WO2004003652A1 - 反射型可変光偏向器及びそれを用いた光デバイス - Google Patents
反射型可変光偏向器及びそれを用いた光デバイス Download PDFInfo
- Publication number
- WO2004003652A1 WO2004003652A1 PCT/JP2002/006583 JP0206583W WO2004003652A1 WO 2004003652 A1 WO2004003652 A1 WO 2004003652A1 JP 0206583 W JP0206583 W JP 0206583W WO 2004003652 A1 WO2004003652 A1 WO 2004003652A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- optical
- light
- input
- variable
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
- G02F1/31—Digital deflection, i.e. optical switching
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/29—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/354—Switching arrangements, i.e. number of input/output ports and interconnection types
- G02B6/3544—2D constellations, i.e. with switching elements and switched beams located in a plane
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/35—Optical coupling means having switching means
- G02B6/3594—Characterised by additional functional means, e.g. means for variably attenuating or branching or means for switching differently polarized beams
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/17—Multi-pass arrangements, i.e. arrangements to pass light a plurality of times through the same element, e.g. by using an enhancement cavity
Definitions
- the present invention relates to a reflection type variable light deflector using an element having an electro-optic effect (Pockels effect) and an optical device such as a variable optical attenuator or an optical switch using the same.
- an electro-optic effect Pockels effect
- an optical device such as a variable optical attenuator or an optical switch using the same.
- the response speed is at most several hundred s (microseconds).
- the Z-drop of the signal wavelength is dynamically performed in a WDM system, the required There was a problem that it could not keep up with the faster response that would be required.
- the present invention has been made in view of such a problem, and utilizes a variable optical deflector of a reflection type to provide a variable optical attenuator having a high response speed and a small insertion loss and a small polarization-dependent loss.
- the purpose is to realize a small optical device such as an optical switch.
- variable optical deflector itself is, for example, a laser printer, as disclosed in Japanese Patent Application Laid-Open No. H10-30773 / Japanese Patent Application Laid-Open No. H10-288798. It is known to be used for some scanners such as laser scanning microscopes and bar code readers, but is not suitable for application to WDM transmission equipment.
- a reflection-type variable optical deflector includes a variable light deflection element that transmits input light and changes an output angle of the transmitted light according to an external input signal. It is characterized by having a reflecting element for reflecting the transmitted light of the variable light deflecting element.
- the present reflection-type variable optical deflector includes a condensing means for condensing input collimated light and entering the variable light deflector, and an output collimator for receiving and collimating the reflected light from the reflective element. May be further provided.
- variable light deflecting element is a refractive index variable element whose refractive index changes in accordance with the external input signal and has a wedge shape in a plane where the input light travels.
- variable refractive index element is preferably an electro-optical element, as its electro-optical element, and more is PLZT ⁇ (Pb, La) ( Zr, Ti) 0 3 ⁇ that is configured with a crystal preferable.
- the reflection element is a reflection plate or a reflection film provided on an output surface of the variable light deflection element.
- variable light deflecting element that transmits the light condensed by the input condensing means and changes the output angle of the transmitted light according to an external input signal; and a transmitted light of the variable light deflecting element.
- a reflective variable optical deflector comprising a reflecting element for reflecting light
- the present optical device changes the output angle of the transmitted light by changing the external input signal to change the amount of light collected from the output condensing means to the core of the output optical fiber. Then, it can be used as a variable optical attenuator for changing the optical output intensity of the output optical fiber, and if the light from the output condensing means is condensed other than the core of the output optical fiber, It can be used as an optical shutter that shuts down the optical output of the output optical fiber.
- the input optical fiber and the output optical fiber are fixed integrally by a two-core ferrule, and the input collimator and the input collimator are fixed together.
- the output condensing means can be shared by a single lens. Further, the above-mentioned input light condensing means and output collimator can be shared by a single lens.
- each of the above input optical fibers and output optical fibers is n pieces (where n is 2 or more).
- (2 x n) optical fibers are fixed together by a (2 x n) core ferrule, and the light emitted from the 11 input optical fibers is collimated. It is possible to use a single lens as both the input collimator and the output condensing means for condensing the n collimated lights emitted from the output collimator on the n output optical fibers, respectively. .
- variable light deflecting element that transmits the light condensed by the input condensing means and changes the output angle of the transmitted light according to an external input signal; and a transmitted light of the variable light deflecting element.
- a reflective variable optical deflector comprising a reflecting element for reflecting light
- n pieces (n is 2 or more) provided such that the cores are respectively located at a plurality of light collecting positions of the output light collecting means according to the output angle of the transmitted light in the above-mentioned reflective variable light deflector.
- the light from the output condensing means is condensed on one of the cores of the n output optical fibers. It is characterized by being used as an n optical switch.
- the above-mentioned reflective variable optical deflector is configured to reflect incident light
- the above-mentioned input optical fiber and n output optical fibers are integrated by a multi-core ferrule.
- the input collimator and the output concentrator can be shared by a single lens, and the input collimator and the output collimator can be shared by a single lens. Can be.
- this ⁇ ⁇ optical switch continuously changes the external input signal. Accordingly, a variable light attenuating function for changing the amount of light condensed on the core of one output optical fiber to vary the light output intensity of the output optical fiber may be further provided.
- a variable optical attenuation signal source that generates the above-mentioned external input signal that continuously changes to drive the variable optical attenuation function, and a switching signal source that generates the external input signal having the predetermined value It is preferable to provide
- variable light deflecting element that transmits the light condensed by the input condensing means and changes the output angle of the transmitted light according to an external input signal; and N reflective variable optical deflectors each including a reflective element for reflecting transmitted light;
- m pieces (m is an integer of 1 or more) provided such that the core is located at one or more light collection positions of the output light condensing means according to the output angle of the transmitted light in the reflection type variable optical deflector.
- the output condensing means for any one of the n input optical fibers is provided on the core of the output optical fiber. It is characterized by being used as an n Xm optical switch for condensing light.
- the optical path changing means for changing the optical path between the input optical fiber and the output optical fiber according to the arrangement relationship between the input optical fiber and the output optical fiber.
- the above-mentioned reflective variable optical deflector is configured to reflect incident light
- the above-mentioned input optical fiber and n output optical fibers are integrally fixed by a multi-core ferrule.
- the input collimator and the output condensing means can be shared by a single lens, and the input collimating means and the output collimator can be shared by a single lens.
- FIG. 1 is a schematic perspective view showing a configuration of a reflective variable optical deflector as one embodiment of the present invention, together with an optical path.
- FIG. 2 is a schematic side view of the reflective variable optical deflector shown in FIG.
- FIG. 3 is a schematic plan view when the reflective variable optical deflector shown in FIG. 1 is viewed from the direction of arrow B.
- FIG. 4 is a diagram showing the relationship between the applied voltage (V) and the deflection angle (degree) according to the present embodiment.
- FIG. 5 is a schematic perspective view showing the configuration of a variable optical attenuator as an optical device using the variable optical deflector of the present embodiment, together with an optical path.
- FIG. 6 is a schematic side view of the variable optical attenuator shown in FIG.
- FIG. 7 is a schematic plan view when the variable optical attenuator shown in FIG. 5 is viewed from the direction of arrow B.
- FIG. 8 is a diagram illustrating a characteristic example (attenuation amount with respect to an applied voltage) of the variable optical attenuator illustrated in FIGS.
- FIGS. 9 and 10 are schematic perspective views showing modified examples of the variable optical attenuator shown in FIGS.
- FIG. 11 is a schematic side view for explaining the optical path (outgoing path) of the variable optical attenuator shown in FIG.
- FIG. 12 is a schematic side view for explaining the optical path (return path) of the variable optical attenuator shown in FIG.
- FIG. 13 is a block diagram showing a configuration for realizing an optical shirt as an optical device using the variable optical deflector of the present embodiment.
- FIG. 14 is a schematic perspective view showing the configuration of a 1 ⁇ 2 optical switch as an optical device using the variable optical deflector shown in FIGS.
- FIG. 15 is a block diagram showing a configuration in a case where the optical switch shown in FIG. 14 has a variable optical attenuation function.
- FIG. 16 is a schematic perspective view showing a modification of the optical switch shown in FIG.
- FIG. 17 is a schematic side view of the optical switch shown in FIG. 16 viewed from the direction of arrow A to explain the optical path of the optical switch shown in FIG.
- FIG. 18 is a schematic perspective view showing the configuration of a 2 ⁇ 2 optical switch as an optical device using the variable optical deflector shown in FIGS.
- FIG. 19 is a schematic side view of the optical switch shown in FIG. 18 viewed from the direction of arrow A to explain the optical path (outward path) of the optical switch shown in FIG.
- FIG. 20 is a schematic side view of light-shown in FIG. 18 viewed from the direction of arrow A for explaining the optical path (return path) of the optical switch shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
- FIG. 1 is a schematic perspective view showing the configuration of a reflective variable optical deflector according to an embodiment of the present invention, together with an optical path.
- FIG. 2 is a view of the same reflective variable optical deflector viewed from the direction of arrow A in FIG.
- FIG. 3 is a schematic plan view of the same reflective variable optical deflector as viewed from the direction of the arrow in FIG.
- the reflective variable optical deflector of the present embodiment includes, for example, cylindrical lenses 2 a and 2 b, electrodes 31, 32, and an electro-optical element 33.
- the variable light deflecting element 3 includes a variable light deflecting element 3 and a reflecting element 4 provided on a surface (output surface) opposite to the light incident surface of the variable light deflecting element 3.
- an element composed of the variable light deflection element 3 and the reflection element 4 is referred to as a reflection type variable light deflection element 34.
- FIG. 2 for example, as shown in FIG.
- the first lens which is a cylindrical lens (input light condensing means) 2a, is arranged in one direction (variable light deflection) of the light beam plane of the incident light (collimated light). (In the thickness direction of the element), and is arranged such that the focal position is located at the reflective element 4.
- variable light deflecting element 3 has a wedge shape (trapezoidal shape) on a plane where the input light travels (XY plane in FIG. 1).
- the variable light deflecting element 3 By transmitting the condensed input light and changing the refractive index of the electro-optical element (refractive index changing element) 33 according to the applied voltage (external input signal) to the electrodes 31 and 32, The output angle of the transmitted light changes (that is, the reflection angle of the reflected light at the reflection element 4 changes).
- the cylindrical lens 2b which is the second lens, functions as an output collimator for collimating the light reflected by the reflection element 4, and responds to the above-mentioned angle change in the X-axis direction shown in FIG. It has a width (X-axis direction) enough to receive light emitted in the range.
- the above-mentioned electro-optical element 33 is arranged so that its trapezoid surface is parallel to the XY plane in FIG. 1, and voltage is applied in the Z direction in FIG. 1. Electrodes 31 and 32 having the same trapezoidal shape as the electro-optical element 33 are arranged on both sides (Z direction).
- the electro-optical element 33 for example, a PLZT ⁇ (Pb, La) (Zr, Ti) O 3 ⁇ crystal is used, but a compound semiconductor such as a LiNbO 3 crystal or GaAs, InP having the same electro-optical effect, A polymer having an effect (for example, an epoxy-based EO polymer) or the like can also be applied.
- the distance between the electrodes 31 and 32 can be reduced to about 10 to 30 m, A voltage can be effectively applied to the electro-optical element 33.
- the reflecting element 4 may be a flat reflecting plate 34 joined to a surface 33b opposite to the 33a incident surface of the variable light deflecting element 3, or a film is formed on the surface 33b. A reflective film may be used.
