Nothing Special   »   [go: up one dir, main page]

WO2004087441A1 - Automatic air supply mechanism of pneumatic tire - Google Patents

Automatic air supply mechanism of pneumatic tire Download PDF

Info

Publication number
WO2004087441A1
WO2004087441A1 PCT/JP2003/015820 JP0315820W WO2004087441A1 WO 2004087441 A1 WO2004087441 A1 WO 2004087441A1 JP 0315820 W JP0315820 W JP 0315820W WO 2004087441 A1 WO2004087441 A1 WO 2004087441A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressed air
axle
cam
pneumatic tire
Prior art date
Application number
PCT/JP2003/015820
Other languages
French (fr)
Japanese (ja)
Inventor
Takaji Nakano
Original Assignee
Takaji Nakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaji Nakano filed Critical Takaji Nakano
Priority to AU2003289019A priority Critical patent/AU2003289019A1/en
Priority to EP04722075A priority patent/EP1609630A1/en
Priority to JP2005504166A priority patent/JP4538409B2/en
Priority to PCT/JP2004/003792 priority patent/WO2004087442A1/en
Priority to US10/548,180 priority patent/US7581576B2/en
Priority to TW093108180A priority patent/TWI343877B/en
Publication of WO2004087441A1 publication Critical patent/WO2004087441A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/10Arrangement of tyre-inflating pumps mounted on vehicles
    • B60C23/12Arrangement of tyre-inflating pumps mounted on vehicles operated by a running wheel
    • B60C23/127Arrangement of tyre-inflating pumps mounted on vehicles operated by a running wheel the pumps being mounted on the hubs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C23/00Devices for measuring, signalling, controlling, or distributing tyre pressure or temperature, specially adapted for mounting on vehicles; Arrangement of tyre inflating devices on vehicles, e.g. of pumps or of tanks; Tyre cooling arrangements
    • B60C23/10Arrangement of tyre-inflating pumps mounted on vehicles
    • B60C23/12Arrangement of tyre-inflating pumps mounted on vehicles operated by a running wheel
    • B60C23/137Arrangement of tyre-inflating pumps mounted on vehicles operated by a running wheel comprising cam driven pistons

