Nothing Special   »   [go: up one dir, main page]

WO2003103490A1 - Medical image diagnostic apparatus - Google Patents

Medical image diagnostic apparatus Download PDF

Info

Publication number
WO2003103490A1
WO2003103490A1 PCT/JP2003/006995 JP0306995W WO03103490A1 WO 2003103490 A1 WO2003103490 A1 WO 2003103490A1 JP 0306995 W JP0306995 W JP 0306995W WO 03103490 A1 WO03103490 A1 WO 03103490A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
cross
light beam
medical image
diagnostic apparatus
Prior art date
Application number
PCT/JP2003/006995
Other languages
French (fr)
Japanese (ja)
Inventor
仲本 秀和
渡部 滋
小村 和美
飯塚 千賀子
永尾 尚子
高橋 哲彦
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002164588A external-priority patent/JP4110457B2/en
Priority claimed from JP2002307520A external-priority patent/JP2004141269A/en
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Publication of WO2003103490A1 publication Critical patent/WO2003103490A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI

Definitions

  • the present invention relates to a medical image diagnostic apparatus that acquires and displays a cross-sectional image of a subject, and particularly when performing surgery or treatment, easily identifies an actual position on the subject by referring to the obtained cross-sectional image,
  • the present invention relates to a medical image diagnostic apparatus that can be performed quickly and accurately.
  • MRI magnetic resonance imaging
  • I-MRI Intraoperative MRI
  • the role of the medical image diagnostic apparatus is to obtain a tomographic image of the subject in real time to grasp the area to be operated or treated, monitor the area, or guide the instrument.
  • the insertion start position, target position, and insertion direction it is necessary to quickly and accurately specify the insertion start position, target position, and insertion direction while acquiring a cross-sectional image and monitoring the lesion.
  • USP-5365927 and USP-6026315 have proposed a method in which an imaging section is specified in advance by irradiation light from a projector or a method in which an imaging section is specified by a section indicating device operated by an operator. .
  • the irradiation light from the projector since the irradiation light is adjusted to the desired cross-sectional position and then the subject is inserted into the medical image diagnostic device, the positioning of the imaging cross-section is easily performed. It is mounted on the diagnostic device.
  • USP-5365927 emits light to the pointer which is a fault plane indicating device.
  • a diode is provided to detect the device pointed by the pointer with an infrared camera, or to provide a pointer at the end of an arm with a sensor at the joint, and to detect the position of the pointer based on the angle of the joint of the arm. Based on this, the position of the imaging surface is automatically adjusted.
  • USP-620626315 automatically determines and images the designated tomographic plane using two infrared cameras and a pointer with three reflecting spheres. However, in the above-mentioned known technique, it is not considered to grasp the position of a corresponding cross section or a lesion on an actual subject from a captured cross-sectional image. Disclosure of the invention
  • An object of the present invention is to enable an operator to easily and quickly and accurately specify an actual position on a subject when performing surgery or treatment on the subject using a medical image diagnostic apparatus.
  • the present invention is configured as follows.
  • Image acquisition means for acquiring a cross-sectional image of the subject
  • a medical image diagnostic apparatus comprising: display means for displaying the acquired cross-sectional image; irradiation position selecting means for selecting a desired position in the cross-sectional image displayed on the display means;
  • At least one or more light beam irradiating means arranged around the subject and irradiating a light beam on the body surface of the subject,
  • Irradiation control means for controlling the light beam irradiation means based on information from the irradiation position selection means.
  • the irradiation control means includes: a coordinate position calculating means for calculating a coordinate position in the real space of the subject corresponding to a desired position selected by the irradiation position selecting means.
  • the light beam illuminator based on information from the coordinate position calculating means so that the light beam indicates a coordinate position of the subject in real space. Control the firing means.
  • the operator can easily determine the position to be operated or treated. Will be able to grasp quickly and accurately.
  • the medical image diagnostic apparatus has a surface facing the subject, and the light beam irradiation means is arranged on the facing surface.
  • the correspondence between the desired position on the cross-sectional image and the actual position of the subject in the real space can be easily set, and the setting can be maintained, so that the irradiation of the light beam can be performed accurately. It can be carried out.
  • light beam irradiation can be easily performed.
  • the light beam irradiation means is arranged on a support table arranged around the medical image diagnostic apparatus.
  • At least one pair of the light beam irradiating means is provided, and the light beam irradiating means is opposed to both sides of the subject from different directions with the subject interposed therebetween.
  • the user can simultaneously specify the puncturing start position, the target position, and the puncturing direction.
  • the medical image diagnostic apparatus includes: a pair of static magnetic field generating means vertically arranged across a measurement space for inserting and measuring the subject; In the case of a vertical magnetic field type magnetic resonance imaging apparatus having at least one or more columns for supporting the upper static magnetic field generating means across the outer edge of the generating means,
  • the column is positioned on the surface of the column, which is located in the horizontal direction perpendicular to the body axis of the subject, facing the side surface of the subject, or on the support table arranged in the horizontal direction, and sandwiches the subject.
  • a pair of the light beam irradiating means arranged on the support pedestal which is opposed to the subject in the body axis direction of the subject.
  • the arrangement of the light beam irradiating means becomes appropriate, and the irradiation of the light beam to the subject can be accurately performed not only during imaging but also during the operation in which the operator is in close proximity to the subject. And can be easily performed.
  • the medical image diagnostic apparatus is an X-ray CT apparatus including a gantry for inserting and measuring the subject in a center space, A pair of the light beam irradiating means disposed on opposite sides of the gantry and on both sides in a horizontal direction perpendicular to the body axis of the subject with the subject interposed therebetween;
  • a pair of the light beam irradiating means arranged on the surface of the gantry facing the upper surface of the subject, on the upper side in the vertical direction perpendicular to the body axis of the subject, and on both the front and back surfaces of the gantry
  • the arrangement of the light beam irradiating means becomes appropriate, and the irradiation of the light beam to the subject is performed not only during the imaging but also during the operation in which the operator is close to the subject. Can be carried out easily and easily.
  • the light beam irradiating means includes a light beam emitting means and a moving / rotating means for moving or rotating the light beam emitting means
  • the irradiation controlling means includes a light beam emitting means and a light rotating means. And controlling the moving and rotating means.
  • the light beam irradiating means can be moved and rotated flexibly, so that the irradiable range of the light beam can be further expanded.
  • the plurality of light beams are linearly separated on the body surface of the subject, and the plurality of light beams are irradiated so as to intersect at the coordinate position of the subject. You. According to this, since the intersection of X-ray spectroscopy can be clearly recognized, the irradiation position of the light beam can be easily and quickly grasped.
  • the light beam is spot light on the body surface of the subject.
  • the number of positions that can be indicated on the subject can be increased, so that more information can be simultaneously displayed on the subject by the light beam.
  • any one of the spot lights is irradiated so as to indicate the puncturing start position, and the spot light facing the spot light is irradiated to a position where the puncturing direction can be grasped,
  • the irradiation control means is controlled so that the depth to be punctured by another spot light can be predicted.
  • the puncture start position, the target position, and the puncture direction can be quickly and accurately grasped, the time until the start of surgery or treatment and the number of trial and error can be reduced.
  • Part designation means for designating a part to be imaged on the cross-sectional image displayed on the display means
  • a cross-section position calculating unit configured to calculate position information of a plurality of cross sections orthogonal to each other based on a site specified by the site specifying unit;
  • a plurality of cross-sectional images captured in the imaging sequence are displayed on the display. According to this, it is possible to always display a plurality of cross-sectional images including a desired part and orthogonal to each other, so that the desired part can be displayed on the cross-sectional image in accordance with the progress of surgery or treatment. While monitoring both on the actual subject, guidance on the next operation and procedure can be easily performed.
  • a cross section including the part to be imaged is a cross section passing through one point or one straight line or one point and one straight line input by the part specifying means.
  • a medical image diagnostic apparatus including: an image acquisition unit configured to acquire a cross-sectional image of a subject; and a display unit configured to display the acquired cross-sectional image.
  • Region designation means for designating a region to be imaged on the cross-sectional image displayed on the display means
  • a section position calculating unit that calculates position information of a plurality of cross sections orthogonal to each other based on the part specified by the part specifying unit;
  • a cross-sectional image captured in the imaging sequence is displayed on the display unit.
  • the section including the part to be imaged is a section passing through one point or one straight line or one point and one straight line input by the input means.
  • FIG. 1 is an overall schematic configuration diagram of a magnetic resonance imaging apparatus according to the present invention.
  • FIG. 2 is an overall schematic layout perspective view of the optical display.
  • FIG. 3 is an explanatory view of the arrangement of a laser irradiator for X-direction display.
  • FIG. 4 is an explanatory view of the arrangement of a laser irradiator for Y-direction display.
  • FIG. 5 is an explanatory view of the arrangement of a laser irradiator for Z-direction display.
  • FIG. 6 is a block diagram of the irradiation control function of the laser irradiation device.
  • FIG. 7 is a flowchart showing a procedure for displaying a target site during an operation according to the present invention.
  • FIG. 8 is a diagram illustrating an example of a display screen of the display according to the first embodiment.
  • FIG. 9 is a diagram showing laser irradiation light whose irradiation position is controlled based on an arbitrary cross section selected on the display screen shown in FIG.
  • FIG. 10 is a diagram illustrating another example of the display screen of the display according to the first embodiment.
  • FIG. 11 is a diagram showing laser irradiation light whose irradiation position and irradiation direction are controlled based on an arbitrary cross section selected on the display screen shown in FIG.
  • FIG. 12 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the front of the CT apparatus.
  • FIG. 13 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the side of the CT device.
  • FIG. 14 is an operation flowchart according to the third embodiment of the present invention.
  • FIG. 15 is an explanatory diagram of an orthogonal cross-sectional view obtained by the third embodiment of the present invention.
  • FIG. 16 is an operation flowchart in the fourth embodiment of the present invention.
  • FIG. 17 is an explanatory diagram of an orthogonal cross-sectional view obtained by the fourth embodiment of the present invention.
  • FIG. 18 is an operation flowchart in the fifth embodiment of the present invention.
  • FIG. 19 is an explanatory view of an orthogonal sectional view obtained by the fifth embodiment of the present invention.
  • FIG. 1 is an overall schematic configuration diagram of a medical image diagnostic apparatus according to the present invention, and is an example in which the present invention is applied to a magnetic resonance imaging apparatus (MRI apparatus).
  • MRI apparatus magnetic resonance imaging apparatus
  • An MRI device measures the nuclear spin density distribution, relaxation time distribution, etc. at a desired examination site in a subject using the NMR phenomenon, and displays an arbitrary cross section of the subject as an image based on the measurement results. is there.
  • the MRI apparatus includes a static magnetic field generating magnet 2, a gradient magnetic field generating system 3, It comprises a communication system 5, a reception system 6, a signal processing system 7, a central processing unit (CPU) 8, and an optical display 21.
  • a static magnetic field generating magnet 2 a gradient magnetic field generating system 3
  • It comprises a communication system 5, a reception system 6, a signal processing system 7, a central processing unit (CPU) 8, and an optical display 21.
  • CPU central processing unit
  • the static magnetic field generating magnet 2 generates a uniform static magnetic field around the subject 1 in the body axis direction or in a direction orthogonal to the body axis, and generates a permanent magnet type, a normal conduction type, or a superconducting type magnetic field. Consisting of means.
  • a gradient magnetic field coil 9 of the gradient magnetic field generating system 3 In the magnetic field space surrounded by the static magnetic field generating magnet 2, a gradient magnetic field coil 9 of the gradient magnetic field generating system 3, a high frequency coil 14a of the transmitting system 5, and a high frequency coil 14b of the receiving system 6 are provided.
  • the gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 wound in three axial directions of X, ,, and Z, and a gradient magnetic field power supply 10 for driving the respective gradient magnetic field coils 9. Then, the gradient magnetic field generating system 3 drives the gradient magnetic field power supplies 10 of the respective gradient magnetic field coils in accordance with instructions from the sequencer 4 to generate gradient magnetic fields G x in the three axes of X, Y and ⁇ . , G y, G. Is applied to the subject 1.
  • the slice plane for the subject 1 can be set by how to apply the gradient magnetic field.
  • the sequencer 4 repeatedly applies a high-frequency magnetic field pulse signal causing a nuclear magnetic resonance to the nuclei of the atoms constituting the living tissue of the subject 1 in a predetermined pulse sequence.
  • the sequencer 4 operates under the control of the CPU 8 and sends various commands necessary for overnight collection of tomographic images of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. '
  • the transmission system 5 irradiates a high-frequency magnetic field under the control of the sequencer 4 to cause the nuclei of the atoms constituting the living tissue of the subject 1 to cause NMR.
  • the transmission system 5 includes a high-frequency oscillator 11, a modulator 12, a high-frequency amplifier 13, and a high-frequency coil 14a on the transmission side.
  • the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 in accordance with a command from the sequencer 4, and the high-frequency pulse subjected to the amplitude modulation is amplified by the high-frequency amplifier 13. Then, the amplified high-frequency pulse is supplied to a high-frequency coil 14a arranged close to the subject 1. Thus, the subject 1 is irradiated with the electromagnetic wave.
  • the receiving system 6 detects an echo signal (NMR signal) emitted from the subject 1 by NMR of nuclei of living tissue.
  • the receiving system 6 includes a high-frequency coil 14 b on the receiving side arranged close to the subject 1, an amplifier 15, a quadrature detector 16, and an AZD converter 17.
  • the echo signal detected by the high-frequency coil 14 b on the receiving side is input to the A / D converter 17 via the amplifier 15 and the quadrature phase detector 16, converted into a digital signal, and further converted from the sequencer 4. These are collected as two series of collected data sampled by the quadrature detector 16 at the timing according to the instruction. Then, the collected data is sent to the signal processing system 7.
  • the signal processing system 7 includes a CPU 8, a recording device such as a magnetic disk 18 and a magnetic tape 19, and a display 20 such as a CRT.
  • the signal processing system 7 performs Fourier transform, correction coefficient calculation, and image reconstruction processing on the signal from the receiving system 6 by the CPU, and performs signal calculation on the signal intensity distribution of an arbitrary cross section and a plurality of signals. The obtained distribution is imaged and displayed on the display 20.
  • the signal processing system 7 has a function of performing difference processing and weighting on image data as a function of the CPU 8. These processes are performed on the data obtained by performing measurement in the MRI apparatus. Means for selecting and setting these processes are provided as input means of the CPU 8.
  • the display 20 has a function of displaying a difference image or a cumulatively added image in place of or in addition to a normal image, corresponding to the function of the signal processing system 7.
  • the operation unit 24 is a keyboard 2 for performing operations such as setting various parameters and setting the imaging section.
  • FIG. 2 to 5 are explanatory views of the arrangement position of the optical display (light beam irradiating means) 21.
  • FIG. 2 is a schematic perspective view of the entire arrangement, and FIGS. It is a figure.
  • the optical display 21 is a predetermined site in the subject 1 (for example, a target such as a tumor). Is indicated by a plurality of laser irradiation lights, and a puncture start position, a target position, and a direction at the time of puncturing the living body with the puncture needle are displayed in a real space.