- the electrodes 31 and 32 are formed in a wedge shape (trapezoidal shape) or a triangular shape, the refractive index of the electro-optical element 33 in that portion is changed according to the applied voltage, and the output of transmitted light is changed. Since the angle (reflected light angle) can be changed, the shape of the electro-optical element 33 itself may not be the same as the electrodes 31 and 32, and may be, for example, a rectangle. Also, the electrodes 3 1 and 3 2 are always in contact with the reflective element 4 No need. Furthermore, since the light input / output surface of the variable light deflecting element 3 does not require a special light wavefront shaping inlet, it may have a simple shape that is linearly cut out or polished.
- variable optical deflector (hereinafter, may be simply referred to as “variable optical deflector”) of the present embodiment configured as described above will be described.
- variable light deflecting element 3 when viewed from the direction of arrow A in FIG. 1 (FIG. 2), since the variable light deflecting element 3 is a parallel plate, the light beam direction does not change due to the change in the refractive index resulting from the voltage application. However, when viewed from the direction of arrow B in FIG. 1 (FIG. 3), since the variable light deflecting element 3 has a trapezoidal shape in the XY plane, the change in the refractive index resulting from the voltage application causes the light beam direction ( The light path from the reflecting element 4 to the cylindrical lens 2b) changes.
- Fig. 4 shows the relationship between the applied voltage (V) and the deflection angle (degree). As shown in FIG. 4, an angle change of about 0.75 ° is obtained with respect to a change in the applied voltage of 0 to 8 V. However, the taper angle ⁇ (see FIG. 3) of the trapezoidal variable optical deflection element 3 in the present embodiment is set to 70 °.
- the element whose refractive index changes by heat, the element whose refractive index changes by magnetism, the element whose refractive index changes by magnetism, and the element whose refractive index changes by applying stress in addition to the electro-optical element 33 as described above.
- the electro-optical element 33 when applied to a WDM transmission device that performs high-speed transmission with a large number of wavelength multiplexes, it is not suitable for high-speed response and size.
- variable optical deflector (reflection type variable optical deflector 34)
- Fig. 5 is a schematic perspective view showing the configuration of a variable optical attenuator as an optical device using the above-described variable optical deflector, together with the optical path.
- Fig. 6 shows this variable optical attenuator in the direction of arrow ⁇ in Fig. 5.
- 7 is a schematic plan view of the same variable optical attenuator as viewed from the direction of arrow B in FIG. 5, as shown in FIGS. 5 to 7.
- the variable optical attenuator in the form includes an input optical fiber 4a, an output optical fiber 4b, an input collimating lens (spherical or aspherical lens) la, and an output collimating lens in addition to the configuration described above with reference to FIGS. (Spherical or aspherical lens) 1 b is further provided.
- an input collimating lens (input collimating lens) 1a which is a third lens, is for collimating the light emitted from the input optical fiber 4a, and the collimated light is transmitted to the cylindrical lens 2a. It has to be entered.
- An output collimating lens (output condensing means) la which is the fourth lens, condenses the light (reflected light by the reflection element 4) emitted from the cylindrical lens 2b and outputs light from the core of the output light fiber 4b. This is for condensing the light.
- an aspheric lens having a refractive index of 1.87 and a focal length (f) of 4.0 mm was used as the collimating lens 1 a (lb), and the cylindrical lens 2 a (2 b ), A lens having a refractive index of 1.87 and a focal length (f) of 1.8 mm is used.
- the light emitted from the input optical fiber 4a is collimated by an input collimating lens 1a, which is a third lens, and is incident on a first lens (cylindrical lens) 2a. Only one direction (Z-axis direction in FIG. 5) of the light wavefront of the input collimated light is condensed by the cylindrical lens 2a, passes through the variable light deflection element 3 (electro-optical element 33), and is reflected by the reflecting element 4 Is reflected by
- the light reflected by the reflecting element 4 is collimated by a second lens (cylindrical lens) 2b having the same properties as the input side cylindrical lens 2a, and then has the same properties as the input collimating lens 1a.
- the light is focused on the core of the output fiber 4b through the fourth lens (collimating lens) 1b.
- the positions of the collimating lens 1 b and the output optical fiber 4 b are adjusted so that the light is coupled with the highest efficiency when no voltage is applied to the variable optical deflection element 3 (electrodes 31, 32),
- the voltage changes the output angle of the transmitted light in the variable optical coupling element 3 Since the angles of incidence on the cylindrical lens 2b and the collimating lens 1b change, the light beam is focused at a position different from the center of the core of the output optical fiber 4b, and the efficiency of light coupling to the output optical fiber 4b decreases. Will be.
- Fig. 8 shows an example of the characteristics of this variable optical attenuator (attenuation with respect to applied voltage). As shown in FIG. 8, in the present variable optical attenuator, an attenuation of 50 dB or more can be obtained for a change in the applied voltage of 0 to 8 V.
- the design is such that the optical coupling efficiency to the output optical fiber 4b is maximized when no voltage is applied, so that the attenuation increases as the applied voltage increases. Conversely, if the design is such that the optical coupling efficiency to the output optical fiber 4b is maximized when the maximum voltage is applied, the attenuation will be maximum when no voltage is applied, and the attenuation will decrease as the applied voltage increases. Become.
- variable light deflecting element 34 since the variable light deflecting element 34 has a structure in which the reflecting element 4 reflects the light transmitted through the electro-optical element 33, the variable light deflecting element 34 and the light emitting surface of the input optical fiber 4a are The plane of incidence of light on the output optical fiber 4b can be located on the same plane.
- the input optical fiber 4a and the output optical fiber 4b can be installed on a two-core ferrule and fixed integrally.
- the collimator provided separately for the optical path (input optical path; forward path) from the input optical fiber 4a to the reflective element 4 and the optical path (output optical path; return path) from the reflective element 4 to the output optical fiber 4b.
- One lens la and lb (input collimator and output condensing means) are shared (shared) by a single collimating lens 1, and similarly, the above-mentioned cylindrical lenses 2a and 2b (input condensing means and output collimator) ) Can be shared (shared) by a single cylindrical lens 2.
- the size can be significantly reduced as compared with the case where the lenses are provided separately for the input optical path and the output optical path.
- the collimating lenses la and 1b and the cylindrical lenses 2a and 2b Such sharing can also be performed.
- a triple variable optical attenuator can be constructed by arranging the reflective variable optical deflectors 34-1, 34-2, and 34-3 in three stages.
- the collimating lens 1 has a refractive index of 1.87 and a focal length of ( ⁇ ) uses an aspheric lens of 4.0 mm, and the cylindrical lens 2 uses a lens with a refractive index of 1.87 and a focal length of 1.8 mm, and the center of the collimating lens 1 is used.
- the distance between each of the reflective variable light deflectors 34-1 to 34-3 and each of the reflective elements 4 is 4 mm
- the distance between the center of the cylindrical lens 2 and the reflective element 4 is 1.8 mm
- the thickness of the cylindrical lens 2 (Y-axis direction in Fig. 10) is about 1.6 mm, and the variable light deflection element 34- ;!
- the depth of 3-4-3 (Y-axis direction in Fig. 10) is set to 0.5 mm.
- the optical path in this case is as shown in FIGS. 11 and 12. That is, as shown in FIG. 11, the light emitted from the input optical fiber 4a-1 located at the uppermost stage of the 6-core ferrule 42 is collimated by the collimating lens 1, and then is collimated by the cylindrical lens 2. The light is condensed and diffracted downward (in the direction of the arrow B in FIG. 10), and is incident from the upper part of the cylindrical lens 2 to the reflective variable light deflector 3411 located at the lowermost stage.
- the light emitted from the input fiber 4a-3 located at the bottom of the 6-core ferrule 42 is collimated by the collimating lens 1 and then collected by the cylindrical lens 2.
- the light is diffracted upward (in the direction opposite to the arrow B in FIG. 10), and is incident from the lower part of the cylindrical lens 2 to the reflective variable light deflector 34 located at the uppermost stage.
- the light emitted from the input optical fiber 4a-2 located at the middle stage of the six-core ferrule 42 passes through the central part of the collimating lens 1 and the cylindrical lens 2 and the reflective variable optical deflector 34 at the middle stage. — Injects into 2. Then, as shown in FIG.
- the light reflected by the reflective element 4 of the reflective variable light deflector 34-1 located at the lowermost stage enters the lower part of the cylindrical lens 2 and is collimated there. At the same time, the light is diffracted upward and is incident on the collimating lens 1, and is condensed from the collimating lens 1 to the core of the output optical fiber 4 b-1 located at the uppermost stage of the six-core ferrule 42.
- the light reflected by the reflective element 4 of the reflective variable optical deflector 34-3 located at the top is incident on the upper part of the cylindrical lens 2, where it is collimated and diffracted downward and collimated.
- the light enters the lens 1 and is focused from the collimating lens 1 to the core of the output optical fiber 4 b-3 located at the bottom of the 6-core ferrule 4 2.
- the light reflected by the reflective element 4 of the reflective variable optical deflector 34-2 located at the middle stage passes through the central part of the cylindrical lens 2 and the collimating lens 1, and passes through the 6-core ferrule 4 2 The light is focused on the core of the output optical fiber 4 b-2 located in the middle stage.
- Various variable light attenuation functions can be normally realized. Therefore, the size of the optical device (variable optical attenuator) can be further reduced.
- the output optical fiber 4b By changing the voltage applied to the electrodes 31 and 32, the output angle of the transmitted light (reflected light) of the variable optical deflection element 3 is changed, and the output optical fiber 4b (4b-l By focusing the light from the collimating lens 1b (1) in addition to the core of ⁇ 4b-3), the optical output of the output optical fiber 4b (4b-3:! ⁇ 4b-3) can be shut down. You can.
- FIG. 14 is a schematic perspective view showing the configuration of a 1 ⁇ 2 optical switch as an optical device using the variable optical deflector described above with reference to FIGS. 1 to 3 together with the optical path.
- Lenses 1a and 1b, cylindrical lenses 2a and 2b, and a reflective variable light deflector 34 comprising a variable light deflector 3 and a reflector 4 similar to those described above with reference to FIGS. It is configured.
- the output optical fibers 4 b-1 and 4 b-2 are integrally fixed adjacent to each other by a two-core ferrule 41, and the transmitted light (reflected light) of the reflective variable optical deflector 34 is
- the cores are arranged so as to be respectively located at a plurality of light condensing positions of the collimating lens 1b according to the output angle.
- an aspheric lens having a refractive index of 1.87 and a focal length (f) of 4.0 mm is used for the collimating lenses la and 1b, and the cylindrical lenses 2a and 2b are refractive. It has a rate of 1.87 and a focal length of 1.8 mm.
- the output voltage of the variable optical deflecting element 3 is switched to a predetermined value and the output angle of the transmitted light (reflected light) is changed to change the output optical fiber 4 b— 1, 4 b.
- the light from the collimating lens 1b can be collected (switched) to one of the b-2 cores.
- a deflection angle of about 1.8 ° can be obtained by changing the applied voltage of 20 V (see FIG. 4). Therefore, under the above arrangement conditions, the condensing position of the collimating lens 1 b Is shifted about 125 jLtm in the X-axis direction in Fig. 14. Therefore, if the distance between the output optical fibers 4b-1, 4b-2 is set to 125 m or less, switching between the output optical fibers 4b-1, 4b-2 becomes possible.
- each output optical fiber is configured so that light emitted from the collimator lens 1b when no voltage is applied is focused on the core of one of the output optical fibers 4b-1 (or 4b-2). 4b-1 and 4b-2 are placed, and the voltage (20 V) is applied to the other output optical fiber 4b-2 (or 4b-1) from the collimating lens 1b to the core. This allows the emitted light to be collected.
- a variable optical attenuation function can be provided.
- a voltage source (variable light attenuating signal source) 9 that generates an applied voltage that changes periodically may be provided separately, or the switching function and the variable attenuating function described above may be provided by a voltage source that combines these functions. It may be realized.
