WO2004086119A1 - Variable optical attenuator - Google Patents
Variable optical attenuator Download PDFInfo
- Publication number
- WO2004086119A1 WO2004086119A1 PCT/JP2004/003867 JP2004003867W WO2004086119A1 WO 2004086119 A1 WO2004086119 A1 WO 2004086119A1 JP 2004003867 W JP2004003867 W JP 2004003867W WO 2004086119 A1 WO2004086119 A1 WO 2004086119A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- insertion plate
- substrate
- optical waveguide
- driving mechanism
- slit
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/264—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting
- G02B6/266—Optical coupling means with optical elements between opposed fibre ends which perform a function other than beam splitting the optical element being an attenuator
Definitions
- the present invention relates to a variable optical attenuator used in an optical communication device, and more particularly, to a variable optical attenuator formed in an optical waveguide.
- the present invention relates to a variable optical attenuator provided with a detection mechanism for detecting an insertion position of an insertion plate that is inserted into and removed from a slit. Book
- variable optical attenuator uses a microelectromechanical system (MEMS) technology to move a micromirror attached to an optical waveguide into and out of a slit formed in the optical waveguide. The transmitted light amount of the light beam propagating in the wave path can be adjusted.
- MEMS microelectromechanical system
- FIG. 7 is a plan view of the optical beam variable attenuation adjusting device.
- FI G. 8 is the FI G. 7 in the axial direction of the optical waveguide! !
- I The vertical cross-sectional view of the optical beam variable attenuation adjustment device as viewed from the I-line
- FIG. 9 shows the optical beam variable attenuation adjustment as viewed from the X-] X-ray of the FI G. 7 perpendicular to the optical waveguide axis.
- It is a longitudinal cross-sectional view of an apparatus.
- an optical waveguide (core) 101 is formed on the upper surface of an insertion plate supporting board (also referred to as a first substrate) 112.
- a slit 102 is formed on the way to cross the optical waveguide.
- the insertion plate 103 is fixed and held at the distal end, and the insertion plate 103 can be inserted into and removed from the slit 102 by the operation of the insertion plate driving mechanism 111.
- reference numeral 113 denotes a storage part (space segment) for storing the insertion plate driving mechanism 111
- reference numeral 115 designates the insertion plate support substrate 114 for the waveguide support substrate 112. It is a supporting column.
- an insertion plate driving mechanism 111 which is in a warped condition by stress induction curling is used. Is fixed to the insertion plate driving mechanism support substrate 114 and has a cantilever structure in which the other end is a free end. A voltage is supplied to this cantilever to insert the insertion plate 103 and the waveguide support substrate 1. It is known that the insertion plate 103 is moved into the slit 102 by generating an electrostatic force between the slit 102 and the slit 12 (see FIG. 6 of US Pat. No. 6,195,478). 8, see column 7, line 25 to column 8, line 26).
- the insertion plate 103 shields the light incident on the optical waveguide 101 so that the transmitted light is attenuated.
- the relative position between the optical waveguide 101 and the input plate 103 determines the magnitude of the transmitted light output.
- the transmitted light output will not be constant due to a change in the warped state due to a temperature change.
- the temperature of the stress induced curling depends on how to make the insertion plate driving mechanism 1 1 1.
- the insertion plate driving mechanism 111 is formed so as to minimize the warpage in advance, fluctuations in the warpage due to temperature changes can be reduced, but the amount of warpage is reduced as much as possible.
- control of the manufacturing process to keep the amount of warpage within a certain range at all times.Maintaining reproducibility requires strict process control, resulting in a significant cost increase. There are big issues to be addressed.
- an optical beam variable attenuator generally requires a change in the degree of light attenuation from 0 dB to 30 dB, that is, a change of about one thousandth.
- the core diameter of the waveguide is set to 10 microns, and the optical attenuation is reduced in the optical beam variable attenuator according to the present invention, which obtains an attenuation effect by shielding the waveguide with the insertion plate.
- 10 dB if the fluctuation of the light beam attenuation due to temperature is to be 0.1 dB per degree, the position of the insertion plate must be suppressed to 0.1 microns per degree.
- the insertion plate drive mechanism that utilizes the warping state due to the above-described stress-induced curling, it depends on the length of the arm of the insertion plate drive mechanism, but is usually about 1 micron per degree, Extremely strict process control is required to control temperature fluctuations to within 0.1 micron, and this strict process control poses a challenge in manufacturing process control.
- the temperature factor that determines the amount of warpage of the insertion plate drive mechanism is not only the environmental temperature but also the subtle heat generated by the drive mechanism itself. Adds to the problem of increased disturbance.
- the variable attenuator to perform temperature compensation, the variable attenuator
- the temperature of the insertion plate is measured at multiple representative temperatures in advance, and the relationship between the temperature and the amount of warpage of the insertion plate drive mechanism is given, and the temperature of the insertion plate position is compensated for fluctuations in the actual measured temperature during operation. Is generally performed.
- This general example is shown in FIG.
- the optical beam variable attenuator shown in FIG. 10 incorporates a temperature detection circuit 201 and a temperature-to-position conversion control circuit 202. In this case, it is necessary to make the temperature measurement conditions as described above and the measurement temperature conditions when the relationship between the temperature and the amount of warpage described above is given in advance. In addition, when performing temperature measurement twice, there is a drawback that errors are increased due to complicated procedures, such as double errors.
- a variable light beam attenuator it is usually applied to multiple channels.
- the present invention has been made in view of the above-mentioned points of the prior art, and has as its object to adopt a novel temperature compensation method having a feature of basically eliminating the above-mentioned problem relating to temperature in principle. To provide a variable optical attenuator.
- the present invention provides a light beam propagating in an optical waveguide by inserting and removing an insertion plate (103) in a slit (102) crossing the optical waveguide (101).
- an insertion plate (103) in a slit (102) crossing the optical waveguide (101).
- the first substrate (1 1 2) on which the optical waveguide and the slit are formed and the insertion plate are held.
- Dispensing mechanism (301, 302, 401, 402, 501, 503, 504).
- variable optical attenuator is a feedback circuit (502) connecting the position detection mechanism and the insertion plate driving mechanism for controlling the insertion position of the insertion plate into the optical waveguide in accordance with the output of the position detection mechanism. ).
- the position detecting mechanism includes an electrode (301, 401) provided on the second substrate (114) or the first substrate and an electrode (302, 402) provided on the insertion plate driving mechanism (111). By detecting the distance between the electrodes using a change in reactance or a change in capacitance between the electrodes, the insertion position of the insertion plate (103) into the optical waveguide (101) can be detected.
- the position detecting mechanism includes a position detecting member (503) that is disposed near the insertion plate driving mechanism (111) and has the same shape and the same characteristics as the insertion plate driving mechanism. (114) A change in reactance or a change in capacitance between the electrode (301, 401) provided on the first substrate or the electrode (504) provided on the position detecting member (503). By detecting the distance between the electrodes, the insertion position of the insertion plate (103) into the optical waveguide (101) can be detected.
- the insertion plate driving mechanism (111) is preferably a cantilever member having one end fixed to the second substrate (114) and the insertion plate (103) attached to the other free end. Driven by magnetic force or electrostatic force.
- a technique for controlling the position of the optical waveguide core shielded by the insertion plate that is, the relative position between the insertion plate and the optical waveguide core, irrespective of temperature fluctuation, detection was performed using the relationship between the temperature and the amount of warpage given in advance.
- a technique for controlling the degree of warpage to a predetermined amount with respect to temperature is known as a conventional technique.
- a position change detection mechanism for detecting the insertion position of the insertion plate into the core of the optical waveguide is provided, and the position change detection mechanism detects the position of the insertion plate detected by the position change detection mechanism.
- the position of the insertion plate is controlled to drive, so that the relative position fluctuation between the insertion plate drive mechanism and the optical waveguide support substrate, which is mainly caused by a temperature change, is directly measured without measuring the temperature.
- the relative position change By controlling the relative position change, the attenuation of the light beam transmitted through the optical waveguide can be constantly controlled without being affected by the temperature fluctuation.
- the present invention is based on a change in electric capacitance or a change in reactance between an electrode provided on the insertion plate driving mechanism and an electrode provided on the insertion plate driving mechanism support substrate or the waveguide holding substrate.
- a feedback circuit that detects the insertion position of the insertion plate into the slit and drives and controls the insertion plate drive mechanism to move the insertion plate to a position where the amount of light beam attenuation is constant based on the detected position.
- the light beam attenuation can be kept constant, and the temperature of the device is not controlled or the temperature is not measured.
- FI.G. 1 is a plan view showing the configuration of the optical beam variable attenuation adjusting device according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing a cross-sectional structure of the light beam variable attenuation adjusting device along the line H- ⁇ in FIG.
- FIG. 3 is a plan view showing a configuration of a light beam variable attenuation adjusting device according to a second embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing a cross-sectional structure of the optical beam variable attenuation adjusting device along the line IV-IV of FIG.
- FIG. 5 is a schematic diagram showing an example in which a position control circuit is added to the configuration of the first or second embodiment of the present invention to form a feedback circuit.
- FIG. 6 is a diagram showing a configuration of an optical beam variable attenuation adjusting device according to a third embodiment of the present invention. It is a schematic diagram which shows an example to which a circuit was added.
- FIG. 7 is a plan view showing a configuration example of a conventional optical beam variable attenuation adjustment device using MEMS technology.
- FIG. 8 is a cross-sectional view showing a cross-sectional structure of the conventional optical beam variable attenuation adjusting device of FIG. 7 along the -I line.
- FIG. 9 is a cross-sectional view showing a cross-sectional structure of the conventional light beam variable attenuation adjustment device along line IX-IX of FIG.
- FIG. 10 is a schematic diagram showing a configuration in which a conventional temperature compensation circuit is added to a conventional optical beam variable attenuation adjustment device.