Definitions

  • the present invention relates to a pneumatic tire automatic air supply mechanism that can generate compressed air and supply the compressed air to a pneumatic tire when a wheel body rotates with respect to an axle.
  • wheels of bicycles and automobiles are provided with pneumatic tires that hold air.
  • pneumatic tire even if air is supplied so as to have a predetermined air pressure, the air is gradually released as time passes, and the air pressure is reduced. If the air pressure is too low, the ride will be uncomfortable and the steering wheel will be difficult to operate. Therefore, when the air pressure drops significantly below the predetermined pressure, it is necessary to supply air to the pneumatic tires by an air pump such as an air pump.
  • an air pump such as an air pump.
  • the operation of the pneumatic pump requires considerable power. Therefore, for example, there is a problem that it is difficult for a person with weak power to operate the air pump, and it is not easy to supply the air. Disclosure of the invention
  • the invention of the present application has been proposed in view of the above situation. Even if an air pump is not used, when the air pressure of the pneumatic tire becomes lower than a predetermined value, the pneumatic tire automatically rotates by rotation of the pneumatic tire with respect to the axle. Air tires that can supply air to the The purpose is to provide a dynamic supply mechanism.
  • Another object of the present invention is to provide an automatic air supply mechanism for an air tire, which is less likely to cause water such as rainwater to enter the compressed air generator.
  • Another object of the present invention is to provide an automatic pneumatic tire air supply mechanism capable of increasing the amount of compressed air generated with a small number of rotations of the wheel body and generating compressed air with a small force.
  • the present invention further provides a pneumatic tire capable of generating a sufficient amount of compressed air in a short traveling distance and supplying compressed air to a pneumatic tire of a vehicle such as a wheelchair having a short traveling distance and a small number of wheel rotations in a normal traveling.
  • the purpose of the present invention is to provide an automatic air supply mechanism.
  • the present invention further provides an automatic air supply mechanism that can increase the amount of compressed air generated with a small number of rotations of the wheel body and can generate compressed air with a small force.
  • the purpose of the present invention is to provide an automatic air supply mechanism that can supply air to other parts of a vehicle other than pneumatic tires while supplying air to the vehicle.
  • Another object of the present invention is to provide an automatic air supply mechanism for an air tire that can reduce the rotational resistance of the wheel main body with respect to the axle.
  • An automatic air supply mechanism for a pneumatic tire is an automatic air supply mechanism for a pneumatic tire capable of automatically supplying air to a pneumatic tire provided on a wheel body rotatable with respect to an axle of a vehicle,
  • a compressed air generator is provided for generating compressed air when the wheel body rotates with respect to the axle, and the compressed air generated by the compressed air generator can be supplied to the pneumatic tire.
  • FIG. 1 is a side view of a bicycle wheel having an automatic air supply mechanism according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional explanatory view taken along the line II-II of FIG.
  • FIG. 3 is an explanatory sectional view taken along line III-III in FIG.
  • FIG. 4 is an enlarged sectional explanatory view of a main part showing a second ventilation path and a third ventilation path.
  • FIG. 5 is a sectional view taken along line V_V of FIG.
  • FIG. 6 is an explanatory cross-sectional view showing a state in which the sliding portion of the compressed air generation unit has slid to the uppermost position from the state shown in FIG.
  • FIG. 7 is an explanatory sectional view taken along the line VII-VII in FIG.
  • FIG. 8 is an enlarged cross-sectional explanatory view along the line VIII-VIII of FIG.
  • FIG. 9 is a side view of wheels of a wheelchair having the automatic air supply mechanism of the second embodiment.
  • FIG. 10 is an enlarged cross-sectional explanatory view along the line X-X in FIG. 9.
  • FIG. 11 is an explanatory sectional view taken along line XI-XI of FIG. '' Fig. 12 shows that the sliding part of the first compressed air generation part slid to the uppermost position and the sliding part of the second compressed air generation part slid from the state of Fig. 10 to the lowermost position.
  • FIG. 4 is an explanatory sectional view of a state.
  • Fig. 13 shows the state where the sliding part of the first compressed air generator slides to the uppermost position and the sliding part of the second compressed air generator slides to the lowermost position from the state of Fig. 11.
  • FIG. 14 is a side view of a bicycle having an automatic air supply mechanism according to the third embodiment of the present invention.
  • FIG. 15 is an enlarged sectional explanatory view of a main part of the automatic air supply mechanism of the third embodiment.
  • FIG. 16 is an explanatory view showing the rotary connecting member in a vertical section.
  • FIG. 17 is an explanatory view showing a cross section of the rotary connection member.
  • FIG. 18 is an enlarged sectional view of a part of a saddle portion of a bicycle having the automatic air supply mechanism according to the third embodiment.
  • FIG. 19 is an explanatory diagram of an automatic air supply mechanism according to a fourth embodiment of the present invention.
  • FIG. 20 is an enlarged sectional explanatory view of a brake device for a bicycle having the automatic air supply mechanism according to the fourth embodiment.
  • FIG. 21 is an enlarged cross-sectional explanatory view of a state in which the brake wire is operated from the state of FIG. 20 to bring the play shoe into contact with the drum.
  • FIG. 1 is a side view of a bicycle wheel provided with an automatic pneumatic tire air supply mechanism according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional explanatory view taken along line II-II of FIG. 3 in Figure 2
  • FIG. 1 is an explanatory sectional view taken along the line I II—II I.
  • the automatic pneumatic tire air supply mechanism of this embodiment is provided on the front wheel 100 of the bicycle.
  • the bicycle wheel 100 having the automatic pneumatic tire air supply mechanism includes an axle 101 and a wheel body 110 rotatable with respect to the axle 101.
  • the axle 101 as shown in FIG. 2, was screwed and fixed to each of the left and right sides of the axle main body 101d having a threaded portion 101a on the outer periphery and the axle main body 101d. It is provided with a cone 1101b, 101b and a pipe-shaped positioning member 114. Incidentally, the positioning members 114 will be described later.
  • the wheel main body 110 includes a hub body 102, a pneumatic tire 103, and an automatic air supply mechanism, as shown in FIG.
  • the knob body 102 has a cylindrical hub body 102 a, a right support part 102 b fixed to each of the left and right sides of the hub body 102 a, and a left side. And a support portion 102c.
  • These support portions 102b and 102c are non-rotatably attached to the hub body 102a so as to fit the outer periphery of the hub body 102a. Also, the hub body 1 0
  • a right support part 102 b and left support part 102 c are attached to each of the left and right sides of a, so that the inside of the hub body 102 is divided into the outside space 1 1 1 Are defined.
  • a ring-shaped waterproof packing made of synthetic rubber is provided between the two. , 1 12 are provided, whereby water enters the compartment 1 1 from between each support 102 b, 102 c and the outer periphery of the hub 102 a. Not to be.
  • Rollers receive the steel ball inside the radial direction of each support part 102b, 102c
  • a steel ball receiving portion 102 d and a plurality of steel balls 107 to 107 rotatably arranged in the steel ball receiving portion 102 d are provided. Further, axle holes 102 e and 102 e through which the axle 101 passes are provided inside the steel ball receiving portion 102 d in the radial direction.
  • the axle 101 is passed through these axle holes 102 e, and the pushers 110 1 b and 10 lb screwed to the axle body 101 d are formed.
  • a plurality of steel balls 107 ... 107 are provided between the steel ball receiving portion 102 d and the grease (not shown) so as to be rollable, and these steel balls 107. ..
  • the steel ball receiver 102 is rotatably supported by the axle main body 101d via 107.
  • the hap body 102 is rotatable with respect to the axle 101.
  • a flange 10 having a plurality of spoke holes 10 2 f ... 10 2 f as shown in FIGS. 2 and 3 is provided on the outer side in the radial direction of each of the support portions 102 b and 102 c. 2 g and 102 g are provided.
  • the base end of each spoke 104 (shown in FIG. 1) is locked in each spoke hole 102 f ... 102 f of each flange 102 g. Further, as shown in FIG. 1, the distal end of each of the spokes 104 locked is locked to the rim 105.
  • the rim 105 is fixed to the hub body 102 and is rotatable with respect to the axle 101.
  • the pneumatic tire 103 is detachably locked to the rim 105 so that it can rotate with the rim 105 relative to the axle 101. Also, as shown in FIG. 8, an air holding tube 103 b as an air holding portion for holding air is provided inside the pneumatic tire 103.
  • the air holding tube 103b is provided with a valve 106 for taking in and out of air.
  • the valve 106 is formed of a cylindrical body, and is provided with an air inlet 106a at the lower end of the figure and a valve hole 106b at the upper end of the figure. Further, the valve hole 106 b is closed by a synthetic rubber tubular backflow prevention valve 106 c covered on the outer periphery of the valve 106.
  • the pulp 106 is put into a cylindrical valve mounting base 103 c provided in the air holding tube 103 b and screwed into the valve mounting base 103 c.
  • the retaining nut is retained by 106 d.
  • the elasticity of the check ring 106 c closing the valve hole 106 b is increased.
  • the check valve 10c is pushed away and air enters the air holding tube 103b.
  • the valve hole 106b is closed by the elasticity of the check ring 106c. This prevents air in the air holding tube 103b from going out of the valve hole 106b.
  • the check valve 106 c, valve mounting base 103 c and valve stopper nut 106 d are used for the air holding tube 103 b of general bicycle wheels.
  • the present invention is not limited to the one using this form, and can be used with appropriate modification.
  • the automatic pneumatic supply mechanism of the present invention does not necessarily require the valve 106 in such a pneumatic tire 103, and can be applied to a pneumatic tire 103 having no valve 106.
  • a US type valve Schorader valve
  • French type valve French type valve
  • the left and right sides of the axle 101 thus configured are fixed to the bicycle body via nuts 108, 108 (shown in FIG. 2). As a result, the wheel body 110 can rotate on the bicycle body.
  • the automatic air supply mechanism for a bicycle air tire includes an air feeding unit that generates compressed air and sends the compressed air to a pneumatic tire. As shown in FIGS. 2 and 3, this air feeding section is used to guide the compressed air generated by the compressed air generating section 1 for generating compressed air to the pneumatic tire 103 for supply. And a compressed air supply path 2 for pneumatic tires.
  • the compressed air generator 1 includes a compression chamber 31 for compressing air, a piston element 32 as a compression operation body for compressing the air in the compression chamber 31, and taking in air from the outside into the compression chamber 31. And a waterproof mechanism 51, 5, 2, 54, 55 for preventing water from entering the compression chamber 31 from the air intake 4.
  • the compression chamber 31 is formed inside an inner casing 3a having a circular cross section.
  • An outer casing 3b having a circular cross section is non-rotatably disposed on the outer peripheral side of the inner casing 3a.
  • hub mounting portions 30 b, 30 b shown in Fig. 3).
  • the hub mounting portions 30b, 30b are fixed to the outer periphery of the hub body 102a of the haptic body 102 via bolts 30c, 30c.
  • the inner casing 3a is attached to the outer periphery of the hub body 102a of the haptic body 102 via the outer casing 3b, and the outer periphery of the hub body 102a of the hub body 102 is formed. It is projected to the side.
  • a partition wall 7 is provided inside the inner casing 3a attached to the hub body 102 in this manner.
  • the partition wall 7 allows the inner part of the inner casing 3 a to communicate with the lower compression chamber 31 in the figure and the communication supply path 13 b of the pneumatic tire compressed air supply path 2 described later in the upper part of the figure. It is sectioned.
  • the piston member 32 that compresses the air in the compression chamber 31 configured as described above includes a rod-like piston rod 33 as an operation body and a cam contact that abuts a cam surface 91 a of a cam 9 described later. A contact portion 35 and a cam holding portion held by the cam 9 are provided.
  • the piston port 33 is slidably passed through a cylindrical port guide member 38 made of synthetic rubber provided in the inner casing 3a, so that the upper part of the piston rod 33 in FIG. The tip on the side is placed in the compression chamber 31. In this state, the piston rod 33 is positioned outside the cam surface 91a of the cam 9 in the radial direction so that the axis of the piston rod 33 and the axis of the compression chamber 31 substantially match. ing.
  • a sliding portion 34 is provided at the tip of the piston rod 33.
  • the sliding portion 34 is formed to have a diameter substantially equal to the inner peripheral diameter of the compression chamber 31, and extends along the inner peripheral wall of the compression chamber 31 in the axial direction of the compression chamber 31, that is, the axle 101. It is slidable in the radial direction of the extension cam 9.
  • the sliding portion 34 is provided with a ring-shaped packing 34 a made of synthetic rubber.
  • the base end of the piston rod 33 on the lower side in the figure is passed through the rod guide member 38 of the compression chamber 31 and into the piston introduction hole 115 drilled in the hap cylinder 102a. It is placed in the compartment 1 1 1 of the body 102.
  • a cam abutting portion 35 and a cam holding portion are provided at the base end of the piston rod 33.
  • the cam contact portion 35 is formed of a part of the outer periphery of a rotatable roller 37. More specifically, the roller 37 includes a part of the piston rod 33 between the piston rod 33 and the cam surface 91 a of the cam 9.
  • the cam 9 is rotatably attached to the female rod 33 by a holding shaft 36.
  • a part of the outer periphery of the roller 37 protruding toward the cam surface 91a forms a cam contact portion 35.
  • the cam contact portion 35 in this embodiment is formed on an axial extension line q that extends the axis of the piston rod 33.
  • the cam holding section is constituted by a part of the holding shaft 36 to which the roller 37 is attached. More specifically, the holding shaft 36 is passed through a shaft insertion hole formed in the piston rod 33 and a shaft hole formed in the roller 37, and the left side of the piston rod 33. And is attached to the piston opening 3 in that state.
  • the projecting portion 36 a of the holding shaft 36 constitutes a cam holding portion held by the cam 9.
  • the cam 9 around which the roller 37 rolls and rolls has a cam body 91 having a circular cam surface 91a abutting the roller 37 on the outer periphery, and a biston member 32 can be removed freely.
  • a biston holding portion 92 as an operating body holding portion for holding is provided.
  • the piston holding portion 92 is formed of a disk.
  • a cam body receiving hole 92 a for rotatably receiving the cam body 91 is provided at the center of the piston holding portion 92.
  • the projection 36a of the holding shaft 36 is fitted in the shaft fitting hole 92b so as to be able to be taken in and out.
  • the shaft fitting holes 9 2b ⁇ 9 2b are circumferentially arranged on the same circumference centered on the axis of the cam body receiving hole 92 a of the shaft support member 92. Approximately 120. It is composed of three sections, each of which is separated by three sections. Then, the protrusion 36a of the holding shaft 36 may be fitted into any of the three shaft fitting holes 92b, 92b.
  • the piston member 32 of the compressed air generating part 1 is connected via the holding shaft 36. And is detachably held by the cam 9. Therefore, in this embodiment, there is no coil panel for biasing the piston 37 that presses the roller 37 of the piston member 32 constantly against the cam surface 91a. Is composed of a positive cam held by the cam 9 so that the roller 37 of the biston member 32 is always in contact with the force surface 91a, and the cam surface is rotated with the rotation of the hap body 102. 9 1a can be run.
  • the piston member 32 is not limited to the one held by the cam 9, but a coil spring for urging the piston rod is provided, and the piston member 32 is always in contact with the cam surface 91a by the coil spring for urging the piston rod.
  • the cam 9 has an axle insertion hole 93 through which the axle 101 is inserted.
  • the center O2 of the axle through hole 93 is separated from the center O1 of the cam surface 91a by a predetermined distance.
  • the position of the cam surface 91 a with which the roller 37 of the compressed air generating part 1 is in contact with the roller 37 becomes the smallest from the center O 2 of the axle ⁇ through hole 93. It becomes small diameter part A.
  • the distance from the center O2 of the axle ⁇ through hole 93 in the circumferential direction from the small diameter portion A gradually increases, and at a position where it is halfway around, the center O of the axle ⁇ through hole 93
  • the large-diameter portion B where the distance from 2 is the largest is obtained.
  • the air intake port 4 of the compressed air generation unit 1 It is for supplying air from them.
  • the sliding portion 34 of the piston rod 33 moves from the lowermost position A 1 where the sliding portion 34 slides in the compression chamber 31 to the uppermost position B 1.
  • the inner casing 3a is formed at a position near the lowermost position A1 in the movement range of the inner casing 3a so as to penetrate the compression chamber 31 from the outer peripheral wall of the inner casing 3a.
  • the sliding portion 34 is moved from the uppermost position B1 to the lowermost position A1.
  • the air does not enter the compression chamber 31 until it reaches the air intake port 4 when sliding toward, so that the compression chamber 31 is in a negative pressure state.
  • the sliding portion 3 4 Increases the resistance when sliding from the uppermost position B1 to the lowermost position A1.
  • the position of the air intake port 4 is not limited to the form provided at the above position, and may be provided at a position near the uppermost position B1 in the moving range of the sliding portion 34, for example.
  • a check valve must be provided, which increases the number of manufacturing steps and increases the cost. Therefore, it is preferable to provide the air intake port 4 at a position near the lowermost position A1 in the moving range of the sliding portion 34 as in the above-described embodiment, since it can be simplified and can be manufactured at low cost.
  • the waterproof mechanism of the compressed air generation unit 1 includes a first ventilation path 51, a right axle clearance ventilation path 52 as a second ventilation path following the first ventilation path 51, and a right axle clearance ventilation.
  • a third ventilation path 54 following the path 52 and a sealing member 55 are provided.
  • the first ventilation path 51 communicates with the air intake port 4 and the partitioned space 1 1 1 of the hub body 102 so that the air can be ventilated, and allows the air in the partitioned space 1 1 1 to flow from the partitioned space 1 1 1.
  • the first ventilation path 51 in this embodiment is formed of a guide groove formed in the inner peripheral wall of the outer casing 3b from the air intake port 4 to the partitioned space portion 11 of the hub body 102.
  • the right axle gap ventilation passage 52 is formed on the inner peripheral surface of the axle hole 102 e of the right support portion 102 b of the hub body 102 and the axle hole 102 e. From the axle clearance 5 2a between the axle 101 and the axle 101, the ball 1 0 1b of the axle 101 and the steel ball 10 0 disposed between the steel ball receiving portion 102 d It is composed of a space passage formed in the right support part 102b extending through the steel ball gap 52b between the elements 107 and 107. In this embodiment, a positioning member 114 is provided in the axle hole 102 e, and an axle gap 52 a is formed between the inner peripheral surface of the axle hole 102 e and the positioning member 111. 4 and the outer circumference.
  • the third ventilation passage 54 connects the right axle clearance ventilation passage 52 to the outside between the inner peripheral surface of the tubular body 56 and the outer periphery of the axle 101. So that they are compartmentalized You.
  • the tubular body 56 is made of a synthetic resin, and has a locking projection 56 a for attaching to the right support portion 102 b on the outer periphery on the left end side as shown in FIG. It is provided.
  • the cylindrical body 56 is supported on the right side of the hub 102 by fitting the locking projections 56 a into the locking grooves 102 h provided on the right support portion 102 b. Attached to part 102d.
  • a waterproof packing 1 16 is provided between the outer periphery of the cylindrical body 56 and the right support portion 102 b.
  • the waterproof packing 1 16 allows the waterproof packing 1 16 to be connected to the outer periphery of the cylindrical body 56. Water is prevented from entering the right axle gap ventilation channel 52 from between the right support portion 102 b.
  • the axle 101 is inserted through the tubular body 56 attached to the right support portion 102 b of the hub body 102, and the inner peripheral surface of the tubular body 56 is Between the axle 101, a third ventilation path 54 that connects the right axle gap ventilation path 52 to the outside is formed all around the outer periphery of the axle 101.
  • a ball pusher 101b of the axle 101 is disposed, and the third ventilation path 54 is provided with a ball pusher 101b. It is formed between the outer periphery and the inner peripheral surface of the cylindrical body 56.
  • the third ventilation path 54 is formed on the outside (the right side in FIG. 4) formed by making the inner peripheral surface of the cylindrical body 56 tapered so that the diameter gradually increases toward the outside on the right side.
  • a narrow diameter narrow portion 59c having a width L1 is provided.
  • the taper angle P of the taper portion 59a is set to 10 °.
  • a large-diameter narrow portion 61 formed by the inner peripheral surface of the cylindrical body 56 and the covering member 60 is provided on the right side of the small-diameter narrow portion 59c.
  • the covering member 60 is formed of a disk-shaped member having an outer diameter larger than the diameter of the small-diameter narrow portion 59c, and is disposed inside the tapered portion 59a of the cylindrical body 56 in the radial direction. So that it is fixed to the axle 101.
  • the width L2 in the radial direction is substantially the same as the width L1 of the small-diameter narrow portion 59c, and the large-diameter narrow portion 61 having a larger diameter than the small-diameter narrow portion 59c is formed. Therefore, the third air passage 54 of this embodiment includes two narrow portions 59c and 61 having different diameters, and the meandering air is formed by these two narrow portions 59c and 61. It is formed so that it can flow.
  • the width L1 of the small-diameter narrow portion 59c and the width L2 of the large-diameter narrow portion 61 are set to about 0.5 mm.
  • the sealing member 55 is for sealing the left axle gap ventilation passage 53 formed in the haptic body 102 from the outside.
  • the left axle gap air passage 53 is formed with the axle hole 102 e of the left support portion 102 c of the hub body 102 as shown in FIG. 2, similarly to the right axle gap air passage 52 described above. From the axle gap 53 between the axle 101 passing through the axle hole 102 e and the axle 101, push the axle 101 to the ball 1101b, 101b and the steel ball receiving part 102d.
  • the steel balls 107 and 107 are disposed between the steel balls 107 and 107, and are formed of a space passage extending through the steel ball gap 53b between the steel balls 107.
  • the seal member 55 is made of a synthetic rubber ring as shown in FIG.
  • the mounting piece 55 a provided on the inner peripheral side of the sealing member 55 and the mounting groove 101 c provided in the ball pusher 101 b are fitted into the sealing member 55, so that the sealing member 55 becomes a ball.
  • Push attached to 101b Further, the outer periphery of the seal member 55 attached to the pusher 101b in this manner is in contact with the left support portion 102c over the entire periphery.
  • the sealing member 55 seals the left axle gap ventilation path 53 from the outside in a substantially sealed state, so that water does not enter the left axle gap ventilation path 53 from the outside.
  • the compressed air supply path 2 for the pneumatic tire is formed between the compressed air generator 1 and the pneumatic tire 103, and as shown in FIGS.
  • the communication supply path 13 b is defined by a partition wall 7 above the compression chamber 31 in FIG. 2 in the inner casing 3 a. This partition wall 7 has through holes 7 1 Through the through hole 71, the compression chamber 31 and the communication supply path 13b are communicatively connected.
  • the through hole 71 is provided with a check valve 40.
  • the check valve 40 is a check means for preventing air from flowing back from the compressed air supply passage 2 for the pneumatic tire to the compression chamber 31.
  • the check valve 40 is used to supply compressed air for the pneumatic tire. It is composed of ball pulp 40 provided on the road 2 side.
  • the ball valve 40 is a pole 41, a synthetic rubber ring-shaped ball receiving packing 42 for receiving the ball 41, and an urging member for urging the ball 41 toward the ball receiving packing 42.
  • Ball biasing coil panel 43 Ball biasing coil panel 43.
  • the ball 41 closes the through hole 71 from the side of the compressed air supply path 2 for the air tire by the biasing force of the ball biasing coil spring 43.
  • connection supply passage 2 la is formed inside the cylindrical connection pipe 21.
  • the base end of the connecting pipe 21 is attached so as to enter the communication supply path 13b of the inner casing 3a. Thereby, the base end side of the connection supply path 21a is connected to the communication supply path 13b so as to be able to ventilate.
  • the connecting pipe 21 is provided with a pressure adjusting section 12 for adjusting the air pressure of the compressed air supply path 2 for a pneumatic tire.
  • the pressure adjusting section 12 allows the compressed air supply path 2 for the air tire to function as a constant pressure holding section that holds air at a constant pressure.
  • the pressure adjusting section 12 of this embodiment includes a cylindrical section 12 a having an exhaust port 11 a, a valve body 12 b for opening and closing the exhaust port 11 a, and a constant for energizing the valve body 12 b.
  • a constant-pressure-valve urging coil panel 12c as a pressure-valve urging member is provided.
  • the cylindrical portion 12a is attached to the side wall of the connecting pipe 21 so that the exhaust port 11a of the cylindrical portion 12a allows the connecting supply passage 21a to communicate with the outside, and the connecting supply passage 2 :
  • the compressed air of L can be discharged to the outside from the exhaust port 11a.
  • the constant-pressure valve urging coil panel 12c constantly urges the valve body 12b toward the connection supply path 21a. And, by this bias, the valve body 12b blocks the exhaust port 11a.
  • the pressure adjusting section 12 is not limited to the one provided in the connecting supply path 21a, What is necessary is just to provide in the compressed air supply path 2 for pneumatic tires. Further, the pressure adjusting section 12 can be changed as appropriate, for example, by being constituted by a ball valve.
  • the pneumatic tire delivery supply channel 13a is formed inside a connection pipe 14 having elasticity.
  • the proximal end of the connecting pipe 14 is attached to the distal end of the connecting pipe 21 so as to be pushed into the outer periphery of the connecting pipe 21.
  • the connection supply path 21a and the pneumatic tire delivery supply path 13a are connected in a permeable manner.
  • a pneumatic tire connection portion 16 is provided at the distal end side of the connection pipe 14 on the opposite side attached to the connecting pipe 21 so as to be detachably connected to the pneumatic tire 103 as shown in FIG. I have.
  • the pneumatic tire connection portion 16 includes a knocker 16a and a nut locking piece 16b that is locked to a valve locking nut 106d of the air holding tube 103b. Then, while the packing 16a is in contact with the end face of the pulp 106, the nut locking piece 16b is locked to the valve locking nut 106d. Thus, the pneumatic tire delivery supply path 13a is connected to the air holding tube 103b so as to be able to ventilate.
  • the sliding part 3 4 of the compressed air generating part 1 is located at the lowest position A 1 in the compression chamber 31, and the sliding part 34 of the second compressed air generating part 1 b is the highest in the compression chamber 31.
  • the air tire 103 is rotated with respect to the axle 101 by, for example, running a bicycle.
  • the haptic body 102 rotates upon its rotation, and together with the knob body 102, the roller 37 of the piston member 32 of the compressed air generating unit 1 radiates the diameter of the cam surface 91 a of the cam 9. Drive from small part A to large diameter part B.
  • the roller 37 of 32 is pressed until it reaches the large diameter portion B of the cam 9. This pressing causes the sliding portion 34 to move in the compression chamber 31 along the inner wall surface of the compression chamber 31 to the lowest position.
  • the piston rod 33 When the sliding portion 34 slides, for example, the end of the piston rod 33 is moved by the force of the cam 9.
  • the piston rod 33 When the contact surface is maintained by pressing against the spring surface 91a by the coil panel for urging, the piston rod 33 must be slid against the urging force, and However, in this embodiment, the piston rod 33 is held on the cam 9 via the holding shaft 36, and the biasing coil is used in this embodiment. Since no spring is provided, the piston rod 33 can slide smoothly with a small force. Thereby, resistance when rotating the hap body 102 can be reduced. Also, for example, when the piston 9 has a large tangential force of the cam 9 received by the piston 9 from the cam 9, the piston rod 33 presses the rod guide member 38 of the compression chamber 31 to one side.
  • the piston rod 33 is inclined with respect to the axial direction of the compression chamber 31, and the sliding becomes more difficult.
  • the force of the component perpendicular to the axial direction of the compression chamber 31 received by the piston rod 33 from the cam 9 can be reduced as much as possible, and the abrasion of the rod guide member 38 can be reduced. Therefore, even when used repeatedly, the piston rod 33 can always be pressed in the axial direction of the compression chamber 31 and can slide smoothly.
  • the ball 41 of the check ring 40 is pressed from the compression chamber 31 by the air pressure of the compressed air. Is done.
  • the ball 41 of the check ring 40 receives the pressing force of the air pressure in the compressed air supply passage 2 for the pneumatic tire and the urging force of the ball urging coil panel 43. Therefore, when the pressing force from the compressed air supply path 2 for the air tire is smaller than the pressure from the inside of the compression chamber 31, the ball 41 of the check ring 40 is connected to the compressed air supply path for the pneumatic tire. Move to the 2 side to open through hole 71. As a result, the compressed air compressed in the compression chamber 31 is sent from the through hole 71 to the compressed air supply path 2 for the pneumatic tire.
  • the ball 41 of the check ring 40 closes the through hole 71 when the sliding portion 34 moves from the uppermost position B1 to the lowermost position A1 in the compression chamber 31. This Therefore, it is possible to prevent the air in the compressed air supply path 2 for the pneumatic tire from returning to the compression chamber 31.
  • the compressed air supply passage 2 for the pneumatic tires containing the compressed air exceeds a predetermined air pressure
  • the air pressure in the compressed air supply passage 2 for the pneumatic tires causes the valve body 1 2b of the pressure adjusting section 12 to be biased to a constant pressure valve. Is pressed against the urging force of the coil panel 12c to open the exhaust port 11a.
  • the compressed air in the compressed air supply path 2 for the pneumatic tire is discharged to the outside from the exhaust port 11a.
  • the valve body 12b closes the exhaust port 11a by the urging force of the constant-pressure valve urging coil panel 12c.
  • the compressed air held at a predetermined air pressure in the compressed air supply passage 2 for the pneumatic tire enters the valve 106 of the air holding tube 103b as shown in FIG. 8, and passes through the valve hole 106b.
  • the blocking check valve 106c is pressed from the inside of the valve 106. Then, the pressure applied to the check ring 106c from the inside by the air pressure in the compressed air supply passage 2 for the pneumatic tire increases the elastic force of the check ring 106c and the air holding tube 103b. If the pressure is greater than the sum of the pressure applied to the check valve 106 c due to the air pressure inside the valve, the check valve 106 c blocking the valve hole 106 b is pushed from the inside and the air is released. Flows from the compressed air supply path 2 for the pneumatic tire into the air holding tube 103b.
  • the back pressure is prevented by the pressing force applied to the check valve 106 c by the air pressure of the compressed air supply path 2 for the air tire, the elastic force of the check valve 106 c and the air pressure in the air holding tube 103 b.
  • the sum of the pressure applied to the valve 106 c and the pressure becomes equal, the flow of air into the air holding tube 103 b stops.
  • the air pressure of the air holding tube 103 b decreases, and the elastic force of the check valve 106 c and the air pressure in the air holding tube 103 b act on the check valve 106 c.
  • the check valve closing the valve hole 106b again 106c is pushed from the inside by the air pressure of the compressed air supply passage 2 for the pneumatic tire, and the air of the compressed air supply passage 2 for the pneumatic tire flows into the air holding tube 103b.
  • the air pressure of the air holding tube 103b is always kept constant.
  • the biston member 32 is pulled by the cam 9 because the holding shaft 36 is held by the piston holding portion 92 of the cam 9, and the roller 37 becomes the cam 9.
  • the cam surface 91a is kept in contact with the cam surface 91a, and travels from the large diameter portion B to the small diameter portion A of the cam surface 91a.
  • the pulling of the piston member 32 by the cam 9 is performed from the left side of the piston opening 33, which is separated from the axial extension line q of the piston rod 33 by a distance.
  • the sliding portion 34 slides from the uppermost position B1 to the lowermost position A1, since the air is not compressed, the sliding from the lowermost position A1 to the uppermost position B1 is performed.
  • the sliding of the part 34 can be performed with a smaller force than in the case of compressing air, and the biston rod 33 can be pulled smoothly.
  • the sliding portion 34 moves in the compression chamber 31 from the uppermost position B1 to the lowermost position A1, and returns to the state shown in FIGS.
  • the compartment 1 1 1 1 When the air in the compartment 1 1 1 1 enters the first ventilation channel 51, the compartment 1 1 1 also has a right axle gap ventilation channel 5 2 as a second ventilation channel 52, and a third ventilation channel. External air is sucked in through the passage 54.
  • the third ventilation path 54 has a tapered portion 59a, as shown in FIG. 4, the water Ml entering the tapered portion 59a is centrifuged along with the rotation of the hub body. It can be moved to the larger diameter side of the tapered portion 59 a by force and can be taken out of the third ventilation path 54. In addition, the water Ml entering the tapered portion 59a is removed by its own weight. Can be transmitted out of the third ventilation path 54. In addition, since the third ventilation path 54 has two narrow portions 59c and 61 having different diameters, water Ml such as rainwater is
  • the sliding portion 3 4 of the biston member 32 slides in the compression chamber 31, generating compressed air in the compression chamber 31 and external air.
  • the compressed air generated is supplied to the pneumatic tire 103 as appropriate.
  • the left axle gap ventilation passage 53 is shut off from the outside by the seal member 55, so that the second axle clearance ventilation passage 52 is constituted by the right axle clearance ventilation passage 52.
  • the third ventilation path 54 for communicating the path 52 with the outside is provided, the invention is not limited to this form and can be changed as appropriate.
  • the second ventilation path is composed of the right axle clearance ventilation path 52 and the left axle clearance ventilation path 53, and the right axle clearance ventilation path 52 and the left axle clearance ventilation path 5 are provided.
  • a third ventilation path 54 may be provided for each of the three.
  • the third ventilation path 54 as in the above embodiment is provided on both the left and right sides of the hub body 102, the cost becomes high, so the third ventilation path 54 Is provided only on one of the left and right sides of the haptic body 102 and the sealing member 55 is provided on the other side of the hub body 102 on the right or left side. This is preferable in that water can hardly enter the 54 and can be manufactured at low cost.
  • the third air passage 54 is formed by the cylindrical body 56 fixed to the hub 102 and the covering member 60 fixed to the axle 101. Yes Force Not limited to this form, but can be changed as appropriate.
  • the third ventilation path 54 may be formed only by the tubular body 56 fixed to the hub body 102.
  • the second air passage is constituted by the right axle gap air passage 52 formed in the hub body 102, but the support portions 102 b and 102 c A through-hole is provided which penetrates from the compartment space portion 1 1 1 to the outside, and this through-hole is replaced with the right axle gap air passage 52 or forms a second air passage together with the right axle gap air passage 52. It can be changed as needed.
  • the support portions 102b and 1 ⁇ 2c are rotatably supported by the haptic body 102 via shield bearings, and the support portions 102b and 102c A through-hole penetrating from the demarcated space portion 111 to the outside is provided in a radially outer portion of the sinored bearing, and this through-hole serves as a second air passage.
  • the waterproof mechanism is constituted by the first ventilation path 51, the second ventilation path 52, the third ventilation path 54, and the sealing member 55.
  • a perforated hole formed from the inner peripheral surface to the outer peripheral surface of the outer casing 3b so as to allow the air intake port 4 of the inner casing 3b to communicate with the outer portion; It is also possible to use a structure provided with a film that allows gas to pass through, so that the film can block rainwater or other water from the outside of the outer casing 3b to the perforated hole and allow only air to pass through.
  • the taper angle P of the tapered portion 59 a of the cylindrical body 56 is
  • the force s set at 10 ° is not limited to this, and can be changed as appropriate.
  • the taper angle P is in the range of about 5 ° to about 15 °. If the angle is smaller than about 5 °, the centrifugal force accompanying rotation of the hub body makes it difficult for water to move to the larger diameter, and makes it difficult to expel it to the outside. In addition, it is difficult for water to be transmitted to the larger diameter by its own weight and to be driven out. On the other hand, if the angle is larger than about 15 °, falling rainwater will easily enter.
  • the width L1 of the small-diameter narrow portion 59c of the third ventilation path 54 and the width L2 of the large-diameter narrow portion 61 are set to about 0.5 mm. Can be changed. Preferably, it is in the range of about 0.1! 11111 to about 1.5 mm. When it is smaller than about 0.1 mm, the suction pressure of the air accompanying the sliding of the piston rod 33 in the compression chamber 31 causes a negative pressure in the partitioned space 1 1 1 of the hub body 102, At the same time, the risk of inhaling water increases. On the other hand, if it is larger than about 1.5 mm, water will easily enter.
  • the third ventilation path 54 of the present embodiment is defined between the inner peripheral surface of the cylindrical body 56 fixed to the hub body 102 and the outer periphery of the axle 101. I have.
  • the third ventilation path 54 has a small-diameter narrow portion 59 formed by reducing the diameter of a part of the inner periphery of the cylindrical body 56 so as to reduce the radial width L1.
  • the third ventilation path 54 has a radial width L 2 which is fixed to the axle main body 102 d by the covering member 60 arranged on the inner peripheral side of the tubular body 56.
  • a large-diameter narrow portion 61 is provided, which is approximately the same as the small-diameter narrow portion 59c and has a larger diameter than the small-diameter narrow portion 59c.
  • the third ventilation path 54 includes at least two narrow portions 59c, 61 having different diameters, and the air meanders by these two narrow portions 59c, 61. It is formed so that it can flow. Also, the radial widths L l and L 2 of these two narrow portions 59 c and 61 are approximately 0.1mn! The range is ⁇ 1.5 mm.
  • the automatic air supply mechanism of the second embodiment is provided on each of a left wheel 500 and a right wheel (not shown) of a wheelchair, and serves as an automatic air supply mechanism for a pneumatic tire of a wheelchair.
  • the left wheel 500 and the right wheel of the wheelchair having the automatic air supply mechanism for the pneumatic tire of the wheelchair have the same configuration.
  • the left wheel 500 will be described, and the description of the right wheel will be omitted.
  • the left wheel 500 has an axle 101 and a wheel body 110.
  • the axle 101 has the same configuration as that of the first embodiment.
  • the wheel main body 110 includes a hub body 102, a pneumatic tire 103, and an automatic air supply mechanism.
  • the hub body 102 and the pneumatic tire 103 are The configuration is the same as that of the first embodiment.
  • the automatic air supply mechanism includes a plurality of compressed air generators 1a and 1b for generating compressed air, and a guide for supplying the compressed air generated by the compressed air generators 1a and 1b to the pneumatic tire.
  • a compressed air supply path 2a, 2b for a pneumatic tire is provided.
  • the compressed air generating unit includes a first compressed air generating unit 1a that appears on the upper side of FIGS. 10 and 11, and a second compressed air generating unit 1b that appears on the lower side of the figure. It is composed of two.
  • the first compressed air generator 1a and the second compressed air generator 1b have the same configuration as the compressed air generator 1 of the first embodiment. Further, the first compressed air generation section 1a and the second compressed air generation section 1b are arranged at positions spaced apart from each other by 180 ° in the circumferential direction of the cam 9. More specifically, the piston holding portion 92 of the cam 9 in the second embodiment has a first shaft fitting hole formed on a concentric circle centered on the axis of the cam body receiving hole 92 a. A second shaft fitting hole 92c is formed at a position spaced 180 ° in the circumferential direction from the first shaft fitting hole 92b and the first shaft fitting hole 92b.
  • the projection 36a of the holding shaft 36 of the first compressed air generation unit 1a is removably fitted into the first shaft fitting hole 92b, and the second compressed air generation unit 1b is held.
  • the protrusion 36a of the shaft 36 is removably fitted into the second shaft fitting hole 92c so that the first compressed air generator 1a and the second compressed air generator 1b It is arranged at a position 180 degrees apart in the circumferential direction of the cam 9 and is held by the cam 9.
  • the first compressed air generator 1a By arranging the first compressed air generator 1a and the second compressed air generator 1b as described above, as shown in FIGS. 10 and 11, the first compressed air generator 1a
  • the roller 37 of the a member 32 of a contacts the roller 37 of the cam surface 91 a with the small diameter portion A of the cam surface 91, and the sliding portion 34 of the biston opening 33 moves the compression chamber 31 to the lowest position A1.
  • the roller 37 of the piston member 32 of the second compressed air generator 1 b abuts against the large diameter portion B of the cam surface 91 a, and the sliding part 34 of the biston rod 33 comes to the top of the compression chamber 31. Come to position B1.
  • the compressed air supply path for the pneumatic tire according to the second embodiment includes the first compressed air generator 1a and the pneumatic tire.
  • the compressed air supply passage 2a for the first pneumatic tire has the same configuration as the compressed air supply passage 2 for the pneumatic tire of the first embodiment, and the compression chamber 3 1 of the first compressed air generation unit 1a.
  • the compressed air supply path 2b for the second pneumatic tire is similar to the compressed air supply path 2a for the first pneumatic tire, and the supply path 13b for communication, the supply path for pneumatic tire delivery, and the supply supply for connection. And road.
  • the compressed air supply path 2b for the second pneumatic tire is connected to the supply path 2 1a for the compressed air supply path 2a for the first pneumatic tire via the connection path 22a. a, and connected to the pneumatic tire delivery supply path 13a of the first pneumatic tire compressed air supply path 2a and the pneumatic tire 103 via its connection supply path 21a. ing.
  • the supply path 21a for connection of the compressed air supply path 2a for the first pneumatic tire and the supply path 13a for delivery of the pneumatic tire of this embodiment are connected to the compressed air supply path 2b for the second pneumatic tire.
  • the air supply line and the air supply line are also used.
  • the sliding part 3 4 of the first compressed air generator 1 a is located at the lowest position A 1 in the compression chamber 3 1, and the sliding part 3 4 of the second compressed air generator 1 b is the compression chamber 3 1
  • the pneumatic tire 103 is rotated with respect to the axle 101 by, for example, pushing a wheelchair to run from the state shown in FIGS.
  • the hap body 102 rotates during the rotation, and together with the hub body 102, the roller 37 of the biston member 32 of the first compressed air generating section 1 a moves the cam surface 91 a of the cam 9.
  • the piston member 32 of the first compressed air generating portion 1a starts to be pressed by the cam 9, and is pressed until the roller 37 of the piston member 32 reaches the large diameter portion B of the cam 9. Then, by this pressing, as shown in FIGS. 12 and 13, the sliding portion 3 4 slides inside the compression chamber 31 along the inner wall surface of the compression chamber 31 from the lowermost position A1 to the uppermost position B1.
  • the sliding portion 34 of the piston rod 33 of the second compressed air generating portion 1b is pulled by the cam 9, and the inside of the compression chamber 31 is moved from the uppermost position B1 along the inner wall surface of the compression chamber 31. Slide in the compression chamber 31 toward the lowermost position A1. '.
  • the air in the compression chamber 31 is constant. It is compressed to a compression ratio of.
  • the compressed air generated by the first compressed air generator 1a is supplied from the communication supply path 13b to the connection supply path 21a, and further to the connection supply path, as in the first embodiment. From 21a, the tire passes through the supply path 13a for delivering the pneumatic tire and enters the pneumatic tire 103 as appropriate.
  • the roller 37 of the biston member 32 of the second compressed air generator 1b is connected to the roller 37 of the biston member 32 of the first compressed air generator 1a.
  • the air intake port 4 when the sliding part 34 of the piston rod 33 of the second compressed air generating part 1b passes through the air intake port 4, the air flows from the air intake port 4 to the compression chamber 31 to the first ventilation path 51.
  • the air in the partitioned space portion 111 of the hub body 102 is taken in through the air.
  • the second ventilation passage 52 and the third ventilation passage 54 prevent water from entering the demarcated space portion 111 of the hub body 102. Can be stopped and only air can enter.
  • the air compressed by the second compressed air generating section 1b passes through the connection path 22b from the communication supply path 13b of the compressed air supply path 2b for the second pneumatic tire, and passes through the connection path 22a for the first pneumatic tire.
  • the compressed air supply path 2a enters the connection supply path 21a. Further, the compressed air entering the connection supply passage 21a of the first compressed air flow passage 1b is supplied to the pneumatic tire delivery supply passage 13a in the same manner as in the case of the first compressed air generation unit 1a described above. Go through a and into the pneumatic tire 103.
  • the first compressed air generator 1a and the second compressed air generator 1b alternately generate compressed air alternately, and the compressed air is appropriately applied. Supplied to Yi tires 103.
  • the first compressed air generation unit 1a and the second compressed air generation unit 1b compress the air in turn, and the air tire 10 3 Can be supplied.
  • compressed air can be generated with almost the same force as in the case of providing one compressed air generation unit 1 as in the first embodiment, and one compressed air generation unit 1 is provided as in the first embodiment. Twice the amount of compressed air can be generated as compared to the case where the above method is used. Therefore, in a normal running of the wheelchair, a sufficient amount of air can be compressed within a short time after the start of running at a stage where the number of rotations of the wheels is low, and the pneumatic tire 103 can be set to a predetermined air pressure. The resistance during traveling can be suppressed. Therefore, it can be made suitable for a wheelchair or the like.
  • the compressed air for the first pneumatic tire is connected via the connection path 22a.
  • the supply path 2a and the compressed air supply path 2b for the second pneumatic tire are connected to form one, for example, the compressed air supply path 2a for the first pneumatic tire and the compressed air supply path for the second pneumatic tire.
  • 2b is formed separately and independently, and the compressed air supply passages 2a and 2b for each pneumatic tire are connected to the pneumatic tire 103, and the compressed air supply passages 2a and 2b for each pneumatic tire are connected. Compressed air may be supplied to the pneumatic tire 103.
  • an automatic air supply mechanism according to a third embodiment will be described with reference to FIGS.
  • the automatic air supply mechanism according to the third embodiment supplies air to the pneumatic tires of the wheels mounted on the bicycle, and supplies air to the saddle portion as another part of the bicycle as a vehicle other than the pneumatic tires, thereby providing seats. It is said to have cushioning properties.
  • the automatic air supply mechanism of the third embodiment includes two compressed air generation units, a first compressed air generation unit 10a and a second compressed air generation unit 10b. And compressed air supply paths 20 a and 300.
  • the front wheel 202 of the bicycle includes an axle 201 and a wheel body, as shown in FIG. 14, similarly to the bicycle wheel in the first embodiment.
  • a haptic body 102 rotatably supported on an axle 201 and a pneumatic tire 103 are provided.
  • the axle 201 of the third embodiment has a shaft hole 43a as shown in FIG.
  • the shaft hole 43a is formed from the left end of the axle 201 to the left and right from the center in the left-right direction along the axial direction.
  • the shaft hole 43a force S extends from the outside of the haptic body 102 attached to the axle 201 to the inside of the haptic body 102.
  • the inner part of the shaft hole 43a extended to the inside of the hub body 202 in this way is, as shown in FIG. 17, the shaft hole 43a of the shaft axle 201.
  • Through holes 43b, 43b formed to penetrate the outer periphery communicate with the outer periphery of the axle 201.
  • the hub body 102 and the pneumatic tire 103 of the wheel main body have substantially the same configuration as that of the first embodiment.
  • the compressed air supply path of the automatic air supply mechanism includes a compressed air supply path for a pneumatic tire 20 a that guides the compressed air generated by the first compressed air generator 10 a to the pneumatic tire 103 and supplies the compressed air.
  • It comprises a compressed air supply passage for other parts 300 for guiding the compressed air generated by the compressed air generating part 100b to the saddle part 140 provided in the bicycle and supplying it.
  • the pneumatic tire compressed air supply path 20a has the same configuration as the pneumatic tire compressed air supply path 2 of the first embodiment.
  • the other part of the compressed air supply passage 300 is provided with a communication supply passage 13b (shown in FIG. 15) communicating with the compression chamber 31 of the second compressed air generation part 10b, and a saddle part 1 of the bicycle.
  • the saddle delivery supply path 301 connected to the 40 air holding section 15 1 (shown in Fig. 18), the communication supply path 13 b, and the saddle delivery supply path 301 were connected.
  • a supply path 302 for connection ''
  • the connection supply passage 302 is a connection passage connecting the shaft hole 43 a of the axle 201 and the shaft hole 43 a with the communication supply passage 13 b. 3 0 3 is provided.
  • This connecting passage 303 is formed inside the connecting pipe 313.
  • connection pipe 3 13 is connected to a shaft hole 43 a of the axle 201 via a rotary connection member 45.
  • the rotary connection member 45 includes two rings 45 a and 45 a made of synthetic rubber, and a ring-shaped rotor 45 b.
  • the two rings 45a, 45a are fixed to outer peripheries on both the left and right sides of the through holes 43b, 43b in the axle 201.
  • a pipe connector 45 c for detachably connecting the connecting pipe 3 13 is provided on the outer peripheral side of the rotor 45 b.
  • the pipe connector 45c is formed of a tubular member, and has a pipe connection hole 45d on the inner peripheral side.
  • an air reservoir 45e formed over the entire periphery is provided as shown in FIG. Further, the air reservoir 45 e is formed through a hole 45 f formed so as to communicate with the pipe connection hole 45 d of the pipe connector 45 c and the air reservoir 45 e. Are in communication.
  • the air reservoir 45 e, the pipe connection hole 45 d, and the drilled hole 45 f are connected to the connection path 303 of the connection pipe 3 13 and the shaft hole 4
  • a connection hole 45i is formed to connect 3a with the air-permeable member.
  • Rings 45a and 45a are rotatably received on both left and right sides of the air reservoir 45e.
  • a ring receiver 45 g, 45 g is provided. And, by receiving the rings 45 a and 45 a rotatably in these ring receiving portions 45 g and 45 g, the rotor 45 b is formed with the air reservoir 45 e and the axle 201. It is rotatable with respect to the axle 201 in a state where the shaft hole 43a communicates with the axle 201.
  • the connecting pipe 3 13 is attached to the pipe connector 45 c of the rotor 45 b configured as described above, so that the connecting pipe 3 13 and the axle 201 are connected to the rotor 4. It is rotatably connected via 5b. Further, by this connection, the connecting path 303 formed inside the connecting pipe 3 13 communicates with the shaft hole 43 a formed in the axle 201 of the wheel 202.
  • connecting pipe 3 13 is attached to the inner casing 3 a via the connecting tool 3 14 as shown in FIG. 15, whereby the connecting path formed inside the connecting pipe 3 13 is formed.
  • a communication supply passage 13b partitioned by the partition wall 7 from the inner casing 3a and the inner casing 3a is connected to be able to ventilate.
  • the connector 314 is provided with a pressure adjusting section for adjusting the air pressure of the compressed air supply passage 300 for the other portion.
  • the pressure adjusting section has the same configuration as the pressure adjusting section 12 of the first embodiment.
  • the saddle delivery supply path 301 of the compressed air supply path 300 for the other part is formed inside the pipe member 310.
  • the base end of the pipe member 310 forming the saddle delivery supply path 301 is connected to the axle 201 of the wheel 202 via a connector 310a.
  • the saddle delivery supply path 301 and the shaft hole 43a of the axle 201 are connected to each other so as to allow ventilation.
  • the tip of the pipe member 310 is connected to a saddle section 140 provided on the bicycle.
  • the saddle portion 140 of this embodiment to which the pipe member 310 is connected includes a seat 141 for a person to sit on, and a seat support portion for supporting the seat 144. 1 4 and 2 are provided.
  • the seat support section 142 includes a sheet support section 144 supporting the sheet 141 and a sheet mounting section 150 to which the sheet support section 144 is mounted so as to be vertically movable. I have.
  • the seat mounting section 150 has an air holding section 1501 that holds air inside. I have. Further, the air holding section 15 1 is provided with an air inlet 15 2 for introducing air. Then, a pipe member 310 is connected to the air inlet 152. As a result, the saddle delivery supply path 301 and the air holding section 151 are connected to each other in a permeable manner.
  • the lower side of the seat mounting portion 150 is fitted and fixed in a stand pipe 210 of the bicycle.
  • the seat mounting portion 150 is not limited to one that is separate from the vertical pipe 210, and may be a part of the vertical pipe 210, for example.
  • the upper side of the sheet support piece 144 is fixed to the sheet 141.
  • An air pressing portion 144 for pressing the air of the air holding portion 151 downward is provided below the seat supporting piece 144.
  • the air pressing portion 144 is disposed inside the air holding portion 151 so as to be vertically slidable along the inner peripheral wall of the air holding portion 151 of the seat mounting portion 150. .
  • a coil spring 15 as a pressing portion urging member for urging the air pressing portion 144 upward is provided inside the air holding portion 151. 3 is provided so that the air holding portion 144 sliding down the air holding portion 151 can be assisted when returning upward by the air pressure of the compressed air.
  • the air pressing portion 144 When a downward force is applied to the air pressing portion 144 by, for example, a person sitting on the seat 144 configured in this way, the air pressing portion 144 releases the air in the air holding portion 151. It slides downward together with the sheet 141 while pressing and compressing from the upper side to the lower side.
  • the seat 144 when the force applied to the air pressing portion 144 is reduced, the seat 144 returns upward due to the compressed air pressure in the air holding portion 151. As a result, the seat 141 can have elasticity, the impact force applied to the seat 141 can be absorbed, and the ride comfort can be improved.
  • the sliding part 3 4 of the first compressed air generating part 10 a positions the compression chamber 31 at the lowest position A 1
  • the sliding part 34 of the second compressed air generating part 10 b is the compression chamber 3
  • 1 is arranged at the uppermost position B1
  • the wheel body is rotated with respect to the axle 201.
  • the hub body 102 rotates during the rotation, and together with the hub body 102, the row of the piston member 32 of the first compressed air generator 10 a is lowered.
  • the roller 37 travels on the cam surface 91 a of the cam 9, and the roller 37 of the biston member 32 of the second compressed air generator 1 b travels on the cam surface 91 a of the cam 9.
  • the first compressed air generation unit 10a like the first compressed air generation unit 1a of the first embodiment, slides the piston rod 3 3 into the compression chamber 3a.
  • the air in the compression chamber 31 is compressed to a certain compression ratio.
  • the compressed air is sent from the compressed air supply passage for pneumatic tires 20a to the air holding tube 103b of the pneumatic tire 103 as appropriate.
  • the sliding portion 34 of the piston rod 33 slides in the compression chamber 31 from the uppermost position B1 to the lowermost position A1, and passes through the air intake port 4 when sliding. Then take in the air. Also in this case, the air in the partitioned space portion 111 of the hub 102 is taken into the compression chamber 31 from the air intake port 4 via the first ventilation path 51. In addition, air outside the hub body 102 is taken into the partitioned space portion 111 through the second ventilation path 52 and the third ventilation path 54. Therefore, also in the third embodiment, it is possible to prevent water such as rainwater from entering the compression chamber 31.
  • the second compressed air generator 10b is arranged such that the sliding portion 34 of the piston port 33 of the first compressed air generator 10a moves the compression chamber 31 from the lowermost position A1 to the uppermost position B.
  • the sliding part 3 4 of the biston opening 33 of the second compressed air generating part 10b moves the compression chamber 31 from the uppermost position B1 to the lowermost position A1.
  • it slides and passes through the air intake port 4 during the sliding, it takes in air. Also in this case, it is possible to prevent water such as rainwater from entering the compression chamber 31.
  • the sliding part 34 of the piston rod 33 of the second compressed air generating part 10b is the same as the sliding part 34 of the piston rod 33 of the first compressed air generating part 10a.
  • the compression chamber 31 When sliding from the uppermost position B1 to the lowermost position A1, the compression chamber 31 is moved from the lowermost position A1 toward the uppermost position B1. Compress the air in 1 to a certain compression ratio.
  • the air compressed by the second compressed air generator 10b is sent from the compression chamber 31 to the communication supply path 13b, and from the communication supply path 13b to the connection path 303, the axle 2 0
  • connection path 303 and the shaft hole 43a are rotatably connected via the connection hole 45i of the rotary connection member 45, when the wheel body rotates during traveling, The connection path 303 and the shaft hole 43a can maintain a connected state, and the compressed air is generated by the second compressed air generator 10b during traveling, and the generated compressed air is transmitted from the wheels 202 to the bicycle. Air can be sent to the saddle part 140.
  • the air holding section 151 can always be maintained at the same air pressure as the compressed air supply path 300 for the other portion, and the air pressure of the air holding section 151 is lower than a predetermined air pressure set in advance. Then, the compressed air that is sequentially generated by the second compressed air generation unit 10b can be sequentially introduced as the vehicle travels.
  • the air holding portion 1551 is pressed by the air pressing portion 144 to compress the air in the air holding portion 151, but the present invention is not limited to this embodiment. , May be changed as appropriate.
  • an air holding part 15 1 is provided in a part of the seat 14 1, and when a person sits on the seat 14 1, the load is received by the air holding part 15 1 so that the seat 14 1 itself has elasticity. May be provided.
  • the air attaching portion 150 is provided in the seat mounting portion 150, and the air pressing portion 144 is provided in the saddle portion 140.
  • an air holding portion 151 can be provided on the sheet support piece 144 and an air pressing portion 144 can be provided on the sheet mounting portion 150, and can be changed as appropriate.
  • the air holding section 15 1 may be provided with a check valve for preventing a back flow of air from the air holding section 15 1 to the saddle delivery supply path 301, which can be changed as appropriate. .
  • the automatic air supply mechanism is provided on the front wheel 202, but may be provided on the rear wheel, and may be changed as appropriate.
  • the automatic pneumatic supply mechanism of the fourth embodiment is provided in a bicycle as a vehicle to supply air to pneumatic tires of the wheels and to supply air to a brake device as another part of the bicycle other than the pneumatic tires to brake the vehicle. It is said to prevent overheating of the equipment.
  • the automatic air supply mechanism of the fourth embodiment has a first pressure similar to that of the third embodiment. It comprises two compressed air generating sections, a compressed air generating section 400a and a second compressed air generating section 400b, and compressed air supply paths 200a and 400o.
  • the first compressed air generating section 400a and the second compressed air generating section 400b are mounted on rear wheels of a bicycle as a vehicle.
  • the rear wheel axle 201 and the tire itself (not shown) have substantially the same configuration as that of the third embodiment.
  • first compressed air generating section 400a and the second compressed air generating section 400b of the fourth embodiment are respectively defined by an air intake port 4 and a rear wheel hub body 402. There is provided a first air passage 51 communicating with the part 111, and a second air passage following the first air passage 51.
  • a rear wheel hap body provided on the rear wheel is provided.
  • the right axle gap ventilation path 52 of 402 is closed in a substantially sealed state with the outside by a ring-shaped sealing member 55 0, and the left axle clearance of the hub body 40 2 for the rear wheel Air passage
  • the rest of the first compressed air generator 400a and the second compressed air generator 400b has the same configuration as the first compressed air generator 100a of the third embodiment.
  • the compressed air supply path of the fourth embodiment is a compressed air supply path for pneumatic tires 20 that guides and supplies the compressed air generated by the first compressed air generator 400 a to the pneumatic tire 103.
  • the pneumatic tire compressed air supply passage 200a has the same configuration as the pneumatic tire compressed air supply passage 2 of the first embodiment.
  • the compressed air supply path 400 for the other part of the fourth embodiment is
  • a communication supply path 13 b communicating with the compression chamber 31 of the 0 0 b, a brake supply path 401 connected to a bicycle braking device 120 described later, and a communication supply path 13 and a connection supply path 402 connecting the b and the brake supply path 401.
  • the communication supply path 13b has the same configuration as that of the third embodiment.
  • connection supply path 402 of the other-part compressed air supply path 400 also has the same configuration as the connection supply path 302 of the third embodiment. More specifically, for other parts
  • the connection supply passage 402 of the compressed air supply passage 400 is connected to the shaft hole 43a made in the axle 201, and the shaft hole 43a is connected to the communication supply passage 13b. Road 403.
  • the connection path 403 is formed inside the connection pipe 413.
  • the connecting pipe 4 13 is rotatably connected to the axle 201 via a rotary connecting member 45, whereby the connecting path 400 of the connecting pipe 4 13 and the axle 200 are connected.
  • the one shaft hole 43a is connected to be permeable and rotatable.
  • the brake delivery supply path 401 is formed inside the pipe member 410.
  • the base end of the pipe member 410 is connected to the rear wheel axle 201 via a connector 410a.
  • the brake delivery supply path 401 and the axle hole 43a of the axle 201 are connected to each other in a permeable manner.
  • the tip of the pipe member 410 is connected to a brake device 120 provided on the rear wheel of the bicycle.
  • the brake device 120 used in this embodiment is constituted by an inner expansion brake 120. As shown in FIG. 19, the inner expanding brake 120 is provided with a drum 12
  • the drum 122 has a cylindrical portion 121a, and a lining contact portion 121b on the inner peripheral side of the cylindrical portion 121a.
  • the drum 12 1 is attached to the rear wheel hub body 402 by being attached to the drum mounting screw 405 a of the rear wheel hub body 402 mounted on the rear wheel. Fixed.
  • the riding contact portion 121b rotates together with the rotation of the rear wheel hub body 402.
  • the cover 123 includes a disk part 123 a and a cylindrical part 123 b formed at an outer peripheral end of the disk part 123 a.
  • a pipe connection 1 2 3c force S for connecting the brake delivery supply path 401 to the cylinder 1 23 b is drilled so as to penetrate from the outer circumference to the inner circumference of the cylinder 123 b. ing.
  • the cover 123 passes through the axle 201, and is fixed to the axle 201 via a force bar fixing nut 123d. In addition, by this fixing, the cylindrical portion 123 b of the force member 123 covers the drum 121 from the outer peripheral side.
  • the brake shoe 122 includes a pair of arc-shaped shoe pieces 122a and 122a as shown in FIG.
  • Each of the pieces 122a and 122a has a lining 122b and 122b made of synthetic rubber on the outer peripheral side. And these shuffle pieces 1? 2a and 122a are mounted on the inner peripheral side of the drum 122 through fixing bolts 122c that pass through the base ends of each piece 122a and 122a. It is rotatably supported by 123.
  • each of the shoe pieces 122a and 122a is configured such that the distal end rotates with the base end as the axis of rotation.
  • a shoe operating cam 124 for rotating the shoe pieces 122a and 122a is disposed between the tips of the shoe pieces 122a and 122a.
  • the cam for operation 124 has a small-diameter portion 124a and a large-diameter portion 124b having a larger diameter than the small-diameter portion 124a.
  • An arm member 125 for movably operating the shoe operating cam 124 is connected to the shoe operating cam 124, and attached to the cover 123 so as to be able to rotate together with the arm member 125. ing.
  • the arm member 125 is connected to a brake lever (not shown) via a brake wire 133. Then, the operation of the brake lever causes the arm member 125 to move as shown in FIG. 21, and accordingly, the cam for operation 124 to rotate.
  • the large-diameter portion 124b of the cam for operation 124 pushes the tip of each piece 122a, 122a.
  • the linings 1 2 2b and 1 2 2b of the respective pieces 1 2 2a and 1 2 2a press against the lining abutting portion 1 2 1 b of the drum 1 2 1 and the rotation of the drum 1 2 1 Can be braked.
  • the tip of the pipe member 4 10 is attached to the pipe connection port 123 c of the cover 123 of the inner expansion brake 120 configured as described above.
  • the automatic air supply mechanism for a bicycle for example, a bicycle is run and the wheel body is rotated with respect to the axle 201 as in the third embodiment.
  • the first compressed air generator 400a and the second compressed air generator 400b alternately compress the air.
  • the air compressed by the first compressed air generating section 400a is appropriately sent to the air holding tube of the pneumatic tire through the compressed air supply path 200a for the pneumatic tire.
  • the air compressed by the second compressed air generation section 400b passes through the supply path 13b for communication, the connection path 400, and the shaft hole 43a of the axle 201 sequentially for brake delivery. It is sent to the supply route 401. Furthermore, it enters the pipe connection port 123c of the brake device 120 from the brake delivery supply path 401 and is blown toward the drum 122 from the pipe connection port 123c. As a result, air can be constantly blown to the drum 122 during traveling, and the generation of heat due to friction between the drum 122 and the linings 122 b, 122 b can be suppressed. Further, even if the brake device 120 is overheated due to, for example, direct sunlight in summer, the vehicle can be cooled by running, and it is possible to prevent the brake device 120 from being disturbed by overheating.
  • the automatic air supply mechanism according to the embodiment of the present invention configured as described above can also be grasped as follows.
  • the automatic air supply mechanism includes a compressed air generation unit that generates compressed air when the wheel body rotates with respect to the axle, and the compressed air generation unit includes a plurality of compressed air generation units.
  • the generator is equipped with a compression chamber for compressing air, an air intake for taking in external air into the compression chamber, and a waterproof mechanism for preventing water from entering the compression chamber through the air intake. It is.
  • the automatic air supply mechanism of the above embodiment includes a compressed air supply path for a pneumatic tire for supplying the compressed air generated by the compressed air generation unit to the pneumatic tire, and a compressed air generated by the compressed air generation unit. And a compressed air supply passage for other parts for supplying the compressed air to the other parts of the vehicle other than the pneumatic tires. It is supplied to the device.
  • the brake device includes a member to be braked that rotates together with the pneumatic tire, and a braking member that is movable to be able to contact the member to be braked and brakes the rotation of the member to be braked.
  • the compressed air supply path for other parts guides and supplies the compressed air generated by the compressed air generation section to the saddle section of the bicycle.
  • the saddle portion includes a seat on which a person sits and an air holding portion that holds air, and the air holding portion is provided so that the seat can be given elasticity by receiving a load applied to the seat. It is.
  • the saddle section includes a sheet support section that supports the sheet so as to be vertically movable, the air holding section is provided on the sheet support section, and the sheet support section includes an air pressing section that can press air from the air holding section.
  • the air pressing section presses the air in the air holding section when a downward load is applied to the sheet, and the pressing compresses the air in the air holding section and allows the sheet to move downward.
  • the seat has elasticity.
  • the other part of the compressed air supply path includes a communication supply path that communicates with the compression chamber of the compressed air generation part, and another part of the bicycle saddle part or a supply part supply passage that is connected to the brake device. And a connecting supply path connecting the communicating supply path and the other-part sending supply path.
  • the connection supply path includes a shaft hole formed in the axle along the axial direction of the axle and connected to another supply passage, and a connection path connecting the shaft hole and the communication supply path. I have. Further, the connection path and the shaft hole are rotatably connected via a connection hole rotatably connected to the shaft hole.
  • the compressed air generated by the compressed air generator that rotates together with the wheel body during traveling can be supplied from the connection path to the connection supply path via the shaft hole, and from the connection supply path to the saddle portion or the brake device of the bicycle, etc. Can be sent to other parts.
  • the one provided with one compressed air generating unit and the one provided with two compressed air generating units have been exemplified.
  • three or more compressed air generating units may be provided and can be appropriately changed.
  • the compressed air generator is composed of two parts, when one of the sliding parts slides from the lowermost position to the uppermost position in the compression chamber as in the above-described embodiment, the other is used.
  • the configuration is not limited to the configuration in which the sliding portion slides from the uppermost position to the lowermost position in the compression chamber at substantially equal intervals in the circumferential direction of the drum, and can be changed as appropriate.
  • the other sliding part slides from the uppermost position to the lowermost position in the compression chamber.
  • the compressed air generated by the compressed air generating unit is supplied to the saddle portion of the bicycle or the brake device as another portion other than the pneumatic tire through the other-part compressed air supply path.
  • other parts than the pneumatic tire are not limited to the saddle part or the brake device of the bicycle, and can be changed as appropriate.
  • the compressed air supply path for the pneumatic tire is provided.However, for example, the compressed air generator and the pneumatic tire are connected without providing the compressed air supply path for the pneumatic tire.
  • the compressed air generated by the compressed air generator may be directly supplied to the air tire, and may be changed as appropriate.
  • the automatic air supply mechanism of the present invention can be provided in a vehicle having a wheel body rotatable with respect to an axle, for example, a two-wheeled vehicle such as a unicycle, a motorcycle, a rear car, various tricycles, a four-wheeled vehicle, It can be used for elevators having elevator wheels.
  • the compression operation body is constituted by the piston element 32, but the compression operation body is not limited to this embodiment, and can be appropriately changed.
  • the compression chamber 31 is expanded to the inside of the hub body 102, and a stretchable expansion / contraction portion as a compression operation body is formed on the entire peripheral wall of the compression chamber 31 or a part in the axial direction.
  • the pneumatic tire automatic air supply mechanism includes a compressed air generation unit that generates compressed air when the wheel body rotates with respect to the axle, so that the compressed air generated by the compressed air generation unit can be supplied to the pneumatic tire. Shall be done.
  • the compressed air can be compressed by the compressed air generator to generate compressed air, and the generated compressed air can be sent to the air tire. Therefore, for example, when a bicycle is run, the wheel body is turned around the axle. This allows the air to be automatically compressed to a constant pressure in the compression section, and the compressed air is sent to the pneumatic tire to constantly keep the air pressure of the air tire constant.
  • the compressed air generating unit includes a plurality of compressed air generating units, each of the compressed air generating units includes: a compression chamber;
  • the compression operation body compresses air in the compression chamber by being pressed by a cam provided on the axle when the wheel body rotates with respect to the axle. It is assumed that the compressor is arranged so that the compression operation bodies of the respective compressed air generating units are sequentially pressed by the cams during rotation and the compression operations can be started sequentially.
  • a plurality of compressed air generators when the wheel body rotates with respect to the axle, a plurality of compressed air generators generate a plurality of times more compressed air than when a single compressed air generator is provided to generate compressed air. it can.
  • the running distance is short and the number of rotations of the wheels is small in normal running, and the amount of compressed air that can be generated in short running is small. Difficult to supply.
  • a plurality of compressed air generating units within a short time after the start of traveling at the stage where the number of rotations of the wheels is low, a plurality of compressed air generating units generate sufficient i compressed air and supply it to the air tire. Can be set to a predetermined air pressure.
  • each compressed air generation unit starts to be pressed sequentially by the force and the compression operation can be started sequentially, so that, for example, the air in the compression chamber is simultaneously generated by a plurality of compressed air generation units.
  • Compressed air can be generated with a smaller force than when air is compressed, and the resistance of the rotation of the wheel body to the axle can be reduced.
  • it is composed of one cam, and a plurality of compressed air generators are arranged so that the positions of the respective compressed air generators are shifted in the circumferential direction of the cam.
  • the compression operation bodies of the respective compressed air generation units can be sequentially pressed by the cams, thereby facilitating manufacture.
  • a plurality of compressed air generating sections can be arranged in a line along the circumferential direction of the cam, so that the length of the axle of the entire apparatus in the axial direction can be reduced. Therefore, for example, it can be easily attached to a hub body provided on a wheel body of a bicycle or a wheelchair, and can be suitable for a bicycle or a wheelchair.
  • the automatic air supply mechanism for a pneumatic tire according to the present invention, includes a compression unit for other parts for guiding the compressed air generated by the compressed air generation unit to another part of the vehicle other than the pneumatic tires and supplying the compressed air.
  • An air supply channel shall be provided.
  • the compressed air generated in one of the plurality of compressed air generators is supplied to the pneumatic tire through the pneumatic tire compressed air supply path, and is generated in the other compressed air generators.
  • the compressed air can be supplied to the air holding portion provided in the saddle portion of the bicycle as another portion by the compressed air supply passage for the other portion, so that the seat of the saddle portion has elasticity.
  • a brake device of a bicycle is supplied by a compressed air supply passage for another portion, thereby preventing the brake device from overheating.
  • the compressed air generator includes two parts, a first compressed air generator and a second compressed air generator.
  • Each of the compression operation bodies of the first and second compressed air generating units includes a sliding portion that slides in the sliding chamber, and a cam contact portion that contacts the cam, and the sliding portion reduces the volume of the compression chamber.
  • the slider slides in the range from the lowest position where the compressor is in the maximum state to the uppermost position where the volume of the compression chamber is in the minimum state, and the cam abutment is pressed by the cam when the wheel body rotates with respect to the axle.
  • Portion slides from the lowermost position to the uppermost position in the compression chamber, and the air in the compression chamber is compressed at the time of the sliding, so that one of the first compressed air generation section and the second compressed air generation section slides.
  • the moving part slides the compression chamber from the lowest position to the highest position, It is assumed that the other sliding part is arranged so that the compression chamber slides from the uppermost position to the lowermost position.
  • the first compressed air generation unit and the second compressed air generation unit alternately compress the air in the compression chamber, and while one of them is performing the compression operation on the air in the compression chamber,
  • the air in the compression chamber can not be compressed.
  • twice as much compressed air can be generated with almost the same force as in the case of providing one compressed air generating unit and generating compressed air.
  • the compressed air generating unit includes: a compression chamber; a compression operation body configured to compress air in the compression chamber; and an air for taking in external air into the compression chamber.
  • the compression operation body maximizes the volume of the compression chamber A sliding portion that slides in the sliding chamber from a lowermost position to a lowermost position to an uppermost position to minimize the volume of the compression chamber. This sliding portion is used when the wheel body rotates with respect to the axle.
  • the air intake port is a sliding part that moves the compression chamber in the range from the lowermost position to the uppermost position.
  • the compressed air generator is attached to a hub provided on the wheel body, and takes in air into the compression chamber from inside the hub to compress the taken air. It shall be possible. By doing so, air can be taken into the compression chamber from inside the hub body into which water such as rainwater does not easily enter, so that there is little risk of water entering the compression chamber with the air.
  • the compressed air generating unit includes a compression chamber for compressing air, an air intake for taking in external air into the compression chamber, and an air intake from the air intake to the compression chamber. It shall be provided with a waterproof mechanism to prevent water from entering.
  • the waterproof mechanism prevents rainwater and the like from entering the compression chamber through the air intake port together with the air even when the vehicle travels on a rainy day, for example. It can be prevented from being sent into a pneumatic tire.
  • the wheel body includes a hub body rotatably supported on an axle, the compressed air generation unit is attached to a haptic body of the wheel body, and the waterproof mechanism is provided. Is equipped with a first air passage that allows the air intake port and the inside of the hub body to communicate with each other in a ventilable manner. Prevents water from entering the air generator Shall be.
  • the air inside the haptic such as rainwater, into which water is difficult to enter can be taken into the compression chamber from the air intake port, and there is little possibility that water will enter the compression chamber from the air intake port together with air. it can.
  • the hub body includes a cylindrical hub body, and support portions that support the hap body from both sides in the axial direction.
  • the hub body is rotatable with respect to the axle by being supported by the hub body, and the hub body and the support portion form a partition space section that is partitioned from the outside inside the hub body. It is assumed that the vehicle has a second air passage formed in the support portion so as to communicate the partition space of the hub body with the outside.
  • each of the support portions of the hap body includes a steel ball receiving portion capable of rolling a plurality of steel balls, and an axle radially inside the steel ball receiving portion.
  • An axle hole that is rotatably inserted into the axle, and a steel ball receiving portion is rotatably supported via a plurality of steel balls on the axle that passes through the axle hole, so that the hub body is rotatable relative to the axle.
  • And at each support portion of the hub body pass through the axle gap formed between the inner peripheral surface of the axle hole and the axle and the steel ball gap formed between the steel balls.
  • An axle gap ventilation path is formed to extend from the portion so as to allow ventilation, and the second ventilation path has at least one of the two axle clearance ventilation paths as a component.
  • the two axle clearances are provided.
  • the other one of the axle clearance air passages constitutes a part or the whole of the second air passage.
  • the waterproofing mechanism includes a third ventilation path that communicates the other one of the axle clearance ventilation paths that constitutes the second ventilation path with the outside, and the air outside of the hub body flows through the third ventilation path through the third ventilation path. It shall enter the inside of the hub body from the axle gap ventilation path.
  • the third ventilation path is provided between an inner peripheral surface of a cylindrical body attached to the hub body so as to pass through the axle and an outer periphery of the axle. It is assumed that the inner peripheral surface of the cylindrical body is provided with a tapered portion whose inner diameter gradually increases toward the outer side.
  • the water can be moved to the larger diameter of the tapered part and driven out by the centrifugal force accompanying rotation of the hub body. .
  • water can be transmitted to the larger diameter of the tapered portion by its own weight, and can be driven out. Therefore, it is possible to make the third ventilation path difficult for water to pass through.
  • the compressed air generating unit includes a compression chamber, and a compression operation body that compresses air in the compression chamber, and a first end of the compression operation body is provided in the compression chamber.
  • the second end of the compression operation body is held by a cam provided on the axle, so that when the wheel body rotates with respect to the axle, the compression operation body follows the cam, and the second end of the compression operation body follows the cam. Slides to compress the air in the compression chamber. For example, when the end of the compression operating body is pressed against the cam by a coil spring for urging the compression operation body to maintain the contact state, the compression operation body must be slid against the urging force.
  • the compression operation body is held by the cam and the coil panel for biasing is not provided, the compression operation is not performed.
  • the body can slide smoothly with a small force. Thereby, the resistance when rotating the wheel body with respect to the axle can be reduced.
  • the compression operation body is detachably held by a force bar. By doing so, the compressed air generating portion can be easily removed from the cam, and the compressed air generating portion removed from the cam can be easily assembled. As a result, parts can be easily replaced by disassembly or the like, and maintenance can be performed easily.
  • the cam includes a cam body having a cam surface on an outer periphery thereof in contact with a compression operation body, and an operation body disposed on a side of the cam surface of the cam body.
  • the compression operation body includes a rod-shaped operation main body, a cam contact portion that abuts on a cam surface of the cam body, and a cam holding portion that is held by the operation body holding portion of the force member.
  • the operating body is radially movable outside the cam surface of the cam body in a radial direction, and the cam contact portion is located between the cam surface of the cam body and the operating body.
  • the cam holding section is detachably held by the operating body holding section.
  • the operation body of the compression operation body is moved from the radial inner side by the cam through the cam contact portion. Outside.
  • the operation body can be moved efficiently and smoothly in the radial direction of the cam.
  • the force holding part is held by the operating body holding part arranged on the side of the cam surface of the cam body. It is only necessary to release the holding, and the operation of removing the compression operation body from the cam can be easily performed.
  • the cam holding part is held by the operating body holding part arranged on the side of the cam surface of the cam body, when the compression operating body is pulled by the cam, the compression operating body is moved to the side. Will be pulled from.
  • the compression operation body is pulled by the cam, air is not compressed, so that a large force is not applied to the operation body, so that the operation body can be smoothly pulled and operated without any trouble.
  • the cam contact portion is configured by a part of an outer periphery of a roller rotatably attached to the operation main body, and the cam holding portion includes:
  • the roller shall be rotatably supported by the operation body, and shall consist of a holding shaft held by the operation body holding portion of the force member.
  • a holding shaft that rotatably supports the roller on the operation body is used as a cam holding portion, and this holding shaft is held by the operating body holding portion of the cam, so that the holding shaft can also be used, and a separate cam holding portion is formed. And can be easily manufactured at low cost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Tyre Moulding (AREA)
  • Tires In General (AREA)

Abstract

An automatic air supply mechanism capable of increasing the produced amount of compressed air with less number of rotations of a wheel body and producing the compressed air with a small force, comprising two compressed air producing parts formed of a first compressed air producing part (1a) and a second compressed air producing part (1b) and compressed air supply passages (2a) and (2b) for pneumatic tire supplying the compressed air produced by the compressed air producing parts to the pneumatic tire. The first compressed air producing part (1a) and the second compressed air producing part (1b) are installed on the hub drum (102a) of a hub body (102) at positions circumferentially spaced by 180°each other, and when a vehicle travels, the first compressed air producing part (1a) and the second compressed air producing part (1b) alternately produce the compressed air.

