Nothing Special   »   [go: up one dir, main page]

WO2004001736A1 - Process for producing stamper for production of optical recording medium and apparatus - Google Patents

Process for producing stamper for production of optical recording medium and apparatus Download PDF

Info

Publication number
WO2004001736A1
WO2004001736A1 PCT/JP2003/006598 JP0306598W WO2004001736A1 WO 2004001736 A1 WO2004001736 A1 WO 2004001736A1 JP 0306598 W JP0306598 W JP 0306598W WO 2004001736 A1 WO2004001736 A1 WO 2004001736A1
Authority
WO
WIPO (PCT)
Prior art keywords
stamper
injection time
metal
light absorbing
absorbing layer
Prior art date
Application number
PCT/JP2003/006598
Other languages
French (fr)
Japanese (ja)
Inventor
Hisaji Oyake
Akinori Nishizawa
Hideki Sunohara
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Priority to AU2003241802A priority Critical patent/AU2003241802A1/en
Publication of WO2004001736A1 publication Critical patent/WO2004001736A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • G11B7/261Preparing a master, e.g. exposing photoresist, electroforming

Definitions

  • the present invention relates to a method and an apparatus for manufacturing a stamper used for manufacturing an optical recording medium having a concavo-convex pattern such as a group or a prepit.
  • optical recording medium disk substrates optical disks that can be written on or rewritten, and read-only disks on which information is recorded in advance.
  • a group (guide groove) used for tracking or the like is formed on a disk substrate of the optical recording disk, and a recording layer containing a phase change material or an organic dye material is further laminated on the disk substrate.
  • the recording layer When the recording layer is irradiated with the laser beam, the recording layer undergoes a chemical or physical change to form a recording mark.
  • recording marks information pits
  • recording marks are formed in advance on the disk substrate of a read-only disc as a part of an uneven pattern. These recording marks are irradiated with a reading laser beam. As a result, the amount of light reflection fluctuates, and it is possible to read (reproduce) information by detecting this fluctuation.
  • a stamper in which a negative pattern of the concave / convex (also a kind of concave pattern) is formed in advance is used.
  • a method is generally used in which injection molding is performed using a mold in which a stamper having the negative pattern formed in a cavity is fixed, and the negative pattern is transferred to a filled resin to produce a disk substrate. .
  • a stamper having a concavo-convex pattern usually contains nickel (Ni) or the like. It is constituted by a metal plate.
  • a photo resist master having a negative pattern of the concavo-convex pattern of the stamper is prepared in advance, and a metal thin film is formed on the photoresist master by electroless plating or the like. This converts the photoresist master into a conductor, and then forms a metal film by plating. Thereafter, the metal film is peeled off from the photoresist master, and a predetermined process such as surface cleaning is performed to obtain a stamper.
  • a photoresist layer is formed on a glass substrate, and then the photoresist layer is exposed using a patterning beam such as a laser, and the latent image pattern is developed.
  • a patterning beam such as a laser
  • a metal thin film containing Ni material etc. is formed on the surface of the uneven pattern by electroless plating, etc., and the photoresist master is made conductive.
  • a method of depositing a catalyst, which is a starting point of a metal deposition reaction, on the surface and depositing the catalyst using the catalyst as a nucleus is adopted. Thereafter, the metal thin film is used as a base. Then, a metal film containing Ni etc. is formed. If the metal thin film and the metal film are peeled off from the photoresist master, the concavo-convex pattern is transferred and a stamper can be obtained. '
  • Heisei 4'1-263100 proposes a glass master with an anti-reflection coat having an anti-reflection effect using light interference. I have. When a fine uneven pattern with a minimum width of about half of the exposure wavelength is formed, even if a non-reflective coating is provided, the effect of suppressing film loss is small and the shape of the uneven pattern is almost the same. Did not improve. Further, Japanese Patent No. 27279742 proposes providing a light absorbing layer containing graphite on the back surface of a glass substrate.
  • the reflected light from the glass substrate surface is larger, and graphite is applied to the back surface of the glass substrate.
  • the effect is small only by forming the light absorbing layer including the light absorbing layer.
  • the present inventors have found that it is effective to form a light absorbing layer between a glass substrate and a photoresist layer.
  • the light absorbing layer absorbs the laser beam reflected from the front and back surfaces of the glass substrate.
  • the reflected light that is reflected on the back surface of the glass substrate and reaches the photoresist layer passes through the light absorption layer twice, and the intensity is extremely weak.
  • light reflection can be suppressed, sag and film reduction can be suppressed, and a sharper uneven pattern can be obtained as compared with the conventional case.
  • the photoresist bed having a light absorbing layer had the following problems when forming a metal thin film by electroless plating. It is The photo resist is removed by the image, so that the photo resist master where the light absorption layer is partially exposed may have minute defects (fine irregularities) in the metal thin film after the electroless plating process. That is. Since these small defects can be considered as noise during reproduction, there is a problem in that even if an attempt is made to effectively use the light absorbing layer to increase the recording capacity, the noise degrades the recording and reproduction performance.
  • An object of the present invention is to provide an effective means for that purpose.
  • the present inventor has studied the manufacturing method of the optical recording medium and the like, and as a result, the above object can be achieved by the invention described in the claims of the present application.
  • the present invention focuses on the fact that in the electroless plating process, microdefects are likely to be generated in the light absorbing layer that is partially exposed by development, and the metal chloride solution used in the pretreatment of the electroless plating is used. It was speculated that the coming chlorine ions would adhere to the surface of the light absorbing layer and cause micro defects in the metal thin film in the next electroless plating process. Specifically, since chlorine ions are easily deposited on the surface of the light absorbing layer, an uneven pattern is formed by development, and when the light absorbing layer is partially exposed, chlorine ions are deposited on the surface of the light absorbing layer. Chlorine ions not removed by the subsequent cleaning are heated during the electroless plating, and gasify and swell because the surface is covered with a metal thin film, resulting in minute defects on the metal thin film surface. It is thought that it is possible.
  • the stamper (A) sprays a plurality of metal chloride solutions onto the photoresist master, and (B) sprays a strong acid to deposit only a metal that serves as a catalyst for electroless plating on the surface of the light absorbing layer.
  • Process (C) Cleaning by spraying liquid This is manufactured by performing electroless plating and then electrolytic plating.However, prior to the stamper manufacturing process, (A) (B) (C) ) By adjusting each injection time in the process, the saturation amount of chloride ions extracted from the light absorption layer, for example, the light absorption layer master when the light absorption layer is formed into the water et extracted 0.0 with saturated amount per area of the light absorbing layer master chlorine ions 044 ⁇ 0.
  • the injection time is as follows. If the injection time in the step (A) is too long, a large amount of metal serving as a catalyst in electroless plating is deposited on the surface, but a large amount of chlorine ions is deposited, resulting in minute Defects are likely to occur. On the other hand, if the amount is too small, chlorine ions are reduced, but the amount of metal acting as a catalyst is reduced and the electroless plating makes it difficult to form a metal thin film.
  • the injection time in the process (B) may be long enough to allow only the catalyst metal deposited in the process (A) to be deposited on the surface of the uneven pattern and to remove other metals. Only waste material. If the time is too short, other metals will remain, and the metal thin film will become uneven and cause noise. (C) If the injection time in the process is too long, not only chloride ions but also metals that serve as catalysts will be removed. On the other hand, if it is too short, chlorine ions cannot be sufficiently removed. Therefore, to verify during at each injection in preliminary experiments, most saturated amount of chlorine ions extracted into water from the light absorbing layer is such that 0. 0 044 ⁇ 0. 1 9 90 ⁇ g / cm 2 Decide the matter. Thereafter, by manufacturing a stamper under these conditions, it is possible to suppress the occurrence of minute defects in the metal thin film.
  • FIG. 1 is a block diagram showing an apparatus used for manufacturing a stamper for an optical recording medium of the present invention.
  • the substrate for the preliminary experiment is not particularly limited, but preferably does not contain much chloride ions.
  • a substrate different from the stamper manufacturing substrate may be used.
  • the substrate for manufacturing the stamper is not particularly limited.
  • a coupling agent layer may be provided on the substrate to facilitate adhesion of the light absorbing layer.
  • the light absorbing layer preferably contains an organic compound having a light absorbing property (hereinafter, also referred to as a light absorbing agent).
  • a light absorbing agent As the light absorber, it is preferable to use at least one compound selected from a photoinitiator, a photoinitiator and a dye.
  • a photoinitiator is used together with a photocurable resin, and is an organic compound that absorbs light such as ultraviolet rays to generate radicals.
  • the photoinitiator when used in combination with a photoinitiator which is not activated by ultraviolet irradiation, the initiation reaction is accelerated by using the photoinitiator alone, and the curing reaction proceeds effectively.
  • the photoinitiator generates radicals and decomposes.
  • the photoinitiator since the photoinitiator is stable, it is preferable to use the photoinitiator in the present invention.
  • the photoinitiating aid an aliphatic or aromatic amine is mainly used.
  • 4.4'-bis (dimethylamino) benzophenone 4.4'-bis (getylamino) benzophenone, 4-dimethylaminobenzoic acid (n-butoxy) ethyl
  • the photoresist is not particularly limited.
  • the plurality of metal chloride solutions used in the process are generally a solution containing both tin (Sn) and Pd for adsorbing Pd nuclei, a so-called catalyst called primary palladium chloride (Pd C l 2) and colloids solution containing stannous chloride (S n C l 2) is used.
  • Pd is present in a state of being coated with the Sn ion colloid.
  • the strong acid removes this colloid, and Pd adheres to the surface.
  • P d C 1 2 and S n C 1 2 to including colloids solution P d C 1 2 solution and S n C 1 2 solution may be used each independently, also using other metal It does not matter.
  • the strong acid can be appropriately selected from hydrofluoric acid (HBF 4 ), sulfuric acid, hydrochloric acid, and the like.
  • the liquid used in the step may be pure water, preferably ultrapure water.
  • the flow rate is preferably at least 11 Zmin, more preferably at least 51 / min.
  • the light absorption layer master plate that has been pretreated for electroless plating is put into pure water and the amount of chloride ion extracted is measured. Leave it in water until the chloride ion content is saturated, and use this saturated amount as the saturated amount of chlorine ion in the light absorption layer master.
  • a light-absorbing layer is formed on a glass substrate, and the amount of chloride ions that have passed through the process (d) without performing the processes (a), (b), and (c) was measured, and this was defined as the saturation amount of chloride ions extracted from the substrate.
  • Is the saturation amount of chloride ions in the light absorbing layer master The value obtained by subtracting the saturation amount of chloride ions extracted from the substrate from the above is taken as the saturation amount of chloride ions extracted from the light absorption layer.
  • a thin film of metal such as Ni is formed by electroless plating on the surface of the ⁇ convex pattern on which Pd is adhered.
  • the reducing agent in the plating solution is oxidized on the Pd surface having catalytic activity to release electrons, and the electrons reduce metal ions such as Ni in the solution to deposit a metal thin film.
  • the metal thin film is not limited to Ni, and another metal may be used.
  • a metal film containing Ni or the like can be formed by applying a current by using a metal thin film of Ni or the like formed by electroless plating as a base.
  • the metal is not limited to Ni, and other metals may be used.
  • the saturation amount of chlorine ions and the injection time in each step when being injected into water are determined by using a substrate for preliminary experiments or a substrate for manufacturing a stamper. Alternatively, it may be determined by another simulation, for example, a simulation on a computer assuming underwater injection.
  • the manufacturing apparatus 10 is a pretreatment apparatus for substantially electroless plating, and includes a turntable 14 for rotatably supporting a photoresist master 12 in a horizontal plane, and the photoresist on the turntable 14.
  • a solution ejector 16 capable of ejecting a plurality of metal chloride solutions from above, a strong acid solution ejector 18 capable of ejecting a strong acid solution, and a solution capable of ejecting a cleaning liquid from above.
  • the body injection device 20 a control valve 17 1 19 21 for turning on and off the injection of each of these injection devices 16 18 20, and an on / off of these control valves 17 19 19 21
  • a controller 22 for controlling the injection time of the metal chloride solution, the injection time of the strong acid solution, and the injection time of the cleaning liquid
  • the control unit 22 includes an injection time memory unit 24 that stores the signal of each injection time and can output the signal.
  • reference numeral 16 A indicates a metal chloride solution tank
  • 18 A indicates a strong acid solution tank
  • 20 A indicates a cleaning liquid tank.
  • the nitrogen in the tank 16, 18 A, and 20 A is supplied with nitrogen gas from a nitrogen gas source (not shown), whereby the liquid in the tank is pushed out, and the control pulp 17, 19 , 21 through the photoresist master 12 on the turntable 14.
  • reference numeral 32 in FIG. 1 denotes a motor for rotating the photo resist master disk in the turntable 14
  • reference numeral 34 denotes an input key for manually inputting to the control section 23 of the control device 22.
  • the control valves 17, 19, 21 and the motor 32 are configured to be controlled by a control unit 23.
  • a signal of each injection time is input to the control unit 23 from the injection time memory unit 24.
  • the injection time memory unit 24 stores the injection time signal determined in the above-described simulations, for example, the preliminary experiments in the steps (a), (b), and (c), and stores the signal for the photoresist master 12 in the chloride state. If the injection time of the metal solution injection time, the strong acid solution injection time, and the cleaning liquid injection time is input from the input key 34 through the control unit 23, the gold by electroless plating It is possible to obtain a stamper having a sharp ⁇ convex pattern by suppressing the generation of minute defects at the time of forming a metal thin film. '
  • a coupling agent hexamethyldisilazane (HMDS)
  • HMDS hexamethyldisilazane
  • SWK contained as -T5D60 (Tokyo Ohka Kogyo Co., Ltd.) was spin-coated. Further, this coating film was baked at 200 ° C. for 15 minutes to cure and remove the residual solvent, thereby forming a light absorbing layer having a thickness of 140 nm.
  • the saturated amount of chloride ions in the master disk of the light absorption layer was 5.25 g // g / 100 ml.
  • the light absorbing layer master was dipped in a nickel chloride (N i C l 2) bath, N i film by electroless main luck was formed. Attach Ni thin film to light absorbing layer The whole surface was visually observed for ease. The easiness of attaching Ni was marked as ⁇ for those with good attachment, and the X for those with very little Ni attachment. The easiness of attaching the Ni thin film was ⁇ .
  • the surface of the Ni thin film (the side opposite to the glass substrate) is visually observed over the entire surface and at least 20 places are observed with an optical microscope (magnification: 200 times), and minute defects existing on the surface are observed.
  • the microdefects that did not occur were marked with ⁇ , and those that were very small were marked with X. Small defects were not observed.
  • a sample was prepared in the same manner as in Example 1 except that the injection time of pure water was 0.5 minute.
  • a sample was prepared in the same manner as in Example 1 except that the injection time of pure water was set to 30 minutes.
  • Example 4 A sample was prepared in the same manner as in Example 1 except that pure water was not injected. (Comparative Example 4)
  • Example 4 30 10 10 0.0575 O ⁇ Example 5 30 10 1 0.1990 o ⁇ Example 6 30 10 30 0.0044 o ⁇ Comparative example 1 3 3 0 0.0035 o X Comparative example 2 12 7 30 0.0018 o X Comparative example 3 12 7 0 0.2078 X ⁇ Comparative Example 4 30 10 40 0.0027 o X Comparative Example 5 30 10 0 0.2176 X ⁇
  • HMDS hexamethyldisilazane
  • SWK—T5D60 Tokyo Ohka Kogyo Co., Ltd.
  • the coating film was baked at 200 ° C. for 15 minutes to cure and remove the residual solvent, thereby forming a light absorbing layer having a thickness of 140 nm.
  • a photo resist DVR100, manufactured by Zeon Corporation
  • DVR100 is spin-coated on the light absorbing layer, and the remaining solvent is evaporated by baking to form a 25-nm thick photo resist layer. did.
  • Photoresist layer The substrate was exposed to light and developed to form a concavo-convex pattern, thereby obtaining a photoresist master.
  • the follower Torejisu coat layer surface after activation with a surfactant (alkyl en monitor Umukurai de), similar to the conditions of Example 1, the colloids solution of P d C l 2 and S n C l 2 1 Injected for 2 seconds. Then, injected HBF 4 solution 7 seconds and then pure water (water; 1 2 1 / min) to wash the uneven pattern surface by a 1 0 minute injection (Example 1 conditions), prior to electroless plating key A processed photoresist master was obtained.
  • This photoresist master was dipped in N i C 1 2 bath, I. Ri to form an N i thin film in an electroless plated.
  • the easiness of attaching the Ni thin film was ⁇ .
  • Ni thin film As a base to form Ni.
  • the Ni thin film and the laminate composed of the Ni film were peeled from the master, and the back surface was polished and the front surface was cleaned to form a stamper. No micro defects on the surface of the Ni thin film of this stamper were observed.
  • a sample was prepared in the same manner as in Example 11 except that the injection time of pure water was 0.5 minute (the condition of Example 2).
  • a sample was prepared in the same manner as in Example 11 except that the injection time of pure water was 30 minutes (the conditions of Comparative Example 2).
  • Example 11 A sample was prepared in the same manner as in Example 11 except that pure water was not injected (the conditions of Comparative Example 3).
  • Table 2 shows the evaluation results of each of these tests. Chlorine in preliminary experiment Under such conditions that the saturation amount of oxygen is from 0.0044 to 0.190 ⁇ g / cm 2 , there is no generation of minute defects and no peeling of the Ni thin film. Further, minute defects occur in conditions of saturated amount of chlorine ions in the preliminary experiments exceeds 0. 1 9 9 0 / ig / cm 2, in 0. 0 044 / i gZ cm 2 less than the condition, N i It can be seen that it is difficult to form a thin film. From the above experiments, (a), (b), and (c) each injection time was determined by preliminary experiments, and then the stamper was manufactured. A stamper could be formed. , [Table 2]
  • the saturation amount of chloride ions extracted from the light absorbing layer by a simulation such as using a master disk of the light absorbing layer is set to 0.04 to 0.190 / ig / cm 2.
  • (A) (b) (c) Determine each injection time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

