WO2004082114A1 - 電動機制御装置 - Google Patents
電動機制御装置 Download PDFInfo
- Publication number
- WO2004082114A1 WO2004082114A1 PCT/JP2003/002920 JP0302920W WO2004082114A1 WO 2004082114 A1 WO2004082114 A1 WO 2004082114A1 JP 0302920 W JP0302920 W JP 0302920W WO 2004082114 A1 WO2004082114 A1 WO 2004082114A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- life
- signal
- unit
- semiconductor element
- power
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P27/00—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
- H02P27/04—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
- H02P27/06—Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K17/082—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit
- H03K17/0826—Modifications for protecting switching circuit against overcurrent or overvoltage by feedback from the output to the control circuit in bipolar transistor switches
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
- H02M1/327—Means for protecting converters other than automatic disconnection against abnormal temperatures
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/08—Modifications for protecting switching circuit against overcurrent or overvoltage
- H03K2017/0806—Modifications for protecting switching circuit against overcurrent or overvoltage against excessive temperature
Definitions
- the present invention relates to a motor control device that controls a motor at a variable speed.
- the power semiconductor element In a motor control device that uses a power semiconductor element, such as an inverter device, the power semiconductor element generates heat during operation of the device and the junction temperature of the chip rises. Decreases. In addition, when the motor is started, stopped, or suddenly changes in load, the output current of the device changes greatly, so that the junction temperature of the power semiconductor element also changes greatly. For this reason, the chip portion of the power semiconductor element repeatedly undergoes thermal expansion and thermal contraction due to repetition of operation and shutdown and rapid changes in speed and load.
- a power semiconductor element such as an inverter device
- power semiconductor elements are generally assembled using various materials with different coefficients of thermal expansion. Therefore, especially when the temperature of the wire bonding portion or the junction between the power semiconductor element and the heat spreader rises, the chip coating is not performed.
- the wire bonding gradually starts to peel off from the chip due to the thermal expansion stress of the bonding agent, and the bonding material starts to fatigue due to the thermal expansion stress due to the difference in the thermal expansion coefficient between the chip and the heat spreader. Repeated starts and stops and rapid changes in speed and load eventually result in complete release of the wire bond and an open state. In other words, the power semiconductor element is defective or destroyed.
- This wire bonding is hot The cycle of thermal expansion and thermal shrinkage until complete peeling due to expansion stress and failure or destruction is called a power cycle.
- a device with a high frequency of repetition of operation and stop such as when the inverter device is used for AC servo concealment or a motor drive of the elevator, or a device with a large load fluctuation such as when used for a compressor.
- some measures must be taken, especially since the power cycle shortens the life of the power semiconductor device.
- Patent Document 1 Japanese Patent Application Laid-Open No. 8-517768
- Patent Document 1 aims to protect a power semiconductor element used for an inverter device or the like before the end of its life due to a single cycle. From the correlation, the power cycle corresponding to the junction temperature difference of the power semiconductor element in the inverter device is estimated as the life, and the number of operation of the inverter device at the count is counted. When the count value exceeds the second reference value, an alarm signal is output, and when the count value exceeds the second reference value, a trip signal is output to forcibly stop the receiver.
- Patent Document 1 Japanese Patent Laid-Open No. 8-12663 discloses a technique for obtaining an accommodation device capable of extending the life of the power semiconductor element, such as improving its use before the end of its life. No. 7).
- Patent Document 2 discloses that the temperature change width thermal stress calculated based on the amplitude of the estimated temperature change of the power semiconductor element and the temperature change rate thermal stress calculated based on the ratio of the estimated power semiconductor element temperature change. If the number of times of thermal stress obtained from the number of times exceeds the allowable number of times of thermal stress, alarm processing such as an alarm display command is performed, and the remaining life time is calculated from the number of times of thermal stress and the number of times of allowable thermal stress. The number of thermal stresses per set time is calculated from the number of thermal stresses per set time and the number of thermal stress rates per set time. If the number of times is exceeded, it will not be possible to operate for the expected life time with the set time, so alarm processing such as alarm display command is performed. It also obtains the operable life at operating set time, it is described that performs a display instruction.
- Patent Document 2 discloses that fatigued parts are displayed by estimating the life due to thermal stress, so that the operator can easily judge and prevent a failure before it occurs. By estimating whether or not it is possible, the worker can extend the life by improving the usage method, load condition and frequency of use of the room equipment. If the inspection alarm is not checked and the life judgment result and life estimation result are checked to confirm the life expectancy, it is impossible to extend the life.If the alarm is overlooked, the life is extended. Without this, the output of the Invar evening device was stopped by the life judgment, and there was a problem that the system stopped abnormally.
- the present invention has been made to solve the above-described problems, and
- the first object is to obtain a motor control device capable of performing a highly accurate life estimation.
- a second object is to obtain a motor control device capable of satisfying a set life expectancy by automatically reducing the amplitude of a temperature change of a semiconductor element. Disclosure of the invention
- An electric motor control device includes a switching circuit having a power transistor and a semiconductor element such as a diode connected in parallel to the power transistor, an operation frequency signal set by an operation frequency setting unit, and a carrier frequency setting.
- a drive unit that generates a drive pulse based on the carrier frequency signal set by the control unit; and a drive circuit that amplifies the drive pulse output from the control unit and performs ON / OFF control of the switching transistor in the switching circuit.
- a motor controller that converts DC power into AC power having a variable frequency and a variable voltage, and variably controls a motor as a load;
- An output current is calculated from the current flowing through the semiconductor element, and a current that outputs a current cutoff signal to the control unit when the calculated output current signal exceeds the current limit value signal output from the current limit level adjustment unit.
- a calculating section, a temperature change estimating section for calculating a temperature change amplitude by estimating a temperature change of the semiconductor element based on the output current signal, the operating frequency signal, and the carrier frequency signal;
- a power cycle curve data storage section for storing power cycle curve data indicating a relationship with the power cycle life; and a temperature change amplitude calculated by the temperature change estimating section, the power as the power cycle life of the semiconductor element based on the power cycle curve data.
- a thermal stress calculator that converts the number of cycles to calculate a thermal stress signal; If the lifetime is shorter than the expected life, the lifetime of the semiconductor element is estimated based on the signal and output to the display as a lifetime estimation result signal, and the lifetime per set time is calculated and compared with the expected lifetime. And a life estimation unit that outputs an alarm to the display unit as a life determination signal, so that highly accurate life estimation can be performed.
- the life estimation unit outputs the life estimation result signal and the life determination signal to the current limit level adjustment unit, and the current limit level adjustment unit outputs the warning signal when the life estimation result signal contains warning information or
- the current limit value signal output to the current calculation unit is automatically adjusted so as to be smaller.
- the amplitude of the temperature change of the semiconductor element can be automatically reduced, and the set life expectancy can be satisfied. Further, the life estimation unit outputs the life estimation result signal and the life determination signal to the carrier frequency setting unit, and the carrier frequency setting unit outputs the warning signal when the life estimation result signal contains warning information or When the judgment signal is input, the carrier frequency signal is automatically adjusted so as to lower the upper limit of the carrier frequency and the carrier frequency signal is output to the control unit, so that the amplitude of the temperature change of the semiconductor element is automatically reduced. And the set expected life can be satisfied.
- FIG. 1 is a diagram showing a configuration of a motor control device according to Embodiment 1 of the present invention.
- Figure 2 shows the definition of semiconductor devices such as power transistors and diodes. It is a figure showing an example of an ordinary loss characteristic.
- FIG. 3 is a diagram showing an example of switching loss characteristics of a semiconductor device such as a power transistor and a diode.
- FIG. 4 is a diagram showing an example of a temperature change of a semiconductor element.
- FIG. 5 is a diagram illustrating an example of characteristics of a power cycle curve stored in a power cycle curve data storage unit 14 in the motor control device according to the first embodiment.
- FIG. 6 is a diagram showing a configuration of a motor control device according to Embodiment 2 of the present invention.
- FIG. 1 is a diagram showing a configuration of a motor control device according to Embodiment 1 of the present invention.
- the control unit 1 generates a driving pulse 102 based on the operating frequency signal 100 set by the operating frequency setting unit 2 and the carrier frequency signal 101 set by the carrier frequency setting unit 3a. And outputs it to the drive circuit 4.
- the drive circuit 4 generates a drive pulse 103 amplified by the drive pulse 102, and performs O NZ OFF control of the power transistor 6 constituting the switching circuit 5, thereby reducing the DC power to a variable frequency and a variable voltage. It converts it into AC power and variably controls the motor 8 as a load.
- Reference numeral 7 denotes a diode connected in parallel to the power transistor 6.
- the current calculator 9 calculates an output current from the current detection signal 104 detected by the current detector 10 and outputs an output current signal 105 to the temperature change estimator 11.
- the current calculation unit 9 uses the calculated output current signal 105 to protect the semiconductor elements such as the power transistor 6 and the diode 7 and the motor 8 from overcurrent by the current limit level adjustment unit 12a.
- the change estimating unit 11 is composed of the operating frequency signal 100 set by the operating frequency setting unit 2, the carrier frequency signal 101 set by the carrier frequency setting unit 3a, and the output current calculated by the current calculating unit 9.
- Fig. 2 shows an example of the steady-state loss characteristics of semiconductor devices such as power transistors and diodes.
- the horizontal axis is the output current I (output current signal 105 calculated by the current calculation unit 9), and the vertical axis is the steady-state loss Ps.c
- the steady-state loss Ps increases with the output current I. The characteristics are increased accordingly.
- FIG. 3 shows an example of switching loss characteristics of a semiconductor device such as a power transistor and a diode.
- the horizontal axis is the output current I (the output current signal 105 calculated by the current calculation unit 9), and the vertical axis is the switching loss P sw.
- the switching loss P sw has a characteristic that increases as the output current I increases.
- the carrier frequency fc which is the carrier frequency signal 101 set by the carrier frequency setting unit 3a, and the calculation cycle ⁇ , And a power transistor 6 and a diode that constitute a switching circuit 5.
- the heat value Q of the semiconductor element such as 7.
- the amount of temperature change ⁇ ⁇ during the operation time ⁇ ⁇ is the heat dissipation Q of the power transistor 6 and the diode 7 and the power It can be obtained from the transient thermal resistance R th (t) determined by the mounting state of the transistor 6 and the diode 7, and the temperature change is calculated by integrating the temperature change ⁇ (, and the maximum point and the minimum point are extracted. Then, the temperature change amplitude ⁇ 1 is calculated and output to the thermal stress calculation unit 13 as a temperature change amplitude signal 108.
- FIG. 4 shows an example of a temperature change of the semiconductor element.
- At is a set time
- ⁇ 1, ⁇ 2, ⁇ 3, ⁇ 4, and ⁇ are temperature change amplitudes
- ⁇ T max is a maximum temperature change amplitude at the set time ⁇ t.
- the cycle of thermal expansion and thermal contraction until the semiconductor element becomes defective due to the cycle of temperature rise is called a power cycle.
- the thermal stress calculation unit 13 responds to the temperature change amplitude signal 109 based on the power cycle curve data indicating the relationship between the temperature change amplitude stored in the power cycle data storage unit 14 and the power cycle life of the semiconductor device.
- the power cycle life to be calculated is calculated as the power cycle number signal 110.
- FIG. 5 shows an example of the characteristics of the power cycle curve stored in the power cycle curve data storage unit in the motor control device according to Embodiment 1.
- the horizontal axis represents the temperature change amplitude ⁇ (The temperature change amplitude signal 109) output from the stress calculation unit 13), and the vertical axis represents the power cycle number S (power cycle number signal 110 output to the thermal stress calculation unit 13) as the power cycle life of the semiconductor device.
- the thermal stress calculation unit 13 receives the number of power cycles S 1 obtained in correspondence with the temperature change amplitude ⁇ 1 as a power cycle number signal 110, and calculates the thermal stress coefficient X 1 by the equation (2).
- the calculation is performed, and the result is output to the life estimation unit 15a as the thermal stress signal 111.
- X X 0 (previous value) + x 1 + x 2 + x 3 + x 4 + ⁇ --(3) The sum is obtained and output to the display unit 16 as the life estimation result signal 1 12.
- the service life estimating unit 15a receives the set time ⁇ ⁇ ⁇ set by the operating time setting unit 17 as the set time signal 113, and only during the set time the heat stress calculating unit 13a
- the thermal stress coefficient Xt per time t is calculated by equation (4).
- the expected life signal 111 which is the expected life te set by the expected life setting unit 18, is compared with the life time t L calculated by the equation (5) . If t L ⁇ te, the life is judged. An alarm is output to the display unit 16 as the signal 1 15 to urge the worker to extend the life.
- the power cycle life is calculated with reference to the power cycle curve data unique to the semiconductor element. Therefore, for any amplitude of temperature change, it is possible to calculate and integrate the weighted thermal stress based on the amplitude, and to realize highly accurate life estimation and judgment of expected life. .
- Embodiment 2 Embodiment 2.
- FIG. 6 is a diagram showing a configuration of a motor control device according to Embodiment 2 of the present invention.
- 1, 2, 4 to: L 1, 13, 14, 16 to 18, and 100 to 115 are the same as those in FIG. 1, and the description thereof is omitted.
- the life estimation unit 15b outputs the life estimation result signal 112 and the life judgment signal 115 to the carrier frequency setting unit 3b and the current limit level adjustment unit 12b.
- the current limit level adjuster 12b is output when the integrated thermal stress coefficient X included in the input life estimation result signal 1 12 approaches 1, or when the life time tL falls below the expected life te. Life judgment signal 1 15 is input When it is input, the current limit value signal 106 output to the current calculation unit 9 is automatically adjusted to be small.
- the current limit value signal 106 is automatically adjusted to be small, and the output current I is limited to a lower value. Since the steady loss P s and the switching loss P sw shown in FIG. 3 and FIG. 3 can be reduced, the calorific value Q of the semiconductor element can be suppressed. Therefore, even if the operator does not inspect the motor control device and take measures to extend the life, automatic adjustment is performed to satisfy the expected life of the semiconductor element set in the expected life setting unit 18. be able to.
- the carrier frequency setting unit 3b outputs when the integrated thermal stress coefficient X included in the input life estimation result signal 1 1 2 approaches 1 or when the life time t L falls short of the expected life te. When the life determination signal 1 15 to be inputted is inputted the carrier frequency signal 101 is automatically adjusted so as to lower the upper limit value of the carrier frequency and the carrier frequency signal 101 is outputted to the control unit 1.
- the upper limit of the carrier frequency is automatically adjusted so that the heating value Q of the semiconductor element is obtained.
- the term sw can be reduced, and the calorific value Q of the semiconductor element can be suppressed. For this reason, even if the operator does not inspect the motor control device and take measures to extend the life, automatic adjustment can be made to satisfy the expected life of the semiconductor element set in the expected life setting unit 18. it can.
- the carrier frequency is reduced by automatic adjustment when the life of the semiconductor element is judged to be shortened, the noise of the motor will increase, so that the operator can be encouraged to approach the life of the semiconductor element.
- the operator can take action to replace the motor control unit before the system stops abnormally due to a failure.
- the current limit value signal 106 is automatically adjusted so as to be smaller, and furthermore, the upper limit value of the carrier frequency is automatically reduced.
- the amount of heat generated by the semiconductor element is suppressed, so that the semiconductor element can be rapidly shortened in life due to thermal stress due to a sudden output current fluctuation that occurs in the case of a compressor or the like with a large load fluctuation. Even in the event that the alarm is reached, the system can be prevented from stopping before the operator checks the alarm displayed on the display unit 16. In addition, it is possible to automatically adjust the semiconductor device to meet the expected life of the semiconductor device set by the expected life setting unit 18 without requiring the operator to inspect the motor control device and take measures to extend the life. . Industrial applicability
- the motor control device of the present invention enables highly accurate estimation of life and determination of expected life, and is suitable for applications in which start / stop control is frequently performed. Also, even if the operator does not inspect the display unit and take measures to extend the life, automatic adjustment can be performed to satisfy the expected life of the semiconductor element set in the expected life setting unit. It is suitable for applications where the operation speed can be reduced with respect to the speed.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Power Conversion In General (AREA)
- Control Of Ac Motors In General (AREA)
- Control Of Electric Motors In General (AREA)
- Testing Of Individual Semiconductor Devices (AREA)
Abstract
Description
Claims
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10392498T DE10392498B4 (de) | 2003-03-12 | 2003-03-12 | Vorrichtung zur Steuerung eines Elektromotors |
GB0415565A GB2405538B (en) | 2003-03-12 | 2003-03-12 | Electric motor control apparatus |
KR1020047018109A KR100661107B1 (ko) | 2003-03-12 | 2003-03-12 | 전동기 제어장치 |
PCT/JP2003/002920 WO2004082114A1 (ja) | 2003-03-12 | 2003-03-12 | 電動機制御装置 |
JP2004522001A JP4367339B2 (ja) | 2003-03-12 | 2003-03-12 | 電動機制御装置 |
CNB038023652A CN100477467C (zh) | 2003-03-12 | 2003-03-12 | 电动机控制装置 |
US10/501,477 US7023172B2 (en) | 2003-03-12 | 2003-03-12 | Motor controller |
TW092106736A TW591879B (en) | 2003-03-12 | 2003-03-26 | Motor controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2003/002920 WO2004082114A1 (ja) | 2003-03-12 | 2003-03-12 | 電動機制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2004082114A1 true WO2004082114A1 (ja) | 2004-09-23 |
Family
ID=32866135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2003/002920 WO2004082114A1 (ja) | 2003-03-12 | 2003-03-12 | 電動機制御装置 |
Country Status (8)
Country | Link |
---|---|
US (1) | US7023172B2 (ja) |
JP (1) | JP4367339B2 (ja) |
KR (1) | KR100661107B1 (ja) |
CN (1) | CN100477467C (ja) |
DE (1) | DE10392498B4 (ja) |
GB (1) | GB2405538B (ja) |
TW (1) | TW591879B (ja) |
WO (1) | WO2004082114A1 (ja) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254574A (ja) * | 2005-03-09 | 2006-09-21 | Yaskawa Electric Corp | インバータの保護装置 |
JP2007028741A (ja) * | 2005-07-14 | 2007-02-01 | Hitachi Ltd | 電力変換器とその管理システム |
JP2008271779A (ja) * | 2007-03-29 | 2008-11-06 | Sanyo Electric Co Ltd | 電気機器 |
JP2010136609A (ja) * | 2008-11-04 | 2010-06-17 | Fuji Electric Systems Co Ltd | インバータ装置の冷却能力測定方法 |
JP2010259326A (ja) * | 2010-08-11 | 2010-11-11 | Hitachi Ltd | Pwmインバータの制御装置 |
WO2011114545A1 (ja) * | 2010-03-18 | 2011-09-22 | 株式会社日立製作所 | サーバ装置、及び、保守方法 |
JP2011205772A (ja) * | 2010-03-25 | 2011-10-13 | Mitsubishi Heavy Ind Ltd | インバータ保護装置及び方法並びにプログラム |
WO2011162318A1 (ja) * | 2010-06-25 | 2011-12-29 | 株式会社日立製作所 | 電力変換装置およびその温度上昇演算方法 |
JP2012070478A (ja) * | 2010-09-21 | 2012-04-05 | Toshiba Elevator Co Ltd | エレベータ制御装置 |
JP2012076454A (ja) * | 2010-09-07 | 2012-04-19 | Sumitomo Heavy Ind Ltd | 射出成形機及び電力用半導体素子消耗度監視システム |
JP2013090480A (ja) * | 2011-10-19 | 2013-05-13 | Toyota Motor Corp | モータ制御用温度モニタシステム |
WO2014042057A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社東芝 | 医用装置及びx線高電圧装置 |
CN108496088A (zh) * | 2016-05-09 | 2018-09-04 | 株式会社日立制作所 | 电力变换装置的诊断系统、半导体模块的诊断方法以及电力变换装置 |
JP2019187030A (ja) * | 2018-04-05 | 2019-10-24 | 株式会社東芝 | 電力変換装置 |
JP2020109041A (ja) * | 2019-01-07 | 2020-07-16 | 東芝エレベータ株式会社 | 寿命診断装置および寿命診断方法 |
JP2021047058A (ja) * | 2019-09-17 | 2021-03-25 | ルネサスエレクトロニクス株式会社 | 半導体装置、電子装置および電子システム |
WO2021084821A1 (ja) | 2019-10-31 | 2021-05-06 | 株式会社日立産機システム | 圧縮機、監視システム、及び圧縮機の監視方法 |
WO2022024890A1 (ja) | 2020-07-29 | 2022-02-03 | 株式会社日立産機システム | 電力変換装置および遠隔監視システム |
JP7567733B2 (ja) | 2021-09-28 | 2024-10-16 | トヨタ自動車株式会社 | 熱負荷記憶装置 |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4329369B2 (ja) * | 2003-03-20 | 2009-09-09 | パナソニック電工株式会社 | 電動工具の使用支援方法及びその装置 |
JP2005224075A (ja) * | 2004-02-09 | 2005-08-18 | Sanyo Electric Co Ltd | インバータ装置 |
US7839201B2 (en) * | 2005-04-01 | 2010-11-23 | Raytheon Company | Integrated smart power switch |
FI118284B (fi) * | 2005-12-20 | 2007-09-14 | Abb Oy | Menetelmä taajuusmuuttajan yhteydessä ja taajuusmuuttaja |
DE102006039592A1 (de) * | 2006-08-01 | 2008-02-07 | Conti Temic Microelectronic Gmbh | Verfahren zur Beurteilung einer Halbleiterschaltung |
JP4872627B2 (ja) * | 2006-11-27 | 2012-02-08 | ダイキン工業株式会社 | エンジンの寿命予測装置及び冷凍装置 |
EP1926212B1 (en) * | 2006-11-27 | 2009-08-05 | ABB Oy | Method for thermal protection of power switch element in a frequency converter |
JP5016967B2 (ja) * | 2007-04-20 | 2012-09-05 | 株式会社日立産機システム | 電力変換装置及びパワーサイクル寿命予測方法 |
US8362742B2 (en) * | 2007-10-26 | 2013-01-29 | Medtronic, Inc. | Method and apparatus for dynamic adjustment of recharge parameters |
US7826985B2 (en) | 2008-05-02 | 2010-11-02 | Rockwell Automation Technologies, Inc. | Power module life estimation fatigue function |
US8148929B2 (en) * | 2008-09-30 | 2012-04-03 | Rockwell Automation Technologies, Inc. | Power electronic module IGBT protection method and system |
CN102783014B (zh) * | 2010-03-10 | 2015-02-18 | 株式会社日立制作所 | 功率变换装置 |
US8471516B2 (en) * | 2010-05-24 | 2013-06-25 | Rockwell Automation Technologies, Inc. | Adjustable speed drive lifetime improvement method |
US8736091B2 (en) * | 2010-06-18 | 2014-05-27 | Rockwell Automation Technologies, Inc. | Converter lifetime improvement method for doubly fed induction generator |
US9194376B2 (en) * | 2011-05-24 | 2015-11-24 | General Electric Company | System and method for estimating remaining life for a device |
CN102810875B (zh) * | 2011-05-30 | 2014-10-22 | 通用电气公司 | 使用变流器进行能量转换的系统及其运作方法 |
US20130073257A1 (en) * | 2011-09-19 | 2013-03-21 | Craig Benjamin Williams | Method, device, and system for monitoring a component |
WO2013075733A1 (de) * | 2011-11-21 | 2013-05-30 | Ebm-Papst Mulfingen Gmbh & Co. Kg | Elektronische ansteuerschaltung mit leistungstransistoren sowie verfahren zur lebensdauer-überwachung der leistungstransistoren |
US9030054B2 (en) | 2012-03-27 | 2015-05-12 | Raytheon Company | Adaptive gate drive control method and circuit for composite power switch |
GB201207874D0 (en) * | 2012-05-04 | 2012-06-20 | Control Tech Ltd | Inverter controller and method of controlling an inverter |
CA2879578A1 (en) * | 2012-08-03 | 2014-02-06 | Abb Technology Ag | Overload limitation in peak power operation |
DE112014001388B4 (de) | 2013-03-15 | 2024-02-15 | Mitsubishi Electric Co. | Leistungsmodul |
US9083260B2 (en) | 2013-05-21 | 2015-07-14 | Control Techniques Limited | Inverter controller and method of controlling an inverter |
DE102014219474B4 (de) * | 2014-09-25 | 2022-06-09 | Valeo Siemens Eautomotive Germany Gmbh | Verfahren zum Betrieb von Leistungshalbleitern |
JP6191586B2 (ja) * | 2014-12-02 | 2017-09-06 | トヨタ自動車株式会社 | モータコントローラ、電動車両、及び、スイッチング素子の熱ストレス推定方法 |
JP2017058146A (ja) * | 2015-09-14 | 2017-03-23 | 三菱電機株式会社 | 寿命推定回路およびそれを用いた半導体装置 |
JP6010204B1 (ja) * | 2015-10-26 | 2016-10-19 | ファナック株式会社 | パワー素子の予測寿命を学習する機械学習装置及び方法並びに該機械学習装置を備えた寿命予測装置及びモータ駆動装置 |
US10491096B2 (en) | 2017-08-22 | 2019-11-26 | General Electric Company | System and method for rapid current sensing and transistor timing control |
JP2019047641A (ja) * | 2017-09-04 | 2019-03-22 | 株式会社日立製作所 | 電力変換システムおよび制御装置 |
JP6876597B2 (ja) * | 2017-11-30 | 2021-05-26 | 株式会社日立製作所 | 複数のパワーモジュールを有する電力変換装置を含むシステムを制御する装置及び方法 |
GB2569796A (en) * | 2017-12-21 | 2019-07-03 | Nidec Control Techniques Ltd | Drive lifetime extension |
JP7206758B2 (ja) * | 2018-09-28 | 2023-01-18 | 日本ケミコン株式会社 | コンデンサの寿命推定方法、その寿命推定プログラム、情報処理装置およびコンデンサ |
EP3687059A1 (de) * | 2019-01-22 | 2020-07-29 | Siemens Aktiengesellschaft | Betreiben von schaltelementen eines mehrpegelenergiewandlers |
JP7118019B2 (ja) * | 2019-02-05 | 2022-08-15 | 三菱電機株式会社 | 半導体モジュール、および半導体モジュールの寿命予測システム |
SE544341C2 (sv) * | 2019-09-19 | 2022-04-12 | Brokk Ab | Demoleringsrobot med styr- och kontrollfunktion för att undvika termisk skada på en i demoleringsroboten ingående motor |
CN113721122B (zh) * | 2020-05-25 | 2024-04-05 | 中车永济电机有限公司 | 焊层寿命失效的测试方法 |
GB2602338B (en) * | 2020-12-23 | 2023-03-15 | Yasa Ltd | A Method and Apparatus for Cooling One or More Power Devices |
CN115469206B (zh) * | 2022-06-10 | 2024-09-27 | 重庆长安新能源汽车科技有限公司 | 电机控制器的功率半导体器件芯片寿命评估方法、装置、汽车、介质及设备 |
US20240162835A1 (en) * | 2022-11-10 | 2024-05-16 | GM Global Technology Operations LLC | System and method estimating temperature of a direct current bus bar and direct current connector in a power inverter and providing control based upon the temperature |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337084A (ja) * | 1997-05-30 | 1998-12-18 | Aisin Seiki Co Ltd | スイッチングモジュ−ルの過熱保護装置 |
JP2001018861A (ja) * | 1999-07-06 | 2001-01-23 | Hitachi Constr Mach Co Ltd | 装軌式車両 |
JP2003009541A (ja) * | 2001-06-22 | 2003-01-10 | Nissan Motor Co Ltd | インバータ装置 |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3536098A1 (de) * | 1985-10-09 | 1987-04-09 | Siemens Ag | Einrichtung zum ueberwachen der temperatur eines elektrischen bauelements |
US4970497A (en) * | 1989-11-22 | 1990-11-13 | Westinghouse Electric Corp. | Method and apparatus for sensing thermal stress in integrated circuits |
JP2767965B2 (ja) * | 1990-03-12 | 1998-06-25 | 三菱電機株式会社 | 電力変換装置及びインバータ装置 |
KR100271690B1 (ko) * | 1992-01-31 | 2000-11-15 | 스즈키 진이치로 | 보호회로를 구비하는 반도체 장치 및 전자시스템 |
JP3209004B2 (ja) | 1994-08-10 | 2001-09-17 | 株式会社明電舎 | パワースイッチング素子の寿命監視装置及び同寿命監視装置を有するパワースイッチング素子を用いた装置 |
JP3541460B2 (ja) | 1994-10-25 | 2004-07-14 | 三菱電機株式会社 | インバータ装置 |
JPH09148523A (ja) * | 1995-11-21 | 1997-06-06 | Toshiba Corp | 半導体装置 |
JP3425835B2 (ja) * | 1996-03-01 | 2003-07-14 | 富士電機株式会社 | 電力用ブリッジ回路装置の半導体素子の異常検出および保護回路 |
DE69716686T2 (de) * | 1996-03-08 | 2003-06-12 | Nihon Shingo K.K., Tokio/Tokyo | Lichtschranke |
US5977785A (en) * | 1996-05-28 | 1999-11-02 | Burward-Hoy; Trevor | Method and apparatus for rapidly varying the operating temperature of a semiconductor device in a testing environment |
JPH1038960A (ja) * | 1996-07-24 | 1998-02-13 | Fanuc Ltd | 熱的ストレスによるパワー半導体素子の故障予測方法 |
US6288371B1 (en) * | 1999-07-13 | 2001-09-11 | Micro Control Company | Temperature controlled high power burn-in board heat sinks |
JP2001275393A (ja) * | 2000-03-28 | 2001-10-05 | Meidensha Corp | 静止形インバータ装置 |
JP2001298964A (ja) * | 2000-04-13 | 2001-10-26 | Hitachi Ltd | インバータ装置 |
JP2002005989A (ja) * | 2000-06-20 | 2002-01-09 | Meidensha Corp | 電力用半導体素子の劣化判断方法 |
JP2002101668A (ja) * | 2000-09-26 | 2002-04-05 | Meidensha Corp | 半導体電力変換装置の寿命推定方法および半導体電力変換装置 |
JP2003018861A (ja) | 2001-06-27 | 2003-01-17 | Nissan Motor Co Ltd | インバータの冷却制御装置 |
JP3668708B2 (ja) * | 2001-10-22 | 2005-07-06 | 株式会社日立製作所 | 故障検知システム |
-
2003
- 2003-03-12 US US10/501,477 patent/US7023172B2/en not_active Expired - Fee Related
- 2003-03-12 JP JP2004522001A patent/JP4367339B2/ja not_active Expired - Fee Related
- 2003-03-12 CN CNB038023652A patent/CN100477467C/zh not_active Expired - Fee Related
- 2003-03-12 GB GB0415565A patent/GB2405538B/en not_active Expired - Fee Related
- 2003-03-12 DE DE10392498T patent/DE10392498B4/de not_active Expired - Fee Related
- 2003-03-12 KR KR1020047018109A patent/KR100661107B1/ko not_active IP Right Cessation
- 2003-03-12 WO PCT/JP2003/002920 patent/WO2004082114A1/ja active Application Filing
- 2003-03-26 TW TW092106736A patent/TW591879B/zh not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10337084A (ja) * | 1997-05-30 | 1998-12-18 | Aisin Seiki Co Ltd | スイッチングモジュ−ルの過熱保護装置 |
JP2001018861A (ja) * | 1999-07-06 | 2001-01-23 | Hitachi Constr Mach Co Ltd | 装軌式車両 |
JP2003009541A (ja) * | 2001-06-22 | 2003-01-10 | Nissan Motor Co Ltd | インバータ装置 |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006254574A (ja) * | 2005-03-09 | 2006-09-21 | Yaskawa Electric Corp | インバータの保護装置 |
JP4591246B2 (ja) * | 2005-07-14 | 2010-12-01 | 株式会社日立製作所 | 電力変換器 |
JP2007028741A (ja) * | 2005-07-14 | 2007-02-01 | Hitachi Ltd | 電力変換器とその管理システム |
JP2008271779A (ja) * | 2007-03-29 | 2008-11-06 | Sanyo Electric Co Ltd | 電気機器 |
JP2010136609A (ja) * | 2008-11-04 | 2010-06-17 | Fuji Electric Systems Co Ltd | インバータ装置の冷却能力測定方法 |
WO2011114545A1 (ja) * | 2010-03-18 | 2011-09-22 | 株式会社日立製作所 | サーバ装置、及び、保守方法 |
JP2011197894A (ja) * | 2010-03-18 | 2011-10-06 | Hitachi Ltd | サーバ装置、及び、保守方法 |
JP2011205772A (ja) * | 2010-03-25 | 2011-10-13 | Mitsubishi Heavy Ind Ltd | インバータ保護装置及び方法並びにプログラム |
US8952642B2 (en) | 2010-06-25 | 2015-02-10 | Hitachi, Ltd. | Power conversion device and temperature rise calculation method thereof |
WO2011162318A1 (ja) * | 2010-06-25 | 2011-12-29 | 株式会社日立製作所 | 電力変換装置およびその温度上昇演算方法 |
JP2012010490A (ja) * | 2010-06-25 | 2012-01-12 | Hitachi Ltd | 電力変換装置およびその温度上昇演算方法 |
JP2010259326A (ja) * | 2010-08-11 | 2010-11-11 | Hitachi Ltd | Pwmインバータの制御装置 |
JP2012076454A (ja) * | 2010-09-07 | 2012-04-19 | Sumitomo Heavy Ind Ltd | 射出成形機及び電力用半導体素子消耗度監視システム |
JP2012070478A (ja) * | 2010-09-21 | 2012-04-05 | Toshiba Elevator Co Ltd | エレベータ制御装置 |
JP2013090480A (ja) * | 2011-10-19 | 2013-05-13 | Toyota Motor Corp | モータ制御用温度モニタシステム |
WO2014042057A1 (ja) * | 2012-09-11 | 2014-03-20 | 株式会社東芝 | 医用装置及びx線高電圧装置 |
JP2014056668A (ja) * | 2012-09-11 | 2014-03-27 | Toshiba Corp | 医用画像診断装置及びx線高電圧装置 |
US10349507B2 (en) | 2012-09-11 | 2019-07-09 | Toshiba Medical Systems Corporation | Medical apparatus and X-ray high voltage apparatus |
CN108496088A (zh) * | 2016-05-09 | 2018-09-04 | 株式会社日立制作所 | 电力变换装置的诊断系统、半导体模块的诊断方法以及电力变换装置 |
JP2019187030A (ja) * | 2018-04-05 | 2019-10-24 | 株式会社東芝 | 電力変換装置 |
JP2020109041A (ja) * | 2019-01-07 | 2020-07-16 | 東芝エレベータ株式会社 | 寿命診断装置および寿命診断方法 |
JP2021047058A (ja) * | 2019-09-17 | 2021-03-25 | ルネサスエレクトロニクス株式会社 | 半導体装置、電子装置および電子システム |
JP7241652B2 (ja) | 2019-09-17 | 2023-03-17 | ルネサスエレクトロニクス株式会社 | 半導体装置、電子装置および電子システム |
US11821795B2 (en) | 2019-09-17 | 2023-11-21 | Renesas Electronics Corporation | Semiconductor device, electronic device and electronic system |
WO2021084821A1 (ja) | 2019-10-31 | 2021-05-06 | 株式会社日立産機システム | 圧縮機、監視システム、及び圧縮機の監視方法 |
US11933291B2 (en) | 2019-10-31 | 2024-03-19 | Hitachi Industrial Equipment Systems Co., Ltd. | Compressor, monitoring system, and method of monitoring compressor |
WO2022024890A1 (ja) | 2020-07-29 | 2022-02-03 | 株式会社日立産機システム | 電力変換装置および遠隔監視システム |
JP7567733B2 (ja) | 2021-09-28 | 2024-10-16 | トヨタ自動車株式会社 | 熱負荷記憶装置 |
Also Published As
Publication number | Publication date |
---|---|
GB0415565D0 (en) | 2004-08-11 |
DE10392498B4 (de) | 2008-07-24 |
KR20040111600A (ko) | 2004-12-31 |
GB2405538A (en) | 2005-03-02 |
CN100477467C (zh) | 2009-04-08 |
JP4367339B2 (ja) | 2009-11-18 |
US7023172B2 (en) | 2006-04-04 |
GB2405538B (en) | 2005-11-30 |
CN1618164A (zh) | 2005-05-18 |
TW591879B (en) | 2004-06-11 |
JPWO2004082114A1 (ja) | 2006-06-15 |
TW200418257A (en) | 2004-09-16 |
DE10392498T5 (de) | 2006-02-09 |
US20050071090A1 (en) | 2005-03-31 |
KR100661107B1 (ko) | 2006-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2004082114A1 (ja) | 電動機制御装置 | |
US7719812B2 (en) | Power converters with rate of change monitoring for fault prediction and/or detection | |
US7719808B2 (en) | Power converters with operating efficiency monitoring for fault detection | |
US7904254B2 (en) | Power conversion apparatus and method of estimating power cycle life | |
US11248966B2 (en) | Health monitoring and failure prognosis of power electronics devices | |
US8303171B2 (en) | Cooling capacity measurement method for inverter device | |
JP4951642B2 (ja) | 電力変換装置及びそれを用いたエレベータ装置 | |
US9035689B2 (en) | Thermal controller for semiconductor switching power devices | |
US20080284449A1 (en) | Power converters with component stress monitoring for fault prediction | |
US7598694B2 (en) | Power supply apparatus | |
JP2017200418A (ja) | リレーの誤作動検出装置 | |
JP2002101668A (ja) | 半導体電力変換装置の寿命推定方法および半導体電力変換装置 | |
JP2008206217A (ja) | 半導体スイッチング素子の寿命監視回路を有する半導体電力変換装置 | |
US8238131B2 (en) | Method of changing an operation mode of a frequency converter based on temperature conditions, and a frequency converter having a changeable mode of operation based on temperature conditions | |
WO2008139285A2 (en) | Power converters with component stress monitoring for fault prediction | |
US7512162B2 (en) | Dynamic thermal management of laser devices | |
JP6152426B2 (ja) | 電源装置 | |
JP2016208667A (ja) | 過電流保護装置 | |
JP2007174832A (ja) | 電力変換装置 | |
KR970026866A (ko) | 엘리베이터의 방열판 과열 방지장치 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2004522001 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 0415565 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20030312 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10501477 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 20038023652 Country of ref document: CN |
|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN DE GB JP KR US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020047018109 Country of ref document: KR |
|
WWP | Wipo information: published in national office |
Ref document number: 1020047018109 Country of ref document: KR |
|
RET | De translation (de og part 6b) |
Ref document number: 10392498 Country of ref document: DE Date of ref document: 20060209 Kind code of ref document: P |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10392498 Country of ref document: DE |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8607 |