /o)
(b) F e 60. 6C r ,sMn! -.5Mo uNo.9 (質量0 /o)
(c) F e 63. iC r i8Mn ,5Mo 3N0. 9 (質量0/。)
(d) F e 72. , C r i 9N i 8No. u (質量0/。)
(e) E e 67. ,C r l 9N i sMnsNo.9 (質量0 /0)
( f ) F e R8. !C r 23N i 8No. 9 (質量0/。) (g) F e β4. , C r Ν "MnsN b 2No.9 (質量0 /o)
R e (%) : (N s /Nm) X 100
Nm: MA処理のままの試料中の窒素含有量 (質量%)
N s : S P S成形後の試料.中の窒素含有量 (質量%) 同図よりクロム一マンガン系の試料 (a) 、 (b) 、 (c) では R eが 10 0%であるのに対して、 クロム一ニッケル系の試料 (d) (SUS 304鋼相 当組成の高窒素ステンレス鋼) では R eが約 85%であり、 メカニカルァロイ ング (MA) 処理試料中に含まれている窒素の約 1 5%が S P S成形過程で消 失していることが示される。 しかし、 窒素の残存率 R eは、 試料 (d) にマン ガンを添加したもの (試料 (e) ) 又はそのクロムを増量したもの (試料 (f ) ) では大きく向上し、 さらにまた R eを増加させる元素マンガン、 クロム、 ニオブを複合添加すると、 試料 (g) のように、 その R eは 1 00%まで向上 し、 成形過程での脱窒は完全に抑制することができた。 図 1 2は、 S P S成形した図 1 1の試料 (d) 及び (g) の X線回折 (X線 :銅 Κα線 (λ = 0. 1 54051 nm) 結果を示している。 これより試料 ( d) では、 S P S成形によりオーステナイ ト (γ) 相の地にフェライ ト (ひ) 相, C r2N相が析出した組織となっているのに対して、 試料 (g) では S PS 成形後もそのオーステナイト単相組織が保持されていることが解る。 実施例 9 :
F e 64. , C r 2ϋΝ i 8MnnNb aNo. s, (質量0 /o) メカニカルァロイング (MA ) 試料の S P S又は SR成形による固化成形体 (固化成形温度: 900°C) 及 び同 SR成形後、 焼なまし (1 1 50°CX 1 5分間) を施した試験片 (SR + 焼なまし片) の平均結晶粒径 D、 ビッカース硬さ Hv、 耐カ σ θ. 2、 引張り 強さ σ Β、 伸ぴ δ及び酸素 ·窒素分析値は、 表 2のとおりである。
[表 2]
Fe64.1 Cr20 Ni8 Mn5 Nb2 NO.9 (質量0/ o)メカニカルァロイング(MA)試料の
SPS又は SR成形による固化成形体及び同 SR成形後、焼なまし(1150°C X 15分)を 施した試験片 (SR+焼なまし片)の平均結晶粒径 D、ビッカース硬さ Hv,耐カ σθ.2, 引張強さ σΒ,伸び σ及び酸素-窒素分析値 (成形温度 900°C)
Figure imgf000030_0001
Dの値は Scherrerめ式を用いて算出
* 直径 10mm X 5mm厚さ
** 引張試験片のゲージ寸法:幅 4.5mm X長さ(標点距離) 12mm X厚さ 1.3 * * *N2ガス雰囲気にて 250時間 MA処理したオーステナイト鋼粉末の SR成形
実施例 10 :
(a) F e C r ,sMn ,5Mo 3No. (質量0/。) 、 及び (b) F e e5. S5C r -N i sMo 4No. (質量0 /o) のメカニカルァロイング (MA) 試料の SR成 形及び S R成形後焼なましした固化成形体の平均結晶粒径 D、 ビッカース硬さ Hv、 耐カ σ θ. 2、 引張り強さ σ Β、 伸び δ及び酸素 ·窒素分析値 (SR成 形温度: 900°C、 焼なまし温度 1 1 50°C、 焼なまし温度保持時間 1 5分間) は表 3のとおりである。 (a) 、 (b) はそれぞれオーステナイト鋼試料及び オーステナイト 'フェライト鋼試料である。 [表 3]
(a)Fe63.1 C"8 Mm 5 Mo 3 No.9(質量%)及び (b)Fe65.55 Cr25 Nis Mo4 No.45 (質量0 /o)メカニカルァロイング (MA)試料の SR成形及び SR成形後焼なましを施した 固化成形体の平均結晶粒径 D、ビッカース硬さ Hv、耐カ σο.2,引張強さ σΒ, 伸び (5及び酸素■窒素分析値 (SR成形温度: 900°C、焼なまし温度 1150°C、 焼なまし温度での保持時間 15分)
Figure imgf000031_0001
a:オーステナイト鋼試料
b:オーステナイト'フェライト鋼試料
実施例 1 1
(a) F e 69.2 Mn 30 C 0.8 (質量0 /0) 、 (b) F e 64.1 Mn 30 C r 5 C 0.8 N 0.1 (質量0 /o) 及ぴ (c) F e 64.2 Mn 30 A 1 5 C 0.8 (質量0 /o) メカ二 カルァロイング (MA) 試料の SR成形又は SR成形 +焼なまし (1 150。CX 15分間) を施した各試験片 (固化成形温度: 900°C) の平均結晶粒径 D、 ビ ッカース硬さ Hv、 耐カ σ θ. 2、 伸び δ、 引張り強さ σ Β及び酸素 .窒素分析 値は表 4のとおりである。
[表 4] (a)Fe69.2Mn30 CO.8(質量%)、 (b)Fe64.1 Mn30 Cr5 C0.81^10.1(質量%)及ぴ
(C)Fe64.2Mn30 AI5 CO.8 (質量0/ o)メカニカルァロイング (MA)試料の SR成形 又は SR成形 +焼なまし (1150°C X 15分)による固化成形体の平均結晶粒径 D、
ピツカ一ス硬さ Hv、耐カ σ 0. 2、引張強さ σΒ、伸び S及び酸素 '窒素分析値
(成形温度: 900°C)
Figure imgf000032_0001
*厚さ 1. 3mmシ一卜
以上の実施例 9及び表 2からみて、 本発明によれば、 SUS 3 04相当組成 の高窒素ナノ結晶オーステナイ ト鋼(窒素濃度: 0. 9質量%) では、 シース圧 延 (SR) による固化成形によると、 溶解法で製造した SUS 304ステンレ ス鋼に比べ、 硬さがその約 4倍 (高炭素鋼のマルテンサイ ト組織以上の硬さ) 、 耐カがその約 6倍 (超高張力鋼級の値) という極めて高い値を示し、 その焼 なましにより、 伸びもかなり高いものが製造できることが解った。
また、 表 2からみて、 MAの際、 窒素源として N2ガスを用いても、 窒化鉄を 用いる場合とほとんど同様の引張特性を示す固化成形体を製造できることが解 つた。
実施例 1 0及び表 3 (試料 aの結果) からみて、 高窒素 C r一 Mn系の F e 6 3. . C r ,sMn isMo 3Nc. 9 (質量0 /o) 材料においても、 その SR+焼なまし材 は表 2に示された高窒素 C r一 N i系材料の場合と同様、 高強度で延性に富む 材料が製造できることが判明した。
また、 表 3 (試料 bの結果) からみて、 オーステナイ ト ·フェライ ト系材料 (フェライ ト相:約 4 0%) では、 オーステナイ ト系材料 (試料 a ) に比べて SR成形過程での結晶粒成長が著しく抑制され、 その硬さ、 強さ (σ θ. 2及 び σ Β) などの機械的性質もオーステナイ ト系材料とほぼ同様のものが製造で きることが解った。
また、 実施例 1 1、 表 4からみて、 高マンガン一炭素系の F e 2Mn3。C。 . 8 (質量0 /0) 及び F e 64. ,Mn3。C r 5Co.8Ν0. , (質量0 /0) 及び F e 64. 2 M nsoA 15Co.8 (質量0 /o) メカ-カルァロイング (MA) オーステナイ ト鋼粉 末の固化成形体でも、 溶解法で製造された高マンガンオーステナイト鋼 (例え ば S CMn H 3鋼、 Mn : 1 1〜: I 4 % (質量) 、 C : 0. 9〜; L . 2 % (質 量) ) (1 000°Cからの水焼入れ材) に比べて、 硬さがその約 4倍という極 めて高い値を示す上、 高強度で延性に富むものを容易に製造できることが解つ た。 実施例 12 :
F e e 4. , C r 2oN i 8Mn5N b 2N0. 9 (質量0 /0) のメカニカルァロイング ( MA) 粉末試料について、 900°Cでの S P S成形、 押出成形、 鍛造、 熱間等 方圧加圧焼結 (H I P) 、 ホットプレス又は常温での冷間プレスを施した後、 更に 900°Cにて熱間圧延加工を加え、 これを焼なまし (1 1 50°CX 1 5分 間) してから、 急冷 (水中) 処理をして得られた固化成形体試料 (a) 〜 (g ) の平均結晶粒径 D、 ビッカース硬さ Hv、 耐カ σ θ. 2、 引張り強さ σ Β、 伸び δ及びシャルピー衝撃値 Εは、 表 5のとおりである。
なお、 前記の固化成形処理は試料 bの圧延を除いて、 すべて真空雰囲気中に て行われている。 また、 引張り試験には、 J I S 6号試験片 (幅 5mm、 厚さ 2 mm) を用い、 またシャルピー衝撃試験片には Vノッチ試験片 (幅 5mm、 高さ 5mm、 長さ 55mm) を用いた。 5 ]
Fe64 Cr20 Ni8 Mn5 Nb2 N。 g(質量0 /o)メカニカルァロイング(MA)粉末試料 I: 種々の固化成形処理を施した成形体バルク材試料 a〜gの平均結晶粒径 D、 ビッカース硬さ Hv,耐カ σο. 2, 引張強さび Β、伸び (5、及びシャルピー衝撃値 Ε
Figure imgf000034_0001
*圧延雰囲気:大気
SPS : (成形圧力: 49MPa) HIP : (成形圧力: 50MPa) 押出し: (押出比:3) ホットプレス:(成形圧力: 60MPa) : (鍛造比: 2) 冷間プレス :(成形圧力: 650MPa)
実施例 1 2、 表 5の試料 aの結果を実施例 9、 表 2の 「S R +焼なまし」 材の それと比較すると、 S P S成形加工したものに更に圧延処理を施すとその機械的 特性がかなり大きく向上するうえ、 高い靭性 (高い衝撃値) を示し、 圧延加工の 効果は明らかである。
表 5の試料 c, dのように圧延加工を加える前に、 押出し、 鍛造のような剪断 変形を伴う成形過程が加わると、 その効果は一層顕著なものになっている。 以上の実施例 1 2, 表 5からみて、 本願発明によれば同表に示すような固化成 形処理によっても、 その固化成形体における結晶組織は 9 0〜2 0 0 n m程度の ナノサイズのレベルにとどまり、 特に試料 c及び dで用いた固化成形処理法によ ると、 高窒素濃度の高硬質 ·高強度で強靱なナノ結晶オーステナイト鋼バルク材 を容易に製造できることが解つた。 実施例 13 :
図 1 3は以下の遅れ破壊試験に用いられた中央部に環状の切欠き部を有する 直径 5 mmの柱状の試験体の斜視図を示し、 該試験はその両端側から持続的に 引張荷重をかけることによって行われた。
すなわち、 前記試験体は、 F e 64. , C r 2。N i 8Mn 5N b 2Ν。· 9 (質量0/。) のメカニカルァロイング (ΜΑ) 試料を、 900°Cで押出加工した後、 焼なま し処理 (1 1 50°CX 1 5分間/水冷) して得た直径 5 mmの固化成形体 (耐 力 σ θ. 2 : 1 69 OMP a , 引張り強さ σ Β : 288 OMP a 伸び δ : 3 4%) である。
本試験では、 同試験体に水中 (23°C) にて 1 6◦ OMP aの引張り荷重を 10 O h負荷し続けたが、 その結果、 遅れ破壌は見られなかった。
実施例 14 :
高窒素オーステナイト鋼 [F e 63XC r 2。N i 8Mn5Nb aNx (質量0/。、 x = 0. 45, 0. 7, 0. 9]メカニカルァロイング (MA) 試料の SR成形によ る固化成形体の窒素濃度 (含有量) Xとビッカース硬さ Hvの関係は表 6のと おりである。
[表 6]
Fe65-x Cr20 Nis Mn5 Nb2 Nx (質量0/ o, X=0.45、 0.7, 0
メカニカルァロイング(MA)試料の SR成形による固化成形体の
窒素濃度 Xとビッカース硬さ Hvの関係 (成形温度 900°C) 窒素濃度 (質量%) 0.45 0.7 0.9
Hv 500 600 750 実施例 1 5 :
オーステナイ ト鋼の窒素含有量とビッカース硬さ Hvの関係 (窒素固溶の効果 ) は表 7に示すとおりである。
[表 7]
オーステナイト鋼の窒素含有量とピッカース硬さ Hv
——窒素固溶の効果
Figure imgf000036_0001
a: SUS304ステンレス鋼粉末を 10時間 MA*処理してから 900°Cでの SR成形した後、 焼なまし (1150°C X 15分 Z水冷)を行った SR固化成形シート。
b:200時間 MA処理した Fe64. 1 Crao Nis Mns Nba No.9(質量0 /o)試料の 900°Cにて
SR固化成形したシート。
*厳密にはメカニカルミリング(MM)処理のこと
実施例 1 6 :
オーステナイ ト鋼の平均結晶粒径 Dとビッカース硬さ Hvの関係 (MAによる 結晶粒微細化の効果) は表 8に示すとおりである。
[¾8]
オーステナイト鋼の平均結晶粒径 Dとビッカース硬さ Hv
—— MAによる結晶粒微細化の効果
Figure imgf000037_0001
A: SUS304ステンレス鋼の溶製シ一K N:約 0. 035質量0 /0)。
B : SU S304ステンレス鋼粉末を 1 0時間 MA処理してから
900°Cでの SR成形した後、焼なまし(1 150°C x 1 5分ノ水冷)
を行った S R固化成形シート。
実施例 1 5 (表 7 ) 及び 1 6 (表 8 ) からみて、 メカニカルァロイング (MA ) 処理したオーステナイト系材料では、 窒素濃度を 0 . 9質量%まで高めると、 その硬さは S U S 3 0 4溶製シートの約 8倍程度まで増大しているが、 これには 窒素固溶の効果に加えて、 MAによる結晶粒微細化の効果も大きく寄与している ことが角早った。 産業上の利用可能性
次に前記本発明で得られたォー ト鋼パルク材の用途例について紹介 する c
一高窒素オーステナイト鋼について:
高窒素オーステナイト鋼に共通した性質は、 超強度で靱性かつ耐孔食性を示し 非磁性であることに加え、 マルテンサイト系又はフェライ 1、系鉄鋼材料にみられ るような昇温時の 2 0 0〜 3 0 0 °C付近の温度から急激な軟ィ匕を示さず、 室温付 近以下の温度での低温脆性を起こしにくいことである。
そしてまた注目すべき重要なことは、 オーステナイト系ステンレス鋼 S U S 3 0 4鋼相当組成の 0 . 9 % (質量) 程度の窒素を含む本願発明の一例の高窒素ナ ノ結晶ステンレス鋼では、 硬さが同 3 0 4ステンレス鋼の約 4倍 (高炭素鋼のマ ト組織以上の硬さ) 、 耐カがその 6倍 (超高張力鋼級の値) という非 常に高い値を示す上、 このような極端に高い耐カをもつものでも、 マルテンサイ ト系又はフェライト系鉄鋼材料にみられるような遅れ破壊 ( d e l a y f a i l u r e ) を起こさないことである。
従って本発明による高窒素ナノ結晶オーステナイ ト鋼材料は、 以上のようなそ の特性から、 高張力ボルトや防弾材料をはじめ、 例えば次のような機械類の部品 や熱間加工用の各種の超硬工具類などの材料として好適に広く用いることができ る。
( 1 ) 高張力ボルト、 ナット類 (機械的締結材料)
高張力ポルト、 ナツト類には通常、 マルテンサイ ト系又はフェライ ト系の鉄 鋼材料が多く用いられているが、 このようなマルテンサイ ト系又はフェライ ト 系材料ではその引張り強さが 7 0〜8 0 k g Zmm 2以上になると、 降伏点 (耐 力) より低い静的引張り力のもとでも遅れ破壊を起こす性質をもっているので 、 現在 7 0〜8 0 k g /mm 2以上の引張り強さをもつ鋼の高張力ボルト、 ナツ ト類への使用はなされていない。 '
しかし、 本発明による高窒素ナノ結晶オーステナイ ト鋼は、 極端に大きい強 度を有している上、 その組織がオーステナイ ト相から構成されているので、 前 記のような遅れ破壊を起こすことがない。 従って、 このようなナノ結晶オース テナイ ト鋼の特性からみて、 本発明のナノ結晶オーステナイ ト鋼バルク材は前 記の高張力ボルト類の材料としてはもとより、 ますますその軽量化が求められ ている航空機、 自動車などの構成部材としてその需要は計り知れないものであ ると言える。
( 2 ) 防弾鋼板、 防弾チョッキ類
例えば、 現在、 軍用等に使われている防弾チョッキの重量は、 有事のときに 着用されるものは、 1人分で 4 0〜 5 0 k gにも及ぶと言われている。 しかも その材料特性としては、 引張り強さが 2 5 0 k g Zmm2、 伸びが 5〜1 0 %と いう極めて高性能のものが求められているが、 現在これに対応できる材料は未 だ開発されるまでに至っていない。
本発明による高窒素ナノ結晶オーステナイ ト鋼バルク材は、 前記のような高 いレベルの性能に十分応えられるだけでなく、 本発明のナノ結晶オーステナイ ト鋼バルク材をこれに用いると非常に大きな軽量化をはかることができる。
( 3 ) ベアリング (軸受) 類
軸受材料に用いられている多くの鉄鋼材料では、 その摩擦 ·摩耗部分のマト リ ックス (相組織) をマルテンサイ ト組織にしているため、 そのマルテンサイ トという不安定相の性質上、 使用温度範囲が比較的せまい範囲に限定されるが 、 本発明による高窒素オーステナイ ト鋼は、 例えば高温域においても約 6 0 0 °C付近の温度まで強さや硬さの急激な低下を起こさないので、 より広い温度域 で用いることができる。
とくに、 本発明による高窒素オーステナイ ト鋼を軸受の回転部に用いると、 前記の強度特性から、 その使用量を大幅に減らすことができるので、 これによ り、 使用材料の節減になるばかりでなく、 軸受転動体部の遠心力の大きな低下 を通じて、 軸受運転時の使用電力を大きく低減することができる。
( 4 ) 歯車類
歯車の材料に多く用いられている鉄鋼材料では、 その表面部 (歯面部) には 耐摩耗性をもたせ、 そして内部には強い靱性をもたせるという相矛盾する性質 を一つの部品に与える必要があるため、 この場合は、 歯面部への浸炭などと焼 入 ·焼もどしとを組み合わせたかなり高度な技術と熟練を要する表面硬化処理 が必要となるが、 本発明による、 例えば押し出し加工で製造した超硬質で強 な特性を有する高窒素ナノ結晶オーステナイ ト鋼をこれに用いる場合は、 その ような表面硬化などの処理は不要である。
また、 高窒素ナノ結晶オーステナイ ト鋼を歯車類に用いる場合は歯面部がマ ンテンサイ 卜 (不安定相) 組織をもった通常のものより、 より広い温度域で使 用することができる。
( 5 ) 熱間加工用工具、 押出工具類
例えば、 高温切削工具材として多く用いられているモリプデン系の高速度鋼 のような焼入れ ·焼もどし材では、 そのマトリツタスが昇温域で不安定な焼も どしマルテンサイ ト相からなるために、 4 0 0 °C付近の温度以上では急激に軟 化する性質をもっている。 しかし本発明による高窒素ナノ結晶オーステナイ ト 鋼は、 そのマトリ ックス自体が安定相からなるため、 そのような温度域で急激 な軟化を示すことはないので、 より優れた熱間加工向けの工具材料として用い ることができる。
また、 本発明による高窒素ナノ結晶オーステナイ ト鋼は、 上記のような熱的 に比較的安定なマトリックスからなるため、 使用時に熱的変化の激しい押出ェ 具などにも、 より効果的に用いることができる。
( 6 ) 医療器具類その他
クロム一ニッケル系の S U S 3 0 4鋼のようなオーステナイ ト系ステンレス 鋼は、 使用時にごく微量に溶出されるニッケルイオンが人体に皮膚炎をひき起 こすなどの問題があるため、 欧米では人体にかかわるものにはその使用が禁止 される方向にある。 こうした背景から、 ニッケルを含まないオーステナイ ト系 ステンレス銅として注目されているのが、 高窒素クロム一マンガン系のオース テナイトステンレス鋼である。
本発明による非磁性な高窒素ナノ結晶クロム一マンガン系オーステナイ ト鋼 は、 超硬質かつ強靱で優れた耐食性 (耐孔食性) を有している上、 オーステナ イト相の性質上、 極低温でも脆ィ匕しなレ、特長をもっている。
高窒素クロム一マンガン系オーステナイ ト鋼の以上のような特性からみて、 本発明による非磁性な高窒素ナノ結晶クロム一マンガン系オーステナイ ト鋼は 、 例えば、 外科医が用いるメス、 医療用低温器具類、 その他一般用のナイフ、 ハサミ等の利器、 ドリル等の工具類の材料としても有望といえる。

Claims

請 求 の 範 囲
(1) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及び Z又は同粒子の内部に、 結晶粒成長抑制物質 として金属又は半金属の酸化物を存在させてなることを特徴とする超硬質 ·強 靱で優れた耐食性を有するナノ結晶オーステナイト鋼パルク材。
(2) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及ぴ Z又は同粒子の内部に、 結晶粒成長抑制物質 として金属又は半金属の窒化物を存在させてなることを特徴とする超硬質 ·強 靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(3) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及び/又は同粒子の内部に、 結晶粒成長抑制物質 として金属又は半金属の炭化物を存在させてなることを特徴とする超硬質 ·強 靱で優れた耐食性を有するナノ結晶オーステナイト鋼パルク材。
(4) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及びノ又は同粒子の内部に、 結晶粒成長抑制物質 として金属又は半金属のケィ化物 (シリサイド) を存在させてなることを特徴 とする超硬質 ·強靭で優れた耐食性を有するナノ結晶オーステナイト鋼パルク 材。
(5) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及び Z又は同粒子の内部に、 結晶粒成長抑制物質 として金属又は半金属の硼化物 (ボライド) を存在させてなることを特徴とす る超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(6) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるオーステナイト鋼バルク材であって、
前記各ナノ結晶粒子の粒子間及び Z又は同粒子の内部に、 結晶粒成長抑制物質 として、 (1) 金属又は半金属の酸化物、 (2) 金属又は半金属の窒化物、 ( 3) 金属又は半金属の炭化物、 (4) 金属又は半金属のケィ化物 (シリサイド ) 又は (5) 金属又は半金属の硼化物 (ボライド) の (1) 〜 (5) から選ば れる 2種以上を存在させてなることを特徴とする超硬質 ·強靱で優れた耐食性 を有するナノ結晶オーステナイト鋼バルク材。
(7) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるオーステナイト鋼バルク材が、 その構成組織中に フ ライトナノ結晶粒子を 50%未満含有するものであることを特徴とする前 記 (1) 〜 (6) のいずれか 1項に記載の超硬質 '強靱で優れた耐食性を有す るナノ結晶オーステナイト鋼バルク材。
(8) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材が、 窒素を 0. 1〜5. 0% (質量) 含有するものであることを特徴とする前記 (1) 〜 (7) のいずれか 1項に記 載の超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材
(9) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子又はその集合体よりなるバルク材が、 金属又は半金属の酸化物の形態 で酸素を 0. 01〜1. 0% (質量) 含有したものであることを特徴とする前記 (1) 、 (6) 又は (7) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性 を有するナノ結晶オーステナイト鋼バルク材。
(10) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイトナ ノ結晶粒子の集合体よりなるバルク材が、 窒素化合物を 1〜30% (質量) 含有 したものであることを特徴とする前記 (2) , (6) 、 (7) 又は (8) のいず れか 1項に記載の超硬質 ·強靭で優れた耐食性を有するナノ結晶オーステナイト 鋼バルク材。
(1 1) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材が、 その固化成形過程での脱窒を防ぐた めの、 窒素との化学的親和力が鉄より大きいニオブ、 タンタル、 マンガン、 クロ ムなどの窒素親和性金属元素を含有してなることを特徴とする前記 (1) 〜 (1 0) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性を有するナノ結晶ォー ステナイト鋼バルク材。
(12) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、 C r : 12〜 30 % (質量) 、 N i : 0-20% (質量) 、 Mn : 0〜 30 % ( 質量) 、 N: 0. 1〜 5 % (質量) 、 C: 0. 02〜 1. 0 % (質量) 、 残部: F eであることを特微とする前記 (1) 〜 (1 1) のいずれか 1項に記載の超硬 質 -強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(13) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
C r : 12〜 30 % (質量) 、 N i : 0〜 20 % (質量) 、 Mn : 0〜 30 % ( 質量) 、 N (化合物型) : 30 % (質量) 以下、 C: 0. 01〜: 1. 0 % (質量 ) 、 残部: F eであることを特微とする前記 (1) 〜 (9) のいずれか 1項に記 載の超硬質 ·強靭で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材。
(14) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
Mn : 4〜 40 % (質量) 、 N: 0. 1〜 5 %. (質量) 、 C : 0. 1〜 2. 0% (質量) 、 C r : 3〜: 10% (質量) 、 残部 F eであることを特徴とする前記 ( 1) 〜 (11) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性を有するナ ノ結晶オーステナイト鋼バルク材。
(15) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子の集合体よりなるバルク材の鋼形成成分及び配合組成が、
Mn : 4〜40% (質量) 、 N (化合物型) : 30% (質量) 以下、 C: 0. 1 〜2. 0% (質量) 、 C r : 3〜10% (質量) 、 残部 F eであることを特徴と する前記 (1) 〜 (1 1) のいずれか 1項に記載の超硬質 ·強靱で優れた耐食性 を有するナノ結晶オーステナイト鋼バルク材。
(16) 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイト ナノ結晶粒子が、 ボールミル等を用いるメカニカルァロイング (MA) によって 得られたものであることを特徴とする前記 (1) 〜 (15) のいずれか 1項に記 載の超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイ ト鋼バルク材。
(17) 前記 (1) 〜 (1 6) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 3〜1. 0% (質量) 含有する結晶粒径 50〜 1000 nmのオーステナイトナノ結晶粒子の集合体よりなるものである ことを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイト 鋼バルク材。
(18) 前記 (1) 〜 (16) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 4〜0. 9% (質量) 含有する結晶粒径 75〜500 nmのオーステナイトナノ結晶粒子の集合体よりなるものであるこ とを特徴とする超硬質 ·強靱で優れた耐食性を有するナノ結晶オーステナイ ト鋼 ノくルク材。
(19) 前記 (1) 〜 (16) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材が、 固溶型窒素を 0. 4~0. 9% (質量) 含有する結晶粒径 100〜300 nmのオーステナイトナノ結晶粒子の集合体よりなるものである ことを特徴とする超硬質 ·強靭で優れた耐食^を有するナノ結晶オーステナイト 鋼バルク材。
(20) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイ ト 鋼形成成分の各微粉末を、 窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルァロイング (MA) することによって高窒素濃 度ナノ結晶オーステナイ ト鋼微粉末を製造した後、
同オーステナイ ト鋼微粉末を (1) 圧延、 (2) 放電プラズマ焼結、 (3) 押出 成形、 (4) 熱間等方加圧焼結 (HI P) 、 (5) 冷間等方加圧成形 (C I P) 、 (6) 冷間プレス成形、 (7) ホットプレス、 (8) 鍛造、 又は (9) スエー ジングの (1) 〜 (9) から選択される 1又は 2以上の組合せによる固化成形又 は爆発成形などの固化成形処理することにより、 固溶型窒素を 0. 1〜2. 0% (質量) 含有するオーステナイ トナノ結晶粒子の集合体よりなる超硬質 ·強靱で 優れた耐食性を有するオーステナイト鋼バルク材となすことを特微とするナノ結 晶オーステナイ ト鋼バルク材の製造方法。
(21) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源となる物質とともに混合し、
ボールミル等を用いてメカニカルァロイング (MA) することによって、 高窒素 濃度ナノ結晶オーステナイト鋼微粉末を製造した後、
同オーステナイト鋼微粉末を、 空気中又は酸化抑制雰囲気中あるいは真空中で ( 1) 圧延、 (2) 放電プラズマ焼結、 (3) 押出成形、 (4) 熱間等方加圧焼結 (HI P) 、 (5) ホットプレス、 (6) 鍛造、 又は (7) スエージングの (1 ) 〜 (7) から選択される 1又は 2以上の組合せによる熱間固化成形又は爆発成 形などの固化成形処理し、 その後急冷することにより、 固溶型窒素を 0. 1〜2 . 0% (質量) 含有するオーステナイトナノ結晶粒子の集合体よりなる超硬質- 強靱で優れた耐食性を有するオーステナイト鋼バルク材となすことを特微とする ナノ結晶オーステナイト鋼バルク材の製造方法。
(22) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源とともに混合し、
ボールミル等を用いてメカニカルァロイング (MA) することによって、 高窒素濃度ナノ結晶オーステナイト鋼微粉末を製造した後、 同オーステナイト鋼 微粉末を真空中又は酸化抑制雰囲気中で放電プラズマ焼結して固化成形すること により、 固溶型窒素を 0. 3〜1. 0% (質量) 含有する結晶粒径 50〜100 0 nmのオーステナイ トナノ結晶粒子の集合体よりなる超硬質 ·強靭で優れた耐 食性を有するオーステナイ ト鋼バルク材となすことを特微とするナノ結晶オース テナイト鋼バルク材の製造方法。
(23) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末を、 窒素源とともに混合し、
ボールミル等を用いてメカ-カルァロイング (MA) することによって、 高窒素濃度ナノ結晶オーステナイト鋼微粉末を製造した後、 同オーステナイト鋼 微粉末を真空中又は酸化抑制雰囲気中で放電プラズマ焼結して固化成形し、 次い で圧延加工処理し、 急冷することにより、 固溶型窒素を 0. 3〜1. 0% (質量 ) 含有する結晶粒径 50〜1000nmのオーステナイ トナノ結晶粒子の集合体 よりなる超硬質 ·強靭で優れた耐食性を有するオーステナイ 1、鋼バルク材となす ことを特微とするナノ結晶オーステナイト鋼バルク材の製造方法。
(24) 前記 (20) 又は (22) に記載の固化成形体を 800〜12 50°Cの温度にて 60分間以内の時間で焼なました後、 更に急冷することを特 徴とするナノ結晶オーステナイト鋼バルク材の製造方法。
(25) 前記 ( 21 ) 又は ( 23 ) に記載の急冷された成形体を 800 〜1250°Cの温度にて 60分間以内の時間焼なました後、 更に急冷すること を特徴とするナノ結晶オーステナイ ト鋼バルク材の製造方法。
(26) 窒素源となる物質が、 N2ガス、 NH:iガス、 窒化鉄、 窒化クロ ム又は窒化マンガンから選択される 1種又は 2種以上であることを特徴とする 前記 (20) 〜 (25) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼パ ルク材の製造方法。
(27) メカニカルァロイングを施す雰囲気が、 (1) アルゴンガスな どの不活性ガス、 (2) N2ガス、 又は (3) NH3ガスから選ばれるいずれか 1種、 又は (1) 〜 (3) から選ばれる 2種以上の混合ガスの雰囲気であるこ とを特徴とする前記 (20) 〜 (26) のいずれか 1項に記載のナノ結晶ォー ト鋼バルク材の製造方法。
(28) メカニカルァロイングを施す雰囲気が、 若干の H2ガスなどの還 元十生物質を加えたガスの雰囲気であることを特徴とする前記 (20) 〜 (27) のいずれか 1項に記載のナノ結晶オーステナイト鋼バルク材の製造方法。
(29) メカニカルァロイングを施す雰囲気が、 真空又は真空中に若干の H ガスなどの還元性物質を加えた真空又は還元雰囲気であることを特徴とする 前記 (20) 〜 (26) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼パル ク材の製造方法。
(30) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末と、 1〜 10体積%の A 1 N、 N b N、 C r 2Nなどの金 属窒化物又は 0. 5〜10% (質量) の鉄より窒素との化学的親和力の大きい二 ォブ、 タンタル、 マンガン、 クロム、 タングステン、 モリブデンなどの窒素親和 性金属あるいはコバルトを、 窒素源となる物質とともに混合し、
メカニカルァロイング (MA) 過程及びメカニカルァロイング (MA) 処理粉末 の固化成形過程で前記添加窒化物を分散させるか、 前記金属元素又はその窒化物 、 炭窒化物等を析出 ·分散させ、
超硬質 ·強靱で優れた耐食性を有するオーステナイト鋼バルク材となすことを特 微とする前記 (20) 〜 (29) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼バルク材の製造方法。
(31) 鉄とクロム、 ニッケル、 マンガン又は炭素などのオーステナイト 鋼形成成分の各微粉末と、 A 1 N、 NbN、 TaN、 S i 3N4、 T i Nなどの金 属窒化物からなる粒子分散剤:!〜 10体積%を、 窒素源となる物質とともに混合 し、
メカニカルァロイング (MA) 過程におけるナノサイズレベルでの結晶粒の一層 の微細化の促進とメ力二カルァ口イング (MA) 処理粉末の固化成形過程での結 晶粒粗大化を抑制し、
超硬質 ·強靱で優れた耐食性を有するオーステナイト鋼バルク材となすことを特 微とする前記 (20) 〜 (30) のいずれか 1項に記載のナノ結晶オーステナイ ト鋼バルク材の製造方法。
(32) 鉄とマンガン及び炭素を主体とする高マンガン一炭素鋼タイプの オーステナイト鋼形成成分の各微粉末を、 窒素源としての窒化鉄等の金属窒化物 微粉末とともに混合し、
アルゴンガスなどの不活性ガスあるいは真空または真空中に若干の H 2ガスなど の還元性物質を加えた真空又は還元雰囲気のもとで、
メカニカルァロイング (MA) することによって、 Mn : 4〜40% (質量) 、 N: 0. :!〜 5. 0 % (質量) 、 C : 0. :!〜 2. 0% (質量) 、 C r : 3. 0 〜10. 0% (質量) 、 残部 F eからなるナノ結晶オーステナイ ト鋼粉末を製造 した後、 同オーステナイ ト鋼粉末をシース圧延、 放電プラズマ焼結、 押出成形等 の熱間固化成形又は爆発成形などの固化成形処理することにより超硬質 ·強靱で 優れた耐食性を有するオーステナイ ト鋼バルク材となすことを特微とする前記 (
20) 〜 (29) 又は (31) のいずれか 1項に記載のナノ結晶オーステナイト 鋼バルク材の製造方法。
(33) オーステナイ ト鋼形成成分及び配合組成が、
C r : 12〜 30 % (質量) 、 N i : 0〜 20 % (質量) 、 Mn : 0〜 30 % ( 質量) 、 N: 0. 1〜 5. 0 % (質量) 、 C : 0. 02〜; 1. 0 % (質量) 、 残 部: F eであり、
固化成形の温度が 600〜1250°Cであることを特微とする前記 (20) 〜 (
32) のいずれか 1項に記載のナノ結晶オーステナイト鋼バルク材の製造方法。
(34) メカニカルァロイング (MA) 処理時に処理容器、 硬質鋼ボール 等から高窒素ナノ結晶オーステナイト鋼粉末に混入する酸素の量を 0. 01〜1 . 0% (質量) に調整し、 その酸素の化合物である金属又は半金属の酸化物によ り、 メカニカルァロイング (MA) 過程におけるナノサイズレベルでの結晶粒の 一層の微細化の促進とメカニカルァロイング (MA) 処理粉末の固化成形過程で の結晶粒粗大化を抑制することを特微とする前記 (20) 〜 (31) のいずれか 1項に記載のナノ結晶ォ一ステナイト鋼バルク材の製造方法。
(35) 前記 (1) 〜 (19) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された高力ボルト、 ナツト等の機械的締結材料。
(36) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された防弹鋼板、 防弾チョッキ等の耐弹材料。
(37) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作されたダイス、 ドリノレ、 スプリング、 歯車、 軸受け等の 機械工具 .機械部材。
(38) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された人工骨、 人工関節、 人工歯根等の人工医科 ·歯科 材料。
(39) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された注射針、 手術用メス、 カテーテル等の医療用機械
(40) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された金型。
(41) 前記 (1) 〜 (19) のいずれか 1項に記載のナノ結晶オーステ ナイト鋼バルク材で製作された水素貯蔵タンク。
(42) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された包丁、 弟 U刀、 鋏等の利器。
(43) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作されたタービンフィン、 タービンブレード等のタービン 部材。
(44) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された防衛用兵器。
(45) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作されたスケート部材、 そり部材等のスポーッ材料。
(46) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された配管、 タンク、 バルブ等の化学プラント材料。
(47) 前記 (1) 〜 (19) のいずれか 1項に記載のナノ結晶オーステ ナイ ト鋼バルク材で製作された原子力発電装置用部材。
(48) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステナ ィト鋼バルク材で製作されたロケット、 ジェット機等の飛行物体部材。
(49) 前記 (1) 〜 (1 9) のいずれか 1項に記載のナノ結晶オーステナ ィト鋼バルク材で製作されたパソコン、 アタッシュケース等の軽量ハウジング材 料。
(50) 前記 (1) 〜 (19) のいずれか 1項に記載のナノ結晶オーステナ イト鋼パルク材で製作された自動車、 船舶、 磁気浮上列車等の移送装置用部材。
PCT/JP2003/012343 2002-09-27 2003-09-26 超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法 WO2004029312A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2003266649A AU2003266649A1 (en) 2002-09-27 2003-09-26 Nano-crystal austenitic steel bulk material having ultra-hardness and toughness and excellent corrosion resistance, and method for production thereof
EP03798524A EP1555332A4 (en) 2002-09-27 2003-09-26 ULTRADUR NANOCRYSTAL AUSTENIAC STEEL BULK MATERIAL HAVING TENACITY AND EXCELLENT CORROSION RESISTANCE, AND PROCESS FOR PRODUCING THE SAME
US10/529,418 US7662207B2 (en) 2002-09-27 2003-09-26 Nano-crystal austenitic steel bulk material having ultra-hardness and toughness and excellent corrosion resistance, and method for production thereof
UAA200502745A UA77107C2 (en) 2002-09-27 2003-09-26 Nano-crystal material with structure of austenite steel having high hardness, strength and corrosion resistance, and method for producing thereof (variants)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002284576 2002-09-27
JP2002/284576 2002-09-27

Publications (1)

Publication Number Publication Date
WO2004029312A1 true WO2004029312A1 (ja) 2004-04-08

Family

ID=32040588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/012343 WO2004029312A1 (ja) 2002-09-27 2003-09-26 超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法

Country Status (7)

Country Link
US (1) US7662207B2 (ja)
EP (1) EP1555332A4 (ja)
CN (1) CN1685070A (ja)
AU (1) AU2003266649A1 (ja)
RU (1) RU2324757C2 (ja)
UA (1) UA77107C2 (ja)
WO (1) WO2004029312A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105002440A (zh) * 2015-07-28 2015-10-28 兰州理工大学 纳米/微米晶复相高强高塑304不锈钢板材的制备方法
WO2017016367A1 (zh) * 2015-07-24 2017-02-02 先健科技(深圳)有限公司 铁基可吸收植入医疗器械与预制管及其制备方法
JP7199029B1 (ja) 2022-06-28 2023-01-05 株式会社寺方工作所 非磁性微細ステンレス鋼加工品及びその製造方法

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060127266A1 (en) * 2002-09-30 2006-06-15 Harumatsu Miura Nano-crystal austenitic metal bulk material having high hardness, high strength and toughness, and method for production thereof
US7320832B2 (en) * 2004-12-17 2008-01-22 Integran Technologies Inc. Fine-grained metallic coatings having the coefficient of thermal expansion matched to the one of the substrate
US7354354B2 (en) * 2004-12-17 2008-04-08 Integran Technologies Inc. Article comprising a fine-grained metallic material and a polymeric material
US7387578B2 (en) * 2004-12-17 2008-06-17 Integran Technologies Inc. Strong, lightweight article containing a fine-grained metallic layer
US20070238619A1 (en) * 2005-09-06 2007-10-11 Superpower, Inc. Superconductor components
DE102005045698B4 (de) * 2005-09-20 2010-11-11 Dentaurum J.P. Winkelstroeter Kg Formkörper aus einer Dentallegierung zur Herstellung von dentalen Teilen
JP2007287856A (ja) 2006-04-14 2007-11-01 Toshiba Corp 半導体装置の製造方法
AT506896B1 (de) * 2008-06-06 2010-05-15 Siemens Vai Metals Tech Gmbh Verfahren zur steuerung eines transformationsverfahrens
EP2334838A1 (en) * 2008-09-19 2011-06-22 Fort Wayne Metals Research Products Corporation Fatigue damage resistant wire and method of production thereof
US8409367B2 (en) * 2008-10-29 2013-04-02 The Hong Kong Polytechnic University Method of making a nanostructured austenitic steel sheet
HUE052784T2 (hu) * 2009-01-08 2021-05-28 Bio Dg Inc Biológiailag lebontható ötvözeteket tartalmazó beültethetõ orvostechnikai eszközök
US8752752B2 (en) * 2009-03-09 2014-06-17 Hong Kong Polytechnic University Method of making a composite steel plate
ES2394385B1 (es) * 2009-10-16 2013-12-13 Juan Carlos Garcia Aparicio Procedimiento de fabricacion de piezas sinterizadas y piezas obtenidas por dicho procedimiento
JP6227871B2 (ja) * 2010-02-15 2017-11-08 フェデラル−モーグル・リミテッド・ライアビリティ・カンパニーFederal−Mogul Llc 焼結硬化鋼製部品を製造するための母合金、および焼結硬化部品を製造するためのプロセス
US9587645B2 (en) 2010-09-30 2017-03-07 Pratt & Whitney Canada Corp. Airfoil blade
US9429029B2 (en) 2010-09-30 2016-08-30 Pratt & Whitney Canada Corp. Gas turbine blade and method of protecting same
US20120082541A1 (en) * 2010-09-30 2012-04-05 Enzo Macchia Gas turbine engine casing
US20120082556A1 (en) * 2010-09-30 2012-04-05 Enzo Macchia Nanocrystalline metal coated composite airfoil
US20120082553A1 (en) * 2010-09-30 2012-04-05 Andreas Eleftheriou Metal encapsulated stator vane
DE102011008809A1 (de) * 2011-01-19 2012-07-19 Mtu Aero Engines Gmbh Generativ hergestellte Turbinenschaufel sowie Vorrichtung und Verfahren zu ihrer Herstellung
JP2012174843A (ja) * 2011-02-21 2012-09-10 Tokyo Electron Ltd 金属薄膜の成膜方法、半導体装置及びその製造方法
FR2973265B1 (fr) * 2011-03-31 2014-03-28 Centre Nat Rech Scient Procede de fabrication par frittage flash d'une piece de forme complexe et dispositif pour la mise en œuvre d'un tel procede.
US8257512B1 (en) * 2011-05-20 2012-09-04 The Nanosteel Company, Inc. Classes of modal structured steel with static refinement and dynamic strengthening and method of making thereof
CN104271496A (zh) * 2011-12-15 2015-01-07 卡斯西部储备大学 不含稀土的能够转变的氮化物磁体及其制造方法
US10867730B2 (en) * 2011-12-15 2020-12-15 Case Western Reserve University Transformation enabled nitride magnets absent rare earths and a process of making the same
US8419869B1 (en) * 2012-01-05 2013-04-16 The Nanosteel Company, Inc. Method of producing classes of non-stainless steels with high strength and high ductility
US9427835B2 (en) 2012-02-29 2016-08-30 Pratt & Whitney Canada Corp. Nano-metal coated vane component for gas turbine engines and method of manufacturing same
US9080229B2 (en) 2012-05-07 2015-07-14 Ut-Battelle, Llc Nano-composite stainless steel
RU2484170C1 (ru) * 2012-05-18 2013-06-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет" (ФГБОУ ВПО "СПбГПУ") Способ получения высокоазотистой аустенитной порошковой стали с нанокристаллической структурой
GB201209482D0 (en) * 2012-05-29 2012-07-11 Element Six Gmbh Polycrystalline material,bodies comprising same,tools comprising same and method for making same
RU2513058C1 (ru) * 2013-03-06 2014-04-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный политехнический университет (ФГБОУ ВПО "СПбГПУ") Способ получения дисперсноупрочненной высокоазотистой аустенитной порошковой стали с нанокристаллической структурой
CN105358184A (zh) 2013-03-14 2016-02-24 Biodg股份有限公司 包含具有增强的降解速率的生物可降解的合金的可植入的医疗装置
DE102013104702B4 (de) * 2013-05-07 2014-12-11 Schott Ag Beschichtete Glaskeramikplatte
KR101673695B1 (ko) * 2014-11-12 2016-11-08 국민대학교산학협력단 오스테나이트 강 기지-나노 입자 복합체 및 이의 제조방법
DE102016215709A1 (de) * 2015-08-28 2017-03-02 Tsubakimoto Chain Co. Kettenkomponente und Kette
EP3249059A1 (fr) * 2016-05-27 2017-11-29 The Swatch Group Research and Development Ltd. Procédé de traitement thermique d'aciers austénitiques et aciers austénitiques ainsi obtenus
CN108330409B (zh) * 2018-03-23 2020-08-04 长春工业大学 超高冲击韧度的韧强钢及其制备方法
CN108660378A (zh) * 2018-06-15 2018-10-16 河南科技大学 一种高氮合金钢及其制备方法
CN110103528A (zh) * 2019-05-16 2019-08-09 肖仁德 无磁不锈钢复合板及其制备方法
CN110643932B (zh) * 2019-09-25 2021-02-05 马鞍山市三川机械制造有限公司 一种提高钢结构耐腐蚀性的处理工艺
DE102019127268B4 (de) 2019-10-10 2024-05-02 Schaeffler Technologies AG & Co. KG Gleitelement und Kufe für einen Schlitten oder Schlittschuh
IT202000003611A1 (it) 2020-02-21 2021-08-21 Getters Spa Leghe Fe-Mn-X-Y bioassorbibili pseudoelastiche per impianti medici
CN111778456B (zh) * 2020-08-04 2022-03-22 湖州慧金材料科技有限公司 一种注射成型材料g19、制备方法及其在适合穿戴设备制造方面的应用
CN112268794B (zh) * 2020-09-29 2021-08-31 中国科学院金属研究所 一种确定金属材料抗穿甲最佳微观组织状态的方法
US20230416887A1 (en) * 2022-06-22 2023-12-28 Garrett Transportation I Inc Stainless steel alloys, turbocharger components formed from the stainless steel alloys, and methods for manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088289A (ja) * 1996-09-12 1998-04-07 Hitachi Ltd 高耐食性高強度Cr−Mn系オーステナイト焼結鋼とその製造方法及びその用途
JPH1143748A (ja) * 1997-07-23 1999-02-16 Hitachi Ltd 高強度オーステナイト焼結鋼とその製造方法及びその用途
EP1234894A1 (en) * 2001-02-27 2002-08-28 Hitachi, Ltd. Corrosion resistant, high strength alloy and a method for manufacturing the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4999052A (en) * 1988-10-05 1991-03-12 United Kingdon Atomic Energy Authority Method of producing nitrogen-strengthened alloys
JP2843900B2 (ja) * 1995-07-07 1999-01-06 工業技術院長 酸化物粒子分散型金属系複合材料の製造方法
US5908486A (en) * 1996-04-26 1999-06-01 Lockheed Martin Idaho Technologies Company Strengthening of metallic alloys with nanometer-size oxide dispersions
US5841046A (en) * 1996-05-30 1998-11-24 Crucible Materials Corporation High strength, corrosion resistant austenitic stainless steel and consolidated article

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088289A (ja) * 1996-09-12 1998-04-07 Hitachi Ltd 高耐食性高強度Cr−Mn系オーステナイト焼結鋼とその製造方法及びその用途
JPH1143748A (ja) * 1997-07-23 1999-02-16 Hitachi Ltd 高強度オーステナイト焼結鋼とその製造方法及びその用途
EP1234894A1 (en) * 2001-02-27 2002-08-28 Hitachi, Ltd. Corrosion resistant, high strength alloy and a method for manufacturing the same

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HARUMATSU MIURA: "Mechanical alloying ni yori sakusei shita Kochiso Nano Kessho Austenite stainless-ko Funmatsu no Nekkan Koka Seikei Katei deno Chisso no Kyodo", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 15, no. 3, 2002, pages 454 - 457, XP002977418 *
HARUMATSU MIURA: "Mechanical Alloying ni Yotte sakusei shita Kochiso Stainless-ko Funmatsu no Austenite-ka to Koka seikei", CURRENT ADVANCES IN MATERIALS AND PROCESSES, vol. 13, no. 3, 2000, pages 362 - 363, XP002977419 *
HARUMATSU MIURA: "Preparation of nanocrystalline high-Nitrogen Stainless Steel Powders by Mechanical Alloying and Their HotCompaction", MATERIALS TRANSACTIONS, vol. 42, no. 11, 2001, pages 2368 - 2373, XP002977420 *
See also references of EP1555332A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017016367A1 (zh) * 2015-07-24 2017-02-02 先健科技(深圳)有限公司 铁基可吸收植入医疗器械与预制管及其制备方法
US10517991B2 (en) 2015-07-24 2019-12-31 Lifetech Scientific (Shenzhen) Inc Iron based and absorbable implanted medical device and prefabricated tube and preparation method therefor
CN105002440A (zh) * 2015-07-28 2015-10-28 兰州理工大学 纳米/微米晶复相高强高塑304不锈钢板材的制备方法
JP7199029B1 (ja) 2022-06-28 2023-01-05 株式会社寺方工作所 非磁性微細ステンレス鋼加工品及びその製造方法
WO2024004565A1 (ja) * 2022-06-28 2024-01-04 株式会社寺方工作所 非磁性微細ステンレス鋼加工品及びその製造方法
JP2024004424A (ja) * 2022-06-28 2024-01-16 株式会社寺方工作所 非磁性微細ステンレス鋼加工品及びその製造方法

Also Published As

Publication number Publication date
US20060193742A1 (en) 2006-08-31
EP1555332A1 (en) 2005-07-20
RU2005109148A (ru) 2006-02-20
RU2324757C2 (ru) 2008-05-20
EP1555332A4 (en) 2007-07-11
CN1685070A (zh) 2005-10-19
UA77107C2 (en) 2006-10-16
US7662207B2 (en) 2010-02-16
AU2003266649A1 (en) 2004-04-19

Similar Documents

Publication Publication Date Title
WO2004029312A1 (ja) 超硬質・強靭で優れた耐食性を有するナノ結晶オ−ステナイト鋼バルク材及びその製造方法
RU2324576C2 (ru) Нанокристаллический металлический материал с аустенитной структурой, обладающий высокой твердостью, прочностью и вязкостью, и способ его изготовления
JP2008208401A (ja) マルテンサイト系ナノ結晶合金鋼粉末及びそのバルク材並びにそれらの製造方法
Shashanka Synthesis of nano-structured stainless steel powder by mechanical alloying-an overview
JP4056468B2 (ja) 冷間加工用鋼材
JP4703005B2 (ja) スチール、該スチールの使用、該スチール製の製品および該スチールの製造方法
WO2003069004A1 (en) High chromium and carbide rich tool steel made by powder metallurgi and tool made of the steel
JP2004137600A (ja) 超硬質・強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材及びその製造方法
WO2005092543A1 (ja) 高硬度のナノ結晶白鋳鉄粉末及び高硬度・高強度で強靭なナノ結晶白鋳鉄バルク材並びにその製造方法
Xiong et al. Novel multi-metal stainless steel (316L)/high-modulus steel (Fe-TiB2) composite with enhanced specific modulus and strength using high-pressure torsion
Chen et al. Effect of annealing treatment on microstructures and properties of austenite-based Fe-28Mn-9Al-0.8 C lightweight steel with addition of Cu
JP2006274323A (ja) 高硬度で優れた耐食性を有するナノ結晶合金鋼粉末及び高強度・強靱で優れた耐食性を有するナノ結晶合金鋼バルク材並びにそれらの製造方法
Yirik et al. Microstructural and mechanical properties of hot Deformed AISI 4340 steel produced by powder metallurgy
KR20170030567A (ko) 내부식성 물체 및 그 제조 방법
JP2004137599A (ja) 超硬質・強靱で優れた耐食性を有するナノ結晶オーステナイト鋼バルク材及びその製造方法
WO2005092542A1 (ja) 高硬度の高炭素ナノ結晶鉄合金粉末及びバルク材並びにその製造方法
Sahu et al. A novel method for development of hard nano crystalline surface through SMAT and mechanical alloying
Oh et al. Microstructure and mechanical properties of highly alloyed FeCrMoVC steel fabricated by spark plasma sintering
JP2004143596A (ja) 高硬度・高強度で強靱なナノ結晶金属バルク材及びその製造方法
US20130195709A1 (en) Metal-base alloy product and methods for producing the same
Ebrahimian et al. Microstructure and mechanical properties of hot-pressed Ti–Co–Si compounds reinforced by intermetallic phases
Wang et al. Effect of heat treatment on microstructure and tensile property of 420 martensitic stainless steel produced by binder jetting additive manufacturing
CN114318131B (zh) 耐磨合金
Teker et al. Effect of TiBAl inoculation on abrasive wear resistance of high Cr white cast iron
Sorour et al. Densification and microstructure of Fe-Cr-Mo-BC alloy fabricated by spark plasma sintering

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003798524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038229099

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2005109148

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003798524

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006193742

Country of ref document: US

Ref document number: 10529418

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10529418

Country of ref document: US