A process for producing a stamper for production of optical recording medium wherein micro-flaws occurring at the formation of a metal thin film by electroless plating can be prevented with the use of a photoresist original plate having a light absorption layer; and an apparatus therefor. In particular, a process for producing a stamper for production of optical recording medium with the use of a photoresist original plate provided with a light absorption layer, characterized in that as a simulation, for example, a trial experiment prior to stamper production, over a light absorption layer original plate comprising a substrate for trial experiment overlaid with a light absorption layer, (a) multiple metal chloride solutions are sprayed, (b) a strong acid is sprayed so that only a metal capable of catalyzing electroless plating adheres to the surface of the light absorption layer, (c) a liquid is sprayed so as to effect cleaning, and (d) the resultant light absorption layer original plate is immersed in water, and that the spray time of each of these steps is determined so that in the step (d), the saturation amount of chloride ion extracted from the light absorption layer falls within the range of 0.0044 to 0.1990 μg/cm2 and electroless plating pretreatments are carried out as much as the spray times determined for the steps (a), (b) and (c) to thereby obtain a stamper; and an apparatus therefor.

Description

明細書  Specification
光記録媒体製造用スタンパの製造方法及び装置 技術分野  TECHNICAL FIELD The manufacturing method and apparatus of a stamper for manufacturing an optical recording medium
本発明は、 グループやプリピッ トなどの凹凸パターンを有する光記録 媒体を製造する際に用いるスタンパの製造方法及び装置に関する。 背景技術  The present invention relates to a method and an apparatus for manufacturing a stamper used for manufacturing an optical recording medium having a concavo-convex pattern such as a group or a prepit. Background art
光記録媒体のディスク基板には、 現在、 追記または書き換え等が可能 な光ディスクと、 予め情報が記録されている再生専用のディスクの 2種 類が存在する。  Currently, there are two types of optical recording medium disk substrates: optical disks that can be written on or rewritten, and read-only disks on which information is recorded in advance.
光記録ディスクにおけるディスク基板にはトラッキング等に利用され るグループ (案内溝) が形成されており、 更にこのディスク基板上に相 変化材料や有機色素材料を含有する記録層が積層される。 レーザービー ムを記録層に照射すると、 前記記録層が化学変化や物理変化を起こして 記録マークが形成される。 "^方、 再生専用ディスクのディスク基板上に は、 予め記録マーク (情報ピッ ト) が凹凸パターンの一部と して形成さ れている。 これらの記録マークに読取用のレーザービームが照射される と光反射量が変動し、 この変動を検出することによって情報の読み取り (再生) が可能となっている。  A group (guide groove) used for tracking or the like is formed on a disk substrate of the optical recording disk, and a recording layer containing a phase change material or an organic dye material is further laminated on the disk substrate. When the recording layer is irradiated with the laser beam, the recording layer undergoes a chemical or physical change to form a recording mark. "On the other hand, recording marks (information pits) are formed in advance on the disk substrate of a read-only disc as a part of an uneven pattern. These recording marks are irradiated with a reading laser beam. As a result, the amount of light reflection fluctuates, and it is possible to read (reproduce) information by detecting this fluctuation.
グルーブゃ情報ピッ ト等の凹凸パターンを有するディスク基板を製造 するには、 この凹凸のネガパターン (これも凹 ώパターンの一種である ) が予め形成されたスタンパを用いる。 例えば、 キヤビティー内に前記 ネガパターンが形成されたスタンパが固定された金型を用いて射出成型 を行い、 充填された樹脂に前記ネガパターンを転写してディスク基板を 製造する方法が一般的である。  In order to manufacture a disk substrate having a concave / convex pattern such as a groove / information pit, a stamper in which a negative pattern of the concave / convex (also a kind of concave pattern) is formed in advance is used. For example, a method is generally used in which injection molding is performed using a mold in which a stamper having the negative pattern formed in a cavity is fixed, and the negative pattern is transferred to a filled resin to produce a disk substrate. .
凹凸パターンを有するスタンパは、 通常、 ニッケル (N i ) 等を含む 金属プレートによって構成される。 このスタンパを製造する工程として 、 先ず、 上記スタンパの凹凸パターンのネガパターンを有するフオ トレ ジス ト原盤を予め作成しておき、 このフォ トレジス ト原盤上に無電解メ ツキなどにより金属薄膜を形成することでフォトレジス ト原盤を導体化 し、 続いてメツキによって金属膜を形成する。 その後、 フォ トレジス ト 原盤から前記金属膜を剥離し、 表面洗浄等の所定の処理を行なうことで スタンパを得る。 A stamper having a concavo-convex pattern usually contains nickel (Ni) or the like. It is constituted by a metal plate. As a process of manufacturing the stamper, first, a photo resist master having a negative pattern of the concavo-convex pattern of the stamper is prepared in advance, and a metal thin film is formed on the photoresist master by electroless plating or the like. This converts the photoresist master into a conductor, and then forms a metal film by plating. Thereafter, the metal film is peeled off from the photoresist master, and a predetermined process such as surface cleaning is performed to obtain a stamper.
具体的には、 ガラス基板上にフォトレジス ト層を形成し、 次にレーザ 一等のパターエング用ビームを用いてフォ トレジス ト層を露光し、 その 潜像パターンを現像する。 これによつて凹凸パターンがフォ トレジス ト 層に形成されたフォ トレジスト原盤が得られる。  Specifically, a photoresist layer is formed on a glass substrate, and then the photoresist layer is exposed using a patterning beam such as a laser, and the latent image pattern is developed. As a result, a photoresist master having an uneven pattern formed on the photoresist layer can be obtained.
このフォトレジス ト原盤を用いてメツキによってスタンパを作製する には、 まず凹凸パターンの表面に N i材料等を含んだ金属薄膜'を無電解 メツキなどによって形成し、 フォ トレジス ト原盤に導電性を付与する。 また、 無電解メツキの前処理として、 表面に金属の析出反応の開始点と なる触媒を被着させておき、 これを核と して析出させる方法が取られる その後、 この金属薄膜を下地と して通電させてメツキを行い, N i等 を含んだ金属膜を形成する。 これらの金属薄膜及び金属膜をフォトレジ ス ト原盤から剥離すれば、 凹凸パターンが転写されてスタンパを得るこ とができる。 '  In order to manufacture a stamper by plating using this photoresist master, first, a metal thin film containing Ni material etc. is formed on the surface of the uneven pattern by electroless plating, etc., and the photoresist master is made conductive. Give. In addition, as a pretreatment for electroless plating, a method of depositing a catalyst, which is a starting point of a metal deposition reaction, on the surface and depositing the catalyst using the catalyst as a nucleus is adopted. Thereafter, the metal thin film is used as a base. Then, a metal film containing Ni etc. is formed. If the metal thin film and the metal film are peeled off from the photoresist master, the concavo-convex pattern is transferred and a stamper can be obtained. '
近年、 光記録媒体の大容量化に伴ってグループ等の凹凸パターンが微 細化し、 その形状誤差が記録、 読み取り精度に大きな影響を及ぼすよう になってきている。 従って、 シャープな凹凸パターンをディスク基板に 形成することが要求されるが、 そのためには、 基礎となるフォレジス ト 層の凹凸パターンを高精度 (シャープ) に形成する必要がある。  In recent years, as the capacity of optical recording media has increased, concavo-convex patterns of groups and the like have become finer, and their shape errors have had a great effect on recording and reading accuracy. Therefore, it is required to form a sharp concavo-convex pattern on the disk substrate. For this purpose, it is necessary to form the concavo-convex pattern of the underlying resist layer with high precision (sharp).
ところが、 フォ トレジス ト層が薄いと、 スタンパに転写される凹凸パ ターンが.浅くなり、 凹凸パターンの形状が丸みを帯びて (これをパター ンの 「ダレ」 と言う) 、 シャープさが不足することが知られている。 こ れは、 一般的に露光、 現像作業中にフォ トレジス トの厚さに変動が生ず る (これを 「膜減り」 という) ことが原因であると考えられている。 こ の膜減りは、 フォトレジス ト層とガラス基板との間でレーザービームが 反射して、 この反射光によってフォトレジス ト層が必要以上に露光され ることが原因と考えられている。 このような反射を防止するため、 特開 平 4 '一 2 6 3 1 4 0号公報では、 光の干渉を利用した反射防止効果を持 つ、 無反射コ^ト付きガラス原盤を提案している。 し力、し、 露光波長の 半分程度の最小幅を持つ微細な凹凸パターンを形成した場合、 無反射コ ートを設けても、 膜減りを抑える効果は小さく、 凹凸パターンのシヤー プさはほとんど改善されなかった。 また、 特許第 2 7 2 7 9 4 2号公報 では、 黒鉛を含む光吸収層をガラス基板の裏面に備えることを提案して いる。 しカゝし、 ガラス基板に紫外線を入射させて、 基板の表面 (光入射 面) 及び裏面からの光反射量を測定すると、 ガラス基板表面からの反射 光のほうが多く、 ガラス基板裏面に黒鉛を含む光吸収層を形成するだけ では効果が小さい。 However, if the photoresist layer is thin, the uneven pattern transferred to the stamper It is known that the turns become shallower, and the shape of the uneven pattern becomes rounded (this is called the “sag” of the pattern), resulting in insufficient sharpness. This is generally thought to be due to fluctuations in the thickness of the photoresist during exposure and development operations (this is referred to as “film loss”). It is considered that this film reduction is caused by the fact that the laser beam is reflected between the photoresist layer and the glass substrate, and the reflected light exposes the photoresist layer more than necessary. In order to prevent such reflection, Japanese Patent Laid-Open Publication No. Heisei 4'1-263100 proposes a glass master with an anti-reflection coat having an anti-reflection effect using light interference. I have. When a fine uneven pattern with a minimum width of about half of the exposure wavelength is formed, even if a non-reflective coating is provided, the effect of suppressing film loss is small and the shape of the uneven pattern is almost the same. Did not improve. Further, Japanese Patent No. 27279742 proposes providing a light absorbing layer containing graphite on the back surface of a glass substrate. Then, when ultraviolet light is incident on the glass substrate and the amount of light reflected from the front surface (light incident surface) and the back surface of the substrate is measured, the reflected light from the glass substrate surface is larger, and graphite is applied to the back surface of the glass substrate. The effect is small only by forming the light absorbing layer including the light absorbing layer.