Description

明細書 空気タイヤの空気自動供給機構 関連出願の参照 ·  Description Automatic air supply mechanism for pneumatic tires See related application ·
S本国特許出願 2 0 0 3年第 0 9 0 0 7. 9号 (平成 1 5年 3月 2 8日出願) の 明細書、 請求の範囲、 図面および要約を含む全開示内容は、 これら全開示内容を 参照することによって本出願に合体される。 技術分野  The entire disclosure of the S-home patent application No. 0900 / 7.9 in 2003 (filed on March 28, 2003), including the specification, claims, drawings and abstract The disclosure is incorporated by reference into the present application. Technical field
この発明は、 車軸に対する車輪本体の回転に際し圧縮空気を生成して空気タイ ャに供給し得る空気タイヤの空気自動供給機構に関するものである。 背景技術  The present invention relates to a pneumatic tire automatic air supply mechanism that can generate compressed air and supply the compressed air to a pneumatic tire when a wheel body rotates with respect to an axle. Background art
例えば自転車や自動車の車輪には、 空気を保持させた空気タイヤが設けられて いる。 このような空気タイヤは、 所定の空気圧になるように空気を入れておいて も、 時間の経過に伴って徐々に空気が抜け、 空気圧が下がる。 空気圧があまり下 がると、 乗り心地が悪くなると共に、 ハンドルの操作がし難くなつてしまう等の 支障をきたす。 そのため、 空気圧が所定圧よりもあまり下がった場合には、 空気 入れポンプ等の空気入れ装置によって空気タイヤに空気を供給する必要がある。 しかしながら、例えば空気入れポンプによって空気タイヤに空気を供給する場合 は、 空気入れポンプの操作に相当な力を要する。 そのため、 例えば力の弱い者等 にとつては、 空気入れポンプの操作を行い難く、 空気を供給するのが容易でない という問題点がある。 発明の開示  For example, wheels of bicycles and automobiles are provided with pneumatic tires that hold air. In such a pneumatic tire, even if air is supplied so as to have a predetermined air pressure, the air is gradually released as time passes, and the air pressure is reduced. If the air pressure is too low, the ride will be uncomfortable and the steering wheel will be difficult to operate. Therefore, when the air pressure drops significantly below the predetermined pressure, it is necessary to supply air to the pneumatic tires by an air pump such as an air pump. However, when supplying air to a pneumatic tire by, for example, a pneumatic pump, the operation of the pneumatic pump requires considerable power. Therefore, for example, there is a problem that it is difficult for a person with weak power to operate the air pump, and it is not easy to supply the air. Disclosure of the invention
本願発明は、 以上のような実情に鑑みて提案されたもので、 空気入れポンプ等 を使用しなくても、 空気タイヤの空気圧が所定より低くなると車軸に対する空気 タイヤの回転により自動的に空気タイヤに空気を供給できる空気タイヤの空気自 動供給機構の提供を目的とする。 The invention of the present application has been proposed in view of the above situation. Even if an air pump is not used, when the air pressure of the pneumatic tire becomes lower than a predetermined value, the pneumatic tire automatically rotates by rotation of the pneumatic tire with respect to the axle. Air tires that can supply air to the The purpose is to provide a dynamic supply mechanism.
本願発明は、 更に、 雨水等の水が圧縮空気生成部に入るおそれの少ない空気タ ィャの空気自動供給機構の提供を目的とする。  Another object of the present invention is to provide an automatic air supply mechanism for an air tire, which is less likely to cause water such as rainwater to enter the compressed air generator.
本願発明は、 更に、 車輪本体の少ない回転数で圧縮空気の生成量を多くするこ とができ、 しかも、 小さい力で圧縮空気を生成できる空気タイヤの空気自動供給 機構の提供を目的とする。  Another object of the present invention is to provide an automatic pneumatic tire air supply mechanism capable of increasing the amount of compressed air generated with a small number of rotations of the wheel body and generating compressed air with a small force.
本願発明は、 更に、 短い走行距離で十分な量の圧縮空気を生成でき、 通常の走 行では走行距離が短く車輪の回転数が少ない車椅子等の車両の空気タイヤに圧縮 空気を供給できる空気タイヤの空気自動供給機構の提供を目的とする。  The present invention further provides a pneumatic tire capable of generating a sufficient amount of compressed air in a short traveling distance and supplying compressed air to a pneumatic tire of a vehicle such as a wheelchair having a short traveling distance and a small number of wheel rotations in a normal traveling. The purpose of the present invention is to provide an automatic air supply mechanism.
本願発明は、 更に、 車輪本体の少ない回転数で圧縮空気の生成量を多くするこ とができ、しかも、小さい力で圧縮空気を生成できる空気自動供給機構であって、 車両の走行に際して空気タイヤに空気を供給できると同時に、 空気タイヤ以外の 車両の他の部分に空気を供給できる空気自動供給機構の提供を目的とする。 本願発明は、 更に、 車軸に対する車輪本体の回転抵抗を小さくできる空気タイ ャの空気自動供給機構の提供を目的とする。  The present invention further provides an automatic air supply mechanism that can increase the amount of compressed air generated with a small number of rotations of the wheel body and can generate compressed air with a small force. The purpose of the present invention is to provide an automatic air supply mechanism that can supply air to other parts of a vehicle other than pneumatic tires while supplying air to the vehicle. Another object of the present invention is to provide an automatic air supply mechanism for an air tire that can reduce the rotational resistance of the wheel main body with respect to the axle.
この発明による空気タイヤの空気自動供給機構は、 車両の車軸に対して回転可 能な車輪本体に設けられた空気タイヤに、 空気を自動供給し得る空気タイヤの空 気自動供給機構であって、  An automatic air supply mechanism for a pneumatic tire according to the present invention is an automatic air supply mechanism for a pneumatic tire capable of automatically supplying air to a pneumatic tire provided on a wheel body rotatable with respect to an axle of a vehicle,
車軸に対する車輪本体の回転に際して圧縮空気を生成する圧縮空気生成部を備 え、 この圧縮空気生成部で生成した圧縮空気を空気タイヤに供給できるようにし たものである。  A compressed air generator is provided for generating compressed air when the wheel body rotates with respect to the axle, and the compressed air generated by the compressed air generator can be supplied to the pneumatic tire.
本発明の特徴は、 上記のように広く示すことができるが、 その構成や内容は、 目的おょぴ特徴とともに、 図面を考慮に入れた上で、 以下の開示によりさらに明 らかになるであろう。 図面の簡単な説明  Although the features of the present invention can be broadly shown as described above, the structure and contents thereof, together with the intended features, will be further clarified by taking the drawings into consideration and the following disclosure. There will be. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本願発明の第 1実施形態の空気自動供給機構を有する自転車の車輪の 側面図である。  FIG. 1 is a side view of a bicycle wheel having an automatic air supply mechanism according to a first embodiment of the present invention.
図 2は、 図 1の I I一 I I線に沿う拡大した断面説明図である。 図 3は、 図 2の I I I一 I I I線に沿う断面説明図である。 FIG. 2 is an enlarged sectional explanatory view taken along the line II-II of FIG. FIG. 3 is an explanatory sectional view taken along line III-III in FIG.
図 4は、 第 2通気路及び第 3通気路を示す要部拡大断面説明図である。  FIG. 4 is an enlarged sectional explanatory view of a main part showing a second ventilation path and a third ventilation path.
図 5は、 図 4の V _ V線断面図である。  FIG. 5 is a sectional view taken along line V_V of FIG.
図 6は、 図 2の.状態から、 圧縮空気生成部の摺動部が最上位置まで摺動した状 態の断面説明図である。  FIG. 6 is an explanatory cross-sectional view showing a state in which the sliding portion of the compressed air generation unit has slid to the uppermost position from the state shown in FIG.
図 7は、 図 6の V I I - V I I線に沿う断面説明図である。  FIG. 7 is an explanatory sectional view taken along the line VII-VII in FIG.
図 8は、 図 1の V I I I一 V I I I線に沿う拡大した断面説明図である。 図 9は、 第 2実施形態の空気自動供給機構を有する車椅子の車輪の側面図であ る。  FIG. 8 is an enlarged cross-sectional explanatory view along the line VIII-VIII of FIG. FIG. 9 is a side view of wheels of a wheelchair having the automatic air supply mechanism of the second embodiment.
図 1 0ほ、 図 9の X— X線に沿う拡大した断面説明図である。  FIG. 10 is an enlarged cross-sectional explanatory view along the line X-X in FIG. 9.
図 1 1は、 図 1 0の X I—X I線に沿う断面説明図である。 ' 図 1 2は、 図 1 0の状態から、 第 1圧縮空気生成部の摺動部が最上位置まで摺 動するとともに、 第 2圧縮空気生成部の搢動部が最下位置まで摺動した状態の断 面説明図である。  FIG. 11 is an explanatory sectional view taken along line XI-XI of FIG. '' Fig. 12 shows that the sliding part of the first compressed air generation part slid to the uppermost position and the sliding part of the second compressed air generation part slid from the state of Fig. 10 to the lowermost position. FIG. 4 is an explanatory sectional view of a state.
図 1 3は、 図 1 1の状態から、 第 1圧縮空気生成部の摺動部が最上位置まで摺 動するとともに、 第 2圧縮空気生成部の摺動部が最下位置まで摺動した状態の断 面説明図である。  Fig. 13 shows the state where the sliding part of the first compressed air generator slides to the uppermost position and the sliding part of the second compressed air generator slides to the lowermost position from the state of Fig. 11. FIG.
図 1 4は、 本願発明の第 3実施形態の空気自動供給機構を有する自転車の側面 図である。  FIG. 14 is a side view of a bicycle having an automatic air supply mechanism according to the third embodiment of the present invention.
図 1 5は、 第 3実施形態の空気自動供給機構の要部の拡大断面説明図である。 図 1 6は、 回転接続部材を縦断面にした説明図である。  FIG. 15 is an enlarged sectional explanatory view of a main part of the automatic air supply mechanism of the third embodiment. FIG. 16 is an explanatory view showing the rotary connecting member in a vertical section.
図 1 7は、 回転接続部材を横断面にした説明図である。  FIG. 17 is an explanatory view showing a cross section of the rotary connection member.
図 1 8は、 第 3実施形態の空気自動供給機構を有する自転車のサドル部の一部 の拡大断面図である。  FIG. 18 is an enlarged sectional view of a part of a saddle portion of a bicycle having the automatic air supply mechanism according to the third embodiment.
図 1 9は、 本願発明の第 4実施形態の空気自動供給機構の説明図である。 図 2 0は、 第 4実施形態の空気自動供給機構を有する自転車のブレーキ装置の 拡大断面説明図である。  FIG. 19 is an explanatory diagram of an automatic air supply mechanism according to a fourth embodiment of the present invention. FIG. 20 is an enlarged sectional explanatory view of a brake device for a bicycle having the automatic air supply mechanism according to the fourth embodiment.
図 2 1は、 図 2 0の状態からブレーキワイヤーを操作してプレーキシューをド ラムに当接させた状態の拡大断面説明図である。 発明を実施するための最良の形態 FIG. 21 is an enlarged cross-sectional explanatory view of a state in which the brake wire is operated from the state of FIG. 20 to bring the play shoe into contact with the drum. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を基にして本願発明の実施の形態を具体的に説明する。 図 1は、 本 願発明の第 1実施形態の空気タイヤの空気自動供給機構を備えた自転車用の車輪 の側面図、 図 2は、 図 1の I I— I I線に沿う拡大断面説明図、 図 3は、 図 2の Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a side view of a bicycle wheel provided with an automatic pneumatic tire air supply mechanism according to a first embodiment of the present invention. FIG. 2 is an enlarged cross-sectional explanatory view taken along line II-II of FIG. 3 in Figure 2
1 I I— I I I線に沿う断面説明図である。 FIG. 1 is an explanatory sectional view taken along the line I II—II I.
この実施形態の空気タイヤの空気自動供給機構は、 自転車の前側の車輪 1 0 0 に設けられている。 この空気タイヤの空気自動供給機構を有する自転車用の車輪 1 0 0は、 車軸 1 0 1と、 車軸 1 0 1に対して回転可能な車輪本体 1 1 0とを備 えている。  The automatic pneumatic tire air supply mechanism of this embodiment is provided on the front wheel 100 of the bicycle. The bicycle wheel 100 having the automatic pneumatic tire air supply mechanism includes an axle 101 and a wheel body 110 rotatable with respect to the axle 101.
車軸 1 0 1は、 図 2に示すように、 外周にネジ部 1 0 1 aを有する車軸本体 1 0 1 dと、 車軸本体 1 0 1 dの左右両側の夫々に螺合されて固定された玉押し 1 0 1 b、 1 0 1 bと、 パイプ状の位置決め部材 1 1 4とを備えている。 尚、 位置 決め部材 1 1 4については、 後述する。  The axle 101, as shown in FIG. 2, was screwed and fixed to each of the left and right sides of the axle main body 101d having a threaded portion 101a on the outer periphery and the axle main body 101d. It is provided with a cone 1101b, 101b and a pipe-shaped positioning member 114. Incidentally, the positioning members 114 will be described later.
車輪本体 1 1 0は、 図 1に示すようにハブ体 1 0 2と、 空気タイヤ 1 0 3と、 空気自動供給機構とを備えている。 ノヽブ体 1 0 2は、 図 2に示すように筒状のハ ブ胴 1 0 2 aと、 ハブ胴 1 0 2 aの左右の両側夫々に固定された右支持部 1 0 2 b及び左支持部 1 0 2 cとを備えている。  The wheel main body 110 includes a hub body 102, a pneumatic tire 103, and an automatic air supply mechanism, as shown in FIG. As shown in FIG. 2, the knob body 102 has a cylindrical hub body 102 a, a right support part 102 b fixed to each of the left and right sides of the hub body 102 a, and a left side. And a support portion 102c.
これらの各支持部 1 0 2 b、 1 0 2 cは、 ハブ胴 1 0 2 aの外周を嵌挿するよ うにして、 ハブ胴 1 0 2 aに回転不能に取り付けられている。 また、 ハブ胴 1 0 These support portions 102b and 102c are non-rotatably attached to the hub body 102a so as to fit the outer periphery of the hub body 102a. Also, the hub body 1 0
2 aの左右の両側夫々に右支持部 1 0 2 b及び左支持部 1 0 2 cが取り付けられ ることにより、 ハブ体 1 0 2の内部に、 外部と区画された区画空間部 1 1 1が区 画形成されている。 2 A right support part 102 b and left support part 102 c are attached to each of the left and right sides of a, so that the inside of the hub body 102 is divided into the outside space 1 1 1 Are defined.
又、 これらの各支持部 1 0 2 b、 1 0 2 cとハブ胴 1 0 2 aの外周との嵌揷に 際し、 両者間に、 合成ゴム製からなるリング状の防水パッキン 1 1 2、 1 1 2が 配設されており、 これにより、 各支持部 1 0 2 b、 1 0 2 cとハブ月同 1 0 2 aの 外周との間から区画空間部 1 1 1に水が入らないようにされている。  In addition, when each of these support portions 102b, 102c is fitted to the outer periphery of the hub body 102a, a ring-shaped waterproof packing made of synthetic rubber is provided between the two. , 1 12 are provided, whereby water enters the compartment 1 1 from between each support 102 b, 102 c and the outer periphery of the hub 102 a. Not to be.
各支持部 1 0 2 b、 1 0 2 cの径方向の内側には、 鋼球を転がり可能に受ける 鋼球受け部 1 0 2 dと、 鋼球受け部 1 0 2 dに転がり可能に配設された複数の鋼 球 1 0 7 ... 1 0 7とが備えられている。 又、 鋼球受け部 1 0 2 dの径方向の内側 に、 車軸 1 0 1を通す車軸孔 1 0 2 e、 1 0 2 eが備えられている。 Rollers receive the steel ball inside the radial direction of each support part 102b, 102c A steel ball receiving portion 102 d and a plurality of steel balls 107 to 107 rotatably arranged in the steel ball receiving portion 102 d are provided. Further, axle holes 102 e and 102 e through which the axle 101 passes are provided inside the steel ball receiving portion 102 d in the radial direction.
そして、 図 4に示すように、 これらの車軸孔 1 0 2 eに車軸 1 0 1が通される とともに、 車軸本体 1 0 1 dに螺合された玉押し 1 0 1 b、 1 0 l bと鋼球受け 部 1 0 2 dとの間に複数の鋼球 1 0 7 ... 1 0 7がグリス (図示せず) と共に転が り可能に配設され、 これらの鋼球 1 0 7 ... 1 0 7を介して鋼球受け部 1 0 2 が 車軸本体 1 0 1 dに回転自在に支持されている。 これにより、 ハプ体 1 0 2が車 軸 1 0 1に対して回転自在とされている。  Then, as shown in FIG. 4, the axle 101 is passed through these axle holes 102 e, and the pushers 110 1 b and 10 lb screwed to the axle body 101 d are formed. A plurality of steel balls 107 ... 107 are provided between the steel ball receiving portion 102 d and the grease (not shown) so as to be rollable, and these steel balls 107. .. The steel ball receiver 102 is rotatably supported by the axle main body 101d via 107. Thus, the hap body 102 is rotatable with respect to the axle 101.
各支持部 1 0 2 b、 1 0 2 cの径方向の外側には、 図 2、 図 3に示すように複 数のスポーク孔 1 0 2 f ... 1 0 2 f を有する鍔 1 0 2 g、 1 0 2 gが備えられて いる。 そして、 各鍔 1 0 2 gの各スポーク孔 1 0 2 f ... 1 0 2 f に、 各スポーク 1 0 4 (図 1に図示) の基端側が係止されている。 又、 図 1に示すように、 その 係止された各スポーク 1 0 4の先端側はリム 1 0 5に係止されている。 これによ り、 リム 1 0 5がハブ体 1 0 2に固定され、 車軸 1 0 1に対して回転可能とされ ている。  A flange 10 having a plurality of spoke holes 10 2 f ... 10 2 f as shown in FIGS. 2 and 3 is provided on the outer side in the radial direction of each of the support portions 102 b and 102 c. 2 g and 102 g are provided. The base end of each spoke 104 (shown in FIG. 1) is locked in each spoke hole 102 f ... 102 f of each flange 102 g. Further, as shown in FIG. 1, the distal end of each of the spokes 104 locked is locked to the rim 105. As a result, the rim 105 is fixed to the hub body 102 and is rotatable with respect to the axle 101.
空気タイヤ 1 0 3は、 リム 1 0 5に取り外し可能に係止されることにより、 車 軸 1 0 1に対してリム 1 0 5と共に回転できるようになっている。 又、 図 8に示 すように、 空気タイヤ 1 0 3の内側には、 空気を保持した空気保持部としての空 気保持チューブ 1 0 3 bが備えられている。  The pneumatic tire 103 is detachably locked to the rim 105 so that it can rotate with the rim 105 relative to the axle 101. Also, as shown in FIG. 8, an air holding tube 103 b as an air holding portion for holding air is provided inside the pneumatic tire 103.
又、 この空気保持チューブ 1 0 3 bは、 空気を出し入れるためのバルブ 1 0 6 を備えている。 このバルブ 1 0 6は、 筒状体から構成され、 図の下端側には空気 入れ口 1 0 6 aが設けられ、図示上端側にはバルブ孔 1 0 6 bが設けられている。 又、 このバルブ孔 1 0 6 bは、 バルブ 1 0 6の外周に被せられた合成ゴム製の筒 状の逆流防止弁 1 0 6 cによって塞がれている。  The air holding tube 103b is provided with a valve 106 for taking in and out of air. The valve 106 is formed of a cylindrical body, and is provided with an air inlet 106a at the lower end of the figure and a valve hole 106b at the upper end of the figure. Further, the valve hole 106 b is closed by a synthetic rubber tubular backflow prevention valve 106 c covered on the outer periphery of the valve 106.
そして、 このパルプ 1 0 6は、 空気保持チューブ 1 0 3 bに設けられた筒状の バルブ取付け用口金 1 0 3 c内に入れられ、 バルブ取付け用口金 1 0 3 cに螺合 されたパルプ止めナツト 1 0 6 dによって抜け止めされている。 そして、 空気入 れロ 1 0 6 aから、 バルブ孔 1 0 6 bを塞いでいる逆流防止弁 1 0 6 cの弾性に 抗して空気入れポンプ等によって空気が送り入れられると、 逆流防止弁 1 0 6 c を押しのけて空気保持チューブ 1 0 3 b内に空気が入るようになつている。 又、 空気保持チューブ 1 0 3 b内に空気が入った後は、 逆流防止弁 1 0 6 cの弾性に よってバルブ孔 1 0 6 bを塞ぐ。 これにより、 空気保持チューブ 1 0 3 b内の空 気がバルブ孔 1 0 6 bから外に出るようなことが防止されるようになっている。 尚、 逆流防止弁 1 0 6 c、 バルブ取付け用口金 1 0 3 c及ぴバルブ止めナツト 1 0 6 dは、 一般的な自転車用の車輪の空気保持チューブ 1 0 3 bに採用されて いるものであるが、 この形態のものを使用するものに限らず、 適宜変更して使用 できる。 又、 本願発明の空気自動供給機構は、 このような空気タイヤ 1 0 3にお けるバルブ 1 0 6を必ずしも必要とせず、 バルブ 1 0 6を有しない空気タイヤ 1 0 3にも適応できる。 又、 パルプを設ける場合、 上述の図 8に示した英式バルブ (ウッズバルブ) のものに限らず、 例えば米式バルブ (シュレーダーバルブ) 或 いは、 仏式バルブ (フレンチバルブ) を使用でき、 適宜変更できる。 The pulp 106 is put into a cylindrical valve mounting base 103 c provided in the air holding tube 103 b and screwed into the valve mounting base 103 c. The retaining nut is retained by 106 d. Then, from the air inlet b 106 a, the elasticity of the check ring 106 c closing the valve hole 106 b is increased. When air is pumped in by an air pump or the like, the check valve 10c is pushed away and air enters the air holding tube 103b. After air enters the air holding tube 103b, the valve hole 106b is closed by the elasticity of the check ring 106c. This prevents air in the air holding tube 103b from going out of the valve hole 106b. The check valve 106 c, valve mounting base 103 c and valve stopper nut 106 d are used for the air holding tube 103 b of general bicycle wheels. However, the present invention is not limited to the one using this form, and can be used with appropriate modification. Further, the automatic pneumatic supply mechanism of the present invention does not necessarily require the valve 106 in such a pneumatic tire 103, and can be applied to a pneumatic tire 103 having no valve 106. Further, when providing pulp, not only the English type valve (Woods valve) shown in FIG. 8 described above, but also a US type valve (Schrader valve) or a French type valve (French valve) can be used. Can be changed as appropriate.
このように構成された車輪 1 0 0は、 車軸 1 0 1の左右両側が自転車の車体に ナット 1 0 8 , 1 0 8 (図 2に図示) を介して固定される。 これにより、 車輪本 体 1 1 0が自転車の車体に回転可能とされる。  The left and right sides of the axle 101 thus configured are fixed to the bicycle body via nuts 108, 108 (shown in FIG. 2). As a result, the wheel body 110 can rotate on the bicycle body.
次に、 空気自動供給機構について説明する。 この実施形態の自転車用空気タイ ャの空気自動供給機構は、 圧縮空気を生成して空気タイヤに送り込む空気送り込 み部を備えている。 この空気送り込み部は、 図 2、 図 3に示すように圧縮空気を 生成する圧縮空気生成部 1と、 圧縮空気生成部 1によって生成された圧縮空気を 空気タイヤ 1 0 3に導いて供給するための空気タイヤ用圧縮空気供給路 2とを備 えている。  Next, the automatic air supply mechanism will be described. The automatic air supply mechanism for a bicycle air tire according to this embodiment includes an air feeding unit that generates compressed air and sends the compressed air to a pneumatic tire. As shown in FIGS. 2 and 3, this air feeding section is used to guide the compressed air generated by the compressed air generating section 1 for generating compressed air to the pneumatic tire 103 for supply. And a compressed air supply path 2 for pneumatic tires.
圧縮空気生成部 1は、 空気を圧縮するための圧縮室 3 1と、 圧縮室 3 1の空気 を圧縮操作する圧縮操作体としてのビストン部材 3 2と、 圧縮室 3 1に外部から 空気を取り込むための空気取り込み口 4と、 空気取り込み口 4から圧縮室 3 1内 に水が入るのを防止する防水機構 5 1、 5 2、 5 4、 5 5とを備えている。 圧縮室 3 1は、 断面円形状の内ケーシング 3 aの内部に形成されている。 この 内ケーシング 3 aの外周側には、 断面円形状の外ケーシング 3 bが回転不能に配 設されている。 又、 外ケーシング 3 bの基端側には、 ハブ取付け部 3 0 b、 3 0 b (図 3に図示) が備えられている。 そして、 このハブ取付け部 3 0 b、 3 0 b 力 ハプ体 1 0 2のハブ胴 1 0 2 aの外周にボルト 3 0 c、 3 0 cを介して固定 されている。 これにより、 内ケーシング 3 aが、 外ケーシング 3 bを介してハプ 体 1 0 2のハブ胴 1 0 2 aの外周側に取付けられ、 ハブ体 1 0 2のハブ月同 1 0 2 aの外周側に突出されている。 The compressed air generator 1 includes a compression chamber 31 for compressing air, a piston element 32 as a compression operation body for compressing the air in the compression chamber 31, and taking in air from the outside into the compression chamber 31. And a waterproof mechanism 51, 5, 2, 54, 55 for preventing water from entering the compression chamber 31 from the air intake 4. The compression chamber 31 is formed inside an inner casing 3a having a circular cross section. An outer casing 3b having a circular cross section is non-rotatably disposed on the outer peripheral side of the inner casing 3a. Also, at the base end side of the outer casing 3 b, hub mounting portions 30 b, 30 b (shown in Fig. 3). The hub mounting portions 30b, 30b are fixed to the outer periphery of the hub body 102a of the haptic body 102 via bolts 30c, 30c. As a result, the inner casing 3a is attached to the outer periphery of the hub body 102a of the haptic body 102 via the outer casing 3b, and the outer periphery of the hub body 102a of the hub body 102 is formed. It is projected to the side.
このようにしてハブ体 1 0 2に取付けられた内ケーシング 3 aの内部には、 区 画壁 7が備えられている。 そして、 この区画壁 7によって内ケーシング 3 aの内 部が、 図の下側の圧縮室 3 1と、 図の上側の後述する空気タイヤ用圧縮空気供給 路 2の連通用供給路 1 3 bとに区画形成されている。  A partition wall 7 is provided inside the inner casing 3a attached to the hub body 102 in this manner. The partition wall 7 allows the inner part of the inner casing 3 a to communicate with the lower compression chamber 31 in the figure and the communication supply path 13 b of the pneumatic tire compressed air supply path 2 described later in the upper part of the figure. It is sectioned.
上記のように構成された圧縮室 3 1の空気を圧縮操作するビストン部材 3 2は、 操作本体としての棒状のビストンロッド 3 3と、 後述するカム 9のカム面 9 1 a に当接するカム当接部 3 5と、 カム 9に保持されるカム保持部とを備えている。 ピストン口ッド 3 3は、 内ケーシング 3 aに設けられた合成ゴム製の筒状の口ッ ド案内部材 3 8に摺動可能に通されることにより、 ピストンロッド 3 3における 図 2の上部側の先端部は、 圧縮室 3 1内に入れられている。 この状態で、 ピスト ンロッド 3 3は、 カム 9のカム面 9 1 aの径方向の外側に、 ピストンロッド 3 3 の軸心と圧縮室 3 1の軸心とがほぼ一致するように配位されている。 そして、 こ のビストンロッド 3 3の先端部には、 摺動部 3 4が備えられている。  The piston member 32 that compresses the air in the compression chamber 31 configured as described above includes a rod-like piston rod 33 as an operation body and a cam contact that abuts a cam surface 91 a of a cam 9 described later. A contact portion 35 and a cam holding portion held by the cam 9 are provided. The piston port 33 is slidably passed through a cylindrical port guide member 38 made of synthetic rubber provided in the inner casing 3a, so that the upper part of the piston rod 33 in FIG. The tip on the side is placed in the compression chamber 31. In this state, the piston rod 33 is positioned outside the cam surface 91a of the cam 9 in the radial direction so that the axis of the piston rod 33 and the axis of the compression chamber 31 substantially match. ing. A sliding portion 34 is provided at the tip of the piston rod 33.
摺動部 3 4は、 圧縮室 3 1の内周径と略同じ程度の径に形成されており、 圧縮 室 3 1の内周壁に沿って圧縮室 3 1の軸方向、 即ち車軸 1 0 1及ぴカム 9の径方 向に摺動可能とされている。 又、 摺動部 3 4には、 合成ゴムから構成されたリン グ状のパッキン 3 4 aが備えられている。  The sliding portion 34 is formed to have a diameter substantially equal to the inner peripheral diameter of the compression chamber 31, and extends along the inner peripheral wall of the compression chamber 31 in the axial direction of the compression chamber 31, that is, the axle 101. It is slidable in the radial direction of the extension cam 9. In addition, the sliding portion 34 is provided with a ring-shaped packing 34 a made of synthetic rubber.
ビストンロッド 3 3における図の下部側の基端部は、 圧縮室 3 1のロッド案内 部材 3 8からハプ胴 1 0 2 aに穿設されたビストン導入孔 1 1 5に通されること によりハプ体 1 0 2の区画空間部 1 1 1に入れられている。 そして、 このピスト ンロッド 3 3の基端部に、 カム当接部 3 5とカム保持部とが設けられている。 カム当接部 3 5は、 この実施形態では、 図 2に示すように、 回転自在なローラ 一 3 7の外周の一部から構成されている。 より詳しくは、 ローラー 3 7は、 その 一部がビストンロッド 3 3とカム 9のカム面 9 1 aとの間にビストンロッド 3 3 からカム 9のカム面 9 1 a側に突出し、 その状態で、 保持軸 3 6によって、 ビス トンロッド 3 3に回動自在に取り付けられている。 そして、 そのカム面 9 1 a側 に突出したローラー 3 7の外周の一部がカム当接部 3 5を構成している。 この実 施形態におけるカム当接部 3 5は、 ビストンロッド 3 3の軸心を延長した軸心延 長線 q上に形成されている。 The base end of the piston rod 33 on the lower side in the figure is passed through the rod guide member 38 of the compression chamber 31 and into the piston introduction hole 115 drilled in the hap cylinder 102a. It is placed in the compartment 1 1 1 of the body 102. A cam abutting portion 35 and a cam holding portion are provided at the base end of the piston rod 33. In this embodiment, as shown in FIG. 2, the cam contact portion 35 is formed of a part of the outer periphery of a rotatable roller 37. More specifically, the roller 37 includes a part of the piston rod 33 between the piston rod 33 and the cam surface 91 a of the cam 9. From the cam surface 91 a side of the cam 9, and in this state, the cam 9 is rotatably attached to the female rod 33 by a holding shaft 36. A part of the outer periphery of the roller 37 protruding toward the cam surface 91a forms a cam contact portion 35. The cam contact portion 35 in this embodiment is formed on an axial extension line q that extends the axis of the piston rod 33.
カム保持部は、 この実施形態では、 ローラー 3 7を取り付けた上記保持軸 3 6 の一部から構成されている。 より詳しくは、 保持軸 3 6は、 ピストンロッド 3 3 に穿設された軸挿通孔及びローラー 3 7に設けられた軸揷通孔に通されるととも に、 ピストンロッド 3 3の左側方側に突出され、 その状態で、 ピストン口ッド 3 3に取り付けられている。 そして、 その突出した保持軸 3 6の突出部 3 6 aが、 カム 9に保持されるカム保持部を構成している。  In this embodiment, the cam holding section is constituted by a part of the holding shaft 36 to which the roller 37 is attached. More specifically, the holding shaft 36 is passed through a shaft insertion hole formed in the piston rod 33 and a shaft hole formed in the roller 37, and the left side of the piston rod 33. And is attached to the piston opening 3 in that state. The projecting portion 36 a of the holding shaft 36 constitutes a cam holding portion held by the cam 9.
ローラー 3 7が転がり走行して周回するカム 9は、 外周にローラー 3 7と当接 する断面円形状のカム面 9 1 aを有するカム本体 9 1と、 ビストン部材 3 2を取 り外し自在に保持する操作体保持部としてのビストン保持部 9 2とを備えている。 ピストン保持部 9 2は、 円盤状のものから構成されている。 ピストン保持部 9 2 の中心部には、 カム本体 9 1を回転自在に受容するカム本体受容孔 9 2 aが備え られている。 そして、 このカム本体受容孔 9 2 aに、 カム本体 9 1を受容するこ とにより、 ピストン保持部 9 2は、 力ム本体 9 1の力ム面 9 1 aの軸方向の左側 方側に配位されている。  The cam 9 around which the roller 37 rolls and rolls, has a cam body 91 having a circular cam surface 91a abutting the roller 37 on the outer periphery, and a biston member 32 can be removed freely. A biston holding portion 92 as an operating body holding portion for holding is provided. The piston holding portion 92 is formed of a disk. A cam body receiving hole 92 a for rotatably receiving the cam body 91 is provided at the center of the piston holding portion 92. By receiving the cam main body 91 in the cam main body receiving hole 92a, the piston holding portion 92 is moved to the left side in the axial direction of the force surface 91a of the force main body 91. Is coordinated.
また、 ビストン保持部 9 2における力ム本体受容孔 9 2 aの外周側に、 ビスト ン部材 3 2の保持軸 3 6の突出部 3 6 aを回転自在に嵌揷する軸嵌揷孔 9 2 b · · · 9 2 bが備えられている。 そして、 この軸嵌揷孔 9 2 bに、 上記保持軸 3 6の突出部 3 6 aが出し入れ可能に嵌揷されている。 尚、 この実施形態では、 軸嵌揷孔 9 2 b · · · 9 2 bは、 軸支持部材 9 2のカム本体受容孔 9 2 aの軸心 を中心とする同一円周上において周方向に略 1 2 0。ずつ隔てた三箇所のそれぞ れに設けられた三つから構成されている。 そして、 三つの軸嵌挿孔 9 2 b · · · 9 2 bの内の何れかに保持軸 3 6の突出部 3 6 aを嵌揷すれば良いようにされて いる。  Further, a shaft fitting hole 9 2 for rotatably fitting the protrusion 36 a of the holding shaft 36 of the piston member 32 on the outer peripheral side of the force main body receiving hole 92 a in the biston holding portion 92. b · · · 9 2 b is provided. The projection 36a of the holding shaft 36 is fitted in the shaft fitting hole 92b so as to be able to be taken in and out. In this embodiment, the shaft fitting holes 9 2b ··· 9 2b are circumferentially arranged on the same circumference centered on the axis of the cam body receiving hole 92 a of the shaft support member 92. Approximately 120. It is composed of three sections, each of which is separated by three sections. Then, the protrusion 36a of the holding shaft 36 may be fitted into any of the three shaft fitting holes 92b, 92b.
このようにして、 圧縮空気生成部 1のピストン部材 3 2は、 保持軸 3 6を介し てカム 9に取り外し自在に保持されている。 従って、 この実施形態では、 ピスト ン部材 3 2のローラー 3 7をカム面 9 1 aに常時当接状態に押圧するビストン口 ッド付勢用のコイルパネは設けられておらず、 ビストン部材 3 2がカム 9に保持 された確動カムから構成することにより、 ビストン部材 3 2のローラー 3 7を力 ム面 9 1 aに常時当接させ、 ハプ体 1 0 2の回転に伴なつてカム面 9 1 aを走行 できるようにしている。 尚、 ピストン部材 3 2は、 カム 9に保持される形態のも のに限らず、 ピストンロッド付勢用のコィルバネを設け、 ピストンロッド付勢用 のコイルバネによってカム面 9 1 aに常時当接状態に押圧するようにしても良レ、。 又、 カム 9には、 図 3に示すように、 車軸 1 0 1を挿通させるための車軸挿通 孔 9 3が穿設されている。 この車軸揷通孔 9 3の中心 O 2は、 上記カム面 9 1 a の中心 O 1から所定距離を隔てている。 In this way, the piston member 32 of the compressed air generating part 1 is connected via the holding shaft 36. And is detachably held by the cam 9. Therefore, in this embodiment, there is no coil panel for biasing the piston 37 that presses the roller 37 of the piston member 32 constantly against the cam surface 91a. Is composed of a positive cam held by the cam 9 so that the roller 37 of the biston member 32 is always in contact with the force surface 91a, and the cam surface is rotated with the rotation of the hap body 102. 9 1a can be run. Note that the piston member 32 is not limited to the one held by the cam 9, but a coil spring for urging the piston rod is provided, and the piston member 32 is always in contact with the cam surface 91a by the coil spring for urging the piston rod. Good to press on. Further, as shown in FIG. 3, the cam 9 has an axle insertion hole 93 through which the axle 101 is inserted. The center O2 of the axle through hole 93 is separated from the center O1 of the cam surface 91a by a predetermined distance.
この車軸揷通孔 9 3に、 車軸 1 0 1が揷通された後、 図 2に示すように左右両 側からカム固定用ナット 4 4、 4 4によって車軸 1 0 1に固定されている。 又、 このカム固定用ナツト 4 4は、 車軸 1 0 1に設けた位置決め部材 1 1 4によって 玉押し 1 0 1 bに対する位置が決められている。 そして、 この固定状態で、 図 3 に示すように車軸揷通孔 9 3の中心〇 2は、 ハブ体 1 0 2の回転の中心 O 3と一 致する。  After the axle 101 is passed through the axle through hole 93, it is fixed to the axle 101 from both left and right sides by cam fixing nuts 44, 44 as shown in FIG. The position of this cam fixing nut 44 with respect to the ball push 101 b is determined by a positioning member 114 provided on the axle 101. Then, in this fixed state, as shown in FIG. 3, the center 車 2 of the axle 揷 through hole 93 coincides with the rotation center O3 of the hub body 102.
従って、 図 2及び図 3に示す状態における圧縮空気生成部 1のローラー 3 7の 当接しているカム面 9 1 aの位置が車軸揷通孔 9 3の中心 O 2からの距離が最も 小さくなる径小部 Aとなる。 又、 その径小部 Aから周方向に車軸揷通孔 9 3の中 心 O 2からの距離が漸次大きくなり、 半周した位置で、 車軸揷通孔 9 3の中心 O Accordingly, in the state shown in FIGS. 2 and 3, the position of the cam surface 91 a with which the roller 37 of the compressed air generating part 1 is in contact with the roller 37 becomes the smallest from the center O 2 of the axle 揷 through hole 93. It becomes small diameter part A. In addition, the distance from the center O2 of the axle 揷 through hole 93 in the circumferential direction from the small diameter portion A gradually increases, and at a position where it is halfway around, the center O of the axle 揷 through hole 93
2からの距離が最も大きくなる径大部 Bとなる。 The large-diameter portion B where the distance from 2 is the largest is obtained.
又、 そのカム面 9 1 aの径小部 Aにローラー 3 7がきたとき、 図 2、 図 3に示 すようにビストン口ッド 3 3の摺動部 3 4が、 圧縮室 3 1を最も下降し圧縮室 3 1の容積を最大にする最下位置 A 1となる。 一方、 カム面 9 1 aの径大部 Bに口 一ラー 3 7がきたとき、 図 6、 図 7に示すようにピストンロッド 3 3の摺動部 3 Also, when the roller 37 comes to the small diameter portion A of the cam surface 91a, the sliding portion 34 of the piston hole 33 moves the compression chamber 31 as shown in FIGS. The lowest position A 1 descends most and maximizes the volume of the compression chamber 31. On the other hand, when the mouth 37 comes to the large diameter portion B of the cam surface 91a, as shown in FIGS.
4が、 圧縮室 3 1を最も上昇し圧縮室 3 1の容積を最小にする最上位置 B 1とな る。 4 is the uppermost position B 1 where the compression chamber 31 is moved up the most and the volume of the compression chamber 31 is minimized.
圧縮空気生成部 1の空気取り込み口 4は、 上述のように圧縮室 3 1に、 外部か ら空気を供給するためのものである。 この実施形態では、 図 2に示すように、 ピ ストンロッド 3 3の摺動部 3 4が圧縮室 3 1を摺動する最下位置 A 1から最上位 置 B 1までの摺動部 3 4の移動範囲における最下位置 A 1の近傍の位置に、 内ケ 一シング 3 aの外周壁から圧縮室 3 1に貫通するようにして形成されている。 空気取り込み口 4を、 圧縮室 3 1における摺動部 3 4の最下位置 A 1の近傍の 位置に設けることにより、 摺動部 3 4が最下位置 A 1から空気取り込み口 4を超 え、 その超えた位置から最上位置 B 1への摺動に際して、 圧縮室 3 1の空気を、 空気取り込み口 4に逃がすことなく圧縮できる。 従って、 空気取り込み口 4を、 上記位置に設けることにより、 圧縮室 3 1での摺動部 3 4の摺動による空気の圧 縮に際して圧縮室 3 1から空気取り込み口 4に空気が流れないようにするための 逆流防止弁を不要にでき、 簡素化できると共に低コストで製作できる。 As described above, the air intake port 4 of the compressed air generation unit 1 It is for supplying air from them. In this embodiment, as shown in FIG. 2, the sliding portion 34 of the piston rod 33 moves from the lowermost position A 1 where the sliding portion 34 slides in the compression chamber 31 to the uppermost position B 1. The inner casing 3a is formed at a position near the lowermost position A1 in the movement range of the inner casing 3a so as to penetrate the compression chamber 31 from the outer peripheral wall of the inner casing 3a. By providing the air intake port 4 at a position near the lowermost position A1 of the sliding portion 34 in the compression chamber 31, the sliding portion 34 exceeds the air intake port 4 from the lowermost position A1. However, when sliding from the position beyond the position to the uppermost position B 1, the air in the compression chamber 31 can be compressed without escaping to the air intake port 4. Therefore, by providing the air intake port 4 at the above position, air does not flow from the compression chamber 31 to the air intake port 4 when the air is compressed by sliding the sliding portion 34 in the compression chamber 31. This eliminates the need for a non-return valve, thereby simplifying and manufacturing at low cost.
その一方、 空気取り込み口 4を、 圧縮室 3 1における摺動部 3 4の最下位置 A 1の近傍の位置に設ける場合は、 摺動部 3 4が最上位置 B 1から最下位置 A 1に 向かって摺動する際に空気取り込み口 4に達するまでは、 圧縮室 3 1に空気が入 らないため、 圧縮室 3 1は負圧の状態になる。  On the other hand, when the air intake port 4 is provided at a position near the lowermost position A1 of the sliding portion 34 in the compression chamber 31, the sliding portion 34 is moved from the uppermost position B1 to the lowermost position A1. The air does not enter the compression chamber 31 until it reaches the air intake port 4 when sliding toward, so that the compression chamber 31 is in a negative pressure state.