  • the optical display 21 includes a pair of x-direction display laser radiators 21 x such as a He—Ne laser, a pair of y-direction display laser radiators 21 y, and a pair of z Direction display laser irradiator 21z and these laser irradiators 21x to 21z move and rotate in the X-axis direction, Y-axis direction, and Z-axis direction.
  • Rotating means 22 x, 22 y, and 22 z are examples of Rotating means 22 x, 22 y, and 22 z.
  • Each laser irradiator is moved and rotated by moving and rotating means so that the laser irradiation light indicated by the dotted line can display three axes of a three-axis cross-section arbitrarily defined by GUI described later. It has become.
  • each of the laser irradiators 21 x, 21 y, and 21 z displays the above three axes as a reference for the patient 1. Fixed in place.
  • the static magnetic field generating magnets 2 are arranged vertically above and below the subject 1 across the measurement space where the subject 1 is placed, and the upper surface of the static magnetic field generating magnet 2 on the subject 1
  • a pair of X-direction display lasers 21 X is arranged on a surface facing the side (opposing surface).
  • the MRI apparatus also has two columns that support the outer edge (both ends) of the static magnetic field generating magnet 2 and face each other. These two columns have a laser irradiator 21 for y-direction display. y is located. Further, a laser irradiator 21 z for z-direction display is arranged on the support base 29.
  • moving / rotating means 22 y is shown, but moving / rotating means 22 x and 22 y having the same configuration are also arranged.
  • FIG. 3 is an explanatory view of the arrangement of two laser irradiators 21 X.
  • the pair of laser irradiators 21 x and 2 lx are arranged along the Y-axis direction (the body axis direction of the subject 1) and across the measurement space. , Facing each other So that it is arranged on the static magnetic field generating magnet 2.
  • the pair of laser irradiators 2 lx and 2 lx are arranged so as to irradiate a laser beam and irradiate them in opposite directions.
  • a section line 23 X corresponding to the section is formed.
  • the broken line indicates the irradiation locus of the laser beam. Also, in FIG. 3B, one of the two columns supporting the static magnetic field generating magnet 2 is omitted for convenience of illustration.
  • FIG. 4 is an explanatory view of the arrangement of two laser irradiators 21y.
  • FIG. 4C is a view of the patient 1 as viewed from the foot direction.
  • the pair of laser irradiators 21 y and 21 y measure a support located along the X-axis direction (horizontal direction perpendicular to the body axis of the subject 1). They are arranged on the space side surface (the surface facing the side surface of the subject 1 (opposing surface)) so as to face each other.
  • These laser irradiators 21 y and 21 y are arranged so as to irradiate a laser along the X-axis direction and to irradiate the laser beams in opposite directions. Then, as shown in FIGS. 4A and 4B, a section line 23y corresponding to the coronal section is formed.
  • FIG. 4 (A) shows the case where the whole body of the patient 1 is irradiated
  • FIG. 4 (B) shows the case where the patient 1 is partially irradiated.
  • FIG. 5 is an explanatory view of the arrangement of two laser irradiators 21z and 21z.
  • the pair of laser irradiators 21z and 21z are positioned along the Y-axis direction (the body axis direction of the subject 1) and measured. It is placed on the support bases 29 and 29 that are opposed to each other across the space (with the subject 1 in between).
  • These laser irradiators 21z and 21z irradiate laser along the Y-axis direction, irradiate them in opposite directions, and scan in the Y-axis direction while irradiating laser light.
  • a section line 23 z corresponding to the sagittal section is formed.
  • FIG. 6 is an explanatory diagram of laser irradiation control using an X-axis laser irradiator as an example.
  • the image displayed on the display means 20 is irradiated by the irradiation position selecting means (operation unit) 24 as described later.
  • the selected irradiation position is calculated by the coordinate position calculation means of the irradiation control means 8 in the real space.
  • the irradiation control means 8 controls the light beam irradiation means 21 and the moving / rotating means 22x, 22y, 22z so that the light beam irradiation means 21 which is a laser irradiator irradiates the calculated coordinate position. I do.
  • a tomographic image of the subject 1 is captured by a magnetic resonance imaging apparatus (step 101).
  • MPR Mo 1 ti -P 1 aner Rec struction on
  • MIP Maximum Int en sity project on
  • VOLUME rent RING (Vo lme Rend eri ng), etc.
  • the display 20 is displayed.
  • Display three-axis images eg, a cross-sectional image (axial image) orthogonal to the body axis of the subject 1, a coronal image (coronal cross-sectional image), and a sagittal image (sagittal cross-sectional image) orthogonal to the axial image) (step 102).
  • Fig. 8 is an example of a display screen of the display 20 that displays the above-described three-axis image, etc.
  • the display unit 201 of the four divided display units 201 to 204 includes: An axial image is displayed, a coronal image is displayed on the display unit 202. A sagittal image is displayed on the display unit 203, and a real-time image such as a fluoroscopy is displayed on the display unit 204.
  • dotted lines 206 to 208 which can be freely moved by a drag keyboard 25 using the mouse 26 are displayed.
  • the operator operates the tool to select an arbitrary cross section (3 axes) (steps 103 and 104).
  • an arbitrary cross section for example, a cross section including a puncture start position by a puncture needle and a desired site (such as a tumor) in a living body is selected.
  • the coordinate position calculation means automatically calculates the coordinate position in the real space of the three-axis orthogonal point (the desired part) and the three-axis direction, and indicates the coordinate position from the three-axis direction using laser irradiation light.
  • the necessary position information is transmitted to the moving and rotating means 22 x, 22 y, and 22 z of the optical display 21 (step 105).
  • the moving and rotating means 22 x, 22 y, and 22 z are laser radiators 21 x, y for X-direction display of the optical display 21 for displaying three axes based on the transmitted positional information. Move the laser irradiator 21 for y-direction display and the laser irradiator 21 for z-direction display (step 106).
  • the laser irradiation light is irradiated on the body surface of the subject (Step 107).
  • the laser irradiation light emitted from each laser irradiator 21 x to 21 z is assisted, and the subject 1 is subjected to processing / surgery (puncture, incision, etc.) according to the purpose (Step 1). 0 8).
  • the spot light on the subject 1 can be viewed, and in this embodiment, five spot lights can be viewed. And any one of the spot lights indicates a puncture start position by the puncture needle.
  • the puncturing direction can be grasped from the position of the spot light facing the spot light indicating the puncturing start position. Further, the user can predict the position of the intersection (depth to be punctured) where the laser light crosses when the laser light passes through the subject, from the positions of these spot lights.
  • the magnetic resonance imaging apparatus has a function of real-time imaging of a selected cross section (particularly, a cross section including a puncturing start position), and Z display.
  • a real-time image such as an MRI fluoroscopic image is provided. Is displayed on the display section 204 of the display screen of FIG.
  • the photographing sequence in this case is a fluoroscopy sequence such as a GrE sequence or a multi-shot EPI.
  • the image can be updated every 0.5 to 4 seconds, and this real-time image can be used to monitor the puncture needle. It can be carried out.
  • step 104 If you want to change the display cross section, return to step 104, where a new arbitrary cross section is selected.
  • the process returns to step 101, a tomographic image including the target part is captured, and the above processing is repeated. This function ends when the goal is achieved by the operation support.
  • the arbitrary cross section can be selected by moving the three reference axes in parallel.
  • the present invention is not limited to this.
  • the display section 310 of the display 20 shown in FIG. It is also possible to make it possible to freely rotate the solid lines 306 to 308 on to 3303, and to select the inclination of an arbitrary cross section by these solid lines 306 to 308.
  • the laser irradiation light is obtained as shown by the solid line 305 in FIG.
  • the subject can be irradiated.
  • the optical display 21 is not limited to one using a He—Ne laser, but may be one using other light emitting means (light emitting diode or the like) that emits light harmless to the human body.
  • the operator is instructed to select a measurement sequence in advance.However, when continuously acquiring data, the operator can change the sequence and settings even during measurement depending on the target region and conditions. It also has a mechanism to change freely.
  • an arbitrary cross section including a predetermined part is selected using a three-axis image, but an arbitrary cross section may be selected using a two-axis image.
  • a treatment tool such as a puncture needle can be obtained simply by selecting a desired position of general affairs on a cross-sectional image display screen of a subject.
  • the start position, target position, and direction of access to the inside of a living body can be displayed in real space using a light beam, and the position of the corresponding cross section or lesion can be easily grasped on the actual subject. Can be.
  • the surgeon can be assisted.
  • the second embodiment is an example in which the present invention is applied to an X-ray CT apparatus.
  • FIG. 12 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the front of the X-ray CT apparatus
  • FIG. 13 is a view as viewed from the side of the X-ray CT apparatus.
  • the irradiation control means and method of the laser irradiator are the same as those described with reference to FIGS. 6 to 11 in the first embodiment. Description is omitted.
  • the X-ray CT apparatus includes a gantry 27 for inserting the subject 1 into the center gap and measuring it.
  • the pair of Y-direction display laser irradiators 28 y and 28 y are arranged on the surface of the gantry 27 facing the side surface of the subject 1 disposed in the gap of the gantry 27, and The subject 1 is arranged to face each other on both sides in the horizontal direction perpendicular to the body axis of the subject 1 with the subject 1 interposed therebetween.
  • the pair of X-direction display laser irradiators 28 x and 28 x are provided on the surface of the gantry 27 facing the upper surface of the subject 1 arranged in the gap of the gantry 27, and
  • the upper side of the gantry 27 perpendicular to the body axis 1 is on both sides of the gantry 27 (the back surface of the gantry 27 in Fig. 12 and the left and right sides of the gantry 27 in Fig. 13). Are located.
  • a pair of laser irradiators for z-direction display 28 z and 28 z are arranged to face each other across the subject 1 in the body axis direction of the subject 1 placed in the gap of the gantry 27.
  • the supporting bases 29 and 29 are arranged.
  • the subject 1 is irradiated with laser light by these laser irradiators 28x, 28y, and 28z in the same manner as in FIGS.
  • the access start position, the target position, and the direction at the time of accessing the inside of the living body with a treatment tool such as a puncture needle are set in the real space. Above can be displayed by the light beam, and the surgeon can be assisted.
  • the third embodiment is an example in which the present invention is applied to an MRI apparatus. Note that the description of the third embodiment is omitted because the overall configuration of the MRI apparatus is the same as the example shown in FIG. However, in the third embodiment, the optical display 21 shown in FIG. 1 is not always necessary.
  • the position and angle of the imaging section by the MRI apparatus are controlled by the static magnetic field strength Bo and the gradient magnetic field strengths Gx, Gy, Gz applied to the subject 1 and the frequency fo of the transmitted high frequency.
  • the resonance frequency of proton nuclei at a static magnetic field strength of 0.3 T is 12.8 MHz. If a gradient magnetic field with a strength of 5 mT / m is generated in the slice direction at this time, if the high frequency is 12.8 MHz, A cross section at the position of the center of the magnetic field can be imaged, and if the frequency is shifted from 12.8 MHz to 1067 Hz, a cross section 5 mm away from the center of the magnetic field can be imaged as determined by the following equation (1).
  • FIG. 14 shows a repetition of the MRI apparatus according to the third embodiment of the present invention. Is shown in a flowchart.
  • step 200 MR imaging is performed (step 200), and the measured MR image is displayed (step 201).
  • the imaging position in step 200 may be a position determined by any conventional method or a magnetic field center.
  • one point of interest is designated on the displayed image with the mouse 26 or the like (step 202).
  • the point of interest is, for example, a tumor to be imaged, or a tip region of a puncture needle or a surgical instrument, and two or three cross sections including this one point and orthogonal to each other are imaged (step 203).
  • a SAG section, a COR section, and a TRS section which are orthogonal to the device axes X, Y, ⁇ may be used (not shown).
  • a section selection button 305 is provided next to the display image, and an image of the section selected here is taken.
  • the cross-section selection button 3 05 should be visually recognizable, such as highlighting the selected cross-section, so that the mouse 26 can be selected with one click and released with two clicks. It is configured so that selection and change of cross section can be easily performed. In the example shown in FIG. 15, the transversal section and the coronal section are selected.
  • the third embodiment of the present invention is particularly effective during fluoroscopic imaging, and can repeat Steps 201 to 203 without interrupting imaging.
  • the computer (CPU) 8 calculates the position, and calculates the high-frequency and gradient magnetic field strengths G x, G y, and G according to the calculated position. Is calculated, and the sequencer 4 is controlled.
  • the control timing is after the end of the image measurement before the point of interest designation, that is, at the start of the next image capturing, and the sequencer 40 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
  • the third embodiment of the present invention by designating one point on the display screen, it is possible to select cross-sectional images that include the one point and are orthogonal to each other. It is possible to obtain cross-sectional images orthogonal to each other, provide effective information about the patient to assist the surgeon, and realize a magnetic resonance imaging device capable of shortening the operation time. it can.
  • the optical display 21 is not always necessary.
  • FIG. 16 is a flowchart showing the operation of the MRI apparatus according to the fourth embodiment.
  • Step 400 MR imaging as a first reference image is performed
  • Step 40D0 the measured MR image is displayed
  • the imaging position in step 400 may be a position determined by a conventional method or a magnetic field center.
  • the region of interest is specified by a line by dragging the mouse 26 (step 402).
  • the region of interest is a line that is drawn as required, such as a tumor to be imaged, or a puncture needle or surgical instrument, for example, to image the planned puncture path from the tumor to the puncture needle, or to image a cross section including the puncture needle. Good.
  • Step 403 two cross sections that include this line and are orthogonal to each other are imaged.
  • the method of drawing a line depends on a general method.
  • a pen tablet or a touch panel may be used.
  • a straight line may be automatically generated by designating two points. However, in the case of freehand, it is necessary to interpolate so as to be a straight line.
  • the fourth embodiment is particularly effective during fluoroscopic imaging, and can repeat steps 401 to 403 without interrupting imaging.
  • the computer 8 calculates the position, calculates the high frequency, the gradient magnetic field strength G x, G v, and G z according to the position, and controls the sequencer 4.
  • the control timing is after the end of the image measurement before designating the target part, that is, at the start of the next image capturing, and the sequencer 4 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
  • the fourth embodiment the same effect as in the third embodiment can be obtained. Furthermore, the fourth embodiment is different from the third embodiment in that the COR section to be imaged is not orthogonal to the imaging axes x ', y' and the apparatus axes X, Y of the TRS section 500. It is effective.
  • the overall configuration and operation of the MRI apparatus are the same as those in the first embodiment, but the optical display 21 is not always necessary.
  • FIG. 18 is a flowchart showing the operation of the MRI apparatus according to the fifth embodiment.
  • step 600 MR imaging is performed (step 600), and the measured MR image is displayed (step 601).
  • the imaging position in step 600 may be a position determined by a conventional method or a magnetic field center.
  • a point of interest is designated with a dot and a line in the displayed image (step 602).
  • the point of interest can be designated by a point and a line.
  • the tumor to be imaged or the tip of a puncture needle or a surgical instrument may be indicated by a point
  • the planned puncture needle path from the tumor to the puncture needle or the position including the puncture needle may be indicated by a line .