- the ⁇ ⁇ optical switch can be realized in the same manner as described above.
- the input optical fiber 4a and the output optical fibers 4b-1 and 4b-2 are connected to a multi-core ferrule having three or more cores.
- the collimating lenses 1a and 1b can be shared by a single collimating lens 1, and the cylindrical lenses 2a and 2b can be shared by a single cylindrical lens 2. .
- FIG. 17 shows the arrangement and optical path of each element of the optical switch in this case.
- FIG. 17 is a schematic plan view of the optical switch shown in FIG. 16 as viewed from the direction of arrow B.
- FIG. 18 is a schematic perspective view showing the configuration of a 2 ⁇ 2 optical switch as an optical device using the variable optical deflector described above with reference to FIGS. 1 to 3 together with the optical path.
- the input optical fibers 4a-1 and 4a-2 are adjacent in the Z-axis direction in Fig. 18 and the output optical fibers 4bl and 4b-2 are in the X-axis direction in Fig. 18.
- Next to each other It is fixed by a 4-core ferrule 4 4.
- the four-core ferrule 44 is output to the focusing position of the collimating lens 1 according to the output angle of the transmitted light (reflected light) at the reflective variable light deflectors 34-1 and 34-2, respectively.
- the optical fibers 4b-1 and 4b-2 are arranged so that their cores are located.
- the above-mentioned prism (optical path changing means) 5 is arranged such that the input optical fibers 4a-1 and 4a-2 and the output optical fibers 4b-1 and 4b-2 correspond to the input optical fibers 4a-1 and 4b-2. -1, 4 a-2 to change the optical path between the output optical fibers 4 b-1, 4 b-2.
- the shape and shape of the two collimated light beams are parallel so that they are parallel in the YZ plane in Fig. 18.
- the dimensions and layout are set.
- FIG. 20 is a schematic side view of the 2 ⁇ 2 optical switch shown in FIG. 18 when viewed from the direction of arrow A in FIG.
- the collimating lens 1 has a collimating lens 1a and an input optical path (outward path) and an output optical path (return path) for miniaturization, as in the optical devices shown in FIGS. 9, 10 and 16. 1b is also used, and the cylindrical lens 2 is also equivalent to the one using both the cylindrical lenses 2a and 2b for the input optical path and the output optical path for miniaturization. Each lens may be individually arranged for the output optical path.
- the light wavefronts of these two collimated lights are condensed by the cylindrical lens 2 only in the Z-axis direction, respectively, and the reflection type variable light deflector 34-1, in which the reflection element 4 is provided at the focal position, is provided. It is incident on 3 4—2. Then, the two lights reflected by the reflective variable light deflectors 34-1 and 34-2 become collimated light by the cylindrical lens 2 and enter the prism 5 as shown in FIG. I do.
- the two collimated lights have the traveling directions parallel to each other on the YZ plane. And enters the collimating lens 1 as parallel light. Therefore, each collimated light is condensed by the collimating lens 1 at the same position in the Z direction in FIG.
- the traveling angle of light in the XY plane in FIG. 18 changes. 18 will be shifted parallel to the X axis. Accordingly, the light emitted from the input optical fiber 4a-1 or 4a-2 is applied to the reflection type variable optical deflector 34_1 or 344-2 respectively by applying a predetermined voltage to the output optical fiber 4a-1 or 34-2.
- b-1 and 4b-2 can be selectively output (switched). That is, a 2 ⁇ 2 optical switch is realized.
- the input optical fibers 4a-1 and 4b-1 and the output optical fibers 4b-1 and 4b-2 are fixed to one 4-core ferrule 44.
- An input ferrule that fixes the input optical fibers 4a-1 and 4a-2 together and an output ferrule that fixes the output optical fibers 4b-1 and 4b-2 together It is also possible.
- This structure has the advantage that assembly during manufacturing is facilitated.
- the example of the 2 ⁇ 2 optical switch is shown, but it is possible in principle to configure the mXn optical switch by increasing the number of input optical fibers and output optical fibers.
- an mX 1 that is, n ⁇ 1 switch (optical selector) that condenses (switches) any one of the output lights of the m input optical fibers onto one output optical fiber can be configured.
- variable optical deflector deflects light using the change in the refractive index of the electro-optical element 33, and reflects the light using the reflective element 4. Therefore, it is possible to realize an optical device such as a variable optical attenuator, an optical shutter and an optical switch, which has a faster response and is smaller than the conventional one. In addition, since it is an application of microoptics technology, it is possible to significantly reduce the input loss compared to the past.
- Optical devices such as WDM transmission technology, which has an extremely large number of wavelength multiplexes in recent years and performs high-speed transmission, and is extremely useful. it is conceivable that.
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
Description
明 細 書 反射型可変光偏向器及びそれを用いた光デバイス 技術分野
本発明は、 電気光学効果 (ポッケルス効果) を有する素子を利用した反射型可 変光偏向器及びそれを用いた可変光減衰器や光スィッチ等の光デバイスに関する。 背景技術
これまで、光を減衰させる技術として、下記 (1)〜(4)に示すような方法が実際に 用いられている。
(1)光路上に設置した遮蔽物を機械的に移動させて透過率を変化させる方法
(2)光導波路で作製したマッ八ッェンダー干渉計の途中に、温度によつて屈折率 の変化する材料を挿入し、 片側の光路のみを加熱または冷却することにより干渉 性を変化させて透過率を変化させる方法
(3)偏光子と検光子の間にファラデー回転素子を挿入し、 ファラデー回転素子に 印加する磁界を変化させることによりファラデー回転を生じさせ、 光線の偏光と 検光子の偏光のミスマッチを起こすことにより透過率を変化させる方法
(4)光フアイバのクラッドを一部除去して、そこに温度により屈折率の変化する 材料を充填し、 コアとクラッドの屈折率関係を変化させることにより放射を誘発 して透過率を変化させる方法
しかし、 上記のいずれの方法においてもせいぜい数百 s (マイクロ秒) 程度 の応答速度であるため、 例えば、 WD Mシステムにおいて信号波長のアド Zドロ ップゃクロスコネクトがダイナミックに行なわれる際に要求される更なる高速な 応答には追随できないという課題があった。
そこで、 光変調器等で使用されている高速応答が可能な技術を応用し、 電気光 学効果を有する素子(例えば、 LiNb03等) からなる導波路によりマッハツエンダ 一回路を構成して、 片側光路のみに電圧を印加することにより減衰をかける方式 も報告されているが、挿入損失や偏光依存損失が大きいという課題がある。また、
WD M伝送装置に適用する場合には、 波長多重数分の可変光減衰器が必要となる が、 近年の WD M伝送技術における波長多重数からみると、 適切なサイズになつ ておらず、 WD M伝送装置の規模増大を招いてしまう。
本発明は、 このような課題に鑑み創案されたもので、 反射型の可変光偏向器を 利用して、 応答速度が高速で、 且つ、 挿入損失や偏光依存損失の少ない可変光減 衰器ゃ光スィッチ等の光デパイスを、 小型に実現することを目的とする。