従って、 例えば空気取り込み口 4を摺動部 3 4の移動範囲における最上位置 B 1の近傍の位置に設けるようにして実質的に負圧状態にならないようにした場合 に比べ、 摺動部 3 4が最上位置 B 1から最下位置 A 1にかけて摺動する際の抵抗 が大きくなる。  Therefore, compared with the case where the air intake port 4 is provided at a position near the uppermost position B1 in the moving range of the sliding portion 34 to prevent a negative pressure state, for example, the sliding portion 3 4 Increases the resistance when sliding from the uppermost position B1 to the lowermost position A1.
よって、 空気取り込み口 4を、 上記のように圧縮室 3 1における摺動部 3 4の 最下位置 A 1の近傍の位置に設ける場合において、 ビストン部材 3 2をカム 9に 保持させないで、 ビストンロッド 3 3を最上位置 B 1から最下位置 A 1の方向に 付勢する圧縮操作体付勢用としてのビストンロッド付勢用のコイルパネを設け、 そのコイルパネの付勢力によってビストンロッド 3 3の摺動部 3 4を最上位置 B 1から最下位置 A 1に摺動させる場合は、 上記圧縮室 3 1の負圧に抗して摺動さ せことができる大きさの付勢力を有するコイルパネを用いることが必要となる。  Therefore, when the air intake port 4 is provided at a position near the lowermost position A 1 of the sliding portion 34 in the compression chamber 31 as described above, the piston 9 is not held by the cam 9, A coil panel for urging the piston 33 for urging the rod 33 in the direction from the uppermost position B1 to the lowermost position A1 is provided, and the biasing force of the coil panel slides the biston rod 33. When the moving part 34 is slid from the uppermost position B1 to the lowermost position A1, a coil panel having a biasing force large enough to slide against the negative pressure of the compression chamber 31 is used. Need to be used.
し力、し、 そのような付勢力の大きいコイルバネを用いると、 摺動部 3 4を最下 位置 A 1から最上位置 B 1に摺動させる際には、 コイルパネの付勢力に抗して摺 動させなければならず、 車軸 1 0 1に対するハブ体 2 0 1の回転抵抗が大きくな つてしまう。 従って、 空気取り込み口 4を、 圧縮室 3 1における摺動部 3 4の最 下位置 A 1の近傍の位置に設ける場合は、 この実施形態のように、 ピストンロッ ド付勢用のコイルバネを設けないで、 ビストン部材 3 2をカム 9に保持させた確 動カムから構成するのが、 車軸 1 0 1に対するハブ体 2 0 1の回転抵抗を小さく して円滑に回転できる点で好ましい。 If a coil spring having such a large urging force is used, when the sliding portion 34 slides from the lowermost position A1 to the uppermost position B1, it slides against the urging force of the coil panel. And the rotational resistance of the hub body 201 with respect to the axle 101 increases. I will. Therefore, when the air intake port 4 is provided at a position near the lowermost position A 1 of the sliding portion 34 in the compression chamber 31, a coil spring for biasing the piston rod is not provided as in this embodiment. Therefore, it is preferable to use a positive cam in which the biston member 32 is held by the cam 9 because the rotation resistance of the hub body 201 with respect to the axle 101 can be reduced to enable smooth rotation.
尚、 空気取り込み口 4の位置は、 上記の位置に設ける形態のものに限らず、 例 えば摺動部 3 4の移動範囲における最上位置 B 1の近傍の位置に設けるようにし ても良い。 ただし、 この場合は、 逆流防止弁を付設しなければならず、 製作工程 が多くなるとともに、 コスト高になってしまう。 従って、 上記実施形態のように 空気取り込み口 4を、 摺動部 3 4の移動範囲における最下位置 A 1の近傍の位置 に設けるのが、 簡素化できると共に低コストで製作できる点で好ましい。  Note that the position of the air intake port 4 is not limited to the form provided at the above position, and may be provided at a position near the uppermost position B1 in the moving range of the sliding portion 34, for example. However, in this case, a check valve must be provided, which increases the number of manufacturing steps and increases the cost. Therefore, it is preferable to provide the air intake port 4 at a position near the lowermost position A1 in the moving range of the sliding portion 34 as in the above-described embodiment, since it can be simplified and can be manufactured at low cost.
圧縮空気生成部 1の防水機構は、 この実施形態では、 第 1通気路 5 1と、 第 1 通気路 5 1に続く第 2通気路としての右車軸間隙通気路 5 2と、 右車軸間隙通気 路 5 2に続く第 3通気路 5 4と、 シール部材 5 5とを備えている。  In the present embodiment, the waterproof mechanism of the compressed air generation unit 1 includes a first ventilation path 51, a right axle clearance ventilation path 52 as a second ventilation path following the first ventilation path 51, and a right axle clearance ventilation. A third ventilation path 54 following the path 52 and a sealing member 55 are provided.
第 1通気路 5 1は、 空気取り込み口 4とハブ体 1 0 2の区画空間部 1 1 1とを 通気可能に連通し、 区画空間部 1 1 1内の空気を区画空間部 1 1 1から空気取り 込み口 4に案内する。 この実施形態における第 1通気路 5 1は、 外ケーシング 3 bの内周壁に、 空気取り込み口 4からハブ体 1 0 2の区画空間部 1 1 1にかけて 形成された案内溝から構成されている。  The first ventilation path 51 communicates with the air intake port 4 and the partitioned space 1 1 1 of the hub body 102 so that the air can be ventilated, and allows the air in the partitioned space 1 1 1 to flow from the partitioned space 1 1 1. Guide to air intake 4. The first ventilation path 51 in this embodiment is formed of a guide groove formed in the inner peripheral wall of the outer casing 3b from the air intake port 4 to the partitioned space portion 11 of the hub body 102.
右車軸間隙通気路 5 2は、 図 4、 図 5に示すようにハブ体 1 0 2の右支持部 1 0 2 bの車軸孔 1 0 2 eの内周面とその車軸孔 1 0 2 eに通した車軸 1 0 1との 間の車軸間隙 5 2 aから、 車軸 1 0 1の玉押し 1 0 1 bと鋼球受け部 1 0 2 dと の間に配設された鋼球 1 0 7、 1 0 7同士間の鋼球間隙 5 2 b · · · 5 2 bを通 るように延びた、 右支持部 1 0 2 bに形成された空間路から構成されている。 尚、 この実施形態では、 車軸孔 1 0 2 eには、 位置決め部材 1 1 4が配設され ており、 車軸間隙 5 2 aは、 車軸孔 1 0 2 eの内周面と位置決め部材 1 1 4の外 周との間に形成されている。  As shown in FIGS. 4 and 5, the right axle gap ventilation passage 52 is formed on the inner peripheral surface of the axle hole 102 e of the right support portion 102 b of the hub body 102 and the axle hole 102 e. From the axle clearance 5 2a between the axle 101 and the axle 101, the ball 1 0 1b of the axle 101 and the steel ball 10 0 disposed between the steel ball receiving portion 102 d It is composed of a space passage formed in the right support part 102b extending through the steel ball gap 52b between the elements 107 and 107. In this embodiment, a positioning member 114 is provided in the axle hole 102 e, and an axle gap 52 a is formed between the inner peripheral surface of the axle hole 102 e and the positioning member 111. 4 and the outer circumference.
第 3通気路 5 4は、 図 4に示すように、 筒状体 5 6の内周面と車軸 1 0 1の外 周との間に、 右車軸間隙通気路 5 2と外部とを連通するように区画形成されてい る。 As shown in FIG. 4, the third ventilation passage 54 connects the right axle clearance ventilation passage 52 to the outside between the inner peripheral surface of the tubular body 56 and the outer periphery of the axle 101. So that they are compartmentalized You.
より詳しくは、 筒状体 5 6は、 合成樹脂から構成されており、 図 4に示すよう に左端側の外周に、 右支持部 1 0 2 bに取り付けるための係止用突起 5 6 aが備 えられている。  More specifically, the tubular body 56 is made of a synthetic resin, and has a locking projection 56 a for attaching to the right support portion 102 b on the outer periphery on the left end side as shown in FIG. It is provided.
そして、 係止用突起 5 6 aが右支持部 1 0 2 bに設けられた係止用溝 1 0 2 h に嵌め入れられることにより、 筒状体 5 6がハブ体 1 0 2の右支持部 1 0 2 dに 取り付けられている。  The cylindrical body 56 is supported on the right side of the hub 102 by fitting the locking projections 56 a into the locking grooves 102 h provided on the right support portion 102 b. Attached to part 102d.
また、 筒状体 5 6の外周と右支持部 1 0 2 bとの間には、 防水パッキン 1 1 6 が配設されており、 この防水パッキン 1 1 6によって筒状体 5 6の外周と右支持 部 1 0 2 bとの間から、 水が右車軸間隙通気路 5 2に入り込まないようにされて いる。  A waterproof packing 1 16 is provided between the outer periphery of the cylindrical body 56 and the right support portion 102 b. The waterproof packing 1 16 allows the waterproof packing 1 16 to be connected to the outer periphery of the cylindrical body 56. Water is prevented from entering the right axle gap ventilation channel 52 from between the right support portion 102 b.
このようにして、 ハブ体 1 0 2の右支持部 1 0 2 bに取り付けられた筒状体 5 6には、 車軸 1 0 1が挿通されており、 筒状体 5 6の内周面と車軸 1 0 1との間 に、 右車軸間隙通気路 5 2と外部とを連通する第 3通気路 5 4が、 車軸 1 0 1の 外周側に全周に渡って形成されている。 この実施形態では、 筒状体 5 6の内周側 には、 車軸 1 0 1の玉押 1 0 1 bが配設されており、 第 3通気路 5 4は、 玉押し 1 0 1 bの外周と筒状体 5 6の内周面との間に形成されている。  In this manner, the axle 101 is inserted through the tubular body 56 attached to the right support portion 102 b of the hub body 102, and the inner peripheral surface of the tubular body 56 is Between the axle 101, a third ventilation path 54 that connects the right axle gap ventilation path 52 to the outside is formed all around the outer periphery of the axle 101. In this embodiment, on the inner peripheral side of the cylindrical body 56, a ball pusher 101b of the axle 101 is disposed, and the third ventilation path 54 is provided with a ball pusher 101b. It is formed between the outer periphery and the inner peripheral surface of the cylindrical body 56.
又、 第 3通気路 5 4は、 筒状体 5 6の内周面を、 右側の外部側に行くに従って 漸次径が大きくなるテーパー状にすることにより形成した外側 (図 4では、右側) のテーパー部 5 9 aと、 テーパー部 5 9 aの内側 (図 4では、 左側) に、 テ一パ 一部 5 9 aから径方向の内側に延設した閉鎖部 5 9 bによって形成した径方向の 幅 L 1の狭い径小幅狭部 5 9 cとが備えられている。 この実施形態におけるテー パー部 5 9 aのテーパー角 Pは、 1 0 °に設定されている。  In addition, the third ventilation path 54 is formed on the outside (the right side in FIG. 4) formed by making the inner peripheral surface of the cylindrical body 56 tapered so that the diameter gradually increases toward the outside on the right side. The taper portion 59a and the inside of the taper portion 59a (left side in Fig. 4), the radial direction formed by the taper portion 59a, and the closing portion 59b extending radially inward from the taper portion 59a A narrow diameter narrow portion 59c having a width L1 is provided. In this embodiment, the taper angle P of the taper portion 59a is set to 10 °.
また、 第 3通気路 5 4には、 径小幅狭部 5 9 cの右側方側に、 筒状体 5 6の内 周面と被覆部材 6 0とによって形成された径大幅狭部 6 1が備えられている。 こ の被覆部材 6 0は、 径小幅狭部 5 9 cの径より外径の大きい円板状のものから構 成され、筒状体 5 6のテーパー部 5 9 aの径方向の内側に配設されるようにして、 車軸 1 0 1に固定されている。  In the third ventilation path 54, a large-diameter narrow portion 61 formed by the inner peripheral surface of the cylindrical body 56 and the covering member 60 is provided on the right side of the small-diameter narrow portion 59c. Provided. The covering member 60 is formed of a disk-shaped member having an outer diameter larger than the diameter of the small-diameter narrow portion 59c, and is disposed inside the tapered portion 59a of the cylindrical body 56 in the radial direction. So that it is fixed to the axle 101.
これにより、 被覆部材 6 0の外周と筒状体 5 6のテーパー部 5 9 aとの間に、 径方向の幅 L 2が径小幅狭部 5 9 cの幅 L 1と同程度で、 径小幅狭部 5 9 cより も径の大きい径大幅狭部 6 1が形成されている。 従って、 この実施形態の第 3通 気路 5 4は、 径の異なる二つの幅狭部 5 9 c、 6 1を備え、 これらの二つの幅狭 部 5 9 c、 6 1によって空気が蛇行して流れ得るように形成されている。 又、 こ の実施形態では、 径小幅狭部 5 9 cの幅 L 1及び径大幅狭部 6 1の幅 L 2を 0 . 5 mm程度に設定している。 Thereby, between the outer periphery of the covering member 60 and the tapered portion 59 a of the cylindrical body 56, The width L2 in the radial direction is substantially the same as the width L1 of the small-diameter narrow portion 59c, and the large-diameter narrow portion 61 having a larger diameter than the small-diameter narrow portion 59c is formed. Therefore, the third air passage 54 of this embodiment includes two narrow portions 59c and 61 having different diameters, and the meandering air is formed by these two narrow portions 59c and 61. It is formed so that it can flow. In this embodiment, the width L1 of the small-diameter narrow portion 59c and the width L2 of the large-diameter narrow portion 61 are set to about 0.5 mm.
シール部材 5 5は、 ハプ体 1 0 2に形成された左車軸間隙通気路 5 3を外部か ら密閉するものである。 この左車軸間隙通気路 5 3は、 上述した右車軸間隙通気 路 5 2と同様に、 図 2に示すようにハブ体 1 0 2の左支持部 1 0 2 cの車軸孔 1 0 2 eとその車軸孔 1 0 2 eに通した車軸 1 0 1との間の車軸間隙 5 3 aから、 車軸 1 0 1の玉押し 1 0 1 b、 1 0 1 bと鋼球受け部 1 0 2 dとの間に配設され た鋼球 1 0 7、 1 0 7同士間の鋼球間隙 5 3 bを通るように延びた空間路から構 成されている。  The sealing member 55 is for sealing the left axle gap ventilation passage 53 formed in the haptic body 102 from the outside. The left axle gap air passage 53 is formed with the axle hole 102 e of the left support portion 102 c of the hub body 102 as shown in FIG. 2, similarly to the right axle gap air passage 52 described above. From the axle gap 53 between the axle 101 passing through the axle hole 102 e and the axle 101, push the axle 101 to the ball 1101b, 101b and the steel ball receiving part 102d. The steel balls 107 and 107 are disposed between the steel balls 107 and 107, and are formed of a space passage extending through the steel ball gap 53b between the steel balls 107.
又、 シール部材 5 5は、 図 2に示すように合成ゴム製のリング状のものから構 成されている。 そして、 このシール部材 5 5の内周側に設けられた取付片 5 5 a 、 玉押し 1 0 1 bに設けられた取付溝 1 0 1 cに嵌め入れられることにより、 シール部材 5 5が玉押し 1 0 1 bに取り付けられている。 又、 このようにして玉 押し 1 0 1 bに取り付けられたシ一ル部材 5 5の外周は、 左支持部 1 0 2 cに全 周に渡って当接している。 これにより、 シール部材 5 5が、 左車軸間隙通気路 5 3を外部から略密閉状態にシールし、 左車軸間隙通気路 5 3に外部から水が入る ことのないようにしている。  The seal member 55 is made of a synthetic rubber ring as shown in FIG. The mounting piece 55 a provided on the inner peripheral side of the sealing member 55 and the mounting groove 101 c provided in the ball pusher 101 b are fitted into the sealing member 55, so that the sealing member 55 becomes a ball. Push attached to 101b. Further, the outer periphery of the seal member 55 attached to the pusher 101b in this manner is in contact with the left support portion 102c over the entire periphery. Thus, the sealing member 55 seals the left axle gap ventilation path 53 from the outside in a substantially sealed state, so that water does not enter the left axle gap ventilation path 53 from the outside.
次に、 空気自動供給機構の空気タイヤ用圧縮空気供給路 2について説明する。 この空気タイヤ用圧縮空気供給路 2は、 圧縮空気生成部 1と空気タイヤ 1 0 3と の間に形成されており、 図 2、 図 3に示すように圧縮空気生成部 1の圧縮室 3 1 と連通した連通用供給路 1 3 bと、 空気タイヤ 1 0 3の空気保持チューブ 1 0 3 bに接続された空気タイヤ送出用供給路 1 3 aと、 連通用供給路 1 3 bと空気タ ィャ送出用供給路 1 3 aとを連結した連結用供給路 2 1 aとから構成されている。 連通用供給路 1 3 bは、 上記内ケーシング 3 a内における圧縮室 3 1の図 2の 上側に、 区画壁 7によって区画形成されている。 この区画壁 7には、 貫通孔 7 1 が穿設されており、 この貫通孔 7 1によって、 圧縮室 3 1と連通用供給路 1 3 b とが通気可能に連通されている。 Next, the compressed air supply path 2 for the pneumatic tire of the automatic air supply mechanism will be described. The compressed air supply path 2 for the pneumatic tire is formed between the compressed air generator 1 and the pneumatic tire 103, and as shown in FIGS. The air supply tube 13b connected to the pneumatic tire 103, the air supply tube 13a connected to the air holding tube 103b of the pneumatic tire 103, the air supply tube 13b connected to the air And a connection supply path 21a connected to the supply path 13a. The communication supply path 13 b is defined by a partition wall 7 above the compression chamber 31 in FIG. 2 in the inner casing 3 a. This partition wall 7 has through holes 7 1 Through the through hole 71, the compression chamber 31 and the communication supply path 13b are communicatively connected.
この貫通孔 7 1には、 逆流防止弁 4 0が備えられている。 この逆流防止弁 4 0 は、 空気が空気タイヤ用圧縮空気供給路 2から圧縮室 3 1に逆流しないように防 止する逆流防止手段としてのもので、 この実施形態では、 空気タイヤ用圧縮空気 供給路 2側に配設されたボールパルプ 4 0から構成されている。 ボールバルブ 4 0は、 ポール 4 1と、 ボール 4 1を受ける合成ゴム製のリング状のボール受けパ ッキン 4 2と、 ボール 4 1をボール受けパッキン 4 2側に付勢する付勢部材とし てのボール付勢用コイルパネ 4 3とを備えている。 そして、 このボール付勢用コ ィルバネ 4 3の付勢力によって、 ボール 4 1が空気タイャ用圧縮空気供給路 2側 から貫通孔 7 1を塞いでいる。  The through hole 71 is provided with a check valve 40. The check valve 40 is a check means for preventing air from flowing back from the compressed air supply passage 2 for the pneumatic tire to the compression chamber 31. In this embodiment, the check valve 40 is used to supply compressed air for the pneumatic tire. It is composed of ball pulp 40 provided on the road 2 side. The ball valve 40 is a pole 41, a synthetic rubber ring-shaped ball receiving packing 42 for receiving the ball 41, and an urging member for urging the ball 41 toward the ball receiving packing 42. Ball biasing coil panel 43. The ball 41 closes the through hole 71 from the side of the compressed air supply path 2 for the air tire by the biasing force of the ball biasing coil spring 43.
連結用供給路 2 l aは、 筒状の連結管 2 1の内部に形成されている。 この連結 管 2 1の基端側は、 内ケーシング 3 aの連通用供給路 1 3 bに入り込むようにし て取付けられている。 これにより、 連結用供給路 2 1 aの基端側は、 連通用供給 路 1 3 bに通気可能に接続されている。  The connection supply passage 2 la is formed inside the cylindrical connection pipe 21. The base end of the connecting pipe 21 is attached so as to enter the communication supply path 13b of the inner casing 3a. Thereby, the base end side of the connection supply path 21a is connected to the communication supply path 13b so as to be able to ventilate.
又、 この連結管 2 1には、 図 3に示すように空気タイヤ用圧縮空気供給路 2の 空気圧を調整する圧調整部 1 2が備えられている。 この圧調整部 1 2によって、 空気タイャ用圧縮空気供給路 2が、 空気を一定圧にして保持する定圧保持部とし て機能できるようになっている。  As shown in FIG. 3, the connecting pipe 21 is provided with a pressure adjusting section 12 for adjusting the air pressure of the compressed air supply path 2 for a pneumatic tire. The pressure adjusting section 12 allows the compressed air supply path 2 for the air tire to function as a constant pressure holding section that holds air at a constant pressure.
この実施形態の圧調整部 1 2は、 排気口 1 1 aを有する筒部 1 2 aと、 排気口 1 1 aを開閉する弁体 1 2 bと、 弁体 1 2 bを付勢する定圧弁付勢部材としての 定圧弁付勢用コイルパネ 1 2 cとを備えている。  The pressure adjusting section 12 of this embodiment includes a cylindrical section 12 a having an exhaust port 11 a, a valve body 12 b for opening and closing the exhaust port 11 a, and a constant for energizing the valve body 12 b. A constant-pressure-valve urging coil panel 12c as a pressure-valve urging member is provided.
筒部 1 2 aは、 連結管 2 1の側壁に取り付けられることにより、 筒部 1 2 aの 排気口 1 1 aが連結用供給路 2 1 aと外部とを連通させ、 連結用供給路 2: L の 圧縮空気が排気口 1 1 aから外部に排出可能とされている。  The cylindrical portion 12a is attached to the side wall of the connecting pipe 21 so that the exhaust port 11a of the cylindrical portion 12a allows the connecting supply passage 21a to communicate with the outside, and the connecting supply passage 2 : The compressed air of L can be discharged to the outside from the exhaust port 11a.
定圧弁付勢用コイルパネ 1 2 cは、 弁体 1 2 bを常時連結用供給路 2 1 a側に 付勢する。 そして、 この付勢により、 弁体 1 2 bは、 排気口 1 1 aを遮断してい る。  The constant-pressure valve urging coil panel 12c constantly urges the valve body 12b toward the connection supply path 21a. And, by this bias, the valve body 12b blocks the exhaust port 11a.
尚、 この圧調整部 1 2は、 連結用供給路 2 1 aに設ける形態のものに限らず、 空気タイヤ用圧縮空気供給路 2に設ければ良い。 又、 圧調整部 1 2は、 例えばボ ールバルブから構成する等、 適宜変更し得る。 The pressure adjusting section 12 is not limited to the one provided in the connecting supply path 21a, What is necessary is just to provide in the compressed air supply path 2 for pneumatic tires. Further, the pressure adjusting section 12 can be changed as appropriate, for example, by being constituted by a ball valve.
空気タイヤ送出用供給路 1 3 aは、 弾性を有する接続パイプ 1 4の内部に形成 されている。 この接続パイプ 1 4の基端部は、 上記連結管 2 1の外周に押し入れ るようにして連結管 2 1の先端側に取り付けられている。 これにより、 連結用供 給路 2 1 aと空気タイヤ送出用供給路 1 3 aとが通気可能に接続されている。 又、 連結管 2 1に取り付けられた反対側の接続パイプ 1 4の先端側には、 図 8 に示すように空気タイヤ 1 0 3に取り外し自在に接続する空気タイヤ接続部 1 6 が備えられている。 この空気タイヤ接続部 1 6は、 ノ クキン 1 6 aと、 空気保持 チューブ 1 0 3 bのバルブ止めナツト 1 0 6 dに係止されるナツト係止片 1 6 b とを備えている。 そして、 パッキン 1 6 aがパルプ 1 0 6の端面に当接された状 態で、 ナツト係止片 1 6 bがバルブ止めナツト 1 0 6 dに係止されている。 これ により、 空気タイヤ送出用供給路 1 3 aが空気保持チューブ 1 0 3 bに通気可能 に接続されている。  The pneumatic tire delivery supply channel 13a is formed inside a connection pipe 14 having elasticity. The proximal end of the connecting pipe 14 is attached to the distal end of the connecting pipe 21 so as to be pushed into the outer periphery of the connecting pipe 21. As a result, the connection supply path 21a and the pneumatic tire delivery supply path 13a are connected in a permeable manner. Further, a pneumatic tire connection portion 16 is provided at the distal end side of the connection pipe 14 on the opposite side attached to the connecting pipe 21 so as to be detachably connected to the pneumatic tire 103 as shown in FIG. I have. The pneumatic tire connection portion 16 includes a knocker 16a and a nut locking piece 16b that is locked to a valve locking nut 106d of the air holding tube 103b. Then, while the packing 16a is in contact with the end face of the pulp 106, the nut locking piece 16b is locked to the valve locking nut 106d. Thus, the pneumatic tire delivery supply path 13a is connected to the air holding tube 103b so as to be able to ventilate.
次に、 この実施形態の自転車の空気タイヤの空気自動供給機構の動作について 説明する。 圧縮空気生成部 1の摺動部 3 4が圧縮室 3 1内の最下位置 A 1に配位 し、 第 2圧縮空気生成部 1 bの摺動部 3 4が圧縮室 3 1内の最上位置 B 1に配位 した図 2、 図 3に示す状態から、 例えば自転車を走行させることにより、 空気タ ィャ 1 0 3を車軸 1 0 1に対して回転させる。 これにより、 その回転に際してハ プ体 1 0 2が回転し、 ノヽブ体 1 0 2と共に、 圧縮空気生成部 1のピストン部材 3 2のローラー 3 7が、 カム 9のカム面 9 1 aの径小部 Aから径大部 Bに向かって 走行する。  Next, the operation of the automatic air supply mechanism for the pneumatic tire of the bicycle according to this embodiment will be described. The sliding part 3 4 of the compressed air generating part 1 is located at the lowest position A 1 in the compression chamber 31, and the sliding part 34 of the second compressed air generating part 1 b is the highest in the compression chamber 31. From the state shown in FIGS. 2 and 3 arranged at the position B1, the air tire 103 is rotated with respect to the axle 101 by, for example, running a bicycle. As a result, the haptic body 102 rotates upon its rotation, and together with the knob body 102, the roller 37 of the piston member 32 of the compressed air generating unit 1 radiates the diameter of the cam surface 91 a of the cam 9. Drive from small part A to large diameter part B.
その走行に際し、 ピストン部材 3 2は、 カム 9に押圧され始め、 ピストン部材 During the travel, the piston member 32 starts to be pressed by the cam 9, and the piston member 32
3 2のローラー 3 7がカム 9の径大部 Bに達するまで押圧される。 そして、 この 押圧によって摺動部 3 4が圧縮室 3 1内を圧縮室 3 1の内壁面に沿って最下位置The roller 37 of 32 is pressed until it reaches the large diameter portion B of the cam 9. This pressing causes the sliding portion 34 to move in the compression chamber 31 along the inner wall surface of the compression chamber 31 to the lowest position.
A 1から最上位置 B 1に向かって圧縮室 3 1內を摺動する。 Slide the compression chamber 31 內 from A1 to the uppermost position B1.
そして、 この摺動部 3 4の最下位置 A 1から最上位置 B 1への摺動に際し、 圧 縮室 3 1内の空気が一定の圧縮比まで圧縮される。  When the sliding portion 34 slides from the lowermost position A1 to the uppermost position B1, the air in the compression chamber 31 is compressed to a certain compression ratio.
この摺動部 3 4の摺動に際し、 例えばビストンロッド 3 3の端部をカム 9の力 ム面 9 1 aに付勢用のコイルパネによって押圧して当接状態を維持させている場 合には、 その付勢力に抗してピス トンロッド 3 3を摺動させなければならず、 ハ プ体 1 0 2を回転させる際の抵抗になってしまう、 しかし、 この実施形態では、 ビス トンロッド 3 3を、 保持軸 3 6を介してカム 9に保持するようにして付勢用 のコイ^/レバネを設けていないため、 ピストンロッ ド 3 3を小さい力で円滑に摺動 できる。 これにより、 ハプ体 1 0 2を回転させる際の抵抗を小さくできる。 又、 例えばビストン口ッド 3 3がカム 9から受けるカム 9の接線方向の力が大 きい場合には、 ピストンロッド 3 3が圧縮室 3 1のロッド案内部材 3 8を一側方 に押圧するため、 摺動し難くなるとともに、 ロッド案内部材 3 8が磨耗する。 そ の結果、 ピス トンロッド 3 3が圧縮室 3 1の軸方向に対して傾き、 更に摺動し難 くなつていく。 しかし、 この実施形態では、 ピス トンロッド 3 3がカム 9から受 ける圧縮室 3 1の軸方向と直角方向成分の力を極力小さくでき、 ロッド案内部材 3 8の磨耗を軽減できる。 従って、 繰り返し使用されてもピス トンロッド 3 3を 常時圧縮室 3 1の軸方向に押圧でき、 円滑に摺動できる。 When the sliding portion 34 slides, for example, the end of the piston rod 33 is moved by the force of the cam 9. When the contact surface is maintained by pressing against the spring surface 91a by the coil panel for urging, the piston rod 33 must be slid against the urging force, and However, in this embodiment, the piston rod 33 is held on the cam 9 via the holding shaft 36, and the biasing coil is used in this embodiment. Since no spring is provided, the piston rod 33 can slide smoothly with a small force. Thereby, resistance when rotating the hap body 102 can be reduced. Also, for example, when the piston 9 has a large tangential force of the cam 9 received by the piston 9 from the cam 9, the piston rod 33 presses the rod guide member 38 of the compression chamber 31 to one side. Therefore, sliding becomes difficult, and the rod guide member 38 is worn. As a result, the piston rod 33 is inclined with respect to the axial direction of the compression chamber 31, and the sliding becomes more difficult. However, in this embodiment, the force of the component perpendicular to the axial direction of the compression chamber 31 received by the piston rod 33 from the cam 9 can be reduced as much as possible, and the abrasion of the rod guide member 38 can be reduced. Therefore, even when used repeatedly, the piston rod 33 can always be pressed in the axial direction of the compression chamber 31 and can slide smoothly.
そして、 圧縮空気生成部 1のビストン部材 3 2のローラー 3 7が、 カム面 9 1 aの径大部 Bにくると、 図 6、 図 7に示すように圧縮空気生成部 1のピス トン口 ッド 3 3の摺動部 3 4が最上位置 B 1まで移動する。 そして、 その移動に際し、 圧縮空気生成部 1の圧縮室 3 1内の空気を圧縮する。  When the roller 37 of the piston member 32 of the compressed air generator 1 comes to the large diameter portion B of the cam surface 91a, the piston port of the compressed air generator 1 as shown in FIGS. The sliding part 34 of the pad 33 moves to the uppermost position B1. During the movement, the air in the compression chamber 31 of the compressed air generation unit 1 is compressed.
このようにして、 圧縮空気生成部 1の圧縮室 3 1内の空気が圧縮されると、 逆 流防止弁 4 0のボール 4 1は、 その圧縮された空気の空気圧によって圧縮室 3 1 から押圧される。 その際、 逆流防止弁 4 0のボール 4 1は、 空気タイヤ用圧縮空 気供給路 2内の空気圧による押圧力とボール付勢用コイルパネ 4 3の付勢力とを 受けている。 従って、 空気タイャ用圧縮空気供給路 2側からの押圧力が、 圧縮室 3 1内からの押圧よりも小さい場合には、 逆流防止弁 4 0のボール 4 1は、 空気 タイヤ用圧縮空気供給路 2側に移動して貫通孔 7 1を開ける。 これにより、 圧縮 室 3 1内で圧縮された圧縮空気が、 貫通孔 7 1から空気タイヤ用圧縮空気供給路 2に送られる。  In this way, when the air in the compression chamber 31 of the compressed air generator 1 is compressed, the ball 41 of the check ring 40 is pressed from the compression chamber 31 by the air pressure of the compressed air. Is done. At this time, the ball 41 of the check ring 40 receives the pressing force of the air pressure in the compressed air supply passage 2 for the pneumatic tire and the urging force of the ball urging coil panel 43. Therefore, when the pressing force from the compressed air supply path 2 for the air tire is smaller than the pressure from the inside of the compression chamber 31, the ball 41 of the check ring 40 is connected to the compressed air supply path for the pneumatic tire. Move to the 2 side to open through hole 71. As a result, the compressed air compressed in the compression chamber 31 is sent from the through hole 71 to the compressed air supply path 2 for the pneumatic tire.
そして、 逆流防止弁 4 0のボール 4 1は、 摺動部 3 4が圧縮室 3 1内の最上位 置 B 1から最下位置 A 1にかけて移動する際に、 貫通孔 7 1を閉める。 これによ り、空気タイヤ用圧縮空気供給路 2内の空気が圧縮室 3 1に戻るのを防止できる。 圧縮空気が入つた空気タイャ用圧縮空気供給路 2は、所定の空気圧を超えると、 空気タイヤ用圧縮空気供給路 2内の空気圧によって圧調整部 1 2の弁体 1 2 bが 定圧弁付勢用コイルパネ 1 2 cの付勢力に抗して押圧されて排気口 1 1 aを開く。 これにより、 空気タイヤ用圧縮空気供給路 2内の圧縮空気を排気口 1 1 aから外 部に排出する。 そして、 空気タイヤ用圧縮空気供給路 2内の空気圧が、 所定の空 気圧になると弁体 1 2 bが定圧弁付勢用コイルパネ 1 2 cの付勢力によって排気 口 1 1 aを閉じる。 The ball 41 of the check ring 40 closes the through hole 71 when the sliding portion 34 moves from the uppermost position B1 to the lowermost position A1 in the compression chamber 31. This Therefore, it is possible to prevent the air in the compressed air supply path 2 for the pneumatic tire from returning to the compression chamber 31. When the compressed air supply passage 2 for the pneumatic tires containing the compressed air exceeds a predetermined air pressure, the air pressure in the compressed air supply passage 2 for the pneumatic tires causes the valve body 1 2b of the pressure adjusting section 12 to be biased to a constant pressure valve. Is pressed against the urging force of the coil panel 12c to open the exhaust port 11a. Thus, the compressed air in the compressed air supply path 2 for the pneumatic tire is discharged to the outside from the exhaust port 11a. When the air pressure in the pneumatic tire compressed air supply passage 2 reaches a predetermined air pressure, the valve body 12b closes the exhaust port 11a by the urging force of the constant-pressure valve urging coil panel 12c.
空気タイヤ用圧縮空気供給路 2内に所定の空気圧に保持された圧縮空気は、 図 8に示すように空気保持チューブ 1 0 3 bのバルブ 1 0 6内に入り、 バルブ孔 1 0 6 bを塞いでいる逆流防止弁 1 0 6 cをバルブ 1 0 6の内側から押圧する。 そ して、 その空気タイヤ用圧縮空気供給路 2内の空気圧により内側から逆流防止弁 1 0 6 cにかかる押圧力が、 逆流防止弁 1 0 6 cの弾性力と空気保持チユーブ 1 0 3 b内の空気圧により逆流防止弁 1 0 6 cにかかる押圧力との合計よりも大き い場合は、 バルブ孔 1 0 6 bを塞いでいる逆流防止弁 1 0 6 cを内側から押しの け、 空気が空気タイヤ用圧縮空気供給路 2から空気保持チューブ 1 0 3 b内に流 れ込む。  The compressed air held at a predetermined air pressure in the compressed air supply passage 2 for the pneumatic tire enters the valve 106 of the air holding tube 103b as shown in FIG. 8, and passes through the valve hole 106b. The blocking check valve 106c is pressed from the inside of the valve 106. Then, the pressure applied to the check ring 106c from the inside by the air pressure in the compressed air supply passage 2 for the pneumatic tire increases the elastic force of the check ring 106c and the air holding tube 103b. If the pressure is greater than the sum of the pressure applied to the check valve 106 c due to the air pressure inside the valve, the check valve 106 c blocking the valve hole 106 b is pushed from the inside and the air is released. Flows from the compressed air supply path 2 for the pneumatic tire into the air holding tube 103b.
そして、 空気タイャ用圧縮空気供給路 2の空気圧により逆流防止弁 1 0 6 cに かかる押圧力と、 逆流防止弁 1 0 6 cの弾性力と空気保持チューブ 1 0 3 b内の 空気圧により逆流防止弁 1 0 6 cにかかる押圧力との合計が同じになると、 空気 保持チューブ 1 0 3 b内への空気の流入は止まる。  Then, the back pressure is prevented by the pressing force applied to the check valve 106 c by the air pressure of the compressed air supply path 2 for the air tire, the elastic force of the check valve 106 c and the air pressure in the air holding tube 103 b. When the sum of the pressure applied to the valve 106 c and the pressure becomes equal, the flow of air into the air holding tube 103 b stops.
その後、 経時により、 空気保持チューブ 1 0 3 bの空気圧が低くなり、 逆流防 止弁 1 0 6 cの弾性力と空気保持チューブ 1 0 3 b内の空気圧により逆流防止弁 1 0 6 cにかかる押圧力との合計が、 空気タイヤ用圧縮空気供給路 2の空気圧に より逆流防止弁 1 0 6 cにかかる押圧力よりも小さくなると、 再度、 バルブ孔 1 0 6 bを塞いでいる逆流防止弁 1 0 6 cを空気タイヤ用圧縮空気供給路 2の空気 圧によつて内側から押しのけ、 空気タイャ用圧縮空気供給路 2の空気が空気保持 チューブ 1 0 3 b内に流れ込む。 これにより、 常時、 空気保持チューブ 1 0 3 b の空気圧は、 一定に保持される。 又、 接続パイプ 1 4が連結管 2 1又は空気タイヤ 1 0 3から外れ、 或いは接続 パイプ 1 4が破損したような場合は、 空気タイヤ 1 0 3のバルブ 1 0 6によって 空気タイヤ 1 0 3の空気圧をそのまま保持できる。 尚、 カム 9は、 車軸 1 0 1に 固定されて位置を変えず、 ビストンロッド 3 3がカム面 9 1 aを走行して位置を 変えるが、 図 6、 図 7では、 説明の都合上、 ピストンロッド 3 3の位置を変えず にカム面 9 1 aの位置を変えて表している。 後述の図 1 2、 図 1 3においても同 じである。 Thereafter, as time passes, the air pressure of the air holding tube 103 b decreases, and the elastic force of the check valve 106 c and the air pressure in the air holding tube 103 b act on the check valve 106 c. When the sum of the pressure and the pressure becomes smaller than the pressure applied to the check valve 106c due to the air pressure of the compressed air supply path 2 for the pneumatic tire, the check valve closing the valve hole 106b again 106c is pushed from the inside by the air pressure of the compressed air supply passage 2 for the pneumatic tire, and the air of the compressed air supply passage 2 for the pneumatic tire flows into the air holding tube 103b. As a result, the air pressure of the air holding tube 103b is always kept constant. If the connecting pipe 14 comes off from the connecting pipe 21 or the pneumatic tire 103, or if the connecting pipe 14 is damaged, the pneumatic tire 103 is removed by the valve 106 of the pneumatic tire 103. Air pressure can be maintained as it is. Note that the cam 9 is fixed to the axle 101 and does not change its position, and the biston rod 33 changes its position by running on the cam surface 91a. However, in FIGS. This is shown by changing the position of the cam surface 91 a without changing the position of the piston rod 33. The same applies to FIGS. 12 and 13 described later.
更に、 ハプ体 1 0 2が回転すると、 ビストン部材 3 2は、 保持軸 3 6がカム 9 のピストン保持部 9 2に保持されているため、 カム 9に引っ張られ、 ローラー 3 7は、 カム 9のカム面 9 1 aに当接した状態を維持し、 カム面 9 1 aの径大部 B から径小部 Aにかけて走行する。 その際、 カム 9によるピストン部材 3 2の引つ 張りは、 ピストンロッド 3 3の上記軸心延長線 qと距離を隔てたピストン口ッド 3 3の左側方側から行われる。 しかし、 摺動部 3 4が最上位置 B 1から最下位置 A 1に摺動する際には、 空気の圧縮を行わないため、 上述した最下位置 A 1から 最上位置 B 1への摺動部 3 4の摺動に際して空気の圧縮を行う場合に比して小さ い力で行うことができ、 ビストンロッド 3 3を円滑に引っ張り操作できる。 このローラー 3 7の走行によって、 摺動部 3 4は、 圧縮室 3 1内を最上位置 B 1から最下位置 A 1にかけて移動し、 図 2、 図 3の状態に戻る。  Further, when the haptic body 102 rotates, the biston member 32 is pulled by the cam 9 because the holding shaft 36 is held by the piston holding portion 92 of the cam 9, and the roller 37 becomes the cam 9. The cam surface 91a is kept in contact with the cam surface 91a, and travels from the large diameter portion B to the small diameter portion A of the cam surface 91a. At that time, the pulling of the piston member 32 by the cam 9 is performed from the left side of the piston opening 33, which is separated from the axial extension line q of the piston rod 33 by a distance. However, when the sliding portion 34 slides from the uppermost position B1 to the lowermost position A1, since the air is not compressed, the sliding from the lowermost position A1 to the uppermost position B1 is performed. The sliding of the part 34 can be performed with a smaller force than in the case of compressing air, and the biston rod 33 can be pulled smoothly. As the roller 37 travels, the sliding portion 34 moves in the compression chamber 31 from the uppermost position B1 to the lowermost position A1, and returns to the state shown in FIGS.
又、 ビストンロッド 3 3の摺動部 3 4が最上位置 B 1から最下位置 A 1へ向か つての摺動に際し空気取り込み口 4を通過すると、 空気取り込み口 4から圧縮室 3 1に、 第 1通気路 5 1を介してハブ体 1 0 2の区画空間部 1 1 1の空気が取り 込まれる。  Also, when the sliding portion 34 of the piston rod 33 passes through the air intake port 4 when sliding from the uppermost position B1 to the lowermost position A1, the sliding portion 34 from the air intake port 4 enters the compression chamber 31. The air in the partitioned space portion 111 of the hub body 102 is taken in through the first ventilation path 51.
また、 区画空間部 1 1 1内の空気が第 1通気路 5 1に入り込むと、 区画空間部 1 1 1には、 第 2通気路 5 2としての右車軸間隙通気路 5 2、 第 3通気路 5 4を 介して外部の空気が吸入される。  When the air in the compartment 1 1 1 enters the first ventilation channel 51, the compartment 1 1 1 also has a right axle gap ventilation channel 5 2 as a second ventilation channel 52, and a third ventilation channel. External air is sucked in through the passage 54.
その際、 第 3通気路 5 4は、 テーパー部 5 9 aを備えているため、 図 4に示す ようにテーパー部 5 9 aに入った水 M lを、 ハブ体の回転に伴なう遠心力によつ てテーパー部 5 9 aの径大側に移動させて第 3通気路 5 4から外に出すことがで きる。 又、 テーパー部 5 9 aに入った水 M lを、 自重によってテーパー部 5 9 a を伝わせて第 3通気路 5 4の外に出すことができる。 しかも、 第 3通気路 5 4が 径の異なる二つの幅狭部 5 9 c、 6 1を備えているため、 雨水等の水 M lが、 第At this time, since the third ventilation path 54 has a tapered portion 59a, as shown in FIG. 4, the water Ml entering the tapered portion 59a is centrifuged along with the rotation of the hub body. It can be moved to the larger diameter side of the tapered portion 59 a by force and can be taken out of the third ventilation path 54. In addition, the water Ml entering the tapered portion 59a is removed by its own weight. Can be transmitted out of the third ventilation path 54. In addition, since the third ventilation path 54 has two narrow portions 59c and 61 having different diameters, water Ml such as rainwater is