  • the line is drawn in the same manner as in the fourth embodiment.
  • the SAG section may be a section 705 orthogonal to the imaging axis x 'of the TRS section 700.
  • the SAG section may be a section 705 orthogonal to the imaging axis x 'of the TRS section 700.
  • the fifth embodiment is particularly effective during fluoroscopic imaging, and can repeat Steps 601 to 603 without interrupting imaging.
  • the computer 8 calculates the position, the frequency of the high frequency and the gradient magnetic field strength G x, G y, G according to the position.
  • the sequencer 4 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
  • the fifth embodiment can provide the same effects as the fourth embodiment.
  • three cross sections can be imaged by specifying points and lines.
  • the time resolution is reduced by changing the number of imaging cross-sections from two to three.
  • a click operation for recognizing the start point 7001 as the start point is unnecessary, and the start point of the line is automatically recognized as the start point 71. It can also be configured as follows.
  • the present invention is not limited to a magnetic resonance imaging apparatus and an X-ray CT apparatus, but can be applied to other medical image diagnostic apparatuses such as an ultrasonic diagnostic apparatus.
  • Industrial applicability is not limited to a magnetic resonance imaging apparatus and an X-ray CT apparatus, but can be applied to other medical image diagnostic apparatuses such as an ultrasonic diagnostic apparatus.
  • an access start position, a target position, and a direction at the time of accessing a living body with a treatment instrument such as a puncture needle can be displayed in a real space by a light beam, thereby assisting an operator. be able to.
  • the present invention by designating one point on the display screen, it is possible to select cross-sectional images including the one point and orthogonal to each other, so that cross-sectional images orthogonal to each other are automatically obtained by a simple operation. Can assist the surgeon in assisting the patient Provide effective information on the operation and shorten the operation time,

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

A medical image diagnostic apparatus such as an MRI apparatus wherein the access start position, the target position and direction can be displayed in a real space when a treatment tool such as a puncture needle accesses an organism. Cross-sections of a subject (1) created at least in two axial directions out of orthogonal three axial directions are displayed on display means (20), and an arbitrary position such as a target position of a tumor is selected with reference to the cross-sections. From the selected arbitrary position, the coordinate positions in the real space are calculated. The application positions and directions of the laser beams emitted from an X-direction display laser beam applicator (21x), a y-direction display laser applicator (21y), and a z-direction laser beam applicator (21z) are so controlled that the laser beams point the calculated coordinate positions.

Description

明細書  Specification
技術分野 Technical field
本発明は、 被検体の断面像を取得して表示する医療画像診断装置に関し、 特に 手術や治療を行うに際して、 取得した断面像を参照して被検体上の実際の位置の 特定を容易に、 迅速かつ正確に行える医療画像診断装置に関する。 背景技術  The present invention relates to a medical image diagnostic apparatus that acquires and displays a cross-sectional image of a subject, and particularly when performing surgery or treatment, easily identifies an actual position on the subject by referring to the obtained cross-sectional image, The present invention relates to a medical image diagnostic apparatus that can be performed quickly and accurately. Background art
磁気共鳴イメージング装置 (MR I装置) や X線 CT装置のような医療画像診 断装置は、 手術や治療中にも利用されている。 特に、 MR I装置の塲合には、 ィ ン夕一べンショナル MR I Zィントラオペラティブ MR I (Interventional MRI /Intraoperative MRI (I- MRI)) と言われている。  Medical image diagnostic devices such as magnetic resonance imaging (MRI) and X-ray CT are also used during surgery and treatment. In particular, it is said that the MR I device is called an “International MRI / Intraoperative MRI (I-MRI)”.
このような手術や治療中において、 医療画像診断装置の役割は、 被検体の断層 像をリアルタイムに取得して手術や治療すべき領域の把握やそのモニタリング又 は器具のガイドを行うことである。 特に、 穿刺や細管の挿入においては、 断面像 を取得して病変部をモニタリングしつつ、 挿入の開始位置と目的位置及び挿入方 向を迅速かつ正確に特定することが必要となる。  During such surgery or treatment, the role of the medical image diagnostic apparatus is to obtain a tomographic image of the subject in real time to grasp the area to be operated or treated, monitor the area, or guide the instrument. In particular, when puncturing or inserting tubules, it is necessary to quickly and accurately specify the insertion start position, target position, and insertion direction while acquiring a cross-sectional image and monitoring the lesion.
また、 多くの場合、 実際に断面像を取得した後に病変部の存在を把握するので、 撮像された断面像から実際の被検体上で対応する断面や病変部の位置を把握する ことが必要になる。  In many cases, the existence of a lesion is grasped after an actual cross-sectional image is acquired.Therefore, it is necessary to grasp the position of the corresponding cross-section or lesion on the subject from the photographed cross-sectional image. Become.
従来、 撮像断面を簡易に指定する方法に関してはいくつか知られている。 例え ば、 投光器からの照射光によって撮像断面を事前に指定する方法や、 術者が操作 する断面指示デバイスによって撮像断面を指定する方法で、 US P— 53659 27や USP— 6026315に提案されている。  Conventionally, there are some known methods for simply specifying an imaging section. For example, USP-5365927 and USP-6026315 have proposed a method in which an imaging section is specified in advance by irradiation light from a projector or a method in which an imaging section is specified by a section indicating device operated by an operator. .
投光器からの照射光の場合は、 照射光を所望の断面位置に合わせた後で医療画 像診断装置に被検体を挿入することにより、 簡易に撮像断面の位置決めを行うも ので、 ほとんどの医療画像診断装置に搭載されている。  In the case of the irradiation light from the projector, since the irradiation light is adjusted to the desired cross-sectional position and then the subject is inserted into the medical image diagnostic device, the positioning of the imaging cross-section is easily performed. It is mounted on the diagnostic device.
また、 USP— 5365927は、 断層面指示デバイスであるポインタに発光 ダイォードが設けられ、 操作者がポインタで指し示した仕置を赤外線カメラで検 出したり、 関節にセンサが備えられたアームの先端部にポインタを設け、 アーム の関節の角度などでポインタの位置を検出し、 これに基づいて、 撮像面の位置を 自動的に調節するものである。 In addition, USP-5365927 emits light to the pointer which is a fault plane indicating device. A diode is provided to detect the device pointed by the pointer with an infrared camera, or to provide a pointer at the end of an arm with a sensor at the joint, and to detect the position of the pointer based on the angle of the joint of the arm. Based on this, the position of the imaging surface is automatically adjusted.
また、 U S P— 6 0 2 6 3 1 5は、 2個の赤外線カメラと 3個の反射球を備え たポインタとを使って指示した断層面を自動的に決定し撮影するものである。 しかしながら、 上記公知の技術では、 撮像された断面像から実際の被検体上で 対応する断面や病変部の位置を把握することは考盧されてない。 発明の開示  USP-620626315 automatically determines and images the designated tomographic plane using two infrared cameras and a pointer with three reflecting spheres. However, in the above-mentioned known technique, it is not considered to grasp the position of a corresponding cross section or a lesion on an actual subject from a captured cross-sectional image. Disclosure of the invention
本発明の目的は、 医療画像診断装置を用いて被検体に対して手術や治療を行う に際して、 被検体上の実際の位置の特定を容易に迅速かつ正確に行えるようにす ることである。  An object of the present invention is to enable an operator to easily and quickly and accurately specify an actual position on a subject when performing surgery or treatment on the subject using a medical image diagnostic apparatus.
上記目的を達成するため、 本発明は次のように構成される。  In order to achieve the above object, the present invention is configured as follows.
被検体の断面像を取得する画像取得手段と、  Image acquisition means for acquiring a cross-sectional image of the subject,
取得した前記断面像を表示する表示手段とを備えた医療画像診断装置において、 前記表示手段に表示された前記断面像における所望の位置を選択する照射位置 選択手段と、  A medical image diagnostic apparatus comprising: display means for displaying the acquired cross-sectional image; irradiation position selecting means for selecting a desired position in the cross-sectional image displayed on the display means;
前記被検体の周囲に配置されて該被検体の体表上に光ビームを照射する少なく とも 1以上の光ビーム照射手段と、  At least one or more light beam irradiating means arranged around the subject and irradiating a light beam on the body surface of the subject,
前記照射位置選択手段からの情報に基づいて前記光ビーム照射手段を制御する 照射制御手段とを備える。  Irradiation control means for controlling the light beam irradiation means based on information from the irradiation position selection means.
これにより、 被検体の断面像上で所望の位置を選択するだけで被検体上に光ビ ームを照射することができ、 撮像された断面像から実際の被検体上で対応する断 面や病変部の位置を容易に把握することができる。  This makes it possible to irradiate the light beam onto the object simply by selecting a desired position on the cross-sectional image of the object. The position of the lesion can be easily grasped.
好ましい一実施態様によれば、 前記照射制御手段は、 前記照射位置選択手段に よって選択された所望の位置に対応する、 前記被検体の実空間上の座標位置を計 算する座標位置計算手段を備え、 前記光ビームが前記被検体の実空間上の座標位 置を指示するように前記座標位置計算手段からの情報に基づいて前記光ビーム照 射手段を制御する。 According to a preferred embodiment, the irradiation control means includes: a coordinate position calculating means for calculating a coordinate position in the real space of the subject corresponding to a desired position selected by the irradiation position selecting means. The light beam illuminator based on information from the coordinate position calculating means so that the light beam indicates a coordinate position of the subject in real space. Control the firing means.
これによれば、 被検体の断面像上で選択された所望の位置に対応する被検体の 実空間上の座標位置が光ビームにより指示されるので、 術者は手術や治療すべき 位置を容易に迅速かつ正確に把握することができるようになる。  According to this, since the coordinate position in the real space of the subject corresponding to the desired position selected on the cross-sectional image of the subject is indicated by the light beam, the operator can easily determine the position to be operated or treated. Will be able to grasp quickly and accurately.
また、 好ましい一実施態様によれば、 前記医療画像診断装置は前記被検体に相 対する面を有し、 前記光ビーム照射手段が、 該相対する面に配置される。  Further, according to a preferred embodiment, the medical image diagnostic apparatus has a surface facing the subject, and the light beam irradiation means is arranged on the facing surface.
これによれば、 断面像上の所望の位置と実際の被検体の実空間上の位置との対 応関係を容易に設定でき、 かつ、 その設定を保持できるので、 光ビームの照射を 正確に行うことができる。 また、 光ビーム照射手段と被検体との間に障害物が存 在しないので、 光ビームの照射を容易に行うことができる。  According to this, the correspondence between the desired position on the cross-sectional image and the actual position of the subject in the real space can be easily set, and the setting can be maintained, so that the irradiation of the light beam can be performed accurately. It can be carried out. In addition, since there is no obstacle between the light beam irradiation means and the subject, light beam irradiation can be easily performed.
また、 好ましい一実施態様によれば、 前記光ビーム照射手段が、 前記医療画像 診断装置の周囲に配置された支持台に配置される。  According to a preferred embodiment, the light beam irradiation means is arranged on a support table arranged around the medical image diagnostic apparatus.
これによれば、 広範囲にわたって被検体を照射することができ、 また、 医療画 像診断装置の被検体に相対する面に配置された光ビーム照射手段を補完すること が可能になる。  According to this, it is possible to irradiate the subject over a wide range, and it is possible to complement the light beam irradiating means arranged on the surface of the medical image diagnostic apparatus facing the subject.
また、 好ましい一実施態様によれば、 前記光ビーム照射手段のペアを少なくと も 1以上有し、 異なる方向から前記被検体を挟んで該被検体の両側に対向配置さ れる。  According to a preferred embodiment, at least one pair of the light beam irradiating means is provided, and the light beam irradiating means is opposed to both sides of the subject from different directions with the subject interposed therebetween.
これによれば、 被検体の両側から光ビ一ムを照射することができるようになり、 片側から見れば隠れて照射できない位置にも光ビームを照射することができるよ うになる。 また、 穿刺においては、 穿刺開始位置と目的位置及び穿刺方向を同時 に指示することができるようになる。  According to this, it becomes possible to irradiate the light beam from both sides of the subject, and it becomes possible to irradiate the light beam to a position which cannot be illuminated because it is hidden from one side. In puncturing, the user can simultaneously specify the puncturing start position, the target position, and the puncturing direction.
また、 好ましい一実施態様によれば、 前記医療画像診断装置が、 前記被検体を 挿入して計測する計測空間を挟んで上下に対向配置された一対の静磁場発生手段 と、 前記一対の静磁場発生手段の外縁部に渡して上側静磁場発生手段を支える少 なくとも 1以上の支柱とを有する垂直磁場方式の磁気共鳴イメージング装置であ る場合に、  Further, according to a preferred embodiment, the medical image diagnostic apparatus includes: a pair of static magnetic field generating means vertically arranged across a measurement space for inserting and measuring the subject; In the case of a vertical magnetic field type magnetic resonance imaging apparatus having at least one or more columns for supporting the upper static magnetic field generating means across the outer edge of the generating means,
前記上側静磁場発生手段の前記被検体の上面に対向する面に、 該被検体の体軸 方向に前記計測空間を挟んで対向配置された一対の前記光ビーム照射手段と、 前記被検体の体軸に垂直な水平方向に位置する前記支柱の該被検体の側面に対 向する面に、 又は、 該水平方向に配置された前記支持台に、 該被検体を挾んで対 向配置された一対の前記光ビーム照射手段と、 A pair of the light beam irradiating means disposed on the surface of the upper static magnetic field generating means facing the upper surface of the subject, facing the body axis of the subject with the measurement space interposed therebetween; The column is positioned on the surface of the column, which is located in the horizontal direction perpendicular to the body axis of the subject, facing the side surface of the subject, or on the support table arranged in the horizontal direction, and sandwiches the subject. A pair of the light beam irradiating means arranged facing each other,
前記被検体の体軸方向に該被検体を挾んで対向配置された前記支持台に配置さ れた一対の前記光ビーム照射手段とを備える。  And a pair of the light beam irradiating means arranged on the support pedestal which is opposed to the subject in the body axis direction of the subject.
これによれば、 磁気共鳴イメージング装置において、 光ビーム照射手段の配置 が適切になり、 撮像のみならず術者が被検体に近接して存在する術中においても 被検体への光ビームの照射を正確かつ容易に行うことができる。  According to this, in the magnetic resonance imaging apparatus, the arrangement of the light beam irradiating means becomes appropriate, and the irradiation of the light beam to the subject can be accurately performed not only during imaging but also during the operation in which the operator is in close proximity to the subject. And can be easily performed.
また、 好ましい一実施態様によれば、 前記医療画像診断装置が、 中心の空隙に 前記被検体を揷入して計測するガントリーを備えた X線 C T装置である場合に、 前記被検体の側面に対向する前記ガントリーの面で、 かつ、 被検体の体軸に垂 直な水平方向の両側に該被検体を挟んで対向配置された一対の前記光ビーム照射 手段と、  Further, according to a preferred embodiment, when the medical image diagnostic apparatus is an X-ray CT apparatus including a gantry for inserting and measuring the subject in a center space, A pair of the light beam irradiating means disposed on opposite sides of the gantry and on both sides in a horizontal direction perpendicular to the body axis of the subject with the subject interposed therebetween;
前記被検体の上面に対向する前記ガントリーの面で、 かつ、 該被検体の体軸に 垂直な上下方向の上側で、 かつ、 該ガントリーの表裏の両面に配置された一対の 前記光ビーム照射手段と、  A pair of the light beam irradiating means arranged on the surface of the gantry facing the upper surface of the subject, on the upper side in the vertical direction perpendicular to the body axis of the subject, and on both the front and back surfaces of the gantry When,
前記被検体の体軸方向に該被検体を挟んで対向配置された前記支持台に配置さ れた一対の前記光ビーム照射手段とを備える。  A pair of the light beam irradiating means disposed on the support table, which is disposed to face the subject in the body axis direction with the subject interposed therebetween.
これによれば、 X線 C T装置において、 光ビーム照射手段の配置が適切になり、 撮像時のみならず、 術者が被検体に近接して存在する術中においても被検体への 光ビームの照射を正権かつ容易に行うことができる。  According to this, in the X-ray CT apparatus, the arrangement of the light beam irradiating means becomes appropriate, and the irradiation of the light beam to the subject is performed not only during the imaging but also during the operation in which the operator is close to the subject. Can be carried out easily and easily.
また、 好ましい一実施態様によれば、 前記光ビーム照射手段は光ビーム発射手 段と該光ビーム発射手段を移動又は回転する移動回転手段からなり、 前記照射制 御手段は前記光ビーム発射手段と前記移動回転手段とを制御する。  According to a preferred embodiment, the light beam irradiating means includes a light beam emitting means and a moving / rotating means for moving or rotating the light beam emitting means, and the irradiation controlling means includes a light beam emitting means and a light rotating means. And controlling the moving and rotating means.
これによれば、 光ビーム照射手段を柔軟に移動 ·回転ができるようになるため、 光ビームの照射可能範囲をさらに拡張することができるようになる。  According to this, the light beam irradiating means can be moved and rotated flexibly, so that the irradiable range of the light beam can be further expanded.
また、 好ましい一実施態様によれば、 前記複数の光ビームが前記被検体の体表 上において線分光であり、 該複数の光ビームが該被検体の前記座標位置で交差す るように照射される。 これによれば、 線分光の交差点を明瞭に認識できるため、 光ビームの照射位置 を容易にかつ迅速に把握することができるようになる。 According to a preferred embodiment, the plurality of light beams are linearly separated on the body surface of the subject, and the plurality of light beams are irradiated so as to intersect at the coordinate position of the subject. You. According to this, since the intersection of X-ray spectroscopy can be clearly recognized, the irradiation position of the light beam can be easily and quickly grasped.
また、 好ましい一実施態様によれば、 前記光ビームが前記被検体の体表上にお いてスポット光とする。  According to a preferred embodiment, the light beam is spot light on the body surface of the subject.
これによれば、 被検体上で指示可能な位置の数を増やすことができるため、 光 ビームでより多くの情報を被検体上で同時に表示することが可能になる。  According to this, the number of positions that can be indicated on the subject can be increased, so that more information can be simultaneously displayed on the subject by the light beam.
また、 好ましい一実施態様によれば、 いずれか 1つのスポット光が穿刺開始位 置を指示する様に照射され、 このスポット光と対向するスポット光が穿刺方向を 把握できるような位置に照射され、 他のスポット光で穿刺すべき深さが予測可能 となるように前記照射制御手段を制御する。  Further, according to a preferred embodiment, any one of the spot lights is irradiated so as to indicate the puncturing start position, and the spot light facing the spot light is irradiated to a position where the puncturing direction can be grasped, The irradiation control means is controlled so that the depth to be punctured by another spot light can be predicted.
これによれば、 穿刺開始位置と目的位置及び穿刺方向を迅速かつ正確に把握す ることができるようになるため、 手術や治療を始めるまでの時間や試行錯誤の回 数を低減することができる。  According to this, since the puncture start position, the target position, and the puncture direction can be quickly and accurately grasped, the time until the start of surgery or treatment and the number of trial and error can be reduced. .
また、 好ましい一実施態様によれば、  Also, according to a preferred embodiment,
前記表示手段に表示された断面像上の撮影対象とする部位を指定する部位指定 手段と、  Part designation means for designating a part to be imaged on the cross-sectional image displayed on the display means;
前記部位指定手段による指定部位に基づいて、 互いに直交する複数の断面の位 置情報を算出する断面位置計算手段と、  A cross-section position calculating unit configured to calculate position information of a plurality of cross sections orthogonal to each other based on a site specified by the site specifying unit;
前記断面位置計算手段によって算出された位置情報に基づき、 前言互いに直交 する複数の断面の撮像シーケンスを実行する手段とを備え、  Means for executing an imaging sequence of a plurality of cross sections orthogonal to each other, based on the position information calculated by the cross section position calculation means,
前記撮像シーケンスで撮像された複数の断面像が前記表示手段に表示される。 これによれば、 常に所望の部位を含み、 互いに直交する複数の断面像を表示す ることができるようになるため、 手術や治療の進行に追従して、 所望の部位を断 面像上と実際の被検体上の両方でモニタリングしつつ、 次の操作や処置へのガイ ドを容易に行うことができるようになる。  A plurality of cross-sectional images captured in the imaging sequence are displayed on the display. According to this, it is possible to always display a plurality of cross-sectional images including a desired part and orthogonal to each other, so that the desired part can be displayed on the cross-sectional image in accordance with the progress of surgery or treatment. While monitoring both on the actual subject, guidance on the next operation and procedure can be easily performed.
また、 好ましい一実施態様によれば、 前記撮影対象とする部位を含む断面ほ、 前記部位指定手段によって入力された 1点或いは 1直線或いは 1点及び 1直線を 通る断面とする。  According to a preferred embodiment, a cross section including the part to be imaged is a cross section passing through one point or one straight line or one point and one straight line input by the part specifying means.
これによれば、 所望の部位を含む断面の指定が容易になるため、 手術や治療の 進行に追従して、 所望の部位を含み互いに直交する複数の断面像の取得が容易に なる。 According to this, it is easy to specify a cross section including a desired part, so that the Following the progress, it is easy to obtain a plurality of cross-sectional images including a desired part and orthogonal to each other.
また、 好ましい一実施態様によれば、 被検体の断面像を取得する画像取得手段 と、 取得した前記断面像を表示する表示手段とを備えた医療画像診断装置におい て、  According to a preferred embodiment, there is provided a medical image diagnostic apparatus including: an image acquisition unit configured to acquire a cross-sectional image of a subject; and a display unit configured to display the acquired cross-sectional image.
前記表示手段に表示される断面像上の撮影対象とする部位を指定する部位指定 手段と、  Region designation means for designating a region to be imaged on the cross-sectional image displayed on the display means;
前記部位指定手段により指定された部位に基づいて、 互いに直交する複数の断 面の位置情報を算出する断面位置計算手段と、  A section position calculating unit that calculates position information of a plurality of cross sections orthogonal to each other based on the part specified by the part specifying unit;
前記断面位置計算手段によって出された位置情報に基づき、 前記互いに直交す る複数の断面の撮像シーケンスを実行する手段とを備え、  Means for executing an imaging sequence of the plurality of cross sections orthogonal to each other, based on position information issued by the cross section position calculation means,
前記撮像シーケンスで撮像した断面像が前記表示手段に表示される。  A cross-sectional image captured in the imaging sequence is displayed on the display unit.
これによれば、 常に所望の部位を含み、 互いに直交する複数の断面を表示する ことができるようになるため、 手術や治療の進行に追従して、 所望の部位の断面 像上でのモニタリングを容易に行うことができるようになる。  According to this, it is possible to always display a plurality of cross sections orthogonal to each other, including the desired site, and thus to monitor the cross section image of the desired site in accordance with the progress of the surgery or treatment. It can be done easily.
また、 好ましい一実施態様によれば、 前記撮影対象とする部位を含む断面は、 前記入力手段によって入力された 1点或いは 1直線或いは 1点及び 1直線を通る 断面とする。  According to a preferred embodiment, the section including the part to be imaged is a section passing through one point or one straight line or one point and one straight line input by the input means.
これによれば、 所望の部位を含む断面の指定が容易になるため、 手術や治療の 進行に追従して、 所望の部位を含み互いに直交する複数の断面像の取得が容易に なる。 図面の簡単な説明  According to this, since it is easy to specify a cross section including a desired portion, it is easy to obtain a plurality of cross-sectional images including the desired portion and orthogonal to each other, following the progress of surgery or treatment. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る磁気共鳴イメージング装置の全体概略構成図である。 図 2は、 光表示器の全体概略配置斜視図である。  FIG. 1 is an overall schematic configuration diagram of a magnetic resonance imaging apparatus according to the present invention. FIG. 2 is an overall schematic layout perspective view of the optical display.
図 3は、 X方向表示用レーザ照射器の配置説明図である。  FIG. 3 is an explanatory view of the arrangement of a laser irradiator for X-direction display.
図 4は、 Y方向表示用レーザ照射器の配置説明図である。  FIG. 4 is an explanatory view of the arrangement of a laser irradiator for Y-direction display.
図 5は、 Z方向表示用レーザ照射器の配置説明図である。  FIG. 5 is an explanatory view of the arrangement of a laser irradiator for Z-direction display.
図 6は、 レーザ照射器の照射制御機能プロック図である。 図 7は、 本発明の手術中における目的部位を表示するための手順を示すフロー チヤ一卜である。 Fig. 6 is a block diagram of the irradiation control function of the laser irradiation device. FIG. 7 is a flowchart showing a procedure for displaying a target site during an operation according to the present invention.
図 8は、 第 1の実施例におけるディスプレイの表示画面の一例を示す図である。 図 9は、 図 8に示した表示画面で選択した任意断面に基づいて照射位置が制御 されたレーザ照射光を示す図である。  FIG. 8 is a diagram illustrating an example of a display screen of the display according to the first embodiment. FIG. 9 is a diagram showing laser irradiation light whose irradiation position is controlled based on an arbitrary cross section selected on the display screen shown in FIG.
図 1 0は、 第 1の実施例におけるディスプレイの表示画面の他の例を示す図で ある。  FIG. 10 is a diagram illustrating another example of the display screen of the display according to the first embodiment.
図 1 1は、 図 1 0に示した表示画面で選択した任意断面に基づいて照射位置及 び照射方向が制御されたレーザ照射光を示す図である。  FIG. 11 is a diagram showing laser irradiation light whose irradiation position and irradiation direction are controlled based on an arbitrary cross section selected on the display screen shown in FIG.
図 1 2は、 本発明の第 2の実施例におけるレーザ照射器の C T装置正面から見 た配置説明図である。  FIG. 12 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the front of the CT apparatus.
図 1 3は、 本発明の第 2の実施例におけるレーザ照射器の C T装置側面から見 た配置説明図である。  FIG. 13 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the side of the CT device.
図 1 4は、 本発明の第 3の実施例における操作フローチャートである。  FIG. 14 is an operation flowchart according to the third embodiment of the present invention.
図 1 5は、 本発明の第 3の実施形態によって得られる直交断面図の説明図であ る。  FIG. 15 is an explanatory diagram of an orthogonal cross-sectional view obtained by the third embodiment of the present invention.
図 1 6は、 本発明の第 4の実施例における操作フローチャートである。  FIG. 16 is an operation flowchart in the fourth embodiment of the present invention.
図 1 7は、 本発明の第 4の実施例によって得られる直交断面図の説明図である。 図 1 8は、 本発明の第 5の実施例における操作フローチャートである。  FIG. 17 is an explanatory diagram of an orthogonal cross-sectional view obtained by the fourth embodiment of the present invention. FIG. 18 is an operation flowchart in the fifth embodiment of the present invention.
図 1 9は、 本発明の第 5の実施例によって得られる直交断面図の説明図である。 発明を実施するための最良の形態  FIG. 19 is an explanatory view of an orthogonal sectional view obtained by the fifth embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の医療画像診断装置について、 添付図面を参照して説明する。 図 1は、 本発明の医療画像診断装置の全体概略構成図であり、 磁気共鳴ィメー ジング装置 (M R I装置) に適用した場合の例である。  Hereinafter, the medical image diagnostic apparatus of the present invention will be described with reference to the accompanying drawings. FIG. 1 is an overall schematic configuration diagram of a medical image diagnostic apparatus according to the present invention, and is an example in which the present invention is applied to a magnetic resonance imaging apparatus (MRI apparatus).
M R I装置は、 NMR現象を利用して被検体中の所望の検査部位における原子 核スピンの密度分布や緩和時間分布等を計測し、 その計測結果から被検体の任意 の断面を画像表示するものである。  An MRI device measures the nuclear spin density distribution, relaxation time distribution, etc. at a desired examination site in a subject using the NMR phenomenon, and displays an arbitrary cross section of the subject as an image based on the measurement results. is there.
図 1において、 M R I装置は、 静磁場発生磁石 2と、 傾斜磁場発生系 3と、 送 信系 5と、 受信系 6と、 信号処理系 7と、 中央処理装置 (C P U) 8と、 光表示 器 2 1とを備えている。 In FIG. 1, the MRI apparatus includes a static magnetic field generating magnet 2, a gradient magnetic field generating system 3, It comprises a communication system 5, a reception system 6, a signal processing system 7, a central processing unit (CPU) 8, and an optical display 21.
静磁場発生磁石 2は、 被検体 1の周りにその体軸方向又は体軸と直交する方向 に均一な静磁場を発生させるもので、 永久磁石方式又は常電導方式あるいは超伝 導方式の磁場発生手段から成る。  The static magnetic field generating magnet 2 generates a uniform static magnetic field around the subject 1 in the body axis direction or in a direction orthogonal to the body axis, and generates a permanent magnet type, a normal conduction type, or a superconducting type magnetic field. Consisting of means.
この静磁場発生磁石 2に囲まれる磁場空間内に、 傾斜磁場発生系 3の傾斜磁場 コイル 9、 送信系 5の高周波コイル 1 4 a、 受信系 6の高周波コイル 1 4 bが設 置される。  In the magnetic field space surrounded by the static magnetic field generating magnet 2, a gradient magnetic field coil 9 of the gradient magnetic field generating system 3, a high frequency coil 14a of the transmitting system 5, and a high frequency coil 14b of the receiving system 6 are provided.
傾斜磁場発生系 3は、 X, Υ , Zの 3軸方向に巻かれた傾斜磁場コイル 9と、 それぞれの傾斜磁場コイル 9を駆動する傾斜磁場電源 1 0とを有している。 そし て、 傾斜磁場発生系 3は、 シーケンサ 4からの命令に従って、 それぞれの傾斜磁 場コイルの傾斜磁場電源 1 0を駆動することにより、 X, Y, Ζの 3軸方向の傾 斜磁場 G x , G y , G。 を被検体 1に印加する。  The gradient magnetic field generation system 3 includes a gradient magnetic field coil 9 wound in three axial directions of X, ,, and Z, and a gradient magnetic field power supply 10 for driving the respective gradient magnetic field coils 9. Then, the gradient magnetic field generating system 3 drives the gradient magnetic field power supplies 10 of the respective gradient magnetic field coils in accordance with instructions from the sequencer 4 to generate gradient magnetic fields G x in the three axes of X, Y and Ζ. , G y, G. Is applied to the subject 1.