- FIG. 1 and FIG. 2 show the configuration of the optical beam variable attenuator according to the first embodiment of the present invention
- FIG. 1 is a plan view of this device
- FIG. One! ! -It is sectional drawing in ⁇ . Note that the cross-sectional structure along the waveguide of FIG. 1 is substantially the same as that of FIG.
- the optical beam variable attenuator of the present embodiment includes an optical waveguide core 101 on a waveguide support substrate 112, and an end of the optical waveguide core 101 has an incident side optical fiber 105 and It is connected to the transmission side optical fiber 106. Further, a slit 102 is formed substantially at the center of the optical waveguide core 101 so as to cross the optical waveguide.
- the insertion plate driving mechanism support substrate 114 is not shown for easy understanding of the drawing.
- an insertion plate driving mechanism housing (space) 113 formed on the upper surface of the waveguide support substrate 112 at a predetermined interval is provided.
- An insertion plate driving mechanism support substrate 114 is disposed opposite to the waveguide support substrate 112, and the insertion plate 103 includes an insertion plate driving mechanism (actuator unit) supported by the insertion plate driving mechanism support substrate 114. 1) Supported by 1 1.
- the spread area of the light beam extends not only in the core part but also in the cluster part in the vicinity thereof, so that the size of the insertion plate 103 is set in consideration of the spread area of the light beam.
- a micro mirror can be used as the insertion plate 103.
- the cantilevered insertion plate driving mechanism 1 1 1 has one upper end fixed to the insertion plate driving mechanism supporting substrate 1 14 and the other free end lifted by stress-induced curling. It moves up and down by electromagnetic force (Lorentz force) or electrostatic force.
- An insertion plate (also referred to as a shirt) 103 is fixed to the lower surface side of the free end, and the insertion plate 103 is pulled out and inserted in the opposed slit 102 by the vertical movement of the free end. Is A part of the light beam incident from the optical fiber core 108 and guided to the optical waveguide core 101 is shielded by the input plate 103 so that the amount of transmitted light is attenuated. Here, the attenuation of the light beam is naturally determined only by the relative position between the waveguide core 101 and the insertion plate 103.
- an optical beam variable attenuator capable of detecting the relative position between the insertion plate 103 and the waveguide core 101
- an insertion plate driving mechanism with a large temperature fluctuation is provided. Also in the apparatus, by performing feedback control using the relative position detection data, it is possible to obtain an effect equivalent to the conventional temperature compensation based on temperature detection in controlling the light beam attenuation.
- the position of the insertion plate 103 is moved on the insertion plate drive mechanism 111.
- One electrode 302 is arranged near the fixed end, and the other electrode 301 is arranged at an opposing position on the insertion plate driving mechanism support substrate 114, and the pair of electrodes 310 and 3 is arranged.
- a position change detection circuit 5 that can detect a change in the distance (gap) between the insertion plate driving mechanism 111 and the insertion plate driving mechanism support substrate 114 by measuring the capacitance between 0 and 2. 0 1 is provided.
- the above-mentioned gap that can be detected by the position change detection circuit 501 and the insertion plate 103 held at the tip of the insertion plate driving mechanism 111 that moves up and down at a certain fixed rate are basically fixed. Since the relationship of the relative position between the optical waveguide at the position and the core 101 becomes constant, The relative position between the insertion plate 103 and the optical waveguide core 101 can be detected by the change detection circuit 501. Actually, the relative position detection of the insertion plate 103 was configured as follows, and an experiment was performed.
- a bent portion is provided in the middle of the arm of the insertion plate driving mechanism 111, and when the vertical movement of the insertion plate 103 located at the waveguide core 101 is set to 10 microns, the electrode 301 and the electrode Adjust the length of the arm, the strength distribution of the arm and the electrode position, and adjust the electrode area so that the arm of the insertion plate driving mechanism 11 moves about 0.2 ⁇ m at the position of the pole 3 0 2.
- the value of both 0.1 and the electrode 302 was 0.04 square millimeter.
- the temperature coefficient of the insertion plate drive mechanism 1 1 is 1 micron.
- the position change detection circuit 501 can be said to be advantageous as a position detection device for a multi-channel optical beam variable attenuator.
- FIGS. 3 and 4 a description will be given of a second embodiment of the present invention using FIGS. 3 and 4 in a light beam variable attenuating device having a configuration as shown in FIGS. 8 and 9. It is more preferable to directly capture the relative position between the insertion plate 103 and the waveguide core 101. Therefore, in the second embodiment of the present invention shown in FIG. 3 and FIG. 4, The electrode 402 on the insertion plate driving mechanism 1 1 1 is placed near the pole of the insertion plate 103, and the other electrode 410 facing the electrode 402 is placed on the waveguide support substrate 112. It is formed on the edge of the slit 102.
- the change in electric capacitance is smaller than that in the first embodiment, but the change in the relative position of the insertion plate 103 with respect to the optical waveguide core 101 can be sufficiently grasped.
- the relative position between the input plate 103 and the waveguide core 101 is detected via the electrodes 401 and 402, and the electromagnetic force (port 1) is detected using the relative position detection data.
- the change in the relative position of the structure in the optical beam variable attenuation adjustment device is detected as the change in the electric capacity.
- the position detection is not limited to this. Instead, a method of detecting an inductive change in reactance can be used. Example of control system
- the electrode 310 is used as a position detecting mechanism for detecting the relative position between the input plate 103 and the waveguide core 101 by utilizing the fluctuation of the electric capacity and the like as described above.
- a feedback circuit is configured by using the electrode 302 (or the electrode 401 and the electrode 402), the position change detection circuit 501, and the insertion plate position control circuit 5-2.
- the insertion plate position control circuit 502 controls the movement of the insertion plate 103 to a position corresponding to the amount of attenuation of the light beam. Drive one.
- the temperature and the position measured in advance by detecting the temperature without using the conventional method of performing the temperature compensation by controlling the temperature to be constant based on the temperature detection can be used. Therefore, it is possible to realize a light beam attenuation adjustment device that is not affected by temperature without using a conventional method of compensating for the temperature by correcting the position of the insertion plate from the phase relationship.
- the feedback circuit shown in FIG. When the movement position of the insertion plate 103 was controlled by the road, the output fluctuation with respect to the temperature fluctuation could be kept within 0.15 dB / ° C.
- the device is not driven by the electromagnetic force, but has the same shape as the insertion plate driving mechanism 111, and
- the position detecting mechanism (monitor dummy mechanism) 503 having a large change in electric capacity by increasing the area of 504 is arranged near the insertion plate driving mechanism 111. It is more preferable that the position detecting mechanism 503 be formed in consideration of not only the shape and size of the insertion plate driving mechanism 111 but also the weight and mounting position of the insertion plate 103.
- the position change due to the temperature change of the position detecting mechanism 503 is detected by the position change detecting circuit 501 as a change in electric capacity, and in response to this detection, the insertion plate driving control circuit 505 with the position correcting circuit is used. ⁇
- the position of the insertion plate 103 is controlled by controlling the drive of the insertion plate driving mechanism 111.
- ⁇ ⁇ Corrects the relative position between the insertion plate 103 and the optical waveguide core 101.By using such an insertion plate drive control circuit 505 with a position correction circuit, position compensation is performed without temperature measurement. be able to.
- the position detecting mechanism 503 becomes the same as the insertion plate driving mechanism 1 1 1.
- the position detecting mechanism 503 becomes the same as the insertion plate driving mechanism 1 1 1.
- the position detection mechanism 503 is moved by 10 microns with respect to a temperature change of 0 ° C., it was possible to change the capacitance to 110 picofarads.
- the optical beam variable attenuation adjustment device using the position detection mechanism 503 to form a feedback control system as shown in FIG. 6 the temperature fluctuation of the light intensity attenuation is reduced to 0.1 dB without a compensation circuit for detecting the temperature. It could be controlled within Z ° C.
- the embodiment of the present invention is not limited to the above-described embodiment.
- Various modifications such as replacement, change, addition, increase / decrease in number, and change in shape are all included in the embodiments of the present invention.
- the position detecting mechanism of the insertion plate detects the distance between the electrodes by using a change in the capacitance.
- the present invention is not limited to this, and various reactances between the electrodes The distance between the electrodes may be detected using the change.
- a single-lens force can be used as the driving force of the insertion plate driving mechanism.
- the present invention is not limited to this.
- electrostatic force driving may be used.
- the insertion plate driving mechanism using the cantilever is illustrated, but various forms of actuators may be applied.
- the insertion plate is not limited to a mirror, but may be a shielding plate that absorbs light.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
Abstract
A variable optical attenuator in which problems related to temperature is wiped off principally and attenuation of a light beam passing through an optical waveguide can be controlled to constant regardless of temperature variation. A positional variation detecting mechanism for detecting the inserting position of an inserting plate into the core of the waveguide is provided and the position of the inserting plate is subjected to drive control depending on the position of the inserting plate detected by the positional variation detecting mechanism. Based on a variation in the electrical capacity or the reactance between an electrode provided in the inserting plate driving mechanism and an electrode provided on an inserting plate driving mechanism supporting board or a waveguide holding board, a detecting circuit detects the inserting position of the inserting plate into a slit. Based on the detected position, a feedback control circuit performs drive control of the inserting plate driving mechanism such that the inserting plate is moved to a position where attenuation of the light beam becomes constant.
Description
可変光減衰器 Variable optical attenuator
技術分野 Technical field
本発明は、 光通信ミ に使用する可変光減衰器 (variable optical attenuator) に関し、 より詳細には、 光導波路(optical waveguide)中に形成した 明 The present invention relates to a variable optical attenuator used in an optical communication device, and more particularly, to a variable optical attenuator formed in an optical waveguide.