3通気路 5 4を通過し難いものにでき、 雨水等の水 M lを、 第 3通気路 5 4から 右車軸間隙通気路 5 2に入り難いものにできる。 (3) It is possible to make it difficult to pass through the ventilation path (54), and it is possible to make it difficult for water Ml such as rainwater to enter the right axle clearance ventilation path (52) from the third ventilation path (54).
又、 仮に雨水等の水 M lが第 3通気路 5 4から右車軸間隙通気路 5 2に入って きナこ場合でも、 右車軸間隙通気路 5 2には、 鋼球 1 0 7 · · · 1 0 7と共にダリ スが配設されているため、 水 M lが右車軸間隙通気路 5 2を通過し難く、 右車軸 間隙通気路 5 2からハブ体 1 0 2の区画空間部 1 1 1に入り難いものにできる。 従って、 区画空間部 1 1 1には、 第 2通気路 5 2及び第 3通気路 5 4を介して 水 M lが入ることなく空気だけが入り込み、 その結果、 圧縮室 3 1には、 第 1通 気路 5 1を介して空気取り込み口 4から区画空間部 1 1 1の空気だけが吸入され、 雨水等の水が空気と共に入り込むようなことを防止できる。  Also, even if water M 1 such as rainwater enters the right axle gap airway 52 from the third airway 54, the steel ball 107 · Since the Darris is arranged together with 107, it is difficult for the water Ml to pass through the right axle gap ventilation path 52, and the compartment space 1 1 of the hub body 102 from the right axle gap ventilation path 52 You can make it difficult to enter 1. Therefore, only the air enters the partitioned space portion 111 without water Ml entering through the second ventilation path 52 and the third ventilation path 54, and as a result, the compression chamber 31 Only the air in the compartment space 111 is sucked from the air intake port 4 through the one air passage 51, and it is possible to prevent water such as rainwater from entering along with the air.
以下、 同様に、 ハブ体 1 0 2の回転に伴なつてビス トン部材 3 2の摺動部 3 4 が圧縮室 3 1を摺動し、 圧縮室 3 1で圧縮空気の生成と外部の空気の取り込みと を繰り返し、 生成した圧縮空気を適宜空気タイヤ 1 0 3に供給する。  Hereinafter, similarly, as the hub body 102 rotates, the sliding portion 3 4 of the biston member 32 slides in the compression chamber 31, generating compressed air in the compression chamber 31 and external air. The compressed air generated is supplied to the pneumatic tire 103 as appropriate.
又、 ピス トン部材 3 2をカム 9から外す場合は、 保持軸 3 6を、 ピス トンロッ ド 3 3に取り付けた状態で右側方側に引っ張り操作して軸嵌揷孔 9 2 bから抜け ば良く、 これにより、 ピストン部材 3 2をカム 9から取り外すことができ、 圧縮 室 3 1を構成した内ケーシング 3 a、 或いはビス トンロッ ド 3 3等をハブ体 1 0 2から容易に外すことができる。 従って、 分解等して部品の交換等が容易に行う ことができ、 メンテナンスの容易なものにできる。  To remove the piston member 32 from the cam 9, pull the holding shaft 36 to the right side while attached to the piston rod 33, and pull it out of the shaft fitting hole 9 2b. Thereby, the piston member 32 can be detached from the cam 9, and the inner casing 3 a or the piston rod 33 constituting the compression chamber 31 can be easily detached from the hub body 102. Therefore, parts can be easily replaced by disassembly or the like, and maintenance can be easily performed.
尚、 上記第 1実施形態では、 左車軸間隙通気路 5 3をシール部材 5 5によって 外部から遮断することによって、第 2通気路を右車軸間隙通気路 5 2から構成し、 この右車軸間隙通気路 5 2と外部とを連通する第 3通気路 5 4を設けたものにし ているが、 この形態のものに限らず、 適宜変更できる。 例えばシール部材 5 5を 設けずに、 第 2通気路を右車軸間隙通気路 5 2と左車軸間隙通気路 5 3とから構 成し、 右車軸間隙通気路 5 2と左車軸間隙通気路 5 3とに,夫々第 3通気路 5 4を 設けるようにしても良い。 ただし、 ハブ体 1 0 2の左右の両側に、 上記実施形態 のような第 3通気路 5 4を設けた場合は、 コス ト高になるので、 第 3通気路 5 4 を、 ハプ体 1 0 2の左又は右の一方側にだけ設け、 ハブ体 1 0 2の右又は左の他 方側にシール部材 5 5を設けたものにしておくのが、 第 2通気路 5 4に水を入り 難くでき、 しかも低コストで製作できる点で好ましい。 Note that, in the first embodiment, the left axle gap ventilation passage 53 is shut off from the outside by the seal member 55, so that the second axle clearance ventilation passage 52 is constituted by the right axle clearance ventilation passage 52. Although the third ventilation path 54 for communicating the path 52 with the outside is provided, the invention is not limited to this form and can be changed as appropriate. For example, without providing the sealing member 55, the second ventilation path is composed of the right axle clearance ventilation path 52 and the left axle clearance ventilation path 53, and the right axle clearance ventilation path 52 and the left axle clearance ventilation path 5 are provided. A third ventilation path 54 may be provided for each of the three. However, if the third ventilation path 54 as in the above embodiment is provided on both the left and right sides of the hub body 102, the cost becomes high, so the third ventilation path 54 Is provided only on one of the left and right sides of the haptic body 102 and the sealing member 55 is provided on the other side of the hub body 102 on the right or left side. This is preferable in that water can hardly enter the 54 and can be manufactured at low cost.
又、 上記第 1実施形態では、 第 3通気路 5 4を、 ハブ体 1 0 2に固定した筒状体 5 6と、 車軸 1 0 1に固定した被覆部材 6 0とによって形成するようにしている 力 この形態のものに限らず、 適宜変更できる。 例えば第 3通気路 5 4を、 ハブ 体 1 0 2に固定した筒状体 5 6のみによって形成するようにしても良レ、。  In the first embodiment, the third air passage 54 is formed by the cylindrical body 56 fixed to the hub 102 and the covering member 60 fixed to the axle 101. Yes Force Not limited to this form, but can be changed as appropriate. For example, the third ventilation path 54 may be formed only by the tubular body 56 fixed to the hub body 102.
また、 上記第 1実施形態では、 第 2通気路を、 ハブ体 1 0 2に形成された右車軸 間隙通気路 5 2から構成しているが、 支持部 1 0 2 b、 1 0 2 cに、 区画空間部 1 1 1から外部に貫通する貫通孔を設け、 この貫通孔を、 右車軸間隙通気路 5 2 に代え、 或いは右車軸間隙通気路 5 2と共に、 第 2通気路を構成するようにして も良く、適宜変更できる。 より具体的には、例えば支持部 1 0 2 b、 1◦ 2 cを、 シールドベアリングを介してハプ体 1 0 2に回転自在に支持するとともに、 支持 部 1 0 2 b、 1 0 2 cにおけるシーノレドベアリングの径方向の外側の部分に、 区 画空間部 1 1 1から外部に貫通する貫通孔を設け、 この貫通孔を第 2通気路とす る。  Further, in the first embodiment, the second air passage is constituted by the right axle gap air passage 52 formed in the hub body 102, but the support portions 102 b and 102 c A through-hole is provided which penetrates from the compartment space portion 1 1 1 to the outside, and this through-hole is replaced with the right axle gap air passage 52 or forms a second air passage together with the right axle gap air passage 52. It can be changed as needed. More specifically, for example, the support portions 102b and 1◦2c are rotatably supported by the haptic body 102 via shield bearings, and the support portions 102b and 102c A through-hole penetrating from the demarcated space portion 111 to the outside is provided in a radially outer portion of the sinored bearing, and this through-hole serves as a second air passage.
又、 上記第 1実施形態では、 防水機構を、 第 1通気路 5 1、 第 2通気路 5 2、 第 3通気路 5 4及びシール部材 5 5から構成しているが、 例えば防水機構を、 外ケ 一シング 3 bの内周面から外周面に、 内ケーシング 3 bの空気取り込み口 4と外 部とを連通させるように穿設した穿設孔と、 穿設孔を覆う液体遮断可能且つ気体 通過可能な皮膜とを備えたものから構成し、 皮膜によって外ケーシング 3 bの外 部から穿設孔に雨水等の水を遮断して空気だけを通すようにしても良い。  Further, in the first embodiment, the waterproof mechanism is constituted by the first ventilation path 51, the second ventilation path 52, the third ventilation path 54, and the sealing member 55. A perforated hole formed from the inner peripheral surface to the outer peripheral surface of the outer casing 3b so as to allow the air intake port 4 of the inner casing 3b to communicate with the outer portion; It is also possible to use a structure provided with a film that allows gas to pass through, so that the film can block rainwater or other water from the outside of the outer casing 3b to the perforated hole and allow only air to pass through.
又、 上記第 1実施形態では、 筒状体 5 6のテーパー部 5 9 aのテーパー角 Pを、 In the first embodiment, the taper angle P of the tapered portion 59 a of the cylindrical body 56 is
1 0 °に設定している力 s、この形態のものに限らず、適宜変更できる。好ましくは、 テーパー角 Pは、 5 °程度〜 1 5 °程度の範囲である。 5 °程度より小さくなると、 ハブ体の回転の伴なう遠心力によって水を径の大きい方に移動させ難くなつて外 部に追い出し難くなる。 又、 水を自重によって径の大きい方に伝わせて外部に追 い出し難くなる。 一方、 1 5 °程度より大きくなると、 降ってくる雨水等が入り易 くなつてしまう。 また、 上記第 1実施形態では、 第 3通気路 5 4の径小幅狭部 5 9 cの幅 L 1及び 径大幅狭部 6 1の幅 L 2を 0 . 5 mm程度にしているが、 適宜変更できる。 好ま しくは、 0 . 1 !11111程度〜1 . 5 mm程度の範囲である。 0 . 1 mm程度よりも 小さくなると、 ピストンロッド 3 3の圧縮室 3 1内の摺動に伴なう空気の吸引に よってハブ体 1 0 2の区画空間部 1 1 1が負圧になり、 同時に水も吸引してしま う恐れが高くなる。 一方、 1 . 5 mm程度よりも大きくすると、 水が入り易くな つてしまう。 以上のように、 この実施形態の第 3通気路 5 4は、 ハブ体 1 0 2に 固定された筒状体 5 6の内周面と車軸 1 0 1の外周との間に区画形成されている。 又、 この第 3通気路 5 4は、 筒状体 5 6の内周の一部の径を小さくすることによ つて径方向の幅 L 1を狭くなるように形成した径小幅狭部 5 9 cを備えている。 更に、 第 3通気路 5 4は、 車軸本体 1 0 2 dに固定されるようにして筒状体 5 6 の内周側に配位された被覆部材 6 0によって、 径方向の幅 L 2が径小幅狭部 5 9 cと同程度で、 径小幅狭部 5 9 cよりも径が大きく形成された径大幅狭部 6 1が 備えられている。 このようにして、 第 3通気路 5 4は、 少なくとも径の異なる二 つの幅狭部 5 9 c、 6 1を備え、 これらの二つの幅狭部 5 9 c、 6 1によって空 気が蛇行して流れ得るように形成されている。又、これらの二つの幅狭部 5 9 c、 6 1の径方向の幅 L l、 L 2は、 略 0 . l mn!〜 1 . 5 m mの範囲である。 次に、 第 2実施形態について説明する。 図 9は、 第 2実施形態の車椅子の空気 タイヤの空気自動供給機構を有する車椅子の車輪の側面図、 図 1 0は、 図 1の X —X線に沿う拡大断面説明図である。 The force s set at 10 ° is not limited to this, and can be changed as appropriate. Preferably, the taper angle P is in the range of about 5 ° to about 15 °. If the angle is smaller than about 5 °, the centrifugal force accompanying rotation of the hub body makes it difficult for water to move to the larger diameter, and makes it difficult to expel it to the outside. In addition, it is difficult for water to be transmitted to the larger diameter by its own weight and to be driven out. On the other hand, if the angle is larger than about 15 °, falling rainwater will easily enter. In the first embodiment, the width L1 of the small-diameter narrow portion 59c of the third ventilation path 54 and the width L2 of the large-diameter narrow portion 61 are set to about 0.5 mm. Can be changed. Preferably, it is in the range of about 0.1! 11111 to about 1.5 mm. When it is smaller than about 0.1 mm, the suction pressure of the air accompanying the sliding of the piston rod 33 in the compression chamber 31 causes a negative pressure in the partitioned space 1 1 1 of the hub body 102, At the same time, the risk of inhaling water increases. On the other hand, if it is larger than about 1.5 mm, water will easily enter. As described above, the third ventilation path 54 of the present embodiment is defined between the inner peripheral surface of the cylindrical body 56 fixed to the hub body 102 and the outer periphery of the axle 101. I have. The third ventilation path 54 has a small-diameter narrow portion 59 formed by reducing the diameter of a part of the inner periphery of the cylindrical body 56 so as to reduce the radial width L1. c. Further, the third ventilation path 54 has a radial width L 2 which is fixed to the axle main body 102 d by the covering member 60 arranged on the inner peripheral side of the tubular body 56. A large-diameter narrow portion 61 is provided, which is approximately the same as the small-diameter narrow portion 59c and has a larger diameter than the small-diameter narrow portion 59c. In this way, the third ventilation path 54 includes at least two narrow portions 59c, 61 having different diameters, and the air meanders by these two narrow portions 59c, 61. It is formed so that it can flow. Also, the radial widths L l and L 2 of these two narrow portions 59 c and 61 are approximately 0.1mn! The range is ~ 1.5 mm. Next, a second embodiment will be described. FIG. 9 is a side view of a wheel of a wheelchair having an automatic air supply mechanism for a pneumatic tire of a wheelchair according to the second embodiment, and FIG. 10 is an enlarged sectional explanatory view taken along line X—X of FIG.
この第 2実施形態の空気自動供給機構は、 車椅子の左側の車輪 5 0 0と右側の 車輪 (図示せず) との夫々に装備されて車椅子の空気タイヤの空気自動供給機構 とされている。 この車椅子の空気タイヤの空気自動供給機構を有する車椅子の左 側の車輪 5 0 0と右側の車輪とは、 同一構成を採っている。 以下、 左側の車輪 5 0 0について説明し、 右側の車輪の説明を省略する。  The automatic air supply mechanism of the second embodiment is provided on each of a left wheel 500 and a right wheel (not shown) of a wheelchair, and serves as an automatic air supply mechanism for a pneumatic tire of a wheelchair. The left wheel 500 and the right wheel of the wheelchair having the automatic air supply mechanism for the pneumatic tire of the wheelchair have the same configuration. Hereinafter, the left wheel 500 will be described, and the description of the right wheel will be omitted.
左側の車輪 5 0 0は、 車軸 1 0 1と、 車輪本体 1 1 0とを備えている。 車軸 1 0 1は、 先の第 1実施形態のものと同一構成を採っている。  The left wheel 500 has an axle 101 and a wheel body 110. The axle 101 has the same configuration as that of the first embodiment.
車輪本体 1 1 0は、 図 9に示すようにハブ体 1 0 2と、 空気タイヤ 1 0 3と、 空気自動供給機構とを備えている。 ハブ体 1 0 2及び空気タイヤ 1 0 3は、 先の 第 1実施形態のものと同一構成を採っている。 As shown in FIG. 9, the wheel main body 110 includes a hub body 102, a pneumatic tire 103, and an automatic air supply mechanism. The hub body 102 and the pneumatic tire 103 are The configuration is the same as that of the first embodiment.
空気自動供給機構は、圧縮空気を生成する複数の圧縮空気生成部 1 a、 1 bと、 圧縮空気生成部 1 a、 1 bによって生成された圧縮空気を空気タイヤに導いて供 給するための空気タイヤ用圧縮空気供給路 2 a、 2 bとを備えている。  The automatic air supply mechanism includes a plurality of compressed air generators 1a and 1b for generating compressed air, and a guide for supplying the compressed air generated by the compressed air generators 1a and 1b to the pneumatic tire. A compressed air supply path 2a, 2b for a pneumatic tire is provided.
圧縮空気生成部は、 この実施形態では、 図 1 0、 図 1 1の上側に現れた第 1圧 縮空気生成部 1 aと、 図の下側に現れた第 2圧縮空気生成部 1 bとの二つから構 成されている。  In this embodiment, the compressed air generating unit includes a first compressed air generating unit 1a that appears on the upper side of FIGS. 10 and 11, and a second compressed air generating unit 1b that appears on the lower side of the figure. It is composed of two.
第 1圧縮空気生成部 1 a及び第 2圧縮空気生成部 1 bは、 先の第 1実施形態の 圧縮空気生成部 1と同じ構成を採っている。 又、 これらの第 1圧縮空気生成部 1 a及び第 2圧縮空気生成部 1 bは、互いにカム 9の周方向に 1 8 0 °だけ隔てた位 置に配位されている。 より詳しくは、 この第 2実施形態におけるカム 9のピスト ン保持部 9 2には、 共にカム本体受容孔 9 2 aの軸心を中心とする同心円上に設 けられた第 1軸嵌揷孔 9 2 b及び第 1軸嵌揷孔 9 2 bと周方向に 1 8 0 °だけ隔 てた位置に形成された第 2軸嵌挿孔 9 2 cが備えられている。 そして、 第 1圧縮 空気生成部 1 aの保持軸 3 6の突出部 3 6 aが第 1軸嵌揷孔 9 2 bに出し入れ可 能に嵌揷され、 第 2圧縮空気生成部 1 bの保持軸 3 6の突出部 3 6 aが第 2軸嵌 揷孔 9 2 cに出し入れ可能に嵌挿され、 これにより、 第 1圧縮空気生成部 1 aと 第 2圧縮空気生成部 1 bとが互いにカム 9の周方向に 1 8 0 °だけ隔てた位置に 配位され、 カム 9に保持されている。  The first compressed air generator 1a and the second compressed air generator 1b have the same configuration as the compressed air generator 1 of the first embodiment. Further, the first compressed air generation section 1a and the second compressed air generation section 1b are arranged at positions spaced apart from each other by 180 ° in the circumferential direction of the cam 9. More specifically, the piston holding portion 92 of the cam 9 in the second embodiment has a first shaft fitting hole formed on a concentric circle centered on the axis of the cam body receiving hole 92 a. A second shaft fitting hole 92c is formed at a position spaced 180 ° in the circumferential direction from the first shaft fitting hole 92b and the first shaft fitting hole 92b. Then, the projection 36a of the holding shaft 36 of the first compressed air generation unit 1a is removably fitted into the first shaft fitting hole 92b, and the second compressed air generation unit 1b is held. The protrusion 36a of the shaft 36 is removably fitted into the second shaft fitting hole 92c so that the first compressed air generator 1a and the second compressed air generator 1b It is arranged at a position 180 degrees apart in the circumferential direction of the cam 9 and is held by the cam 9.
又、 第 1圧縮空気生成部 1 aと第 2圧縮空気生成部 1 bとが上記のように配位 されることにより、 図 1 0、 図 1 1に示すように第 1圧縮空気生成部 1 aのビス トン部材 3 2のローラー 3 7がカム面 9 1 aの径小部 Aに当接しビストン口ッド 3 3の摺動部 3 4が圧縮室 3 1を最下位置 A 1にきたとき、 第 2圧縮空気生成部 1 bのビストン部材 3 2のローラー 3 7がカム面 9 1 aの径大部 Bに当接しビス トンロッド 3 3の摺動部 3 4が圧縮室 3 1を最上位置 B 1にくる。  Further, by arranging the first compressed air generator 1a and the second compressed air generator 1b as described above, as shown in FIGS. 10 and 11, the first compressed air generator 1a The roller 37 of the a member 32 of a contacts the roller 37 of the cam surface 91 a with the small diameter portion A of the cam surface 91, and the sliding portion 34 of the biston opening 33 moves the compression chamber 31 to the lowest position A1. At this time, the roller 37 of the piston member 32 of the second compressed air generator 1 b abuts against the large diameter portion B of the cam surface 91 a, and the sliding part 34 of the biston rod 33 comes to the top of the compression chamber 31. Come to position B1.
次に、 空気タイヤ用圧縮空気供給路 2 a、 2 bについて説明する。 この第 2実 施形態の空気タイヤ用圧縮空気供給路は、 第 1圧縮空気生成部 1 aと空気タイヤ Next, the compressed air supply passages 2a and 2b for pneumatic tires will be described. The compressed air supply path for the pneumatic tire according to the second embodiment includes the first compressed air generator 1a and the pneumatic tire.
1 0 3との間に形成された第 1空気タイヤ用圧縮空気供給路 2 a 第 2圧縮空 気生成部 1 bと空気タイヤ 1 0 3との間に形成された第 2空気タイヤ用圧縮空気 供給路 2 bとから構成されている。 The first compressed air supply passage for the first pneumatic tire formed between the second pneumatic tire and the pneumatic tire formed between the second compressed air generator and the pneumatic tire. And supply channel 2b.
第 1空気タイヤ用圧縮空気供給路 2 aは、 先の第 1実施形態の空気タイヤ用圧 縮空気供給路 2と同一構成を採っており、 第 1圧縮空気生成部 1 aの圧縮室 3 1 と連通した連通用供給路 1 3 bと、 空気タイヤ送出用供給路 1 3 aと、 連通用供 給路 1 3 bと空気タイヤ送出用供給路 1 3 aとを連結した連結用供給路 2 1 aと を備えている。  The compressed air supply passage 2a for the first pneumatic tire has the same configuration as the compressed air supply passage 2 for the pneumatic tire of the first embodiment, and the compression chamber 3 1 of the first compressed air generation unit 1a. Connection supply path 13b, pneumatic tire delivery supply path 13a, and connection supply path 13b and pneumatic tire delivery supply path 13a 1 a and.
第 2空気タイヤ用圧縮空気供給路 2 bは、 上記第 1空気タイヤ用圧縮空気供給 路 2 aと同様に、 連通用供給路 1 3 bと、 空気タイヤ送出用供給路と、 連結用供 給路とを備えている。 ただし、 この第 2空気タイヤ用圧縮空気供給路 2 bは、 連 通用供給路 1 3 bが接続路 2 2 aを介して第 1空気タイヤ用圧縮空気供給路 2 a の連結用供給路 2 1 aに接続されるとともに、 その連結用供給路 2 1 aを介して 第 1空気タイヤ用圧縮空気供給路 2 aの空気タイヤ送出用供給路 1 3 a及び空気 タイ.ャ 1 0 3に接続されている。 従って、 この実施形態の第 1空気タイヤ用圧縮 空気供給路 2 aの連結用供給路 2 1 a及び空気タイヤ送出用供給路 1 3 aは、 第 2空気タイャ用圧縮空気供給路 2 bの連結用供給路及び空気タィャ送出用供給路 を兼用するようになっている。  The compressed air supply path 2b for the second pneumatic tire is similar to the compressed air supply path 2a for the first pneumatic tire, and the supply path 13b for communication, the supply path for pneumatic tire delivery, and the supply supply for connection. And road. However, the compressed air supply path 2b for the second pneumatic tire is connected to the supply path 2 1a for the compressed air supply path 2a for the first pneumatic tire via the connection path 22a. a, and connected to the pneumatic tire delivery supply path 13a of the first pneumatic tire compressed air supply path 2a and the pneumatic tire 103 via its connection supply path 21a. ing. Therefore, the supply path 21a for connection of the compressed air supply path 2a for the first pneumatic tire and the supply path 13a for delivery of the pneumatic tire of this embodiment are connected to the compressed air supply path 2b for the second pneumatic tire. The air supply line and the air supply line are also used.
次に、 この第 2実施形態の車椅子の空気タイヤの空気自動供給機構の動作につ いて説明する。 第 1圧縮空気生成部 1 aの摺動部 3 4が圧縮室 3 1内の最下位置 A 1に配位し、 第 2圧縮空気生成部 1 bの摺動部 3 4が圧縮室 3 1内の最上位置 B 1に配位した図 1 0、 図 1 1に示す状態から、 例えば車椅子を押して走行させ ることにより、空気タイヤ 1 0 3を車軸 1 0 1に対して回転させる。これにより、 その回転に際してハプ体 1 0 2が回転し、 ハブ体 1 0 2と共に、 第 1圧縮空気生 成部 1 aのビストン部材 3 2のローラー 3 7が、 カム 9のカム面 9 1 aの径小部 Aから径大部 Bに向かって走行するとともに、 第 2圧縮空気生成部 1 bのピスト ン部材 3 2のローラー 3 7力 カム 9のカム面 9 1 aの径大部 Bから径小部 Aに 向かって走行する。  Next, the operation of the automatic air supply mechanism for a pneumatic tire of a wheelchair according to the second embodiment will be described. The sliding part 3 4 of the first compressed air generator 1 a is located at the lowest position A 1 in the compression chamber 3 1, and the sliding part 3 4 of the second compressed air generator 1 b is the compression chamber 3 1 The pneumatic tire 103 is rotated with respect to the axle 101 by, for example, pushing a wheelchair to run from the state shown in FIGS. As a result, the hap body 102 rotates during the rotation, and together with the hub body 102, the roller 37 of the biston member 32 of the first compressed air generating section 1 a moves the cam surface 91 a of the cam 9. From the small-diameter portion A to the large-diameter portion B, and the piston member 32 of the second compressed air generation section 1 b 3 roller 3 7 force The cam surface 9 of the cam 9 from the large-diameter section B of 1 a Drive toward small diameter section A.
その走行に際し、 第 1圧縮空気生成部 1 aのピストン部材 3 2は、 カム 9に押 圧され始め、 ビストン部材 3 2のローラー 3 7がカム 9の径大部 Bに達するまで 押圧される。 そして、 この押圧によって、 図 1 2、 図 1 3に示すように、 摺動部 3 4が圧縮室 3 1内を圧縮室 3 1の内壁面に沿って最下位置 A 1から最上位置 B 1に向かって圧縮室 3 1内を摺動する。 一方、 第 2圧縮空気生成部 1 bのピスト ンロッド 3 3の摺動部 3 4は、 カム 9に引っ張られ、 圧縮室 3 1内を圧縮室 3 1 の内壁面に沿って最上位置 B 1から最下位置 A 1に向かって圧縮室 3 1内を摺動 する。 ' . During this travel, the piston member 32 of the first compressed air generating portion 1a starts to be pressed by the cam 9, and is pressed until the roller 37 of the piston member 32 reaches the large diameter portion B of the cam 9. Then, by this pressing, as shown in FIGS. 12 and 13, the sliding portion 3 4 slides inside the compression chamber 31 along the inner wall surface of the compression chamber 31 from the lowermost position A1 to the uppermost position B1. On the other hand, the sliding portion 34 of the piston rod 33 of the second compressed air generating portion 1b is pulled by the cam 9, and the inside of the compression chamber 31 is moved from the uppermost position B1 along the inner wall surface of the compression chamber 31. Slide in the compression chamber 31 toward the lowermost position A1. '.
そして、 この第 1圧縮空気生成部 1 aのビストン口ッ ド 3 3の搢動部 3 4の最 下位置 A 1から最上位置 B 1への摺動に際し、 圧縮室 3 1内の空気が一定の圧縮 比まで圧縮される。  When sliding from the lowermost position A1 to the uppermost position B1 of the driving portion 34 of the piston hole 33 of the first compressed air generating portion 1a, the air in the compression chamber 31 is constant. It is compressed to a compression ratio of.
第 1圧縮空気生成部 1 aで生成された圧縮空気は、 先の第 1実施形態の場合と 同様に、 連通用供給路 1 3 bから連結用供給路 2 1 aに、 更に連結用供給路 2 1 aから空気タイヤ送出用供給路 1 3 aを通って適宜空気タイヤ 1 0 3に入り込む。 —方、 第 2圧縮空気生成部 1 bのビス トン部材 3 2のローラー 3 7は、 上述し た第 1圧縮空気生成部 1 aのビストン部材 3 2のローラー 3 7がカム面 9 1 aの 径大部 Bにきたとき、 カム面 9 1 aの径小部 Aにきて、 図 1 2、 図 1 3に示すよ うに第 2圧縮空気生成部 1 bのピス トンロッド 3 3の摺動部 3 4が最下位置 A 1 まで移動する。  The compressed air generated by the first compressed air generator 1a is supplied from the communication supply path 13b to the connection supply path 21a, and further to the connection supply path, as in the first embodiment. From 21a, the tire passes through the supply path 13a for delivering the pneumatic tire and enters the pneumatic tire 103 as appropriate. On the other hand, the roller 37 of the biston member 32 of the second compressed air generator 1b is connected to the roller 37 of the biston member 32 of the first compressed air generator 1a. When it comes to the large diameter part B, it comes to the small diameter part A of the cam surface 91a, and as shown in Figs. 12 and 13, the sliding part of the piston rod 33 of the second compressed air generation part 1b 3 4 moves to the lowest position A 1.
この第 2圧縮空気生成部 1 bのピス トンロッド 3 3の摺動部 3 4が最上位置 B 1から最下位置 A 1にくる際においても、 ビス トン部材 3 2の保持軸 3 6がカム 9のピス トン保持部 9 2に保持されているため、 ピス トン部材 3 2は、 ピス トン ロッド 3 3の軸心延長線 qと軸方向に一定の距離を隔てたビス トンロッド 3 3の 左側方側からカム 9のビストン保持部 9 2に引っ張られる。 しかし、 摺動部 3 4 が最上位置 B 1から最下位置 A 1に摺動する際には空気の圧縮を行わないため、 上述した最下位置 A 1から最上位置 B 1への摺動部 3 4の摺動に際して空気の圧 縮を行う場合に比して小さい力で行うことができ、 ビストン口ッド 3 3を円滑に 引っ張り操作できる。  Even when the sliding part 34 of the piston rod 33 of the second compressed air generating part 1 b moves from the uppermost position B 1 to the lowermost position A 1, the holding shaft 36 of the biston member 32 is moved by the cam 9. Since the piston member 32 is held by the piston holding portion 92 of the piston rod 33, the piston member 32 is located on the left side of the piston rod 33 at a certain distance in the axial direction from the axial extension line q of the piston rod 33. From the piston 9 of the cam 9. However, when the sliding portion 34 slides from the uppermost position B1 to the lowermost position A1, the air is not compressed, so that the sliding portion from the lowermost position A1 to the uppermost position B1 described above. The sliding of 34 can be performed with a smaller force as compared with the case of compressing the air, and the biston opening 33 can be pulled smoothly.
又、 第 2圧縮空気生成部 1 bのピス トンロッド 3 3の摺動部 3 4が空気取り込 み口 4を通過すると、 空気取り込み口 4から圧縮室 3 1に、 第 1通気路 5 1を介 してハブ体 1 0 2の区画空間部 1 1 1の空気を取り込む。 又、 ハブ体 1 0 2の区 画空間部 1 1 1に、 第 2通気路 5 2及び第 3通気路 5 4によって水が入るのを防 止でき、 空気だけを入り込ませることができる。 Also, when the sliding part 34 of the piston rod 33 of the second compressed air generating part 1b passes through the air intake port 4, the air flows from the air intake port 4 to the compression chamber 31 to the first ventilation path 51. The air in the partitioned space portion 111 of the hub body 102 is taken in through the air. In addition, the second ventilation passage 52 and the third ventilation passage 54 prevent water from entering the demarcated space portion 111 of the hub body 102. Can be stopped and only air can enter.
図 1 2、 図 1 3に示す状態から、 更に、 ハブ体 1 0 2が回転すると、 第 1圧縮 空気生成部 1 aのビストン部材 3 2がカム 9に引っ張られ、 ローラー 3 7がカム 面 9 1 aの径大部 Bから径小部 Aに向かって走行し、 これにより、 摺動部 3 4が 最上位置 B 1から最下位置 A 1に向かって移動する。 一方、 第 2圧縮空気生成部 1 bは、 ビストン部材 3 2のローラー 3 7がカム面 9 1 aの径小部 Aから径大部 Bに向かって走行し始め、 ビストン部材 3 2のローラー 3 7がカム面 9 1に押圧 され始める。 又、 この走行によって摺動部 3 4は、 圧縮室 3 1を最下位置 A 1か ら最上位置 B 1に向かって移動する (図 1 1、 図 1 2の状態) 。 そして、 その移 動に際し、 圧縮室 3 1内の空気を一定の圧縮比に圧縮する。  When the hub body 102 further rotates from the state shown in FIG. 12 and FIG. 13, the piston 9 32 of the first compressed air generator 1 a is pulled by the cam 9, and the roller 37 becomes the cam surface 9. 1a travels from the large-diameter portion B to the small-diameter portion A, whereby the sliding portion 34 moves from the uppermost position B1 to the lowermost position A1. On the other hand, the second compressed air generation section 1 b starts to move the roller 37 of the piston member 32 from the small diameter portion A of the cam surface 91 a toward the large diameter portion B, 7 starts to be pressed by the cam surface 91. In addition, the sliding portion 34 moves the compression chamber 31 from the lowermost position A1 to the uppermost position B1 by this traveling (the state shown in FIGS. 11 and 12). At the time of the movement, the air in the compression chamber 31 is compressed to a constant compression ratio.
第 2圧縮空気生成部 1 bによって圧縮された空気は、 第 2空気タイヤ用圧縮空 気供給路 2 bの連通用供給路 1 3 bから接続路 2 2 aを通って、 第 1空気タイヤ 用圧縮空気供給路 2 aの連結用供給路 2 1 aに入る。 また、 第 1圧縮空気流通路 1 bの連結用供給路 2 1 aに入った圧縮空気は、 上述の第 1圧縮空気生成部 1 a の場合と同様にして、 空気タイヤ送出用供給路 1 3 aを通って空気タイヤ 1 0 3 に入り込む。  The air compressed by the second compressed air generating section 1b passes through the connection path 22b from the communication supply path 13b of the compressed air supply path 2b for the second pneumatic tire, and passes through the connection path 22a for the first pneumatic tire. The compressed air supply path 2a enters the connection supply path 21a. Further, the compressed air entering the connection supply passage 21a of the first compressed air flow passage 1b is supplied to the pneumatic tire delivery supply passage 13a in the same manner as in the case of the first compressed air generation unit 1a described above. Go through a and into the pneumatic tire 103.
以下、 同様に、 ハブ体 1 0 2の回転に伴なつて、 第 1圧縮空気生成部 1 aと第 2圧縮空気生成部 1 bとが交互に圧縮空気の生成を繰り返し行い、 圧縮空気を適 宜空気タイヤ 1 0 3に供給する。  Hereinafter, similarly, with the rotation of the hub body 102, the first compressed air generator 1a and the second compressed air generator 1b alternately generate compressed air alternately, and the compressed air is appropriately applied. Supplied to Yi tires 103.
以上のようにして行うことにより、 車輪本体が回転する毎に、 第 1圧縮空気生 成部 1 aと第 2圧縮空気生成部 1 bとが順次交互に空気を圧縮して空気タイャ 1 0 3に供給できる。 これにより、 第 1実施形態のように一つの圧縮空気生成部 1 を設けて行う場合とほぼ同じ力で圧縮空気を生成できるとともに、 第 1実施形態 のように一つの圧縮空気生成部 1を設けて行う場合に比して二倍の量の圧縮空気 を生成できる。 従って、 車椅子の通常の走行において、 車輪の回転数が少ない段 階の走行開始後短時間内に、 充分な量の空気を圧縮して空気タイヤ 1 0 3を所定 の空気圧にでき、 しかも、 車椅子の走行に際しての抵抗を抑えることができる。 よって、 車椅子等に適したものにできる。  By performing as described above, each time the wheel body rotates, the first compressed air generation unit 1a and the second compressed air generation unit 1b compress the air in turn, and the air tire 10 3 Can be supplied. Thereby, compressed air can be generated with almost the same force as in the case of providing one compressed air generation unit 1 as in the first embodiment, and one compressed air generation unit 1 is provided as in the first embodiment. Twice the amount of compressed air can be generated as compared to the case where the above method is used. Therefore, in a normal running of the wheelchair, a sufficient amount of air can be compressed within a short time after the start of running at a stage where the number of rotations of the wheels is low, and the pneumatic tire 103 can be set to a predetermined air pressure. The resistance during traveling can be suppressed. Therefore, it can be made suitable for a wheelchair or the like.
尚、 この第 2実施形態では、 接続路 2 2 aを介して第 1空気タイヤ用圧縮空気 供給路 2 aと第 2空気タイヤ用圧縮空気供給路 2 bとを連結させて一つにしてい るが、 例えば第 1空気タイヤ用圧縮空気供給路 2 aと第 2空気タイヤ用圧縮空気 供給路 2 bとを別途に独立させて形成するとともに、 各空気タイヤ用圧縮空気供 給路 2 a、 2 bを空気タイヤ 1 0 3に接続させ、 各空気タイヤ用圧縮空気供給路 2 a、 2 bによって圧縮空気を空気タイヤ 1 0 3に入れるようにしても良い。 次に、 第 3実施形態の空気自動供給機構について、 図 1 4〜図 1 8に基き説明 する。 第 3実施形態の空気自動供給機構は、 自転車に装備され車輪の空気タイヤ に空気を供給するとともに、 空気タイヤ以外の車両としての自転車の他の部分と してのサドル部に空気を供給しシートにクッション性を持たせるものとされてレ、 る。 In the second embodiment, the compressed air for the first pneumatic tire is connected via the connection path 22a. The supply path 2a and the compressed air supply path 2b for the second pneumatic tire are connected to form one, for example, the compressed air supply path 2a for the first pneumatic tire and the compressed air supply path for the second pneumatic tire. 2b is formed separately and independently, and the compressed air supply passages 2a and 2b for each pneumatic tire are connected to the pneumatic tire 103, and the compressed air supply passages 2a and 2b for each pneumatic tire are connected. Compressed air may be supplied to the pneumatic tire 103. Next, an automatic air supply mechanism according to a third embodiment will be described with reference to FIGS. The automatic air supply mechanism according to the third embodiment supplies air to the pneumatic tires of the wheels mounted on the bicycle, and supplies air to the saddle portion as another part of the bicycle as a vehicle other than the pneumatic tires, thereby providing seats. It is said to have cushioning properties.
この第 3実施形態の空気自動供給機構は、 先の第 2実施形態と同様に、 第 1圧 縮空気生成部 1 0 aと第 2圧縮空気生成部 1 0 bとの二つの圧縮空気生成部と、 圧縮空気供給路 2 0 a、 3 0 0とを備えている。  As in the second embodiment, the automatic air supply mechanism of the third embodiment includes two compressed air generation units, a first compressed air generation unit 10a and a second compressed air generation unit 10b. And compressed air supply paths 20 a and 300.
これらの第 1圧縮空気生成部 1 0 aと第 2圧縮空気生成部 1 0 bとは、 先の第 1実施形態のものと同一構成を探っているが、 この第 2実施形態の第 1圧縮空気 生成部 1 0 aと第 2圧縮空気生成部 1 0 bとは、 自転車における前側の車輪 2 0 2に取り付けられている。 この自転車の前側の車輪 2 0 2は、 先の第 1実施形態 における自転車の車輪と同様に、 図 1 4に示すように車軸 2 0 1と、 車輪本体と を備え、 又、 車輪本体は、 車軸 2 0 1に回転自在に支持されたハプ体 1 0 2と、 空気タイヤ 1 0 3とを備えている。  Although the first compressed air generation unit 10a and the second compressed air generation unit 10b seek the same configuration as that of the first embodiment, the first compressed air generation unit 10a and the second The air generator 10a and the second compressed air generator 10b are attached to the front wheels 202 of the bicycle. The front wheel 202 of the bicycle includes an axle 201 and a wheel body, as shown in FIG. 14, similarly to the bicycle wheel in the first embodiment. A haptic body 102 rotatably supported on an axle 201 and a pneumatic tire 103 are provided.
第 3実施形態の車軸 2 0 1は、 図 1 5に示すように軸孔 4 3 aを備えている。 この軸孔 4 3 aは、 車軸 2 0 1の左端から軸方向に沿って左右中央よりやや左側 にかけて明けられている。 これにより、 軸孔 4 3 a力 S、 車軸 2 0 1に取り付けた ハプ体 1 0 2の外側からハプ体 1 0 2の内部にまで延ばされるようになっている。 また、このようにしてハブ体 2 0 2の内部にまで延ばされた軸孔 4 3 aの奥部は、 図 1 7に示すように、 軸孔 4 3 aカゝら車軸 2 0 1の外周に貫通するように明けら れた貫通孔 4 3 b、 4 3 bによって車軸 2 0 1の外周側と連通している。  The axle 201 of the third embodiment has a shaft hole 43a as shown in FIG. The shaft hole 43a is formed from the left end of the axle 201 to the left and right from the center in the left-right direction along the axial direction. As a result, the shaft hole 43a force S extends from the outside of the haptic body 102 attached to the axle 201 to the inside of the haptic body 102. Further, the inner part of the shaft hole 43a extended to the inside of the hub body 202 in this way is, as shown in FIG. 17, the shaft hole 43a of the shaft axle 201. Through holes 43b, 43b formed to penetrate the outer periphery communicate with the outer periphery of the axle 201.
車輪本体のハブ体 1 0 2及び空気タイヤ 1 0 3は、 先の第 1実施形態のものと 略同構成を採っている。 空気自動供給機構の圧縮空気供給路は、 第 1圧縮空気生成部 1 0 aで生成され た圧縮空気を空気タイヤ 1 0 3に導いて供給する空気タイヤ用圧縮空気供給路 2 0 aと、 第 2圧縮空気生成部 1 0 bで生成された圧縮空気を自転車に設けられた サドル部 1 4 0に導いて供給する他部分用圧縮空気供給路 3 0 0から構成されて いる。 空気タイヤ用圧縮空気供給路 2 0 aは、 先の第 1実施形態の空気タイヤ用 圧縮空気供給路 2と同一構成を採っている。 The hub body 102 and the pneumatic tire 103 of the wheel main body have substantially the same configuration as that of the first embodiment. The compressed air supply path of the automatic air supply mechanism includes a compressed air supply path for a pneumatic tire 20 a that guides the compressed air generated by the first compressed air generator 10 a to the pneumatic tire 103 and supplies the compressed air. (2) It comprises a compressed air supply passage for other parts 300 for guiding the compressed air generated by the compressed air generating part 100b to the saddle part 140 provided in the bicycle and supplying it. The pneumatic tire compressed air supply path 20a has the same configuration as the pneumatic tire compressed air supply path 2 of the first embodiment.
他部分用圧縮空気供給路 3 0 0は、 第 2圧縮空気生成部 1 0 bの圧縮室 3 1と 連通した連通用供給路 1 3 b (図 1 5に示す) と、 自転車のサドル部 1 4 0の空気 保持部 1 5 1 (図 1 8に示す) に接続されたサドル送出用供給路 3 0 1と、 連通 用供給路 1 3 bとサドル送出用供給路 3 0 1とを連結した連結用供給路 3 0 2と を備えている。 ' 連結用供給路 3 0 2は、図 1 5に示すように、上記車軸 2 0 1の軸孔 4 3 aと、 軸孔 4 3 aと連通用供給路 1 3 bとを連結した連結路 3 0 3とを備えている。 こ の連結路 3 0 3は、 連結パイプ 3 1 3の内部に形成されている。 連結パイプ 3 1 3は、 回転接続部材 4 5を介して車軸 2 0 1の軸孔 4 3 aに接続されている。 この回転接続部材 4 5は、 図 1 6、 図 1 7に示すように、 合成ゴム製の二つの リング 4 5 a、 4 5 aと、 リング状の回転子 4 5 bとを備えている。  The other part of the compressed air supply passage 300 is provided with a communication supply passage 13b (shown in FIG. 15) communicating with the compression chamber 31 of the second compressed air generation part 10b, and a saddle part 1 of the bicycle. The saddle delivery supply path 301 connected to the 40 air holding section 15 1 (shown in Fig. 18), the communication supply path 13 b, and the saddle delivery supply path 301 were connected. And a supply path 302 for connection. '' As shown in FIG. 15, the connection supply passage 302 is a connection passage connecting the shaft hole 43 a of the axle 201 and the shaft hole 43 a with the communication supply passage 13 b. 3 0 3 is provided. This connecting passage 303 is formed inside the connecting pipe 313. The connection pipe 3 13 is connected to a shaft hole 43 a of the axle 201 via a rotary connection member 45. As shown in FIGS. 16 and 17, the rotary connection member 45 includes two rings 45 a and 45 a made of synthetic rubber, and a ring-shaped rotor 45 b.
二つのリング 4 5 a、 4 5 aは、 車軸 2 0 1における貫通孔 4 3 b、 4 3 bの 左右両側の外周に固定されている。  The two rings 45a, 45a are fixed to outer peripheries on both the left and right sides of the through holes 43b, 43b in the axle 201.
回転子 4 5 bの外周側には、 連結パイプ 3 1 3を着脱自在に接続するパイプ接 続具 4 5 cが備えられている。 又、 このパイプ接続具 4 5 cは、 筒状のものから 構成され、 内周側にパイプ接続孔 4 5 dが備えられている。  A pipe connector 45 c for detachably connecting the connecting pipe 3 13 is provided on the outer peripheral side of the rotor 45 b. The pipe connector 45c is formed of a tubular member, and has a pipe connection hole 45d on the inner peripheral side.
回転子 4 5 bの内周側には、 図 1 6に示すように全周に渡って形成された空気 溜り部 4 5 eが備えられている。 又、 この空気溜り部 4 5 eは、 パイプ接続具 4 5 cのパイプ接続孔 4 5 dと空気溜り部 4 5 eとに連通するように穿設された穿 設孔 4 5 f を介して連通されている。 そして、 これらの空気溜り部 4 5 eとパイ プ接続孔 4 5 dと穿設孔 4 5 f とは、 連結パイプ 3 1 3の連結路 3 0 3と軸孔 4 On the inner peripheral side of the rotor 45b, an air reservoir 45e formed over the entire periphery is provided as shown in FIG. Further, the air reservoir 45 e is formed through a hole 45 f formed so as to communicate with the pipe connection hole 45 d of the pipe connector 45 c and the air reservoir 45 e. Are in communication. The air reservoir 45 e, the pipe connection hole 45 d, and the drilled hole 45 f are connected to the connection path 303 of the connection pipe 3 13 and the shaft hole 4
3 aとを通気可能に接続する接続用孔 4 5 iを構成する。 A connection hole 45i is formed to connect 3a with the air-permeable member.
又、 空気溜り部 4 5 eの左右両側には、 リング 4 5 a、 4 5 aを回転可能に受 容するリング受容部 4 5 g、 4 5 gが備えられている。 そして、 これらのリング 受容部 4 5 g、4 5 gにリング 4 5 a、4 5 aを回転可能に受容することにより、 回転子 4 5 bは、 空気溜り部 4 5 eと車軸 2 0 1の軸孔 4 3 aとが連通した状態 で、 車軸 2 0 1に対して回転可能とされている。 Rings 45a and 45a are rotatably received on both left and right sides of the air reservoir 45e. A ring receiver 45 g, 45 g is provided. And, by receiving the rings 45 a and 45 a rotatably in these ring receiving portions 45 g and 45 g, the rotor 45 b is formed with the air reservoir 45 e and the axle 201. It is rotatable with respect to the axle 201 in a state where the shaft hole 43a communicates with the axle 201.
そして、 このように構成された回転子 4 5 bのパイプ接続具 4 5 cに、 連結パ イブ 3 1 3が取り付けられることにより、 連結パイプ 3 1 3と車軸 2 0 1とが回 転子 4 5 bを介して回転可能に接続されている。 又、 この接続によって、 連結パ イブ 3 1 3の内部に形成された連結路 3 0 3と車輪 2 0 2の車軸 2 0 1に形成さ れた軸孔 4 3 aとが連通されている。  The connecting pipe 3 13 is attached to the pipe connector 45 c of the rotor 45 b configured as described above, so that the connecting pipe 3 13 and the axle 201 are connected to the rotor 4. It is rotatably connected via 5b. Further, by this connection, the connecting path 303 formed inside the connecting pipe 3 13 communicates with the shaft hole 43 a formed in the axle 201 of the wheel 202.
又、 連結パイプ 3 1 3は、 図 1 5に示すように接続具 3 1 4を介して、 内ケー シング 3 aに取り付けられ、 これにより、 連結パイプ 3 1 3の内部に形成された 連結路 3 0 3と内ケーシング 3 aに区画壁 7によって区画形成された連通用供給 路 1 3 bとが通気可能に接続されている。  Further, the connecting pipe 3 13 is attached to the inner casing 3 a via the connecting tool 3 14 as shown in FIG. 15, whereby the connecting path formed inside the connecting pipe 3 13 is formed. A communication supply passage 13b partitioned by the partition wall 7 from the inner casing 3a and the inner casing 3a is connected to be able to ventilate.
又、 この接続具 3 1 4には、 図示しないが、 他部分用圧縮空気供給路 3 0 0の 空気圧を調整する圧調整部が備えられている。 尚、 この圧調整部は、 先の第 1実 施形態の圧調整部 1 2と同構成を採っている。  Although not shown, the connector 314 is provided with a pressure adjusting section for adjusting the air pressure of the compressed air supply passage 300 for the other portion. The pressure adjusting section has the same configuration as the pressure adjusting section 12 of the first embodiment.
他部分用圧縮空気供給路 3 0 0のサドル送出用供給路 3 0 1は、 パイプ部材 3 1 0の内部に形成されている。 このサドル送出用供給路 3 0 1を形成したパイプ 部材 3 1 0の基端は、 車輪 2 0 2の車軸 2 0 1に、 接続具 3 1 0 aを介して接続 されている。 これにより、 サドル送出用供給路 3 0 1と車軸 2 0 1の軸孔 4 3 a とが通気可能に接続されている。  The saddle delivery supply path 301 of the compressed air supply path 300 for the other part is formed inside the pipe member 310. The base end of the pipe member 310 forming the saddle delivery supply path 301 is connected to the axle 201 of the wheel 202 via a connector 310a. As a result, the saddle delivery supply path 301 and the shaft hole 43a of the axle 201 are connected to each other so as to allow ventilation.
パイプ部材 3 1 0の先端は、 自転車に設けられたサドル部 1 4 0に接続されて いる。  The tip of the pipe member 310 is connected to a saddle section 140 provided on the bicycle.
このパイプ部材 3 1 0が接続されたこの実施形態のサドル部 1 4 0は、 図 1 8 に示すように、 人が座るためのシート 1 4 1と、 シート 1 4 1を支持したシート 支持部 1 4 2とを備えている。 又、 シート支持部 1 4 2は、 シート 1 4 1を支持 したシート支持片 1 4 3と、 シート支持片 1 4 3を上下移動可能に取り付けたシ 一ト取付部 1 5 0とを備えている。  As shown in FIG. 18, the saddle portion 140 of this embodiment to which the pipe member 310 is connected includes a seat 141 for a person to sit on, and a seat support portion for supporting the seat 144. 1 4 and 2 are provided. Further, the seat support section 142 includes a sheet support section 144 supporting the sheet 141 and a sheet mounting section 150 to which the sheet support section 144 is mounted so as to be vertically movable. I have.
シート取付部 1 5 0は、 内部に空気を保持した空気保持部 1 5 1が備えられて いる。 又、 この空気保持部 1 5 1には、 空気を入れるための空気入口 1 5 2が設 けられている。 そして、 この空気入口 1 5 2に、 パイプ部材 3 1 0が接続されて レ、る。 これにより、 サドル送出用供給路 3 0 1と空気保持部 1 5 1とが通気可能 に接続されている。 The seat mounting section 150 has an air holding section 1501 that holds air inside. I have. Further, the air holding section 15 1 is provided with an air inlet 15 2 for introducing air. Then, a pipe member 310 is connected to the air inlet 152. As a result, the saddle delivery supply path 301 and the air holding section 151 are connected to each other in a permeable manner.
シート取付部 1 5 0の下部側は、 自転車の立てパイプ 2 1 0内に嵌挿されて固 定されている。 尚、 このシート取付部 1 5 0は、 立てパイプ 2 1 0と別体のもの 力 ^構成されるものに限らず、例えば立てパイプ 2 1 0の一部に構成しても良い。 シート支持片 1 4 3の上部側は、 シート 1 4 1に固定されている。 シート支持 片 1 4 3の下部側には、 空気保持部 1 5 1の空気を下方側に押圧する空気押圧部 1 4 4が設けられている。 この空気押圧部 1 4 4は、 シート取付部 1 5 0の空気 保持部 1 5 1の内周壁に沿って上下方向に摺動可能に、 空気保持部 1 5 1の内部 に配設されている。  The lower side of the seat mounting portion 150 is fitted and fixed in a stand pipe 210 of the bicycle. Note that the seat mounting portion 150 is not limited to one that is separate from the vertical pipe 210, and may be a part of the vertical pipe 210, for example. The upper side of the sheet support piece 144 is fixed to the sheet 141. An air pressing portion 144 for pressing the air of the air holding portion 151 downward is provided below the seat supporting piece 144. The air pressing portion 144 is disposed inside the air holding portion 151 so as to be vertically slidable along the inner peripheral wall of the air holding portion 151 of the seat mounting portion 150. .
又、この実施形態では、この図 1 8に示すように、空気保持部 1 5 1の内部に、 空気押圧部 1 4 4を上方側に付勢する押圧部用付勢部材としてのコイルバネ 1 5 3が設けられており、 空気保持部 1 5 1を下方に摺動した空気押圧部 1 4 4を、 圧縮空気の空気圧によって上方に戻す際に補助できるようになっている。  In this embodiment, as shown in FIG. 18, a coil spring 15 as a pressing portion urging member for urging the air pressing portion 144 upward is provided inside the air holding portion 151. 3 is provided so that the air holding portion 144 sliding down the air holding portion 151 can be assisted when returning upward by the air pressure of the compressed air.
このように構成されたシート 1 4 1に人が座る等して、 空気押圧部 1 4 4に下 方向の力がかかると、 空気押圧部 1 4 4が空気保持部 1 5 1内の空気を上方側か ら下方側に押圧し圧縮しながらシート 1 4 1と共に下方に側に摺動する。  When a downward force is applied to the air pressing portion 144 by, for example, a person sitting on the seat 144 configured in this way, the air pressing portion 144 releases the air in the air holding portion 151. It slides downward together with the sheet 141 while pressing and compressing from the upper side to the lower side.
又、 空気押圧部 1 4 4にかかった力が軽減されると、 圧縮された空気保持部 1 5 1内の空気の空気圧によってシート 1 4 1が上方に戻る。 これにより、 シート 1 4 1に弾力性を持てせることができ、シート 1 4 1にかかる衝撃力を吸収でき、 乗り心地の良好なものにできる。  Further, when the force applied to the air pressing portion 144 is reduced, the seat 144 returns upward due to the compressed air pressure in the air holding portion 151. As a result, the seat 141 can have elasticity, the impact force applied to the seat 141 can be absorbed, and the ride comfort can be improved.
次に、この第 3実施形態の自転車の空気自動供給機構の動作について説明する。 第 1圧縮空気生成部 1 0 aの摺動部 3 4が圧縮室 3 1を最下位置 A 1に配位し、 第 2圧縮空気生成部 1 0 bの摺動部 3 4が圧縮室 3 1を最上位置 B 1に配位した 図 1 5に示す状態から、 例えば自転車を走行させることにより、 車軸 2 0 1に対 して車輪本体を回転させる。 これにより、 その回転に際してハブ体 1 0 2が回転 し、 ハブ体 1 0 2と共に、 第 1圧縮空気生成部 1 0 aのピストン部材 3 2のロー ラー 3 7が、 カム 9のカム面 9 1 aを走行するとともに、 第 2圧縮空気生成部 1 bのビストン部材 3 2のローラー 3 7が、 カム 9のカム面 9 1 aを走行する。 そして、 その走行に際し、 第 1圧縮空気生成部 1 0 aは、 先の第 1実施形態の 第 1圧縮空気生成部 1 aと同様に、 ピストンロッド 3 3の摺動部 3 4が圧縮室 3 1を最下位置 A 1から最上位置 B 1に摺動するに際し、 圧縮室 3 1内の空気を一 定の圧縮比に圧縮する。 そして、 圧縮した空気を、 空気タイヤ用圧縮空気供給路 2 0 aから、 適宜空気タイヤ 1 0 3の空気保持チューブ 1 0 3 bに送り込む。 更 に走行すると、 ピストンロッド 3 3の揩動部 3 4が圧縮室 3 1を最上位置 B 1力、 ら最下位置 A 1に向かって摺動し、 その摺動に際して空気取り込み口 4を通過す ると、 空気を取り込む。 この場合においても、 圧縮室 3 1に、 第 1通気路 5 1を 介してハブ体 1 0 2の区画空間部 1 1 1の空気を空気取り込み口 4から取り込む。 又、 区画空間部 1 1 1に、 第 2通気路 5 2及び第 3通気路 5 4を介してハブ体 1 0 2の外部の空気を取り込む。 従って、 この第 3実施形態のおいても、 圧縮室 3 1に雨水等の水が入り込むようなことを防止できる。 Next, the operation of the automatic bicycle air supply mechanism of the third embodiment will be described. The sliding part 3 4 of the first compressed air generating part 10 a positions the compression chamber 31 at the lowest position A 1, and the sliding part 34 of the second compressed air generating part 10 b is the compression chamber 3 From the state shown in FIG. 15 in which 1 is arranged at the uppermost position B1, for example, by running a bicycle, the wheel body is rotated with respect to the axle 201. As a result, the hub body 102 rotates during the rotation, and together with the hub body 102, the row of the piston member 32 of the first compressed air generator 10 a is lowered. The roller 37 travels on the cam surface 91 a of the cam 9, and the roller 37 of the biston member 32 of the second compressed air generator 1 b travels on the cam surface 91 a of the cam 9. When the vehicle travels, the first compressed air generation unit 10a, like the first compressed air generation unit 1a of the first embodiment, slides the piston rod 3 3 into the compression chamber 3a. As 1 slides from the lowermost position A1 to the uppermost position B1, the air in the compression chamber 31 is compressed to a certain compression ratio. Then, the compressed air is sent from the compressed air supply passage for pneumatic tires 20a to the air holding tube 103b of the pneumatic tire 103 as appropriate. When the vehicle further travels, the sliding portion 34 of the piston rod 33 slides in the compression chamber 31 from the uppermost position B1 to the lowermost position A1, and passes through the air intake port 4 when sliding. Then take in the air. Also in this case, the air in the partitioned space portion 111 of the hub 102 is taken into the compression chamber 31 from the air intake port 4 via the first ventilation path 51. In addition, air outside the hub body 102 is taken into the partitioned space portion 111 through the second ventilation path 52 and the third ventilation path 54. Therefore, also in the third embodiment, it is possible to prevent water such as rainwater from entering the compression chamber 31.
一方、 第 2圧縮空気生成部 1 0 bは、 第 1圧縮空気生成部 1 0 aのピストン口 ッド 3 3の摺動部 3 4が圧縮室 3 1を最下位置 A 1から最上位置 B 1に向かって 摺動するに際し、 第 2圧縮空気生成部 1 0 bのビストン口ッド 3 3の摺動部 3 4 が圧縮室 3 1を最上位置 B 1から最下位置 A 1に向かって摺動し、 その摺動に際 して空気取り込み口 4を通過すると、 空気を取り込む。 この場合においても、 圧 縮室 3 1に雨水等の水が入り込むようなことを防止できる。  On the other hand, the second compressed air generator 10b is arranged such that the sliding portion 34 of the piston port 33 of the first compressed air generator 10a moves the compression chamber 31 from the lowermost position A1 to the uppermost position B. When sliding toward 1, the sliding part 3 4 of the biston opening 33 of the second compressed air generating part 10b moves the compression chamber 31 from the uppermost position B1 to the lowermost position A1. When it slides and passes through the air intake port 4 during the sliding, it takes in air. Also in this case, it is possible to prevent water such as rainwater from entering the compression chamber 31.
又、 第 2圧縮空気生成部 1 0 bのピストンロッド 3 3の摺動部 3 4は、 第 1圧 縮空気生成部 1 0 aのピストンロッド 3 3の摺動部 3 4が圧縮室 3 1を最上位置 B 1から最下位置 A 1に向かって摺動するに際し、 圧縮室 3 1を最下位置 A 1か ら最上位置 B 1に向かって搢動し、 その摺動に際し、 圧縮室 3 1内の空気を一定 の圧縮比に圧縮する。  The sliding part 34 of the piston rod 33 of the second compressed air generating part 10b is the same as the sliding part 34 of the piston rod 33 of the first compressed air generating part 10a. When sliding from the uppermost position B1 to the lowermost position A1, the compression chamber 31 is moved from the lowermost position A1 toward the uppermost position B1. Compress the air in 1 to a certain compression ratio.
そして、 第 2圧縮空気生成部 1 0 bにより圧縮された空気は、 圧縮室 3 1から 連通用供給路 1 3 bに送られ、 連通用供給路 1 3 bから連結路 3 0 3、 車軸 2 0 Then, the air compressed by the second compressed air generator 10b is sent from the compression chamber 31 to the communication supply path 13b, and from the communication supply path 13b to the connection path 303, the axle 2 0
1の軸孔 4 3 aを順次通ってサドル送出用供給路 3 0 1に送られる。 更に、 サド ル送出用供給路 3 0 1カゝらサドノレ部 1 4 0の空気保持部 1 5 1に送られる。 その 際、 連結路 3 0 3と軸孔 4 3 aとが回転接続部材 4 5の接続用孔 4 5 iを介して 回転自在に接続されているため、 走行に伴なう車輪本体の回転に際し、 連結路 3 0 3と軸孔 4 3 aとが接続状態を維持でき、 走行に際して第 2圧縮空気生成部 1 0 bで圧縮空気を生成し、 その生成した圧縮空気を車輪 2 0 2から自転車のサド ノレ部 1 4 0に空気を送ることができる。 It is sent to the saddle sending supply path 301 through the one shaft hole 43a sequentially. Further, the saddle delivery supply path 301 is sent to the air holding section 151 of the saddle section 140. That In this case, since the connection path 303 and the shaft hole 43a are rotatably connected via the connection hole 45i of the rotary connection member 45, when the wheel body rotates during traveling, The connection path 303 and the shaft hole 43a can maintain a connected state, and the compressed air is generated by the second compressed air generator 10b during traveling, and the generated compressed air is transmitted from the wheels 202 to the bicycle. Air can be sent to the saddle part 140.
これにより、 常時、 空気保持部 1 5 1を、 他部分用圧縮空気供給路 3 0 0と同 じ空気圧に保持でき、 空気保持部 1 5 1の空気圧が予め設定された所定の空気圧 よりも低くなると、 走行に伴なレ、第 2圧縮空気生成部 1 0 bにより順次生成され る圧縮空気を順次入れることができる。  As a result, the air holding section 151 can always be maintained at the same air pressure as the compressed air supply path 300 for the other portion, and the air pressure of the air holding section 151 is lower than a predetermined air pressure set in advance. Then, the compressed air that is sequentially generated by the second compressed air generation unit 10b can be sequentially introduced as the vehicle travels.
尚、 この第 3実施形態では、 空気押圧部 1 4 4で空気保持部 1 5 1を押圧して 空気保持部 1 5 1の空気を圧縮するようにしているが、この形態のものに限らず、 適宜変更し得る。 例えばシート 1 4 1の一部に空気保持部 1 5 1を設け、 シート 1 4 1に人が座ると、 その荷重を空気保持部 1 5 1が受けるようにしてシート 1 4 1 自体に弾力性を持たせるようにしても良い。  In the third embodiment, the air holding portion 1551 is pressed by the air pressing portion 144 to compress the air in the air holding portion 151, but the present invention is not limited to this embodiment. , May be changed as appropriate. For example, an air holding part 15 1 is provided in a part of the seat 14 1, and when a person sits on the seat 14 1, the load is received by the air holding part 15 1 so that the seat 14 1 itself has elasticity. May be provided.
又、 空気押圧部 1 4 4を設ける場合において、 上記実施形態のように、 シート 取付部 1 5 0に空気保持部 1 5 1を設け、 サドノレ部 1 4 0に空気押圧部 1 4 4を 設ける形態のものに限らず、 シート支持片 1 4 3に空気保持部 1 5 1を設け、 シ 一ト取付部 1 5 0に空気押圧部 1 4 4を設けることもでき、 適宜変更できる。 また、 空気保持部 1 5 1に、 空気保持部 1 5 1からサドル送出用供給路 3 0 1 への空気の逆流を防止するための逆流防止弁を付設するようにしても良く、 適宜 変更できる。  In the case where the air pressing portion 144 is provided, as in the above embodiment, the air attaching portion 150 is provided in the seat mounting portion 150, and the air pressing portion 144 is provided in the saddle portion 140. Not only the form, but also an air holding portion 151 can be provided on the sheet support piece 144 and an air pressing portion 144 can be provided on the sheet mounting portion 150, and can be changed as appropriate. Further, the air holding section 15 1 may be provided with a check valve for preventing a back flow of air from the air holding section 15 1 to the saddle delivery supply path 301, which can be changed as appropriate. .
又、 この第 3実施形態では、 空気自動供給機構を前側の車輪 2 0 2に設けてい るが、 後車輪に設けるようにしても実施でき、 適宜変更できる。  Further, in the third embodiment, the automatic air supply mechanism is provided on the front wheel 202, but may be provided on the rear wheel, and may be changed as appropriate.
次に、 第 4実施形態の空気自動供給機構について、 図 1 9〜図 2 1に基いて説 明する。 第 4実施形態の空気自動供給機構は、 車両としての自転車に装備され車 輪の空気タイヤに空気を供給するとともに、 空気タイヤ以外の自転車の他の部分 としてのブレーキ装置に空気を供給してブレーキ装置の過熱を防止するものとさ れている。  Next, an automatic air supply mechanism according to the fourth embodiment will be described with reference to FIGS. The automatic pneumatic supply mechanism of the fourth embodiment is provided in a bicycle as a vehicle to supply air to pneumatic tires of the wheels and to supply air to a brake device as another part of the bicycle other than the pneumatic tires to brake the vehicle. It is said to prevent overheating of the equipment.
この第 4実施形態の空気自動供給機構は、 先の第 3実施形態と同様に、 第 1圧 縮空気生成部 4 0 0 aと第 2圧縮空気生成部 4 0 0 bとの二つの圧縮空気生成部 と、 圧縮空気供給路 2 0 0 a、 4 0 0とを備えている。 The automatic air supply mechanism of the fourth embodiment has a first pressure similar to that of the third embodiment. It comprises two compressed air generating sections, a compressed air generating section 400a and a second compressed air generating section 400b, and compressed air supply paths 200a and 400o.
第 1圧縮空気生成部 4 0 0 aと第 2圧縮空気生成部 4 0 0 bとは、 車両として の自転車の後車輪に取り付けられている。 この後車輪の車軸 2 0 1、 及ぴ車輪本 体の空気タイヤ (図示せず) は、 先の第 3実施形態のものと略同構成を採ってい る。  The first compressed air generating section 400a and the second compressed air generating section 400b are mounted on rear wheels of a bicycle as a vehicle. The rear wheel axle 201 and the tire itself (not shown) have substantially the same configuration as that of the third embodiment.
又、 この第 4実施形態の第 1圧縮空気生成部 4 0 0 a及び第 2圧縮空気生成部 4 0 0 bは、 夫々、 空気取り込み口 4と後車輪用のハブ体 4 0 2の区画空間部 1 1 1とを連通する第 1通気路 5 1と、 第 1通気路 5 1に続く第 2通気路とを備え ている。 ただし、 この第 4実施形態では、 後車輪に設けられた後車輪用のハプ体 Further, the first compressed air generating section 400a and the second compressed air generating section 400b of the fourth embodiment are respectively defined by an air intake port 4 and a rear wheel hub body 402. There is provided a first air passage 51 communicating with the part 111, and a second air passage following the first air passage 51. However, in the fourth embodiment, a rear wheel hap body provided on the rear wheel is provided.
4 0 2の右車軸間隙通気路 5 2の右方側がリング状のシール部材 5 5 0によって、 外部と略密閉状態に塞がれており、 後車輪用のハブ体 4 0 2の左車軸間隙通気路The right axle gap ventilation path 52 of 402 is closed in a substantially sealed state with the outside by a ring-shaped sealing member 55 0, and the left axle clearance of the hub body 40 2 for the rear wheel Air passage
5 3が第 2通気路を構成し、 この左車軸間隙通気路 5 3から外部の空気を区画空 間部 1 1 1に取り込むようになつている。 53 constitutes a second ventilation path, and external air is taken into the section space 111 from the left axle clearance ventilation path 53.
第 1圧縮空気生成部 4 0 0 a及び第 2圧縮空気生成部 4 0 0 bのその他は、 先 の第 3実施形態の第 1圧縮空気生成部 1 0 aと同じ構成を採っている。  The rest of the first compressed air generator 400a and the second compressed air generator 400b has the same configuration as the first compressed air generator 100a of the third embodiment.
第 4実施形態の圧縮空気供給路は、 第 1圧縮空気生成部 4 0 0 aで生成された 圧縮空気を空気タイヤ 1 0 3に導いて供給する空気タイヤ用圧縮空気供給路 2 0 The compressed air supply path of the fourth embodiment is a compressed air supply path for pneumatic tires 20 that guides and supplies the compressed air generated by the first compressed air generator 400 a to the pneumatic tire 103.
0 aと、 第 2圧縮空気生成部 4 0 0 bで生成された圧縮空気を自転車に設けられ たブレーキ装置に導いて供給する他部分用圧縮空気供給路 4 0 0とを備えている。 空気タイヤ用圧縮空気供給路 2 0 0 aは、 先の第 1実施形態の空気タィャ用圧縮 空気供給路 2と同一構成を採っている。 0a, and a compressed air supply passage for other parts 400 that guides and supplies the compressed air generated by the second compressed air generator 400b to a brake device provided in the bicycle. The pneumatic tire compressed air supply passage 200a has the same configuration as the pneumatic tire compressed air supply passage 2 of the first embodiment.
又、 第 4実施形態の他部分用圧縮空気供給路 4 0 0は、 第 2圧縮空気生成部 4 Further, the compressed air supply path 400 for the other part of the fourth embodiment is
0 0 bの圧縮室 3 1と連通した連通用供給路 1 3 bと、 後述する自転車のブレー キ装置 1 2 0に接続されたブレーキ送出用供給路 4 0 1と、 連通用供給路 1 3 b とブレーキ送出用供給路 4 0 1とを接続した連結用供給路 4 0 2を備えている。 連通用供給路 1 3 bは、 先の第 3実施形態のものと同一構成を採っている。 A communication supply path 13 b communicating with the compression chamber 31 of the 0 0 b, a brake supply path 401 connected to a bicycle braking device 120 described later, and a communication supply path 13 and a connection supply path 402 connecting the b and the brake supply path 401. The communication supply path 13b has the same configuration as that of the third embodiment.
他部分用圧縮空気供給路 4 0 0の連結用供給路 4 0 2も、 先の第 3実施形態に おける連結用供給路 3 0 2と同一構成を採っている。 より具体的には、 他部分用 圧縮空気供給路 4 0 0の連結用供給路 4 0 2は、 車軸 2 0 1に明けられた軸孔 4 3 aと、 軸孔 4 3 aと連通用供給路 1 3 bとを連結した連結路 4 0 3とを備えて いる。又、連結路 4 0 3は、連結パイプ 4 1 3の内部に形成されている。 そして、 その連結パイプ 4 1 3は、 回転接続部材 4 5を介して車軸 2 0 1に回転自在に接 続されており、 これにより、 連結パイプ 4 1 3の連結路 4 0 3と車軸 2 0 1の軸 孔 4 3 aとが通気可能に, 且つ回転自在に連結されている。 The connection supply path 402 of the other-part compressed air supply path 400 also has the same configuration as the connection supply path 302 of the third embodiment. More specifically, for other parts The connection supply passage 402 of the compressed air supply passage 400 is connected to the shaft hole 43a made in the axle 201, and the shaft hole 43a is connected to the communication supply passage 13b. Road 403. In addition, the connection path 403 is formed inside the connection pipe 413. The connecting pipe 4 13 is rotatably connected to the axle 201 via a rotary connecting member 45, whereby the connecting path 400 of the connecting pipe 4 13 and the axle 200 are connected. The one shaft hole 43a is connected to be permeable and rotatable.
ブレーキ送出用供給路 4 0 1は、 パイプ部材 4 1 0の内部に形成されている。 このパイプ部材 4 1 0の基端は、 後車輪の車軸 2 0 1に、 接続具 4 1 0 aを介し て接続されている。 これにより、 ブレーキ送出用供給路 4 0 1と車軸 2 0 1の軸 孔 4 3 aとが通気可能に接続されている。  The brake delivery supply path 401 is formed inside the pipe member 410. The base end of the pipe member 410 is connected to the rear wheel axle 201 via a connector 410a. As a result, the brake delivery supply path 401 and the axle hole 43a of the axle 201 are connected to each other in a permeable manner.
パイプ部材 4 1 0の先端は、 自転車の後車輪に設けられたブレーキ装置 1 2 0 に接続されている。  The tip of the pipe member 410 is connected to a brake device 120 provided on the rear wheel of the bicycle.
ここで、 この後車輪のブレーキ装置 1 2 0について簡単に説明する。 この実施 形態で用いるブレーキ装置 1 2 0は、 内拡ブレーキ 1 2 0から構成されている。 この内拡ブレーキ 1 2 0は、 図 1 9に示すように被制動部材としてのドラム 1 2 Here, the rear wheel braking device 120 will be briefly described. The brake device 120 used in this embodiment is constituted by an inner expansion brake 120. As shown in FIG. 19, the inner expanding brake 120 is provided with a drum 12
1と、 制動部材としてのブレーキシュ一 1 2 2と、 これらを覆うカバー 1 2 3と を備えたものである。 1, a brake shoe 122 as a braking member, and a cover 123 covering these.
ドラム 1 2 1は、 円筒部 1 2 1 aを備え、 この円筒部 1 2 1 aの内周側にライ ニング当接部 1 2 1 bを備えている。 そして、 このドラム 1 2 1は、 後車輪に設 けられた後車輪用のハブ体 4 0 2のドラム取り付け用ネジ 4 0 5 aに取り付けら れることにより後車輪用のハブ体 4 0 2に固定されている。 これにより、 ライ二 ング当接部 1 2 1 bが、 後車輪用のハブ体 4 0 2の回転に伴なつて共に回転する ようになっている。  The drum 122 has a cylindrical portion 121a, and a lining contact portion 121b on the inner peripheral side of the cylindrical portion 121a. The drum 12 1 is attached to the rear wheel hub body 402 by being attached to the drum mounting screw 405 a of the rear wheel hub body 402 mounted on the rear wheel. Fixed. Thus, the riding contact portion 121b rotates together with the rotation of the rear wheel hub body 402.
カバー 1 2 3は、 円板部 1 2 3 aと、 円板部 1 2 3 aの外周先端に形成された 筒部 1 2 3 bとを備えている。 筒部 1 2 3 bには、 ブレーキ送出用供給路 4 0 1 を接続するパイプ接続口 1 2 3 c力 S、 筒部 1 2 3 bの外周から内周側に貫通する ように穿設されている。 そして、 このカバー 1 2 3は、 車軸 2 0 1に通され、 力 バー固定用ナット 1 2 3 dを介して車軸 2 0 1に固定されている。 又、 この固定 により、 力パー 1 2 3の筒部 1 2 3 bがドラム 1 2 1を外周側から覆う。 ブレーキシュ一 1 2 2は、 図 20に示すように円弧状の一対のシュ一片 1 22 a、 1 2 2 aを備えている。 これらの各シュ一片 1 2 2 a、 1 2 2 aは、 外周側 に合成ゴム製のライニング 1 22 b、 1 2 2 bを備えている。 そして、 これらの シュ一片 1 ? 2 a、 1 2 2 aは、 ドラム 1 2 1の内周側に、各シュ一片 1 2 2 a、 1 2 2 aの基端部同士を通した固定ボルト 1 2 2 cを介して力パー 1 2 3に回転 自在に支持されている。 これにより、 各シュ一片 1 2 2 a、 1 2 2 aは、 基端部 を回転の軸にして先端側が回転するようになっている。 又、 これらのシュ一片 1 2 2 a、 1 2 2 aの先端同士間には、 シュ一片 1 2 2 a、 1 22 aを回転操作す るシユー操作用カム 1 24が配設されている。 The cover 123 includes a disk part 123 a and a cylindrical part 123 b formed at an outer peripheral end of the disk part 123 a. A pipe connection 1 2 3c force S for connecting the brake delivery supply path 401 to the cylinder 1 23 b is drilled so as to penetrate from the outer circumference to the inner circumference of the cylinder 123 b. ing. The cover 123 passes through the axle 201, and is fixed to the axle 201 via a force bar fixing nut 123d. In addition, by this fixing, the cylindrical portion 123 b of the force member 123 covers the drum 121 from the outer peripheral side. The brake shoe 122 includes a pair of arc-shaped shoe pieces 122a and 122a as shown in FIG. Each of the pieces 122a and 122a has a lining 122b and 122b made of synthetic rubber on the outer peripheral side. And these shuffle pieces 1? 2a and 122a are mounted on the inner peripheral side of the drum 122 through fixing bolts 122c that pass through the base ends of each piece 122a and 122a. It is rotatably supported by 123. Thus, each of the shoe pieces 122a and 122a is configured such that the distal end rotates with the base end as the axis of rotation. In addition, a shoe operating cam 124 for rotating the shoe pieces 122a and 122a is disposed between the tips of the shoe pieces 122a and 122a.
シユー操作用カム 1 24は、 小径部 1 24 aと、 小径部 1 24 aより径の大き い大径部 1 24 bとを備えている。 そして、 シユー操作用カム 1 24は、 シユー 操作用カム 1 24を可動操作するためのアーム部材 1 2 5が接続され、 カバー 1 2 3に、 アーム部材 1 2 5と共に回転し得るように取り付けられている。  The cam for operation 124 has a small-diameter portion 124a and a large-diameter portion 124b having a larger diameter than the small-diameter portion 124a. An arm member 125 for movably operating the shoe operating cam 124 is connected to the shoe operating cam 124, and attached to the cover 123 so as to be able to rotate together with the arm member 125. ing.
又、 アーム部材 1 2 5は、 ブレーキワイヤ 1 3 3を介してブレーキレバー (図 示せず) と接続されている。 そして、 ブレーキレバーの操作によって、 図 2 1に 示すようにアーム部材 1 2 5が可動し、 それに伴ない、 シユー操作用カム 1 24 が回転する。  The arm member 125 is connected to a brake lever (not shown) via a brake wire 133. Then, the operation of the brake lever causes the arm member 125 to move as shown in FIG. 21, and accordingly, the cam for operation 124 to rotate.
その回転に際し、 シユー操作用カム 1 24の大径部 1 24 bが各シュ一片 1 2 2 a、 1 2 2 aの先端部を押しのける。 これにより、 各シュ一片 1 2 2 a、 1 2 2 aのライニング 1 2 2 b、 1 2 2 bがドラム 1 2 1のライニング当接部 1 2 1 bに押し当たり、 ドラム 1 2 1の回転を制動できるようになっている。  During the rotation, the large-diameter portion 124b of the cam for operation 124 pushes the tip of each piece 122a, 122a. As a result, the linings 1 2 2b and 1 2 2b of the respective pieces 1 2 2a and 1 2 2a press against the lining abutting portion 1 2 1 b of the drum 1 2 1 and the rotation of the drum 1 2 1 Can be braked.
一方、 ブレーキレバーの操作を止めると、 シュ一片 1 2 2 a、 1 2 2 a同士を 接続したコイルバネ 1 2 6の付勢力によってシュ一片 1 2 2 a、 1 2 2 aは、 元 の状態に戻り、 ライニング 1 22 b、 1 2 2 bがドラム 1 2 1のライニング当接 部 1 2 1 bから離れる。  On the other hand, when the operation of the brake lever is stopped, the spring pieces 1 2 2a and 1 2 2a return to their original state due to the urging force of the coil spring 1 26 that connects them. Return, the linings 122b and 122b move away from the lining abutment 1221b of the drum 121.
そして、 このように構成された内拡ブレーキ 1 20におけるカバー 1 2 3のパ イブ接続口 1 2 3 cに、 パイプ部材 4 1 0の先端が取り付けられている。  The tip of the pipe member 4 10 is attached to the pipe connection port 123 c of the cover 123 of the inner expansion brake 120 configured as described above.
以上のように構成された第 4実施形態の自転車の空気自動供給機構の動作につ いて説明する。 この第 4実施形態においても、 先の第 3実施形態と同様に、 例えば自転車を走 行させ車軸 2 0 1に対して車輪本体を回転させ.る。 これにより、 第 1圧縮空気生 成部 4 0 0 aと第 2圧縮空気生成部 4 0 0 bとが交互に空気の圧縮を行う。 そし て、 第 1圧縮空気生成部 4 0 0 aにより圧縮した空気を、 空気タイヤ用圧縮空気 供給路 2 0 0 aにより適宜空気タイヤの空気保持チューブに送り込む。 The operation of the automatic air supply mechanism for a bicycle according to the fourth embodiment configured as described above will be described. In the fourth embodiment, for example, a bicycle is run and the wheel body is rotated with respect to the axle 201 as in the third embodiment. As a result, the first compressed air generator 400a and the second compressed air generator 400b alternately compress the air. Then, the air compressed by the first compressed air generating section 400a is appropriately sent to the air holding tube of the pneumatic tire through the compressed air supply path 200a for the pneumatic tire.
一方、 第 2圧縮空気生成部 4 0 0 bにより圧縮された空気は、 連通用供給路 1 3 bから連結路 4 0 3、 車軸 2 0 1の軸孔 4 3 aを順次通ってブレーキ送出用供 給路 4 0 1に送られる。 更に、 ブレーキ送出用供給路 4 0 1からブレーキ装置 1 2 0のパイプ接続口 1 2 3 cに入り、 パイプ接続口 1 2 3 cからドラム 1 2 1に 向かって吹き付けられる。 これにより、 走行に際し、 常時ドラム 1 2 1に空気を 吹き付けることができ、 ドラム 1 2 1とライニング 1 2 2 b、 1 2 2 bとの摩擦 による熱の発生を抑えることができる。 又、 例えば夏場における直射日光等によ りブレーキ装置 1 2 0が過熱した場合でも、 走行すれば冷却でき、 ブレーキ装置 1 2 0の過熱により支障をきたすようなことを防止できる。  On the other hand, the air compressed by the second compressed air generation section 400b passes through the supply path 13b for communication, the connection path 400, and the shaft hole 43a of the axle 201 sequentially for brake delivery. It is sent to the supply route 401. Furthermore, it enters the pipe connection port 123c of the brake device 120 from the brake delivery supply path 401 and is blown toward the drum 122 from the pipe connection port 123c. As a result, air can be constantly blown to the drum 122 during traveling, and the generation of heat due to friction between the drum 122 and the linings 122 b, 122 b can be suppressed. Further, even if the brake device 120 is overheated due to, for example, direct sunlight in summer, the vehicle can be cooled by running, and it is possible to prevent the brake device 120 from being disturbed by overheating.
以上のように構成された上記実施形態の発明の空気自動供給機構は、 次のよう に把握することもできる。  The automatic air supply mechanism according to the embodiment of the present invention configured as described above can also be grasped as follows.
即ち、 実施形態に係る空気自動供給機構は、 車軸に対する車輪本体の回転に際 して圧縮空気を生成する圧縮空気生成部を備え、 圧縮空気生成部は、 複数のもの から構成され、 各圧縮空気生成部は、 空気を圧縮するための圧縮室と、 圧縮室に 外部の空気を取り込むための空気取り込み口と、 空気取り込み口から圧縮室に水 が入るのを防止する防水機構とを備えたものである。  That is, the automatic air supply mechanism according to the embodiment includes a compressed air generation unit that generates compressed air when the wheel body rotates with respect to the axle, and the compressed air generation unit includes a plurality of compressed air generation units. The generator is equipped with a compression chamber for compressing air, an air intake for taking in external air into the compression chamber, and a waterproof mechanism for preventing water from entering the compression chamber through the air intake. It is.
又、 上記実施形態の空気自動供給機構は、 圧縮空気生成部で生成された圧縮空 気を空気タイヤに供給するための空気タイヤ用圧縮空気供給路と、 圧縮空気生成 部で生成された圧縮空気を空気タイヤ以外の車両の他の部分に供給するための他 部分用圧縮空気供給路とを備え、 この他部分用圧縮空気供給路は、 圧縮空気生成 部で生成された圧縮空気を自転車のブレーキ装置に導いて供給するものである。 又、 そのブレーキ装置は、 空気タイヤと共に回転する被制動部材と、 被制動部 材に当接可能に可動して被制動部材の回転を制動する制動部材とを備えたもので ある。 また、 この他部分用圧縮空気供給路は、 圧縮空気生成部で生成された圧縮空気 を自転車のサドル部に導いて供給するものである。 Further, the automatic air supply mechanism of the above embodiment includes a compressed air supply path for a pneumatic tire for supplying the compressed air generated by the compressed air generation unit to the pneumatic tire, and a compressed air generated by the compressed air generation unit. And a compressed air supply passage for other parts for supplying the compressed air to the other parts of the vehicle other than the pneumatic tires. It is supplied to the device. Further, the brake device includes a member to be braked that rotates together with the pneumatic tire, and a braking member that is movable to be able to contact the member to be braked and brakes the rotation of the member to be braked. In addition, the compressed air supply path for other parts guides and supplies the compressed air generated by the compressed air generation section to the saddle section of the bicycle.
このサドル部は、 人が座るシートと、 空気を保持した空気保持部とを備え、 空 気保持部は、 シートにかかる荷重を受けてシートに弾力性を持たせ得るように配 設されたものである。  The saddle portion includes a seat on which a person sits and an air holding portion that holds air, and the air holding portion is provided so that the seat can be given elasticity by receiving a load applied to the seat. It is.
又、 サドル部は、 シートを上下移動可能に支持したシート支持部を備え、 空気 保持部は、 シート支持部に設けられ、 シート支持部は、 空気保持部の空気を押圧 可能な空気押圧部を備え、 空気押圧部は、 シートに下方向の荷重がかかるに際し て、 空気保持部の空気を押圧し、 この押圧によって、 空気保持部の空気が圧縮さ れるとともに、 シートが下方向に移動可能とされることにより、 シートに弾力性 を持たせるようにしたものである。  The saddle section includes a sheet support section that supports the sheet so as to be vertically movable, the air holding section is provided on the sheet support section, and the sheet support section includes an air pressing section that can press air from the air holding section. The air pressing section presses the air in the air holding section when a downward load is applied to the sheet, and the pressing compresses the air in the air holding section and allows the sheet to move downward. As a result, the seat has elasticity.
また、 他部分用圧縮空気供給路は、 圧縮空気生成部の圧縮室と連通した連通用 供給路と、 他の部分としての自転車のサドル部又はブレーキ装置に接続された他 部分送出用供給路と、 連通用供給路と他部分送出用供給路とを連結した連結用供 給路とを備えたものである。 又、 連結用供給路は、 車軸の軸方向に沿って車軸に 明けられ他部分送出用供給路に接続された軸孔と、 軸孔と連通用供給路とを連結 した連結路とを備えている。 また、 連結路と軸孔とは、 軸孔に回転自在に接続さ れた接続用孔を介して回転可能に接続されている。  The other part of the compressed air supply path includes a communication supply path that communicates with the compression chamber of the compressed air generation part, and another part of the bicycle saddle part or a supply part supply passage that is connected to the brake device. And a connecting supply path connecting the communicating supply path and the other-part sending supply path. The connection supply path includes a shaft hole formed in the axle along the axial direction of the axle and connected to another supply passage, and a connection path connecting the shaft hole and the communication supply path. I have. Further, the connection path and the shaft hole are rotatably connected via a connection hole rotatably connected to the shaft hole.
こうすることにより、 走行に際して車輪本体と共に回転する圧縮空気生成部で 生成した圧縮空気を連結路から軸孔を介して連結用供給路に、 更に連結用供給路 から自転車のサドル部又はブレーキ装置等の他の部分に送ることができる。 尚、 上記実施形態では、 圧縮空気生成部を一つ設けたものと二つ設けたものを 例示したが、 圧縮空気生成部を三つ以上設けるようにしても良く、 適宜変更でき る。 又、 圧縮空気生成部を二つから構成する場合、 上記実施形態のように、 いず れか一方の摺動部が圧縮室内の最下位置から最上位置に向かって摺動するとき、 他方の摺動部が圧縮室内の最上位置から最下位置に向かって摺動するように、 力 ムの周方向に略等間隔に配位させる形態のものに限らず、 適宜変更できる。 ただ し、 いずれか一方の摺動部が圧縮室内の最下位置から最上位置に向かって摺動す るとき、 他方の摺動部が圧縮室内の最上位置から最下位置に向かって摺動するよ うに配位しておくことにより、 効率良く圧縮空気を生成することができ、 この点 で有利である。 By doing so, the compressed air generated by the compressed air generator that rotates together with the wheel body during traveling can be supplied from the connection path to the connection supply path via the shaft hole, and from the connection supply path to the saddle portion or the brake device of the bicycle, etc. Can be sent to other parts. Note that, in the above-described embodiment, the one provided with one compressed air generating unit and the one provided with two compressed air generating units have been exemplified. However, three or more compressed air generating units may be provided and can be appropriately changed. In the case where the compressed air generator is composed of two parts, when one of the sliding parts slides from the lowermost position to the uppermost position in the compression chamber as in the above-described embodiment, the other is used. The configuration is not limited to the configuration in which the sliding portion slides from the uppermost position to the lowermost position in the compression chamber at substantially equal intervals in the circumferential direction of the drum, and can be changed as appropriate. However, when one of the sliding parts slides from the lowermost position in the compression chamber to the uppermost position, the other sliding part slides from the uppermost position to the lowermost position in the compression chamber. Yo By arranging as described above, compressed air can be efficiently generated, which is advantageous in this respect.
また、 圧縮空気生成部を三つ以上設ける場合においても、 カムの周方向に略等 間隔に配位させても良いが、 等間隔に配位させなくても良く、 適宜変更できる。 また、 上記実施形態では、 圧縮空気生成部で生成した圧縮空気を他部分圧縮空 気供給路によって空気タイヤ以外の他の部分としての自転車のサドル部又はブレ ーキ装置に供給するようにしているが、 空気タイヤ以外の他の部分は自転車のサ ドル部又はブレーキ装置に限らず、 適宜変更できる。  Also, when three or more compressed air generators are provided, they may be arranged at substantially equal intervals in the circumferential direction of the cam, but they may not be arranged at equal intervals and can be changed as appropriate. Further, in the above embodiment, the compressed air generated by the compressed air generating unit is supplied to the saddle portion of the bicycle or the brake device as another portion other than the pneumatic tire through the other-part compressed air supply path. However, other parts than the pneumatic tire are not limited to the saddle part or the brake device of the bicycle, and can be changed as appropriate.
また、 上記実施形態では、 空気タイヤ用圧縮空気供給路を設けたものとして実 施しているが、 例えば空気タィャ用圧縮空気供給路を設けずに、 圧縮空気生成部 と空気タイヤとを接続し、 圧縮空気生成部で生成した圧縮空気を直接空気タイャ に入れるようにしても良く、 適宜変更できる。  In the above embodiment, the compressed air supply path for the pneumatic tire is provided.However, for example, the compressed air generator and the pneumatic tire are connected without providing the compressed air supply path for the pneumatic tire. The compressed air generated by the compressed air generator may be directly supplied to the air tire, and may be changed as appropriate.
又、 本願発明の空気自動供給機構は、 車軸に対して回動自在な車輪本体を有す る車両に設けることができ、 例えば一輪車、 オートバイ、 リヤカー等の二輪車、 種々の三輪車、四輪車、エレベーター用車輪を有するエレベーター等に使用できる。 更に、上記実施形態では、圧縮操作体をビストン部材 3 2から構成しているが、 この形態のものに限らず、 適宜変更できる。 例えば圧縮室 3 1をハブ体 1 0 2の 内部まで拡大し、 圧縮室 3 1の周壁の全体又は軸方向の一部に、 圧縮操作体とし ての伸縮自在な伸縮部を形成するとともに、 圧縮室 3 1の端面にカム 9のカム面 9 1 aに当接するカム当接部を形成したものとする。 そして、 ノヽブ体 1 0 2の回 転に伴ないカム当接部がカム面 9 1 aを摺動し、 その摺動に際してカム当接部が カム面 9 1 aに押圧されることにより、 圧縮室 3 1の容積が拡大状態から縮小状 態になって空気を圧縮する。  Further, the automatic air supply mechanism of the present invention can be provided in a vehicle having a wheel body rotatable with respect to an axle, for example, a two-wheeled vehicle such as a unicycle, a motorcycle, a rear car, various tricycles, a four-wheeled vehicle, It can be used for elevators having elevator wheels. Further, in the above embodiment, the compression operation body is constituted by the piston element 32, but the compression operation body is not limited to this embodiment, and can be appropriately changed. For example, the compression chamber 31 is expanded to the inside of the hub body 102, and a stretchable expansion / contraction portion as a compression operation body is formed on the entire peripheral wall of the compression chamber 31 or a part in the axial direction. It is assumed that a cam abutting portion that abuts on the cam surface 91 a of the cam 9 is formed on the end face of the chamber 31. Then, the cam contact portion slides on the cam surface 91a along with the rotation of the knob body 102, and the cam contact portion is pressed against the cam surface 91a during the sliding. The volume of the compression chamber 31 changes from the expanded state to the reduced state, and compresses the air.
本願発明の空気タイヤの空気自動供給機構においては、 車軸に対する車輪本体 の回転に際して圧縮空気を生成する圧縮空気生成部を備え、 この圧縮空気生成部 で生成した圧縮空気を空気タイヤに供給できるようにしたものとする。  The pneumatic tire automatic air supply mechanism according to the present invention includes a compressed air generation unit that generates compressed air when the wheel body rotates with respect to the axle, so that the compressed air generated by the compressed air generation unit can be supplied to the pneumatic tire. Shall be done.
こうすることにより、 車軸に対して車輪本体が回転すると、 圧縮空気生成部で 空気を圧縮して圧縮空気を生成でき、 生成した圧縮空気を空気タィャに送り入れ ることができる。 従って、 例えば自転車を走行させて車輪本体を車軸に対して回 転させれば良く、 これにより、 自動的に圧縮部で空気を一定圧に圧縮させ、 その 圧縮した空気を空気タイヤに送り込んで常時空気タイャの空気圧を一定圧にでき る。 In this way, when the wheel body rotates with respect to the axle, the compressed air can be compressed by the compressed air generator to generate compressed air, and the generated compressed air can be sent to the air tire. Therefore, for example, when a bicycle is run, the wheel body is turned around the axle. This allows the air to be automatically compressed to a constant pressure in the compression section, and the compressed air is sent to the pneumatic tire to constantly keep the air pressure of the air tire constant.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 複数のものから構成され、 各圧縮空気生成部は、 圧縮室と、 圧縮室の空気を圧縮 操作する圧縮操作体とを備え、 この圧縮操作体は、 車軸に対する車輪本体の回転 に際して車軸に設けられたカムに押圧されることにより圧縮室の空気を圧縮し、 上記複数の圧縮空気生成部は、 車軸に対する車輪本体の回転に際して各圧縮空気 生成部の圧縮操作体がカムに順次に押圧され始めて圧縮操作を順次に開始できる ように、 配位されたものとする。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the compressed air generating unit includes a plurality of compressed air generating units, each of the compressed air generating units includes: a compression chamber; The compression operation body compresses air in the compression chamber by being pressed by a cam provided on the axle when the wheel body rotates with respect to the axle. It is assumed that the compressor is arranged so that the compression operation bodies of the respective compressed air generating units are sequentially pressed by the cams during rotation and the compression operations can be started sequentially.
こうすることにより、 車軸に対する車輪本体の回転に際し、 複数の圧縮空気生 成部によって、 一つの圧縮空気生成部を設けて圧縮空気を生成する場合に比して 複数倍の量の圧縮空気を生成できる。 例えば車椅子のように、 通常の走行では走 行距離が短くて車輪の回転数が少なく、 短時間の走行では生成できる圧縮空気の 量が少なくて短時間の走行では車椅子の空気タイヤに圧縮空気を供給し難い。 し かし、この発明においては、車輪の回転数が少ない段階の走行開始後短時間内に、 複数の圧縮空気生成部によつて充分な iの圧縮空気を生成して空気タイャに供給 して所定の空気圧にできる。  In this way, when the wheel body rotates with respect to the axle, a plurality of compressed air generators generate a plurality of times more compressed air than when a single compressed air generator is provided to generate compressed air. it can. For example, as in a wheelchair, the running distance is short and the number of rotations of the wheels is small in normal running, and the amount of compressed air that can be generated in short running is small. Difficult to supply. However, according to the present invention, within a short time after the start of traveling at the stage where the number of rotations of the wheels is low, a plurality of compressed air generating units generate sufficient i compressed air and supply it to the air tire. Can be set to a predetermined air pressure.
一方、 車軸に対する車輪本体の回転に際して各圧縮空気生成部の圧縮操作体が 力ムに順次に押圧され始めて圧縮操作を順次に開始できるため、 例えば複数の圧 縮空気生成部によって同時に圧縮室の空気を圧縮する場合に比して、 小さい力で 圧縮空気を生成でき、車軸に対する車輪本体の回転の抵抗を小さいものにできる。 例えば一つのカムから構成するとともに、 カムの周方向に各圧縮空気生成部の 位置をずらすようにして複数の圧縮空気生成部を配位させる。 これにより、 車軸 に対する車輪本体の回転に際し、 各圧縮空気生成部の圧縮操作体をカムによって 順次に押圧でき、 製作容易なものにできる。 又、 複数の圧縮空気生成部を、 カム の周方向に沿って一列に並べることも可能となり、 装置全体の車軸の軸方向の長 さの短いものにできる。 従って、 例えば自転車や車椅子の車輪本体に設けられた ハブ体に取り付け易いものにでき、 自転車や車椅子に適したものにできる。 本願発明の空気タイヤの空気自動供給機構においては、 空気自動供給機構は、 圧縮空気生成部で生成された圧縮空気を空気タイヤ以外の車両の他の部分に導い て供給するための他部分用圧縮空気供給路を備えたものとする。 On the other hand, when the wheel body rotates with respect to the axle, the compression operation body of each compressed air generation unit starts to be pressed sequentially by the force and the compression operation can be started sequentially, so that, for example, the air in the compression chamber is simultaneously generated by a plurality of compressed air generation units. Compressed air can be generated with a smaller force than when air is compressed, and the resistance of the rotation of the wheel body to the axle can be reduced. For example, it is composed of one cam, and a plurality of compressed air generators are arranged so that the positions of the respective compressed air generators are shifted in the circumferential direction of the cam. Thus, when the wheel body is rotated with respect to the axle, the compression operation bodies of the respective compressed air generation units can be sequentially pressed by the cams, thereby facilitating manufacture. Also, a plurality of compressed air generating sections can be arranged in a line along the circumferential direction of the cam, so that the length of the axle of the entire apparatus in the axial direction can be reduced. Therefore, for example, it can be easily attached to a hub body provided on a wheel body of a bicycle or a wheelchair, and can be suitable for a bicycle or a wheelchair. In the automatic air supply mechanism for a pneumatic tire according to the present invention, the automatic air supply mechanism includes a compression unit for other parts for guiding the compressed air generated by the compressed air generation unit to another part of the vehicle other than the pneumatic tires and supplying the compressed air. An air supply channel shall be provided.
こうすることにより、 例えば複数の圧縮空気生成部の内の一つで生成された圧 縮空気を空気タイヤ用圧縮空気供給路によって空気タイヤに供給し、 他の圧縮空 気生成部で生成された圧縮空気を、 他の部分としての自転車のサドル部に設けた 空気保持部に他部分用圧縮空気供給路によって供給しサドル部のシートに弾力性 を持たせることができる。 或いは他の部分として、 例えば自転車のブレーキ装置 に他部分用圧縮空気供給路によつて供給しブレーキ装置が過熱するのを防止でき る。  By doing so, for example, the compressed air generated in one of the plurality of compressed air generators is supplied to the pneumatic tire through the pneumatic tire compressed air supply path, and is generated in the other compressed air generators. The compressed air can be supplied to the air holding portion provided in the saddle portion of the bicycle as another portion by the compressed air supply passage for the other portion, so that the seat of the saddle portion has elasticity. Alternatively, as another part, for example, a brake device of a bicycle is supplied by a compressed air supply passage for another portion, thereby preventing the brake device from overheating.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 第 1圧縮空気生成部と、 第 2圧縮空気生成部との二つから構成され、 これらの第 1圧縮空気生成部と第 2圧縮空気生成部との各圧縮操作体は、 摺動室を摺動する 摺動部と、 カムに当接するカム当接部とを備え、 この摺動部は、 圧縮室の容積を 最大状態にする最下位置から圧縮室の容積を最小状態にする最上位置までの範囲 を摺動し、カム当接部は、車軸に対する車輪本体の回転に際してカムに押圧され、 この押圧によって摺動部が圧縮室を最下位置から最上位置に向かって摺動しその 摺動に際して圧縮室の空気が圧縮され、 第 1圧縮空気生成部と第 2圧縮空気生成 部とは、 いずれか一方の摺動部が圧縮室を最下位置から最上位置に向かって摺動 するとき、 他方の摺動部が圧縮室を最上位置から最下位置に向かって摺動するよ うに、 配位されたものとする。  In the automatic air supply mechanism for a pneumatic tire of the present invention, the compressed air generator includes two parts, a first compressed air generator and a second compressed air generator. Each of the compression operation bodies of the first and second compressed air generating units includes a sliding portion that slides in the sliding chamber, and a cam contact portion that contacts the cam, and the sliding portion reduces the volume of the compression chamber. The slider slides in the range from the lowest position where the compressor is in the maximum state to the uppermost position where the volume of the compression chamber is in the minimum state, and the cam abutment is pressed by the cam when the wheel body rotates with respect to the axle. Portion slides from the lowermost position to the uppermost position in the compression chamber, and the air in the compression chamber is compressed at the time of the sliding, so that one of the first compressed air generation section and the second compressed air generation section slides. When the moving part slides the compression chamber from the lowest position to the highest position, It is assumed that the other sliding part is arranged so that the compression chamber slides from the uppermost position to the lowermost position.
こうすることにより、 第 1圧縮空気生成部と第 2圧縮空気生成部とは、 交互に 圧縮室の空気を圧縮し、 いずれか一方が圧縮室の空気を圧縮操作している間、 他 方は圧縮室の空気を圧縮操作することのないものにできる。 これにより、 例えば 一つの圧縮空気生成部を設けて圧縮空気を生成する場合とほぼ同じ力で二倍の量 の圧縮空気を生成することができる。  By doing so, the first compressed air generation unit and the second compressed air generation unit alternately compress the air in the compression chamber, and while one of them is performing the compression operation on the air in the compression chamber, The air in the compression chamber can not be compressed. Thus, for example, twice as much compressed air can be generated with almost the same force as in the case of providing one compressed air generating unit and generating compressed air.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 圧縮室と、 圧縮室の空気を圧縮操作する圧縮操作体と、 圧縮室に外部の空気を取 り込むための空気取り込み口とを備え、 圧縮操作体は、 圧縮室の容積を最大状態 にする最下位置から圧縮室の容積を最小状態にする最上位置までの範囲にかけて 摺動室を摺動する摺動部を備え、 この摺動部が、 車軸に対する車輪本体の回転に 際して圧縮室を最下位置から最上位置に向かつて摺動するに際して圧縮室の空気 を圧縮操作し、 空気取り込み口は、 圧縮室を最下位置から最上位置までの範囲を 搢動する摺動部の移動範囲内おける最下位置の近傍に配位されたものとする。 こうすることにより、 摺動部が圧縮室を最下位置から最上位置に向かって摺動 する空気の圧縮操作に際し、 摺動部が最下位置から空気取り込み口を超え、 その 超えた位置から最上位置への摺動に際して、 圧縮室の空気を、 空気取り込み口に 逃がすことなく圧縮できる。 これにより、 圧縮室での摺動部の摺動による空気の 圧縮に際して圧縮室から空気取り込み口に空気が流れないようにするための逆流 防止弁を不要にでき、 簡素化できると共に低コストで製作できる。 In the automatic pneumatic tire air supply mechanism according to the present invention, the compressed air generating unit includes: a compression chamber; a compression operation body configured to compress air in the compression chamber; and an air for taking in external air into the compression chamber. With a suction port, the compression operation body maximizes the volume of the compression chamber A sliding portion that slides in the sliding chamber from a lowermost position to a lowermost position to an uppermost position to minimize the volume of the compression chamber. This sliding portion is used when the wheel body rotates with respect to the axle. When the compression chamber slides from the lowermost position to the uppermost position, the air in the compression chamber is compressed, and the air intake port is a sliding part that moves the compression chamber in the range from the lowermost position to the uppermost position. Assume that it is arranged near the lowest position in the movement range. By doing so, when the sliding portion slides the compression chamber from the lowermost position to the uppermost position in compressing the air, the sliding portion moves beyond the air intake from the lowermost position, and then moves from the uppermost position to the uppermost position. When sliding to the position, the air in the compression chamber can be compressed without escaping to the air intake. This eliminates the need for a non-return valve to prevent air from flowing from the compression chamber to the air intake port when air is compressed by sliding of the sliding part in the compression chamber, which can be simplified and manufactured at low cost. it can.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 車輪本体に設けられたハブ体に取り付けられるとともに、 ハブ体の内部から空気 を圧縮室内に取り込みその取り込んだ空気を圧縮可能とされたものとする。 こうすることにより、 雨水等の水が入り難いハブ体の内部から空気を圧縮室内 に取り込ませることができ、 圧縮室に空気と共に水が入り込むおそれの少ないも のにできる。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the compressed air generator is attached to a hub provided on the wheel body, and takes in air into the compression chamber from inside the hub to compress the taken air. It shall be possible. By doing so, air can be taken into the compression chamber from inside the hub body into which water such as rainwater does not easily enter, so that there is little risk of water entering the compression chamber with the air.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 空気を圧縮する圧縮室と、 圧縮室に外部の空気を取り込むための空気取り込み口 と、 空気取り込み口から圧縮室に水が入るのを防止する防水機構とを備えたもの とする。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the compressed air generating unit includes a compression chamber for compressing air, an air intake for taking in external air into the compression chamber, and an air intake from the air intake to the compression chamber. It shall be provided with a waterproof mechanism to prevent water from entering.
こうすることにより、 防水機構によって、 例えば雨の日に走行したような場合 でも、 空気取り込み口から圧縮室に雨水等が空気と共に入るようなことを防止で き、 圧縮室から雨水等の水を空気タイヤに送り込むのを防止できる。  In this way, the waterproof mechanism prevents rainwater and the like from entering the compression chamber through the air intake port together with the air even when the vehicle travels on a rainy day, for example. It can be prevented from being sent into a pneumatic tire.
本願発明の空気タイヤの空気自動供給機構においては、 上記車輪本体は、 車軸 に回転自在に支持されたハブ体を備え、 上記圧縮空気生成部は、 車輪本体のハプ 体に取り付けられ、 上記防水機構は、 空気取り込み口とハブ体の内部とを通気可 能に連通した第 1通気路を備え、 この第 1通気路を介して、 空気をハブ体の内部 力 ^圧縮室に取り込むことにより、 圧縮空気生成部に水が入り込むのを防止する ものとする。 In the automatic air supply mechanism for a pneumatic tire according to the present invention, the wheel body includes a hub body rotatably supported on an axle, the compressed air generation unit is attached to a haptic body of the wheel body, and the waterproof mechanism is provided. Is equipped with a first air passage that allows the air intake port and the inside of the hub body to communicate with each other in a ventilable manner. Prevents water from entering the air generator Shall be.
こうすることにより、 雨水等の水が入り難いハプの内部の空気を空気取り込み 口から圧縮室に取り込ませることができ、 空気取り込み口から圧縮室に空気と共 に水が入り込むおそれの少ないものにできる。 これにより、 容易に低コストで防 水機構を形成できる。  By doing so, the air inside the haptic, such as rainwater, into which water is difficult to enter can be taken into the compression chamber from the air intake port, and there is little possibility that water will enter the compression chamber from the air intake port together with air. it can. This makes it possible to easily form a water-proof mechanism at low cost.
本願発明の空気タイヤの空気自動供給機構においては、 上記ハブ体は、 筒状の ハブ胴と、 ハプ胴を軸方向の両側から支持した支持部とを備え、 これらの支持部 力 車軸に回転自在に支持されることにより、 ハブ体が車軸に対して回転自在と されるとともに、 ハブ胴と支持部とによって、 ハブ体の内部に、 外部と区画され た区画空間部が形成され、 上記防水機構は、 ハブ体の区画空間部と外部とを連通 するように、 支持部に形成された第 2通気路を備えているものとする。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the hub body includes a cylindrical hub body, and support portions that support the hap body from both sides in the axial direction. The hub body is rotatable with respect to the axle by being supported by the hub body, and the hub body and the support portion form a partition space section that is partitioned from the outside inside the hub body. It is assumed that the vehicle has a second air passage formed in the support portion so as to communicate the partition space of the hub body with the outside.
こうすることにより、 雨水等の水が第 2通気路から区画空間部に入り難いもの にできる。 これにより、 区画空間部から空気を空気取り込み口に送り入れる際、 空気と共に水を送り入れるようなことを確実に防止できる。  By doing so, it is possible to make it difficult for water such as rainwater to enter the compartment from the second ventilation path. As a result, when air is supplied from the compartment to the air intake, it is possible to reliably prevent water from being supplied together with the air.
本願発明の空気タイヤの空気自動供給機構においては、 上記ハプ体の各支持部 は、 複数の鋼球を転がり可能に受けた鋼球受け部と、 鋼球受け部の径方向の内側 に車軸を回転可能に挿通する車軸孔とを備え、 車軸孔に通した車軸に、 鋼球受け 部が複数の鋼球を介して回転自在に支持されることにより、 ハブ体が車軸に対し て回転自在とされるとともに、 ハブ体の各支持部に夫々、 車軸孔の内周面と車軸 との間に形成された車軸間隙及び鋼球同士の間に形成された鋼球間隙を通るよう に、 区画空間部から通気可能に延びた車軸間隙通気路が形成され、 上記第 2通気 路は、 これら二つの車軸間隙通気路の少なくとも一つを構成要素とするものとす る。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, each of the support portions of the hap body includes a steel ball receiving portion capable of rolling a plurality of steel balls, and an axle radially inside the steel ball receiving portion. An axle hole that is rotatably inserted into the axle, and a steel ball receiving portion is rotatably supported via a plurality of steel balls on the axle that passes through the axle hole, so that the hub body is rotatable relative to the axle. And at each support portion of the hub body, pass through the axle gap formed between the inner peripheral surface of the axle hole and the axle and the steel ball gap formed between the steel balls. An axle gap ventilation path is formed to extend from the portion so as to allow ventilation, and the second ventilation path has at least one of the two axle clearance ventilation paths as a component.
鋼球受け部に鋼球を配設する場合、 通常、 鋼球の転がりを円滑にするためにグ リスを共に配設する。 従って、 水は、 鋼球間隙を通過し難く、 車軸間隙通気路を 通り難いものにできる。 又、 このような車軸間隙通気路は、 通常のハプ体に形成 されている。 従って、 第 2通気路を、 別途に形成しなくても、 通常のハプ体に形 成されている車軸間隙通気路を利用でき、 低コストで防水機構を形成できる。 本願発明の空気タイヤの空気自動供給機構においては、 上記二つの車軸間隙通 気路の内の何れか一つがシール部材によってハプ体の外部から略密閉されること により、 他の一つの車軸間隙通気路が第 2通気路の一部又は全部を構成したもの とされ、 上記防水機構は、 この第 2通気路を構成した他の一つの車軸間隙通気路 と外部とを連通した第 3通気路を備え、 第 3通気路を介してハブ体の外部の空気 が上記他方の車軸間隙通気路からハブ体の内部に入るものとする。 When arranging steel balls in the steel ball receiving section, grease is usually arranged together to smooth the rolling of the steel balls. Therefore, water can hardly pass through the steel ball gap and can hardly pass through the axle gap ventilation path. Such an axle gap ventilation path is formed in a normal hap body. Therefore, it is possible to use the axle gap air passage formed in the normal hap body without separately forming the second air passage, and to form the waterproof mechanism at low cost. In the automatic air supply mechanism for a pneumatic tire according to the present invention, the two axle clearances are provided. When one of the air passages is substantially sealed from the outside of the haptic body by the seal member, the other one of the axle clearance air passages constitutes a part or the whole of the second air passage. The waterproofing mechanism includes a third ventilation path that communicates the other one of the axle clearance ventilation paths that constitutes the second ventilation path with the outside, and the air outside of the hub body flows through the third ventilation path through the third ventilation path. It shall enter the inside of the hub body from the axle gap ventilation path.
こうすることにより、 第 3通気路の形成にコストがかかるような場合でも第 3 通気路を一つだけ形成すれば良く、 全体のコストを抑えることができる。  By doing so, even when it is costly to form the third ventilation path, only one third ventilation path needs to be formed, and the overall cost can be reduced.
本願発明の空気タイヤの空気自動供給機構においては、 上記第 3通気路は、 車 軸を揷通するようにしてハブ体に取り付けられた筒状体の内周面と車軸の外周と の間に区画形成されたものであり、 この筒状体の内周面には、 外部側に行くに従 い内径が漸次大きくなるテーパー部が備えられているものとする。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the third ventilation path is provided between an inner peripheral surface of a cylindrical body attached to the hub body so as to pass through the axle and an outer periphery of the axle. It is assumed that the inner peripheral surface of the cylindrical body is provided with a tapered portion whose inner diameter gradually increases toward the outer side.
こうすることにより、 第 3通気路内に水が入り込んだ場合でも、 ハブ体の回転 の伴なう遠心力によって、 水を、 テーパー部の径の大きい方に移動させ、 外部に 追い出すことができる。 又、 水を自重によって、 テーパー部の径の大きい方に伝 わせ、 外部に追い出すことができる。 従って、 第 3通気路を、 水が通過し難いも のにできる。  By doing so, even if water enters the third ventilation path, the water can be moved to the larger diameter of the tapered part and driven out by the centrifugal force accompanying rotation of the hub body. . In addition, water can be transmitted to the larger diameter of the tapered portion by its own weight, and can be driven out. Therefore, it is possible to make the third ventilation path difficult for water to pass through.
本願発明の空気タイヤの空気自動供給機構においては、上記圧縮空気生成部は、 圧縮室と、 圧縮室の空気を圧縮操作する圧縮操作体とを備え、 圧縮操作体の第 1 端は、 圧縮室内に摺動可能に配設され、 圧縮操作体の第 2端は、 車軸に設けられ たカムに保持されることにより、 車軸に対する車輪本体の回転に際して、 圧縮操 作体がカムに追従し圧縮室内を摺動して圧縮室の空気を圧縮操作するものとする。 例えば圧縮操作体の端部を圧縮操作体付勢用のコィルバネによってカムに押圧 して当接状態を維持させている場合には、 その付勢力に抗して圧縮操作体を摺動 させなければならず、 車軸に対する車輪本体を回転させる際の抵抗になってしま う、 しかし、 この実施形態では、 圧縮操作体をカムに保持するようにして付勢用 のコイルパネを設けていないため、 圧縮操作体を小さい力で円滑に摺動できる。 これにより、 車軸に対する車輪本体を回転させる際の抵抗を小さくできる。 本願発明の空気タイヤの空気自動供給機構においては、 上記圧縮操作体は、 力 ムに取り外し自在に保持されたものとする。 こうすることにより、 圧縮空気生成部をカムから容易に外すことができるとと もに、 カムから外したその圧縮空気生成部を容易に組みつけることができる。 こ れにより、 分解等して部品の交換等が容易に行うことができ、 メンテナンスの容 易なものにできる。 In the automatic air supply mechanism for a pneumatic tire according to the present invention, the compressed air generating unit includes a compression chamber, and a compression operation body that compresses air in the compression chamber, and a first end of the compression operation body is provided in the compression chamber. The second end of the compression operation body is held by a cam provided on the axle, so that when the wheel body rotates with respect to the axle, the compression operation body follows the cam, and the second end of the compression operation body follows the cam. Slides to compress the air in the compression chamber. For example, when the end of the compression operating body is pressed against the cam by a coil spring for urging the compression operation body to maintain the contact state, the compression operation body must be slid against the urging force. However, in this embodiment, there is no resistance when rotating the wheel body with respect to the axle. However, in this embodiment, since the compression operation body is held by the cam and the coil panel for biasing is not provided, the compression operation is not performed. The body can slide smoothly with a small force. Thereby, the resistance when rotating the wheel body with respect to the axle can be reduced. In the pneumatic tire automatic air supply mechanism of the present invention, the compression operation body is detachably held by a force bar. By doing so, the compressed air generating portion can be easily removed from the cam, and the compressed air generating portion removed from the cam can be easily assembled. As a result, parts can be easily replaced by disassembly or the like, and maintenance can be performed easily.
本願発明の空気タイヤの空気自動供給機構においては、 上記カムは、 外周に圧 縮操作体と当接するカム面を有するカム本体と、 カム本体のカム面の側方側に配 位された操作体保持部とを備え、 上記圧縮操作体は、 棒状の操作本体と、 カム本 体のカム面に当接するカム当接部と、 力ムの操作体保持部に保持されるカム保持 部とを備え、 上記操作本体は、 カム本体のカム面の径方向の外側に、 径方向に移 動可能に配位され、 上記カム当接部は、 カム本体のカム面と操作本体との間に配 位され、 上記カム保持部は、 操作体保持部に取り外し自在に保持されたものとす る。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the cam includes a cam body having a cam surface on an outer periphery thereof in contact with a compression operation body, and an operation body disposed on a side of the cam surface of the cam body. The compression operation body includes a rod-shaped operation main body, a cam contact portion that abuts on a cam surface of the cam body, and a cam holding portion that is held by the operation body holding portion of the force member. The operating body is radially movable outside the cam surface of the cam body in a radial direction, and the cam contact portion is located between the cam surface of the cam body and the operating body. The cam holding section is detachably held by the operating body holding section.
こうすることにより、 圧縮操作体がカムに押圧されて空気の圧縮操作をする場 合は、 圧縮操作体の操作本体をカム当接部を介してカムによつて径方向の内側か ら径方向の外側に押圧することができる。 これにより、 操作本体をカムの径方向 に効率良く円滑に移動させることができる。  In this way, when the compression operation body is pressed by the cam to perform the air compression operation, the operation body of the compression operation body is moved from the radial inner side by the cam through the cam contact portion. Outside. Thus, the operation body can be moved efficiently and smoothly in the radial direction of the cam.
又、 圧縮操作体をカムに保持させ又は保持したカムから取り外す場合は、 カム 本体のカム面の側方側に配位された操作体保持部に力ム保持部を保持させ、 ある レ、は保持を外せば良く、 圧縮操作体のカムからの取り外し操作を容易なものにで きる。 その一方、 カム本体のカム面の側方側に配位された操作体保持部にカム保 持部を保持しておくと、 圧縮操作体がカムに引っ張られる際、 圧縮操作体が側方 側から引っ張られることになる。 しかし、 圧縮操作体がカムに引っ張られる際に は、空気の圧縮を行わないため、操作本体にはあまり大きな力がかからないため、 操作本体を円滑に引っ張り操作でき、 支障なく行うことができる。  When the compression operating body is held by the cam or removed from the held cam, the force holding part is held by the operating body holding part arranged on the side of the cam surface of the cam body. It is only necessary to release the holding, and the operation of removing the compression operation body from the cam can be easily performed. On the other hand, if the cam holding part is held by the operating body holding part arranged on the side of the cam surface of the cam body, when the compression operating body is pulled by the cam, the compression operating body is moved to the side. Will be pulled from. However, when the compression operation body is pulled by the cam, air is not compressed, so that a large force is not applied to the operation body, so that the operation body can be smoothly pulled and operated without any trouble.
本願発明の空気タイヤの空気自動供給機構においては、 上記カム当接部は、 操 作本体に回転自在に取り付けられたローラーの外周の一部から構成されたもので あり、 上記カム保持部は、 ローラーを操作本体に回転自在に支持するとともに、 力ムの操作体保持部に保持される保持軸からなるものとする。  In the automatic air supply mechanism for a pneumatic tire according to the present invention, the cam contact portion is configured by a part of an outer periphery of a roller rotatably attached to the operation main body, and the cam holding portion includes: The roller shall be rotatably supported by the operation body, and shall consist of a holding shaft held by the operation body holding portion of the force member.
こうすることにより、 圧縮操作体を押圧する際にカム当接部にかかるカム面の 接線方向の力を小さくでき、圧縮操作体の操作本体をカムの径方向に、より一層、 効率良く円滑に移動させることができる。 In this way, when the compression operation body is pressed, the cam surface on the cam contact portion is pressed. The force in the tangential direction can be reduced, and the operating body of the compression operating body can be moved more efficiently and smoothly in the radial direction of the cam.
又、 ローラーを操作本体に回転自在に支持した保持軸をカム保持部とし、 この 保持軸をカムの操作体保持部に保持するため、 保持軸を兼用でき、 別途にカム保 持部を形成せずに済み、 容易に低コストで製作できる。  In addition, a holding shaft that rotatably supports the roller on the operation body is used as a cam holding portion, and this holding shaft is held by the operating body holding portion of the cam, so that the holding shaft can also be used, and a separate cam holding portion is formed. And can be easily manufactured at low cost.
上記においては、 本発明を好ましい実施形態として説明したが、 各用語は、 限 定のために用いたのではなく、 説明のために用いたものであって、 本発明の範囲 および精神を逸脱することなく、 添付のクレームの範囲において、 変更すること ができるものである。  Although the present invention has been described above as preferred embodiments, each term is used for description, not for limitation, and departs from the scope and spirit of the present invention. Without departing from the scope of the appended claims, it can be modified.

Claims

請求の範囲 The scope of the claims
1 . 車両の車軸に対して回転可能な車輪本体に設けられた空気タイヤに、 空気 を自動供給し得る空気タイヤの空気自動供給機構であって、 1. A pneumatic tire air automatic supply mechanism capable of automatically supplying air to a pneumatic tire provided on a wheel body rotatable with respect to a vehicle axle,
車軸に対する車輪本体の回転に際して圧縮空気を生成する圧縮空気生成部を備 え、 この圧縮空気生成部で生成した圧縮空気を空気タイヤに供給できるようにし たものであることを特徴とする空気タイヤの空気自動供給機構。  A pneumatic tire characterized in that it has a compressed air generator for generating compressed air when the wheel body rotates with respect to the axle, so that the compressed air generated by the compressed air generator can be supplied to the pneumatic tire. Automatic air supply mechanism.
2 . 請求項 1記載の空気タイヤの空気自動供給機構において、 2. In the pneumatic tire automatic air supply mechanism according to claim 1,
上記圧縮空気生成部は、 複数のものから構成され、  The compressed air generator is composed of a plurality of components,
各圧縮空気生成都は、 圧縮室と、 圧縮室の空気を圧縮操作する圧縮操作体とを 備え、  Each compressed air generator has a compression chamber, and a compression operation body that compresses air in the compression chamber.
この圧縮操作体は、 車軸に対する車輪本体の回転に際して車軸に設けられた力 ムに押圧されることにより圧縮室の空気を圧縮し、  The compression operation body compresses air in the compression chamber by being pressed by a force provided on the axle when the wheel body rotates with respect to the axle,
上記複数の圧縮空気生成部は、 車軸に対する車輪本体の回転に際して各圧縮空 気生成部の圧縮操作体がカムに順次に押圧され始めて圧縮操作を順次に開始でき るように、 配位されたもの。  The plurality of compressed air generators are arranged such that the compression operation bodies of the compressed air generators are sequentially pressed by the cams when the wheel body rotates with respect to the axle, so that the compression operation can be started sequentially. .
3 . 請求項 1記載の空気タイヤの空気自動供給機構において、 3. In the pneumatic tire automatic air supply mechanism according to claim 1,
上記空気自動供給機構は、 圧縮空気生成部で生成された圧縮空気を空気タイャ 以外の車両の他の部分に導いて供給するための他部分用圧縮空気供給路を備えた もの。  The above-mentioned automatic air supply mechanism is provided with a compressed air supply path for another part for guiding the compressed air generated by the compressed air generation part to another part of the vehicle other than the air tire and supplying it.
4 . 請求項 2記載の空気タイヤの空気自動供給機構において、 4. In the pneumatic tire automatic air supply mechanism according to claim 2,
上記圧縮空気生成部は、 第 1圧縮空気生成部と、 第 2圧縮空気生成部との二つ から構成され、  The compressed air generator is composed of a first compressed air generator and a second compressed air generator,
これらの第 1圧縮空気生成部と第 2圧縮空気生成部との各圧縮操作体は、 摺動 室を摺動する摺動部と、 カムに当接するカム当接部とを備え、  Each of the compression operation bodies of the first compressed air generation unit and the second compressed air generation unit includes a sliding portion that slides in the sliding chamber and a cam contact portion that contacts the cam,
この摺動部は、 圧縮室の容積を最大状態にする最下位置から圧縮室の容積を最 小状態にする最上位置までの範囲を摺動し、 The sliding portion starts to reduce the volume of the compression chamber from the lowest position where the volume of the compression chamber is maximized. Slide the range up to the top position to make small,
カム当接部は、 車軸に対する車輪本体の回転に際してカムに押圧され、 この押 圧によつて摺動部が圧縮室を最下位置から最上位置に向かつて摺動しその摺動に 際して圧縮室の空気が圧縮され、  The cam abutting portion is pressed by the cam when the wheel body rotates with respect to the axle, and the pressing force causes the sliding portion to slide the compression chamber from the lowermost position to the uppermost position. The air in the compression chamber is compressed,
第 1圧縮空気生成部と第 2圧縮空気生成部とは、 いずれか一方の摺動部が圧縮 室を最下位置から最上位置に向かって摺動するとき、 他方の摺動部が圧縮室を最 上位置から最下位置に向かって搢動するように、 配位されたもの。  When one of the sliding parts slides the compression chamber from the lowermost position to the uppermost position, the other one of the first compressed air generating part and the second compressed air generating part It is arranged so that it moves from the top position to the bottom position.
5 . 請求項 1記載の空気タイヤの空気自動供給機構において、 5. In the pneumatic tire automatic air supply mechanism according to claim 1,
上記圧縮空気生成部は、圧縮室と、圧縮室の空気を圧縮操作する圧縮操作体と、 圧縮室に外部の空気を取り込むための空気取り込み口とを備え、  The compressed air generating unit includes a compression chamber, a compression operation body that compresses air in the compression chamber, and an air intake port for taking in external air into the compression chamber.
上記圧縮操作体は、 圧縮室の容積を最大状態にする最下位置から圧縮室の容積 を最小状態にする最上位置までの範囲にかけて摺動室を摺動する摺動部を備え、 この摺動部が、 車軸に対する車輪本体の回転に際して圧縮室を最下位置から最上 位置に向かって摺動するに際して圧縮室の空気を圧縮操作し、  The compression operation body includes a sliding portion that slides in the sliding chamber from a lowermost position where the volume of the compression chamber is maximized to an uppermost position where the volume of the compression chamber is minimized. Performs compression operation on the air in the compression chamber when the section slides from the lowermost position to the uppermost position when the wheel body rotates with respect to the axle,
上記空気取り込み口は、 圧縮室を最下位置から最上位置までの範囲を摺動する 摺動部の移動範囲内おける最下位置の近傍に配位されたもの。  The above-mentioned air intake port is arranged near the lowest position in the moving range of the sliding portion that slides in the range from the lowest position to the highest position in the compression chamber.
6 . 請求項 1記載の空気タイヤの空気自動供給機構において、 6. In the pneumatic tire automatic air supply mechanism according to claim 1,
上記圧縮空気生成部は、 車輪本体に設けられたハブ体に取り付けられるととも に、 ハブ体の内部から空気を圧縮室内に取り込みその取り込んだ空気を圧縮可能 とされたもの。  The compressed air generator is attached to a hub provided on a wheel body and is capable of taking air from inside the hub into a compression chamber and compressing the taken air.
7 . 請求項 1記載の空気タイヤの空気自動供給機構において、 7. The pneumatic tire automatic air supply mechanism according to claim 1,
上記圧縮空気生成部は、 空気を圧縮する圧縮室と、 圧縮室に外部の空気を取り 込むための空気取り込み口と、 空気取り込み口から圧縮室に水が入るのを防止す る防水機構とを備えたもの。  The compressed air generating section includes a compression chamber for compressing air, an air intake for taking in external air into the compression chamber, and a waterproof mechanism for preventing water from entering the compression chamber through the air intake. What you have.
8 . 請求項 7記載の空気タイヤの空気自動供給機構において、 上記車輪本体は、 車軸に回転自在に支持されたハブ体を備え、 上記圧縮空気生成部は、 車輪本体のハブ体に取り付けられ、 8. The pneumatic tire automatic air supply mechanism according to claim 7, The wheel body includes a hub body rotatably supported on an axle, and the compressed air generating unit is attached to the hub body of the wheel body.
上記防水機構は、 空気取り込み口とハプ体の內部とを通気可能に連通した第 1 通気路を備え、 この第 1通気路を介して、 空気をハブ体の内部から圧縮室に取り 込むことにより、 圧縮空気生成部に水が入り込むのを防止するもの。  The waterproofing mechanism includes a first air passage that allows the air intake port and a part of the haptic body to communicate with each other in a permeable manner, and through this first air passage, air is taken into the compression chamber from inside the hub body. A device that prevents water from entering the compressed air generator.
9 . 請求項 8記載の空気タイヤの空気自動供給機構において、 9. In the pneumatic tire automatic supply mechanism according to claim 8,
上記ハブ体は、 筒状のハプ胴と、 ハプ胴を軸方向の両側から支持した支持部と を備え、 これらの支持部が、 車軸に回転自在に支持されることにより、 ハブ体が 車軸に対して回転自在とされるとともに、 ハブ胴と支持部とによって、 ハプ体の 内部に、 外部と区画された区画空間部が形成され、  The hub body includes a cylindrical hap body and support portions that support the hap body from both sides in the axial direction. These support portions are rotatably supported by the axle, so that the hub body is attached to the axle. In addition to being freely rotatable with respect to the hub body, the hub body and the support portion form a partitioned space inside the hap body, which is partitioned from the outside.
上記防水機構は、 ハブ体の区画空間部と外部とを連通するように、 支持部に形 成された第 2通気路を備えているもの。  The waterproofing mechanism includes a second ventilation path formed in a supporting portion so as to communicate the partitioned space of the hub body with the outside.
1 0 . 請求項 9記載の空気タイヤの空気自動供給機構において、 10. The pneumatic tire automatic air supply mechanism according to claim 9,
上記ハブ体の各支持部は、 複数の鋼球を転がり可能に受けた鋼球受け部と、 鋼 球受け部の径方向の内側に車軸を回転可能に揷通する車軸孔とを備え、 車軸孔に 通した車軸に、 鋼球受け部が複数の鋼球を介して回転自在に支持されることによ り、ハブ体が車軸に対して回転自在とされるとともに、ハブ体の各支持部に夫々、 車軸孔の内周面と車軸との間に形成された車軸間隙及ぴ鋼球同士の間に形成され た鋼球間隙を通るように、 区画空間部から通気可能に延びた車軸間隙通気路が形 成され、  Each of the support portions of the hub body includes a steel ball receiving portion rotatably receiving a plurality of steel balls, and an axle hole radially inside the steel ball receiving portion and through which the axle can rotate. Since the steel ball receiving portion is rotatably supported by a plurality of steel balls on the axle passing through the hole, the hub body is rotatable with respect to the axle, and each support portion of the hub body is supported. The axle clearance extends from the compartment to allow air to pass through the axle clearance formed between the inner peripheral surface of the axle hole and the axle and the steel ball gap formed between the steel balls. An airway is formed,
上記第 2通気路は、 これら二つの車軸間隙通気路の少なくとも一つを構成要素 とするもの。  The second ventilation path has at least one of these two axle clearance ventilation paths as a constituent element.
1 1 . 請求項 1 0記載の空気タイヤの空気自動供給機構において、 11. In the pneumatic tire automatic air supply mechanism according to claim 10,
上記二つの車軸間隙通気路の内の何れか一つがシール部材によつてハブ体の外 部から略密閉されることにより、 他の一つの車軸間隙通気路が第 2通気路の一部 又は全部を構成したものとされ、 上記防水機構は、 この第 2通気路を構成した他の一つの車軸間隙通気路と外部 とを連通した第 3通気路を備え、 第 3通気路を介してハプ体の外部の空気が上記 他方の車軸間隙通気路からハブ体の内部に入るもの。 One of the two axle gap air passages is substantially sealed from the outside of the hub body by a seal member, so that the other axle gap air passage is partially or entirely part of the second air passage. Is composed of The waterproofing mechanism includes a third ventilation path that communicates the other one of the axle clearance ventilation paths that constitutes the second ventilation path with the outside, and the outside air of the haptic body passes through the third ventilation path through the third ventilation path. That enters the hub from the axle gap air passage.
1 2 . 請求項 1 1記載の空気タイヤの空気自動供給機構において、 1 2. In the pneumatic tire automatic air supply mechanism according to claim 11,
上記第 3通気路は、 車軸を挿通するようにしてハブ体に取り付けられた筒状体 の内周面と車軸の外周との間に区画形成されたものであり、  The third ventilation path is formed between the inner peripheral surface of the cylindrical body attached to the hub body so as to pass through the axle and the outer periphery of the axle,
この筒状体の内周面には、 外部側に行くに従い内径が漸次大きくなるテーパー 部が備えられているもの。  The inner peripheral surface of the cylindrical body is provided with a tapered portion whose inner diameter gradually increases toward the outer side.
1 3 . 請求項 1記載の空気タイヤの空気自動供給機構において、 1 3. In the pneumatic tire automatic air supply mechanism according to claim 1,
上記圧縮空気生成部は、 圧縮室と、 圧縮室の空気を圧縮操作する圧縮操作体と を備え、  The compressed air generating unit includes: a compression chamber; and a compression operation body that compresses air in the compression chamber.
圧縮操作体の第 1端は、 圧縮室内に摺動可能に配設され、  A first end of the compression operation body is slidably disposed in the compression chamber,
圧縮操作体の第 2端は、 車軸に設けられたカムに保持されることにより、 車軸 に対する車輪本体の回転に際して、 圧縮操作体がカムに追従し圧縮室内を摺動し て圧縮室の空気を圧縮操作するもの。  The second end of the compression operation body is held by a cam provided on the axle, so that when the wheel body rotates with respect to the axle, the compression operation body follows the cam and slides in the compression chamber to release air in the compression chamber. One that performs compression operations.
1 4 . 請求項 1 3記載の空気タイヤの空気自動供給機構において、 14. In the pneumatic tire automatic air supply mechanism according to claim 13,
上記圧縮操作体は、 カムに取り外し自在に保持されたもの。  The compression operation body is detachably held by a cam.
1 5 . 請求項 1 3記載の空気タイヤの空気自動供給機構において、 15. In the pneumatic tire automatic air supply mechanism according to claim 13,
上記カムは、 外周に圧縮操作体と当接するカム面を有するカム本体と、 カム本 体のカム面の側方側に配位された操作体保持部とを備え、  The cam includes: a cam body having a cam surface on its outer periphery that comes into contact with the compression operation body; and an operation body holding portion arranged on a side of the cam surface of the cam body.
上記圧縮操作体は、 棒状の操作本体と、 カム本体のカム面に当接するカム当接 部と、 カムの操作体保持部に保持されるカム保持部とを備え、  The compression operation body includes a rod-shaped operation main body, a cam contact portion that abuts on a cam surface of the cam main body, and a cam holding portion that is held by the operation body holding portion of the cam.
上記操作本体は、 カム本体のカム面の径方向の外側に、 径方向に移動可能に配 位され、  The operating body is radially outside the cam surface of the cam body so as to be movable in the radial direction.
上記カム当接部は、 カム本体のカム面と操作本体との間に配位され、 上記力ム保持部は、 操作体保持部に取り外し自在に保持されたもの。 The cam contact portion is disposed between the cam surface of the cam body and the operation body, The force holding part is detachably held by the operating body holding part.
1 6 . 請求項 1 5記載の空気タイヤの空気自動供給機構において、 16. In the pneumatic tire automatic air supply mechanism according to claim 15,
上記カム当接部は、 操作本体に回転自在に取り付けられたローラーの外周の一 部から構成されたものであり、  The cam abutting portion is formed of a part of an outer periphery of a roller rotatably attached to the operation body,
上記カム保持部は、 .ローラーを操作本体に回転自在に支持するとともに'、 カム の操作体保持部に保持される保持軸からなるもの。  The above-mentioned cam holding portion is composed of a holding shaft that supports the roller rotatably on the operation body and is held by the operation body holding portion of the cam.
PCT/JP2003/015820 2003-03-28 2003-12-10 Automatic air supply mechanism of pneumatic tire WO2004087441A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2003289019A AU2003289019A1 (en) 2003-03-28 2003-12-10 Automatic air supply mechanism of pneumatic tire
EP04722075A EP1609630A1 (en) 2003-03-28 2004-03-19 Automatic air-feeding mechanism for pneumatic tire
JP2005504166A JP4538409B2 (en) 2003-03-28 2004-03-19 Automatic pneumatic tire supply mechanism
PCT/JP2004/003792 WO2004087442A1 (en) 2003-03-28 2004-03-19 Automatic air-feeding mechanism for pneumatic tire
US10/548,180 US7581576B2 (en) 2003-03-28 2004-03-19 Automatic air-feeding mechanism for pneumatic tire
TW093108180A TWI343877B (en) 2003-03-28 2004-03-25 Automatic air feeding mechanism for pneumatic tires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-90079 2003-03-28
JP2003090079 2003-03-28

Publications (1)

Publication Number Publication Date
WO2004087441A1 true WO2004087441A1 (en) 2004-10-14

Family

ID=33127255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/015820 WO2004087441A1 (en) 2003-03-28 2003-12-10 Automatic air supply mechanism of pneumatic tire

Country Status (5)

Country Link
JP (1) JP4538409B2 (en)
CN (1) CN100398347C (en)
AU (1) AU2003289019A1 (en)
TW (1) TWI343877B (en)
WO (1) WO2004087441A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4435114B2 (en) * 2006-05-31 2010-03-17 トヨタ自動車株式会社 Tire risk judgment device for vehicle wheels
WO2022126289A1 (en) * 2020-12-17 2022-06-23 Universidad Diego Portales Wheelchair with wheels that can adapt to the surface to be travelled over.

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415618A (en) * 1945-05-21 1947-02-11 William S West Pump
JPS392535B1 (en) * 1960-10-27 1964-03-11
JPS6166001U (en) * 1984-10-05 1986-05-07
JPS624617A (en) * 1985-06-29 1987-01-10 Nissan Motor Co Ltd Automatic regulating device for tire pressure
JPH01172003A (en) * 1987-12-25 1989-07-06 Honda Motor Co Ltd Air pressure supplementary device for tire
US5342177A (en) * 1992-04-01 1994-08-30 Cheng Chen Kuang Tire automatic pneumatic pump device
WO1997002961A1 (en) * 1995-07-10 1997-01-30 Cycloid Company Tire pressurizing and regulating apparatus
JPH11139118A (en) * 1997-11-07 1999-05-25 Sumitomo Electric Ind Ltd Tire pressure adjusting device
US5947696A (en) * 1996-07-31 1999-09-07 Hayes Lemmerz International, Inc. Wheel mounted tire pump with a reciprocating piston
JPH11264376A (en) * 1998-03-18 1999-09-28 Tokico Ltd Air compressor
WO2000076793A1 (en) * 1999-06-12 2000-12-21 Tahar Lahdiri Wheel having a tyre equipped with inflating means activated by the wheel rotation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP182436C2 (en) * 1948-09-22 1949-07-15
CN2146385Y (en) * 1992-08-20 1993-11-17 张练进 High-pressure automatic tyre-inflating pump for bicycles
CN2188661Y (en) * 1993-12-30 1995-02-01 冻慧安 Automatic micro-pressure-regulating pump
CN2205322Y (en) * 1994-01-13 1995-08-16 江西科源微型气泵有限公司 Full automatic inflation pump for bicycle
CN2216008Y (en) * 1994-04-28 1995-12-27 麦永光 Miniature automatic pressure regulating inflating pump for bicycle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415618A (en) * 1945-05-21 1947-02-11 William S West Pump
JPS392535B1 (en) * 1960-10-27 1964-03-11
JPS6166001U (en) * 1984-10-05 1986-05-07
JPS624617A (en) * 1985-06-29 1987-01-10 Nissan Motor Co Ltd Automatic regulating device for tire pressure
JPH01172003A (en) * 1987-12-25 1989-07-06 Honda Motor Co Ltd Air pressure supplementary device for tire
US5342177A (en) * 1992-04-01 1994-08-30 Cheng Chen Kuang Tire automatic pneumatic pump device
WO1997002961A1 (en) * 1995-07-10 1997-01-30 Cycloid Company Tire pressurizing and regulating apparatus
US5947696A (en) * 1996-07-31 1999-09-07 Hayes Lemmerz International, Inc. Wheel mounted tire pump with a reciprocating piston
JPH11139118A (en) * 1997-11-07 1999-05-25 Sumitomo Electric Ind Ltd Tire pressure adjusting device
JPH11264376A (en) * 1998-03-18 1999-09-28 Tokico Ltd Air compressor
WO2000076793A1 (en) * 1999-06-12 2000-12-21 Tahar Lahdiri Wheel having a tyre equipped with inflating means activated by the wheel rotation

Also Published As

Publication number Publication date
TW200500234A (en) 2005-01-01
CN1767960A (en) 2006-05-03
JPWO2004087442A1 (en) 2006-06-29
JP4538409B2 (en) 2010-09-08
CN100398347C (en) 2008-07-02
TWI343877B (en) 2011-06-21
AU2003289019A1 (en) 2004-10-25

Similar Documents

Publication Publication Date Title
WO2004087442A1 (en) Automatic air-feeding mechanism for pneumatic tire
CN204334222U (en) hub motor device
CN104066645B (en) Electric straddled vehicle
US10124631B2 (en) Dynamic tire pressure regulator for bicycles
CN205769953U (en) Hub motor device or there is the vehicle of hub motor device
CA2370679A1 (en) Tread wheel frame system
JP3860171B2 (en) Automatic pneumatic tire supply mechanism
WO2004087441A1 (en) Automatic air supply mechanism of pneumatic tire
CN103373173A (en) Self-locking deformation wheel with movable spoke
JP4223777B2 (en) Pneumatic feeder
US4360222A (en) Vehicle with pneumatic assembly for driving, braking, and reducing friction on bearings
AU2007354898A1 (en) Pneumatic sealing ring having an inner tube and expandable liner for a tube-type tire
US2189904A (en) Hydraulic brake for motorcycles and bicycles
JP4268845B2 (en) Wheel hub with automatic air supply
CN1003383B (en) Automatic aerator
US11603152B2 (en) Girocycle IX
CN201212476Y (en) Scroll compressor tire automatic inflation device
KR100798119B1 (en) bicycle
CN2433101Y (en) Breaked-ring-type inner tube for bicycle
CN205327266U (en) Ride strong pedal wind fire wheel
AU2005237125B2 (en) Wheelchair and One-Piece Molded Braking Support Wheel Therefor
US1218657A (en) Antiskid device for vehicle-wheels.
US611534A (en) Unicycle
GB2252598A (en) Pneumatic braking system e.g. for a cycle
TW201219262A (en) Pneumatic auxiliary dynamical system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase