Rotor für eine elektrische Maschine
TECHNISCHES GEBIET
Die vorliegende Erfindung betrifft einen Rotor für eine elektrische Maschine, bei welchem axiale Leiter der Rotor-Erregerwicklungen in axiale Nuten im Rotorkörper eingelegt und durch peripher angeordnete Mittel gegen die bei Betrieb auftretenden Kräfte gesichert sind.
STAND DER TECHNIK
Das rotierende Feld einer elektrischen Maschine wird üblicherweise von einem Rotor erzeugt, welcher über Nuten verfügt, in welche elektrische Leiter gelegt werden. Normalerweise wird dabei der Rotorkern aus Stahl gefertigt, während die Windungen aus Kupfer oder einem anderen elektrisch leitenden Material hergestellt sind. Das induzierende Feld wird dadurch erzeugt, dass diese Windungen von einem Gleichstrom durchflössen werden, welcher entweder separat erzeugt wird und den Leitern über Bürsten an der Rotorwelle zugeführt wird, oder welcher direkt auf der Welle erzeugt wird in einer so genannten bürstenlosen Erregung.
Infolge der hohen Zentrifugalkräfte welche beim Betrieb eines derartigen Rotors auftreten, ist es wichtig, die Leiter fest mit dem Rotorkern zu verkeilen. Auf der anderen Seite ist es wichtig, die bei Betrieb erzeugte Wärme effizient abzuführen, d. h. eine gute Kühlung der Leiter sicherzustellen.
Normalerweise wird dies dadurch erreicht, dass Nuten im Rotorkern vorgesehen werden, dass anschliessend mehrere Leiter in diese Nuten übereinander und gegebenenfalls auch nebeneinander eingelegt werden, und dann an der peripheren Seite die Nuten durch Keile abgeschlossen und die Leiter durch die Keile in den Nuten befestigt werden. Die Leiter sind dabei von einer Isolationsschicht umgeben. Alternativ ist es möglich, keine Keile vorzusehen, sondern vielmehr Ringe, welche den Rotor umlaufend
umgeben und die Leiter in den Nuten halten. Die Leiter werden mit anderen Worten durch die Keile oder die Ringe radial nach ihnen gedrückt und so die Zentrifugalkräfte aufgefangen.
Die Kühlung derartiger Anordnungen wird üblicherweise dadurch ermöglicht, dass entweder in den Leitern oder zwischen den Leitern Kühlkanäle vorgesehen werden, und indem Kühlgas oder ein anderes Kühlmedium bei Betrieb durch diese Hohlräume zirkuliert.
Derartige Rotorgeometrien werden zum Beispiel in der CH 638349 oder in der CH 649422 beschrieben.
Problematisch an derartigen Anordnungen sind die häufig auftretenden Windungskurz- schlüsse, welche dadurch zu Stande kommen, dass die zwischen den Leitern vorgesehene Isolation alert, abgerieben wird und dann durch die starken Zentrifugalkräfte beim Betrieb mechanisch so stark belastet werden, dass die Isolationswirkung nicht mehr gewährleistet ist.
DARSTELLUNG DER ERFINDUNG
Der Erfindung liegt demnach die Aufgabe zugrunde, einen konstruktiv einfachen, stabilen Rotor für eine elektrische Maschine zur Verfügung zu stellen, bei welchem axiale Leiter der Rotor-Erregerwicklungen in axiale Nuten im Rotorkörper eingelegt und durch peripher angeordnete Mittel gegen die bei Betrieb auftretenden Kräfte gesichert sind.
Die Lösung dieser Aufgabe wird dadurch erreicht, dass pro Nut ein einziger axialer Leiter angeordnet ist.
Der Kern der Erfindung besteht somit darin, nicht, wie im Stand der Technik üblich, pro Nut eine Vielzahl von übereinander geschichteten Leitern anzuordnen. Bei derartigen übereinander geschichteten Leitern ist die Zwischeπisolation beim Betrieb grossen Zentrifugalkräften ausgesetzt, was Anlass zu Windungskurzschlüssen zwischen den Leitern geben kann, wenn die Isolation zwischen den einzelnen Leitern durch grosse mechanische Belastung nicht mehr sicher gewährleistet ist. Die Anordnung von nur einem Leiter pro axialer Nut kann diese Probleme in konstruktiv einfacher Weise lösen.
Eine erste Ausführungsform der Erfindung zeichnet sich dadurch aus, dass der Leiter eine Breite aufweist, welche geringer ist als seine Höhe. Mit anderen Worten wird bevorzugt ein flacher Leiter hochkant in die Nut eingelegt. Dabei verhält sich die Breite zur Höhe des Leiters bevorzugt in einem Verhältnis von 1:1.5 bis 1:5, besonders bevorzugt in einem Verhältnis von 1:2 bis 1:4. Die Verwendung von derartig hochkant stehenden Leitern verhindert unter anderem die bei in den Nuten liegenden Leitern auftretenden Probleme der Verbiegung von Leitern unter der Einwirkung von Zentrifugalkräften. Flache, in den Nuten quer liegende Leiter (nach dem Stand der Technik) haben nämlich die Tendenz, sich unter den starken Zentrifugalkräften zu verbiegen und so den Raum zum Gastransport zu verringern oder Unwuchten zu erzeugen.
Gemäss einer anderen Ausführungsform der Erfindung sind die Mittel gegen die bei Betrieb auftretenden Kräfte als oben liegende Nutkeile oder als den Rotor umlaufende Ringe ausgebildet, wobei die Ringe bevorzugt aufgeschrumpfte ausgebildet sind. So können die Leiter einfach in die Nut eingelegt werden und anschliessend entweder die Nutkeile in axialer Richtung eingeschoben werden respektive die Ringe um den Rotor gelegt werden. Alternativ ist es auch möglich, direkt die einzelnen Leiter mit peripher angeordneten axialen Vorsprüngen (längs verlaufende Rippen oder Schultern) zu versehen, welche in korrespondierende Aussparungen (Längsnuten) in den axialen Nuten des Rotorkörpers eingeschoben werden können. So kann sogar auf separat ausgebildete Nutkeile verzichtet werden.
Die Isolation zwischen den Leitern und dem Rotorkörper kann dadurch gewährleistet werden, dass die Leiter mit einer isolierenden Schicht überzogen sind, oder dass die Innenseite der axialen Nut mit einer Isolation überzogen ist. Mit anderen Worten kann in der Nut eine Nutfüllage vorgesehen werden und/oder der Leiter mit einer isolierenden Beschichtung mit einer Dicke im bevorzugten Bereich von 0.7 mm versehen werden.
Gemäss einer weiteren Ausführungsform werden in vorteilhafter Weise zwischen Leiter und Seitenwänden der axialen Nut Kühlschlitze zur Zirkulation von Kühlmedium in axialer und/oder radialer Richtung vorgesehen, wobei die Kühlschlitze bevorzugt eine Breite im Bereich von 0.5 bis 1.5 cm aufweisen. Diese Kühlschlitze dienen sowohl der Abführung der bei Betrieb entstehenden Wärme, als auch der Isolation zwischen Leiter
und Rotorkörper. Die genannten Möglichkeiten der Isolation am Leiter oder im Nutgrund respektive an den Nutwänden können auch kombiniert mit den Kühlschlitzen verwendet werden.
Um die Kühlung beim Betrieb weiterhin zu verbessern, können die Leiter wenigstens einen axial verlaufenden Kühlkanal aufweisen, wobei der Kühlkanal bevorzugt eine Breite aufweist, welche geringer ist als seine Höhe. Die gesamte Querschnittsfläche der axialen Kühlkanäle in einer Nut machen dabei wenigstens 80 Prozent der leitenden Querschnittsfläche des Leiters aus. Der Abstand zwischen der Seitenwand der axialen Nut und der Seitenfläche des Leiters sollte jeweils wenigstens 3 mm betragen.
Der Leiter besteht aus Aluminium oder Kupfer oder einer wenigstens eines dieser Metalle enthaltenden Legierung. Die Nutkeile werden bevorzugt aus Bronze oder unmagnetischen Stahl gefertigt. Weiterhin ist es möglich, dass in den Nuten zusätzlich Dämpferwicklungen angeordnet sind.
Weitere bevorzugte Ausführungsformen der vorliegenden Erfindung sind in den abhängigen Ansprüchen beschrieben.
KURZE ERLÄUTERUNG DER FIGUREN
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen im Zusammenhang mit den Zeichnungen näher erläutert werden. Es zeigen:
Fig. 1 einen axialen Teilschnitt durch einen Rotor mit Leitern mit Kühlkanälen; und
Fig. 2 einen axialen Teilschnitt durch einen Rotor mit Leitern ohne Kühlkanäle.
WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
Fig. 1 zeigt ein erstes Ausführungsbeispiel der vorliegenden Erfindung. Der axiale Teilschnitt umfasst den peripheren Bereich eines Rotors 1. Der Ausschnitt zeigt dabei einen Teil eines Polbereichs 2, sowie einen Bereich der Aussparung, in welchem die Leiter 3 der Feldwicklungen angeordnet sind. Der Rotor 1 verfügt dazu über axiale Nuten 6, in welche die Leiter 3 eingelegt werden. Zur besseren Darstellung ist dabei eine der Nuten
6 ohne Leiter abgebildet. Die axialen Nuten 6 haben in diesem Fall eine Tiefe H2 von ca. 15 cm, am Nutgrund, das heisst auf der radial inneren Seite haben die Nuten 6 eine Breite B2 im Bereich von 4 cm, während sie am peripheren Ende infolge einer leicht trapezoidalen Formgebung eine Breite B3 im Bereich von 5 cm aufweisen.
Im peripheren, d. h. äusseren Bereich verfügen die axialen Nuten 6 über axiale Keilnuten 12. Diese dienen der Befestigung der Nutkeile (siehe weiter unten). Die axialen Nuten 6 werden, zusammen mit den Keilnuten 12 aus einem geschmiedeten Rotorkern herausgefräst. Der Rotorkern ist dabei üblicherweise aus Stahl gefertigt. In die Nut 6 kann eine so genannte Nutfüllage z. B. aus Polyamid mit einer Dicke im Bereich von 0.7 mm eingelegt werden, um eine Isolation zu den zwischen den Nuten 6 angeordneten Rotorzähnen 9 zu gewährleisten. Beispielsweise kann eine Folie aus Nomex (DuPont) eingelegt werden.
In die axialen Nuten 6 wird zunächst ein Distanzhalter 10 auf den Nutboden aufgelegt. Der Distanzhalter 10 ist typischerweise aus einem isolierenden Material gefertigt und kann gegebenenfalls, wie in Fig. 1 dargestellt, über einen Vorsprung verfügen, welcher im Zusammenspiel mit einer Kerbe im Leiter 3, eine stabile Positionierung des Leiters 3 in der Nut 6 gewährleistet. Anschliessend wird in die Nut 6 ein Leiter 3 eingelegt. Dieser Leiter 3 hat in diesem Fall eine Höhe Hl im Bereich von ca. 12 cm, und an seinem unteren Ende eine Breite Bl im Bereich von 3 cm. Auch der Leiter 3 kann leicht trape- zoidal gestaltet sein, d. h. an seinem peripheren Ende eine grössere Breite aufweisen. Der Leiter weist eine massive Querschnittsfläche FI im Bereich von 5 bis 50 cm2 auf. Zwischen dem Leiter 3 und den Seitenwänden der axialen Nut 6 verbleiben Spalte, so genannte axiale Kühlschlitze 5. Im Querschnitt betrachtet weisen diese Kühlschlitze 5 in einer Nut eine Fläche F3 auf. In seinem Zentrum weist der Leiter 3 einen axialen Kühlkanal 4 auf. Dieser Kühlkanal 4 verfügt über eine Querschnittsfläche F2. Im zentralen Kühlkanal 4 sowie in den seitlichen Kühlschlitzen 5 strömt ein Kühlmedium, z. B. eine Kühlflüssigkeit oder ein Gas wie z. B. Luft oder Wasserstoff, in axialer Richtung, optional können zusätzlich Kanäle vorgesehen werden, welche an bestimmten Stellen ein Strömen in radialer Richtung erlauben (z. B. radiale Löcher in den Nutkeilen 7). Um eine genügende Kühlung der Leiter 3 gewährleisten zu können, sollte bevorzugtermas-
sen die gesamte dem Kühlmittel zur Verfügung stehende Querschnittsfläche F2+F3 wenigstens 80 Prozent der massiven Querschnittsfläche FI des Leiters 3 ausmachen.
Die seitlichen Kühlschlitze 5 übernehmen gleichzeitig auch noch eine isoHerende Funktion. Entsprechend kann der Leiter 3 mit einer isolierenden Beschichtung überzogen sein. Während eine derartige Beschichtung bei konventioneller Bauweise durch die Berührung der einzelnen Leiter zwingend notwendig ist, kann hier auf eine Beschichtung verzichtet werden, da die Isolation zu den Rotorzähnen 9 durch den Luftspalt 5 gewährleistet wird. Der Abstand zwischen dem Leiter 3 und der Wand der Nut 6 sollte wenigstens 3 bis 4 Millimeter betragen, um einerseits eine gute Kühlung zu erlauben und andererseits die Isolation gewährleisten zu können.
Die Leiter 3 werden aus Kupfer oder Aluminium gefertigt, oder aus Legierungen, welche wenigstens eines dieser Metalle enthalten.
Nachdem der Leiter 3 in die Nut 6 eingelegt ist, wird zunächst ein Distanzhalter 8 auf die Leiter aufgelegt, wobei auch dieser Distanzhalter 8 aus einem isolierenden Material gefertigt ist und über eine Ausbuchtung 14 verfügen kann, welche den Leiter 3, im Zusammenspiel mit einer korrespondierenden Kerbe im Leiter 3, in seiner Positionierung stabilisiert. Anschliessend wird aus axialer Richtung der Nutkeil 7 derart eingeschoben, dass die Keilvorsprünge 13 in die seitlichen Keilnuten 12 eingreifen. Die Nufkeile 7 können sich dabei über die gesamte Länge des axialen Abschnitts der Leiter 3 erstrecken. Es ist aber auch möglich, aneinander grenzende oder leicht voneinander beab- standete Nu keil-Abschnitte zu verwenden. Die periphere Aussenfläche der Nutkeile 7 schliesst bündig mit der Oberfläche des Polbereichs 2 ab.
Die Nutkeile 7 werden aus Bronze oder Stahl (unmagnetisch) gefertigt. Es ist auch möglich, den Distanzhalter 8 und den Nutkeil 7 einstückig auszubilden. Nachdem die Nutkeile 7 eingeschoben wurden, können die Leiter 3 über zusätzliche, vom axialen Ende her am Nutboden eingeschobene Keile oder über eine federnde Vorspannung stabilisiert werden.
Fig. 2 zeigt ein weiteres Ausführungsbeispiel, bei welchem die Leiter 3 nicht über einen zentralen Kühlkanal 4 verfügen, sondern zur Kühlung nur seitlich der Leiter 3 Kühl-
schlitze 5 angeordnet sind. Ausserdem sind die Leiter 3 nicht durch Nutkeile 7 in der Nut 6 fixiert, sondern es befinden sich zunächst Distanzhalter 8 (es kann sich dabei auch oder zusätzlich um Dämpferwicklungen handeln) auf den Leitern 3, wobei die Distanzhalter 8 bündig mit der Oberfläche des Polbereichs 2 abschliessen. Nach dem Einlegen der Leiter 3 wird zu deren Fixierungen in den Nuten 6 entlang des Rotors 1 eine Mehrzahl von Ringen 11 um den Rotor 1 umlaufend angebracht. Diese Ringe 11 werden verspannt und fixieren so die Leiter 3 in den Nuten 6.
Bei beiden Ausführungsbeispielen verfügen die Leiter 3 über ein flaches Profil (die Breite Bl ist wesentlich kleiner als die Höhe Hl), und dieses flache Profil steht hochkant in den Nuten 6. So ist der Leiter maximal stabil in Bezug auf Zentrifugalkräfte. Die Leiter werden an den Polenden in konventioneller Weise zu Windungen verbunden, respektive mit einer Gleichstromversorgung zur Erzeugung des Erregerfeldes verbunden. Der Gleichstrom kann dabei entweder über Bürsten zugeführt werden, oder direkt auf dem Schaft erzeugt werden.
Die vorgeschlagene Bauweise eines Rotors eignet sich unter anderem auch für die Verwendung im Zusammenhang mit supraleitenden Rotoren.
BEZUGSZEICHENLISTE
1 Rotor
2 Polbereich
3 Leiter
4 axialer Kühlkanal
5 axiale Kühlschlitze
6 axiale Nut
7 Nutkeil
8 Distanzhalter
9 Rotorzähne
10 Distanzhalter auf Nutboden
11 Ring
12 Keilnut
13 Keil vorsprang
14 Ausbuchtung
B 1 Breite des Leiters
B2 Breite der axialen Nut am Nutboden
B3 Breite der axialen Nut am Rotorumfang
Hl Höhe des Leiters
H2 Tiefe der Nut
FI Querschnittsfläche des Leiters
F2 Querschnittsfläche des zentralen Kühlkanales
F3 Querschnittsfläche der seitlichen Kühlkanäle