この問題を解決するためには、 本発明者は、 ガラス基板とフォ トレジ ス ト層の間に光吸収層を形成することが効果的であることを発見した。 このようにすると、 光吸収層がガラス基板の表面及び裏面から反射する レーザービームを吸収する。 さらにガラス基板の裏面で反射してフォ ト レジスト層に達する反射光は、 光吸収層を 2度通過する事になり強度は きわめて弱くなる。 このように光反射を抑制することができ、 ダレや膜 減りを抑えられ、 従来と比較してよりシャープな凹凸パターンを得る事 が可能になる。  In order to solve this problem, the present inventors have found that it is effective to form a light absorbing layer between a glass substrate and a photoresist layer. In this case, the light absorbing layer absorbs the laser beam reflected from the front and back surfaces of the glass substrate. Furthermore, the reflected light that is reflected on the back surface of the glass substrate and reaches the photoresist layer passes through the light absorption layer twice, and the intensity is extremely weak. As described above, light reflection can be suppressed, sag and film reduction can be suppressed, and a sharper uneven pattern can be obtained as compared with the conventional case.
しかしながら、 光吸収層を有するフォ トレジス ト廐盤は、 無電解メッ キによる金属薄膜の形成時に次のような問題を有していた。 それは、 現 像によってフォ トレジス トが除去されることにより、 部分的に光吸収層 が露出しているフォ トレジス ト原盤は無電解メツキ工程後、 金属薄膜に 微小欠陥 (微小凹凸) が形成される場合があることである。 この微小欠 陥は再生時にノイズとなって願れるので、 光吸収層を有効活用して記録 容量を増大させよう と しても、 このノイズにより記録、 再生性能が低下 するという問題を有していた。 発明の開示 However, the photoresist bed having a light absorbing layer had the following problems when forming a metal thin film by electroless plating. It is The photo resist is removed by the image, so that the photo resist master where the light absorption layer is partially exposed may have minute defects (fine irregularities) in the metal thin film after the electroless plating process. That is. Since these small defects can be considered as noise during reproduction, there is a problem in that even if an attempt is made to effectively use the light absorbing layer to increase the recording capacity, the noise degrades the recording and reproduction performance. Was. Disclosure of the invention
この問題点を解決すれば、 光吸収層を利用したフォ トレジス ト原盤に よってシャープな囬凸を有するスタンパが製造可能になる。 本発明は、 そのために有効な手段を提供する事を目的とする。  If this problem is solved, it is possible to manufacture a stamper having a sharp 囬 convexity by using a photoresist master using a light absorbing layer. An object of the present invention is to provide an effective means for that purpose.
本発明者は、 光記録媒体の製造方法等について検討を行った結果、 本 件の特許請求の範囲に記載された発明によって上記目的を達成すること が可能となった。  The present inventor has studied the manufacturing method of the optical recording medium and the like, and as a result, the above object can be achieved by the invention described in the claims of the present application.
本発明は、 無電解メツキ工程で、 現像によって部分的に露出している 光吸収層の部分に微小欠陥が発生しやすい事に着目し、 無電解メ ツキの 前処理で使用する塩化金属溶液からくる塩素イオンが光吸収層表面に被 着し、 次の無電解メ ツキ工程で金属薄膜の微小欠陥の原因となると推測 した。 具体的には、 塩素イオンは光吸収層表面に被着し易いため、 現像 により凹凸パターンが形成され、 部分的に光吸収層が露出すると、 その 光吸収層表面に塩素イオンが被着し、 その後の洗浄で除去されなかった 塩素イオンが、 無電界メツキの際に加温される上に表面を金属薄膜で被 覆されているためにガス化して膨らみ、 その結果金属薄膜表面に微小欠 陥ができると考えられる。  The present invention focuses on the fact that in the electroless plating process, microdefects are likely to be generated in the light absorbing layer that is partially exposed by development, and the metal chloride solution used in the pretreatment of the electroless plating is used. It was speculated that the coming chlorine ions would adhere to the surface of the light absorbing layer and cause micro defects in the metal thin film in the next electroless plating process. Specifically, since chlorine ions are easily deposited on the surface of the light absorbing layer, an uneven pattern is formed by development, and when the light absorbing layer is partially exposed, chlorine ions are deposited on the surface of the light absorbing layer. Chlorine ions not removed by the subsequent cleaning are heated during the electroless plating, and gasify and swell because the surface is covered with a metal thin film, resulting in minute defects on the metal thin film surface. It is thought that it is possible.
スタンパはフォトレジス ト原盤に (A ) 複数の塩化金属溶液を噴射す る工程、 (B ) 強酸を噴射することにより無電解メツキの触媒となる金 属のみを前記光吸収層表面に被着する工程、 (C ) 液体を噴射して洗浄 する工程を経て無電解メツキを行い、 その後電解メツキを行うこと.で製 造されるものであるが、 スタンパ製造工程の前に、 予備実験等のシミュ レーシヨンにより、 (A) (B) (C) 工程における各噴射時間を調整 することで、 光吸収層から抽出される塩素イオンの飽和量、 例えば、 光 吸収層が形成された光吸収層原盤を水中へ投入した時の前記光吸収層か ら抽出される塩素イオンの飽和量が光吸収層原盤の面積当たりで 0. 0 044〜0. 1 9 9 0 /i g/c m2となる条件を決定し、 その後にスタ ンパ製造をする事により、 金属薄膜の微小欠陥を抑える事を考えた。 ' 具体的に前記噴射時間は.、 (A) 工程の噴射時間が長すぎると、 無電 解メツキにおいて触媒となる金属が多く表面に被着するが、 塩素イオン も多く被着することになり微小欠陥が発生し易くなる。 また、 少なすぎ ると、 塩素イオンは少なくなるが、 触媒として働く金属の被着が少なく なり無電解メ ツキで金属薄膜が付き難くなる。 (B) 工程の噴射時間は (A) 工程で被着した触媒となる金属のみを凹凸パターン表面に被着さ せ、 その他の金属を除去するのに十分な時間であれば良く、 長すぎても 材料を浪費するだけである。 また、 時間が短すぎると他の金属が残り、 金属薄膜がむらになりノイズの原因となる。 (C) 工程の噴射時間は長 すぎると、 塩素イオンだけでなく触媒となる金属も除去してしまう。 ま た、 短すぎると塩素イオンを十分に除去できない。 このため、 各噴射時 間を予備実験で確認し、 前記光吸収層から水に抽出される塩素イオンの 飽和量が 0. 0 044〜0. 1 9 90 μ g/c m2となるような最件を 決定する。 その後、 この条件でスタンパの製造を行なうことにより金属 薄膜の微小欠陥の発生を抑えることが可能となる。 The stamper (A) sprays a plurality of metal chloride solutions onto the photoresist master, and (B) sprays a strong acid to deposit only a metal that serves as a catalyst for electroless plating on the surface of the light absorbing layer. Process, (C) Cleaning by spraying liquid This is manufactured by performing electroless plating and then electrolytic plating.However, prior to the stamper manufacturing process, (A) (B) (C) ) By adjusting each injection time in the process, the saturation amount of chloride ions extracted from the light absorption layer, for example, the light absorption layer master when the light absorption layer is formed into the water et extracted 0.0 with saturated amount per area of the light absorbing layer master chlorine ions 044~0. 1 9 9 0 / ig / cm to determine the 2 become conditions, by then making the static damper production However, we thought about suppressing minute defects in metal thin films. 'Specifically, the injection time is as follows.If the injection time in the step (A) is too long, a large amount of metal serving as a catalyst in electroless plating is deposited on the surface, but a large amount of chlorine ions is deposited, resulting in minute Defects are likely to occur. On the other hand, if the amount is too small, chlorine ions are reduced, but the amount of metal acting as a catalyst is reduced and the electroless plating makes it difficult to form a metal thin film. The injection time in the process (B) may be long enough to allow only the catalyst metal deposited in the process (A) to be deposited on the surface of the uneven pattern and to remove other metals. Only waste material. If the time is too short, other metals will remain, and the metal thin film will become uneven and cause noise. (C) If the injection time in the process is too long, not only chloride ions but also metals that serve as catalysts will be removed. On the other hand, if it is too short, chlorine ions cannot be sufficiently removed. Therefore, to verify during at each injection in preliminary experiments, most saturated amount of chlorine ions extracted into water from the light absorbing layer is such that 0. 0 044~0. 1 9 90 μ g / cm 2 Decide the matter. Thereafter, by manufacturing a stamper under these conditions, it is possible to suppress the occurrence of minute defects in the metal thin film.
以上の結果、 光吸収層の利点を生かし、 微小欠陥がない、 従来と比較 してシャープな凹凸パターンを有するスタンパを得ることが可能となつ た。 その結果、 光記録媒体のグループや情報ピッ ト等もシャープに形成 されるので、 記録、 再生特性を向上させることが出来る。 又、 今後益々 発展する凹凸パターン微細化にも対応可能となるこから、 光記録媒体の 情報記憶 (記録) 容量を増大させることも出来る。 ' 図面の簡単な説明 As a result, by utilizing the advantages of the light absorbing layer, a stamper having no fine defects and having a sharper concavo-convex pattern than before can be obtained. As a result, the optical recording medium groups and information pits are sharply formed, so that the recording and reproducing characteristics can be improved. In the future Since it is possible to cope with the evolving miniaturization of concavo-convex patterns, it is also possible to increase the information storage (recording) capacity of optical recording media. '' Brief description of the drawings
図 1は、 本発明の光記録媒体用スタンパの製造に用いる装置を示すプロ ック図である。 発明を実施するための最良の形態 FIG. 1 is a block diagram showing an apparatus used for manufacturing a stamper for an optical recording medium of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の光記録媒体用スタンパ製造方法について詳細に説明す る。  Hereinafter, the method for manufacturing a stamper for an optical recording medium of the present invention will be described in detail.