スリツト内に出し入れする挿入板(insertion plate)の挿入位置を検出する検出機 構を備えた可変光減衰器に関する。 田 書 The present invention relates to a variable optical attenuator provided with a detection mechanism for detecting an insertion position of an insertion plate that is inserted into and removed from a slit. Book
景技術 Landscape technology
近年、 光通信システムにおいては、 光波長多重通信(optical wavelength multiplexing co腿 unication)が盛んに使われており、 そのために平面型アレイ光 導波回路 (planar arrayed waveguide circuit) を使用して波長の合波ならびに分 波が行われることが多い。 この回路を使用した場合、合波する前の各波長間の入力 強度を揃えたり、分波した後の出力強度を揃えたりするいわゆるィコライジング( 等化: equalizing) 機能に可変光減衰器が使われている。 可変光減衰装置は、 微小 電気機械システム (Micro Electro Mechanical System : MEMS) 技術を用いて 光導波路に対して取り付けた微小ミラーを、その光導波路中に形成したスリット内 に出し入れするという構成により、光導波路を伝搬する光ビ一ムの透過光量を調節 することができる。 In recent years, optical wavelength multiplexing (optical wavelength multiplexing) has been widely used in optical communication systems. For this reason, wavelength combining using a planar arrayed waveguide circuit has been performed. Waves and demultiplexing often occur. When this circuit is used, a variable optical attenuator is used for the so-called equalizing function that equalizes the input intensity between each wavelength before combining and the output intensity after demultiplexing. ing. The variable optical attenuator uses a microelectromechanical system (MEMS) technology to move a micromirror attached to an optical waveguide into and out of a slit formed in the optical waveguide. The transmitted light amount of the light beam propagating in the wave path can be adjusted.
F I Gs. 7〜9は、 MEMS技術を用いた従来の光ビーム可変減衰調整装置( optical beam variable attenuation regulator) の構成例を示す。 F I G. 7は 、光ビーム可変減衰調整装置の平面図である。 F I G. 8は光導波路の軸方向の F I G. 7の!!一 I線から見た光ビーム可変減衰調整装置の縦断面図、 F I G. 9は 、光導波路の軸に垂直な F I G. 7の] X— ] X線から見た光ビーム可変減衰調整装置 の縦断面図である。
F I Gs. 7〜9に示すように、 導波路支持基板 (insertion plate supporting board; 第 1の基板とも称する) 1 1 2の上面に光導波路 (コア) 10 1が形成さ れ、その光導波路の途中にスリット 1 02がその光導波路を横切る形態で形成され ている。 FI Gs. 7 to 9 show configuration examples of a conventional optical beam variable attenuation regulator using MEMS technology. FIG. 7 is a plan view of the optical beam variable attenuation adjusting device. FI G. 8 is the FI G. 7 in the axial direction of the optical waveguide! ! I The vertical cross-sectional view of the optical beam variable attenuation adjustment device as viewed from the I-line, FIG. 9 shows the optical beam variable attenuation adjustment as viewed from the X-] X-ray of the FI G. 7 perpendicular to the optical waveguide axis. It is a longitudinal cross-sectional view of an apparatus. As shown in FI Gs. 7 to 9, an optical waveguide (core) 101 is formed on the upper surface of an insertion plate supporting board (also referred to as a first substrate) 112. A slit 102 is formed on the way to cross the optical waveguide.
一方、 F I G. 8, F I G. 9に示すように、 挿入板支持基板 (第 2の基板とも 称する) 1 1 4に取り付けられた揷入板駆動機構 (insertion plate driving mechanism) 1 1 1の先端部分に揷入板 103が固定されて保持されており、 その 挿入板 103は、揷入板駆動機構 1 1 1の作動によりスリット 102内に抜き差し できるようになつている。 ここで、 1 13は挿入板駆動機構 1 1 1を収納するため の収納部 (空間部; space segment) であり、 1 1 5は挿入板支持基板 1 14を導 波路支持基板 1 12に対して支える支柱である。 On the other hand, as shown in FI G. 8 and FI G. 9, the insertion plate driving mechanism (also referred to as the second substrate) 114 attached to the insertion plate support substrate 114 The insertion plate 103 is fixed and held at the distal end, and the insertion plate 103 can be inserted into and removed from the slit 102 by the operation of the insertion plate driving mechanism 111. Here, reference numeral 113 denotes a storage part (space segment) for storing the insertion plate driving mechanism 111, and reference numeral 115 designates the insertion plate support substrate 114 for the waveguide support substrate 112. It is a supporting column.
挿入板 103の駆動機構としては、 F I G. 9に示すように、例えばストレス誘 導カーリング (stress induction curling) により予め反り状態 (waiting condition)にある揷入板駆動機構 11 1を、その一端部が挿入板駆動機構支持基板 114に固定され、 その他端部が自由端となる片持ち梁 (cantilever)の構造とし、 この片持ち梁に電圧を供給して、挿入板 103と導波路支持基板 1 12との間で静 電気力を発生させることで、挿入板 1 03をスリット 102内へ移動する構成のも のなどが知られている (米国特許第 6, 195, 478号公報の F I G.8、 明細 書 7段 25行〜 8段 26行を参照)。 As a driving mechanism of the insertion plate 103, as shown in FIG. 9, for example, an insertion plate driving mechanism 111 which is in a warped condition by stress induction curling is used. Is fixed to the insertion plate driving mechanism support substrate 114 and has a cantilever structure in which the other end is a free end. A voltage is supplied to this cantilever to insert the insertion plate 103 and the waveguide support substrate 1. It is known that the insertion plate 103 is moved into the slit 102 by generating an electrostatic force between the slit 102 and the slit 12 (see FIG. 6 of US Pat. No. 6,195,478). 8, see column 7, line 25 to column 8, line 26).
ところで、上記の MEMS技術を用いた揷入板をスリット内に挿入するタイプの 光ビーム可変減衰調整装置においては、光導波路 101に入射する光を挿入板 10 3が遮蔽することにより透過光の減衰量を調整するため、光導波路 10 1と揷入板 103の相対位置が透過光出力の大小を決定する。一定の減衰量を得るには、光導 波路 101と揷入板 103の位置を一定にする必要がある。 By the way, in the light beam variable attenuation adjusting device of the type in which the insertion plate is inserted into the slit using the MEMS technology described above, the insertion plate 103 shields the light incident on the optical waveguide 101 so that the transmitted light is attenuated. In order to adjust the amount, the relative position between the optical waveguide 101 and the input plate 103 determines the magnitude of the transmitted light output. In order to obtain a constant attenuation, it is necessary to keep the positions of the optical waveguide 101 and the input plate 103 constant.
しかしながら、上述したストレス誘導カーリングにより予め反り状態にある挿入 板駆動機構 1 1 1においては、温度変化による反り状態の変動により、透過光出力 が一定にならないことになる。 もちろん、ストレス誘導カーリングの反り状態の温
度変化による変動は、 挿入板駆動機構 1 1 1の作り方で変わる。すなわち、 あらか じめ反り状態を極力減らすようにして揷入板駆動機構 1 1 1を形成すれば、温度変 化による反り状態の変動を低減することはできるが、反りの量を極力低減し、かつ その反りの量を常に一定の範囲以内に維持する為の製作プロセスの制御 ·再現性の 維持には、 厳密なプロセス制御を必要とし、その結果、 大幅なコスト増を伴うとい う解決すべき大きな課題がある。 However, in the insertion plate driving mechanism 111 that has been warped in advance due to the stress-induced curling described above, the transmitted light output will not be constant due to a change in the warped state due to a temperature change. Of course, the temperature of the stress induced curling The variation due to the degree change depends on how to make the insertion plate driving mechanism 1 1 1. In other words, if the insertion plate driving mechanism 111 is formed so as to minimize the warpage in advance, fluctuations in the warpage due to temperature changes can be reduced, but the amount of warpage is reduced as much as possible. And control of the manufacturing process to keep the amount of warpage within a certain range at all times.Maintaining reproducibility requires strict process control, resulting in a significant cost increase. There are big issues to be addressed.
例えば、 光ビーム可変減衰装置においては、 一般に、 光減衰の程度を 0デシベル から 3 0デシベルへ、すなわち約千分の 1程度の変化を必要とする。挿入板で導波 路を遮蔽して減衰効果を得る本発明が対象とする光ビーム可変減衰装置において は、 説明の簡単のために、 導波路のコア径を 1 0ミクロンとし、光減衰量が 1 0デ シベルとした場合に、温度による光ビーム減衰量変動を 1度あたり 0 . 1デシベル にするには、挿入板の位置を 1度あたり 0 . 1ミクロンの変動に抑える必要がある For example, an optical beam variable attenuator generally requires a change in the degree of light attenuation from 0 dB to 30 dB, that is, a change of about one thousandth. For the purpose of simplicity, the core diameter of the waveguide is set to 10 microns, and the optical attenuation is reduced in the optical beam variable attenuator according to the present invention, which obtains an attenuation effect by shielding the waveguide with the insertion plate. In the case of 10 dB, if the fluctuation of the light beam attenuation due to temperature is to be 0.1 dB per degree, the position of the insertion plate must be suppressed to 0.1 microns per degree.
。上記のストレス誘導カーリングによる反り状態を利用する挿入板駆動機構の場合 には、その挿入板駆動機構の腕の長さによっても異なるが、大抵は 1度あたり 1ミ クロン程度であり、 1度あたり 0 . 1ミクロン以内に温度による変動を抑えるため にはきわめて厳密なプロセス制御が必要となり、この厳密なプロセス制御は製造ェ 程管理上の難題となる。 . In the case of the insertion plate drive mechanism that utilizes the warping state due to the above-described stress-induced curling, it depends on the length of the arm of the insertion plate drive mechanism, but is usually about 1 micron per degree, Extremely strict process control is required to control temperature fluctuations to within 0.1 micron, and this strict process control poses a challenge in manufacturing process control.
そこで、上記の難題を回避する方法として、光ビーム可変減衰装置の温度を制御 して、上述のような温度による光ビ一ム減衰量の変動を抑えることが一般に行われ る。 同一の温度計測条件で温度を厳密に制御して、 一度あたり 0 . 1ミクロン以内 に変動を抑えるには、 少なくとも ± 0 . 0 5度の温度制御が必要になる。 しかし、 このような温度制御は、 高級な温度制御に属し、 コスト上昇の要因となり、簡便に 利用できるものではない。 Therefore, as a method of avoiding the above-mentioned problem, it is common practice to control the temperature of the light beam variable attenuator to suppress the fluctuation of the light beam attenuation due to the above-mentioned temperature. To control the temperature strictly under the same temperature measurement conditions and suppress the fluctuation to within 0.1 micron at a time, a temperature control of at least ± 0.05 degrees is required. However, such temperature control belongs to high-grade temperature control, causes a cost increase, and cannot be used easily.
しかも、挿入板駆動機構の反り量を決める温度要因は、環境温度のみならず駆動 機構自身の微妙な発熱もあり、そのため環境温度の制御のみだけで挿入板位置を制 御することの制御性に関しては、 外乱が多くなるという課題も付け加わる。 Moreover, the temperature factor that determines the amount of warpage of the insertion plate drive mechanism is not only the environmental temperature but also the subtle heat generated by the drive mechanism itself. Adds to the problem of increased disturbance.
また、 光ビーム可変減衰装置において、 温度補償を行うには、 当該可変減衰装置
の温度をあらかじめ複数の代表的温度で測定して、温度と挿入板駆動機構の反り量 の関係を与えておき、動作時の実際の温度計測値の変動に対する挿入板位置の温度 補償を行うことが一般に行われる。 この一般例を、 F I G. 1 0に示す。 F I G. 1 0に示す光ビーム可変減衰装置には、温度検出回路 2 0 1と温度対位置変換制御 回路 2 0 2とが組み込まれている。 この場合、 上記のような温度計測の条件、 なら びに前述した温度対そり量の関係をあらかじめ与える際の計測の温度条件を同一 にすることが必要となる。加えて、温度の計測を 2度行う際には、誤差が 2重化す ること等、 手順の複雑化によつて誤差が増大するという難点を伴う。 Also, in the optical beam variable attenuator, to perform temperature compensation, the variable attenuator The temperature of the insertion plate is measured at multiple representative temperatures in advance, and the relationship between the temperature and the amount of warpage of the insertion plate drive mechanism is given, and the temperature of the insertion plate position is compensated for fluctuations in the actual measured temperature during operation. Is generally performed. This general example is shown in FIG. The optical beam variable attenuator shown in FIG. 10 incorporates a temperature detection circuit 201 and a temperature-to-position conversion control circuit 202. In this case, it is necessary to make the temperature measurement conditions as described above and the measurement temperature conditions when the relationship between the temperature and the amount of warpage described above is given in advance. In addition, when performing temperature measurement twice, there is a drawback that errors are increased due to complicated procedures, such as double errors.
また、光ビーム可変減衰装置では通常多チャンネルに適用される。 この場合、 各 チャンネルの光ビーム可変減衰装置の間に生ずる発熱によって生ずる熱流が、隣接 チャネルの挿入板に与える温度変動を、前述のあらかじめ与える温度対そり量の関 係式に含めることは、 関係式の多変数化によって手順の複雑さ、条件の複雑化さに よって現実的には不可能な方法になるという課題を含んでいる為に、チャネル間の 発熱の相互干渉による変動は無視せざるを得ないという点がある。 発明の開示 Also, in a variable light beam attenuator, it is usually applied to multiple channels. In this case, it is necessary to include the temperature fluctuation given to the insertion plate of the adjacent channel by the heat flow generated by the heat generated between the optical beam variable attenuators in each channel in the above-mentioned relation between the temperature and the amount of warpage given in advance. Includes the problem that the procedure becomes complicated due to the multi-variable equations and the complexity of the conditions makes it impractical.Therefore, fluctuations due to mutual interference of heat generation between channels must be ignored There is a point that you do not get. Disclosure of the invention
本発明は、 従来技術の上述のような点に鑑みてなされたもので、 その目的は、 上 述のような主に温度に関する課題を原理的に払拭する特徴を持つ新規な温度補償 方式を採用した可変光減衰器を提供することにある。 The present invention has been made in view of the above-mentioned points of the prior art, and has as its object to adopt a novel temperature compensation method having a feature of basically eliminating the above-mentioned problem relating to temperature in principle. To provide a variable optical attenuator.
上記目的を達成するために、 本発明は、 光導波路 (1 0 1 ) を横断するスリット ( 1 0 2 ) 内に挿入板(1 0 3〉 を抜き差しすることにより光導波路中を伝播する 光ビームの少なくとも一部を遮断してその透過光量を調整する可変光減衰器にお いて、 光導波路とスリットが形成された第 1の基板 (f irst board) ( 1 1 2 ) と、 挿入板を保持してその挿入板をスリット内で移動させる挿入板駆動機構 (1 1 1 ) と、挿入板がスリット内に抜き差し可能なように第 1の基板に所定の間隙をおいて 対向して配置され、 かつ揷入板駆動機構が取り付けられた第 2の基板 (second board) ( 1 1 4 ) とを有し、 かつ挿入板の光導波路への挿入位置を検出する位置検
出機構 (301、 302、 401、 402、 501、 503、 504) を有するこ とを特徴とする。 In order to achieve the above object, the present invention provides a light beam propagating in an optical waveguide by inserting and removing an insertion plate (103) in a slit (102) crossing the optical waveguide (101). In a variable optical attenuator that blocks at least a part of the optical fiber and adjusts the amount of transmitted light, the first substrate (1 1 2) on which the optical waveguide and the slit are formed and the insertion plate are held. And an insertion plate driving mechanism (11 1) for moving the insertion plate in the slit, and an insertion plate that is disposed opposite to the first substrate with a predetermined gap so that the insertion plate can be inserted into and removed from the slit, And a second board (114) to which an insertion plate drive mechanism is attached, and a position detection device for detecting an insertion position of the insertion plate into the optical waveguide. Dispensing mechanism (301, 302, 401, 402, 501, 503, 504).
可変光減衰器は、位置検出機構の出力に応じて挿入板の光導波路への挿入位置が 一定になるように制御するための、位置検出機構と挿入板駆動機構とを結ぶ帰還回 路 (502) を更に有することができる。 The variable optical attenuator is a feedback circuit (502) connecting the position detection mechanism and the insertion plate driving mechanism for controlling the insertion position of the insertion plate into the optical waveguide in accordance with the output of the position detection mechanism. ).
位置検出機構は、 第 2の基板(114)上または第 1の基板上に設けられた電極 (301, 401) と挿入板駆動機構 (1 11) 上に設けられた電極 (302, 4 02)との間のリアクタンス変化または電気容量変ィ匕を用いて電極間距離を検知す ることにより挿入板(103) の光導波路 (101) への揷入位置を検出すること ができる。 The position detecting mechanism includes an electrode (301, 401) provided on the second substrate (114) or the first substrate and an electrode (302, 402) provided on the insertion plate driving mechanism (111). By detecting the distance between the electrodes using a change in reactance or a change in capacitance between the electrodes, the insertion position of the insertion plate (103) into the optical waveguide (101) can be detected.
また、 位置検出機構は、 挿入板駆動機構 (1 1 1) の近傍に配置されて、 挿入板 駆動機構と同一形状で同一特性の位置検出用部材(503) を含んでいて、 第 2の 基板 (114) 上または第 1の基板上に設けられた電極 (301, 401) と位置 検出用部材(503) 上に設けられた電極 (504) との間のリアクタンス変化ま たは電気容量変化を用いて、 電極間距離を検知することにより挿入板(103) の 光導波路 (101) への揷入位置を検出することができる。 The position detecting mechanism includes a position detecting member (503) that is disposed near the insertion plate driving mechanism (111) and has the same shape and the same characteristics as the insertion plate driving mechanism. (114) A change in reactance or a change in capacitance between the electrode (301, 401) provided on the first substrate or the electrode (504) provided on the position detecting member (503). By detecting the distance between the electrodes, the insertion position of the insertion plate (103) into the optical waveguide (101) can be detected.
挿入板駆動機構 (1 11) は、 好ましくは、 その一端を第 2の基板 (114) に 固定し、 他方の自由端に揷入板(103) を取り付けた片持ち梁状部材であり、 電 磁力または静電力により駆動する。 The insertion plate driving mechanism (111) is preferably a cantilever member having one end fixed to the second substrate (114) and the insertion plate (103) attached to the other free end. Driven by magnetic force or electrostatic force.
光導波路コアの挿入板による遮蔽位置、すなわち挿入板と光導波路コアとの相 対位置を温度変動にかかわらず一定に制御する手法として、予め与えた温度と反り 量の関係を用いて、検知した温度に対して反り程度を所定の量に制御する手法が従 来技術として知られる。 これに対し、 本発明では、 上記のように、 挿入板の光導波 路のコアへの挿入位置を検出する位置変化検出機構を設け、この位置変化検出機構 により検出した揷入板の検出位置に応じて、挿入板の位置を駆動制御するように構 成しているので、主に温度変化により生じる挿入板駆動機構と光導波路支持基板と の相対位置変動を、温度を計測することなしに直接検出することができ、読み取つ
た相対位置変化を制御することで、温度変動に影響されずに、光導波路を透過する 光ビーム減衰量を常に一定に制御することができる。 As a technique for controlling the position of the optical waveguide core shielded by the insertion plate, that is, the relative position between the insertion plate and the optical waveguide core, irrespective of temperature fluctuation, detection was performed using the relationship between the temperature and the amount of warpage given in advance. A technique for controlling the degree of warpage to a predetermined amount with respect to temperature is known as a conventional technique. In contrast, in the present invention, as described above, a position change detection mechanism for detecting the insertion position of the insertion plate into the core of the optical waveguide is provided, and the position change detection mechanism detects the position of the insertion plate detected by the position change detection mechanism. Accordingly, the position of the insertion plate is controlled to drive, so that the relative position fluctuation between the insertion plate drive mechanism and the optical waveguide support substrate, which is mainly caused by a temperature change, is directly measured without measuring the temperature. Can detect and read By controlling the relative position change, the attenuation of the light beam transmitted through the optical waveguide can be constantly controlled without being affected by the temperature fluctuation.
さらに、 本発明は、 上記のように、 挿入板駆動機構に設けた電極と挿入板駆動機 構支持基板あるいは導波路保持基板に設けた電極との間の電気容量変化、あるいは リアクタンス変化に基いて、挿入板のスリット内への揷入位置を検出し、その検出 位置に基づいて挿入板を光ビーム減衰量が一定になる位置に移動するように挿入 板駆動機構を駆動制御する帰還回路を備えているので、光ビーム減衰量を一定にす ることができ、かつ装置の温度制御をすることも、 あるいは温度測定をすることも なく、 従来装置と比べて、 比較的に簡潔な構成で、 かつ廉価に、 温度変動に左右さ れない光ビーム可変減衰調整装置を実現することができる。 図面の簡単な説明 Further, as described above, the present invention is based on a change in electric capacitance or a change in reactance between an electrode provided on the insertion plate driving mechanism and an electrode provided on the insertion plate driving mechanism support substrate or the waveguide holding substrate. A feedback circuit that detects the insertion position of the insertion plate into the slit and drives and controls the insertion plate drive mechanism to move the insertion plate to a position where the amount of light beam attenuation is constant based on the detected position. As a result, the light beam attenuation can be kept constant, and the temperature of the device is not controlled or the temperature is not measured. In addition, it is possible to realize an inexpensive optical beam variable attenuation adjustment device that is not affected by temperature fluctuations. BRIEF DESCRIPTION OF THE FIGURES
F I .G. 1は、本発明の第 1の実施形態の光ビーム可変減衰調整装置の構成を示 す平面図である。 FI.G. 1 is a plan view showing the configuration of the optical beam variable attenuation adjusting device according to the first embodiment of the present invention.
F I G. 2は、 F I G. 1の H— Π線に沿う光ビーム可変減衰調整装置の断面構 造を示す断面図である。 FIG. 2 is a cross-sectional view showing a cross-sectional structure of the light beam variable attenuation adjusting device along the line H-Π in FIG.
F I G. 3は、本発明の第 2の実施形態の光ビーム可変減衰調整装置の構成を示 す平面図である。 FIG. 3 is a plan view showing a configuration of a light beam variable attenuation adjusting device according to a second embodiment of the present invention.
F I G. 4は、 F I G. 3の IV— IV線に沿う光ビーム可変減衰調整装置の断面構 造を示す断面図である。 FIG. 4 is a cross-sectional view showing a cross-sectional structure of the optical beam variable attenuation adjusting device along the line IV-IV of FIG.
F I G. 5は、本発明の第 1または第 2の実施形態の構成に位置制御回路を付加 し、 帰還回路を形成した一例を示す模式図である。 FIG. 5 is a schematic diagram showing an example in which a position control circuit is added to the configuration of the first or second embodiment of the present invention to form a feedback circuit.
F I G. 6は、本発明の第 3の実施形態の光ビ一ム可変減衰調整装置の構成を示 す図で、別置きタイプの位置検出装置を備えた光ビーム減衰装置に位置補正用制御 回路を付加した一例を示す模式図である。 FIG. 6 is a diagram showing a configuration of an optical beam variable attenuation adjusting device according to a third embodiment of the present invention. It is a schematic diagram which shows an example to which a circuit was added.
F I G. 7は、 MEM S技術を用いた従来の光ビーム可変減衰調整装置の構成例 を示す平面図である。
F I G. 8は、 F I G. 7の,— I線に沿う従来の光ビーム可変減衰調整装置の 断面構造を示す断面図である。 FIG. 7 is a plan view showing a configuration example of a conventional optical beam variable attenuation adjustment device using MEMS technology. FIG. 8 is a cross-sectional view showing a cross-sectional structure of the conventional optical beam variable attenuation adjusting device of FIG. 7 along the -I line.
F I G. 9は、 F I G. 7の IX— IX線に沿う従来の光ビーム可変減衰調整装置の 断面構造を示す断面図である。 FIG. 9 is a cross-sectional view showing a cross-sectional structure of the conventional light beam variable attenuation adjustment device along line IX-IX of FIG.
F I G. 10は、従来の光ビーム可変減衰調整装置に従来の温度補償回路を付加 した構成を示す模式図である。 発明を実施するための最良の形態 FIG. 10 is a schematic diagram showing a configuration in which a conventional temperature compensation circuit is added to a conventional optical beam variable attenuation adjustment device. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、図面を参照して本発明を実施するための好ましい形態を詳細に説明する Hereinafter, preferred embodiments for carrying out the present invention will be described in detail with reference to the drawings.
第 1の実施形態 First embodiment
F I G. 1および F I G. 2は、 本発明の第 1の実施形態における光ビーム可変 減衰装置の構成を示し、 F I G. 1はこの装置の平面図、 F I G. 2は、 F I G. 1の!!— Πにおける断面図である。なお、 F I G. 1の導波路に沿う断面構造は前 述した F I G. 8と略同様なので、 その図示は省略する。 FIG. 1 and FIG. 2 show the configuration of the optical beam variable attenuator according to the first embodiment of the present invention, FIG. 1 is a plan view of this device, and FIG. One! ! -It is sectional drawing in Π. Note that the cross-sectional structure along the waveguide of FIG. 1 is substantially the same as that of FIG.
F I G. 1に示すように、 本実施形態の光ビーム可変減衰装置は、導波路支持基 板 112上に光導波路コア 101を備え、光導波路コア 101の端部が入射側光フ アイパー 105および透過側光ファイバ一 106に接続されている。 また、光導波 路コア 101のほぼ中央部には光導波路を横断するようにスリット 102が形成 されている。 なお、 F I G. 1においては、 図面を分かりやすくするため、 挿入板 駆動機構支持基板 114の図示は省略されている。 As shown in FIG. 1, the optical beam variable attenuator of the present embodiment includes an optical waveguide core 101 on a waveguide support substrate 112, and an end of the optical waveguide core 101 has an incident side optical fiber 105 and It is connected to the transmission side optical fiber 106. Further, a slit 102 is formed substantially at the center of the optical waveguide core 101 so as to cross the optical waveguide. In FIG. 1, the insertion plate driving mechanism support substrate 114 is not shown for easy understanding of the drawing.
さらに、 F I G. 2に示すように、 導波路支持基板 112の上面に予め決められ た間隔を開けて作られた挿入板駆動機構収容部 (insertion plate driving mechanism housing; 空間部) 113を介して、 揷入板駆動機構支持基板 114が 導波路支持基板 112に対向して配置されており、挿入板 103は、 この挿入板駆 動機構支持基板 114に支持された挿入板駆動機構(ァクチユエ一夕ともいう) 1
1 1によって支持されている。 Further, as shown in FIG. 2, an insertion plate driving mechanism housing (space) 113 formed on the upper surface of the waveguide support substrate 112 at a predetermined interval is provided. An insertion plate driving mechanism support substrate 114 is disposed opposite to the waveguide support substrate 112, and the insertion plate 103 includes an insertion plate driving mechanism (actuator unit) supported by the insertion plate driving mechanism support substrate 114. 1) Supported by 1 1.
なお、光ビームの広がり域はコア部分だけでなく、その近傍のクラスタ部分にも 広がっているので、この光ビームの広がり域を考慮して揷入板 1 0 3の大きさが設 定される。 また、 挿入板 1 0 3として例えば微小ミラーを用いることができる。 片持ち梁構成の挿入板駆動機構 1 1 1は、その上方側の一端が揷入板駆動機構支 持基板 1 1 4に固定され、もう一端の自由端がストレス誘導カーリングによって持 ち上がっており、 電磁力 (ローレンツ力) あるいは静電力によって上下するように なっている。その自由端の下面側に挿入板(シャツ夕ともいう) 1 0 3が固定され ており、自由端の上下動によって揷入板 1 0 3は対向しているスリツト 1 0 2内で 抜き差しが行われる。光ファイバ一コア 1 0 8から入射して光導波路コア 1 0 1に 導かれた光ビームの一部を揷入板 1 0 3により遮蔽されることにより透過光量の 減衰動作が行われる。 ここで、 光ビームの減衰量は、 当然のことながら導波路コア 1 0 1と揷入板 1 0 3の相対位置によってのみ決まる。 Note that the spread area of the light beam extends not only in the core part but also in the cluster part in the vicinity thereof, so that the size of the insertion plate 103 is set in consideration of the spread area of the light beam. . Also, for example, a micro mirror can be used as the insertion plate 103. The cantilevered insertion plate driving mechanism 1 1 1 has one upper end fixed to the insertion plate driving mechanism supporting substrate 1 14 and the other free end lifted by stress-induced curling. It moves up and down by electromagnetic force (Lorentz force) or electrostatic force. An insertion plate (also referred to as a shirt) 103 is fixed to the lower surface side of the free end, and the insertion plate 103 is pulled out and inserted in the opposed slit 102 by the vertical movement of the free end. Is A part of the light beam incident from the optical fiber core 108 and guided to the optical waveguide core 101 is shielded by the input plate 103 so that the amount of transmitted light is attenuated. Here, the attenuation of the light beam is naturally determined only by the relative position between the waveguide core 101 and the insertion plate 103.
以下に説明するように、挿入板 1 0 3と導波路コア 1 0 1の相対位置を検出する ことのできる光ビーム可変減衰装置を構成すれば、温度変動の大きな挿入板駆動機 構を抱いた装置においても、その相対位置検出データを用いて帰還制御をすること により、光ビーム減衰量の制御において従来の温度検出に基く温度補償と同等の効 果を得ることができる。 As described below, if an optical beam variable attenuator capable of detecting the relative position between the insertion plate 103 and the waveguide core 101 is constructed, an insertion plate driving mechanism with a large temperature fluctuation is provided. Also in the apparatus, by performing feedback control using the relative position detection data, it is possible to obtain an effect equivalent to the conventional temperature compensation based on temperature detection in controlling the light beam attenuation.
F I G. 2に示すように、挿入板 1 0 3と導波路コア 1 0 1の相対位置を検出す るために、挿入板 1 0 3の位置を移動させる挿入板駆動機構 1 1 1上の固定端の近 傍に一方の電極 3 0 2を配置し、挿入板駆動機構支持基板 1 1 4上の対向位置に他 方の電極 3 0 1を配置し、これら一対の電極 3 0 1と 3 0 2の間の電気容量を測定 することによって、挿入板駆動機構 1 1 1と挿入板駆動機構支持基板 1 1 4間の距 離 (間隙) の変化を検出することのできる位置変化検出回路 5 0 1を備えている。 その位置変化検出回路 5 0 1によって検出できる上記の間隙と、ある一定の比率 で上下動する挿入板駆動機構 1 1 1の先端部に保持された揷入板 1 0 3と、基本的 に定位置にある光導波路のコア 1 0 1との相対位置の関係は一定になるので、位置
変化検出回路 5 0 1により揷入板 1 0 3と光導波路コア 1 0 1の相対位置を検出 することができる。実際には、揷入板 1 0 3の相対位置検出を次のようにして構成 し、 実験した。 As shown in FIG. 2, in order to detect the relative position between the insertion plate 103 and the waveguide core 101, the position of the insertion plate 103 is moved on the insertion plate drive mechanism 111. One electrode 302 is arranged near the fixed end, and the other electrode 301 is arranged at an opposing position on the insertion plate driving mechanism support substrate 114, and the pair of electrodes 310 and 3 is arranged. A position change detection circuit 5 that can detect a change in the distance (gap) between the insertion plate driving mechanism 111 and the insertion plate driving mechanism support substrate 114 by measuring the capacitance between 0 and 2. 0 1 is provided. The above-mentioned gap that can be detected by the position change detection circuit 501 and the insertion plate 103 held at the tip of the insertion plate driving mechanism 111 that moves up and down at a certain fixed rate are basically fixed. Since the relationship of the relative position between the optical waveguide at the position and the core 101 becomes constant, The relative position between the insertion plate 103 and the optical waveguide core 101 can be detected by the change detection circuit 501. Actually, the relative position detection of the insertion plate 103 was configured as follows, and an experiment was performed.
まず、挿入板駆動機構 1 1 1の腕の途中に曲がり部を設け、導波路コア 1 0 1に 位置する挿入板 1 0 3の上下移動を 1 0ミクロンとしたとき、電極 3 0 1および電 極 3 0 2の位置で挿入板駆動機構 1 1 1の腕が 0 . 2ミクロン程度移動するように 、その腕の長さとその腕の強度分布および電極位置を調整し、かつ電極面積を電極 3 0 1および電極 3 0 2ともに 0 . 0 4平方ミリメートルとした。 このとき、 揷入 板駆動機構 1 1 1の温度係数は 1ミクロンノ。 Cであった。このような構成において 、揷入ネ反 1 0 3が揷入板駆動機構支持基板 1 1 4に一番近づいたときの電気容量と 、この状態から揷入板 1 0 3が 1 0ミクロンだけ駆動機構支持基板 1 1 4から離れ たときの電気容量との差を測定したところ、 4 5ピコファラッドの変化を得ること ができた。 この結果、 電気容量と揷入板の移動の比は、 0 . 2ミクロン Zピコファ ラッドになるため、上記温度係数であれば 1ピコファラッドあたり 0 . 2 °Cの検出 と同等の効果を得ることができる。 First, a bent portion is provided in the middle of the arm of the insertion plate driving mechanism 111, and when the vertical movement of the insertion plate 103 located at the waveguide core 101 is set to 10 microns, the electrode 301 and the electrode Adjust the length of the arm, the strength distribution of the arm and the electrode position, and adjust the electrode area so that the arm of the insertion plate driving mechanism 11 moves about 0.2 μm at the position of the pole 3 0 2. The value of both 0.1 and the electrode 302 was 0.04 square millimeter. At this time, the temperature coefficient of the insertion plate drive mechanism 1 1 is 1 micron. C. In such a configuration, the electric capacity when the insertion plate 103 comes closest to the input plate driving mechanism support substrate 114, and the input plate 103 is driven by 10 microns from this state. When the difference from the capacitance when the substrate was separated from the mechanism support substrate 114 was measured, a change of 45 picofarads was obtained. As a result, the ratio of the capacitance to the movement of the input plate becomes 0.2 micron Z picofarad, so that with the above temperature coefficient, an effect equivalent to detection of 0.2 ° C per picofarad can be obtained. Can be.
したがって、 F I G. 2に示すような構成であれば、 温度測定が不要となって簡 単に揷入板 1 0 3の位置検出をすることができ、しかも複数の挿入板の各位置に対 しても同様に位置検出ができるので、本発明による位置変化検出回路 5 0 1は、多 チャンネルの光ビーム可変減衰装置用の位置検出装置として好都合であるといえ る。 第 2の実施形態 Therefore, with the configuration shown in FIG. 2, temperature measurement is not required, and the position of the insertion plate 103 can be easily detected. In addition, each position of a plurality of insertion plates can be detected. Therefore, the position change detection circuit 501 according to the present invention can be said to be advantageous as a position detection device for a multi-channel optical beam variable attenuator. Second embodiment
次に、 F I G. 3および F I G. 4を用いて本発明の第 2の実施形態を説明する F I G. 8および F I G. 9に示したような構成の光ビーム可変減衰装置におい ては、挿入板 1 0 3と導波路コア 1 0 1の相対位置を直接捉えることがより好まし い。 そのため、 F I G. 3および F I G. 4に示す本発明の第 2の実施形態では、
挿入板駆動機構 1 1 1上の電極 4 0 2を挿入板 1 0 3の極近くに配置し、この電極 4 0 2と対向する他方の電極 4 0 1を導波路支持基板 1 1 2上のスリット 1 0 2 の縁に形成している。 Next, a description will be given of a second embodiment of the present invention using FIGS. 3 and 4 in a light beam variable attenuating device having a configuration as shown in FIGS. 8 and 9. It is more preferable to directly capture the relative position between the insertion plate 103 and the waveguide core 101. Therefore, in the second embodiment of the present invention shown in FIG. 3 and FIG. 4, The electrode 402 on the insertion plate driving mechanism 1 1 1 is placed near the pole of the insertion plate 103, and the other electrode 410 facing the electrode 402 is placed on the waveguide support substrate 112. It is formed on the edge of the slit 102.
この電極配置構成では、電気容量の変化は前述の第 1の実施形態よりも小さいが 、光導波路コア 1 0 1に対する揷入板 1 0 3の相対位置変化を捉えることは十分に できるので、 このような構成でも電極 4 0 1 , 4 0 2を介して揷入板 1 0 3と導波 路コア 1 0 1の相対位置検出をして、その相対位置検出データを用いて電磁力 (口 一レンツ力) あるいは静電力を調整する帰還制御をすることにより、光減衰量制御 において従来の温度検出に基く温度補償と同等の制御効果を得ることができる。 上述の第 1および第 2の実施形態では、光ビーム可変減衰調整装置内の構造物の 相対位置の変化を電気容量の変化として検出するものであるが、位置検出にはこれ に限ったものではなく、誘導性のリアクタンスの変化を検出する方法を用いること もできる。 制御系の例 In this electrode arrangement, the change in electric capacitance is smaller than that in the first embodiment, but the change in the relative position of the insertion plate 103 with respect to the optical waveguide core 101 can be sufficiently grasped. Even in such a configuration, the relative position between the input plate 103 and the waveguide core 101 is detected via the electrodes 401 and 402, and the electromagnetic force (port 1) is detected using the relative position detection data. By performing feedback control for adjusting the Lenz force or the electrostatic force, a control effect equivalent to the conventional temperature compensation based on temperature detection can be obtained in the optical attenuation control. In the first and second embodiments described above, the change in the relative position of the structure in the optical beam variable attenuation adjustment device is detected as the change in the electric capacity. However, the position detection is not limited to this. Instead, a method of detecting an inductive change in reactance can be used. Example of control system
上記のような電気容量等の変動を利用して揷入板 1 0 3と導波路コア 1 0 1の 相対位置を検出する位置検出機構として、 F I G. 5に示すように、 電極 3 0 1お よび電極 3 0 2 (または電極 4 0 1と電極 4 0 2 ) と位置変化検出回路 5 0 1と挿 入板位置制御回路 5ひ 2とを用いて帰還回路を構成する。この帰還回路のフィード バックデータに応じて、挿入板位置制御回路 5 0 2は揷入板 1 0 3を光ビームの減 衰量に相当した位置まで移動制御するように、 挿入板駆動機構 1 1 1を駆動する。 この帰還制御により、本発明によれば、温度検出に基いて温度を一定に制御する ことで温度補償を行う従来の方法を使わなくても、また温度を検出して予め測定し た温度と位置の位相関係とから挿入板位置を補正して温度補償を行う従来の方法 を使わなくても、温度に左右されることのない光ビーム減衰調整装置を実現するこ とができる。 As shown in FIG. 5, the electrode 310 is used as a position detecting mechanism for detecting the relative position between the input plate 103 and the waveguide core 101 by utilizing the fluctuation of the electric capacity and the like as described above. A feedback circuit is configured by using the electrode 302 (or the electrode 401 and the electrode 402), the position change detection circuit 501, and the insertion plate position control circuit 5-2. In accordance with the feedback data of the feedback circuit, the insertion plate position control circuit 502 controls the movement of the insertion plate 103 to a position corresponding to the amount of attenuation of the light beam. Drive one. By this feedback control, according to the present invention, the temperature and the position measured in advance by detecting the temperature without using the conventional method of performing the temperature compensation by controlling the temperature to be constant based on the temperature detection can be used. Therefore, it is possible to realize a light beam attenuation adjustment device that is not affected by temperature without using a conventional method of compensating for the temperature by correcting the position of the insertion plate from the phase relationship.
本発明の第 1または第 2の実施形態の検出装置を用い、 F I G. 5に示す帰還回
路により挿入板 1 0 3の移動位置を制御した場合、温度変動に対する出力変動を 0 . 1 5デシベル毎 °C以内にすることができた。 第 3の実施形態 Using the detection device according to the first or second embodiment of the present invention, the feedback circuit shown in FIG. When the movement position of the insertion plate 103 was controlled by the road, the output fluctuation with respect to the temperature fluctuation could be kept within 0.15 dB / ° C. Third embodiment
さらに、より集積ィ匕した光ビーム可変減衰調整装置を構成する場合などにおいて 、位置検出のための電気容量の変化を大きくとる必要がある場合、 あるいはチャン ネルごとに位置検出手段を備えることができない場合には、 F I G. 6の本発明の 第 3の実施形態に示すように、電磁カゃ静電力によって駆動はしないが、挿入板駆 動機構 1 1 1と同じ形状のもので、かつ電極 5 0 4の面積を大きくとって電気容量 変化を大きくした位置検出機構(モニター用ダミー機構) 5 0 3を、挿入板駆動機 構 1 1 1の近くに配置する。 位置検出機構 5 0 3は挿入板駆動機構 1 1 1の形状、 サイズだけでなく、挿入板 1 0 3の重さや取り付け位置も考慮して形成すればより 好ましい。 Further, in the case of configuring a more integrated light beam variable attenuation adjusting device, for example, when it is necessary to make a large change in electric capacity for position detection, or it is not possible to provide a position detecting means for each channel. In this case, as shown in the third embodiment of the present invention in FIG. 6, the device is not driven by the electromagnetic force, but has the same shape as the insertion plate driving mechanism 111, and The position detecting mechanism (monitor dummy mechanism) 503 having a large change in electric capacity by increasing the area of 504 is arranged near the insertion plate driving mechanism 111. It is more preferable that the position detecting mechanism 503 be formed in consideration of not only the shape and size of the insertion plate driving mechanism 111 but also the weight and mounting position of the insertion plate 103.
この位置検出機構 5 0 3の温度変化による位置変動を電気容量の変化として位 置変化検出回路 5 0 1で検出し、この検出に応じて位置補正回路付き挿入板駆動制 御回路 5 0 5により掙入板駆動機構 1 1 1を駆動制御することで、挿入板 1 0 3の 位置制御を行う。揷入板 1 0 3と光導波路コア 1 0 1の相対位置の補正を行うこの ような位置補正回路付き挿入板駆動制御回路 5 0 5を用いることにより、温度測定 を伴わずに位置補償を行うことができる。 The position change due to the temperature change of the position detecting mechanism 503 is detected by the position change detecting circuit 501 as a change in electric capacity, and in response to this detection, the insertion plate driving control circuit 505 with the position correcting circuit is used.位置 The position of the insertion plate 103 is controlled by controlling the drive of the insertion plate driving mechanism 111.相 対 Corrects the relative position between the insertion plate 103 and the optical waveguide core 101.By using such an insertion plate drive control circuit 505 with a position correction circuit, position compensation is performed without temperature measurement. be able to.
本実施形態では、上記位置検出機構 5 0 3に配置した電極 5 0 4の面積を 0 . 2 5平方ミリメートルにした場合に、位置検出機構 5 0 3が挿入板駆動機構 1 1 1と 同じく 1 0 °Cの温度変化に対して 1 0ミクロンの移動をしたとき、電気容量の変ィ匕 を 1 1 0ピコファラッドとすることができた。位置検出機構 5 0 3を用いて F I G . 6に示すような帰還制御系を構成した光ビーム可変減衰調整装置においては、温 度検出による補償回路なしに、光量減衰の温度変動を 0 . 1デシベル Z°C以内に抑 えることができた。
他の実施形態 In the present embodiment, when the area of the electrode 504 arranged on the position detecting mechanism 503 is set to 0.25 square millimeter, the position detecting mechanism 503 becomes the same as the insertion plate driving mechanism 1 1 1. When moved by 10 microns with respect to a temperature change of 0 ° C., it was possible to change the capacitance to 110 picofarads. In the optical beam variable attenuation adjustment device using the position detection mechanism 503 to form a feedback control system as shown in FIG. 6, the temperature fluctuation of the light intensity attenuation is reduced to 0.1 dB without a compensation circuit for detecting the temperature. It could be controlled within Z ° C. Other embodiments
なお、本発明の好適な実施形態を例示して説明したが、本発明の実施形態は上記 例示に限定されるものではなく、各クレームに記載の範囲内であれば、その構成部 材等の置換、 変更、 追加、 個数の増減、 形状の変更等の各種変形は、 全て本発明の 実施形態に含まれる。例えば、 上述した本発明の実施形態では、挿入板の位置検出 機構は電気容量の変化を用いて電極間距離を検出しているが、本発明はこれに限定 されず、 電極間の各種のリアクタンス変化を用いて電極間距離を検出してもよい。 また、上述の実施形態では、挿入板駆動機構の駆動力として口一レンツ力を用いる ことができるが、 本発明はこれに限定されず、 例えば、 静電力駆動でも良い。 また 、 上述の実施形態では片持ち梁を利用した挿入板駆動機構を例示したが、他の形態 の各種ァクチユエ一夕も適用可能である。 また、 挿入板もミラーとは限らず、 光を 吸収する遮蔽板でもよい。
Although the preferred embodiment of the present invention has been described by way of example, the embodiment of the present invention is not limited to the above-described embodiment. Various modifications such as replacement, change, addition, increase / decrease in number, and change in shape are all included in the embodiments of the present invention. For example, in the above-described embodiment of the present invention, the position detecting mechanism of the insertion plate detects the distance between the electrodes by using a change in the capacitance. However, the present invention is not limited to this, and various reactances between the electrodes The distance between the electrodes may be detected using the change. Further, in the above-described embodiment, a single-lens force can be used as the driving force of the insertion plate driving mechanism. However, the present invention is not limited to this. For example, electrostatic force driving may be used. Further, in the above-described embodiment, the insertion plate driving mechanism using the cantilever is illustrated, but various forms of actuators may be applied. Also, the insertion plate is not limited to a mirror, but may be a shielding plate that absorbs light.
Claims
1 . 光導波路を横断するスリツト内に揷入板を抜き差しすることにより前記光導 波路中を伝播する光ビームの少なくとも一部を遮断してその透過光量を調整する 可変光減衰器において、 1. A variable optical attenuator that adjusts the amount of transmitted light by inserting and removing an insertion plate into and out of a slit that crosses the optical waveguide to block at least a part of the light beam that propagates in the optical waveguide.
前記光導波路と前記スリットが形成された第 1の基板と、 A first substrate on which the optical waveguide and the slit are formed,
前記挿入板を保持して前記スリット内で移動させる挿入板駆動機構と、 前記挿入板が前記スリット内に抜き差し可能なように所定の間隙をおいて前記 第 1の基板に対向して配置され、かつ前記挿入板駆動機構が取り付けられた第 2の 基板と、 An insertion plate driving mechanism for holding the insertion plate and moving the insertion plate in the slit, and the insertion plate is arranged to face the first substrate with a predetermined gap so that the insertion plate can be inserted into and removed from the slit, A second substrate to which the insertion plate driving mechanism is attached;
前記揷入板の前記光導波路への挿入位置を検出する位置検出機構と A position detection mechanism that detects an insertion position of the insertion plate into the optical waveguide;
を有することを特徴とする可変光減衰器。 A variable optical attenuator comprising:
2 . 光導波路を横断するスリット内に挿入板を抜き差しすることにより前記光導 波路中を伝播する光ビームの少なくとも一部を遮断してその透過光量を調整する 可変光減衰器において、 2. A variable optical attenuator which inserts and removes an insertion plate into and from a slit crossing the optical waveguide to block at least a part of the light beam propagating through the optical waveguide and adjust the amount of transmitted light.
前記光導波路と前記スリットが形成された第 1の基板と、 A first substrate on which the optical waveguide and the slit are formed,
前記挿入板を保持して前記スリッ卜内で移動させる挿入板駆動機構と、 前記挿入板が前記スリット内に抜き差し可能なように所定の間隙をおいて前記 第 1の基板に対向して配置され、かつ前記挿入板駆動機構が取り付けられた第 2の 基板と、 An insertion plate driving mechanism that holds the insertion plate and moves the insertion plate in the slit; and an insertion plate driving mechanism that is arranged to face the first substrate with a predetermined gap so that the insertion plate can be inserted into and removed from the slit. A second substrate to which the insertion plate driving mechanism is attached, and
前記挿入板の前記光導波路への挿入位置を検出する位置検出機構と、 前記位置検出機構の出力に応じて前記挿入板の前記光導波路への挿入位置が一 定になるように制御する、前記位置検出機構と前記挿入板駆動機構を結ぶ帰還回路 と A position detection mechanism for detecting an insertion position of the insertion plate into the optical waveguide, and controlling the insertion position of the insertion plate to the optical waveguide in accordance with an output of the position detection mechanism, A feedback circuit connecting the position detection mechanism and the insertion plate drive mechanism; and
を有することを特徴とする可変光減衰器。
A variable optical attenuator comprising:
3 · 光導波路を構断するスリット内に挿入板を抜き差しすることにより前記光導 波路中を伝播する光ビームの少なくとも一部を遮断してその透過光量を調整する 可変光減衰器において、 (3) In a variable optical attenuator, an insertion plate is inserted into and removed from a slit for dividing an optical waveguide, thereby blocking at least a part of a light beam propagating in the optical waveguide and adjusting the amount of transmitted light.
前記光導波路と前記スリットが形成された第 1の基板と、 A first substrate on which the optical waveguide and the slit are formed,
前記挿入板を保持して前記スリット内で移動させる揷入板駆動機構と、 前記挿入板が前記スリット内に抜き差し可能なように所定の間隙をおいて前記 第 1の基板に対向して配置され、かつ前記挿入板駆動機構が取り付けられた第 2の 基板と、 An insertion plate driving mechanism that holds the insertion plate and moves the insertion plate in the slit; and an insertion plate that is disposed to face the first substrate with a predetermined gap so that the insertion plate can be inserted into and removed from the slit. A second substrate to which the insertion plate driving mechanism is attached, and
前記挿入板の前記光導波路への挿入位置を検出する位置検出機構と、 A position detection mechanism that detects an insertion position of the insertion plate in the optical waveguide,
前記位置検出機構の出力に応じて前記挿入板の前記光導波路への挿入位置が一 定になるように制御する、前記位置検出機構と前記挿入板駆動機構を結ぶ帰還回路 とを有し、 A feedback circuit that connects the position detection mechanism and the insertion plate drive mechanism, controlling the insertion position of the insertion plate into the optical waveguide in accordance with an output of the position detection mechanism, and
前記挿入板駆動機構が、その一端を前記第 2の基板に固定し、他方の自由端に前 記挿入板を取り付けた片持ち梁状部材であり、電磁力または静電力により駆動する ことを特徴とする可変光減衰器。 The insertion plate driving mechanism is a cantilever member having one end fixed to the second substrate and the insertion plate attached to the other free end, and driven by electromagnetic force or electrostatic force. Variable optical attenuator.
4. 前記位置検出機構が、前記第 2の基板上に設けられた電極と前記挿入板駆動' 機構に設けられた電極の間のリアクタンス変化を用いて電極間距離を検知するこ とにより、前記挿入板の前記光導波路への挿入位置を検出することを特徴とするク レーム 1ないし 3のいずれかに記載の可変光減衰器。 4. The position detecting mechanism detects a distance between the electrodes by using a change in reactance between an electrode provided on the second substrate and an electrode provided on the insertion plate driving mechanism, thereby obtaining the distance between the electrodes. 4. The variable optical attenuator according to any one of claims 1 to 3, wherein a position at which the insertion plate is inserted into the optical waveguide is detected.
5 . 前記位置検出機構が、前記第 1の基板上に設けられた電極と前記挿入板駆動 機構に設けられた電極の間のリアクタンス変化を用いて電極間距離を検知するこ とにより、前記挿入板の前記光導波路への挿入位置を検出することを特徴とするク レーム 1ないし 3のいずれかに記載の可変光減衰器。 5. The position detection mechanism detects a distance between the electrodes by using a change in reactance between an electrode provided on the first substrate and an electrode provided on the insertion plate driving mechanism, whereby the insertion is performed. 4. The variable optical attenuator according to any one of claims 1 to 3, wherein a position at which a plate is inserted into the optical waveguide is detected.
6 . 前記位置検出機構が、前記第 2の基板上に設けられた電極と前記挿入板駆動
機構に設けられた電極の間の電気容量変化を用いて電極間距離を検知することに より、前記挿入板の前記光導波路への揷入位置を検出することを特徴とするクレー ム 1ないし 3のいずれかに記載の可変光減衰器。 6. The position detection mechanism is configured to drive the electrode provided on the second substrate and the insertion plate. Claims 1 to 3 wherein the insertion position of the insertion plate into the optical waveguide is detected by detecting a distance between the electrodes using a change in capacitance between the electrodes provided in the mechanism. The variable optical attenuator according to any one of the above.
7 . 前記位置検出機構が、前記第 1の基板上に設けられた電極と前記揷入板駆動 機構に設けられた電極の間の電気容量変化を用いて電極間距離を検知することに より、前記挿入板の前記光導波路への挿入位置を検出することを特徴とするクレー ム 1ないし 3のいずれかに記載の可変光減衰器。 7. The position detection mechanism detects an inter-electrode distance by using a change in electric capacitance between an electrode provided on the first substrate and an electrode provided on the insertion plate driving mechanism, 4. The variable optical attenuator according to claim 1, wherein a position at which the insertion plate is inserted into the optical waveguide is detected.
8 . 前記位置検出機構が、 前記挿入板駆動機構の近傍に配置されて、 前記揷入板 駆動機構と同一形状で同一特性の位置検出用部材を含み、前記第 1の基板または前 記第 2の基板上に設けられた電極と前記位置検出用部材に設けられた電極の間の リアクタンス変化を用いて電極間距離を検知することにより、前記挿入板の前記光 導波路への挿入位置を検出することを特徴とするクレーム 1ないし 3のいずれか に記載の可変光減衰器。 8. The position detecting mechanism is disposed near the insertion plate driving mechanism, and includes a position detecting member having the same shape and the same characteristics as the insertion plate driving mechanism, and the first substrate or the second substrate. Detecting the insertion position of the insertion plate into the optical waveguide by detecting a distance between the electrodes using a change in reactance between the electrode provided on the substrate and the electrode provided on the position detection member. The variable optical attenuator according to any one of claims 1 to 3, characterized in that:
9 . 前記位置検出機構が、 前記挿入板駆動機構の近傍に配置されて、 前記挿入板 駆動機構と同一形状で同一特性の位置検出用部材を含み、前記第 1の基板または前 記第 2の基板上に設けられた電極と前記位置検出用部材に設けられた電極間の電 気容量変化を用いて電極間距離を検知することにより、前記挿入板の前記光導波路 への挿入位置を検出することを特徴とするクレーム 1ないし 3のいずれかに霄 Ϊ の可変光減衰器。
9. The position detecting mechanism is disposed near the insertion plate driving mechanism, includes a position detecting member having the same shape and the same characteristics as the insertion plate driving mechanism, and the first substrate or the second substrate. By detecting the distance between the electrodes using the change in electric capacity between the electrode provided on the substrate and the electrode provided on the position detecting member, the insertion position of the insertion plate into the optical waveguide is detected. The variable optical attenuator according to claim 1, wherein the variable optical attenuator is provided.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003088753A JP2004294890A (en) | 2003-03-27 | 2003-03-27 | Variable light attenuator |
JP2003-088753 | 2003-03-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004086119A1 true WO2004086119A1 (en) | 2004-10-07 |
Family
ID=33095128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2004/003867 WO2004086119A1 (en) | 2003-03-27 | 2004-03-22 | Variable optical attenuator |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2004294890A (en) |
WO (1) | WO2004086119A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0194312A (en) * | 1987-10-06 | 1989-04-13 | Sharp Corp | Variable interference device |
JPH06148540A (en) * | 1991-04-26 | 1994-05-27 | Texas Instr Inc <Ti> | Device that can be deflected and manufacture thereof |
JP2001142008A (en) * | 1999-09-28 | 2001-05-25 | Agilent Technol Inc | Optical switching element |
JP2002107639A (en) * | 2000-10-02 | 2002-04-10 | Seiko Instruments Inc | Variable optical attenuator and device |
-
2003
- 2003-03-27 JP JP2003088753A patent/JP2004294890A/en active Pending
-
2004
- 2004-03-22 WO PCT/JP2004/003867 patent/WO2004086119A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0194312A (en) * | 1987-10-06 | 1989-04-13 | Sharp Corp | Variable interference device |
JPH06148540A (en) * | 1991-04-26 | 1994-05-27 | Texas Instr Inc <Ti> | Device that can be deflected and manufacture thereof |
JP2001142008A (en) * | 1999-09-28 | 2001-05-25 | Agilent Technol Inc | Optical switching element |
JP2002107639A (en) * | 2000-10-02 | 2002-04-10 | Seiko Instruments Inc | Variable optical attenuator and device |
Also Published As
Publication number | Publication date |
---|---|
JP2004294890A (en) | 2004-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6954566B2 (en) | Apparatus for thermal compensation of an arrayed waveguide grating | |
EP0838302B1 (en) | Positioning mechanism | |
JP4585091B2 (en) | Waveguide grating device | |
US6895161B2 (en) | Variable optical attenuator | |
JPH02123541A (en) | Interval control tunneling converter | |
US7450812B2 (en) | Compensated variable optical attenuator | |
CA2425997C (en) | Beam steering arrangements and optical switches | |
US6836583B2 (en) | Structures that correct for thermal distortion in an optical device formed of thermally dissimilar materials | |
JP2006522946A (en) | Thermal actuator | |
JP2005057788A (en) | Method and system for maintaining active alignment in optical switch by using dedicated representative orientational element | |
WO2004086119A1 (en) | Variable optical attenuator | |
US6636683B2 (en) | Variable optical attenuator | |
WO2003058286A2 (en) | Monolithic optical control components | |
KR100607982B1 (en) | Variable optical attenuator having a waveguide and an optically coupled layer with a power monitor | |
JP2005025187A (en) | Variable optical attenuator of electrooptical layer | |
US7215869B2 (en) | Cantilever-type PLC optical attenuator and manufacturing method thereof | |
JP3401091B2 (en) | Optical fiber positioning device | |
US7013075B2 (en) | Variable optical attenuator | |
JP3166802B2 (en) | Multi-core optical fiber cable splicer | |
JP3572062B2 (en) | Cantilever and light beam adjusting device | |
JP3237728B2 (en) | Multi-core optical fiber cable splicer | |
JP2918940B2 (en) | Optical branching coupler manufacturing equipment | |
JP2013182029A (en) | Mirror device and wavelength selection switch | |
Lillard et al. | High-performance deformable mirror for wavefront compensation | |
KR20060025984A (en) | Athermal awg and awg with low power consumption using groove of changeable width |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
122 | Ep: pct application non-entry in european phase |