なお、 可変光偏向器自体は、 例えば特開平 1 0— 3 0 7 3 0 7号公報ゃ特開平 1 0 - 2 8 8 7 9 8号公報等に開示されているように、 レーザプリン夕, レーザ 走査顕微鏡, バーコードリーダ等のスキャナ一部に用いられるものとして公知で あるが、 WD M伝送装置に適用するには不向きである。
というのも、 上記の公知技術では、 入力光学系から可変光偏向器への入射光を その入射面と反対面である出射面へ透過させ、 その透過光をそのまま出力光学系 で受ける構成、 即ち、 入力光学系, 可変光偏向器及び出力光学系をほぼ一直線上 に並べて配置する必要があるため、 小型化に限度があり、 波長多重数が増えた場 合にはやはり装置規模の増大を招く結果となるのである。 発明の開示
上記の目的を達成するために、 本発明の反射型可変光偏向器は、 入力光を透過 するとともに、 その透過光の出力角度が外部入力信号に応じて変化する可変光偏 向素子と、 この可変光偏向素子の透過光を反射する反射素子とをそなえたことを 特徴としている。
ここで、 本反射型可変光偏向器は、 入力コリメート光を集光して上記の可変光 偏向素子へ入射する集光手段と、 上記の反射素子による反射光を受けてコリメー 卜する出力コリメータとをさらにそなえていてもよい。
そして、 上記の可変光偏向素子は、 上記外部入力信号に応じて屈折率が変化す るとともに、 上記入力光の進行する平面においてくさび形状を有する屈折率可変 素子であるのが好ましい。
さらに、 この屈折率可変素子は、 電気光学素子であるのが好ましく、 その電気 光学素子としては、 PLZT{(Pb,La)(Zr,Ti)03}結晶を用いて構成されたものがより
好ましい。 また、 上記の反射素子は、 上記可変光偏向素子の出力面に設けられた 反射板又は反射膜であるのが好ましい。
次に、 本発明の反射型可変光偏向器を用いた光デバイスは、
(1)入力光ファイバと、
(2)この入力光ファイバから出射される光をコリメートする入力コリメ一夕と、
(3)この入力コリメータから出射されるコリメート光を集光する入力集光手段 と、
(4)この入力集光手段で集光された光を透過するとともに、その透過光の出力角 度が外部入力信号に応じて変化する可変光偏向素子と、 この可変光偏向素子の透 過光を反射する反射素子とをそなえて成る反射型可変光偏向器と、
(5)上記の反射型可変光偏向器の反射素子で反射された光をコリメートする出 カコリメータと、
(6)この出力コリメータから出射されるコリメート光を集光する出力集光手段 と、
(7)上記の出力集光手段の集光位置にコアが位置するよう設けられた出力光フ アイバとを
そなえたことを特徴としている。
ここで、 本光デバイスは、 上記の外部入力信号を可変することにより上記の透 過光の出力角度を変化させて、 上記出力集光手段から出力光ファイバのコアに集 光する光量を変化させれば、 上記出力光ファイバの光出力強度を可変にする可変 光減衰器として用いることができ、 出力光ファイバのコア以外に上記出力集光手 段からの光を集光させるようにすれば、 出力光ファイバの光出力をシャットダウ ンする光シャッタ一として用いることができる。
なお、上記の反射型可変光偏向器が、入射光を反射する構成となっているので、 上記の入力光ファイバ及び出力光ファイバを 2芯フエルールにより一体固定する とともに、 上記の入力コリメ一夕と出力集光手段とを単一のレンズで兼用するこ とができる。 さらに、 上記の入力集光手段と出力コリメータとを単一のレンズで 兼用することもできる。
また、 上記の入力光ファイバ及び出力光ファイバをそれぞれ n本 (nは 2以上
の整数)ずつ設けられる場合にも、 これらの (2 X n )本の光ファイバを(2 X n) 芯フエルールにより一体固定するとともに、 上記 11本の入力光ファイバから出射 される光をそれぞれコリメートする上記入力コリメータと、 上記出力コリメ一タ から出射される n本のコリメート光を上記 n本の出力光ファイバにそれぞれ集光 する出力集光手段とを一つのレンズで兼用することが可能である。
次に、 本発明の反射型可変光偏向器を用いた光デバイスは、
(1)入力光ファイバと、
(2)この入力光ファイバから出射される光をコリメートする入力コリメータと、
(3)この入力コリメ一夕から出射されるコリメート光を集光する入力集光手段 と、
(4)この入力集光手段で集光された光を透過するとともに、その透過光の出力角 度が外部入力信号に応じて変化する可変光偏向素子と、 この可変光偏向素子の透 過光を反射する反射素子とをそなえて成る反射型可変光偏向器と、
(5)この反射型可変光偏向器の上記反射素子で反射された光をコリメ一トする 出力コリメータと、
(6)この出力コリメータから出射されるコリメート光を集光する出力集光手段 と、
(7)上記の反射型可変光偏向器での透過光の出力角度に応じた上記出力集光手 段の複数の集光位置にコアがそれぞれ位置するよう設けられた n本 ( nは 2以上 の整数) の出力光ファイバとをそなえ、
上記の外部入力信号を所定値に切り替えて上記透過光の出力角度を変化させる ことで、 上記 n本の出力光ファイバのコアのいずれかに上記出力集光手段からの 光を集光させる 1 X n光スィッチとして用いられることを特徴としている。
ここで、 この場合も、 上記の反射型可変光偏向器が、 入射光を反射する構成と なっているので、 上記の入力光ファイバと n本の出力光ファイバとを多芯フェル ールにより一体固定するとともに、 上記の入力コリメータと出力集光手段とを単 一のレンズで兼用することができ、 さらには、 上記の入力集光手段と出力コリメ 一夕とを単一のレンズで兼用することができる。
なお、 本 Ι Χ η光スィッチは、 上記の外部入力信号を連続的に変化させること
により、 1本の出力光ファイバのコアに集光する光量を変化させて、 その出力光 ファイバの光出力強度を可変にする可変光減衰機能をさらに有していてもよい。 この場合、 その可変光減衰機能を駆動すべく連続的に変化する上記の外部入力信 号を生成する可変光減衰用信号源と、 前記の所定値の外部入力信号を生成するス イッチング用信号源とをそなえるのが好ましい。
次に、 本発明の反射型可変光偏向器を用いた光デバイスは、
(1) n本の入力光ファイバと、
(2)上記 n本 (nは 2以上の整数) の入力光ファイバからそれぞれ出射される光 をそれぞれコリメートするための入力コリメータと、
(3)この入力コリメータから出射されるコリメート光を集光する入力集光手段 と、
(4)それぞれ、 上記の入力集光手段で集光された光を透過するとともに、 その透 過光の出力角度が外部入力信号に応じて変化する可変光偏向素子と、 この可変光 偏向素子の透過光を反射する反射素子とをそなえて成る n個の反射型可変光偏向 器と、
(5)これらの反射型可変光偏向器の反射素子で反射された光をコリメートする 出力コリメータと、
(6)この出力コリメータから出射されるコリメート光を集光する出力集光手段 と、
(7)上記反射型可変光偏向器での透過光の出力角度に応じた出力集光手段の 1 以上の集光位置にコアが位置するよう設けられた m本 (mは 1以上の整数) の出 力光ファイバとをそなえ、
上記の外部入力信号を所定値に切り替えて上記透過光の出力角度を変化させる ことで、 上記の出力光ファイバのコアに上記 n本の入力光ファイバのいずれかに ついての上記出力集光手段からの光を集光させる n Xm光スィツチとして用いら れることを特徴としている。
ここで、 上記 mが 2以上である場合には、 上記の入力光ファイバと出力光ファ ィバの配置関係に応じてそれら入力光ファイバと出力光ファイバとの間の光路を 変更する光路変更手段を設けるのが好ましい。
なお、 この場合も、 上記の反射型可変光偏向器が、 入射光を反射する構成とな つているので、 上記の入力光ファイバと n本の出力光ファイバとを多芯フェルー ルにより一体固定するとともに、 上記の入力コリメータと出力集光手段とを単一 のレンズで兼用することができ、 さらには、 上記の入力集光手段と出力コリメ一 夕とを単一のレンズで兼用することもできる。 図面の簡単な説明
図 1は本発明の一実施形態としての反射型可変光偏向器の構成を光路も併せて 示す模式的斜視図である。
図 2は図 1に示す反射型可変光偏向器を矢印 A方向から見た場合の模式的側面 図である。
図 3は図 1に示す反射型可変光偏向器を矢印 B方向から見た場合の模式的平面 図である。
図 4は本実施形態に係る印加電圧 (V) に対する偏向角 (degree) の関係を示 す図である。
図 5は本実施形態の可変光偏向器を用いた光デバイスとしての可変光減衰器の 構成を光路も併せて示す模式的斜視図である。
図 6は図 5に示す可変光減衰器を矢印 A方向から見た場合の模式的側面図であ る。
図 7は図 5に示す可変光減衰器を矢印 B方向から見た場合の模式的平面図であ る。
図 8は図 5〜図 7に示す可変光減衰器の特性例 (印加電圧に対する減衰量) を 示す図である。
図 9及び図 1 0は図 5〜図 7に示す可変光減衰器の変形例を示す模式的斜視図 である。
図 1 1は図 1 0に示す可変光減衰器の光路 (往路) を説明するための模式的側 面図である。
図 1 2は図 1 0に示す可変光減衰器の光路 (復路) を説明するための模式的側 面図である。
図 1 3は本実施形態の可変光偏向器を用いた光デパイスとしての光シャツター を実現するための構成を示すブロック図である。
図 1 4は図 1〜図 3に示す可変光偏向器を用いた光デバイスとしての 1 X 2光 スィツチの構成を光路も併せて示す模式的斜視図である。
図 1 5は図 1 4に示す光スィツチに可変光減衰機能をもたせる場合の構成を示 すブロック図である。
図 1 6は図 1 4に示す光スィツチの変形例を示す模式的斜視図である。
図 1 7は図 1 6に示す光スィッチの光路を説明すべく図 1 6に示す光スィッチ を矢印 A方向から見た模式的側面図である。
図 1 8は図 1〜図 3に示す可変光偏向器を用いた光デバイスとしての 2 X 2光 スィッチの構成を光路も併せて示す模式的斜視図である。
図 1 9は図 1 8に示す光スィツチの光路 (往路) を説明すべく図 1 8に示す光 スィッチを矢印 A方向から見た模式的側面図である。
図 2 0は図 1 8に示す光スィッチの光路 (復路) を説明すべく図 1 8に示す光 -を矢印 A方向から見た模式的側面図である。 発明を実施するための最良の形態
(A) 反射型可変光偏向器の説明
図 1は本発明の一実施形態としての反射型可変光偏向器の構成を光路も併せて 示す模式的斜視図、 図 2は同じ反射型可変光偏向器を図 1の矢印 A方向から見た 場合の模式的側面図、 図 3は同じ反射型可変光偏向器を図 1の矢 方向から見 た場合の模式的平面図である。
これらの図 1〜図 3に示すように、 本実施形態の反射型可変光偏向器は、 例え ば、 シリンドリカルレンズ 2 a , 2 bと、 電極 3 1, 3 2及び電気光学素子 3 3 から成る可変光偏向素子 3と、この可変光偏向素子 3の光入射面とは反対の面(出 力面) に設けられた反射素子 4とをそなえて構成されている。 なお、 可変光偏向 素子 3と反射素子 4とで構成される素子を反射型可変光偏向素子 3 4と表記する。 ここで、 第 1レンズであるシリンドリカルレンズ (入力集光手段) 2 aは、 例 えば図 2に示すように、 入射光 (コリメート光) の光線面の一方向 (可変光偏向
素子の厚み方向) だけを集光するもので、 その焦点位置が反射素子 4に位置する よう配置されている。
また、 可変光偏向素子 3は、 図 1及び図 3に示すように、 入力光の進行する平 面 (図 1の X Y平面) においてくさび形状 (台形形状) を有し、 上記シリンドリ カルレンズ 2 aで集光された入力光を透過するとともに、 電極 3 1 , 3 2への印 加電圧 (外部入力信号) に応じて電気光学素子 (屈折率変化素子) 3 3の屈折率 が変化することにより、 その透過光の出力角度が変化する (つまり、 反射素子 4 での反射光の反射角が変化する) ものである。
さらに、 第 2レンズであるシリンドリカルレンズ 2 bは、 この反射素子 4によ る反射光をコリメ一卜する出力コリメータとして機能するもので、 図 1に示す X 軸方向に上記の角度変化に応じた範囲で出射される光を受光できるだけの幅 (X 軸方向) を有している。
上記の電気光学素子 3 3は、 その台形面が図 1における XY平面と平行となる ように配置され、 電圧印加を図 1の Z方向で行なうため、 電気光学素子 3 3を挟 む形でその両面(Z方向)に電気光学素子 3 3と同じ台形形状を有する電極 3 1 , 3 2 が配置されている。 電気光学素子 3 3 としては、 例えば、 PLZT{(Pb,La)(Zr,Ti)O3}結晶を用いるが、 同様の電気光学効果を有する LiNb03 結晶や GaAs, InP といった化合物半導体, 電気光学効果を有するポリマー (例 えば、 エポキシ系 EOポリマー) 等を適用することもできる。
なお、 本実施形態では、 入射光がシリンドリカルレンズ 2 aで Z方向に集光さ れているため、 電極 3 1 , 3 2間の距離は 1 0〜 3 0 m程度と狭くすることが でき、 電気光学素子 3 3に対して電圧を有効に印加することができる。 また、 反 射素子 4は、 可変光偏向素子 3の 3 3 a入射面とは反対の面 3 3 bに接合した平 板状の反射板 3 4でもよいし、 その面 3 3 bに成膜した反射膜でもよい。
さらに、 少なくとも電極 3 1 , 3 2の形状をくさび形状 (台形形状) あるいは 三角形状にすれば、 印加電圧に応じてその部分の電気光学素子 3 3の屈折率を変 化させて透過光の出力角度 (反射光角) を変化させることができるので、 電気光 学素子 3 3自体の形状は電極 3 1, 3 2と同じ形状でなくともよく、 例えば、 長 方形としてもよい。 また、 電極 3 1 , 3 2と反射素子 4とは必ずしも接している
必要はない。 さらに、 可変光偏向素子 3の光線入出力面は、 特別な光線波面整形 のための取り込み口は必要としないため、 直線的に切り出された、 または研磨さ れたシンプルな形状でよい。
以下、 上述のごとく構成された本実施形態の反射型可変光偏向器 (以下、 単に 「可変光偏向器」 と略することがある) の動作について説明する。