予備実験用の基板は特に限定されないが、 塩素イオンを多く含まない ものが好ましい。 スタンパ製造用基板と別な基板でもよい。 スタンパ製 造用の基板も特に限定されない。  The substrate for the preliminary experiment is not particularly limited, but preferably does not contain much chloride ions. A substrate different from the stamper manufacturing substrate may be used. The substrate for manufacturing the stamper is not particularly limited.
光吸収層を形成する前に、 基板上に光吸収層を接着し易くするために カップリング剤層を設けてもよい。 光吸収層は、 光吸収性を持つ有機化 合物 (以下、 光吸収剤ともいう) を含有する事が好ましい。 光吸収剤と しては、 光開始剤、 光開始助剤および染料から選択される少なく とも一 種の化合物を用いることが好ましい。 一般に、 光開始剤は光硬化型樹脂 と共に用いられ、 紫外線等の光を吸収してラジカルを発生する有機化合 物である。 また、 光開始助剤は、 自身は紫外線照射により活性化しない 力 光開始剤と併用した場合には、 光開始剤単独使用より開始反応が促 進され、 硬化反応が効果的に進む。 光開始剤はラジカルを発生して分解 するが、 光開始助剤は安定であるため、 本発明では光開始助剤を用いる 事が好ましい。 光開始助剤としては、 主として脂肪族または芳香族のァ ミンが使用される。 本発明では、 光開始剤として、 4 . 4 ' 一ビス (ジ メチルァミノ) ベンゾフエノン、 4 . 4 ' —ビス (ジェチルァミノ) ベ ンゾフエノン、 4—ジメチルァミノ安息香酸 (n—ブトキシ) ェチル、 4—ジメチルァミノ安息香酸 2—ェチルへキシルの少なく とも 1種を用 いることが好ましく、 このうち特にべンゾフエノン系化合物を用いるこ とが好ましい。 Before forming the light absorbing layer, a coupling agent layer may be provided on the substrate to facilitate adhesion of the light absorbing layer. The light absorbing layer preferably contains an organic compound having a light absorbing property (hereinafter, also referred to as a light absorbing agent). As the light absorber, it is preferable to use at least one compound selected from a photoinitiator, a photoinitiator and a dye. Generally, a photoinitiator is used together with a photocurable resin, and is an organic compound that absorbs light such as ultraviolet rays to generate radicals. In addition, when the photoinitiator is used in combination with a photoinitiator which is not activated by ultraviolet irradiation, the initiation reaction is accelerated by using the photoinitiator alone, and the curing reaction proceeds effectively. The photoinitiator generates radicals and decomposes. However, since the photoinitiator is stable, it is preferable to use the photoinitiator in the present invention. As the photoinitiating aid, an aliphatic or aromatic amine is mainly used. In the present invention, 4.4'-bis (dimethylamino) benzophenone, 4.4'-bis (getylamino) benzophenone, 4-dimethylaminobenzoic acid (n-butoxy) ethyl, It is preferable to use at least one kind of 2-ethylhexyl 4-dimethylaminobenzoate, and it is particularly preferable to use a benzophenone compound.
フォ トレジス トは特に限定しない。  The photoresist is not particularly limited.
無電解メツキで N i等金属薄膜を形成する場合、 表面に金属の析出反 応の開始点となる触媒としてパラジウム (P d) を予め被着させるのが 一般的である。 そこで、 無電解メツキの前処理と して前記 (A) 、 (B ) 、 (C) 工程に相当する (a) (b) (c ) を行なう。 ( a) 工程で 用いられる複数の塩化金属溶液は、 一般に P dの核を吸着させるため錫 (S n) と P dの両者を含む溶液、 所謂キヤタリス トとよばれる塩化第 一パラジウム (P d C l 2) と塩化第一錫 (S n C l 2) とを含むコロイ ド溶液が使用されている。 この溶液では P dは S nイオンのコロイ ドに 被覆された状態で存在している。 続く (b) 工程で強酸によりこのコロ イ ドが除去され、 P dが表面に被着する。 P d C 12と S n C 12とを含 むコロイ ド溶液に代えて、 P d C 12溶液と S n C 12溶液を各々独立に 用いてもよく、 またその他の金属を用いても構わない。 強酸として、 ホ ゥフッ.化水素酸 (HB F4) や硫酸、 塩酸などから適当に選択すること ができる。 ( c ) 工程で用いられる液体は純水、 好ましくは超純水を用 いることができる。 流量は好ましくは 1 1 Zm i n以上、 より好ましく は 5 1 /m i n以上とする。 When a thin metal film such as Ni is formed by electroless plating, palladium (Pd) is generally pre-deposited on the surface as a catalyst that serves as a starting point for a metal deposition reaction. Therefore, (a), (b) and (c) corresponding to the above-mentioned steps (A), (B) and (C) are performed as a pretreatment of the electroless plating. (A) The plurality of metal chloride solutions used in the process are generally a solution containing both tin (Sn) and Pd for adsorbing Pd nuclei, a so-called catalyst called primary palladium chloride (Pd C l 2) and colloids solution containing stannous chloride (S n C l 2) is used. In this solution, Pd is present in a state of being coated with the Sn ion colloid. In the subsequent step (b), the strong acid removes this colloid, and Pd adheres to the surface. Instead the P d C 1 2 and S n C 1 2 to including colloids solution, P d C 1 2 solution and S n C 1 2 solution may be used each independently, also using other metal It does not matter. The strong acid can be appropriately selected from hydrofluoric acid (HBF 4 ), sulfuric acid, hydrochloric acid, and the like. (C) The liquid used in the step may be pure water, preferably ultrapure water. The flow rate is preferably at least 11 Zmin, more preferably at least 51 / min.
塩素イオンの飽和量の測定は、 無電解メツキの前処理をした光吸収層 原盤を純水に投入し抽出される塩素イオン量を測定する。 塩素イオン量 が飽和するまで水中に放置し、 この飽和量を光吸収層原盤の塩素ィオン の飽和量とする。 また、 基板から抽出される塩素イオン量を考慮し、 光 吸収層をガラス基板上に作成し、 (a ) (b) ( c ) 工程をせずに (d ) 工程を経た塩素イオンの飽和量を測定し、 これを基板から抽出された 塩素イオンの飽和量とした。 前記光吸収層原盤の塩素イオンの飽和量か ら前記基板から抽出された塩素イオンの飽和量を除いた値を光吸収層か ら抽出される塩素イオンの飽和量とし、 この値を原盤の面積あたりに換 し/ For the measurement of chloride ion saturation, the light absorption layer master plate that has been pretreated for electroless plating is put into pure water and the amount of chloride ion extracted is measured. Leave it in water until the chloride ion content is saturated, and use this saturated amount as the saturated amount of chlorine ion in the light absorption layer master. In consideration of the amount of chloride ions extracted from the substrate, a light-absorbing layer is formed on a glass substrate, and the amount of chloride ions that have passed through the process (d) without performing the processes (a), (b), and (c) Was measured, and this was defined as the saturation amount of chloride ions extracted from the substrate. Is the saturation amount of chloride ions in the light absorbing layer master The value obtained by subtracting the saturation amount of chloride ions extracted from the substrate from the above is taken as the saturation amount of chloride ions extracted from the light absorption layer.
P dが被着した囬凸パターン表面に無電解メツキによって N i等金属 の薄膜を形成する。 この際、 メツキ溶液中の還元剤が、 触媒活性特性を 有する P d表面で酸化されて電子を放出し、 その電子によって溶液中の N i等の金属イオンが還元されて金属薄膜が析出する。 金属薄膜は N i に限定されるものではなく他の金属を使用しても良い。  A thin film of metal such as Ni is formed by electroless plating on the surface of the 囬 convex pattern on which Pd is adhered. At this time, the reducing agent in the plating solution is oxidized on the Pd surface having catalytic activity to release electrons, and the electrons reduce metal ions such as Ni in the solution to deposit a metal thin film. The metal thin film is not limited to Ni, and another metal may be used.
無電解メツキにより形成された N i等金属薄膜を下地として通電させ てメツキを行い, N i等を含んだ金属膜を形成できる。 金属は N iに限 定されるものではなく他の金属を使用しても良い。  A metal film containing Ni or the like can be formed by applying a current by using a metal thin film of Ni or the like formed by electroless plating as a base. The metal is not limited to Ni, and other metals may be used.
なお、 上記実施の形態の例では、 予備実験用の基板又はスタンパ製造 用の基板を用いて、 水中投入時における塩素イオンの飽和量及び各工程 での噴射時間を決定しているが、 これは、 他のシミュレーション、 例え ば、 コンピュータ上での、 水中投入を仮定したシミュレーションにより 決定してもよい。  In the example of the above-described embodiment, the saturation amount of chlorine ions and the injection time in each step when being injected into water are determined by using a substrate for preliminary experiments or a substrate for manufacturing a stamper. Alternatively, it may be determined by another simulation, for example, a simulation on a computer assuming underwater injection.
次に、 上記光記録媒体製造用スタンパの製造に用いる装置について、 図 1を参照して説明する。  Next, an apparatus used for manufacturing the stamper for manufacturing an optical recording medium will be described with reference to FIG.
この製造装置 1 0は、 実質的に無電解めつき前処理装置であり、 フォ トレジスト原盤 1 2を水平面内で回転自在に支持するターンテーブル 1 4と、 このターンテーブル 1 4上の前記フォトレジス ト原盤 1 2に'対し て、 上方から、 複数の塩化金属溶液を噴射可能な溶液噴射装置 1 6と、 強酸液を噴射可能な強酸液噴射装置 1 8と、 洗浄用液体を噴射可能な液 体噴射装置 2 0と、 これらの噴射装置 1 6 1 8 2 0の各々の噴射を オンオフするための制御バルブ 1 7 1 9 2 1 と、 これらの制御バル ブ 1 7 1 9 2 1のオンオフにより前記塩化金属溶液の噴射時間、 強 酸液の噴射時間及び洗浄用液体の噴射時間を制御する制御装置 2 2と、 この制御装置 2 2に含まれ、 前記各噴射時間の信号を記憶し、 且つ出力 可能な噴射時間メモリー部 24とを有して構成されている。 The manufacturing apparatus 10 is a pretreatment apparatus for substantially electroless plating, and includes a turntable 14 for rotatably supporting a photoresist master 12 in a horizontal plane, and the photoresist on the turntable 14. A solution ejector 16 capable of ejecting a plurality of metal chloride solutions from above, a strong acid solution ejector 18 capable of ejecting a strong acid solution, and a solution capable of ejecting a cleaning liquid from above. The body injection device 20, a control valve 17 1 19 21 for turning on and off the injection of each of these injection devices 16 18 20, and an on / off of these control valves 17 19 19 21 A controller 22 for controlling the injection time of the metal chloride solution, the injection time of the strong acid solution, and the injection time of the cleaning liquid, The control unit 22 includes an injection time memory unit 24 that stores the signal of each injection time and can output the signal.
図 1の符号 1 6 Aは塩化金属溶液タンク、 1 8 Aは強酸液タンク、 2 0 Aは 浄用液体タンクをそれぞれ示す。 これらのタンク 1 6入、 1 8 A、 20 Aにはそれぞれ窒素ガス源 (図示省略) から窒素ガスが供給さ れることによって、 タンク内の液体が押し出されて、 前記制御パルプ 1 7、 1 9、 2 1を通ってターンテーブル 1 4上のフォ トレジスト原盤 1 2に噴射されるようになつている。  In FIG. 1, reference numeral 16 A indicates a metal chloride solution tank, 18 A indicates a strong acid solution tank, and 20 A indicates a cleaning liquid tank. The nitrogen in the tank 16, 18 A, and 20 A is supplied with nitrogen gas from a nitrogen gas source (not shown), whereby the liquid in the tank is pushed out, and the control pulp 17, 19 , 21 through the photoresist master 12 on the turntable 14.
又図 1の符号 3 2は前記ターンテーブル 1 4におけるフォ トレジス ト 原盤回転駆動用のモータ、 34は制御装置 2 2の制御部 2 3へ手動入力 するための入力キーをそれぞれ示す。 又、 前記制御バルブ 1 7、 1 9、 2 1及びモータ 3 2は、 制御部 2 3によって制御されるように構成され ている。  In addition, reference numeral 32 in FIG. 1 denotes a motor for rotating the photo resist master disk in the turntable 14, and reference numeral 34 denotes an input key for manually inputting to the control section 23 of the control device 22. Further, the control valves 17, 19, 21 and the motor 32 are configured to be controlled by a control unit 23.
又、 この制御部 2 3に対しては、 前記噴射時間メモリー部 24から各 噴射時間の信号が入力されるようになっている。  In addition, a signal of each injection time is input to the control unit 23 from the injection time memory unit 24.
この噴射時間メモリー部 24には、 前記シミュレーション、 例えば予 備実験により (a) 、 (b) 、 ( c ) 工程での決定された噴射時間の信 号が、 フォ ト レジス ト原盤 1 2に対する塩化金属溶液の噴射時間、 強酸 液の噴射時間、 洗浄用液体の噴射時間の各噴射時間として、 前記入力キ 一 3 4から制御部 2 3を介して入力しておけば、 無電解めつきによる金 属薄膜形成時の微小欠陥の発生を抑制して、 シャープな ω凸パターンを 有するスタンパを得ることができる。 '  The injection time memory unit 24 stores the injection time signal determined in the above-described simulations, for example, the preliminary experiments in the steps (a), (b), and (c), and stores the signal for the photoresist master 12 in the chloride state. If the injection time of the metal solution injection time, the strong acid solution injection time, and the cleaning liquid injection time is input from the input key 34 through the control unit 23, the gold by electroless plating It is possible to obtain a stamper having a sharp ω convex pattern by suppressing the generation of minute defects at the time of forming a metal thin film. '
【例及び比較例】  [Examples and Comparative Examples]
(例 1)  (Example 1)
研磨された直径 1 2'c mのガラス基板上にカップリング剤 (へキサメ チルジシラザン (HMD S) ) 層を形成した後、 その上に 4. 4, -ビ. ス (ジェチルァミノ) ベンゾフエノンを光吸収剤として含有する SWK -T 5 D 6 0 (東京応化工業 (株) ) をスピンコートした。 さらに、 こ の塗膜を 200 °Cで 1 5分間べ一キングして硬化すると共に残留溶剤を 除去し、 厚さ 1 40 nmの光吸収層を形成した。 After a coupling agent (hexamethyldisilazane (HMDS)) layer is formed on a polished glass substrate with a diameter of 12'cm, a 4.4-bis- (Jetylamino) benzophenone is used as a light absorbing agent on it. SWK contained as -T5D60 (Tokyo Ohka Kogyo Co., Ltd.) was spin-coated. Further, this coating film was baked at 200 ° C. for 15 minutes to cure and remove the residual solvent, thereby forming a light absorbing layer having a thickness of 140 nm.
その後、 前記光吸収層表面に界面活性剤 (アルキルアンモニゥムクラ イ ド) 層を形成した後に、 前記光吸収層表面に、 複数の塩化金属溶液と して、 P d C 12と S n C 12のコロイ ド溶液を 1 2秒間噴射した。 その 後、 強酸 (HB F4) を 7秒間噴射することにより、 S nを除去すると 共に表面に P dを析出させた。 その後、 洗浄として純水 (水量; 1 2 1 /m i n) を 1 0分間噴射することにより前記光吸収層表面を水洗し、 光吸収層原盤 得た。 Then, after forming the surfactant (alkyl ammonium Niu beam class i de) layer on the light absorbing layer surface, the light absorbing layer surface, and a plurality of metal chloride solution, P d C 1 2 and S n the colloids solution of C 1 2 to injection 1 2 sec. Then, a strong acid (HBF 4 ) was sprayed for 7 seconds to remove Sn and precipitate Pd on the surface. Thereafter, the surface of the light absorption layer was washed with water by spraying pure water (water amount: 12 1 / min) for 10 minutes to obtain a light absorption layer master.
この光吸収層原盤と純水 1 00 m 1 を 3 1のビーカに入れ室温 (約 25°C) で放置し、 これをイオンクロマトグラフ分析装置 (D I ONE X社製 D X 5 0 0、 測定条件 (カラム : D I ON E X社製 AG 1 5 /A S 1 5、 溶離液 :水酸化力リ ウム (KOH) 3 8 mm o 1 / 1、 1. 2m l /m i n、 サプレッサー: D I ONE X社製 AS R S— UL TR A (R e c y c l e mo d e/ 1 0 0 mA) 、 恒温槽温度 : 3 5 °C、 試料導入量: 2 5 μ 1、 検出 :電気伝導度) ) で塩素イオン量を測定し た。 塩素イオン量は一日毎に測定し、 飽和するまで続けた。 この光吸収 層原盤の塩素イオンの飽和量は、 5. ひ / / g / 1 00 m 1であった。 ま た、 基板から抽出された塩素イオンの飽和量は、 4. 5 ix g/1 0 0m 1であった。 従って、 光吸収層から抽出された塩素イオンの飽和量は、 5. 0— 4. 5 = 0. であった。 この値を原盤の面積あたり ( 1 2 c mのため、 面積は 1 1 3. 1 c m2) の塩素イオン量に換算し 、 0. 0 044 g / c m2となった。 Put the light absorbing layer master and 100 m 1 of pure water into a beaker of 31 and leave it at room temperature (about 25 ° C). Then, use the ion chromatograph analyzer (DIONEX DX500, measurement conditions). (Column: AG15 / AS15, manufactured by DI ONEX, eluent: Lithium hydroxide (KOH) 38 mm o 1/1, 1.2 ml / min, Suppressor: AS, manufactured by DIONE X) RS—ULTRA (Recycle mode / 100 mA), thermostat temperature: 35 ° C, sample introduction amount: 25 μ1, detection: electric conductivity)) . Chloride ion levels were measured daily and continued until saturation. The saturated amount of chloride ions in the master disk of the light absorption layer was 5.25 g // g / 100 ml. The saturation amount of chloride ions extracted from the substrate was 4.5 ix g / 100 ml. Therefore, the saturated amount of chloride ion extracted from the light absorption layer was 5.0-4.5 = 0. This value was converted to the amount of chloride ions per area of the master (since the area was 11 cm, the area was 11.3 cm 2 ), and was 0.044 g / cm 2 .
次いで、 同様に無電解メツキの前処理を行なった光吸収層原盤を作成 した後、 この光吸収層原盤を塩化ニッケル (N i C l 2) 浴に浸漬し、 無電解メ ツキにより N i薄膜を形成した。 光吸収層への N i薄膜の付き 易さを目視により全面を観察した。 N iの付き易さは、 良く付いている ものを〇、 ごく一部でも N i薄膜が付いていないものを Xとした。 この N i薄膜の付き易さは〇であった。 Then, similarly after creating the light absorption layer master was subjected to pre-treatment of the electroless plated, the light absorbing layer master was dipped in a nickel chloride (N i C l 2) bath, N i film by electroless main luck Was formed. Attach Ni thin film to light absorbing layer The whole surface was visually observed for ease. The easiness of attaching Ni was marked as 〇 for those with good attachment, and the X for those with very little Ni attachment. The easiness of attaching the Ni thin film was Δ.
この N i薄膜を形成した後、 N i薄膜の表面 (ガラス基板と反対側) を目視による全面の観察と光学顕微鏡 (倍率 20 0倍) により 2 0箇所 以上観察し、 表面に存在する微小欠陥の程度を評価した。 微小欠陥は、 発生のないものを〇、 ごく一部でもあるものを Xとした。 微小欠陥は観 察されなつた。  After this Ni thin film is formed, the surface of the Ni thin film (the side opposite to the glass substrate) is visually observed over the entire surface and at least 20 places are observed with an optical microscope (magnification: 200 times), and minute defects existing on the surface are observed. Was evaluated. The microdefects that did not occur were marked with 〇, and those that were very small were marked with X. Small defects were not observed.
(例 2)  (Example 2)
純水の噴射時間 0. 5分とした以外は例 1と同様にサンプルを作成し た。  A sample was prepared in the same manner as in Example 1 except that the injection time of pure water was 0.5 minute.
(例 3)  (Example 3)
P d C 12と S n 12のコロイ ド溶液の噴射時間を 1 5秒とした以外 は例 1と同様にサンプルを作成した。 Except that the P d C 1 2 and injection time of the S n 1 2 of colloids solution with 1 5 seconds to create a sample in the same manner as Example 1.
(例 4)  (Example 4)
P d C 12と S n C 12のコロイ ド溶液の噴射時間を 3 0秒とし、 H B F4溶液の噴射時間を 1 0秒とした以外は例 1と同様にサンプルを作成 した。 P d C 1 and 2 and S n C 1 2 of the injection time of the colloids solution 3 0 seconds, except that the injection time of HBF 4 solution and 1 0 seconds to create a sample in the same manner as Example 1.
(例 5 )  (Example 5)
P d C 2と S n C 12のコロイ ド溶液の噴射時間を 3 0秒とし、 HB F4溶液の噴射時間を 1 0秒とし、 純水の噴射時間を 1分とした以外は 例 1と同様にサンプルを作成した。 . P d C 2 and S n C 1 2 of the injection time of the colloids solution with 3 0 seconds, HB F 4 solution injection time was 1 0 seconds, except that the injection time of the pure water was 1 minute Example 1 A sample was prepared in the same manner as described above. .
(例 6)  (Example 6)
P d C 12と S n C 12のコロイ ド溶液の噴射時間を 3 0秒とし、 HB F4溶液の噴射時間を 1 0秒とし、 純水の噴射時間を 30分とした以外 は例 1と同様にサンプルを作成した。 P d C 1 and 2 and S n C 1 2 of the injection time of the colloids solution 3 0 seconds, HB F 4 solution injection time was 1 0 seconds, except that the injection time of the pure water was 30 minutes Examples A sample was prepared as in 1.
(比較例 1 ) P d. C l 2と S n C l 2のコロイド溶液の噴射時間を 3秒とし、 H B F 4溶液の噴射時間を 3秒とし、 純水を噴射しなかった以外は例 1と同様 にサンプルを作成した。 (Comparative Example 1) P d. A C l 2 and S n C l injection time of a colloidal solution of 2 for 3 seconds, and 3 seconds injection time of HBF 4 solution, the samples in the same manner as Example 1 except that no jetting pure water Created.
(比較例 2)  (Comparative Example 2)
純水の噴射時間を 3 0分とした以外は例 1と同様にサンプルを作成し た。  A sample was prepared in the same manner as in Example 1 except that the injection time of pure water was set to 30 minutes.
(比較例 3 )  (Comparative Example 3)
純水を噴射しなかった以外は例 1と同様にサンプルを作成した。 (比較例 4)  A sample was prepared in the same manner as in Example 1 except that pure water was not injected. (Comparative Example 4)
P d C l 2と S n C l 2のコロイ ド溶液の噴射時間を 3 0秒とし、 H B F4溶液の噴射時間を 1 0秒とし、 純水の噴射時間を 40分とした以外 は例 1と同様にサンプルを作成した。 P d C l and 2 and S n C l injection time of colloids solution 2 3 0 seconds, and 1 0 seconds injection time of HBF 4 solution, except that the injection time of the pure water was 40 minutes Example 1 A sample was prepared in the same manner as described above.
(比較例 5 )  (Comparative Example 5)
P d C l 2と S n C l 2のコロイ ド溶液の噴射時間を 3 0秒とし、 H B F4溶液の噴射時間を 1 0秒とし、 純水の噴射をしなかった以外は例 1 と同様にサンプルを作成した。 P d C l and 2 and S n C l injection time of colloids solution 2 3 0 seconds, and 1 0 seconds injection time of HBF 4 solution, similarly to Example 1 except that no injection of pure water A sample was created.
これらの各試験の評価結果を下記の表 1に示す。 塩素イオンの飽和量 が 0. 1 9 90 μ gZ c m2を超えると微小欠陥の発生が多くなり、 0 . 0044 /gノC m2未満だとN i薄膜が付き難くなることが分かる 。 以上の実験により、 塩素イオンの飽和量が少なく (微小欠陥が少ない ) 、 且つ光吸収層に N i薄膜が付き易い、 ?(1。 12と 3 11。 12のコロ イド溶液の噴射時間と、 HB F4溶液の噴射時間と、 純水の噴射による 洗浄時間の条件を決定する。 The evaluation results of each of these tests are shown in Table 1 below. Occurrence of minute defects when saturating amounts of chloride ions exceeds 0. 1 9 90 μ gZ cm 2 is increased, 0. 0044 / g Bruno C m and less than 2 N i thin film is hardly made can be seen attached. According to the above experiment, the saturation amount of chloride ion is small (the number of micro defects is small) and the Ni thin film is easily attached to the light absorption layer. (1. Determine the 1 2 and 3 11. injection time of 1 second roller Id solution, and HB F 4 solution injection time, the condition of the cleaning time due to the injection of pure water.
【表 1】
Figure imgf000015_0001
【table 1】
Figure imgf000015_0001
HBF4溶液 純水 ίππ 微小欠陥 Ni 薄膜のHBF 4 solution Pure water ίππ Micro defect Ni thin film
SnGI2SnGI 2
噴射時間 噴射時間 イオン量 の発生 付き易さ コロイド溶液  Injection time Injection time Generation of ion amount Ease of adhesion Colloidal solution
噴射時間  Injection time
(秒) (分) ( g/cm2) (Seconds) (minutes) (g / cm 2 )
(秒)  (Seconds)
iHll 1 1 Iひ 71 1 Π J iHll 0 19 7 U.0 Π υ.1 I Q y Ω yΠ υ リ  iHll 1 1 I 71 1 Π J iHll 0 19 7 U.0 υ υ.1 I Q y Ω yΠ υ
W 110 7 / 1 υ Π U .01111 ϋ^  W 110 7/1 υ Π U .01111 ϋ ^
例 4 30 10 10 0.0575 O 〇 例 5 30 10 1 0.1990 o ο 例 6 30 10 30 0.0044 o ο 比較例 1 3 3 0 0.0035 o X 比較例 2 12 7 30 0.0018 o X 比較例 3 12 7 0 0.2078 X Ο 比較例 4 30 10 40 0.0027 o X 比較例 5 30 10 0 0.2176 X Ο  Example 4 30 10 10 0.0575 O 例 Example 5 30 10 1 0.1990 o ο Example 6 30 10 30 0.0044 o ο Comparative example 1 3 3 0 0.0035 o X Comparative example 2 12 7 30 0.0018 o X Comparative example 3 12 7 0 0.2078 X Ο Comparative Example 4 30 10 40 0.0027 o X Comparative Example 5 30 10 0 0.2176 X Ο
(例 1 1 ) (Example 1 1)
次いで、 実際にスタンパの製造工程に入る。 研磨されたガラス基板上 にカップリング剤 (へキサメチルジシラザン (HMD S) ) 層を形成し た後、 その上に 4. 4 ' —ビス (ジェチルァミノ) ベンゾフエノンを光 吸収剤と して含有する SWK— T 5 D 6 0 (東京応化工業 (株) ) をス ピンコートした。 さらに、 この塗膜を 200°Cで 1 5分間べ一キングし て硬化すると共に残留溶剤を除去し、 厚さ 1 40 nmの光吸収層を形成 した。 次いで、 この光吸収層上に、 フォトジス ト (日本ゼオン (株) 製 D VR 1 00) をスピンコートし、 ベーキングにより残留溶剤を蒸発さ せて、 厚さ 2 5 nmのフォ ト ジス ト層とした。  Next, the stamper manufacturing process is actually started. After forming a coupling agent (hexamethyldisilazane (HMDS)) layer on a polished glass substrate, it contains 4.4'-bis (getylamino) benzophenone as a light absorber on it. SWK—T5D60 (Tokyo Ohka Kogyo Co., Ltd.) was spin-coated. Further, the coating film was baked at 200 ° C. for 15 minutes to cure and remove the residual solvent, thereby forming a light absorbing layer having a thickness of 140 nm. Next, a photo resist (DVR100, manufactured by Zeon Corporation) is spin-coated on the light absorbing layer, and the remaining solvent is evaporated by baking to form a 25-nm thick photo resist layer. did.
その後、 ソニー (株) 製カツティングマシンを用い、 トラックピッチ 3 20 n ni、 グルーブ幅 1 5 0 n mのグルーブパタ一ン开成を目的とし て、 K r レーザー (波長 = 3 5 1 nm) によって前記フォトレジス ト層 に対して露光を行い、 更に現像を行なうことで凹凸パターンを形成して 、 フォ トレジス ト原盤を得た。 Then, using a cutting machine manufactured by Sony Corporation, a Kr laser (wavelength = 351 nm) was used to form a groove pattern with a track pitch of 320 nm and a groove width of 150 nm. Photoresist layer The substrate was exposed to light and developed to form a concavo-convex pattern, thereby obtaining a photoresist master.
その後、 前記フォ トレジス ト層表面を界面活性剤 (アルキルアンモニ ゥムクライ ド) で活性化させた後に、 例 1の条件と同様に、 P d C l 2 と S n C l 2のコロイ ド溶液を 1 2秒間噴射した。 その後、 H B F4溶液 を 7秒間噴射し、 その後純水 (水量; 1 2 1 /m i n) を 1 0分間噴射 (例 1の条件) することにより凹凸パターン表面を洗浄し、 無電解メッ キの前処理を行ったフォトレジス ト原盤を得た。 Then, the follower Torejisu coat layer surface after activation with a surfactant (alkyl en monitor Umukurai de), similar to the conditions of Example 1, the colloids solution of P d C l 2 and S n C l 2 1 Injected for 2 seconds. Then, injected HBF 4 solution 7 seconds and then pure water (water; 1 2 1 / min) to wash the uneven pattern surface by a 1 0 minute injection (Example 1 conditions), prior to electroless plating key A processed photoresist master was obtained.
このフォトレジスト原盤を N i C 12浴に浸漬し、 無電解メツキによ . り N i薄膜を形成した。 この N i薄膜の付き易さは〇であった。 This photoresist master was dipped in N i C 1 2 bath, I. Ri to form an N i thin film in an electroless plated. The easiness of attaching the Ni thin film was Δ.
この N i薄膜を下地として電気メツキを行い、 N i を形成した。 こ れらの N i薄膜および N i膜からなる積層体を原盤から剥離し、 裏面研 磨、 表面洗浄を行って、 スタンパを作成した。 このスタンパの N i薄膜 表面の微小欠陥は観察されなった。  Electric plating was performed using the Ni thin film as a base to form Ni. The Ni thin film and the laminate composed of the Ni film were peeled from the master, and the back surface was polished and the front surface was cleaned to form a stamper. No micro defects on the surface of the Ni thin film of this stamper were observed.
(例 1 2)  (Example 1 2)
純水の噴射時間 0. 5分 (例 2の条件) とした以外は例 1 1と同様に サンプルを作成した。  A sample was prepared in the same manner as in Example 11 except that the injection time of pure water was 0.5 minute (the condition of Example 2).
(例 1 3 )  (Example 13)
P d C 12と S n C 12のコロイ ド溶液の噴射時間を 1 5秒 (例 3の条 件) とした以外は例 1 1と同様にサンプルを作成した。 Except that P d C 1 2 and S n C 1 2 of the injection time of the colloids solution 1 5 seconds (the conditions of Example 3) was prepared in the same manner as in Sample in Example 1 1.
(比較例 1 1)  (Comparative Example 1 1)
純水の噴射時間 3 0分 (比較例 2の条件) とした以外は例 1 1と同様 にサンプルを作成した。  A sample was prepared in the same manner as in Example 11 except that the injection time of pure water was 30 minutes (the conditions of Comparative Example 2).
(比較例 1 2)  (Comparative Example 1 2)
純水を噴射しなかった (比較例 3の条件) 以外は例 1 1と同様にサン プルを作成した。  A sample was prepared in the same manner as in Example 11 except that pure water was not injected (the conditions of Comparative Example 3).
これらの各試験の評価結果を下記の表 2に示す。 予備実験で塩素ィォ ンの飽和量が 0. 0 044〜0. 1 9 9 0 μ g / c m2となるような条 件では微小欠陥の発生がなく、 N i薄膜の剥がれもない。 また、 予備実 験で塩素イオンの飽和量が 0. 1 9 9 0 /i g/c m2を超えた条件では 微小欠陥が発生し、 0. 0 044 /i gZ c m2未満の条件では、 N i薄 膜が付き難くなることが分かる。 以上の実験により、 予備実験により ( a ) (b) (c ) 各噴射時間を決定し、 その後にスタンパを製造する事 により、 微小欠陥がない、 従来と比較してシャープな凹凸パターンを有 するスタンパを形成できた。 , 【表 2】 Table 2 below shows the evaluation results of each of these tests. Chlorine in preliminary experiment Under such conditions that the saturation amount of oxygen is from 0.0044 to 0.190 μg / cm 2 , there is no generation of minute defects and no peeling of the Ni thin film. Further, minute defects occur in conditions of saturated amount of chlorine ions in the preliminary experiments exceeds 0. 1 9 9 0 / ig / cm 2, in 0. 0 044 / i gZ cm 2 less than the condition, N i It can be seen that it is difficult to form a thin film. From the above experiments, (a), (b), and (c) each injection time was determined by preliminary experiments, and then the stamper was manufactured. A stamper could be formed. , [Table 2]
Figure imgf000017_0001
産業上の利用の可能性
Figure imgf000017_0001
Industrial applicability
本発明では、 先ず予備実験として光吸収層原盤を使用する等のシミュ レーシヨ ンにより光吸収層から抽出される塩素イオンの飽和量を 0. 0 044〜0. 1 9 9 0 /i g/c m2にするように ( a) ( b ) (c) 各 噴射時間を決定する。 その後スタンパを製造する事により、 無電解メッ キによる金属薄膜形成時に微小欠陥の発生を抑え、 光吸収層の利点を生 かし、 従来と比較してシャープな凹凸パターンを有するスタンパが得ら れることが可能となった。 In the present invention, first, as a preliminary experiment, the saturation amount of chloride ions extracted from the light absorbing layer by a simulation such as using a master disk of the light absorbing layer is set to 0.04 to 0.190 / ig / cm 2. (A) (b) (c) Determine each injection time. By subsequently manufacturing a stamper, the generation of minute defects during the formation of a metal thin film by electroless plating can be suppressed, and the stamper with a sharper uneven pattern than before can be obtained by taking advantage of the light absorbing layer. It became possible.

Claims

請求の範囲 The scope of the claims
1. スタンパ製造用基板上に、 光吸収層及びフォ トレジス ト層を、 この 順で形成する工程と、 1. forming a light absorbing layer and a photo resist layer in this order on a stamper manufacturing substrate;
前記フォトレジス ト層に光を照射して潜像を形成する工程と、 この潜像を現像することにより凹凸パターンを形成してフォトレジス ト原盤を製造する工程と、  Irradiating the photoresist layer with light to form a latent image; developing the latent image to form a concave / convex pattern to produce a photoresist master;
前記囬凸パターン表面に (A) 複数の塩化金属溶液を噴射する工程、 (B) 強酸を噴射することにより無電解メツキの触媒となる金属のみを 前記光吸収層表面に被着する工程、 (C) 液体を噴射し洗浄する工程、 を含む処理工程と、  (A) a step of spraying a plurality of metal chloride solutions onto the surface of the 囬 convex pattern, (B) a step of spraying a strong acid to deposit only a metal serving as a catalyst for electroless plating on the surface of the light absorbing layer, ( C) a step of injecting and cleaning a liquid; and
その後前記凹凸パターン上に無電解メ ツキにより金属薄膜を形成する 工程と、  Forming a metal thin film on the uneven pattern by electroless plating;
更に前記金属薄膜上に電解メツキにより金属膜を形成した後、 前記金属薄膜及び前記金属膜を前記フォトレジス ト原盤から剥離する 工程と、 を有し、  Further comprising, after forming a metal film on the metal thin film by electroplating, separating the metal thin film and the metal film from the photoresist master.
前記 (A) 、 (B) 、 (C) 工程の各噴射時間は、 前記 (C) 工程を 経たフォ トレジス ト原盤を水中へ投入したと仮定したときに、 '前記光吸 収層から抽出される塩素イオンの飽和量が、 0. 0044〜0. 1 9 9 0 μ g/ c m2となるような条件とされたことを特徴とする光記録媒体 製造用スタンパの製造方法。 Each of the injection times in the steps (A), (B), and (C) is based on the assumption that the photo-resist master after the step (C) is put into water. A method for producing a stamper for producing an optical recording medium, wherein the condition is such that the saturation amount of chlorine ions is 0.0044 to 0.190 μg / cm 2 .
2. 請求項 1において、 2. In claim 1,
予めスタンパ製造の前に予備実験として、 予備実験用の基板上に光吸 収層を形成した光吸収層原盤に、  As a preliminary experiment before manufacturing the stamper, a light absorption layer master with a light absorption layer formed on a substrate for the preliminary experiment was
(a ) 複数の塩化金属溶液を噴射する工程、  (a) injecting a plurality of metal chloride solutions,
(b) 強酸を噴射することにより無電解メツキの触媒となる金属のみを 前記光吸収層表面に被着する工程、 (b) By injecting a strong acid, only the metal that serves as a catalyst for electroless plating Attaching to the light absorbing layer surface,
(c) 液体を噴射し洗浄する工程、  (c) a step of spraying and cleaning the liquid,
(d) 光吸収層原盤を水中へ投入する工程、  (d) charging the light absorbing layer master into water,
を経た後 (d) 工程において前記光吸収層から抽出される塩素イオンの 飽和量が、 0. 0044〜り. 1 ,9 9 0 /i g/c m2となるような条件 即ち、 前記 (a) (b) ( c ) 工程の各噴射時間を決定し、 これを前記 (A) 、 (B) 、 (C) 工程の各噴射時間とすることを特徴とする光記 録媒体製造用スタンパの製造方法。 After the step (d), the condition that the saturation amount of chloride ions extracted from the light absorbing layer in the step (d) is 0.0044 to 1.900 / ig / cm 2 , that is, the condition (a) (b) (c) determining each injection time of the step, and using these as the respective injection times of the steps (A), (B), and (C), manufacturing a stamper for manufacturing an optical recording medium. Method.
3. 表面に光吸収層及ぴフォトレジス ト層がこの順で形成されたスタン パ製造用基板の、 前記フォトレジスト層に光を照射して潜像が形成され 、 且つ、 この潜像が現像されて形成された凹 ώパターンを有するフォ ト レジスト原盤を水平面内で回転自在に支持するターンテーブルと、 このターンテーブル上の前記フォトレジス ト原盤に対して、 複数の塩 化金属溶液を噴射可能な溶液噴射装置と、 強酸液を噴射可能な強酸液噴 射装置と、 洗浄用液体を噴射可能な液体噴射装置と、 3. A latent image is formed by irradiating light on the photoresist layer of the stamper manufacturing substrate having a light absorbing layer and a photoresist layer formed on the surface in this order, and the latent image is developed. A turntable that rotatably supports a photoresist master having a concave pattern formed by being formed in a horizontal plane, and a plurality of metal chloride solutions can be sprayed on the photoresist master on the turntable. A liquid ejecting apparatus capable of ejecting a strong acid solution, a strong acid solution ejecting apparatus capable of ejecting a strong acid solution, and a liquid ejecting apparatus capable of ejecting a cleaning liquid.
これらの噴射装置の各々の噴射をオンオフするための制御バルブと、 これらの制御バルブのオンオフにより、 前記塩化金属溶液の噴射時間 、 強酸液の噴射時間及び洗浄用液体の噴射時間を制御する制御装置と、 この制御装置に含まれ、 前記各噴射時間の信号を記憶し、 且つ、 出力 可能な噴射時間メモリ一部と、  A control valve for turning on and off each of these injection devices; and a control device for controlling the injection time of the metal chloride solution, the injection time of the strong acid solution, and the injection time of the cleaning liquid by turning on and off these control valves. A part of an injection time memory included in the control device, which stores the signal of each injection time, and which can output the signal;
を有してなり、 .  Having.
この噴射時間メモリ一部には、  In part of this injection time memory,
前記凹凸パターン表面に (Α) 複数の塩化金属溶液を噴射する工程、 (Β) 強酸を噴射することにより無電解メツキの触媒となる金属のみを 前記光吸収層表面に被着する工程、 (C) 液体を噴射し洗浄する工程を 経たフォトレジスト原盤を水中へ投入したと仮定したときに、 前記光吸 収層から抽出される塩素イオンの飽和量が、 0. 0 0 4 4〜0. 1 9 9 0 i gノ c m2となるような条件の噴射時間信号が記憶されていること を特徴とする光記録媒体製造用スタンパの製造装置。 (C) a step of spraying a plurality of metal chloride solutions onto the surface of the uneven pattern; (C) a step of spraying a strong acid to deposit only a metal serving as a catalyst for electroless plating on the surface of the light absorbing layer; ) When it is assumed that the photoresist master having undergone the step of spraying and washing the liquid is put into water, Light saturation amount of chlorine ions extracted from Osamuso is, 0. 0 0 4 4~0. 1 9 9 0 ig Bruno cm 2 become such conditions injection time signal is equal to or stored Manufacturing equipment for stampers for manufacturing recording media.
4. 請求項 3において、 4. In claim 3,
予めスタンパ製造の前に予備実験として、 予備実験用の基板上に光吸 収層を形成した光吸収層原盤に、 ,  As a preliminary experiment before manufacturing the stamper, a light absorption layer master with a light absorption layer formed on a substrate for the preliminary experiment
( a ) 棱数の塩化金属溶液を噴射する工程、 · (a) injecting a small number of metal chloride solutions;
(b) 強酸を噴射することにより無電解メツキの触媒となる金属のみを 前記光吸収層表面に被着する工程、 (b) a step of applying only a metal serving as a catalyst for electroless plating by injecting a strong acid onto the surface of the light absorbing layer,
( c ) 液体を噴射し洗浄する工程、  (c) a step of spraying and cleaning the liquid,
( d) 光吸収層原盤を水中へ投入する工程、  (d) a step of putting the light absorbing layer master into water,
を経た後 (d) 工程において前記光吸収層から抽出される塩素イオンの 飽和量が、 0. 0 0 4 4〜0. 1 9 9 0 /i gノ c m2となるような条件 即ち、 前記 ) (b) ( c) 工程の各噴射時間を決定し、 これを前記 噴射時間メモリー部に記憶される噴射時間信号とすることを特徴とする 光記録媒体製造用スタンパの製造装置。 After passing through (d) is a saturating amount of chlorine ions extracted from the light absorbing layer in the step, 0. 0 0 4 4~0. 1 9 9 0 / ig Bruno cm 2 become such conditions i.e., above) (b) (c) An apparatus for manufacturing a stamper for manufacturing an optical recording medium, wherein each injection time in the step is determined and used as an injection time signal stored in the injection time memory section.
PCT/JP2003/006598 2002-06-25 2003-05-27 Process for producing stamper for production of optical recording medium and apparatus WO2004001736A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003241802A AU2003241802A1 (en) 2002-06-25 2003-05-27 Process for producing stamper for production of optical recording medium and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002184838 2002-06-25
JP2002-184838 2002-06-25

Publications (1)

Publication Number Publication Date
WO2004001736A1 true WO2004001736A1 (en) 2003-12-31

Family

ID=29996715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006598 WO2004001736A1 (en) 2002-06-25 2003-05-27 Process for producing stamper for production of optical recording medium and apparatus

Country Status (3)

Country Link
AU (1) AU2003241802A1 (en)
TW (1) TW200402715A (en)
WO (1) WO2004001736A1 (en)

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172736A (en) * 1981-03-30 1982-10-23 Yokogawa Hewlett Packard Ltd Multilayer photoresist processing
JPS5993448A (en) * 1982-09-30 1984-05-29 ブリューワー・サイエンス・インコーポレイテッド Anti-reflection coating
JPH04263140A (en) * 1991-02-07 1992-09-18 Ricoh Co Ltd Glass substrate having non-reflective coating
JPH07147026A (en) * 1993-11-22 1995-06-06 Nec Corp Exposure master disk for optical disk mastering
JPH0862835A (en) * 1994-07-27 1996-03-08 Internatl Business Mach Corp <Ibm> Antireflection-film composition for microlithography and pattern formation method using it
JPH08283950A (en) * 1995-04-10 1996-10-29 Kao Corp Electroless plating method and production of stamper
JPH09109276A (en) * 1995-10-17 1997-04-28 Kao Corp Manufacture of stamper for optical disc
JPH09171952A (en) * 1995-12-21 1997-06-30 Toshiba Corp Formation of resist pattern and production of semiconductor device employing it
JP2000212754A (en) * 1999-01-22 2000-08-02 Sony Corp Plating method, its device and plated structure
JP2000280255A (en) * 1999-03-31 2000-10-10 Seiko Epson Corp Production of master disk
JP2001073157A (en) * 1999-09-08 2001-03-21 Sony Corp Electroless plating method and device therefor
JP2001184734A (en) * 1999-12-24 2001-07-06 Hitachi Maxell Ltd Master disk for manufacturing substrate for information recording medium and method for manufacturing the same
JP2002072489A (en) * 2000-07-31 2002-03-12 Shipley Co Llc Antireflection composition
JP2002093747A (en) * 2000-09-19 2002-03-29 Sony Corp Method for forming conductor structure and the conductor structure, and method of manufacturing semiconductor device and semiconductor device

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57172736A (en) * 1981-03-30 1982-10-23 Yokogawa Hewlett Packard Ltd Multilayer photoresist processing
JPS5993448A (en) * 1982-09-30 1984-05-29 ブリューワー・サイエンス・インコーポレイテッド Anti-reflection coating
JPH04263140A (en) * 1991-02-07 1992-09-18 Ricoh Co Ltd Glass substrate having non-reflective coating
JPH07147026A (en) * 1993-11-22 1995-06-06 Nec Corp Exposure master disk for optical disk mastering
JPH0862835A (en) * 1994-07-27 1996-03-08 Internatl Business Mach Corp <Ibm> Antireflection-film composition for microlithography and pattern formation method using it
JPH08283950A (en) * 1995-04-10 1996-10-29 Kao Corp Electroless plating method and production of stamper
JPH09109276A (en) * 1995-10-17 1997-04-28 Kao Corp Manufacture of stamper for optical disc
JPH09171952A (en) * 1995-12-21 1997-06-30 Toshiba Corp Formation of resist pattern and production of semiconductor device employing it
JP2000212754A (en) * 1999-01-22 2000-08-02 Sony Corp Plating method, its device and plated structure
JP2000280255A (en) * 1999-03-31 2000-10-10 Seiko Epson Corp Production of master disk
JP2001073157A (en) * 1999-09-08 2001-03-21 Sony Corp Electroless plating method and device therefor
JP2001184734A (en) * 1999-12-24 2001-07-06 Hitachi Maxell Ltd Master disk for manufacturing substrate for information recording medium and method for manufacturing the same
JP2002072489A (en) * 2000-07-31 2002-03-12 Shipley Co Llc Antireflection composition
JP2002093747A (en) * 2000-09-19 2002-03-29 Sony Corp Method for forming conductor structure and the conductor structure, and method of manufacturing semiconductor device and semiconductor device

Also Published As

Publication number Publication date
TW200402715A (en) 2004-02-16
AU2003241802A1 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
US5051340A (en) Master for optical element replication
KR20050025246A (en) Method for manufacturing stamper, stamper and optical recording medium
US6030556A (en) Optical disc stampers and methods/systems for manufacturing the same
TWI258142B (en) Manufacturing method of stamper for manufacturing data medium, the stamper, and the stamper spacer with template
EP1460625A1 (en) Information medium master manufacturing method, information medium stamper manufacturing method, information medium master manufacturing apparatus, and information medium stamper manufacturing apparatus
TWI264717B (en) Manufacturing method of stamper for manufacturing data medium, the stamper, and the photoresist template
JP2000040268A (en) Manufacture of stamper, stamper obtained by carrying out such a method, as well as optical disk obtained by using such a stamper
WO2003041070A1 (en) Method for manufacturing stamper for information medium and device for manufacturing stamper for information medium
WO2004001736A1 (en) Process for producing stamper for production of optical recording medium and apparatus
JP2004013973A (en) Manufacturing method of photoresist master disk, manufacturing method of stamper for producing optical recording medium, stamper, photoresist master disk, stamper intermediate body and optical recording medium
EP1465174A1 (en) Method for manufacturing stamper for information medium manufacture, stamper, and photoresist master disk
JP2004087090A (en) Method of manufacturing stamper for production of optical recording medium and apparatus therefor
EP1460626A1 (en) Method for manufacturing stamper for information medium manufacture, stamper, and photoresist original disk
JP2004062981A (en) Manufacturing method of stamper for manufacturing optical disk, stamper for manufacturing optical disk, and manufacturing method of optical disk
EP1559099B1 (en) Master plate for fabricating a stamper plate, stamper plate, storage medium, and method for fabricating the master plate, stamper plate and storage medium
JPH10241214A (en) Manufacture of stamper for optical disk
JPH10312585A (en) Stamper for manufacturing optical recording medium, master for stamper and manufacture of optical recording medium
JP2005235242A (en) Manufacturing method of original disk for optical disk, manufacturing method of stamper for optical disk, original disk for optical disk, stamper for optical disk, and substrate for optical disk
JP2006260731A (en) Optical disk substrate, optical disk, manufacturing method of stamper for optical disk, and stamper for optical disk
JP2003272249A (en) Manufacturing method of stamper for manufacturing information medium, stamper and photoresist master disk
JPS60182031A (en) Information recording mother disk and its production
JP2991852B2 (en) Duplication of information recording master
JP2003272255A (en) Manufacturing method of stamper for manufacturing information medium, stamper and photoresist master disk
JPH03192550A (en) Production of optical disk
JPH0721592A (en) Production of optical master disk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase