WO2004001835A1 - Heat treating equipment, and methods of manufacturing substrate and semiconductor device - Google Patents
Heat treating equipment, and methods of manufacturing substrate and semiconductor device Download PDFInfo
- Publication number
- WO2004001835A1 WO2004001835A1 PCT/JP2003/007723 JP0307723W WO2004001835A1 WO 2004001835 A1 WO2004001835 A1 WO 2004001835A1 JP 0307723 W JP0307723 W JP 0307723W WO 2004001835 A1 WO2004001835 A1 WO 2004001835A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- heat treatment
- support
- treatment apparatus
- main body
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 230
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 27
- 239000004065 semiconductor Substances 0.000 title claims abstract description 15
- 238000000034 method Methods 0.000 title abstract description 21
- 238000010438 heat treatment Methods 0.000 claims abstract description 105
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 45
- 239000010703 silicon Substances 0.000 claims abstract description 45
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 44
- 239000010409 thin film Substances 0.000 claims abstract description 25
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000010453 quartz Substances 0.000 claims abstract description 22
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 34
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 34
- 238000012545 processing Methods 0.000 claims description 13
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 229910021397 glassy carbon Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 238000011068 loading method Methods 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims 1
- 235000012431 wafers Nutrition 0.000 description 39
- 239000010408 film Substances 0.000 description 22
- 238000006243 chemical reaction Methods 0.000 description 17
- 230000005489 elastic deformation Effects 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 230000032258 transport Effects 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 238000005452 bending Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000008602 contraction Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000002791 soaking Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- -1 oxygen ions Chemical class 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 241001589086 Bellapiscis medius Species 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 240000000731 Fagus sylvatica Species 0.000 description 1
- 235000010099 Fagus sylvatica Nutrition 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/673—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
- H01L21/67303—Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements
- H01L21/67309—Vertical boat type carrier whereby the substrates are horizontally supported, e.g. comprising rod-shaped elements characterized by the substrate support
Definitions
- Heat treatment apparatus substrate manufacturing method, and semiconductor device manufacturing method
- the present invention relates to a heat treatment apparatus for heat treating a semiconductor wafer, a glass substrate, and the like, a method for producing a substrate for producing a semiconductor wafer, a glass substrate, and the like, and a method for producing a semiconductor device having a step of heat treating the substrate.
- a substrate support boat
- the substrate is supported by the support portion.
- the heat treatment is performed at about 1000 ° C. or more, there is a problem that the substrate is damaged near the supporting portion.
- the silicon wafer has a problem that a slip line is generated and the silicon wafer is warped. When such scratches or slip lines occur, the flatness of the back surface of the substrate deteriorates.
- the silicon wafers supported by the substrate support each contain silicon.
- a temperature difference occurs between the peripheral portion and the central portion in the wafer (see, for example, Japanese Patent Application Laid-Open No. Hei 5-68694).
- the silicon wafer is elastically deformed.
- the silicon wafer collides with a substrate support made of silicon carbide having a high hardness or a support of a substrate support made of quartz or silicon having the same hardness, and scratches are generated.
- Yield stress for dislocation generation is significantly reduced at the site where single-crystal silicon wafers are scratched (see Crystal Engineering and Evaluation Technology Committee 144, 68th Study Group (Kadono, p. 4)).
- dislocations are generated from the flaws during the subsequent heating process or high-temperature heat treatment, and further, a slip line grows, and the silicon wafer eventually warps.
- flaws occur during the heating process, and subsequent heat treatment causes the silicon wafer to warp in the same process.
- FIG. 19 shows an example of the scratch 2 and the slip line 3 generated on the silicon wafer 1. 4 indicates a notch.
- a method for reducing the slip line a method in which the surface is supported by a polished substrate support (a holder having the same size as the substrate) can be considered. In this case, the surface is supported over the entire support surface.
- a polished substrate support a holder having the same size as the substrate
- FIG. 20 shows an example of a flaw 6 generated on the quartz substrate 5.
- the present invention solves the above-mentioned conventional problems, reduces the occurrence of scratches or warpage of a substrate generated during heat treatment, and enables a high-quality substrate or semiconductor device to be manufactured. It aims to provide a method for manufacturing devices.
- the present inventors have observed flaws generated by a conventional heat treatment apparatus. As a result, it was found that scratches occurred only on the substrate, and hardly occurred on the support portion of the silicon carbide substrate support. Further, when the scratches were observed in detail with an optical microscope, it was confirmed that the scratches were point-like scratches (small area, usually a size of several / m ⁇ several meters or less). This means that the effective contact area of the support portion with the substrate is small, and that a relatively large force per unit area (concentration of static load due to its own weight) is applied to the small contact area of the substrate at the support portion. In the process of elastic deformation, the force is estimated to increase further (dynamic load concentration).
- the hardness of the substrate support is relatively large (hardness of silicon carbide: about 2500 kgf / mm2, hardness of silicon: 1000 to 1050 kgi / mm2, hardness of quartz: 950 to; LOOO kgf Zmm 2) As a result, it was determined that a flaw was generated in the contact area of the substrate contacting the substrate support.
- a first feature of the present invention is a heat treatment apparatus for performing heat treatment in a state where at least one substrate is supported on a substrate support,
- the support is provided in a heat treatment apparatus having a main body and a support in contact with the substrate, and the support is formed of an elastic body having a hollow portion. It is preferable that the inside of the hollow portion is not airtight to the outside. It is preferable that the supporting portion is formed of a thin film. The thickness of this film is 20 It is preferably at least m and at most 500 zm. Further, it is preferable that the supporting portion is configured to be in surface contact with the substrate when supporting the substrate.
- the supporting portion is formed by projecting a thin film with a curved surface toward the substrate side (for example, a hemispherical shape, a semi-elliptical spherical shape, a tunnel shape, etc., hereinafter referred to as a dome structure).
- a thin film with a curved surface toward the substrate side
- the thin film has elasticity due to the weight of the substrate, and that only the leading end becomes flat.
- the shape of the hollow portion is not limited as long as a space is formed therein, such as a spherical shape, a hemispherical shape, a semi-elliptical shape, and a tunnel shape. Therefore, the effective contact area for supporting the substrate is increased, the contact is made microscopically over a large area (load distribution), and the surface is deformed according to the back surface shape of the substrate and the elastic deformation during heat treatment. This can prevent the substrate from being damaged.
- the component constituting the support portion is selected from silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a composite thereof. This is because these materials are not easily affected as contaminants in the silicon LSI or LCD manufacturing process.
- the support is detachable from the substrate support.
- at least one contact portion between the main body and the support is provided with a means for facilitating the movement of the support relative to the main body.
- This means is constituted, for example, by polishing at least one contact portion between the main body and the support.
- the heat treatment is performed, for example, at a temperature of 100 ° C. or more, and further, a temperature of 135 ° C. or more.
- the substrate support is movable with respect to the main body and the main body. And a movable body provided on the movable body. And a supporting portion that comes into contact with the substrate, wherein the supporting portion is a heat treatment device that is formed of an elastic body having a hollow portion.
- the above-described support portion can be directly movable with respect to the substrate support. However, by providing the movable body in this way, it is possible to smoothly cope with elastic deformation during heat treatment of the substrate.
- the movable body may be slidable or rotatable with respect to the substrate support, or may be freely slidable and rotatable.
- the support portion is made of a simple elastic body such as a plate or a wire, the support cannot cope with the horizontal (horizontal) movement due to the thermal expansion and contraction of the substrate, and the substrate may be damaged.
- the supporting portion is made of a hollow elastic body and is rotatable and slidable, it can absorb a lateral movement of the substrate due to thermal expansion and contraction of the substrate.
- the present invention includes a method of manufacturing a substrate using the heat treatment apparatus described above, and a third feature of the present invention is that the method includes a step of loading at least one substrate into a processing chamber and a hollow portion.
- a method of manufacturing a substrate comprising: a step of supporting a substrate by a support portion made of an elastic body; a step of performing a heat treatment while the substrate is supported by the support portion; and a step of carrying out the substrate from a processing chamber. is there.
- the present invention includes a method of manufacturing a semiconductor device using the above-described heat treatment apparatus.
- a fourth feature of the present invention is that a step of loading at least one substrate into a processing chamber,
- a method of manufacturing a semiconductor device comprising: a step of supporting a substrate by a supporting portion made of an elastic body having the same; a step of performing heat treatment while the substrate is supported by the supporting portion; and a step of carrying out the substrate from a processing chamber. It is in. ⁇ Brief description of the drawings
- FIG. 1 is a perspective view showing a heat treatment apparatus according to an embodiment of the present invention.
- FIG. 2 is a sectional view showing a reaction furnace used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 3 is a cross-sectional view showing a first example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 4 shows a first example of a substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along the line III-III of FIG.
- FIG. 5 is a schematic diagram schematically illustrating an operation principle of the support portion used in the heat treatment apparatus according to the embodiment of the present invention, and illustrating an example of an amount of deformation when a silicon carbide plate having a thickness of d1 is bent only by A. is there.
- FIG. 6 is a schematic diagram schematically illustrating an operation principle of the support portion used in the heat treatment apparatus according to the embodiment of the present invention, and illustrating an example of a deformation amount when the silicon carbide plate having a thickness of d2 is bent by A. is there.
- FIG. 7 shows the film thickness, the radius of contact circle, and the stress value applied to the thin film when a load of 41 gw was applied to the support (radius of curvature 50 mm) used in the heat treatment apparatus according to the embodiment of the present invention.
- 6 is a graph showing the relationship of.
- FIG. 8 shows the film thickness, the radius of contact circle, and the stress value applied to the thin film when a load of 41 gw was applied to the support (radius of curvature 30 mm) used in the heat treatment apparatus according to the embodiment of the present invention.
- 6 is a graph showing the relationship of.
- FIG. 9 is a cross-sectional view showing a deformed state of the support portion with respect to the deformation of the substrate in the first example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 10 is a sectional view showing a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 11 shows a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along the line BB of FIG.
- FIG. 12 shows a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention. It is a top view which shows the support part in an example.
- FIG. 13 shows a supporting portion in a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along line C-C of FIG.
- FIG. 14 is a cross-sectional view showing a third example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 15 shows a third example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along line DD of FIG.
- FIG. 16 is a perspective view showing a fourth example of the support portion of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 17 is a cross-sectional view taken along the line EE of FIG. 16 showing a fourth example of the support portion of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 18 is a sectional view showing a fifth example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
- FIG. 19 is a back view showing a silicon wafer as a result of heat treatment performed by a conventional heat treatment apparatus.
- FIG. 20 is a rear view showing a quartz substrate as a result of heat treatment performed by a conventional heat treatment apparatus.
- FIG. 1 shows a heat treatment apparatus 10 according to an embodiment of the present invention.
- the heat treatment apparatus 10 is, for example, a vertical type and has a housing 12 in which a main part is arranged.
- a pod stage 14 is connected to the housing 12, and the pod 16 is transported to the pod stage 14.
- the pod 16 accommodates, for example, 25 substrates and is set on the pod stage 14 with a lid (not shown) closed. Be dropped.
- a pod transport device 18 is disposed at a position facing the pod stage 14. In the vicinity of the pod transport device 18, a pod shelf 20, a pod holder 22, and a substrate number detector 24 are arranged. The pod transport device 18 transports the pod 16 between the pod stage 14, the pod shelf 20 and the pod beech 22. The pod opener 22 opens the lid of the pod 16, and the number of substrates in the pod 16 with the lid opened is detected by the substrate number detector 24.
- a substrate transfer machine 26 a notch aligner 28, and a substrate support 30 (port) are arranged.
- the substrate transfer machine 26 has, for example, an arm 32 from which five substrates can be taken out. By moving the arm 32, the pod placed at the position of the pod orbner 22, the notch aligner 28 and The substrate is transported between the substrate supports 30.
- the notch liner 28 detects the notch or the orientation flat formed on the substrate and aligns the substrate.
- the substrate support 30 has an upper plate 34 and a lower plate 36, and the upper plate 3 and the lower plate 36 are connected to each other by, for example, three columns 38. For example, seventy-five substrates are supported on the support 38, and are loaded into a reaction furnace 40 described later.
- the number of columns 38 is not limited to three, but may be any number as long as the substrate can be supported.
- a reactor 40 is shown.
- the reaction furnace 40 has a reaction tube 42 into which the substrate support 30 is inserted.
- the lower part of the reaction tube 42 is opened to insert the substrate support 30, and this open part is sealed by a seal cap 44.
- the periphery of the reaction tube 42 is covered with a soaking tube 46, and a heater 48 is arranged around the soaking tube 46. Have been.
- the thermocouple 50 is arranged between the reaction tube 42 and the soaking tube 46 so that the temperature inside the reaction furnace 40 can be monitored.
- the reaction tube 42 is connected with an introduction tube 52 for introducing a processing gas and an exhaust tube 54 for exhausting the processing gas.
- the pod 16 containing a plurality of substrates is set on the pod stage 14, the pod 16 is transported from the pod stage 14 to the pod shelf 20 by the pod transport device 18. Stock at 0. Next, the pod 16 stored in the pod shelf 20 is transported to the pod opener 22 by the pod transport device 18 and set. The lid of the pod 16 is opened by the pod opener 22, and the number of substrates is set. The number of boards contained in the pod 16 is detected by the detector 24.
- the substrate is taken out of the pod 16 at the position of the pod holder 22 by the substrate transfer machine 26 and transferred to the notch liner 28.
- the notch is detected while rotating the substrate, and a plurality of substrates are aligned at the same position based on the detected information.
- the substrate is taken out of the notch liner 28 by the substrate transfer machine 26 and transferred to the substrate support 30.
- a batch of substrates is transferred to the substrate support 30 in this manner, for example, a substrate loaded with a plurality of substrates in a reaction furnace 40 set at a temperature of about 700 ° C.
- the support 30 is inserted, and the inside of the reaction tube 42 is sealed with a seal cap 44.
- the processing gas is introduced from the introduction pipe 52.
- Processing gases include nitrogen, argon, hydrogen, oxygen and the like.
- the substrate is, for example, 100 °. It is heated to a temperature higher than about.
- the temperature of the substrate is raised according to a preset temperature raising program.
- the temperature in the furnace is lowered to about 700 ° C., and then the substrate support 30 is unloaded from the reaction furnace 40 and supported by the substrate support 30.
- the substrate support 30 is kept at a predetermined position until all the substrates are cooled.
- the temperature of the substrate is lowered according to a preset temperature reduction program.
- the substrate of the substrate support 30 in the standby state is cooled down to a predetermined temperature
- the substrate is taken out from the substrate support 30 by the substrate transfer device 26, and the empty substrate set in the pod opener 22 is removed.
- the pod 16 containing the substrate is transported to the pod shelf 20 by the pod transport device 18 and further transported to the pod stage 14 to complete the process.
- the substrate support 30 has a main body 56 composed of, for example, three columns 38 and a mounting portion 60.
- the component constituting main body portion 56 is silicon carbide, silicon, or quartz.
- the mounting portion 60 is formed on the main body portion 56 continuously inside the main body portion 56 in the longitudinal direction.
- the mounting portion 60 is formed of a groove, and has an inner wall 62, an upper wall 64, and a lower wall 66, and the substrate 68 can be freely inserted into the mounting portion 60. ing.
- the cross-sectional shape of the mounting portion 60 is not limited to a quadrangle, and may be another polygon, a part of a circle or an ellipse.
- the support portion 58 is mounted on the lower wall 66 of the mounting portion 60 so as to have a hollow portion, that is, to have a space inside.
- the support portion 58 has a thin-film dome structure, for example, a silicon carbide thin film having a thickness of 50 zm, and is formed in an upwardly protruding dome shape (for example, a hemispherical shape).
- the substrate 68 is made of, for example, a silicon wafer having a diameter of 300 mm, A portion near the periphery of the back surface of the substrate 68 comes into contact with the support portion 58, and the substrate 68 is supported by the substrate support 30.
- the supporting portion 58 elastically deforms according to the shape of the substrate 68 by the weight of the substrate 68, and supports the substrate 68 with a relatively large area. Even during the heat treatment, the supporting portion 58 on which the substrate 68 is placed is elastically deformed, so that it can contact and support the substrate 68 with a certain area against various deformations of the substrate 68. It has become.
- the support portion 58 is formed only in the plane of the mounting portion 60, but is not limited to this, and is formed beyond the plane of the mounting portion 60. You can also.
- the support portion 58 is merely mounted on the mounting portion 60, and the inside, that is, the inside of the hollow portion is not airtightly held to the outside, but communicates with the outside. I have. If the inside of the hollow portion is kept airtight with respect to the outside, the gas inside the hollow portion expands during the heat treatment, and the support portion 58 is deformed or damaged. Therefore, the inside of the hollow portion must not be airtight.
- the supporting portion 58 of the thin film dome structure is formed as follows. First, for example, a carbon fiber is processed into a hemispherical shape to form a carbon mold. Next, CVD coating is performed on the carbon mold to form a coating film on the surface of the mold.
- the coating film is preferably made of silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a mixture thereof. Thereafter, the mold 58 is removed from the formed coating film, or the mold is baked, whereby the support portion 58 of the thin film dome structure is manufactured.
- the thin film forming the supporting portion 58 has a thickness of 20 or more and 500 or less. If the thickness of the thin film is thinner than 20 Aim, it is difficult to maintain the strength of the supporting portion 58, and there is a possibility that the thin film may be damaged. If the thickness is larger than 500 x m, elasticity cannot be obtained.
- the operation principle of the support portion 58 in the above embodiment will be described.
- the amount of macro elastic deformation of the member can be increased with a relatively small force.
- the above embodiment utilizes this property.
- a silicon carbide film that can increase the amount of deformation and has relatively high hardness is, for example, a silicon wafer. This is the reason why elastic shape change is possible with force of c (self-weight is about 122 gw).
- FIGS. 5 and 6 schematically show examples of deformation amounts in silicon carbide when two silicon carbide plates (thicknesses d 1 and 2 d 1) having different thicknesses are bent by the same size A. It is shown in a typical manner. Plates of length L have the maximum elongation or maximum shrinkage (strain) of the outer and inner surfaces of each plate and of L-AL, L + 2AL, and L-12AL. In Fig. 6, when the maximum strain rate 2 AL ZL exceeds the limit value of the inherent elastic deformation strain rate of the silicon carbide material, the silicon carbide film is plastically deformed, and even if the force F2 is removed, the silicon carbide film remains intact.
- the maximum strain rate is as small as ALZL, even when the silicon carbide film with a thickness of 2d1 (Fig. 6) is bent by the same A. If is within the range of elastic deformation, the force F 1 (about 18 of F 2) is removed, and it returns to the original shape. In the case of Fig. 5, even if the amount of deformation is increased from A by further applying a force, the deformation can be within the range of elastic deformation.
- the elastic deformation of the thin film can be achieved even if the macro deformation amount of the support portion 58 is relatively large. It becomes possible. Therefore, with a relatively small force, the supporting contact surface is deformed corresponding to the shape of the wafer or the substrate, and the deformation is possible within the range of elastic deformation, and the substrate comes into contact with the substrate 68
- the portion where the support portion 58 actually contacts can be a relatively large surface.
- the thickness of the support portion 58 is determined by the Young's modulus and Poisson's ratio of silicon carbide, the load applied to the support portion 58, the shape of the support portion 58, and the design of the contact surface area.
- the supporting portion 58 is made hemispherical, the radius of curvature is 50 mm, and the load applied to one supporting portion 58 is 41 gw (when supporting a silicon wafer having a diameter of 300 mm and a weight of 122 gw, three supporting portions are required. 58 (3 places), and if the radius of the contact area is to be 0.5 mm or more, the simulation results (Fig. 7) show that the film thickness is 100 m to 50 m (50 m).
- the thickness of the support portion 58 is set to, for example, 70 Xm, a support method that satisfies a desired load distribution can be realized.
- the Young's modulus, Poisson's ratio, and bending strength of the silicon carbide film to be 4.9 E11 Pa, 0.24, and 6.0 E8 Pa, respectively, the allowable stress applied to the film is bent. This is the case when the strength is 1/10 or less.
- the radius of the contact region can be designed to be about 0.3 mm based on the results shown in FIG.
- Applicable film thickness range when the shape of the supporting part 58 and the quality of the silicon carbide film to be used are different (the above physical property constants are different), or when the allowable stress value applied to the film is not the bending strength of 1Z10 Is obviously different.
- a silicon thin film, a silicon nitride thin film, a quartz thin film, or a glassy carbon thin film is used as the support portion 58 or a component supported by a composite thereof is used, the load distribution utilizing elastic deformation is similarly reduced. It is possible.
- the applicable film thickness range is different, but the applicable range can be obtained by the same procedure as described above.
- FIG. 9 shows a deformed state of the above-described hemispherical support portion 58 in the dome structure.
- the support portion 58 is hemispherical and protrudes from the mounting portion 60. That is, the support portion 58 is formed of an elastic body that is a curved surface when the substrate 68 is not supported.
- FIG. 9 (b) When the substrate 68 is placed, as shown in FIG. 9 (b), during the b heat treatment in which the supporting portion 58 is elastically deformed corresponding to the substrate shape due to the weight of the substrate 68, For example, when the periphery of the substrate 68 is warped upward, as shown in FIG.
- the top portion of the support portion 58 is inclined inward so as to match the rear surface angle of the substrate 68.
- the top portion of the support portion 58 is inclined outward so as to match the back surface angle of the substrate 68.
- the deformation of the substrate 68 can be absorbed by the elastic deformation of the support portion 58.
- the support portion 58 is not limited to a hemispherical shape, and may have a dome structure.
- FIGS. 10 and 11 show a second example of the substrate support 30.
- the main body portion 56 has a holder 70 mounted on the cutout portion 60 of the support column 38 described above.
- the holder 70 has a disk shape having a diameter slightly smaller than that of the substrate 68, and is made of silicon carbide, silicon or quartz.
- the holder 70 has an insertion groove 72 formed therein. When the substrate 68 is transferred to the substrate support 30, the insertion groove 72 is provided at the tip of the arm of the substrate transfer machine described above. The twister to be inserted is inserted.
- the support portion 58 is disposed on the upper surface of the holder 70 and is formed in a tunnel shape formed of an arc excluding the insertion groove 72. That is, as shown in FIGS. 12 and 13, the support portion 58 is formed in a semicircular cross section from a thin film, and when the substrate 68 is placed on the support portion 58, the support portion 58 Is elastically deformed by its own weight according to the shape of the substrate, comes into surface contact with the substrate 68, and can be deformed corresponding to the deformation of the substrate 68.
- FIGS. 14 and 15 show a third example of the substrate support 30.
- the third example there are four columns 38, and a mounting portion 60 is formed so as to connect these four columns 38.
- a lower wall 66 is formed in a horseshoe shape, and, for example, five hemispherical support portions 58 are formed on the lower wall 66 at predetermined intervals.
- the number of the support portions 58 is five in the third example, but is not limited to this. If the number is three or more, the substrate 68 can be stably supported.
- the support portion 58 is formed of a thin film, elastically deforms according to the substrate shape by its own weight, makes surface contact with the substrate 68, and deforms in accordance with the deformation of the substrate 68. Is what you do.
- the support portion 58 is not limited to a hemispherical shape. As in the dome structure or the fourth example shown in FIG. 16 and FIG. It can also be a circular tunnel.
- the support portion 58 may be formed integrally with the main body portion 56 (the mounting portion 60), or may be configured separately from the main body portion 56.
- the support portion 58 is formed integrally with the main body portion 56, there is a possibility that the substrate support 30 can be manufactured at low cost.
- the support portion 58 is formed separately from the main body portion 56, the support portion 58 can be detached from the main body portion 5.6 and attached to the main body portion 56, so that the support portion 58 can be easily replaced. Since the configuration of the main body portion 56 may be the same as that of the related art, the conventional substrate support 30 can be used as it is.
- the support portion 58 is formed separately from the main body portion 56, the support portion 58 is attached to the main body portion 56 in order to absorb a difference in thermal expansion (expansion and contraction difference) of the substrate 68. And move it. ' Specifically, it is only necessary to facilitate the sliding of the supporting portion 58 with respect to the main body portion 56, and the following methods are available to facilitate the sliding. (1) The surface of the portion on which the support portion 58 of the main body portion 56 is placed is smoothed, for example, by polishing. (2) If the surface of the main body 56 is large, a layer or a plate-like member having a polished surface is provided between the main body 56 and the support 58 (this layer or the plate-like member is made of silicon carbide). , Silicon, silicon nitride, quartz or vitreous carbon or a composite thereof).
- FIG. 18 shows a fifth example of the substrate support 30.
- a movable body 74 is provided between a main body section 56 (placement section 60) and a support section 58.
- the movable body 74 is made of silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a composite thereof, and is formed, for example, in an inverted hemisphere, and is movable with respect to the main body 56, that is, It is mounted on the main body 56 so as to be slidable.
- the supporting portion 58 has, for example, a dome structure (hemispherical shape) having a space formed therein as in the first example, and is placed so that the substrate 68 comes into contact with the supporting portion 58.
- the movable body 74 rotates as shown in FIG. 18 (b), or the movable body 74 slides as shown in FIG. 18 (c),
- the shrinkage of the substrate 68 can be absorbed and the occurrence of scratches or the like on the substrate 68 can be more reliably prevented.
- the measures (1) and (2) described above can be applied to one or both of the main body 56 and the movable body 74.
- the support part 58 and the movable body 74 may be an integral part or an assembled part.
- the heat treatment temperature is the melting point of silicon. Applicable even when the temperature is raised to near 2 ° C. If the amount of deformation of the substrate 68 is large even if the support portion 58 is provided, the substrate 68 Although there is a possibility of contact with the end of the body 56, the occurrence of scratches can be reduced by rounding the end of the body 56.
- the substrate support 30 used has the structure shown in FIGS. 3 and 4, the main body 56 of the substrate support 30 is made of silicon carbide, and the support 58 is a silicon carbide film formed by a chemical vapor deposition method. To form a hemisphere.
- This support part 58 has a radius of curvature of 50 mm and a film thickness of 60 m, and three (three places) are arranged.
- the heat treatment is performed using the heat treatment apparatus shown in FIGS. 1 and 2 under the following conditions. . 75 silicon wafers with a diameter of 300 mm were supported on the substrate support per process, and 100% argon was used as an atmospheric gas, and the silicon wafer was inserted into the reactor at an insertion speed of 10 OmmZ.
- the temperature in the tube when inserting the substrate support was 700 ° C. Thereafter, the temperature was raised from 700 ° C. to 1200 ° C. The temperature was raised at a rate of 16 ° CZ from 700 ° C. to 1000 ° C. and at a rate of 1.5 ° CZ from 1000 ° C. to 1200 ° C. Then, the temperature was maintained at 1200 ° C. for 1 hour, and thereafter, the temperature was lowered from 1200 ° C. to 700 ° C. The temperature was lowered from 1200 ° C to 1000 ° C at a rate of 1.5 ° C / min, and from 1000 ° C to 700 ° C at a rate of 15 ° CZ.
- the reason for raising and lowering the temperature in two stages is that if the temperature is rapidly changed at a high temperature, the temperature does not change uniformly within the substrate surface, causing slip. This is because it causes the occurrence.
- the temperature at which the substrate support was taken out of the reaction furnace was 700 ° C., and the substrate support was taken out at a rate of 10 Omm / min.
- the warpage amount was 10 xm or less, and no change was observed before the heat treatment in which the warpage amount was lOm or less.
- the measurement of the warpage was performed by erecting a silicon wafer perpendicular to the optical axis of the laser light, scanning the laser light, and calculating from the light reflected from the silicon wafer.
- the N number is 10 sheets.
- the same experiment as in the example was performed by using a conventional substrate support except for the support portion 58 in FIGS. 3 and 4 and directly supporting the silicon wafer on the silicon carbide substrate support. did.
- Fig. 19 on the back side of the silicon wafer, scratches with a size of 50 to 300 / m, a depth of about 5 m, and a height of about 10 occurred at three places corresponding to the support part did.
- the wounds generated many slip lines about 4 to 30 mm long.
- the silicon wafer had a warpage of less than 10 / m before the heat treatment, but a warp of about 60 to 90 m after the heat treatment.
- the N number is 10 sheets.
- the support portion is mainly hemispherical.
- the present invention is not limited to this, and the support portion may be spherical or semi-elliptical spherical.
- the shape may be an oval sphere, a column, a disk, a tunnel, or the like.
- a dome structure having a hollow portion may be used.
- the portion in contact with the substrate is a curved surface.
- a batch-type heat treatment apparatus for heat-treating a plurality of substrates is used as the heat treatment apparatus.
- the present invention is not limited to this. You may.
- the heat treatment apparatus of the present invention can also be applied to a substrate manufacturing process.
- oxygen ions are ion-implanted into a single crystal silicon wafer by an ion implanter or the like. Thereafter, the wafer into which the oxygen ions have been implanted is subjected to the heat treatment of the above embodiment. Annealing is performed at a high temperature of 1300 to 1400 ° C., for example, 1350 ° C. or more, for example, in an atmosphere of Ar and ⁇ 2 using a processing device. Through these processes, a SIMOX wafer in which the SiO 2 layer is formed inside the wafer (the SiO 2 layer is embedded) is produced.
- the heat treatment apparatus of the present invention can be applied to one step of a hydrogen anneal wafer manufacturing process.
- the wafer is annealed at a high temperature of about 1200 ° C. or more in a hydrogen atmosphere using the heat treatment apparatus of the present invention.
- This can reduce crystal defects in the wafer surface layer on which ICs (integrated circuits) are made, and can increase the crystal integrity.
- the use of the heat treatment apparatus of the present invention can prevent the occurrence of slip of the substrate.
- the heat treatment apparatus of the present invention can also be applied to a semiconductor device manufacturing process.
- heat treatment processes performed at relatively high temperatures such as wet oxidation, dry oxidation, hydrogen combustion oxidation (pyrogenic oxidation), and thermal oxidation processes such as HC1 oxidation, boron (B), phosphorus (P), arsenic ( It is preferable to apply the method to a thermal diffusion step of diffusing an impurity (dopant) such as As) or antimony (Sb) into a semiconductor thin film.
- dopant such as As
- Sb antimony
- the use of the heat treatment apparatus of the present invention can prevent the occurrence of slip.
- the present invention provides a heat treatment apparatus that needs to reduce the occurrence of scratches or warpage of a substrate during heat treatment, a method of manufacturing a substrate that needs to manufacture a high-quality substrate, and a method of manufacturing a high-quality semiconductor device. It can be used for the manufacturing method of the semiconductor device that needs it.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
Heat treating equipment and methods for manufacturing a high quality substrate and a high quality semiconductor device by reducing the occurrence of scratches on a silicon wafer or a quartz substrate during a heat treatment, suppressing the occurrence of slip lines on the silicon wafer, and suppressing the warpage of the silicon wafer, the equipment comprising a substrate support body (30) having a body part (56) formed of a plurality of columns (38), wherein support parts (58) coming into contact with the substrates (68), having curved surfaces projected toward the substrates (68), formed of thin film so as to provide spaces therein, elastically deformed when supporting the substrates (68) to support the substrates (68) on the surfaces thereof and to elastically deform according to the deformations of the substrates (68) are installed on placing parts (60) formed on the body parts (56).
Description
明 細 書 Specification
熱処理装置、 基板の製造方法及び半導体デバイスの製造方法 Heat treatment apparatus, substrate manufacturing method, and semiconductor device manufacturing method
技術分野 Technical field
本発明は、 半導体ウェハやガラス基板等を熱処理するための熱処理装置、 半導体ゥェ八やガラス基板等を製造する基板の製造方法、 及び基板を熱処理 する工程を有する半導体デバイスの製造方法に関する。 背景技術 The present invention relates to a heat treatment apparatus for heat treating a semiconductor wafer, a glass substrate, and the like, a method for producing a substrate for producing a semiconductor wafer, a glass substrate, and the like, and a method for producing a semiconductor device having a step of heat treating the substrate. Background art
例えば縦型熱処理炉を用いて、 複数のシリコンウェハ又は石英基板 (以下 、 両者を含む場合は、 単に基板という。 ) を熱処理する場合、 炭化珪素製又 は石英製等の基板支持体 (ボート) が用いられている。 この基板支持体には 、 支持部が設けられ、 この支持部に基板が支持されるようになっている。 この場合、 1 0 0 0 ° C程度以上で熱処理すると、 支持部付近で、 基板に 傷が発生するという問題があった。 更に、 シリコンウェハでは、 スリップラ インが発生し、 シリコンウェハが反ってしまうという問題があった。 このよ うに傷あるいはスリップラインが発生すると、 基板裏面の平坦度が劣化する For example, when using a vertical heat treatment furnace to heat-treat a plurality of silicon wafers or quartz substrates (hereinafter simply referred to as substrates when both are included), a substrate support (boat) made of silicon carbide or quartz, etc. Is used. A support portion is provided on the substrate support, and the substrate is supported by the support portion. In this case, if the heat treatment is performed at about 1000 ° C. or more, there is a problem that the substrate is damaged near the supporting portion. Furthermore, the silicon wafer has a problem that a slip line is generated and the silicon wafer is warped. When such scratches or slip lines occur, the flatness of the back surface of the substrate deteriorates.
。 これらのため、 L S I製造工程あるいは L C D製造工程における重要なェ 程の一つであるリソグラフイエ程で、 マスク合わせずれ (焦点ずれ又は変形 によるマスク合わせずれ) が生じ、 所望パターンを有する L S I又は L C D の製造が困難であるという問題が発生していた。 発明の開示
- - 従来の問題の原因は次の通りと考えられる。 . For these reasons, mask misalignment (mask misalignment due to defocus or deformation) occurs in the lithographic process, which is one of the important processes in the LSI manufacturing process or LCD manufacturing process, and the LSI or LCD having the desired pattern is not The problem that manufacturing was difficult occurred. Disclosure of the invention --The causes of the conventional problems are considered as follows.
6 0 0 ° C〜7 0 0 ° Cに加熱した反応炉内へ、 室温のシリコンウェハが 複数枚配置された基板支持体を挿入すると、 基板支持体に支持されたシリコ ンウェハには、 それぞれシリコンウェハ内の周辺部と中心部とで温度差が生 じる (例えば特開平 5— 6 8 9 4号公報参照) 。 このためシリコンウェハが 弾性変形する。 この変形過程で、 シリコンウェハは硬度が大きい炭化珪素製 の基板支持体、 あるいは同一程度の硬度を有する石英又はシリコン製の基板 支持体の支持部で衝突し、 傷が発生する。 単結晶シリコンウェハの傷発生部 においては、 転位生成のための降伏応力が著しく低下する (結晶工学と評価 技術第 1 4 5委員会第 6 8研究会 (角野、 p 4 ) 参照) 。 このため、 その後 の昇温過程あるいは高温の熱処理中に、 この傷から転位が発生し、 更にスリ ップラインが成長し、 最終的にはシリコンウェハは反ってしまう。 また、 昇 温過程においても傷は発生し、 その後の熱処理により、 同様の過程でシリコ ンウェハが反る原因になる。 図 1 9は、 シリコンウェハ 1に発生した傷 2及 びスリップライン 3の一例を示す。 なお、 4はノッチを示す。 When a substrate support having a plurality of room-temperature silicon wafers inserted into a reaction furnace heated to 600 ° C. to 700 ° C., the silicon wafers supported by the substrate support each contain silicon. A temperature difference occurs between the peripheral portion and the central portion in the wafer (see, for example, Japanese Patent Application Laid-Open No. Hei 5-68694). As a result, the silicon wafer is elastically deformed. During this deformation process, the silicon wafer collides with a substrate support made of silicon carbide having a high hardness or a support of a substrate support made of quartz or silicon having the same hardness, and scratches are generated. Yield stress for dislocation generation is significantly reduced at the site where single-crystal silicon wafers are scratched (see Crystal Engineering and Evaluation Technology Committee 144, 68th Study Group (Kadono, p. 4)). As a result, dislocations are generated from the flaws during the subsequent heating process or high-temperature heat treatment, and further, a slip line grows, and the silicon wafer eventually warps. In addition, flaws occur during the heating process, and subsequent heat treatment causes the silicon wafer to warp in the same process. FIG. 19 shows an example of the scratch 2 and the slip line 3 generated on the silicon wafer 1. 4 indicates a notch.
一方、 このスリップライン低減法として、 表面を研磨した基板支持体 (基 板と同程度の大きさのホルダ) で支持する方法が考えられるが、 この場合に は、 支持面全体に渡ってその表面仕上げ度を制御する必要があること、 及び 接触面積が大きくなるために基板支持体から基板への金属汚染混入量が増大 する等の技術的問題がある。 On the other hand, as a method for reducing the slip line, a method in which the surface is supported by a polished substrate support (a holder having the same size as the substrate) can be considered. In this case, the surface is supported over the entire support surface. There are technical problems such as the need to control the degree of finish, and the increase in the contact area, which increases the amount of metal contamination from the substrate support to the substrate.
また、 同様に、 6 0 0 ° C ~ 7 0 0 ° Cに加熱した反応炉内へ、 石英基板 が複数枚配置された基板支持体を挿入すると、 基板支持体に支持された石英 基板には、 それぞれ石英基板内の周辺部と中心部とで温度差が生じ、 このた め石英基板が弾性変形する。 このとき、 石英基板は硬度が大きい炭化珪素製 の基板支持体、 あるいは同一程度の硬度を有する石英又はシリコン製の基板
支持体の支持部で衝突し、 傷が発生する。 図 20は、 石英基板 5に発生した 傷 6の一例を示す。 Similarly, when a substrate support on which a plurality of quartz substrates are arranged is inserted into a reaction furnace heated to 600 ° C. to 700 ° C., the quartz substrate supported by the substrate support becomes However, a temperature difference occurs between the peripheral portion and the central portion in the quartz substrate, and the quartz substrate is elastically deformed. At this time, the quartz substrate is a silicon carbide substrate support having a high hardness, or a quartz or silicon substrate having the same hardness. Collision occurs at the support of the support, causing damage. FIG. 20 shows an example of a flaw 6 generated on the quartz substrate 5.
本発明は、 前述した従来の問題点を解消し、 熱処理中に発生する基板の傷 又は反りの発生を少なくし、 高品質な基板又は半導体デバイスを製造するこ とができる熱処理装置及び基板又は半導体デバイスの製造方法を提供するこ とを目的としている。 The present invention solves the above-mentioned conventional problems, reduces the occurrence of scratches or warpage of a substrate generated during heat treatment, and enables a high-quality substrate or semiconductor device to be manufactured. It aims to provide a method for manufacturing devices.
上記課題を解決するため、 本発明者らは、 従来の熱処理装置により発生す る傷について観察した。 その結果、 傷は、 基板に限って発生し、 炭化珪素製 の基板支持体の支持部には、 殆ど発生していないことを見出した。 更に前記 傷を光学顕微鏡観察で詳細に観察したところ、 点状の傷 (面積が小さく、 通 常、 数// mX数 m以下のサイズ) であることが確認された。 このことから 、 基板に対する支持部の実効接触面積が小さく、 このため支持部で基板の微 小接触領域に比較的大きな単位面積あたりの力 (自重による静荷重集中) が 加わること、 熱処理時に基板が弾性変形運動する過程で、 その力は更に大き くなる (動荷重集中) と推定される。 更に、 基板支持体の硬度が比較的大き い (炭化珪素の硬度:約 2500 kg f /mm 2、 シリコンの硬度: 100 0〜1050 k g i /mm 2、 石英の硬度: 950〜; L O O O kg f Zmm 2) ために、 基板支持体に接触する基板の接触領域に傷が発生すると判断し た。 In order to solve the above-mentioned problems, the present inventors have observed flaws generated by a conventional heat treatment apparatus. As a result, it was found that scratches occurred only on the substrate, and hardly occurred on the support portion of the silicon carbide substrate support. Further, when the scratches were observed in detail with an optical microscope, it was confirmed that the scratches were point-like scratches (small area, usually a size of several / m × several meters or less). This means that the effective contact area of the support portion with the substrate is small, and that a relatively large force per unit area (concentration of static load due to its own weight) is applied to the small contact area of the substrate at the support portion. In the process of elastic deformation, the force is estimated to increase further (dynamic load concentration). Furthermore, the hardness of the substrate support is relatively large (hardness of silicon carbide: about 2500 kgf / mm2, hardness of silicon: 1000 to 1050 kgi / mm2, hardness of quartz: 950 to; LOOO kgf Zmm 2) As a result, it was determined that a flaw was generated in the contact area of the substrate contacting the substrate support.
本発明は、 上述した観察結果から生み出されたものであり、 本発明の第 1 の特徵とするところは、 少なくとも 1枚の基板を基板支持体に支持した状態 で熱処理する熱処理装置において、 前記基板支持体は、 本体部と、 基板と接 触する支持部を有し、 この支持部が中空部を有する弾性体から構成された熱 処理装置にある。 前記中空部内は外部に対して気密でないことが好ましい。 前記支持部は、 薄膜で構成することが好ましい。 この薄膜の厚さは、 2 0
m以上 5 0 0 z m以下とすることが好ましい。 また、 前記支持部は、 前記基 板を支持した際に前記基板と面接触するように構成することが好ましい。 こ のように、 基板と面接触させるためには、 支持部を、 薄膜を基板側へ曲面を もって突出させた形状 (例えば半球状、 半楕円球状、 トンネル状等。 以下、 ドーム構造と称す。 ) とし、 基板を支持した際には基板の自重により薄膜の 弾性をもつて先端部分のみが平面状となるようにすることが好ましい。 中空 部は、 球状、 半球状、 半楕円状、 トンネル状等、 内部に空間が形成されるも のであれば形状を問わない。 したがって、 基板を支持する実効接触面積を大 きくし、 微視的にも広い面積で接するように (荷重分散) し、 且つ基板の裏 面形状並びに熱処理中の弾性変形に対応してその表面が変形する構造とする ことができ、 基板の傷発生を防止することができる。 The present invention has been produced from the above-described observation results. A first feature of the present invention is a heat treatment apparatus for performing heat treatment in a state where at least one substrate is supported on a substrate support, The support is provided in a heat treatment apparatus having a main body and a support in contact with the substrate, and the support is formed of an elastic body having a hollow portion. It is preferable that the inside of the hollow portion is not airtight to the outside. It is preferable that the supporting portion is formed of a thin film. The thickness of this film is 20 It is preferably at least m and at most 500 zm. Further, it is preferable that the supporting portion is configured to be in surface contact with the substrate when supporting the substrate. In this way, in order to make surface contact with the substrate, the supporting portion is formed by projecting a thin film with a curved surface toward the substrate side (for example, a hemispherical shape, a semi-elliptical spherical shape, a tunnel shape, etc., hereinafter referred to as a dome structure). When the substrate is supported, it is preferable that the thin film has elasticity due to the weight of the substrate, and that only the leading end becomes flat. The shape of the hollow portion is not limited as long as a space is formed therein, such as a spherical shape, a hemispherical shape, a semi-elliptical shape, and a tunnel shape. Therefore, the effective contact area for supporting the substrate is increased, the contact is made microscopically over a large area (load distribution), and the surface is deformed according to the back surface shape of the substrate and the elastic deformation during heat treatment. This can prevent the substrate from being damaged.
支持部を構成する構成物は、 炭化珪素、 シリコン、 窒化珪素、 石英若しく はガラス状炭素又はこれらの複合物から選択することが好ましい。 これらの 材料は、 シリコン L S I又は L C Dの製造工程で、 汚染物質として影響を与 えにくいためである。 It is preferable that the component constituting the support portion is selected from silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a composite thereof. This is because these materials are not easily affected as contaminants in the silicon LSI or LCD manufacturing process.
前記支持部は基板支持体に対して取り外し可能であることが好ましい。 こ の場合、 前記本体部と前記支持部との少なくとも一方の接触部分には前記支 持部の本体部に対する移動を容易にする手段を設けることが好ましい。 この 手段は、 例えば前記本体部と前記支持部との少なくとも一方の接触部分を研 磨することにより構成される。 Preferably, the support is detachable from the substrate support. In this case, it is preferable that at least one contact portion between the main body and the support is provided with a means for facilitating the movement of the support relative to the main body. This means is constituted, for example, by polishing at least one contact portion between the main body and the support.
このように構成された熱処理装置においては、 熱処理は例えば 1 0 0 0 ° C以上、 さらには 1 3 5 0 ° C以上の温度で行われる。 In the heat treatment apparatus configured as described above, the heat treatment is performed, for example, at a temperature of 100 ° C. or more, and further, a temperature of 135 ° C. or more.
本発明の第 2の特徴とするところは、 少なくとも 1枚の基板を基板支持体 に支持した状態で熱処理する熱処理装置において、 前記基板支持体は、 本体 部と、 この本体部に対して移動自在である可動体と、 この可動体に設けられ
、 前記基板と接触する支持部とを有し、 この支持部が、 中空部を有する弾性 体から構成された熱処理装置にある。 前述した支持部を基板支持体に対ひて 直接移動自在とすることができるが、 このように可動体を設けることにより スムーズに基板の熱処理中の弾性変形に対応することができる。 可動体は、 基板支持体に対して摺動自在であってもよいし、 回転自在であってもよい'し 、 さらに摺動、 回転共に自在であってもよい。 According to a second feature of the present invention, in a heat treatment apparatus for performing heat treatment with at least one substrate supported on a substrate support, the substrate support is movable with respect to the main body and the main body. And a movable body provided on the movable body. And a supporting portion that comes into contact with the substrate, wherein the supporting portion is a heat treatment device that is formed of an elastic body having a hollow portion. The above-described support portion can be directly movable with respect to the substrate support. However, by providing the movable body in this way, it is possible to smoothly cope with elastic deformation during heat treatment of the substrate. The movable body may be slidable or rotatable with respect to the substrate support, or may be freely slidable and rotatable.
なお、 支持部を板材、 線材等の単なる弾性体とした場合、 基板の熱膨張、 収縮による横方向 (水平方向) の動きに対応できず、 基板に傷を発生させる おそれがあるが、 本発明の場合、 支持部を中空弾性体とし、 さらに、 回転及 び摺動自在としているので、 基板の熱膨張、 収縮による基板の横方向の動き を吸収することができる。 If the support portion is made of a simple elastic body such as a plate or a wire, the support cannot cope with the horizontal (horizontal) movement due to the thermal expansion and contraction of the substrate, and the substrate may be damaged. In the case of (1), since the supporting portion is made of a hollow elastic body and is rotatable and slidable, it can absorb a lateral movement of the substrate due to thermal expansion and contraction of the substrate.
本発明は、 上記の熱処理装置を用いて基板を製造する方法を含み、 本発明 の第 3の特徴とするところは、 少なくとも 1枚の基板を処理室に搬入するェ 程と、 中空部を有する弾性体から構成された支持部により基板を支持するェ 程と、 基板を前記支持部に支持した状態で熱処理する工程と、 基板を処理室 内から搬出する工程と、 を有する基板の製造方法にある。 The present invention includes a method of manufacturing a substrate using the heat treatment apparatus described above, and a third feature of the present invention is that the method includes a step of loading at least one substrate into a processing chamber and a hollow portion. A method of manufacturing a substrate, comprising: a step of supporting a substrate by a support portion made of an elastic body; a step of performing a heat treatment while the substrate is supported by the support portion; and a step of carrying out the substrate from a processing chamber. is there.
本発明は、 上記の熱処理装置を用いて半導体デバイスを製造する方法を含 み、 本発明の第 4の特徴とするところは、 少なくとも 1枚の基板を処理室に 搬入する工程と、 中空部を有する弾性体から構成された支持部により基板を 支持する工程と、 基板を前記支持部に支持した状態で熱処理する工程と、 基 板を処理室内から搬出する工程と、 を有する半導体デバイスの製造方法にあ る。 · 図面の簡単な説明 The present invention includes a method of manufacturing a semiconductor device using the above-described heat treatment apparatus. A fourth feature of the present invention is that a step of loading at least one substrate into a processing chamber, A method of manufacturing a semiconductor device, comprising: a step of supporting a substrate by a supporting portion made of an elastic body having the same; a step of performing heat treatment while the substrate is supported by the supporting portion; and a step of carrying out the substrate from a processing chamber. It is in. · Brief description of the drawings
図 1は、 本発明の実施形態に係る熱処理装置を示す斜視図である。
図 2は、 本発明の実施形態に係る熱処理装置に用いた反応炉を示す断面図 である。 FIG. 1 is a perspective view showing a heat treatment apparatus according to an embodiment of the present invention. FIG. 2 is a sectional view showing a reaction furnace used in the heat treatment apparatus according to the embodiment of the present invention.
図 3は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第一例 を示す断面図である。 FIG. 3 is a cross-sectional view showing a first example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 4は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第一例 を示し、 図 3の Α— Α線断面図である。 FIG. 4 shows a first example of a substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along the line III-III of FIG.
図 5は、 本発明の実施形態に係る熱処理装置に用いた支持部の作用原理を 模式的に示し、 厚さ d 1の炭化珪素板を Aだけ曲げた場合の変形量例を示す 模式図である。 FIG. 5 is a schematic diagram schematically illustrating an operation principle of the support portion used in the heat treatment apparatus according to the embodiment of the present invention, and illustrating an example of an amount of deformation when a silicon carbide plate having a thickness of d1 is bent only by A. is there.
図 6は、 本発明の実施形態に係る熱処理装置に用いた支持部の作用原理を 模式的に示し、 厚さ d 2の炭化珪素板を Aだけ曲げた場合の変形量例を示す 模式図である。 FIG. 6 is a schematic diagram schematically illustrating an operation principle of the support portion used in the heat treatment apparatus according to the embodiment of the present invention, and illustrating an example of a deformation amount when the silicon carbide plate having a thickness of d2 is bent by A. is there.
図 7は、 本発明の実施形態に係る熱処理装置に用いた支持部 (曲率半径 5 0 mm) に荷重 4 1 g wを加えた場合の膜厚と接触円半径及び薄膜に印加さ れる応力値との関係を示すグラフである。 FIG. 7 shows the film thickness, the radius of contact circle, and the stress value applied to the thin film when a load of 41 gw was applied to the support (radius of curvature 50 mm) used in the heat treatment apparatus according to the embodiment of the present invention. 6 is a graph showing the relationship of.
図 8は、 本発明の実施形態に係る熱処理装置に用いた支持部 (曲率半径 3 0 mm) に荷重 4 1 gwを加えた場合の膜厚と接触円半径及び薄膜に印加さ れる応力値との関係を示すグラフである。 FIG. 8 shows the film thickness, the radius of contact circle, and the stress value applied to the thin film when a load of 41 gw was applied to the support (radius of curvature 30 mm) used in the heat treatment apparatus according to the embodiment of the present invention. 6 is a graph showing the relationship of.
図 9は本発明の実施形態に係る熱処理装置に用いた基板支持体の第一例に おける基板の変形に対する支持部の変形状態を示す断面図である。 FIG. 9 is a cross-sectional view showing a deformed state of the support portion with respect to the deformation of the substrate in the first example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 0は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第二 例を示す断面図である。 FIG. 10 is a sectional view showing a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 1は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第二 例を示し、 図 1 0の B— B線断面図である。 FIG. 11 shows a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along the line BB of FIG.
図 1 2は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第二
例における支持部を示す平面図である。 FIG. 12 shows a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention. It is a top view which shows the support part in an example.
図 1 3は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第二 例における支持部を示し、 図 1 2の C一 C線断面図である。 FIG. 13 shows a supporting portion in a second example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along line C-C of FIG.
図 1 4は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第三 例を示す断面図である。 FIG. 14 is a cross-sectional view showing a third example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 5は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第三 例を示し、 図 1 4の D— D線断面図である。 FIG. 15 shows a third example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention, and is a cross-sectional view taken along line DD of FIG.
図 1 6は、 本発明の実施形態に係る熱処理装置に用いた基板支持体におけ る支持部の第四例を示す斜視図である。 FIG. 16 is a perspective view showing a fourth example of the support portion of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 7は、 本発明の実施形態に係る熱処理装置に用いた基板支持体におけ る支持部の第四例を示し、 図 1 6の E— E線断面図である。 FIG. 17 is a cross-sectional view taken along the line EE of FIG. 16 showing a fourth example of the support portion of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 8は、 本発明の実施形態に係る熱処理装置に用いた基板支持体の第五 例を示す断面図である。 FIG. 18 is a sectional view showing a fifth example of the substrate support used in the heat treatment apparatus according to the embodiment of the present invention.
図 1 9は、 従来の熱処理装置により熱処理を行った結果のシリコンウェハ を示す裏面図である。 FIG. 19 is a back view showing a silicon wafer as a result of heat treatment performed by a conventional heat treatment apparatus.
図 2 0は、 従来の熱処理装置により熱処理を行った結果の石英基板を示す 裏面図である。 発明を実施するための最良の形態 FIG. 20 is a rear view showing a quartz substrate as a result of heat treatment performed by a conventional heat treatment apparatus. BEST MODE FOR CARRYING OUT THE INVENTION
次に本発明の実施形態を図面に基づいて説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.
図 1には、 本発明の実施形態に係る熱処理装置 1 0が示されている。 この 熱処理装置 1 0は、 例えば縦型であり、 主要部が配置された筐体 1 2を有す る。 この筐体 1 2には、 ポッドステージ 1 4が接続されており、 このポッド ステージ 1 4にポッド 1 6が搬送される。 ポッド 1 6は、 例えば 2 5枚の基 板が収納され、 図示しない蓋が閉じられた状態でポッドステージ 1 4にセッ
卜される。 FIG. 1 shows a heat treatment apparatus 10 according to an embodiment of the present invention. The heat treatment apparatus 10 is, for example, a vertical type and has a housing 12 in which a main part is arranged. A pod stage 14 is connected to the housing 12, and the pod 16 is transported to the pod stage 14. The pod 16 accommodates, for example, 25 substrates and is set on the pod stage 14 with a lid (not shown) closed. Be dropped.
筐体 1 2内において、 ポッドステージ 1 4に対向する位置には、 ポッ.ド搬 送装置 1 8が配置されている。 また、 このポッド搬送装置 1 8の近傍には、 ポッド棚 2 0、 ポッドォ一ブナ 2 2及び基板枚数検知器 2 4が配置されてい る。 ポッド搬送装置 1 8は、 ポッドステージ 1 4とポッド棚 2 0とポッドォ 一ブナ 2 2との間でポッド 1 6を搬送する。 ポッドオーブナ 2 2は、 ポッド 1 6の蓋を開けるものであり、 この蓋が開けられたポッド 1 6内の基板枚数 が基板枚数檢知器 2 4により検知される。 In the housing 12, a pod transport device 18 is disposed at a position facing the pod stage 14. In the vicinity of the pod transport device 18, a pod shelf 20, a pod holder 22, and a substrate number detector 24 are arranged. The pod transport device 18 transports the pod 16 between the pod stage 14, the pod shelf 20 and the pod beech 22. The pod opener 22 opens the lid of the pod 16, and the number of substrates in the pod 16 with the lid opened is detected by the substrate number detector 24.
さらに、 筐体 1 2内には、 基板移載機 2 6、 ノッチァライナ 2 8及び基板 支持体 3 0 (ポート) が配置されている。 基板移載機 2 6は、 例えば 5枚の 基板を取り出すことができるアーム 3 2を有し、 このアーム 3 2を動かすこ とにより、 ポッドオーブナ 2 2の位置に置かれたポッド、 ノッチァライナ 2 8及び基板支持体 3 0間で基板を搬送する。 ノッチァライナ 2 8は、 基板に 形成されたノッチまたはオリフラを検出して基板を揃えるものである。 基板 支持体 3 0は、 上部板 3 4及び下部板 3 6を有し、 この上部板 3 と下部板 3 6との間を例えば 3本の支柱 3 8により接続されて構成されており、 この 支柱 3 8に例えば 7 5枚の基板が支持され、 後述する反応炉 4 0に投入され るようになっている。 Further, in the housing 12, a substrate transfer machine 26, a notch aligner 28, and a substrate support 30 (port) are arranged. The substrate transfer machine 26 has, for example, an arm 32 from which five substrates can be taken out. By moving the arm 32, the pod placed at the position of the pod orbner 22, the notch aligner 28 and The substrate is transported between the substrate supports 30. The notch liner 28 detects the notch or the orientation flat formed on the substrate and aligns the substrate. The substrate support 30 has an upper plate 34 and a lower plate 36, and the upper plate 3 and the lower plate 36 are connected to each other by, for example, three columns 38. For example, seventy-five substrates are supported on the support 38, and are loaded into a reaction furnace 40 described later.
なお、 支柱 3 8は、 3本に限らず、 基板を支持できれば何本であってもよ い。 The number of columns 38 is not limited to three, but may be any number as long as the substrate can be supported.
図 2において、 反応炉 4 0が示されている。 この反応炉 4 0は、 反応管 4 2を有し、 この反応管 4 2内に基板支持体 3 0が挿入される。 反応管 4 2の 下方は、 基板支持体 3 0を挿入するために開放され、 この開放部分はシール キャップ 4 4により密閉されるようにしてある。 また、 反応管 4 2の周囲は 、 均熱管 4 6により覆われ、 さらに均熱管 4 6の周囲にヒータ 4 8が配置さ
れている。 熱電対 5 0は、 反応管 4 2と均熱管 4 6との間に配置され、 反応 炉 4 0内の温度をモニタできるようにしてある。 そして、 反応管 4 2には、 処理ガスを導入する導入管 5 2と、 処理ガスを排気する排気管 5 4とが接続 されている。 In FIG. 2, a reactor 40 is shown. The reaction furnace 40 has a reaction tube 42 into which the substrate support 30 is inserted. The lower part of the reaction tube 42 is opened to insert the substrate support 30, and this open part is sealed by a seal cap 44. The periphery of the reaction tube 42 is covered with a soaking tube 46, and a heater 48 is arranged around the soaking tube 46. Have been. The thermocouple 50 is arranged between the reaction tube 42 and the soaking tube 46 so that the temperature inside the reaction furnace 40 can be monitored. The reaction tube 42 is connected with an introduction tube 52 for introducing a processing gas and an exhaust tube 54 for exhausting the processing gas.
次に上述したように構成された熱処理装置 1 0の作用について説明する。 まず、 ポッドステージ 1 4に複数枚の基板を収容したポッド 1 6がセット されると、 ポッド搬送装置 1 8によりポッド 1 6をポッドステージ 1 4から ポッド棚 2 0へ搬送し、 このポッド棚 2 0にストックする。 次に、 ポッド搬 送装置 1 8により、 このポッド棚 2 0にストックされたポッド 1 6をポッド オーブナ 2 2に搬送してセットし、 このポッドオーブナ 2 2によりポッド 1 6の蓋を開き、 基板枚数検知器 2 4によりポッド 1 6に収容されている基板 の枚数を検知する。 Next, the operation of the heat treatment apparatus 10 configured as described above will be described. First, when the pod 16 containing a plurality of substrates is set on the pod stage 14, the pod 16 is transported from the pod stage 14 to the pod shelf 20 by the pod transport device 18. Stock at 0. Next, the pod 16 stored in the pod shelf 20 is transported to the pod opener 22 by the pod transport device 18 and set. The lid of the pod 16 is opened by the pod opener 22, and the number of substrates is set. The number of boards contained in the pod 16 is detected by the detector 24.
次に、 基板移載機 2 6により、 ポッドォ一ブナ 2 2の位置にあるポッド 1 6から基板を取り出し、 ノッチァライナ 2 8に移載する。 このノッチァライ ナ 2 8においては、 基板を回転させながら、 ノッチを検出し、 検出した情報 に基づいて複数の基板を同じ位置に整列させる。 次に、 基板移載機 2 6によ り、 ノッチァライナ 2 8から基板を取り出し、 基板支持体 3 0に移載する。 このようにして、 1バッチ分の基板を基板支持体 3 0に移載すると、 例え ば 7 0 0 ° C程度の温度に設定された反応炉 4 0内に複数枚の基板を装填し た基板支持体 3 0を挿入し、 シールキャップ 4 4により反応管 4 2内を密閉 する。 次に、 導入管 5 2から処理ガスを導入する。 処理ガスには、 窒素、 ァ ルゴン、 水素、 酸素等が含まれる。 この際、 基板は例えば 1 0 0 0 ° 。程度 以上の温度に加熱される。 なお、 この間、 熱電対 5 0により反応管 4 2内の 温度をモニタしながら、 予め設定された昇温プログラムに従って基板の昇温 を実施する。
基板の熱処理が終了すると、 例えば炉内温度を 7 0 0 ° C程度の温度に降 温した後、 基板支持体 3 0を反応炉 4 0からアンロードし、 基板支持体 3 0 に支持された全ての基板が冷えるまで、 基板支持体 3 0所定位置で待機させ る。 なお、 この間、 熱電対 5 0により反応管 4 2内の温度をモニタしなが ら、 予め設定された降温プログラムに従って基板の降温を実施する。 次に 、 待機させた基板支持体 3 0の基板が所定温度まで冷却されると、 基板移載 機 2 6により、 基板支持体 3 0から基板を取り出し、 ポッドオーブナ 2 2に セットされている空のポッド 1 6に搬送して収容する。 次に、 ポッド搬送装 置 1 8により、 基板が収容されたポッド 1 6をポッド棚 2 0に搬送し、 さら にポッドステージ 1 4に搬送して完了する。 Next, the substrate is taken out of the pod 16 at the position of the pod holder 22 by the substrate transfer machine 26 and transferred to the notch liner 28. In this notch aligner 28, the notch is detected while rotating the substrate, and a plurality of substrates are aligned at the same position based on the detected information. Next, the substrate is taken out of the notch liner 28 by the substrate transfer machine 26 and transferred to the substrate support 30. When a batch of substrates is transferred to the substrate support 30 in this manner, for example, a substrate loaded with a plurality of substrates in a reaction furnace 40 set at a temperature of about 700 ° C. The support 30 is inserted, and the inside of the reaction tube 42 is sealed with a seal cap 44. Next, the processing gas is introduced from the introduction pipe 52. Processing gases include nitrogen, argon, hydrogen, oxygen and the like. At this time, the substrate is, for example, 100 °. It is heated to a temperature higher than about. Meanwhile, while monitoring the temperature inside the reaction tube 42 with the thermocouple 50, the temperature of the substrate is raised according to a preset temperature raising program. When the heat treatment of the substrate is completed, for example, the temperature in the furnace is lowered to about 700 ° C., and then the substrate support 30 is unloaded from the reaction furnace 40 and supported by the substrate support 30. The substrate support 30 is kept at a predetermined position until all the substrates are cooled. During this time, while monitoring the temperature inside the reaction tube 42 with the thermocouple 50, the temperature of the substrate is lowered according to a preset temperature reduction program. Next, when the substrate of the substrate support 30 in the standby state is cooled down to a predetermined temperature, the substrate is taken out from the substrate support 30 by the substrate transfer device 26, and the empty substrate set in the pod opener 22 is removed. Transport to pod 16 for storage. Next, the pod 16 containing the substrate is transported to the pod shelf 20 by the pod transport device 18 and further transported to the pod stage 14 to complete the process.
次に上記基板支持体について詳述する。 Next, the substrate support will be described in detail.
図 3及び図 4において、 基板支持体 3 0に関する第一例が示されている。 基板支持体 3 0は、 前述したように、 例えば 3本の支柱 3 8と、 載置部 6 0 とからなる本体部 5 6を有する。 本体部 5 6を構成する構成物は、 炭化珪素 、 シリコン又は石英である。 この本体部 5 6には、 載置部 6 0が本体部 5 6 の長手方向内側に連続して形成されている。 載置部 6 0は溝から構成され、 奥壁 6 2、 上壁 6 4及び下壁 6 6を有し、 この載置部 6 0に基板 6 8が揷入 自在に配置されるようになっている。 3 and 4, a first example of the substrate support 30 is shown. As described above, the substrate support 30 has a main body 56 composed of, for example, three columns 38 and a mounting portion 60. The component constituting main body portion 56 is silicon carbide, silicon, or quartz. The mounting portion 60 is formed on the main body portion 56 continuously inside the main body portion 56 in the longitudinal direction. The mounting portion 60 is formed of a groove, and has an inner wall 62, an upper wall 64, and a lower wall 66, and the substrate 68 can be freely inserted into the mounting portion 60. ing.
ただし、 載置部 6 0の断面形状は、 4角形に限られるものではなく、 他の 多角形や円あるいは楕円の一部であってもよい。 However, the cross-sectional shape of the mounting portion 60 is not limited to a quadrangle, and may be another polygon, a part of a circle or an ellipse.
支持部 5 8は、 中空部を有するように、 即ち内部に空間を有するように載 置部 6 0の下壁 6 6に載置されている。 この実施形態においては、 支持部 5 8は、 薄膜のドーム構造からなり、 例えば 5 0 z mの厚さを有する炭化珪素 製の薄膜から構成され、 上方に突出したドーム状 (例えば半球状) に形成さ れている。 基板 6 8は、 例えば直径 3 0 0 mmのシリコンウェハからなり、
この基板 6 8の裏面の周縁近傍部分が支持部 5 8に接触して基板 6 8が基板 支持体 3 0に支持される。 なお、 支持部 5 8は基板 6 8の重量で基板 6 8の 形状に対応して弾性変形し、 基板 6 8を比較的広い面積で支持する。 熱処理 中においても、 基板 6 8が載置された支持部 5 8は弾性変形するので、 基板 6 8の種々の変形に対して、 ある面積で基板 6 8と接触、 支持することがで きるようになつている。 支持部 5 8は、 この実施形態においては、 載置部 6 0の面内に限って形成されているが、 これに限定されるものではなく、 載置 部 6 0の面内を越えて形成することもできる。 The support portion 58 is mounted on the lower wall 66 of the mounting portion 60 so as to have a hollow portion, that is, to have a space inside. In this embodiment, the support portion 58 has a thin-film dome structure, for example, a silicon carbide thin film having a thickness of 50 zm, and is formed in an upwardly protruding dome shape (for example, a hemispherical shape). Has been done. The substrate 68 is made of, for example, a silicon wafer having a diameter of 300 mm, A portion near the periphery of the back surface of the substrate 68 comes into contact with the support portion 58, and the substrate 68 is supported by the substrate support 30. The supporting portion 58 elastically deforms according to the shape of the substrate 68 by the weight of the substrate 68, and supports the substrate 68 with a relatively large area. Even during the heat treatment, the supporting portion 58 on which the substrate 68 is placed is elastically deformed, so that it can contact and support the substrate 68 with a certain area against various deformations of the substrate 68. It has become. In this embodiment, the support portion 58 is formed only in the plane of the mounting portion 60, but is not limited to this, and is formed beyond the plane of the mounting portion 60. You can also.
ただし、 支持部 5 8は載置部 6 0上に載置されてあるだけであり、 その内 部、 即ち、 中空部内は外部に対して気密に保持されるわけではなく、 外部と 連通している。 中空部内を外部に対して気密に保持した場合、 熱処理時に中 空部内の気体が膨張して支持部 5 8が変形したりあるいは破損に至るため、 中空部内を気密にしてはいけない。 However, the support portion 58 is merely mounted on the mounting portion 60, and the inside, that is, the inside of the hollow portion is not airtightly held to the outside, but communicates with the outside. I have. If the inside of the hollow portion is kept airtight with respect to the outside, the gas inside the hollow portion expands during the heat treatment, and the support portion 58 is deformed or damaged. Therefore, the inside of the hollow portion must not be airtight.
このように薄膜ドーム構造の支持部 5 8は次のようにして形成される。 まず例えば力一ボンを半球状に加工してカーボン製の型を形成する。 次に このカーボン製の型に対して C V Dコートを行い、 型の表面にコーティング 膜を形成する。 コ一ティング膜の構成物としては、 炭化珪素、 シリコン、 窒 化珪素、 石英若しくはガラス状炭素又はそれらの混合物とするのがよい。 そ の後、 形成したコーティング膜から型を抜いたり、 又は型を焼くことにより 、 薄膜ドーム構造の支持部 5 8が作製されるものである。 Thus, the supporting portion 58 of the thin film dome structure is formed as follows. First, for example, a carbon fiber is processed into a hemispherical shape to form a carbon mold. Next, CVD coating is performed on the carbon mold to form a coating film on the surface of the mold. The coating film is preferably made of silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a mixture thereof. Thereafter, the mold 58 is removed from the formed coating film, or the mold is baked, whereby the support portion 58 of the thin film dome structure is manufactured.
また、 支持部 5 8を構成する薄膜は、 厚さが 2 0 以上、 5 0 0 ^ m以 下とすることが好ましい。 薄膜の厚さを 2 0 Ai mより薄くすると支持部 5 8 の強度を保つことが難しくなり、 破損するおそれがあり、 5 0 0 x mより厚 くすると弾性を得ることができないためである。 Further, it is preferable that the thin film forming the supporting portion 58 has a thickness of 20 or more and 500 or less. If the thickness of the thin film is thinner than 20 Aim, it is difficult to maintain the strength of the supporting portion 58, and there is a possibility that the thin film may be damaged. If the thickness is larger than 500 x m, elasticity cannot be obtained.
次に上記実施形態における支持部 5 8の作用原理について説明する。
一般に固体部材を薄くすると、 比較的小さな力でその部材のマクロな弾性変 形量を増大させることができる。 上記実施形態は、 この性質を利用したもの であり、 上記実施形態におけるドーム構造 (半球状) の薄膜においても、 変 形量を大きくでき、 硬度が比較的大きい炭化珪素膜が、 例えば、 シリコンゥ ェハ (自重が約 1 2 2 g w) の力で弾力性のある形状変化が可能となる理由 である。 Next, the operation principle of the support portion 58 in the above embodiment will be described. Generally, when a solid member is made thin, the amount of macro elastic deformation of the member can be increased with a relatively small force. The above embodiment utilizes this property. Even in the dome structure (hemispherical) thin film in the above embodiment, a silicon carbide film that can increase the amount of deformation and has relatively high hardness is, for example, a silicon wafer. This is the reason why elastic shape change is possible with force of c (self-weight is about 122 gw).
以下、 簡単にその機構を説明する。 図 5及び図 6は、 厚みに限って異なる 2つの例えば炭化珪素板 (それぞれの厚さ d 1及び 2 d 1 ) を同じ大きさ A だけ曲げた場合の炭化珪素内での変形量例を模式的に示したものである。 長 さ Lの板は、 それぞれの板の外表面及び内表面で、 及び L一 A L、 L + 2 A L及び L一 2 A Lの最大伸び又は最大縮み (歪) が発生する。 図 6 において、 最大歪率 2 AL ZLが炭化珪素材料の持つ固有の弾性変形歪率の 限界値を超えると、 炭化珪素膜は塑性変形し、 力 F 2を取り除いても、 炭化 珪素膜は元の形状に戻らなくなる (破断に至ることもある) 。 一方、 厚さ d 1の炭化珪素膜 (図 5 ) では、 厚さ 2 d 1の炭化珪素膜 (図 6 ) と同じ Aだ け曲げた場合でも、 最大歪率が A L ZLと小さく、 この値が弾性変形の範囲 内であれば、 力 F 1 (約 F 2の 1 8 ) を取り除けば、 元の形に戻る。 図 5 の場合には、 更に力を加えて変形量を Aより増大しても、 弾性変形の範囲内 となることも可能である。 Hereinafter, the mechanism will be briefly described. FIGS. 5 and 6 schematically show examples of deformation amounts in silicon carbide when two silicon carbide plates (thicknesses d 1 and 2 d 1) having different thicknesses are bent by the same size A. It is shown in a typical manner. Plates of length L have the maximum elongation or maximum shrinkage (strain) of the outer and inner surfaces of each plate and of L-AL, L + 2AL, and L-12AL. In Fig. 6, when the maximum strain rate 2 AL ZL exceeds the limit value of the inherent elastic deformation strain rate of the silicon carbide material, the silicon carbide film is plastically deformed, and even if the force F2 is removed, the silicon carbide film remains intact. It will not return to its shape (it may even break). On the other hand, in the case of the silicon carbide film with a thickness of d1 (Fig. 5), the maximum strain rate is as small as ALZL, even when the silicon carbide film with a thickness of 2d1 (Fig. 6) is bent by the same A. If is within the range of elastic deformation, the force F 1 (about 18 of F 2) is removed, and it returns to the original shape. In the case of Fig. 5, even if the amount of deformation is increased from A by further applying a force, the deformation can be within the range of elastic deformation.
したがって、 上記実施形態で用いたドーム構造 (半球状) の炭化珪素薄膜 の厚さを薄くすれば、 支持部 5 8のマクロな変形量を比較的大きくしても該 薄膜の弾性変形の範囲内とすることが可能となる。 このため、 比較的小さな 力で、 支持接触面は該ゥェ -ハ又は該基板の形状に対応して変形し、 且つそ の変形が弾性変形の範囲内で可能となり、 基板 6 8と接触する支持部 5 8が 実際に接触する部分を比較的広い面とすることができるのである。
この支持部 58の膜厚は炭化珪素のヤング率及びポアソン比、 その支持部 58に加わる荷重、 支持部 58の形状、 接触面の面積をいくつに設計するか 等で決められる。 例えば、 支持部 58を半球状とし、 その曲率半径を 50m mとし、 1つの支持部 58に加わる荷重が 41 gw (直径 300mm、 重量 122 gwのシリコンウェハを支持する場合には、 3つの支持部 58 (3ケ 所) で支えることに相当) で、 接触領域の半径を 0. 5mm以上としたい場 合には、 シミュレ-ション結果 (図 7) から、 膜厚は 100 m〜50 m (50 mより薄くなると、 炭化珪素膜の曲げ強度の 1Z10を超える) と 決定される。 したがって、 この場合では、 支持部 58の膜厚を例えば 70 X mとすれば、 所望の荷重分散を満足する支持法が可能となる。 但し、 炭化珪 素膜のヤング率、 ポアソン比、 曲げ強度をそれぞれ 4. 9 E 11 P a、 0. 24、 6. 0 E 8 P aと仮定し、 膜に印加される許容応力値が曲げ強度の 1 /10以下であることとした場合である。 また、 支持部 58でその曲率半径 を 30mm、 膜厚を 100 mとした場合には、 図 8に示す結果より、 接触 領域の半径を約 0. 3 mmと設計することができる。 支持部 58の形状、 使 用する炭化珪素膜質の異なる (上記物性定数が異なる) 場合、 或いは、 膜に 印加される許容応力値が曲げ強度の 1Z10としない場合には、 適用可能な 膜厚範囲は異なることは明らかである。 また、 シリコン薄膜、 窒化珪素薄膜 、 石英薄膜或いはガラス状炭素薄膜を支持部 58として使用した場合或いは これらの複合物で支持する部品を構成した場合にも同様に弾性変形を利用し た荷重分散が可能である。 この場合、 上述した物性定数が各膜種により異な るため、 適用可能な膜厚範囲は異なるものの、 前述したと同様な手順で適用 可能な範囲を求めることができる。 Therefore, if the thickness of the silicon carbide thin film having the dome structure (hemispherical shape) used in the above embodiment is reduced, the elastic deformation of the thin film can be achieved even if the macro deformation amount of the support portion 58 is relatively large. It becomes possible. Therefore, with a relatively small force, the supporting contact surface is deformed corresponding to the shape of the wafer or the substrate, and the deformation is possible within the range of elastic deformation, and the substrate comes into contact with the substrate 68 The portion where the support portion 58 actually contacts can be a relatively large surface. The thickness of the support portion 58 is determined by the Young's modulus and Poisson's ratio of silicon carbide, the load applied to the support portion 58, the shape of the support portion 58, and the design of the contact surface area. For example, the supporting portion 58 is made hemispherical, the radius of curvature is 50 mm, and the load applied to one supporting portion 58 is 41 gw (when supporting a silicon wafer having a diameter of 300 mm and a weight of 122 gw, three supporting portions are required. 58 (3 places), and if the radius of the contact area is to be 0.5 mm or more, the simulation results (Fig. 7) show that the film thickness is 100 m to 50 m (50 m). When the thickness is less than m, the bending strength of the silicon carbide film exceeds 1Z10). Therefore, in this case, if the thickness of the support portion 58 is set to, for example, 70 Xm, a support method that satisfies a desired load distribution can be realized. However, assuming the Young's modulus, Poisson's ratio, and bending strength of the silicon carbide film to be 4.9 E11 Pa, 0.24, and 6.0 E8 Pa, respectively, the allowable stress applied to the film is bent. This is the case when the strength is 1/10 or less. When the radius of curvature is 30 mm and the thickness of the support portion 58 is 100 mm, the radius of the contact region can be designed to be about 0.3 mm based on the results shown in FIG. Applicable film thickness range when the shape of the supporting part 58 and the quality of the silicon carbide film to be used are different (the above physical property constants are different), or when the allowable stress value applied to the film is not the bending strength of 1Z10 Is obviously different. Similarly, when a silicon thin film, a silicon nitride thin film, a quartz thin film, or a glassy carbon thin film is used as the support portion 58 or a component supported by a composite thereof is used, the load distribution utilizing elastic deformation is similarly reduced. It is possible. In this case, since the physical property constants described above differ depending on the film type, the applicable film thickness range is different, but the applicable range can be obtained by the same procedure as described above.
図 9において、 ドーム構造の内で上述した半球状の支持部 58の変形状態 が示されている。 基板 68が載置される前にあっては、 図 9 (a) に示すよ
うに、 支持部 5 8は半球状で、 載置部 6 0から突出している。 即ち、 支持部 5 8は、 基板 6 8を支持していないときは曲面である弾性体から構成されて いる。 基板 6 8が載置された場合には、 図 9 ( b ) に示すように、 基板 6 8 の自重により、 支持部 5 8が基板形状に対応して弹性変形する b 熱処理中に おいて、 例えば基板 6 8の周縁が上側に反った場合には、 図 9 ( c ) に示す ように、 支持部 5 8の頂上部分が基板 6 8の裏面角度に合うように内側へ傾 く。 一方、 例えば基板 6 8の周縁が下側に反った場合には、 図 9 ( d ) に示 すように、 支持部 5 8の頂上部分が基板 6 8の裏面角度に合うように外側へ 傾く。 このように、 支持部 5 8の弾性変形により基板 6 8の変形を吸収する ことができるものである。 なお、 支持部 5 8は半球状に限られるものではな く、 ドーム構造であればよい。 FIG. 9 shows a deformed state of the above-described hemispherical support portion 58 in the dome structure. Before the substrate 68 is placed, it is shown in Fig. 9 (a). As described above, the support portion 58 is hemispherical and protrudes from the mounting portion 60. That is, the support portion 58 is formed of an elastic body that is a curved surface when the substrate 68 is not supported. When the substrate 68 is placed, as shown in FIG. 9 (b), during the b heat treatment in which the supporting portion 58 is elastically deformed corresponding to the substrate shape due to the weight of the substrate 68, For example, when the periphery of the substrate 68 is warped upward, as shown in FIG. 9C, the top portion of the support portion 58 is inclined inward so as to match the rear surface angle of the substrate 68. On the other hand, for example, when the periphery of the substrate 68 is warped downward, as shown in FIG. 9 (d), the top portion of the support portion 58 is inclined outward so as to match the back surface angle of the substrate 68. . Thus, the deformation of the substrate 68 can be absorbed by the elastic deformation of the support portion 58. Note that the support portion 58 is not limited to a hemispherical shape, and may have a dome structure.
図 1 0及び図 1 1において、 基板支持体 3 0に関する第二例が示されてい る。 この第二例においては、 本体部 5 6は、 前述した支柱 3 8の截置部 6 0 に載置されたホルダ 7 0を有する。 このホルダ 7 0は、 基板 6 8よりやや小 さい径を有する円板状のもので、 炭化珪素、 シリコン又は石英からなる。 こ のホルダ 7 0には、 挿入溝 7 2が形成されており、 基板 6 8を基板支持体 3 0に移載する際、 この挿入溝 7 2に前述した基板移載機のアーム先端に設け られるツイ一ザが挿入されるようになっている。 FIGS. 10 and 11 show a second example of the substrate support 30. In this second example, the main body portion 56 has a holder 70 mounted on the cutout portion 60 of the support column 38 described above. The holder 70 has a disk shape having a diameter slightly smaller than that of the substrate 68, and is made of silicon carbide, silicon or quartz. The holder 70 has an insertion groove 72 formed therein. When the substrate 68 is transferred to the substrate support 30, the insertion groove 72 is provided at the tip of the arm of the substrate transfer machine described above. The twister to be inserted is inserted.
支持部 5 8は、 ホルダ 7 0の上面に配置され、 挿入溝 7 2の部分を除いた 円弧からなるトンネル状に形成されている。 即ち、 支持部 5 8は、 図 1 2及 び図 1 3に示すように、 薄膜から断面半円形に形成され、 この支持部 5 8に 基板 6 8が載置されると、 支持部 5 8は基板 6 8の自重で基板形状に従って 弾性変形して基板 6 8と面接触し、 且つ基板 6 8の変形に対応して変形でき るようにしてある。 The support portion 58 is disposed on the upper surface of the holder 70 and is formed in a tunnel shape formed of an arc excluding the insertion groove 72. That is, as shown in FIGS. 12 and 13, the support portion 58 is formed in a semicircular cross section from a thin film, and when the substrate 68 is placed on the support portion 58, the support portion 58 Is elastically deformed by its own weight according to the shape of the substrate, comes into surface contact with the substrate 68, and can be deformed corresponding to the deformation of the substrate 68.
なお、 第一例と同一部分については、 図面に同一番号を付して説明を省略
する。 The same parts as those in the first example are given the same reference numerals in the drawings and description thereof is omitted. I do.
図 1 4及び図 1 5において、 基板支持体 3 0に関する第三例が示されてい る。 この第三例においては、 支柱 3 8は 4本あり、 これら 4本の支柱 3 8を 接続するように、 載置部 6 0が形成されている。 この載置部 6 0は、 下壁 6 6が馬蹄形に形成され、 この下壁 6 6に例えば 5つの半球状の支持部 5 8が 所定間隔を隔てて形成されている。 支持部 5 8は、 この第三例では 5つであ るが、 これに限定されるものではなく、 3つ以上であれば安定して基板 6 8 を支持することができる。 この第三例においても、 支持部 5 8は、 薄膜から 構成され、 基板 6 8の自重で基板形状に従って弾性変形して基板 6 8と面接 触し、 且つ基板 6 8の変形に対応して変形するものである。 なお、 支持部 5 8は、 前述した通り、 半球状に限られるものではなく、 ドーム構造あるいは 図 1 6及び図 1 7に示す第四例のように、 両側が球面で、 中央部分が断面半 円形としたトンネル状とすることもできる。 FIGS. 14 and 15 show a third example of the substrate support 30. In the third example, there are four columns 38, and a mounting portion 60 is formed so as to connect these four columns 38. In the mounting portion 60, a lower wall 66 is formed in a horseshoe shape, and, for example, five hemispherical support portions 58 are formed on the lower wall 66 at predetermined intervals. The number of the support portions 58 is five in the third example, but is not limited to this. If the number is three or more, the substrate 68 can be stably supported. Also in this third example, the support portion 58 is formed of a thin film, elastically deforms according to the substrate shape by its own weight, makes surface contact with the substrate 68, and deforms in accordance with the deformation of the substrate 68. Is what you do. Note that, as described above, the support portion 58 is not limited to a hemispherical shape. As in the dome structure or the fourth example shown in FIG. 16 and FIG. It can also be a circular tunnel.
なお、 第一例又は第二例と同一部分については、 図面に同一番号を付して 説明を省略する。 The same parts as those in the first or second example are denoted by the same reference numerals in the drawings, and description thereof will be omitted.
上述した例において、 支持部 5 8は、 本体部 5 6 (載置部 6 0 ) と一体に 形成してもよいし、 本体部 5 6と別体として構成することもできる。 支持部 5 8を本体部 5 6と一体に形成した場合は、 基板支持体 3 0を安価に製造で きる可能性がある。 支持部 5 8を本体部 5 6と別体に形成した場合は、 支持 部 5 8を本体部 5 .6から取り外し、 且つ本体部 5 6に取り付けることができ 、 支持部 5 8の交換を容易に行うことができるし、 本体部 5 6の構成は従来 と同様でよいために、 従来の基板支持体 3 0をそのまま用いることができる 。 さらに、 支持部 5 8を本体部 5 6と別体に形成した場合には、 基板 6 8の 熱膨張差 (膨張及び収縮差) を吸収するために支持部 5 8を本体部 5 6に対 して移動させる構造とすることができる。 '
具体的には、 本体部 5 6に対する支持部 5 8の滑りを容易にさせればよく 、 その滑りを容易にするには、 次の方法がある。 (1 ) 本体部 5 6の支持部 5 8が載置される部分の表面を例えば研磨することによって滑らかにする。 ( 2 ) 本体部 5 6の表面凹凸が大きい場合には、 本体部 5 6と支持部 5 8と の間に表面を研磨した層又は板状部材を設ける (この層又は板状部材は炭化 珪素、 シリコン、 窒化珪素、 石英若しくはガラス状炭素又はそれらの複合物 で構成される) 。 In the example described above, the support portion 58 may be formed integrally with the main body portion 56 (the mounting portion 60), or may be configured separately from the main body portion 56. When the support portion 58 is formed integrally with the main body portion 56, there is a possibility that the substrate support 30 can be manufactured at low cost. When the support portion 58 is formed separately from the main body portion 56, the support portion 58 can be detached from the main body portion 5.6 and attached to the main body portion 56, so that the support portion 58 can be easily replaced. Since the configuration of the main body portion 56 may be the same as that of the related art, the conventional substrate support 30 can be used as it is. Further, when the support portion 58 is formed separately from the main body portion 56, the support portion 58 is attached to the main body portion 56 in order to absorb a difference in thermal expansion (expansion and contraction difference) of the substrate 68. And move it. ' Specifically, it is only necessary to facilitate the sliding of the supporting portion 58 with respect to the main body portion 56, and the following methods are available to facilitate the sliding. (1) The surface of the portion on which the support portion 58 of the main body portion 56 is placed is smoothed, for example, by polishing. (2) If the surface of the main body 56 is large, a layer or a plate-like member having a polished surface is provided between the main body 56 and the support 58 (this layer or the plate-like member is made of silicon carbide). , Silicon, silicon nitride, quartz or vitreous carbon or a composite thereof).
図 1 8において、 基板支持体 3 0に関する第五例が示されている。 この第 五例は、 本体部 5 6 (載置部 6 0 ) と支持部 5 8との間に可動体 7 4を設け たものである。 可動体 7 4は、 炭化珪素、 シリコン、 窒化珪素、 石英若しく はガラス状炭素又はそれらの複合物で、 例えば逆半球状に形成され、 本体部 5 6に対して移動自在、 即ち、 回転及び摺動自在であるよう本体部 5 6上に 載置されている。 支持部 5 8は、 例えば第一 と同様に、 内部に空間が形成 されたドーム構造 (半球状) のもので、 この支持部 5 8に基板 6 8が接触す るように載置される。 例えば基板 6 8が収縮した場合、 図 1 8 ( b ) に示す ように、 可動体 7 4が回転し、 あるいは図 1 8 ( c ) に示すように、 可動体 7 4が摺動して、 基板 6 8の収縮を吸収し、 基板 6 8に傷等が発生するのを より確実に防止することができる。 この可動体 7 4の滑りをよくするために 、 前述した (1 ) 、 (2 ) の対策を本体部 5 6と可動体 7 4とのいずれか一 方又は双方に施すこともできる。 支持部 5 8と可動体 7 4とは、 一体部品で あっても組立部品であってもよい。 FIG. 18 shows a fifth example of the substrate support 30. In the fifth example, a movable body 74 is provided between a main body section 56 (placement section 60) and a support section 58. The movable body 74 is made of silicon carbide, silicon, silicon nitride, quartz or glassy carbon, or a composite thereof, and is formed, for example, in an inverted hemisphere, and is movable with respect to the main body 56, that is, It is mounted on the main body 56 so as to be slidable. The supporting portion 58 has, for example, a dome structure (hemispherical shape) having a space formed therein as in the first example, and is placed so that the substrate 68 comes into contact with the supporting portion 58. For example, when the substrate 68 contracts, the movable body 74 rotates as shown in FIG. 18 (b), or the movable body 74 slides as shown in FIG. 18 (c), The shrinkage of the substrate 68 can be absorbed and the occurrence of scratches or the like on the substrate 68 can be more reliably prevented. In order to improve the sliding of the movable body 74, the measures (1) and (2) described above can be applied to one or both of the main body 56 and the movable body 74. The support part 58 and the movable body 74 may be an integral part or an assembled part.
なお、 本体部 5 6には炭化珪素又はシリコンを、 支持部 5 8には炭化珪素 、 シリコン、 窒化珪素又はガラス状炭素を用いた場合は、 熱処理温度をシリ コンの融点温度である 1 4 1 2 ° C近くまで上げた場合にも適用できる。 ま た、 支持部 5 8を設けても基板 6 8の変形量が大きい場合は、 基板 6 8が本
体部 56の端部に接触するおそれがあるが、 この本体部 56の端部に丸みを 付ける等により傷発生を少なくすることができる。 When silicon carbide or silicon is used for main body 56 and silicon carbide, silicon, silicon nitride, or glassy carbon is used for support 58, the heat treatment temperature is the melting point of silicon. Applicable even when the temperature is raised to near 2 ° C. If the amount of deformation of the substrate 68 is large even if the support portion 58 is provided, the substrate 68 Although there is a possibility of contact with the end of the body 56, the occurrence of scratches can be reduced by rounding the end of the body 56.
次に実施例及び比較例について説明する。 Next, examples and comparative examples will be described.
用いた基板支持体 30は図 3及び図 4に示す構造を有し、 基板支持体 30 の本体部 56が炭化珪素からなり、 支持部 58は、 化学気層成長法で形成し た炭化珪素膜から半球状に形成した。 この支持部 58は、 曲率半径が 50m m、 膜厚が 60 mであり、 3個 (3ケ所) 配置し、 図 1及び図 2に示した 熱処理装置を用い、 次の条件で熱処理を実施した。 直径 300mmのシリコ ンウェハを 1回の処理につき 75枚を基板支持体に支持し、 雰囲気ガスとし て 100%アルゴンを使用し、 反応炉へ 10 OmmZ分の挿入速度で挿入し た。 基板支持体を挿入するときの管内温度は 700° Cとした。 その後、 7 00° Cから 1200 ° Cまで昇温を行った。 なお、 700° Cから 100 0° Cまでは 16° CZ分の昇温速度で、 1000° Cから 1200° Cま では 1. 5° CZ分の昇温速度で昇温した。 そして、 1200° Cで 1時間 保持し、 その後、 1200° Cから 700° Cまで降温を行った。 なお、 1 200° Cから 1000° Cまでを 1. 5° C/分の降温速度で、 1000 ° Cから 700° Cまでを 15° CZ分の降温速度で降温した。 2段階で昇 温、 降温するのは (高温での昇温速度、 降温速度を小さくするのは) 、 高温 で急激に温度を変化させると、 基板面内で均一に温度が変化せず、 スリップ 発生の原因となるためである。 基板支持体を反応炉から取り出す時の温度は 700° Cであり、 10 Omm/分の速度で基板支持体を取り出した。 The substrate support 30 used has the structure shown in FIGS. 3 and 4, the main body 56 of the substrate support 30 is made of silicon carbide, and the support 58 is a silicon carbide film formed by a chemical vapor deposition method. To form a hemisphere. This support part 58 has a radius of curvature of 50 mm and a film thickness of 60 m, and three (three places) are arranged. The heat treatment is performed using the heat treatment apparatus shown in FIGS. 1 and 2 under the following conditions. . 75 silicon wafers with a diameter of 300 mm were supported on the substrate support per process, and 100% argon was used as an atmospheric gas, and the silicon wafer was inserted into the reactor at an insertion speed of 10 OmmZ. The temperature in the tube when inserting the substrate support was 700 ° C. Thereafter, the temperature was raised from 700 ° C. to 1200 ° C. The temperature was raised at a rate of 16 ° CZ from 700 ° C. to 1000 ° C. and at a rate of 1.5 ° CZ from 1000 ° C. to 1200 ° C. Then, the temperature was maintained at 1200 ° C. for 1 hour, and thereafter, the temperature was lowered from 1200 ° C. to 700 ° C. The temperature was lowered from 1200 ° C to 1000 ° C at a rate of 1.5 ° C / min, and from 1000 ° C to 700 ° C at a rate of 15 ° CZ. The reason for raising and lowering the temperature in two stages (decreasing the rate of temperature rise and decrease at high temperatures) is that if the temperature is rapidly changed at a high temperature, the temperature does not change uniformly within the substrate surface, causing slip. This is because it causes the occurrence. The temperature at which the substrate support was taken out of the reaction furnace was 700 ° C., and the substrate support was taken out at a rate of 10 Omm / min.
その後、 光学微分顕微鏡で観察した結果、 シリコンウェハ 1には傷の発生 はなく、 スリップラインの発生もなかった。 また、 反り計でシリコンウェハ 1の反りを測定した結果、 反り量は 10 xm以下であり、 反り量を l O m 以下とした熱処理前と変化は見られなかつた。
反りの測定は、 一般的に実施されているように、 レーザ光の光軸に対して 垂直にシリコンウェハを立て、 レーザ光を走査し、 シリコンウェハから反射 した光から算出した。 N数は 1 0枚である。 After that, as a result of observation with an optical differential microscope, no scratch was generated on the silicon wafer 1 and no slip line was generated. Also, as a result of measuring the warpage of the silicon wafer 1 with a warp meter, the warpage amount was 10 xm or less, and no change was observed before the heat treatment in which the warpage amount was lOm or less. As is generally performed, the measurement of the warpage was performed by erecting a silicon wafer perpendicular to the optical axis of the laser light, scanning the laser light, and calculating from the light reflected from the silicon wafer. The N number is 10 sheets.
比較例においては、 図 3及び図 4における支持部 5 8を除いた従来の基板 支持体を用い、 炭化珪素製の基板支持体に直接シリコンウェハを支持し、 実 施例と同一の実験を実施した。 図 1 9に示すように、 シリコンウェハの裏面 においては、 支持部に対応する部分 3箇所に大きさ 5 0〜3 0 0 / m、 深さ 約 5 m、 高さ約 1 0 の傷が発生した。 それらの傷からは、 約 4〜3 0 mmの長さのスリップラインが多数本発生した。 そのシリコンウェハは、 熱 処理前の反り量が 1 0 / m以下に対し、 熱処理後は約 6 0〜9 0 mの反り があった。 N数は 1 0枚である。 In the comparative example, the same experiment as in the example was performed by using a conventional substrate support except for the support portion 58 in FIGS. 3 and 4 and directly supporting the silicon wafer on the silicon carbide substrate support. did. As shown in Fig. 19, on the back side of the silicon wafer, scratches with a size of 50 to 300 / m, a depth of about 5 m, and a height of about 10 occurred at three places corresponding to the support part did. The wounds generated many slip lines about 4 to 30 mm long. The silicon wafer had a warpage of less than 10 / m before the heat treatment, but a warp of about 60 to 90 m after the heat treatment. The N number is 10 sheets.
なお、 上記実施形態及び実施例では、 主に支持部が半球状であるものにつ いて説明したが、 本発明は、 これに限定されるものではなく、 支持部は、 球 状、 半楕円球状、 楕円球状、 円柱状、 円盤状、 トンネル状等であってもよい 。 要は、 中空部を有するドーム構造であればよい。 ただし、 基板と接触する 部分は曲面であることが好ましい。 In the above-described embodiments and examples, the case where the support portion is mainly hemispherical has been described. However, the present invention is not limited to this, and the support portion may be spherical or semi-elliptical spherical. The shape may be an oval sphere, a column, a disk, a tunnel, or the like. In short, a dome structure having a hollow portion may be used. However, it is preferable that the portion in contact with the substrate is a curved surface.
なお、 上記実施形態及び実施例の説明にあっては、 熱処理装置として、 複 数の基板を熱処理するバッチ式のものを用いたが、 これに限定するものでは なく、 枚葉式のものであってもよい。 In the description of the above embodiments and examples, a batch-type heat treatment apparatus for heat-treating a plurality of substrates is used as the heat treatment apparatus. However, the present invention is not limited to this. You may.
本発明の熱処理装置は、 基板の製造工程にも適用することができる。 The heat treatment apparatus of the present invention can also be applied to a substrate manufacturing process.
S O I (Si l icon On Insulator) ウェハの一種である S I M O X ( Separat ion by I即 lanted Oxygen) ウェハの製造工程の一工程に本発明の熱 処理装置を適用する例について説明する。 An example in which the heat treatment apparatus of the present invention is applied to one step of a manufacturing process of a silicon oxide on silicon (SIMOX) wafer, which is a kind of a silicon on insulator (SOI) wafer, will be described.
まずイオン注入装置等により単結晶シリコンウェハ内へ酸素イオンをィォ ン注入する。 その後、 酸素イオンが注入されたウェハを上記実施形態の熱処
理装置を用いて、 例えば A r、 〇 2雰囲気のもと、 1300〜 1400° C 、 例えば 1350° C以上の高温でァニールする。 これらの処理により、 ゥ ェハ内部に S i O 2層が形成された (S i 02層が埋め込まれた) S I MO Xウェハが作製される。 First, oxygen ions are ion-implanted into a single crystal silicon wafer by an ion implanter or the like. Thereafter, the wafer into which the oxygen ions have been implanted is subjected to the heat treatment of the above embodiment. Annealing is performed at a high temperature of 1300 to 1400 ° C., for example, 1350 ° C. or more, for example, in an atmosphere of Ar and 〇2 using a processing device. Through these processes, a SIMOX wafer in which the SiO 2 layer is formed inside the wafer (the SiO 2 layer is embedded) is produced.
また、 S I MOXウェハの他、 水素ァニールウェハの製造工程の一工程に 本発明の熱処理装置を適用することも可能である。 この場合、 ウェハを本発 明の熱処理装置を用いて、 水素雰囲気中で 1200° C程度以上の高温でァ ニールすることとなる。 これにより I C (集積回路) が作られるウェハ表面 層の結晶欠陥を低減することができ、 結晶の完全性を高めることができる。 また、 この他、 ェピタキシャルウェハの製造工程の一工程に本発明の熱処 理装置を適用することも可能である。 In addition to the SI MOX wafer, the heat treatment apparatus of the present invention can be applied to one step of a hydrogen anneal wafer manufacturing process. In this case, the wafer is annealed at a high temperature of about 1200 ° C. or more in a hydrogen atmosphere using the heat treatment apparatus of the present invention. This can reduce crystal defects in the wafer surface layer on which ICs (integrated circuits) are made, and can increase the crystal integrity. In addition, it is also possible to apply the heat treatment apparatus of the present invention to one step of a manufacturing process of an epitaxial wafer.
以上のような基板の製造工程の一工程として行う高温ァニール処理を行う 場合であっても、 本発明の熱処理装置を用いることにより、 基板のスリップ の発生を防止することができる。 Even in the case where the high-temperature annealing treatment is performed as one of the substrate manufacturing steps as described above, the use of the heat treatment apparatus of the present invention can prevent the occurrence of slip of the substrate.
本発明の熱処理装置は、 半導体デバイスの製造工程にも適用することも可 能である。 The heat treatment apparatus of the present invention can also be applied to a semiconductor device manufacturing process.
特に、 比較的高い温度で行う熱処理工程、 例えば、 ウエット酸化、 ドライ 酸化、 水素燃焼酸化 (パイロジェニック酸化) 、 HC 1酸化等の熱酸化工程 や、 硼素 (B) 、 リン (P) 、 砒素 (As) 、アンチモン (Sb) 等の不純 物 (ドーパント) を半導体薄膜に拡散する熱拡散工程等に適用するのが好ま しい。 In particular, heat treatment processes performed at relatively high temperatures, such as wet oxidation, dry oxidation, hydrogen combustion oxidation (pyrogenic oxidation), and thermal oxidation processes such as HC1 oxidation, boron (B), phosphorus (P), arsenic ( It is preferable to apply the method to a thermal diffusion step of diffusing an impurity (dopant) such as As) or antimony (Sb) into a semiconductor thin film.
このような半導体デバイスの製造工程の一工程としての熱処理工程を行う 場合においても、 本発明の熱処理装置を用いることにより、 スリップの発生 を防止することができる。
産業上の利用可能性 Even in the case of performing the heat treatment step as one of the steps of manufacturing such a semiconductor device, the use of the heat treatment apparatus of the present invention can prevent the occurrence of slip. Industrial applicability
本発明は、 熱処理中に発生する基板の傷又は反り発生を少なくする必要 性がある熱処理装置、 高品質な基板を製造する必要性がある基板の製造方法 、 及び高品質な半導体デバイスを製造する必要性がある半導体デバ イスの製造方法に利用することができる。
The present invention provides a heat treatment apparatus that needs to reduce the occurrence of scratches or warpage of a substrate during heat treatment, a method of manufacturing a substrate that needs to manufacture a high-quality substrate, and a method of manufacturing a high-quality semiconductor device. It can be used for the manufacturing method of the semiconductor device that needs it.
Claims
1 . 少なくとも 1枚の基板を基板支持体に支持した状態で熱処 理する熱処理装置において、 前記基板支持体は、 本体部と、 この 本体部に設けられ、 前記基板に接触する支持部とを有し、 この支 持部が中空部を有する弾性体から構成されたことを特徴とする熱 処理装置。 1. In a heat treatment apparatus for performing heat treatment with at least one substrate supported on a substrate support, the substrate support includes a main body, and a support provided on the main body and in contact with the substrate. A heat treatment apparatus, wherein the support portion is made of an elastic body having a hollow portion.
2 . 請求項 1記載の熱処理装置において、 前記中空部内は外部 に対して気密でないことを特徴とする熱処理装置。 2. The heat treatment apparatus according to claim 1, wherein the inside of the hollow portion is not airtight to the outside.
3 . 請求項 1記載の熱処理装置において、 前記支持部は、 前記 基板を支持した際に前記基板と面接触するように構成されたこと を特徴とする熱処理装置。 3. The heat treatment apparatus according to claim 1, wherein the supporting portion is configured to make surface contact with the substrate when supporting the substrate.
4 . 請求項 1記載の熱処理装置において、 前記支持部は、 薄膜 から構成されてなることを特徴とする熱処理装置。 4. The heat treatment apparatus according to claim 1, wherein the support portion is formed of a thin film.
5 . 請求項 4記載の熱処理装置において、 前記薄膜の厚さを 2 5. The heat treatment apparatus according to claim 4, wherein the thickness of the thin film is 2
0 m以上 5 0 0 i m以下とすることを特徴とする熱処理装置。 A heat treatment apparatus characterized by having a length of 0 m or more and 500 m or less.
6 . 請求項 1記載の熱処理装置において、 前記支持部の表面を 曲面としたことを特徴とする熱処理装置。 6. The heat treatment apparatus according to claim 1, wherein the surface of the support portion is a curved surface.
7 . 請求項 1記載の熱処理装置において、 前記基板を前記支持 部で支持した状態では、 前記支持部の一部が曲面状から平面状に 変形することを特徴とする熱処理装置。 7. The heat treatment apparatus according to claim 1, wherein a part of the support portion is deformed from a curved surface to a planar shape when the substrate is supported by the support portion.
8 . 請求項 1記載の熱処理装置において、 前記支持部が前記本 体部に対して取り外し可能に設けられていることを特徴とする熱 処理装置。 8. The heat treatment apparatus according to claim 1, wherein the support portion is provided detachably from the main body portion.
9 . 請求項 8記載の熱処理装置において、 前記本体部と前記支 持部との少なくとも一方の接触部分に前記支持部の本体部に対す る移動を容易にする手段を設けたことを特徴とする熱処理装置。
9. The heat treatment apparatus according to claim 8, wherein a means for facilitating movement of the support portion relative to the main body portion is provided in at least one contact portion between the main body portion and the support portion. Heat treatment equipment.
1 0 . 請求項 9記載の熱処理装置において、 前記本体部と前記 支持部の少なく とも一方の接触部分を研磨したことを特徴とする 熱処理装置。 10. The heat treatment apparatus according to claim 9, wherein at least one contact portion between the main body and the support is polished.
1 1 . 請求項 1記載の熱処理装置において、 前記支持部の構成 物が、 炭化珪素、 シリコン、 窒化珪素、 石英若しくはガラス状炭 素又はそれらの混合物であることを特徴とする熱処理装置。 11. The heat treatment apparatus according to claim 1, wherein a component of the support portion is silicon carbide, silicon, silicon nitride, quartz, glassy carbon, or a mixture thereof.
1 2 . 請求項 1記載の熱処理装置において、 前記本体部の構成 物が炭化珪素、 シリコン又は石英であることを特徴とする熱処理 12. The heat treatment apparatus according to claim 1, wherein a constituent of the main body is silicon carbide, silicon, or quartz.
1 3 . 請求項 1記載の熱処理装置において、 前記基板支持体は 、 複数枚の基板を略水平状態で隙間をもつて複数段支持するよう 構成されたことを特徴とする熱処理装置。 13. The heat treatment apparatus according to claim 1, wherein the substrate support is configured to support a plurality of substrates in a substantially horizontal state at a plurality of stages with a gap therebetween.
1 4 . 請求項 1記載の熱処理処置において、 熱処理は 1 0 0 0 ° C以上の温度で行うことを特徴とする熱処理装置。 14. The heat treatment apparatus according to claim 1, wherein the heat treatment is performed at a temperature of 100 ° C. or more.
1 5 . 請求項 1記載の熱処理装置において、 熱処理は 1 3 5 0 ° C以上の温度で行うことを特徴とする熱処理装置。 15. The heat treatment apparatus according to claim 1, wherein the heat treatment is performed at a temperature of 135 ° C. or higher.
1 6 . 少なくとも 1枚の基板を基板支持体に支持した状態で熱 処理する熱処理装置において、 前記基板支持体は、 本体部と、 こ の本体部に対して移動自在である可動体と、 この可動体に設けら れ、 前記基板と接触する支持部とを有し、 この支持部が中空部を 有する弾性体から構成されたことを特徴とする熱処理装置。 16. A heat treatment apparatus for performing heat treatment with at least one substrate supported on a substrate support, the substrate support comprising: a main body; a movable body movable with respect to the main body; A heat treatment apparatus, comprising: a support provided on a movable body, the support being in contact with the substrate; and the support is made of an elastic body having a hollow portion.
1 7 . 請求項 1 6記載の熱処理装置において、 前記本体部と前 記可動部の少なく とも一方の接触部分に前記可動体の前記本体部 に対する移動を容易にする手段を設けたことを特徴とする熱処理 17. The heat treatment apparatus according to claim 16, wherein means for facilitating movement of the movable body with respect to the main body is provided at at least one contact portion between the main body and the movable part. Heat treatment
1 8: 請求項 1 6記載の熱処理装置において、 前記本体部と前 記可動体との少なく とも一方の接触部分を研磨したことを特徴と
する熱処理装置。 , 18: The heat treatment apparatus according to claim 16, wherein at least one contact portion between the main body and the movable body is polished. Heat treatment equipment. ,
1 9 . 少なく とも 1枚の基板を処理室内に搬入する工程と、 中 空部を有する弾性体から構成された支持部により基板を支持する 工程と、 基板を前記支持部に支持した状態で熱処理する工程と、 基板を処理室内から搬出する工程と、 を有することを特徴とする 基板の製造方法。 1 9. A step of loading at least one substrate into the processing chamber, a step of supporting the substrate by a support portion composed of an elastic body having a hollow portion, and a heat treatment in a state where the substrate is supported by the support portion. And a step of unloading the substrate from the processing chamber.
2 0 . 少なくとも 1枚の基板を処理室内に搬入する工程と、 中 空部を有する弾性体から構成された支持部により基板を支持する 工程と、 基板を前記支持部に支持した状態で熱処理する工程と、 基板を処理室内から搬出する工程と、 を有することを特徴とする 半導体デバイスの製造方法。
20. A step of loading at least one substrate into the processing chamber, a step of supporting the substrate by a support portion made of an elastic body having a hollow portion, and a heat treatment in a state where the substrate is supported by the support portion. A method of manufacturing a semiconductor device, comprising: a step of carrying out a substrate from a processing chamber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004515506A JPWO2004001835A1 (en) | 2002-06-21 | 2003-06-18 | Heat treatment apparatus, substrate manufacturing method, and semiconductor device manufacturing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002181318 | 2002-06-21 | ||
JP2002-181318 | 2002-06-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004001835A1 true WO2004001835A1 (en) | 2003-12-31 |
Family
ID=29996623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/007723 WO2004001835A1 (en) | 2002-06-21 | 2003-06-18 | Heat treating equipment, and methods of manufacturing substrate and semiconductor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2004001835A1 (en) |
WO (1) | WO2004001835A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091341A1 (en) * | 2004-03-18 | 2005-09-29 | Poco Graphite, Inc. | Improved rails for semiconductor wafer carriers |
JP2017139313A (en) * | 2016-02-03 | 2017-08-10 | 株式会社Screenホールディングス | Susceptor for heat treatment, and heat treatment apparatus |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129567A (en) * | 1995-10-30 | 1997-05-16 | N T T Electron Technol Kk | Wafer support structure of vertical wafer boat |
JPH10233368A (en) * | 1997-02-20 | 1998-09-02 | Toshiba Ceramics Co Ltd | Vertical wafer port |
EP0884769A1 (en) * | 1996-02-29 | 1998-12-16 | Tokyo Electron Limited | Heat-treating boat for semiconductor wafer |
JPH11176763A (en) * | 1997-12-09 | 1999-07-02 | Hitachi Ltd | Apparatus for manufacturing semiconductor and manufacture of semiconductor device |
JP2000091406A (en) * | 1998-09-08 | 2000-03-31 | Mitsubishi Materials Silicon Corp | Wafer holder |
JP2000150402A (en) * | 1998-11-09 | 2000-05-30 | Shin Etsu Handotai Co Ltd | Substrate supporting jig |
-
2003
- 2003-06-18 JP JP2004515506A patent/JPWO2004001835A1/en active Pending
- 2003-06-18 WO PCT/JP2003/007723 patent/WO2004001835A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09129567A (en) * | 1995-10-30 | 1997-05-16 | N T T Electron Technol Kk | Wafer support structure of vertical wafer boat |
EP0884769A1 (en) * | 1996-02-29 | 1998-12-16 | Tokyo Electron Limited | Heat-treating boat for semiconductor wafer |
JPH10233368A (en) * | 1997-02-20 | 1998-09-02 | Toshiba Ceramics Co Ltd | Vertical wafer port |
JPH11176763A (en) * | 1997-12-09 | 1999-07-02 | Hitachi Ltd | Apparatus for manufacturing semiconductor and manufacture of semiconductor device |
JP2000091406A (en) * | 1998-09-08 | 2000-03-31 | Mitsubishi Materials Silicon Corp | Wafer holder |
JP2000150402A (en) * | 1998-11-09 | 2000-05-30 | Shin Etsu Handotai Co Ltd | Substrate supporting jig |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005091341A1 (en) * | 2004-03-18 | 2005-09-29 | Poco Graphite, Inc. | Improved rails for semiconductor wafer carriers |
JP2017139313A (en) * | 2016-02-03 | 2017-08-10 | 株式会社Screenホールディングス | Susceptor for heat treatment, and heat treatment apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPWO2004001835A1 (en) | 2005-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4386837B2 (en) | Heat treatment apparatus, semiconductor device manufacturing method, and substrate manufacturing method | |
JP4833074B2 (en) | Heat treatment apparatus, heat treatment method, substrate manufacturing method, and semiconductor device manufacturing method | |
US20030170583A1 (en) | Heat treatment apparatus and a method for fabricating substrates | |
JP5043826B2 (en) | Substrate processing apparatus and semiconductor device manufacturing method | |
JP4597868B2 (en) | Heat treatment equipment | |
JP4611229B2 (en) | Substrate support, substrate processing apparatus, substrate processing method, substrate manufacturing method, and semiconductor device manufacturing method | |
JP2007073865A (en) | Heat treatment device | |
WO2004001835A1 (en) | Heat treating equipment, and methods of manufacturing substrate and semiconductor device | |
JP2003324106A (en) | Heat-treatment apparatus, manufacturing method of semiconductor device, and manufacturing method of substrate | |
JP2005101161A (en) | Supporting tool for heat treatment, heat treatment apparatus, heat treatment method, method of manufacturing substrate, and method of manufacturing semiconductor device | |
JP2007134518A (en) | Heat treatment apparatus | |
JP2004356355A (en) | Heat treatment method, method of manufacturing substrate, method of manufacturing semiconductor device, and heat treatment apparatus | |
JPH0817753A (en) | Mounting jig for heat treatment of semiconductor wafer, and its heat treatment equipment | |
JP2006100303A (en) | Substrate manufacturing method and heat treatment apparatus | |
JP2005086132A (en) | Heat treating apparatus, manufacturing method of semiconductor device, manufacturing method of substrate, and treating method of substrate | |
JP2004214260A (en) | Thermal treatment apparatus and method of manufacturing substrate | |
JP2006080294A (en) | Method of manufacturing substrate | |
TWI326109B (en) | Heat treatment device and production method for substrate | |
JP2009147383A (en) | Heat treatment method | |
JP2004281669A (en) | Heat treatment equipment | |
JP2005203482A (en) | Heat treatment apparatus | |
JP2004296492A (en) | Thermal treatment equipment | |
JP2007103765A (en) | Substrate treatment unit | |
JP2005044891A (en) | Heat treatment apparatus | |
JP2006080178A (en) | Manufacturing method of substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN DE JP KR US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2004515506 Country of ref document: JP |