まず、入射光(コリメート光)は、シリンドリカルレンズ 2 aに入力されると、 その光線面の一方向 (図 1における Z軸方向) だけが集光されて、 可変光偏向素 子 3の電気光学素子 3 3に入射する。 そして、 電極 3 1 , 3 2に対して電圧を印 加すると、 電気光学素子 3 3の屈折率が変化する。
ここで、 図 1の矢印 A方向から見た場合 (図 2 ) では、 可変光偏向素子 3が平 行平板となっているため、 電圧印加の結果生じる屈折率の変化により光線方向は 変化しない。 しかし、 図 1の矢印 B方向から見た場合 (図 3 ) では、 可変光偏向 素子 3が X Y平面において台形形状を有しているため、 電圧印加の結果生じる屈 折率の変化により光線方向 (反射素子 4からシリンドリカルレンズ 2 bへの光路) が変化する。
なお、 図 4に印加電圧 (V) に対する偏向角 (degree) の関係を示す。 この図 4に示すように、 0〜 8 Vの印加電圧変化に対して、 約 0 . 7 5 ° の角度変化が 得られる。 ただし、 本実施形態における台形形状の可変光偏向素子 3のテーパー 角 α (図 3参照) は 7 0 ° に設定している。 また、 上述のごとく屈折率が変化す る素子としては、 電気光学素子 3 3の他、 熱により屈折率が変化する素子、 磁気 により屈折率が変化する素子、 応力付加により屈折率が変化する素子などが挙げ られるが、 波長多重数の多い高速伝送を行なう WD M伝送装置に適用する場合に は、 高速応答及びサイズの面では不向きである。
(Β ) 反射型可変光偏向器を用いた光デバイスの説明
次に、 以下では、 上述した可変光偏向器 (反射型可変光偏向素子 3 4 ) を用い た光デバイス(可変光減衰器,光シャッター,光スィッチ等)について説明する。
(Β 1 ) 可変光偏向器を用いた可変光減衰器の説明
図 5は上述した可変光偏向器を用いた光デバイスとしての可変光減衰器の構成 を光路も併せて示す模式的斜視図、 図 6はこの可変光減衰器を図 5の矢印 Α方向
から見た場合の模式的側面図、 図 7は同じ可変光減衰器を図 5の矢印 B方向から 見た場合の模式的平面図で、 これらの図 5〜図 7に示すように、 本実施形態の可 変光減衰器は、 図 1〜図 3により上述した構成に加えて、 入力光ファイバ 4 a , 出力光ファイバ 4 b, 入力コリメートレンズ (球面又は非球面レンズ) l a , 出 カコリメートレンズ (球面又は非球面レンズ) 1 bをさらにそなえて構成されて いる。
ここで、 第 3レンズである入力コリメ一トレンズ (入力コリメ一夕) 1 aは、 入力光ファイバ 4 aから出射される光をコリメートするためのものであり、 その コリメート光はシリンドリカルレンズ 2 aに入力されるようになつている。また、 第 4レンズである出力コリメ一トレンズ (出力集光手段) l aは、 シリンドリカ ルレンズ 2 bから出射される光 (反射素子 4による反射光) を集光して出力光フ アイバ 4 bのコアに集光するためのものである。
なお、 本例においては、 コリメ一トレンズ 1 a ( l b ) として、 屈折率が 1 . 8 7で焦点距離 (f ) が 4. O mmの非球面レンズを用い、 シリンドリカルレン ズ 2 a ( 2 b ) として、 屈折率が 1 · 8 7で焦点距離 (f ) が 1 . 8 mmのレン ズを用いている。
上述のごとく構成された本可変光減衰器の動作は次のようになる。
即ち、 入力光ファイバ 4 aを出射した光は、 第 3レンズである入力コリメ一ト レンズ 1 aによりコリメートされ、 第 1レンズ (シリンドリカルレンズ) 2 aに 入射し、 前述したのと同様に、 そのシリンドリカルレンズ 2 aにより入力コリメ ート光の光波面の一方向 (図 5の Z軸方向) のみが集光されて、 可変光偏向素子 3 (電気光学素子 3 3 ) を透過し、 反射素子 4で反射される。
反射素子 4で反射された光は、 入力側のシリンドリカルレンズ 2 aと同等の性 質をもつ第 2レンズ(シリンドリカルレンズ) 2 bによりコリメートされたのち、 入力コリメートレンズ 1 aと同等の性質をもつ第 4レンズ (コリメ一卜レンズ) 1 bを通じて出力ファイバ 4 bのコアに集光される。
ここで、 可変光偏向素子 3 (電極 3 1, 3 2 ) への電圧無印加時に最高効率で 光結合するように、 コリメートレンズ 1 bと出力光ファイバ 4 bの位置を調整し ておけば、 電圧印加により可変光結合素子 3での透過光の出力角度が変化してシ
リンドリカルレンズ 2 b, コリメートレンズ 1 bへの入射角度が変わるため、 光 線は出力光ファイバ 4 bのコア中心とは異なる位置に集光され、 出力光フアイノ 4 bへの光結合効率は下がることになる。
このようにして、 印加電圧 (外部入力信号) を可変にして可変光結合素子 3で の透過光の出力角度を変化させて、 出力光ファイバ 4 bのコアに集光する光量を 変化させることで、出力光フアイバ 4 bの光出力強度を可変にすることができる。 図 8に本可変光減衰器の特性例 (印加電圧に対する減衰量) を示す。 この図 8に 示すように、 本可変光減衰器では、 0〜 8 Vの印加電圧変化に対して、 5 0 d B 以上の減衰量が得られる。
なお、 本実施形態では、 電圧無印加時に出力光ファイバ 4 bへの光結合効率が 最大となるような設計としているため、 印加電圧増加に伴い減衰量が増加する特 性となっているが、 逆に、 最大電圧印加時に出力光ファイバ 4 bへの光結合効率 が最大となるような設計とすれば、 電圧無印加時に減衰量が最大となり、 印加電 圧増加に従い減衰量が減少する特性となる。
ところで、 本実施形態では、 可変光偏向素子 3 4が反射素子 4により電気光学 素子 3 3を透過する光を反射する構造となっているので、 入力光ファイバ 4 aか らの光の出射面と出力光ファイバ 4 bへの光の入射面とを同一平面内に位置する ことができる。
したがって、 例えば図 9に示すように、 入力光ファイバ 4 a及び出力光フアイ バ 4 bを 2芯フエルールに設置して一体固定することができる。 また、 入力光フ アイバ 4 aから反射素子 4への光路 (入力光路;往路) と反射素子 4から出力光 ファイバ 4 bへの光路 (出力光路;復路) とで個別に設けられている上記コリメ 一トレンズ l a及び l b (入力コリメータ及び出力集光手段) を単一のコリメ一 トレンズ 1により共通化 (兼用) し、 同様に、 上述したシリンドリカルレンズ 2 a及び 2 b (入力集光手段及び出力コリメータ) を単一のシリンドリカルレンズ 2により共通化 (兼用) することもできる。
これにより、 レンズを入力光路と出力光路とでそれぞれ個別に設ける場合に比 して、 大幅な小型化を図ることができる。 なお、 勿論、 コリメートレンズ l a及 び 1 bと、 シリンドリカルレンズ 2 a及び 2 bとのいずれか一方についてのみ、
このような共通化を行なうこともできる。
さらには、 例えば図 1 0に示すように、 複数本 (図 1 0では 3本) の入力光フ アイバ 4 a— 1, 4 a— 2, 4 a— 3及び出力光ファイバ 4 b— 1 , 4 b - 2 , 4 b— 3を 2列に並べて 6 (= 2 X 3 )芯フエルール 4 2により一体固定し、 6芯 フエルール 4 2のファイバ列と平行に可変光偏向素子 3及び反射素子 4から成る 反射型可変光偏向素子 3 4— 1, 3 4 - 2 , 3 4— 3を 3段に並べる構造とする ことにより、 3連可変光減衰器を構成することができる。
なお、 本例では、 例えば図 1 1 (図 1 0に示す可変光減衰器を矢印 A方向から 見た図) に示すように、 コリメートレンズ 1には、 屈折率が 1 . 8 7で焦点距離 ( ί ) が 4. 0 mmの非球面レンズを用い、 シリンドリカルレンズ 2には、 屈折 率が 1 . 8 7で焦点距離が 1 . 8 mmのレンズを用いており、 コリメ一トレンズ 1の中心と反射型可変光偏向素子 3 4— 1〜3 4— 3の各反射素子 4との間の距 離は 4 mm、 シリンドリカルレンズ 2の中心と反射素子 4との間の距離は 1 . 8 mm、 シリンドリカルレンズ 2の厚み (図 1 0の Y軸方向) は約 1 . 6 mm、 可 変光偏向素子 3 4—;!〜 3 4— 3の奥行き (図 1 0の Y軸方向) は 0 . 5 mmと している。
また、 この場合の光路は図 1 1及び図 1 2に示すようになる。 即ち、 図 1 1中 に示すように、 6芯フエルール 4 2の最上段に位置する入力光ファイバ 4 a— 1 から出射された光は、 コリメートレンズ 1でコリメートされた後、 シリンドリカ ルレンズ 2にて集光されるとともに下向き(図 1 0の矢印 B方向)に回折されて、 シリンドリカルレンズ 2の上部から最下段に位置する反射型可変光偏向素子 3 4 一 1へ入射する。
逆に、 6芯フエルール 4 2の最下段に位置する入力光フアイバ 4 a— 3から出 射された光は、 コリメ一トレンズ 1でコリメートされた後、 シリンドリカルレン ズ 2にて集光されるとともに上向き(図 1 0の矢印 Bとは逆方向)に回折されて、 シリンドリカルレンズ 2の下部から最上段に位置する反射型可変光偏向素子 3 4 一 3へ入射する。 なお、 6芯フエルール 4 2の中段に位置する入力光ファイバ 4 a— 2から出射された光は、 コリメ一トレンズ 1及びシリンドリカルレンズ 2の 中心部分を通って中段の反射型可変光偏向素子 3 4— 2へ入射する。
そして、 図 1 2に示すように、 最下段に位置する反射型可変光偏向素子 3 4— 1の反射素子 4で反射された光は、 シリンドリカルレンズ 2の下部に入射し、 そ こでコリメートされるとともに上向きに回折されてコリメートレンズ 1に入射し、 コリメートレンズ 1から 6芯フェル一ル 4 2の最上段に位置する出力光ファイバ 4 b— 1のコアに集光される。
また、 最上段に位置する反射型可変光偏向素子 3 4 - 3の反射素子 4で反射さ れた光は、 シリンドリカルレンズ 2の上部に入射し、 そこでコリメートされると ともに下向きに回折されてコリメートレンズ 1に入射し、 コリメートレンズ 1か ら 6芯フェル一ル 4 2の最下段に位置する出力光フアイバ 4 b— 3のコアに集光 される。
さらに、 中段に位置する反射型可変光偏向素子 3 4 - 2の反射素子 4で反射さ れた光は、シリンドリカルレンズ 2及びコリメ一トレンズ 1の中心部分を通って、 6芯フェル一ル 4 2の中段に位置する出力光ファイバ 4 b— 2のコアに集光され る。
以上のようにして、 3連可変光減衰器の場合も、 反射型可変光偏向素子 3 4— 1〜3 4— 3への入力光路 (往路) 及び出力光ファイバ 4 b—:!〜 4 b— 3への 出力光路 (復路) に対して共通で、 且つ、 反射型可変光偏向素子 3 4— 1〜3 4 — 3に共通のコリメートレンズ 1及びシリンドリカルレンズ 2を用いて、 假々の 可変光減衰機能を正常に実現することができる。 したがって、 さらなる光デバイ ス (可変光減衰器) の小型化を図ることができる。
(B 2 ) 可変光偏向器を用いた光シャッターの説明
図 5又は図 9 (もしくは図 1 0 )により上述した構成(光デバイス)において、 例えば図 1 3に示すように、 定電圧電源 (例えば、 8 V) 6と電気スィッチ 7と を用いて、 可変光偏向素子 3の電極 3 1, 3 2に対する印加電圧を連続的に変え るのではなく ONZO F F切り替えすることにより、 シャットダウン減衰量が 4 O d B以上の光シャッター (3連光シャッター) として使用することが可能とな る。
即ち、 電極 3 1 , 3 2に対する印加電圧を可変することにより可変光偏向素子 3の透過光 (反射光) の出力角度を変化させて、 出力光ファイバ 4 b ( 4 b - l
〜4b— 3) のコア以外にコリメートレンズ 1 b (1) からの光を集光させるこ とで、 出力光ファイバ 4b (4b—:!〜 4b— 3) の光出力をシャットダウンす ることができるのである。
(B 3) 可変光偏向器を用いた I X 2光スィッチの説明
図 14は図 1〜図 3により上述した可変光偏向器を用いた光デパイスとしての 1 X 2光スィツチの構成を光路も併せて示す模式的斜視図で、 この図 14に示す ように、 本 I X 2光スィッチは、 1本の入力光ファイバ 4 aと、 n (=2) 本の 出力光ファイバ 4b— 1, 4b— 2と、 図 5〜図 7により前述したものと同様の コリメ一卜レンズ 1 a, 1 b, シリンドリカルレンズ 2 a, 2 bと、 図 1〜図 3 により前述したものと同様の可変光偏向素子 3及び反射素子 4から成る反射型可 変光偏向素子 34とをそなえて構成されている。
ここで、 上記の出力光ファイバ 4 b— 1, 4 b - 2は、 2芯フエルール 41に より隣接して一体固定されており、 反射型可変光偏向素子 34での透過光 (反射 光) の出力角度に応じたコリメートレンズ 1 bの複数の集光位置にコアがそれぞ れ位置するよう配置されている。 なお、 この場合も、 コリメ一トレンズ l a, 1 bには、屈折率が 1. 87で焦点距離(f)が 4. 0mmの非球面レンズを用い、 シリンドリカルレンズ 2 a, 2 bには、 屈折率が 1. 87で焦点距離が 1. 8m mのものを用いている。
上述の構成により、 可変光偏向素子 3の電極 31, 32に対する印加電圧を所 定値に切り替えて透過光 (反射光) の出力角度を変化させることで、 出力光ファ ィバ 4 b— 1, 4 b— 2のコアのいずれかにコリメートレンズ 1 bからの光を集 光させる (スイッチングする) ことができる。 なお、 本実施形態においては例え ば、 20Vの印加電圧変化により約 1. 8° の偏向角が得られる (図 4参照) の で、 上記の配置条件では、 コリメ一トレンズ 1 bの集光位置が図 14の X軸方向 に約 125 jLtm シフトすることになる。 したがって、 出力光ファイバ 4b— 1, 4 b— 2間の距離を 125 m以下にしておけば、 出力光ファイバ 4 b— 1, 4 b— 2間のスィツチングが可能となる。
即ち、 例えば、 電圧無印加時にコリメートレンズ 1 bから出射される光が一方 の出力光ファイバ 4b— 1 (又は 4b— 2) のコアに集光するよう各出力光ファ
ィバ 4 b— 1及び 4 b— 2を配置しておき、 電圧 (2 0 V) 印加により他方の出 力光ファイバ 4 b— 2 (又は 4 b— 1 ) のコアにコリメートレンズ 1 bからの出 射光を集光させることができるのである。
この場合、 電極 3 1 , 3 2に対する印加電圧を上記所定値 (例えば、 0 V又は 2 0 V) を中心に連続的に変化させれば、 それに伴い偏向角も連続して変わるた め、 上述したスィツチング機能に加えて可変光減衰機能をもたせることが可能と なる。 この際、 例えば図 1 5に示すように、 上記スイッチング機能のための所定 値の印加電圧を発生する電圧源 (スイッチング用信号源) 8と、 上記の可変光減 衰機能を駆動すベく連続的に変化する印加電圧を生成する電圧源 (可変光減衰用 信号源) 9とを個別に設けてもよいし、 これらの機能を兼用する電圧源により上 記のスィッチング機能と可変減衰機能とを実現してもよい。
なお、 2芯ではなく多芯 (n芯)フェル一ルを使用すれば、 Ι Χη光スィッチも上 記と同様に実現できる。 また、 図 9により前述した可変光減衰器と同様、 例えば 図 1 6に示すように、 入力光ファイバ 4 aと出力光ファイバ 4 b— 1, 4 b— 2 とを 3芯以上の多芯フェル一ル 4 3に設置し、 コリメ一トレンズ 1 a及び 1 bを 単一のコリメ一トレンズ 1で兼用し、 シリンドリカルレンズ 2 a及び 2 bを単一 のシリンドリカルレンズ 2で兼用することも可能である。
この場合の光スィッチの各要素の配置及び光路を図 1 7に示す。 なお、 この図 1 7は図 1 6に示す光スィッチを矢印 Bの方向から見た模式的平面図である。
(B 4 ) 可変光偏向器を用いた 2 X 2光スィッチの説明
図 1 8は図 1〜図 3により上述した可変光偏向器を用いた光デバイスとしての 2 X 2光スィッチの構成を光路も併せて示す模式的斜視図で、 この図 1 8に示す 2 X 2光スィッチは、 m (= 2 ) 本の入力光ファイバ 4 a— 1 , 4 a— 2と、 n (= 2 ) 本の出力光ファイバ 4 b— 1 , 4 b— 2と、 コリメートレンズ 1と、 シ リンドリカルレンズ 2と、 プリズム 5と、 それぞれ図 1〜図 3により前述したも のと同様の可変光偏向素子 3及び反射素子 4から成る 2組の反射型可変光偏向素 子 3 4— 1 , 3 4— 2とをそなえて構成されている。
そして、 上記の入力光ファイバ 4 a— 1, 4 a— 2は図 1 8の Z軸方向に隣接 して、 出力光ファイバ 4 b— l, 4 b— 2は図 1 8の X軸方向に隣接してそれぞ
れ 4芯フェル一ル 4 4により固定されている。また、この 4芯フエルール 4 4は、 反射型可変光偏向素子 3 4— 1, 3 4— 2での透過光 (反射光) の出力角度に応 じたコリメートレンズ 1の集光位置にそれぞれ出力光ファイバ 4 b— 1, 4 b - 2のコアが位置するよう配置されている。
ここで、 上記のプリズム (光路変更手段) 5は、 入力光ファイバ 4 a— 1, 4 a— 2と出力光ファイバ 4 b— 1 , 4 b— 2の配置関係に応じて入力光ファイバ 4 a - 1 , 4 a— 2と出力光ファイバ 4 b— 1, 4 b— 2との間の光路を変更す るためのもので、 ここでは、 例えば図 2 0に示すように、 シリンドリカルレンズ 2でコリメートされた 2本のコリメート光 (反射型可変光偏向素子 3 4— 1, 3 4一 2で反射された光) の進行方向が図 1 8の Y Z平面において平行となるよう に、 その形状, 寸法, 配置が設定されている。 なお、 図 2 0は図 1 8に示す 2 X 2光スィツチを図 1 8の矢印 A方向から見た場合の模式的側面図である。
なお、 上記のコリメートレンズ 1は、 図 9や図 1 0 , 図 1 6に示す光デバイス と同様に、 小型化のために入力光路 (往路) と出力光路 (復路) とでコリメート レンズ 1 a及び 1 bを兼用したものに相当し、 シリンドリカルレンズ 2も、 小型 ィ匕のために入力光路と出力光路とでシリンドリカルレンズ 2 a及び 2 bを兼用し たものに相当するが、 勿論、 入力光路と出力光路とで各レンズを個別に配置して あよい。
さて、 上述のごとく構成された 2 X 2光スィッチの動作を説明すると、 まず、 図 1 9に示すように、 図 1 8の Z軸方向に並べた 2本の入力光ファイバ 4 a— 1 , 4 a— 2から出射された光は、 コリメートレンズ 1の上部及び下部にそれぞれ入 射しコリメートされて進行方向の異なる (図 1 8の Y Z平面内において交差する 方向) 2本のコリメート光となる。
これら 2本のコリメ一ト光はそれぞれシリンドリカルレンズ 2によりその光波 面が Z軸方向のみそれぞれ集光され、 その焦点位置に反射素子 4が設置された反 射型可変光偏向素子 3 4— 1, 3 4— 2に入射する。 そして、 反射型可変光偏向 素子 3 4— 1, 3 4— 2の反射素子 4で反射された 2本の光は、 図 2 0に示すよ うに、 シリンドリカルレンズ 2によりコリメート光となりプリズム 5に入射する。
これにより、 2本のコリメート光は、 Y Z平面においてその進行方向が平行と
なり、 平行光としてコリメ一トレンズ 1に入射する。 従って、 コリメートレンズ 1によって、 各コリメート光は、 図 1 8の Z方向においては 2本とも同じ位置に 集光されることになる。
そして、 可変光偏向素子 3の電極 3 1, 3 2に対する印加電圧を変化させるこ とにより図 1 8の X Y平面における光の進行角度が変化するため、 コリメ一トレ ンズ 1による集光位置は図 1 8の X軸に対して平行にシフトすることになる。 従 つて、 入力光ファイバ 4 a— 1又は 4 a— 2から出射した光は、 それぞれ反射型 可変光偏向素子 3 4 _ 1又は 3 4— 2に所定電圧を印加することにより、 出力光 ファイバ 4 b— 1及び 4 b— 2のいずれかに選択的に出力 (スイッチング) させ ることができる。 つまり、 2 X 2光スィッチが実現される。
なお、 上述した例では、 入力光ファイバ 4 a— 1 , 4 b— 1及び出力光フアイ バ 4 b - 1, 4 b - 2を一つの 4芯フエルール 4 4に固定した例を示したが、 入 力光ファイバ 4 a— 1及び 4 a— 2をまとめて固定する入力側フエルールと、 出 力光ファイバ 4 b— 1及び 4 b— 2をまとめて固定する出力側フエルールとによ り別体とすることも可能である。 この構造により、 製造時の組立が容易になると いうメリットがある。
また、 上述した例では 2 X 2光スィッチの例を示したが、 入力光ファイバ及び 出力光ファイバの本数を増やして、 mX n光スィッチを構成することも原理的に 可能である。 さらに、 m本の入力光ファイバの出射光のいずれかを 1本の出力光 ファイバに集光 (スイッチング) する mX 1 (つまり、 n≥ 1 ) スィッチ (光セ レクタ) を構成することもできる。
以上のように、 本実施形態によれば、 可変光偏向器を、 電気光学素子 3 3の屈 折率変化を利用して光を偏向させるとともに、 反射素子 4を用いてその光を反射 する構造としているので、 従来よりも高速応答で、 且つ、 小型の可変光減衰器, 光シャッターおよび光スィッチ等の光デバイスを実現することができる。 また、 マイクロォプティクス技術の応用であるため、 揷入損失も従来よりも大幅に低減 することができる。
従って、 近年の波長多重数が極めて多く高速伝送を行なう WDM伝送装置に対 しても十分に対応できる光デバイスを提供することができる。
なお、 本発明は、 上述した実施形態に限定されず、 本発明の趣旨を逸脱しない 範囲で種々変形して実施することができることはいうまでもない。 産業上の利用可能性
以上のように、 本発明によれば、 反射型の可変光偏向器を用いることで、 従来 よりも高速応答, 低挿入損失で、 且つ、 小型の可変光減衰器, 光シャッターおよ び光スィッチ等の光デバイスを実現することができるので、 光伝送技術、 特に、 近年の波長多重数が極めて多く高速伝送を行なう WDM伝送技術に十分に対応す ることができ、 その有用性は極めて高いものと考えられる。
Claims
1. 入力光を透過するとともに、 その透過光の出力角度が外部入力信号に応じ て変化する可変光偏向素子 (3) と、
該可変光偏向素子 (3) の該透過光を反射する反射素子 (4) とをそなえたこ とを特徴とする、 反射型可変光偏向器。
2. 入力コリメ一ト光を集光して該可変光偏向素子へ入射する集光手段(2 a) と、
該反射素子(4) による反射光を受けてコリメートする出力コリメ一夕 (2 b) とをさらにそなえたことを特徴とする、 請求の範囲第 1項に記載の反射型可変光 偏向器。
3. 該可変光偏向素子 (3) が、 上記外部入力信号に応じて屈折率が変化する とともに、 該入力光の進行する平面においてくさび形状を有する屈折率可変素子 であることを特徴とする、 請求の範囲第 1項又は第 2項に記載の反射型可変光偏 向器。
4. 該屈折率可変素子が、 電気光学素子であることを特徴とする、 請求の範囲 第 3項に記載の反射型可変光偏向器。
5. 該電気光学素子が、 PLZT結晶を用いて構成されたことを特徴とする、 請 求の範囲第 4項に記載の反射型可変光偏向器。
6. 該反射素子 (4) が、 該可変光偏向素子 (3) の出力面に設けられた反射 板又は反射膜であることを特徴とする、 請求の範囲第 1項〜第 4項のいずれか 1 項に記載の反射型可変光偏向器。
7. 入力光ファイバ (4 a) と、
該入力光ファイバ (4 a) から出射される光をコリメートする入力コリメータ (l b) と、
該入力コリメ一夕 (l b) から出射されるコリメ一ト光を集光する入力集光手 段 (2 a) と、
該入力集光手段 (2 a) で集光された光を透過するとともに、 その透過光の出 力角度が外部入力信号に応じて変化する可変光偏向素子 (3) と、 該可変光偏向 素子 (3) の透過光を反射する反射素子 (4) とをそなえて成る反射型可変光偏 向器 (34) と、
該反射型可変光偏向器 (34) の該反射素子 (4) で反射された光をコリメ一 トする出力コリメータ (2b) と、
該出力コリメ一夕 (2 b) から出射されるコリメート光を集光する出力集光手 段 (1 b) と、
該出力集光手段 (l b) の集光位置にコアが位置するよう設けられた出力光フ アイバ (4b) とをそなえたことを特徴とする、 反射型可変光偏向器を用いた光 デバイス。
8. 該光デバイスが、 該外部入力信号を可変することにより該透過光の出力角 度を変化させて、 該出力集光手段 (l b) から該出力光ファイバ (4b) のコア に集光する光量を変化させることで、 該出力光ファイバ (4 b) の光出力強度を 可変にする可変光減衰器として用いられること.を特徴とする、 請求の範囲第 7項 に記載の反射型可変光偏向器を用いた光デバイス。
9. 該光デバイスが、 該外部入力信号を可変することにより該透過光の出力角 度を変化させて、 該出力光ファイバ(4b) のコア以外に該出力集光手段(2 b) からの光を集光させることで、 該出力光ファイバ (4b) の光出力をシャツトダ ゥンする光シャッ夕一として用いられることを特徴とする、 請求の範囲第 7項に 記載の反射型可変光偏向器を用いた光デバイス。
10. 該入力光ファイバ (4 a) 及び該出力光ファイバ (4b) が 2芯フェル
ール (41) により一体固定されるとともに、 該入力コリメータ (l a) と該出 力集光手段 (l b) とが単一のレンズ (1) で兼用されることを特徴とする、 請 求の範囲第 7項〜第 9項のいずれか 1項に記載の反射型可変光偏向器を用いた光 デバイス。
11. 該入力光ファイバ (4 a) 及び該出力光ファイバ (4b) が 2芯フェル ール (41) により一体固定されるとともに、 該入力集光手段 (2 a) と該出力 コリメ一夕 (2 b) とが単一のレンズ (2) で兼用されることを特徴とする、 請 求の範囲第 7項〜第 9項のいずれか 1項に記載の反射型可変光偏向器を用いた光 デバイス。
12. 該入力光ファイバ (4 a) 及び該出力光ファイバ (4b) が 2芯フェル ール (41) により一体固定されるとともに、 該入力コリメ一夕 (l a) と該出 力集光手段 (l b) とが単一のレンズ (1) で兼用され、 且つ、 該入力集光手段 (2 a) と該出力コリメ一夕 (2b) とが単一のレンズ (2) で兼用されること を特徴とする、 請求の範囲第 7項〜第 9項のいずれか 1項に記載の反射型可変光 偏向器を用レゝた光デバイス。
13. 該入力光ファィバ及び該出力光ファィバがそれぞれ n本 (nは 2以上の 整数) ずつ設けられ (4a— 1, 4 a- 2, 4b— 1, 4b— 2)、 これらの (2
Xn) 本の光ファイノ (4 a— 1, 4 a - 2, 4b— 1, 4b— 2) が(2 Xn) 芯フエルール (42) により一体固定されるとともに、 上記 n本の入力光フアイ ノ (4 a— 1, 4 a— 2) から出射される光をそれぞれコリメートする該入力コ リメ一夕 (l a) と、 該出力コリメ一夕 (2b) から出射される n本のコリメ一 ト光を上記 n本の出力光ファイバ (4b— l, 4 b— 2) にそれぞれ集光する該 出力集光手段 (l b) とが一つのレンズ (1) で兼用されることを特徴とする、 請求の範囲第 7項〜第 9項のいずれか 1項に記載の反射型可変光偏向器を用いた 光デバイス。
14. 入力光ファイバ (4 a) と、
該入力光ファイバ (4 a) から出射される光をコリメートする入力コリメ一夕 (1 a) と、
該入力コリメ一タ (l a) から出射されるコリメート光を集光する入力集光手 段 (2 a) と、
該入力集光手段 (2 a) で集光された光を透過するとともに、 その透過光の出 力角度が外部入力信号に応じて変化する可変光偏向素子 (3) と、 該可変光偏向 素子 (3) の透過光を反射する反射素子 (4) とをそなえて成る反射型可変光偏 向器 (34) と、
該反射型可変光偏向器 (34) の該反射素子 (4) で反射された光をコリメ一 トする出力コリメータ (2 b) と、
該出力コリメータ (2 b) から出射されるコリメ一ト光を集光する出力集光手 段 (l b) と、
該反射型可変光偏向器 (34) での該透過光の出力角度に応じた該出力集光手 段 (2 b) の複数の集光位置にコアがそれぞれ位置するよう設けられた n本 (n は 2以上の整数) の出力光ファイバ (4b— l, 4b— 2) とをそなえ、
該外部入力信号を所定値に切り替えて該透過光の出力角度を変化させることで、 上記 n本の出力光ファイバ (4b— 1, 4b— 2) のコアのいずれかに該出力集 光手段 (2 b) からの光を集光させる 1 Xn光スィッチとして用いられることを 特徴とする、 反射型可変光偏向器を用いた光デバイス。
15. 該入力光ファイバ (4 a) と上記 n本の出力光ファイバ (4b— 1, 4 b— 2) とが多芯フエルール (4,3) により一体固定されるとともに、 該入力コ リメ一夕 (1 a) と該出力集光手段 (l b) とが単一のレンズ (1) で兼用され ることを特徴とする、 請求の範囲第 14項に記載の反射型可変光偏向器を用いた 光デバイス。
16. 該入力光ファイバ (4 a) と上記 n本の出力光ファイバ (4b— 1, 4 b-2) が多芯フエルール (43) により一体固定されるとともに、 該入力集光
手段 (2 a) と該出力コリメ一夕 (2 b) とが単一のレンズ (2) で兼用される ことを特徴とする、 請求の範囲第 14項に記載の反射型可変光偏向器を用いた光 デバイス。
17. 該入力光ファイバ (4 a) と上記 n本の出力光ファイバ (4b— 1, 4 b— 2) が多芯フエルール (43) により一体固定されるとともに、 該入力コリ メータ (l a) と該出力集光手段 (l b) とが単一のレンズ (1) で兼用され、 且つ、該入力集光 ¥段(2 a)と該出力コリメータ(2 b) とが単一のレンズ(2) で兼用されることを特徴とする、 請求の範囲第 14項に記載の反射型可変光偏向 器を用いた光デバイス。
18. 該 Ι Χη光スィッチが、 該外部入力信号を連続的に変化させることによ り、 1本の出力光ファイバのコアに集光する光量を変化させて、 当該出力光ファ ィバの光出力強度を可変にする可変光減衰機能を有することを特徴とする、 請求 の範囲第 14〜第 17項のいずれか 1項に記載の反射型可変光偏向器を用いた光 デバイス。
19. 該 1 Xn光スィッチが、
該可変光減衰機能を駆動すベく連続的に変化する該外部入力信号を生成する可 変光減衰用信号源 (9) と、
該所定値の該外部入力信号を生成するスイッチング用信号源 (8) とをそなえ たことを特徴とする、 請求の範囲第 18項に記載の反射型可変光偏向器を用いた 光デバイス。
20. n本の入力光ファイバと、
上記 n本 (nは 2以上の整数) の入力光ファイバ (4 a— l, 4 a— 2) から それぞれ出射される光をそれぞれコリメートするための入力コリメ一夕 (1 a) と、
該入力コリメ一夕 (l a) から出射されるコリメート光を集光する入力集光手
段 (2 a) と、
それぞれ、 該入力集光手段 (2 a) で集光された光を透過するとともに、 その 透過光の出力角度が外部入力信号に応じて変化する可変光偏向素子 (3) と、 該 可変光偏向素子 (3) の透過光を反射する反射素子 (4) とをそなえて成る n個 の反射型可変光偏向器 (34— 1, 34-2) と、
該反射型可変光偏向器 (34— 1, 34-2) の該反射素子 (4) で反射され た光をコリメートする出力コリメ一夕 (2 b) と、
該出力コリメ一夕 (2 b) から出射されるコリメート光を集光する出力集光手 段 (1 a) と、
該反射型可変光偏向器 (34— 1, 34— 2) での該透過光の出力角度に応じ た該出力集光手段 (l b) の 1以上の集光位置にコアが位置するよう設けられた m本(mは 1以上の整数)の出力光ファイバ(4b—l, 4b— 2) とをそなえ、 該外部入力信号を所定値に切り替えて該透過光の出力角度を変化させることで、 該出力光ファイバ(4 b— 1, 4 b— 2)のコアに上記 n本の入力光ファイバ (4 a— 1, 4 a-2) のいずれかについての該出力集光手段 (l b) からの光を集 光させる n Xm光スィツチとして用いられることを特徴とする、 反射型可変光偏 向器を用いた光デバイス。
21. 上記 mが 2以上である場合に、 該入力光ファイバ(4 a— 1, 4 a— 2) と該出力光ファイバ (4b— 1, 4b— 2) の配置関係に応じて該入力光フアイ ノ (4 a— 1, 4 a-2) と該出力光ファイバ (4b— l, 4 b— 2) との間の 光路を変更する光路変更手段 (5) が設けられていることを特徴とする、 請求の 範囲第 20項に記載の反射型可変光偏向器を用いた光デバイス。
22. 該入力光ファイバ (4 a— 1, 4 a-2) と上記 n本の出力光ファイバ (4 b- 1, 4 b— 2) とが多芯フエルール (44) により一体固定されるとと もに、該入力コリメ一タ(1 a)と該出力集光手段(l b)とが単一のレンズ(1) で兼用されることを特徴とする、 請求の範囲第 20項又は第 21項に記載の反射 型可変光偏向器を用いた光デバイス。
23. 該入力光ファイバ (4 a— 1, 4 a-2) と上記 n本の出力光ファイバ (4b- l, 4b— 2) が多芯フエルール (44) により一体固定されるととも に、 該入力集光手段 (2 a) と該出力コリメ一夕 (2 b) とが単一のレンズ (2) で兼用されることを特徴とする、 請求の範囲第 20項又は第 21項に記載の反射 型可変光偏向器を用いた光デバイス。
24. 該入力光ファイバ (4 a— 1, 4 a-2) と上記 n本の出力光ファイバ (4 b— 1, 4 b-2) が多芯フエルール (44) により一体固定されるととも に、 該入力コリメータ (l a) と該出力集光手段 (l b) とが単一のレンズで兼 用され、 且つ、 該入力集光手段 (2 a) と該出力コリメータ (2 b) とが単一の レンズ (2) で兼用されることを特徴とする、 請求の範囲第 20項又は第 22項 に記載の反射型可変光偏向器を用いた光デバイス。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/006583 WO2004003652A1 (ja) | 2002-06-28 | 2002-06-28 | 反射型可変光偏向器及びそれを用いた光デバイス |
JP2004517217A JP4382661B2 (ja) | 2002-06-28 | 2002-06-28 | 反射型可変光偏向器及びそれを用いたデバイス |
US10/994,789 US7280718B2 (en) | 2002-06-28 | 2004-11-23 | Reflective adjustable optical deflector and optical device employing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/006583 WO2004003652A1 (ja) | 2002-06-28 | 2002-06-28 | 反射型可変光偏向器及びそれを用いた光デバイス |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/994,789 Continuation US7280718B2 (en) | 2002-06-28 | 2004-11-23 | Reflective adjustable optical deflector and optical device employing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004003652A1 true WO2004003652A1 (ja) | 2004-01-08 |
Family
ID=29808167
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2002/006583 WO2004003652A1 (ja) | 2002-06-28 | 2002-06-28 | 反射型可変光偏向器及びそれを用いた光デバイス |
Country Status (3)
Country | Link |
---|---|
US (1) | US7280718B2 (ja) |
JP (1) | JP4382661B2 (ja) |
WO (1) | WO2004003652A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070097323A1 (en) * | 2005-10-31 | 2007-05-03 | Charles Otis | Electro-optical wobulator |
JP4994826B2 (ja) | 2006-12-25 | 2012-08-08 | オリンパス株式会社 | レーザ顕微鏡 |
DE102012202177B3 (de) * | 2012-02-14 | 2012-12-27 | Trumpf Laser Gmbh + Co. Kg | Freistrahloptische Faser-zu-Faser-Kopplungsvorrichtung |
CN105446048B (zh) * | 2014-05-27 | 2017-06-20 | 华为技术有限公司 | 可调光衰减器 |
US9632253B1 (en) * | 2015-11-12 | 2017-04-25 | Alliance Fiber Optic Products, Inc. | Variable optical attenuator with a transmitting non-attenuating diffracting prism |
CN113544561A (zh) * | 2019-02-27 | 2021-10-22 | 国立大学法人香川大学 | 芯选择开关和光节点装置 |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3485553A (en) * | 1967-09-19 | 1969-12-23 | Honeywell Inc | Electro-optic light beam deflector |
JPS50854A (ja) * | 1973-05-01 | 1975-01-07 | ||
US3869197A (en) * | 1973-07-30 | 1975-03-04 | Eastman Kodak Co | Light-deflecting system for effecting bragg diffraction over a wide bandwidth |
US4112461A (en) * | 1976-10-05 | 1978-09-05 | Eastman Kodak Company | Multiwavelength light beam deflection and modulation |
JPS56120262A (en) * | 1980-02-27 | 1981-09-21 | Nec Corp | Photodeflector for electric-optics |
JPS5890620A (ja) * | 1981-11-25 | 1983-05-30 | Omron Tateisi Electronics Co | 電気光学スイツチ |
JPS5890619A (ja) * | 1981-11-25 | 1983-05-30 | Omron Tateisi Electronics Co | 電気光学スイツチ |
JPS595230A (ja) * | 1982-06-30 | 1984-01-12 | Omron Tateisi Electronics Co | 光偏向器 |
JPS60242434A (ja) * | 1984-05-16 | 1985-12-02 | Omron Tateisi Electronics Co | 光偏向器 |
JPS61264325A (ja) * | 1985-05-18 | 1986-11-22 | Toshio Utsunomiya | 光偏向素子 |
JPS61270736A (ja) * | 1985-05-27 | 1986-12-01 | Kunihiro Nagata | 光偏向素子 |
WO1988008993A1 (en) * | 1987-05-04 | 1988-11-17 | Unisys Corporation | Integrated solid state non-volatile fiber optic switchboard |
JPH0194328A (ja) * | 1987-10-07 | 1989-04-13 | Kunihiro Nagata | 光偏向素子 |
US5082368A (en) * | 1987-11-06 | 1992-01-21 | U.S. Philips Corp. | Heterodyne optical time domain reflectometer |
US5159351A (en) * | 1988-05-20 | 1992-10-27 | Minolta Camera Co., Ltd. | Light deflecting device |
US5350913A (en) * | 1992-04-24 | 1994-09-27 | Hamamatsu Photonics K.K. | Light pulse intensity regenerator, light tranforming repeater, pre-amplifier for light signal, light intensity change measuring apparatus, and stabilized light source |
JPH11264954A (ja) * | 1998-03-16 | 1999-09-28 | Fuji Elelctrochem Co Ltd | 光サーキュレータ及び光スイッチ |
JPH11271816A (ja) * | 1998-03-24 | 1999-10-08 | Kanagawa Acad Of Sci & Technol | レーザ光制御装置及び方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5918932A (ja) | 1982-07-23 | 1984-01-31 | Matsushita Electric Ind Co Ltd | 光偏向装置 |
JP3111453B2 (ja) | 1988-05-20 | 2000-11-20 | ミノルタ株式会社 | 光プリントヘッド |
JP3248241B2 (ja) * | 1992-05-15 | 2002-01-21 | キヤノン株式会社 | ファインダー装置 |
JPH0635011A (ja) | 1992-07-16 | 1994-02-10 | Alps Electric Co Ltd | 光偏向装置 |
US6704474B1 (en) * | 1994-05-24 | 2004-03-09 | Raytheon Company | Optical beam steering system |
US5963682A (en) * | 1994-05-24 | 1999-10-05 | Raytheon Company | Optical beam steering system |
JPH10288798A (ja) | 1997-04-15 | 1998-10-27 | Tdk Corp | 光学偏向器 |
JPH10307307A (ja) | 1997-05-08 | 1998-11-17 | Tdk Corp | 光学偏向器 |
JPH11282029A (ja) | 1998-03-31 | 1999-10-15 | Minolta Co Ltd | 導波路型光スイッチ |
US6618104B1 (en) * | 1998-07-28 | 2003-09-09 | Nippon Telegraph And Telephone Corporation | Optical device having reverse mode holographic PDLC and front light guide |
DE69914511T2 (de) * | 1999-10-08 | 2004-12-23 | Agilent Technologies Inc., A Delaware Corp., Palo Alto | Optisches abbildungssystem |
US6787745B2 (en) * | 2001-01-09 | 2004-09-07 | Avanex Corporation | Fiber optic signal detector with two switchable input channels |
-
2002
- 2002-06-28 WO PCT/JP2002/006583 patent/WO2004003652A1/ja active Application Filing
- 2002-06-28 JP JP2004517217A patent/JP4382661B2/ja not_active Expired - Fee Related
-
2004
- 2004-11-23 US US10/994,789 patent/US7280718B2/en not_active Expired - Fee Related
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3485553A (en) * | 1967-09-19 | 1969-12-23 | Honeywell Inc | Electro-optic light beam deflector |
JPS50854A (ja) * | 1973-05-01 | 1975-01-07 | ||
US3869197A (en) * | 1973-07-30 | 1975-03-04 | Eastman Kodak Co | Light-deflecting system for effecting bragg diffraction over a wide bandwidth |
US4112461A (en) * | 1976-10-05 | 1978-09-05 | Eastman Kodak Company | Multiwavelength light beam deflection and modulation |
JPS56120262A (en) * | 1980-02-27 | 1981-09-21 | Nec Corp | Photodeflector for electric-optics |
JPS5890620A (ja) * | 1981-11-25 | 1983-05-30 | Omron Tateisi Electronics Co | 電気光学スイツチ |
JPS5890619A (ja) * | 1981-11-25 | 1983-05-30 | Omron Tateisi Electronics Co | 電気光学スイツチ |
JPS595230A (ja) * | 1982-06-30 | 1984-01-12 | Omron Tateisi Electronics Co | 光偏向器 |
JPS60242434A (ja) * | 1984-05-16 | 1985-12-02 | Omron Tateisi Electronics Co | 光偏向器 |
JPS61264325A (ja) * | 1985-05-18 | 1986-11-22 | Toshio Utsunomiya | 光偏向素子 |
JPS61270736A (ja) * | 1985-05-27 | 1986-12-01 | Kunihiro Nagata | 光偏向素子 |
WO1988008993A1 (en) * | 1987-05-04 | 1988-11-17 | Unisys Corporation | Integrated solid state non-volatile fiber optic switchboard |
JPH0194328A (ja) * | 1987-10-07 | 1989-04-13 | Kunihiro Nagata | 光偏向素子 |
US5082368A (en) * | 1987-11-06 | 1992-01-21 | U.S. Philips Corp. | Heterodyne optical time domain reflectometer |
US5159351A (en) * | 1988-05-20 | 1992-10-27 | Minolta Camera Co., Ltd. | Light deflecting device |
US5350913A (en) * | 1992-04-24 | 1994-09-27 | Hamamatsu Photonics K.K. | Light pulse intensity regenerator, light tranforming repeater, pre-amplifier for light signal, light intensity change measuring apparatus, and stabilized light source |
JPH11264954A (ja) * | 1998-03-16 | 1999-09-28 | Fuji Elelctrochem Co Ltd | 光サーキュレータ及び光スイッチ |
JPH11271816A (ja) * | 1998-03-24 | 1999-10-08 | Kanagawa Acad Of Sci & Technol | レーザ光制御装置及び方法 |
Non-Patent Citations (4)
Title |
---|
KRYZHANOVSKII, V.I. et al., "Electro-optic reflection deflector made from a KDP crystal", Soviet Journal of Optical Technology, October 1978, Vol. 45, No. 10, pages 631 to 633 * |
KRYZHANOVSKII, V.I. et al., "Fast-response electro optic deflectors and their use in the control of time parameters of laser pulses in the range 10-11-10-8 sec." Soviet Journal of Quantum Electronics, January 1982, Vol. 12, No. 1, pages 48 to 52 * |
UTSUNOMIYA, T. et al., "Optical deflector using PLZT ceramics". Japanese Journal of Applied Physics, Supplement, 1985, Vol. 24, suppl. 24-2, pages 281 to 283 * |
UTSUNOMIYA, T. et al., "Prism-type optical deflector using PLZT ceramics". Japanese Journal of Applied Physics, Supplement, 1985, Vol. 24, suppl. 24-3, pages 169 to 171 * |
Also Published As
Publication number | Publication date |
---|---|
US20050068645A1 (en) | 2005-03-31 |
JPWO2004003652A1 (ja) | 2005-10-27 |
US7280718B2 (en) | 2007-10-09 |
JP4382661B2 (ja) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107850743B (zh) | 使用偏振束置换器的光耦合 | |
US5648859A (en) | Liquid crystal microprism array, free-space optical interconnector, and optical switch | |
US6865312B2 (en) | Compact dynamic crossbar switch by means of planar optics | |
US6539132B2 (en) | Acousto-optical switch for fiber optic lines | |
US9052566B2 (en) | Optical switch | |
JP4205900B2 (ja) | 光スイッチ | |
JP2000056146A (ja) | 自己導波光回路 | |
CN104838299B (zh) | 光栅耦合器的光栅耦合方法、装置及系统 | |
US6483961B1 (en) | Dual refraction index collimator for an optical switch | |
CN108387978B (zh) | 光耦合系统及光耦合方法 | |
JPS61113009A (ja) | 光マルチプレクサ/デマルチプレクサ | |
US8654424B2 (en) | Multibeam deflector for separating beams output from optical deflection devices | |
KR20010085963A (ko) | 다중 포트 광섬유 절연체 | |
US6473544B1 (en) | Optical switch having equalized beam spreading in all connections | |
WO2004003652A1 (ja) | 反射型可変光偏向器及びそれを用いた光デバイス | |
US20020136482A1 (en) | Optical switch using total internal reflection and a method of switching signals using the same | |
JP2004021072A (ja) | 光スイッチおよび光スイッチモジュール | |
US6529653B1 (en) | System and method for orienting and positioning optical fibers | |
US6912335B2 (en) | Optical switch with reduced beam divergence | |
JP7533856B2 (ja) | 光変調器 | |
JP5104568B2 (ja) | 導光板および光モジュール | |
JP3555888B2 (ja) | 自己導波光回路 | |
JP2003241002A5 (ja) | ||
US20010006568A1 (en) | 11/2 X 2 Optical switch | |
WO2023210234A1 (ja) | 可変光減衰器及び可変光減衰システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004517217 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10994789 Country of ref document: US |