この傾斜磁場の加え方により被検体 1に対するスライス面を設定することがで きる。  The slice plane for the subject 1 can be set by how to apply the gradient magnetic field.
シーケンサ 4は、 上記被検体 1の生体組織を構成する原子の原子核に核磁気共 鳴を起こさせる高周波磁場パルス信号をある所定のパルスシーケンスで繰り返し 印加する。  The sequencer 4 repeatedly applies a high-frequency magnetic field pulse signal causing a nuclear magnetic resonance to the nuclei of the atoms constituting the living tissue of the subject 1 in a predetermined pulse sequence.
また、 シーケンサ 4は、 C P U 8の制御により動作し、 被検体 1の断層像のデ 一夕収集に必要な種々の命令を、 送信系 5、 傾斜磁場発生系 3及び受信系 6に送 る。 '  The sequencer 4 operates under the control of the CPU 8 and sends various commands necessary for overnight collection of tomographic images of the subject 1 to the transmission system 5, the gradient magnetic field generation system 3, and the reception system 6. '
送信系 5は、 シーケンサ 4の制御により被検体 1の生体組織を構成する原子の 原子核に NM Rを起こさせるために高周波磁場を照射する。  The transmission system 5 irradiates a high-frequency magnetic field under the control of the sequencer 4 to cause the nuclei of the atoms constituting the living tissue of the subject 1 to cause NMR.
この送信系 5は、 高周波発振器 1 1と、 変調器 1 2と、 高周波増幅器 1 3と、 送信側の高周波コイル 1 4 aとを備える。  The transmission system 5 includes a high-frequency oscillator 11, a modulator 12, a high-frequency amplifier 13, and a high-frequency coil 14a on the transmission side.
送信系 5において、 高周波発振器 1 1から出力された高周波パルスは、 シーケ ンサ 4の命令にしたがって変調器 1 2により振幅変調され、 この振幅変調された 高周波パルスが高周波増幅器 1 3で増幅される。 そして、 増幅された高周波パル スが、 被検体 1に近接して配置された高周波コイル 1 4 aに供給されることによ り、 電磁波が被検体 1に照射される。 In the transmission system 5, the high-frequency pulse output from the high-frequency oscillator 11 is amplitude-modulated by the modulator 12 in accordance with a command from the sequencer 4, and the high-frequency pulse subjected to the amplitude modulation is amplified by the high-frequency amplifier 13. Then, the amplified high-frequency pulse is supplied to a high-frequency coil 14a arranged close to the subject 1. Thus, the subject 1 is irradiated with the electromagnetic wave.
受信系 6は、 被検体 1に生体組織の原子核の NMRにより放出されるエコー信 号 (NM R信号) を検出する。 この受信系 6は、 被検体 1に近接して配置された 受信側の高周波コイル 1 4 bと、 増幅器 1 5と、 直交位相検波器 1 6と、 AZD 変換器 1 7とを備える。  The receiving system 6 detects an echo signal (NMR signal) emitted from the subject 1 by NMR of nuclei of living tissue. The receiving system 6 includes a high-frequency coil 14 b on the receiving side arranged close to the subject 1, an amplifier 15, a quadrature detector 16, and an AZD converter 17.
受信側の高周波コイル 1 4 bが検出したエコー信号は、 増幅器 1 5及び直交位 相検波器 1 6を介して A/D変換器 1 7に入力され、 ディジタル信号に変換され、 更にシーケンサ 4からの命令によるタイミングで直交位相検波器 1 6によりサン プリングされた二系列の収集データとされる。 そして、 この収集データが信号処 理系 7に送られる。  The echo signal detected by the high-frequency coil 14 b on the receiving side is input to the A / D converter 17 via the amplifier 15 and the quadrature phase detector 16, converted into a digital signal, and further converted from the sequencer 4. These are collected as two series of collected data sampled by the quadrature detector 16 at the timing according to the instruction. Then, the collected data is sent to the signal processing system 7.
信号処理系 7は、 C P U 8と、 磁気ディスク 1 8及び磁気テープ 1 9等の記録 装置と、 C R T等のディスプレイ 2 0とを備える。 信号処理系 7は、 受信系 6か らの信号を C P Uでフーリエ変換、 補正係数計算、 画像再構成の処理を行い、 任 意断面の信号強度分布や複数の信号に適当な演算を行って得られる分布を画像化 してディスプレイ 2 0に表示する。  The signal processing system 7 includes a CPU 8, a recording device such as a magnetic disk 18 and a magnetic tape 19, and a display 20 such as a CRT. The signal processing system 7 performs Fourier transform, correction coefficient calculation, and image reconstruction processing on the signal from the receiving system 6 by the CPU, and performs signal calculation on the signal intensity distribution of an arbitrary cross section and a plurality of signals. The obtained distribution is imaged and displayed on the display 20.
また、 信号処理系 7は、 C P U 8の機能として画像データに対し差分処理及び 重み付けを行う機能を備えている。 これらの処理は、 M R I装置において計測を 行うことにより得られたデータに対してなされる。 これらの処理選択及び設定の ための手段が、 C P U 8の入力手段として設けられている。  Further, the signal processing system 7 has a function of performing difference processing and weighting on image data as a function of the CPU 8. These processes are performed on the data obtained by performing measurement in the MRI apparatus. Means for selecting and setting these processes are provided as input means of the CPU 8.
また、 ディスプレイ 2 0は、 この信号処理系 7の機能に対応して、 通常の画像 に代わって或いは通常の画像に加えて差分画像或いは累積加算画像を表示する機 能を備えている。  Further, the display 20 has a function of displaying a difference image or a cumulatively added image in place of or in addition to a normal image, corresponding to the function of the signal processing system 7.
操作部 2 4は、 各種パラメ一夕や撮像断面の設定等の操作を行うキーボード 2 The operation unit 24 is a keyboard 2 for performing operations such as setting various parameters and setting the imaging section.
5及びマウス 2 6を備えている。、 5 and mouse 26. ,
次に、 本発明の第 1の実施例に係る光表示器 2 1について説明する。  Next, an optical display 21 according to a first embodiment of the present invention will be described.
図 2〜図 5は光表示器 (光ビーム照射手段) 2 1の配置位置の説明図であり、 図 2は全体概略配置斜視図、 図 3〜図 5は後述する各レーザ照射器の配置説明図 である。  2 to 5 are explanatory views of the arrangement position of the optical display (light beam irradiating means) 21. FIG. 2 is a schematic perspective view of the entire arrangement, and FIGS. It is a figure.
光表示器 2 1は、 被検体 1内の所定の部位 (例えば、 腫瘍などのターゲット) を複数のレーザ照射光によって指し示し、 穿刺針による生体内への穿刺時におけ る穿刺開始位置、 目的位置及び方向を実空間上で表示する。 The optical display 21 is a predetermined site in the subject 1 (for example, a target such as a tumor). Is indicated by a plurality of laser irradiation lights, and a puncture start position, a target position, and a direction at the time of puncturing the living body with the puncture needle are displayed in a real space.
また、 光表示器 2 1は、 H e— N eレーザなどの一対の x方向表示用レ一ザ照 射器 2 1 x、 一対の y方向表示用レーザ照射器 2 1 y、 及び一対の z方向表示用 レーザ照射器 2 1 zと、 これらのレーザ照射器 2 1 x〜 2 1 zの、 それぞれを X 軸方向、 Y軸方向、 Z軸方向の 3次元方向への移動及び回転を行う移動回転手段 2 2 x、 2 2 y、 2 2 zとから構成されている。  The optical display 21 includes a pair of x-direction display laser radiators 21 x such as a He—Ne laser, a pair of y-direction display laser radiators 21 y, and a pair of z Direction display laser irradiator 21z and these laser irradiators 21x to 21z move and rotate in the X-axis direction, Y-axis direction, and Z-axis direction. Rotating means 22 x, 22 y, and 22 z.
各レーザ照射器は、 点線で示したレーザ照射光が、 後述する GU Iで任意に定 義した 3軸断面の 3軸を表示することができるように移動回転手段によって移動 及び回転駆動されるようになつている。  Each laser irradiator is moved and rotated by moving and rotating means so that the laser irradiation light indicated by the dotted line can display three axes of a three-axis cross-section arbitrarily defined by GUI described later. It has become.
なお、 移動回転手段 2 2 x、 2 2 y、 2 2 zは、 各レーザ照射器 2 1 x、 2 1 y、 2 1 zが、 患者 1に対して基準となる上記 3軸を表示するように定位置に固 定されている。  Note that the moving and rotating means 22 x, 22 y, and 22 z are such that each of the laser irradiators 21 x, 21 y, and 21 z displays the above three axes as a reference for the patient 1. Fixed in place.
つまり、 図 2中、 被検体 1の上下方向に、 被検体 1が配置される計測空間を挟 んで上下に静磁場発生磁石 2が対向配置され、 静磁場発生磁石 2の、 被検体 1の 上面側に対向する面 (相対する面) に、 一対の X方向表示用レーザ 2 1 Xが配置 されている。 また、 静磁場発生磁石 2の外縁部 (両端部) を支持し、 互いに対向 する 2本の支柱を M R I装置は備えているが、 これら 2本の支柱に y方向表示用 のレーザ照射器 2 1 yが配置されている。 さらに、 支持台 2 9に z方向表示用の レーザ照射器 2 1 zが配置されている。  In other words, in FIG. 2, the static magnetic field generating magnets 2 are arranged vertically above and below the subject 1 across the measurement space where the subject 1 is placed, and the upper surface of the static magnetic field generating magnet 2 on the subject 1 A pair of X-direction display lasers 21 X is arranged on a surface facing the side (opposing surface). The MRI apparatus also has two columns that support the outer edge (both ends) of the static magnetic field generating magnet 2 and face each other. These two columns have a laser irradiator 21 for y-direction display. y is located. Further, a laser irradiator 21 z for z-direction display is arranged on the support base 29.
また、 図 2においては、 移動回転手段は 2 2 yのみ示したが、 同様な構成の移 動回転手段 2 2 x、. 2 2 yも配置されている。  Further, in FIG. 2, only the moving / rotating means 22 y is shown, but moving / rotating means 22 x and 22 y having the same configuration are also arranged.
レーザ照射器 2 l x、 2 1 y、 2 1 zのそれぞれを一対としたのは、 被検体 1 の両側から光ビームを照射することができるようになり、 片側から見れば隠れて 照射できない位置にも光ビームを照射するためである。 また、 穿刺においては、 穿刺開始位置と目的位置及び穿刺方向を同時に指示できるようにするためである。 図 3は、 2つのレーザ照射器 2 1 Xの配置説明図である。  The reason that the laser irradiators 2 lx, 21 y, and 21 z are paired is that the light beam can be irradiated from both sides of the subject 1, so that it can be hidden from one side and cannot be irradiated. This is also for irradiating a light beam. In addition, in puncturing, the puncturing start position, the target position, and the puncturing direction can be simultaneously specified. FIG. 3 is an explanatory view of the arrangement of two laser irradiators 21 X.
図 3の (A) 及び (B ) に示すように、 一対のレーザ照射器 2 1 x、 2 l xは、 Y軸方向 (被検体 1の体軸方向) に沿い、 かつ、 計測空間を挟んで、 互いに対向 するように、 静磁場発生磁石 2に配置されている。 これら一対のレーザ照射器 2 l x、 2 l xは、 レーザを照射し、 かつ、 互いに逆方向に照射するように配匱さ れ、 レーザ光を照射しながら、 X軸方向に走査して、 トランスバーサル断面に対 応する断面線 2 3 Xを形成する。 As shown in FIGS. 3A and 3B, the pair of laser irradiators 21 x and 2 lx are arranged along the Y-axis direction (the body axis direction of the subject 1) and across the measurement space. , Facing each other So that it is arranged on the static magnetic field generating magnet 2. The pair of laser irradiators 2 lx and 2 lx are arranged so as to irradiate a laser beam and irradiate them in opposite directions. A section line 23 X corresponding to the section is formed.
なお、 破線はレーザ光の照射軌跡を示す。 また、 図 3の (B ) においては、 静 磁場発生磁石 2を支持する 2本の支柱のうち、 一本は図示の都合上、 省略してあ る。  The broken line indicates the irradiation locus of the laser beam. Also, in FIG. 3B, one of the two columns supporting the static magnetic field generating magnet 2 is omitted for convenience of illustration.
図 4は、 2つのレ一ザ照射器 2 1 yの配置説明図である。 なお、 図 4の (C ) は、 患者 1の足部方向から見た図である。  FIG. 4 is an explanatory view of the arrangement of two laser irradiators 21y. FIG. 4C is a view of the patient 1 as viewed from the foot direction.
図 4の (C ) に示すように、 一対のレーザ照射器 2 1 y、 2 1 yは、 X軸方向 (被検体 1の体軸に垂直な水平方向) に沿って位置する支柱の、 計測空間側の面 (被検体 1の側面に対向する面 (相対する面)) に、 互いに対向するように配置さ れている。  As shown in FIG. 4 (C), the pair of laser irradiators 21 y and 21 y measure a support located along the X-axis direction (horizontal direction perpendicular to the body axis of the subject 1). They are arranged on the space side surface (the surface facing the side surface of the subject 1 (opposing surface)) so as to face each other.
そして、 これらレーザ照射器 2 1 y、 2 1 yは、 X軸方向に沿ってレーザを照 射し、 かつ、 互いに逆方向に照射するように配置され、 レーザ光を照射しながら、 Y軸方向に走査して、 図 4の (A)、 (B) に示すように、 コロナル断面に対応す る断面線 2 3 yを形成する。  These laser irradiators 21 y and 21 y are arranged so as to irradiate a laser along the X-axis direction and to irradiate the laser beams in opposite directions. Then, as shown in FIGS. 4A and 4B, a section line 23y corresponding to the coronal section is formed.
なお、 図 4の (A) は、 患者 1の全身を照射する場合、 図 4の (B) は、 患者 1を部分的に照射する場合を示す。  4 (A) shows the case where the whole body of the patient 1 is irradiated, and FIG. 4 (B) shows the case where the patient 1 is partially irradiated.
図 5は、 2つのレーザ照射器 2 1 z、 2 1 zの配置説明図である。  FIG. 5 is an explanatory view of the arrangement of two laser irradiators 21z and 21z.
図 5の (A) 及び (B ) に示すように、 一対のレ一ザ照射器 2 1 z、 2 1 zは、 Y軸方向 (被検体 1の体軸方向) に沿って位置し、 計測空間を挟んで (被検体 1 を挾んで) 対向配置された支持台 2 9、 2 9に配置されている。  As shown in FIGS. 5A and 5B, the pair of laser irradiators 21z and 21z are positioned along the Y-axis direction (the body axis direction of the subject 1) and measured. It is placed on the support bases 29 and 29 that are opposed to each other across the space (with the subject 1 in between).
これらのレーザ照射器 2 1 z、 2 1 zは、 Y軸方向に沿ってレーザを照射し、 かつ、 互いに逆方向に照射し、 レ一ザ光を照射しながら、 Y軸方向に走査して、 サジタル断面に対応する断面線 2 3 zを形成する。  These laser irradiators 21z and 21z irradiate laser along the Y-axis direction, irradiate them in opposite directions, and scan in the Y-axis direction while irradiating laser light. A section line 23 z corresponding to the sagittal section is formed.
次に、 上記構成の磁気共鳴イメージング装置を用い、 表示画面と被検体 (患者 1 ) 内の所定の部位をレーザ照射光によって照射させる方法を、 図 6〜図 1 0を 参照しながら説明する。 図 6は、 X軸レーザ照射器を一例としたレーザ照射制御の説明図であり、 表示 手段 20に表示された画像に対して、 照射位置選択手段 (操作部) 24により、 後述するように、 照射位置を選択すると、 選択された照射位置を、 照射制御手段 8の座標位置計算手段が実空間の座標位置を計算する。 そして、 レーザ照射器で ある光ビーム照射手段 21が、 計算された座標位置を照射するように、 照射制御 手段 8が、 光ビーム照射手段 21及び移動回転手段 22 x、 22y、 22 zを制 御する。 Next, a method of irradiating a display screen and a predetermined portion in a subject (patient 1) with laser irradiation light using the magnetic resonance imaging apparatus having the above configuration will be described with reference to FIGS. FIG. 6 is an explanatory diagram of laser irradiation control using an X-axis laser irradiator as an example. The image displayed on the display means 20 is irradiated by the irradiation position selecting means (operation unit) 24 as described later. When the irradiation position is selected, the selected irradiation position is calculated by the coordinate position calculation means of the irradiation control means 8 in the real space. Then, the irradiation control means 8 controls the light beam irradiation means 21 and the moving / rotating means 22x, 22y, 22z so that the light beam irradiation means 21 which is a laser irradiator irradiates the calculated coordinate position. I do.
さらに、 詳細に、 被検体 1の照射方法について説明する。  Further, the irradiation method of the subject 1 will be described in detail.
図 7に示すように、 先ず、 磁気共鳴イメージング装置による被検体 1の断層像 の撮像を行う (ステップ 101)。 続いて、 MPR (Mu 1 t i -P 1 a n e r Re c on s t r u c t i on 、 M I P (Max imum I n t en s i t y p r o j e c t i on)、 ボリユームレンタ、 'リング (Vo lme Rend e r i ng) 等による画像処理後、 ディスプレイ 20に 3軸画像 (例えば、 被検体 1 の体軸と直交する断面像 (アキシャル像)、 アキシャル像に直交するコロナル像 (冠状断面像) 及びサジタル像 (矢状断面像)) を表示する (ステップ 102)。 ここで、 図 8は、 上記 3軸画像等を表示するディスプレイ 20の表示画面の一 例である。 図 8において、 4分割された表示部 201〜204のうちの表示部 2 01にはアキシャル像が表示され、 表示部 202にはコロナル像が表示される。 また、 表示部 203にはサジタル像が表示され、 表示部 204には、 フロロスコ ピー等のリアルタイムイメージが表示される。  As shown in FIG. 7, first, a tomographic image of the subject 1 is captured by a magnetic resonance imaging apparatus (step 101). Subsequently, after image processing by MPR (Mu 1 ti -P 1 aner Rec struction on), MIP (Maximum Int en sity project on), VOLUME rent, RING (Vo lme Rend eri ng), etc., the display 20 is displayed. Display three-axis images (eg, a cross-sectional image (axial image) orthogonal to the body axis of the subject 1, a coronal image (coronal cross-sectional image), and a sagittal image (sagittal cross-sectional image) orthogonal to the axial image) (step 102). Here, Fig. 8 is an example of a display screen of the display 20 that displays the above-described three-axis image, etc. In Fig. 8, the display unit 201 of the four divided display units 201 to 204 includes: An axial image is displayed, a coronal image is displayed on the display unit 202. A sagittal image is displayed on the display unit 203, and a real-time image such as a fluoroscopy is displayed on the display unit 204.
また、 表示部 201〜203には、 マウス 26によるドラッグゃキ一ボード 2 5によって自由に移動可能な点線 206〜208が表示される。  Also, on the display units 201 to 203, dotted lines 206 to 208 which can be freely moved by a drag keyboard 25 using the mouse 26 are displayed.
これらの点線 206〜 208、 マウス 26、 キーボード 25は、 任意断面を選 択するためのツール (照射位置選択手段 24) として使用される。  These dotted lines 206 to 208, mouse 26, and keyboard 25 are used as tools (irradiation position selecting means 24) for selecting an arbitrary cross section.
図 7に戻って、 操作者 (ユーザー) は、 上記ツールを操作することで、 任意断 面選択 (3軸) を行う (ステップ 103、 104)。 この任意断面としては、 例え ば、 穿刺針による穿刺開始位置と生体内の所望の部位 (腫瘍など) とを含む断面 が選択される。  Returning to Fig. 7, the operator (user) operates the tool to select an arbitrary cross section (3 axes) (steps 103 and 104). As the arbitrary cross section, for example, a cross section including a puncture start position by a puncture needle and a desired site (such as a tumor) in a living body is selected.
続いて、 ユーザーにより選択された任意断面 (GUIで定義した各断面) に基 づいて 3軸直交点 (所望の部位) の実空間上の座標位置及び 3軸方向を座標位置 計算手段が自動計算し、 その座標位置を 3軸方向からレーザ照射光によつて指し 示すために必要な位置情報として光表示器 2 1の移動回転手段 2 2 x、 2 2 y、 2 2 zに送信する (ステップ 1 0 5 )。 Then, based on the arbitrary section selected by the user (each section defined in the GUI), Then, the coordinate position calculation means automatically calculates the coordinate position in the real space of the three-axis orthogonal point (the desired part) and the three-axis direction, and indicates the coordinate position from the three-axis direction using laser irradiation light. The necessary position information is transmitted to the moving and rotating means 22 x, 22 y, and 22 z of the optical display 21 (step 105).
移動回転手段 2 2 x、 2 2 y、 2 2 zは、 送られてきた位置情報を基に 3軸を 表示するための光表示器 2 1の X方向表示用レーザ照射器 2 1 x、 y方向表示用 レーザ照射器 2 1 y、 及び z方向表示用レーザ照射器 2 1を移動させる (ステツ プ 1 0 6 )。  The moving and rotating means 22 x, 22 y, and 22 z are laser radiators 21 x, y for X-direction display of the optical display 21 for displaying three axes based on the transmitted positional information. Move the laser irradiator 21 for y-direction display and the laser irradiator 21 for z-direction display (step 106).
そして、 ユーザ一の意志 (光表示器 2 1の O NZO F F機能) により、 レ一ザ 照射光を照射させると (光表示器 2 1を O Nさせると)、 図 9に示した実線 2 0 5 に示すようにレーザ照射光が被検体の体表上に照射される (ステップ 1 0 7 )。 各レーザ照射器 2 1 x〜2 1 zから出射されるレーザ照射光にアシス卜されて、 被検体 1に対して目的に応じた処理/手術 (穿刺 ·切開等) が行われる (ステツ プ 1 0 8 )。  When the user irradiates the laser irradiation light (by turning on the light display 21) according to the user's intention (the ONZOFF function of the light display 21), the solid line 205 shown in FIG. As shown in (1), the laser irradiation light is irradiated on the body surface of the subject (Step 107). The laser irradiation light emitted from each laser irradiator 21 x to 21 z is assisted, and the subject 1 is subjected to processing / surgery (puncture, incision, etc.) according to the purpose (Step 1). 0 8).
なお、 各レーザ照射器 2 l x〜2 1 zから出射されるレ一ザ照射光は、 被検体 1上のスポット光のみが目視でき、 この実施例では 5つのスポット光が目視でき るようになっており、 いずれか 1つのスポット光は、 穿刺針による穿刺開始位置 を示す。  In the laser irradiation light emitted from each of the laser irradiators 2 lx to 21 z, only the spot light on the subject 1 can be viewed, and in this embodiment, five spot lights can be viewed. And any one of the spot lights indicates a puncture start position by the puncture needle.
また、 穿刺開始位置を示すスポット光と対向するスポット光の位置により穿刺 方向を把握することができる。 更に、 ユーザは、 これらのスポット光の位置から レーザ光が被検体内を透過した場合に交又する交点の位置 (穿刺すべき深さ) を 予測することができる。  In addition, the puncturing direction can be grasped from the position of the spot light facing the spot light indicating the puncturing start position. Further, the user can predict the position of the intersection (depth to be punctured) where the laser light crosses when the laser light passes through the subject, from the positions of these spot lights.
また、 この磁気共鳴ィメ一ジング装置は、 選択された選択断面 (特に穿刺開始 位置を含む断面) をリアルタイムに撮像 Z表示する機能を備えており、 例えば、 MR Iフロロスコピー画像等のリアルタイム画像を、 図 8のディスプレイの表示 画面の表示部 2 0 4に表示する。  The magnetic resonance imaging apparatus has a function of real-time imaging of a selected cross section (particularly, a cross section including a puncturing start position), and Z display. For example, a real-time image such as an MRI fluoroscopic image is provided. Is displayed on the display section 204 of the display screen of FIG.
この場合の撮影シーケンスは、 G r Eシーケンスやマルチショッ卜 E P Iなど のフロロスコピー用シーケンスである。 これらのシーケンスでは、 0 . 5秒〜 4 秒ごとに画像を更新でき、 このリアルタイム画像により穿刺針のモニタリングを 行うことができる。 The photographing sequence in this case is a fluoroscopy sequence such as a GrE sequence or a multi-shot EPI. In these sequences, the image can be updated every 0.5 to 4 seconds, and this real-time image can be used to monitor the puncture needle. It can be carried out.
—方、 表示断面を変更する場合には、 ステップ 1 0 4に戻り、 ここで新たな任 意断面の選択が行われる。 対象部位を変更する場合には、 ステップ 1 0 1に戻り、 その対象部位を含む断層像の撮像を行い、 上記処理を繰り返し行う。 手術支援に よる目標達成により本機能は終了となる。  —If you want to change the display cross section, return to step 104, where a new arbitrary cross section is selected. When the target part is changed, the process returns to step 101, a tomographic image including the target part is captured, and the above processing is repeated. This function ends when the goal is achieved by the operation support.
図 8に示した表示例では、 基準の 3軸をそれぞれ平行移動させることで任意断 面を選択できるようにしたが、 これに限らず、 図 1 0に示すディスプレイ 2 0の 表示部 3 0 1〜3 0 3上で、 実線 3 0 6〜3 0 8を自由に回転操作できるように し、 これらの実線 3 0 6〜3 0 8によって任意断面の傾斜を選択できるようにし てもよい。  In the display example shown in FIG. 8, the arbitrary cross section can be selected by moving the three reference axes in parallel. However, the present invention is not limited to this. The display section 310 of the display 20 shown in FIG. It is also possible to make it possible to freely rotate the solid lines 306 to 308 on to 3303, and to select the inclination of an arbitrary cross section by these solid lines 306 to 308.
このようにして選択された任意断面に基づいて所望の部位の実空間上の座標位 置及び 3軸方向を自動計算することで、 図 1 1の実線 3 0 5に示すようにレーザ 照射光を被検体に照射することができる。  By automatically calculating the coordinate position of the desired part in the real space and the three-axis directions based on the arbitrary cross-section selected in this manner, the laser irradiation light is obtained as shown by the solid line 305 in FIG. The subject can be irradiated.
なお、 光表示器 2 1は、 H e—N eレーザを用いたものに限らず、 人体に無害 な光を発光する他の発光手段 (発光ダイオードなど) を用いたものでもよい。 こ の第 1の実施例では、 計測シーケンスを予め選択するよう指示しているが、 連続 的にデータを取得する際、 目的部位や条件により測定中であっても操作者がシー ケンスや設定を自由に変化する仕組みも兼ね備えている。  The optical display 21 is not limited to one using a He—Ne laser, but may be one using other light emitting means (light emitting diode or the like) that emits light harmless to the human body. In the first embodiment, the operator is instructed to select a measurement sequence in advance.However, when continuously acquiring data, the operator can change the sequence and settings even during measurement depending on the target region and conditions. It also has a mechanism to change freely.
その他、 以上の説明では基礎となる計測データとして 2次元計測データの場合 について説明したが、 3次元計測データであっても同様に任意の多種のデータ取 得が可能であり、 同様の効果が得られる。  In addition, in the above description, the case where two-dimensional measurement data is used as the basic measurement data has been described. However, even with three-dimensional measurement data, any type of data can be obtained in the same manner, and the same effect can be obtained. Can be
また、 この第 1の実施例では、 3軸画像を用いて所定の部位を含む任意断面を 選択するようにしたが、 2軸画像を用いて任意断面を選択するようにしてもよい。 以上説明したように、 本発明の第 1の実施例である M R I装置によれば、 被検 体の断面画像表示画面上の庶務の所望の位置を選択するだけで、 穿刺針などの処 置具による生体内へのアクセス時におけるアクセス開始位置、 目的位置及び方向 を実空間上で光ビームによって表示することができ、 実際の被検体上で、 対応す る断面や病変部の位置を容易に把握することができ。 術者をアシストすることが できる。 次に、 本発明の第 2の実施例について説明する。 この第 2の実施例は本発明を X線 C T装置に適用した場合の例である。 Further, in the first embodiment, an arbitrary cross section including a predetermined part is selected using a three-axis image, but an arbitrary cross section may be selected using a two-axis image. As described above, according to the MRI apparatus of the first embodiment of the present invention, a treatment tool such as a puncture needle can be obtained simply by selecting a desired position of general affairs on a cross-sectional image display screen of a subject. The start position, target position, and direction of access to the inside of a living body can be displayed in real space using a light beam, and the position of the corresponding cross section or lesion can be easily grasped on the actual subject. Can be. The surgeon can be assisted. Next, a second embodiment of the present invention will be described. The second embodiment is an example in which the present invention is applied to an X-ray CT apparatus.
図 1 2は、 本発明の第 2の実施例におけるレーザ照射器の X線 C T装置正面か ら見た配置説明図、 図 1 3は、 X線 C T装置側面から見た図である。  FIG. 12 is an explanatory view of the arrangement of the laser irradiator according to the second embodiment of the present invention as viewed from the front of the X-ray CT apparatus, and FIG. 13 is a view as viewed from the side of the X-ray CT apparatus.
なお、 この第 2の実施例において、 レーザ照射器の照射制御手段及び方法につ いては、 第 1の実施例において、 図 6〜図 1 1を参照して説明した方法と同様と なるので、 説明は省略する。  In this second embodiment, the irradiation control means and method of the laser irradiator are the same as those described with reference to FIGS. 6 to 11 in the first embodiment. Description is omitted.
図 1 2及び図 1 3において、 X線 C T装置は、 中心の空隙に被検体 1を揷入し て計測するガントリ一 2 7を備えている。  In FIGS. 12 and 13, the X-ray CT apparatus includes a gantry 27 for inserting the subject 1 into the center gap and measuring it.
そして、 一対の Y方向表示用レ一ザ照射器 2 8 y、 2 8 yは、 ガントリー 2 7 の空隙内に配置された被検体 1の側面に対向するガントリー 2 7の面で、 かつ、 被検体 1の体軸に垂直な水平方向の両側に被検体 1を挟んで、 互いに対向配置さ れている。  The pair of Y-direction display laser irradiators 28 y and 28 y are arranged on the surface of the gantry 27 facing the side surface of the subject 1 disposed in the gap of the gantry 27, and The subject 1 is arranged to face each other on both sides in the horizontal direction perpendicular to the body axis of the subject 1 with the subject 1 interposed therebetween.
また、 一対の X方向表示用レーザ照射器 2 8 x、 2 8 xは、 ガントリー 2 7の 空隙内に配置された被検体 1の上面に対向するガントリ一 2 7の面で、 かつ、 被 検体 1の体軸に垂直な上下方向の上側で、 ガントリ一 2 7の両面 (図 1 2におけ るガントリ一 2 7の裏表面であり、 図 1 3においてはガントリー 2 7の左右側 面) に配置されている。  In addition, the pair of X-direction display laser irradiators 28 x and 28 x are provided on the surface of the gantry 27 facing the upper surface of the subject 1 arranged in the gap of the gantry 27, and The upper side of the gantry 27 perpendicular to the body axis 1 is on both sides of the gantry 27 (the back surface of the gantry 27 in Fig. 12 and the left and right sides of the gantry 27 in Fig. 13). Are located.
また、 一対の Z方向表示用レ一ザ照射器 2 8 z、 2 8 zは、 ガントリ一 2 7の 空隙内に配置された被検体 1の体軸方向に被検体 1を挟んで互いに対向配置され た支持台 2 9、 2 9に配置されている。  Further, a pair of laser irradiators for z-direction display 28 z and 28 z are arranged to face each other across the subject 1 in the body axis direction of the subject 1 placed in the gap of the gantry 27. The supporting bases 29 and 29 are arranged.
これら、 レーザ照射器 2 8 x、 2 8 y、 2 8 zにより、 図 3〜図 5と同様にし て、 被検体 1にレーザ光が照射される。  The subject 1 is irradiated with laser light by these laser irradiators 28x, 28y, and 28z in the same manner as in FIGS.
以上説明したように、 本発明の第 2の実施例である X線 C T装置によれば、 穿 剌針などの処置具による生体内へのアクセス時におけるアクセス開始位置、 目的 位置及び方向を実空間上で光ビームによって表示することができ、 術者をアシス 卜することができる。  As described above, according to the X-ray CT apparatus of the second embodiment of the present invention, the access start position, the target position, and the direction at the time of accessing the inside of the living body with a treatment tool such as a puncture needle are set in the real space. Above can be displayed by the light beam, and the surgeon can be assisted.
次に、 本発明の第 3の実施例について説明する。 この第 3の実施例は、 本発明 を MR I装置に適用した場合の例である。 なお、 この第 3の実施例については、 MR I装置の全体構成は図 1に示した例 と同等となるので、 説明は省略する。 ただし、 この第 3の実施例においては、 図 1に示した光表示器 21は必ずしも必要ではない。 Next, a third embodiment of the present invention will be described. The third embodiment is an example in which the present invention is applied to an MRI apparatus. Note that the description of the third embodiment is omitted because the overall configuration of the MRI apparatus is the same as the example shown in FIG. However, in the third embodiment, the optical display 21 shown in FIG. 1 is not always necessary.
MR I装置による撮像断面の位置および角度は、 被検体 1に向って印加される 静磁場強度 Boと傾斜磁場強度 Gx、 Gy、 Gz、 および送信する高周波の周波数 foによって制御される。 例えば、 静磁場強度が 0. 3Tにおけるプロトン原子核 の共鳴周波数は 12. 8MHzなので、 このときスライス方向に強度 5mT/m の傾斜磁場が発生している場合、 高周波の周波数を 12. 8MHzとすれば磁場 中心の位置の断面を撮像でき、 周波数を 12. 8MHzから 1067Hzずらす と、 次式 (1) で求まるように、 磁場中心から 5 mmずれた位の断面を撮像する ことができる。 ,  The position and angle of the imaging section by the MRI apparatus are controlled by the static magnetic field strength Bo and the gradient magnetic field strengths Gx, Gy, Gz applied to the subject 1 and the frequency fo of the transmitted high frequency. For example, the resonance frequency of proton nuclei at a static magnetic field strength of 0.3 T is 12.8 MHz.If a gradient magnetic field with a strength of 5 mT / m is generated in the slice direction at this time, if the high frequency is 12.8 MHz, A cross section at the position of the center of the magnetic field can be imaged, and if the frequency is shifted from 12.8 MHz to 1067 Hz, a cross section 5 mm away from the center of the magnetic field can be imaged as determined by the following equation (1). ,
(1067 [Hz] /12.8 [MHz] *0·3 [Τ]) /5 [niT/m] =5匪 (1) 図 14は、 本発明の第 3の実施例による MR I装置の繰作をフローチャートで 示したものである。  (1067 [Hz] /12.8 [MHz] * 0.3 [Τ]) / 5 [niT / m] = 5 (1) FIG. 14 shows a repetition of the MRI apparatus according to the third embodiment of the present invention. Is shown in a flowchart.
図 14において、 まず、 MR撮像を行い (ステップ 200)、 計測した MR画像 を表示する (ステップ 201)。 ステップ 200での撮像位置は、 任意の従来手法 によつて位置決めした位置でも良いし、 磁場中心でも良い。  In FIG. 14, first, MR imaging is performed (step 200), and the measured MR image is displayed (step 201). The imaging position in step 200 may be a position determined by any conventional method or a magnetic field center.
次に、 表示された画像に対して、 マウス 26等により注目点を 1点指定する (ステップ 202)。 注目点とは例えば撮像したい腫瘍、 あるいは穿刺針や手術器 具の先端領域等で、 この 1点を含み互いに直交する 2断面ないし 3断面を撮像す る (ステップ 203)。  Next, one point of interest is designated on the displayed image with the mouse 26 or the like (step 202). The point of interest is, for example, a tumor to be imaged, or a tip region of a puncture needle or a surgical instrument, and two or three cross sections including this one point and orthogonal to each other are imaged (step 203).
具体的には、 図 15に示すように、 ステップ 200で撮像した TRS断面 30 0上の注目点 301を指定した場合、 これに直交する 3断面とは TRS断面 30 0の撮像軸 x'、 y'、 z ' に直交する SAG断面 302と COR断面 303と、 参照画像と同位置での TRS断面である。  Specifically, as shown in FIG. 15, when a point of interest 301 on the TRS cross section 300 imaged in step 200 is specified, three cross sections orthogonal to this are the imaging axes x 'and y of the TRS cross section 300. The SAG section 302 and the COR section 303 orthogonal to ', z', and the TRS section at the same position as the reference image.
あるいは、 装置軸 X、 Y、 Ζに直交する SAG断面と COR断面と TRS断面 であっても良い (図示せず)。  Alternatively, a SAG section, a COR section, and a TRS section which are orthogonal to the device axes X, Y, Ζ may be used (not shown).
図 15において、 穿刺釙 304を含む断面を撮像したい場合には、 TRS断面 300と C OR断面 303の重要性が高く、 SAG断面 302は重要性が低いと T JP03/06995 In FIG. 15, when it is desired to image a section including the puncture layer 304, the TRS section 300 and the COR section 303 have high importance, and the SAG section 302 has low importance. T JP03 / 06995
1 7 判断されることがある。 また、 主に T R S断面 3 0 0の画像にて穿刺を行い、 時 折 C O R断面 3 0 3や S A G断面 3 0 2の画像で確認を行うような使い方もある。 このような場合は時間分解能の向上のために直交 3断面のうちの任意の断面を 撮像してもよい。  1 7 May be determined. There is also a method of performing puncturing mainly with an image of a TRS section 300, and occasionally checking with an image of a COR section 303 or an SAG section 302. In such a case, any one of the three orthogonal cross sections may be imaged in order to improve the time resolution.
撮像断面の選択方法としては、 表示画像の隣に断面選択ボタン 3 0 5を設け、 ここで選択された断面を撮像する。 断面選択ボタン 3 0 5は、 選択している断面 を反転表示する等、 視覚的に認知できるようにしておき、 マウス 2 6の 1度のク リックで選択、 2度のクリックで解除というように、 断面の選択、 変更が容易に 実施できるように構成されている。 図 1 5に示した例では、 トランスバ一サル断 面とコロナル断面とが選択されている例である。  As a method for selecting an imaging section, a section selection button 305 is provided next to the display image, and an image of the section selected here is taken. The cross-section selection button 3 05 should be visually recognizable, such as highlighting the selected cross-section, so that the mouse 26 can be selected with one click and released with two clicks. It is configured so that selection and change of cross section can be easily performed. In the example shown in FIG. 15, the transversal section and the coronal section are selected.
このようにして、 直交 2断面ないし 3断面の撮像を行い、 結果として表示され た 2枚ないし 3枚の画像のいずれかにおいてさらに注目点を 1点指定し、 その 1 点を含む直交 2断面ないし 3断面を撮像するというように、 ステップ 2 0 1〜2 0 3を繰り返す。  In this way, two or three orthogonal cross-sections are imaged, and a point of interest is further designated in one of the two or three images displayed as a result, and two orthogonal or three cross-sections including the one point are designated. Steps 201 to 203 are repeated so that three sections are imaged.
これによつて、 被検体が動いた場合や、 あるいは穿刺釙ゃ手術器具の位置が変 わった場合にも、 容易にこの位置を追うことができる。  As a result, even when the subject moves, or when the position of the puncture / surgical instrument changes, this position can be easily followed.
本発明の第 3の実施例は、 特に透視撮像中に有効で、 撮影を中断することなく ステップ 2 0 1〜 2 0 3を繰り返すことができる。 注目点が指定された場合、 コ ンピュー夕 (C P U) 8はその位置を計算し、 計算した位置に応じた高周波の周 波数、 傾斜磁場強度 G x、 G y、 G。 を計算し、 シーケンサ 4を制御する。  The third embodiment of the present invention is particularly effective during fluoroscopic imaging, and can repeat Steps 201 to 203 without interrupting imaging. When a point of interest is specified, the computer (CPU) 8 calculates the position, and calculates the high-frequency and gradient magnetic field strengths G x, G y, and G according to the calculated position. Is calculated, and the sequencer 4 is controlled.
制御のタイミングは注目点指定前の画像計測終了後、 すなわち次の画像撮像開 始時で、 シーケンサ 4 0は新しい位置に応じた高周波と傾斜磁場を被検体 1に印 加する。  The control timing is after the end of the image measurement before the point of interest designation, that is, at the start of the next image capturing, and the sequencer 40 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
このように、 本発明の第 3の実施例によれば、 表示画面の一点を指定すること によりその一点を含み互いに直交する断面画像を選択することができるので、 単 純な操作で自動的に互いに直交する断面画像を得ることができ、 術者をアシスト するための、 患者についての有効な情報を提供し、 手術時間の短縮化が可能な磁 気共鳴ィメ一ジング装置を実現することができる。  As described above, according to the third embodiment of the present invention, by designating one point on the display screen, it is possible to select cross-sectional images that include the one point and are orthogonal to each other. It is possible to obtain cross-sectional images orthogonal to each other, provide effective information about the patient to assist the surgeon, and realize a magnetic resonance imaging device capable of shortening the operation time. it can.
次に、 本発明の第 4の実施例について説明する。 なお、 この第 4の実施例においても、 M R I装置の全体構成およびその動作は 第 1の実施例と同等となるが光表示器 2 1は必ずしも必要ではない。 Next, a fourth embodiment of the present invention will be described. In the fourth embodiment, the overall configuration and operation of the MRI apparatus are the same as those in the first embodiment, but the optical display 21 is not always necessary.
図 1 6は、 第 4の実施例による M R I装置の操作をフローチャートで示したも のである。 図 1 4において、 まず、 最初の参照画像となる M R撮像を行い (ステ ップ 4 0 0 )、 計測した M R画像を表示する (ステップ 4 0 D o  FIG. 16 is a flowchart showing the operation of the MRI apparatus according to the fourth embodiment. In FIG. 14, first, MR imaging as a first reference image is performed (Step 400), and the measured MR image is displayed (Step 40D0).
ステップ 4 0 0での撮像位置は、 従来手法によって位置決めした位置でも良い し、 磁場中心でも良い。  The imaging position in step 400 may be a position determined by a conventional method or a magnetic field center.
次に、 表示された画像に対して、 注目部位をマウス 2 6をドラッグして線で指 定する (ステップ 4 0 2 )。 注目部位とは、 例えば撮像したい腫瘍、 あるいは穿剌 針や手術器具で、 腫瘍から穿刺針までの予定穿刺経路を撮像したい、 あるいは穿 刺針含む断面を撮像したいなど、 要望に応じて線を引けばよい。  Next, in the displayed image, the region of interest is specified by a line by dragging the mouse 26 (step 402). The region of interest is a line that is drawn as required, such as a tumor to be imaged, or a puncture needle or surgical instrument, for example, to image the planned puncture path from the tumor to the puncture needle, or to image a cross section including the puncture needle. Good.
そして、 この線を含み互いに直交する 2断面を撮像する (ステップ 4 0 3 )。 線の引き方は、 一般的な手法に依るもので、 入力手段であるマウス 2 6、 キー ボ一ド 2 5の他、 ペンタブレットあるいは夕ツチパネル等を伎って、 例えばフリ —ハンドでも良いし、 2点の指定によって直線を自動生成しても良い。 ただし、 フリーハンドの場合は、 直線となるように補間する必要がある。  Then, two cross sections that include this line and are orthogonal to each other are imaged (Step 403). The method of drawing a line depends on a general method. In addition to the input means such as the mouse 26 and the keyboard 25, a pen tablet or a touch panel may be used. A straight line may be automatically generated by designating two points. However, in the case of freehand, it is necessary to interpolate so as to be a straight line.
線の指定について具体的には、 図 1 6に示すように、 ステップ 4 0 0で撮像し た T R S断面 5 0 0に対して直線 5 0 1を引いた場合、 これを含む 2断面とは、 T R S断面 5 0 0に直交する C O R断面 5 0 2と、 参照画像と同位置での T R S 断面である。  Specifically, as shown in FIG. 16, when a straight line 501 is drawn with respect to the TRS cross-section 500 captured in step 400, as shown in FIG. A COR section 502 orthogonal to the TRS section 500 and a TRS section at the same position as the reference image.
このようにして、 直交 2断面の撮像を行い、 結果として表示された 2枚の画像 のいずれかにおいて再び線を指定し、 その線を含む 2断面を撮像するというよう に、 ステップ 4 0 1〜4 0 3を繰り返す。  In this way, imaging of two orthogonal cross sections is performed, a line is specified again in one of the two images displayed as a result, and two cross sections including the line are imaged. Repeat 4 0 3
これによつて、 被検体が動いた場合や、 あるいは穿刺針や手術器具の位置が変 わった場合にも、 容易にこの位置を追うことができる。  As a result, even when the subject moves, or when the position of the puncture needle or the surgical instrument changes, this position can be easily followed.
この第 4の実施例は、 特に透視撮像中に有効で、 撮影を中断することなくステ ップ 4 0 1〜4 0 3を繰り返すことができる。 線が指定された場合、 コンピュー 夕 8はその位置を計算し、 その位置に応じた高周波の周波数、 傾斜磁場強度 G x、 G v、 G zを計算し、 シーケンサ 4を制御する。 制御のタイミングは注目部位指定前の画像計測終了後、 すなわち次の画像撮像 開始時で、 シーケンサ 4は新しい位置に応じた高周波と傾斜磁場を被検体 1に印 加する。 The fourth embodiment is particularly effective during fluoroscopic imaging, and can repeat steps 401 to 403 without interrupting imaging. When a line is specified, the computer 8 calculates the position, calculates the high frequency, the gradient magnetic field strength G x, G v, and G z according to the position, and controls the sequencer 4. The control timing is after the end of the image measurement before designating the target part, that is, at the start of the next image capturing, and the sequencer 4 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
この第 4の実施例においても、 第 3の実施例と同様な効果を得ることができる。 さらに、 この第 4の実施例は、 第 3の実施例と比較して、 撮像したい COR断面 が TRS断面 500の撮像軸 x'、 y ' や装置軸 X、 Yに直交していない場合に有 効である。  In the fourth embodiment, the same effect as in the third embodiment can be obtained. Furthermore, the fourth embodiment is different from the third embodiment in that the COR section to be imaged is not orthogonal to the imaging axes x ', y' and the apparatus axes X, Y of the TRS section 500. It is effective.
次に、 本発明の第 5の実施例について説明する。  Next, a fifth embodiment of the present invention will be described.
なお、 この第 5の実施例においても、 MR I装置の全体構成およびその動作は 第 1の実施例と同等となるが光表示器 21は必ずしも必要ではない。  In the fifth embodiment, the overall configuration and operation of the MRI apparatus are the same as those in the first embodiment, but the optical display 21 is not always necessary.
図 18は、 第 5の実施例による MR I装置の操作をフローチャートで示したも のである。  FIG. 18 is a flowchart showing the operation of the MRI apparatus according to the fifth embodiment.
図 18において、 まず、 MR撮像を行い (ステップ 600)、 計測した MR画像 を表示する (ステップ 601)。  In FIG. 18, first, MR imaging is performed (step 600), and the measured MR image is displayed (step 601).
ステップ 600での撮像位置は、 従来手法によって位置決めした位置でも良い し、 磁場中心でも良い。 次に、 表示された画像に対して、 注目部位を点と線で指 定する (ステップ 602)。  The imaging position in step 600 may be a position determined by a conventional method or a magnetic field center. Next, a point of interest is designated with a dot and a line in the displayed image (step 602).
注目部位の点と線による指定は例えば撮像したい腫瘍、 あるいは穿刺針や手術 器具の先端を点で、 腫瘍から穿刺針までの予定穿刺針経路、 あるいは穿刺針を含 む位置を線で示せばよい。  The point of interest can be designated by a point and a line.For example, the tumor to be imaged or the tip of a puncture needle or a surgical instrument may be indicated by a point, and the planned puncture needle path from the tumor to the puncture needle or the position including the puncture needle may be indicated by a line .
そして、 この点と線を含む 1断面とその断面に直交する注目点を含む 2断面と の計 3断面を撮像する (ステップ 603)。  Then, a total of three cross-sections, one cross-section including the point and the line and two cross-sections including the target point orthogonal to the cross-section, are imaged (step 603).
線の引き方は、 第 4の実施例と同一の手法とする。  The line is drawn in the same manner as in the fourth embodiment.
具体的には、 図 18に示すように、 ステップ 600で撮像した TRS断面 70 0に対して点 701と直線 702とを指定した場合、 これを含む 3断面とは、 T RS断面 700に直交する CO R断面 703と、 参照画像と同位置での T R S断 面と、 点 701を含み線 702と直交する SAG断面 704とである。  Specifically, as shown in FIG. 18, when a point 701 and a straight line 702 are specified for the TRS section 700 imaged in step 600, the three sections including these are orthogonal to the TRS section 700. A COR section 703, a TRS section at the same position as the reference image, and a SAG section 704 including a point 701 and orthogonal to the line 702.
あるいは、 SAG断面は TRS断面 700の撮像軸 x' に直交する断面 705 であっても良い。 このようにして、 3断面の撮像を行い、 結果として表示された 3枚の画像のい ずれかにおいて再び点と線を指定し、 その点と線を含む 1断面とその断面に直交 する注目点を含む 2断面との計 3断面を撮像するというように、 ステップ 6 0 1 〜 6 0 3を繰り返す。 Alternatively, the SAG section may be a section 705 orthogonal to the imaging axis x 'of the TRS section 700. In this way, three cross-sections are imaged, a point and a line are specified again in any of the three images displayed as a result, and one cross-section including the point and the line and a point of interest orthogonal to the cross-section Steps 61 to 603 are repeated so that a total of three cross sections including two cross sections including are captured.
これによつて、 被検体が動いた場合や、 あるいは穿刺針や手術器具の位置が変 わった場合にも、 容易にこの位置を追うことができる。  As a result, even when the subject moves, or when the position of the puncture needle or the surgical instrument changes, this position can be easily followed.
この第 5の実施例は、 特に透視撮像中に有効で、 撮影を中断することなくステ ップ 6 0 1〜6 0 3を繰り返すことができる。 点と線が指定された場合、 コンビ ュ一タ 8はその位置を計算し、 その位置に応じた高周波の周波数、 傾斜磁場強度 G x、 G y、 G。 を計算し、 シーケンサ 4は新しい位置に応じた高周波と傾斜磁 場を被検体 1に印加する。  The fifth embodiment is particularly effective during fluoroscopic imaging, and can repeat Steps 601 to 603 without interrupting imaging. When a point and a line are specified, the computer 8 calculates the position, the frequency of the high frequency and the gradient magnetic field strength G x, G y, G according to the position. The sequencer 4 applies a high frequency and a gradient magnetic field corresponding to the new position to the subject 1.
この第 5の実施例は、 第 4の実施例と同様な効果を得ることができる。 また、 の第 5の実施例は、 第 4の実施形態と比較して、 点と線とを指定することによつ て 3断面を撮像できるようにしたものである。 ここで、 撮像断面を 2断面から 3 断面としたことによって、 時間分解能が低下することから、 要求によって使い分 けることが望ましい。  The fifth embodiment can provide the same effects as the fourth embodiment. In the fifth example, as compared with the fourth embodiment, three cross sections can be imaged by specifying points and lines. Here, the time resolution is reduced by changing the number of imaging cross-sections from two to three.
なお、 この第 5の実施例において、 開始点 7 0 1を始点と認識するためのクリ ック動作を不要とし、 線の開始点を自動的に開始点 7 0 1と自動的に」 認識する ように構成することもできる。  In the fifth embodiment, a click operation for recognizing the start point 7001 as the start point is unnecessary, and the start point of the line is automatically recognized as the start point 71. It can also be configured as follows.
なお、 本発明は、 磁気共鳴イメージング装置や X線 C T装置に限らず、 超音波 診断装置などの他の医療画像診断装置に適用することも可能である。 産業上の利用可能性  The present invention is not limited to a magnetic resonance imaging apparatus and an X-ray CT apparatus, but can be applied to other medical image diagnostic apparatuses such as an ultrasonic diagnostic apparatus. Industrial applicability
本発明によれば、 穿刺針などの処置具による生体内へのアクセス時におけるァ クセス開始位置、 目的位置及び方向を実空間上で光ビームによつて表示すること ができ、 術者をアシストすることができる。  According to the present invention, an access start position, a target position, and a direction at the time of accessing a living body with a treatment instrument such as a puncture needle can be displayed in a real space by a light beam, thereby assisting an operator. be able to.
また、 本発明によれば、 表示画面の一点を指定することによりその一点を含み 互いに直交する断面画像を選択することができるので、 単純な操作で自動的に互 いに直交する断面画像を得ることができ、 術者をアシストするための、 患者につ いての有効な情報を提供し、 手術時間の短縮化が可能となる, Also, according to the present invention, by designating one point on the display screen, it is possible to select cross-sectional images including the one point and orthogonal to each other, so that cross-sectional images orthogonal to each other are automatically obtained by a simple operation. Can assist the surgeon in assisting the patient Provide effective information on the operation and shorten the operation time,

Claims

請求の範囲 The scope of the claims
1 . 被検体の断面像を取得する画像取得手段 (2、 3、 4、 5、 6、 8 ) と、 取得した前記断面像を表示する表示手段 (2 0 ) とを有する医療画像診断装置に おいて、 1. A medical image diagnostic apparatus having image acquisition means (2, 3, 4, 5, 6, 8) for acquiring a cross-sectional image of a subject, and display means (20) for displaying the acquired cross-sectional image. And
前記表示手段に表示された前記断面像における所望の位置を選択する照射位置 選択手段 (2 4 ) と、  Irradiation position selecting means (24) for selecting a desired position in the cross-sectional image displayed on the display means;
前記被検体の周囲に配置されて該被検体の体表上に光ビームを照射する少なく とも 1以上の光ビーム照射手段 (2 1、 2 8 ) と、  At least one or more light beam irradiating means (21, 28) arranged around the subject to irradiate a light beam on the body surface of the subject;
刖記照射位置選択手段からの情報に基づいて前記光ビーム照射手段を制御する 照射制御手段 (8 ) と、  Irradiation control means (8) for controlling the light beam irradiation means based on information from the irradiation position selection means;
を備えることを特徴とする医療画像診断装置。  A medical image diagnostic apparatus comprising:
2 . 請求項 1において、 前記照射制御手段は、 前記照射位置選択手段によって 選択された所望の位置に対応する、 前記被検体の実空間上の座標位置を計算する 座標位置計算手段を備え、 前記光ビームが前記被検体の実空間上の座標位置を指 示すように前記座標位置計算手段からの情報に基づいて前記光ビーム照射手段を 制御することを特徴とする医療画像診断装置。 2. The irradiation control unit according to claim 1, wherein the irradiation control unit includes a coordinate position calculation unit that calculates a coordinate position in the real space of the subject corresponding to a desired position selected by the irradiation position selection unit, A medical image diagnostic apparatus, wherein the light beam irradiating means is controlled based on information from the coordinate position calculating means so that a light beam indicates a coordinate position of the subject in real space.
3 . 請求項 1又は 2において、 前記医療画像診断装置は前記被検体に相対する 面を有し、 前記光ビーム照射手段が、 該相対する面に配置されることを特徴とす 3. The medical image diagnostic apparatus according to claim 1, wherein the medical image diagnostic apparatus has a surface facing the subject, and the light beam irradiation unit is disposed on the facing surface.
4 . 請求項 1又は 2において、 前記光ビーム照射手段が、 前記医療画像診断装 置の周囲に配置された支持台 (2 9 ) に配置されることを特徴とする医療画像診 4. The medical imaging system according to claim 1, wherein the light beam irradiation means is arranged on a support (29) arranged around the medical imaging system.
5 . 請求項 1乃至 4において、 前記光ビーム照射手段のペアを少なくとも 1以 上有し、 異なる方向から前記被検体を挟んで該被検体の両側に対向配置されるこ とを特徴とする医療画像診断装置。 5. The method according to any one of claims 1 to 4, wherein at least one pair of the light beam irradiation means is provided, and the light beam irradiation means is disposed on both sides of the subject from different directions with the subject interposed therebetween. A medical image diagnostic apparatus characterized by the following.
6 . 請求項 5において、 前記医療画像診断装置が、 前記被検体を挿入して計測 する計測空間を挟んで上下に対向配置された一対の静磁場発生手段 (3 ) と、 前 記一対の静磁場発生手段の外縁部に渡して上側静磁場発生手段を支える少なくと も 1以上の支柱とを有する垂直磁場方式の磁気共鳴ィメージング装置であって、 前記上側静磁場発生手段の前記被検体の上面に対向する面に、 該被検体の体軸 方向に前記計測空間を挟んで対向配置された一対の前記光ビーム照射手段 (2 1 x) と、 6. The pair of static magnetic field generating means according to claim 5, wherein the medical image diagnostic apparatus comprises: a pair of static magnetic field generating means (3) vertically opposed to each other across a measurement space for inserting and measuring the subject; A magnetic resonance imaging apparatus of a vertical magnetic field type having at least one or more columns for supporting an upper static magnetic field generating means across an outer edge of the magnetic field generating means, wherein the upper static magnetic field generating means has an upper surface of the subject. A pair of the light beam irradiating means (2 1 x), which are arranged on the surface facing to the body so as to face each other across the measurement space in the body axis direction of the subject;
前記被検体の体軸に垂直な水平方向に位置する前記支柱の該被検体の側面に対 向する面に、 又は、 該水平方向に配置された前記支持台に、 該被検体を挟んで対 向配置された一対の前記光ビーム照射手段 (2 1 y ) と、  A pair of the struts positioned in the horizontal direction perpendicular to the body axis of the subject, facing the side surface of the subject, or the support table arranged in the horizontal direction, A pair of said light beam irradiating means (2 1 y)
前記被検体の体軸方向に該被検体を挟んで対向配置された前記支持台に配置さ れた一対の前記光ビーム照射手段 (2 1 z ) と、  A pair of the light beam irradiating means (2 1 z) disposed on the support table opposed to the subject in the body axis direction of the subject,
を備えることを特徴とする医療画像診断装置。  A medical image diagnostic apparatus comprising:
7 . 請求項 5において、 前記医療画像診断装置が、 中心の空隙に前記被検体を 挿入して計測するガントリ一 (2 7 ) を備えた X線 C T装置であって、 7. The X-ray CT apparatus according to claim 5, wherein the medical image diagnostic apparatus includes a gantry (27) for inserting and measuring the subject in a central space,
前記被検体の側面に対向する前記ガントリーの面で、 かつ、 被検体の体軸に垂 直な水平方向の両側に該被検体を挟んで対向配置された一対の前記光ビーム照射 手段 (2 8 y ) と、  A pair of the light beam irradiating means (28), which are disposed on the surface of the gantry facing the side surface of the subject and on both sides in the horizontal direction perpendicular to the body axis of the subject with the subject interposed therebetween y) and
前記被検体の上面に対向する前記ガントリーの面で、 かつ、 該被検体の体軸に 垂直な上下方向の上側で、 かつ、 該ガントリ一の表裏の両面に配置された一対の 前記光ビーム照射手段 ( 2 8 X ) と、  A pair of the light beam irradiation arranged on the surface of the gantry facing the upper surface of the subject, on the upper side in the vertical direction perpendicular to the body axis of the subject, and on both the front and back surfaces of the gantry Means (2 8 X) and
前記被検体の体軸方向に該被検体を挟んで対向配置された前記支持台に配置さ れた一対の前記光ビーム照射手段 (2 8 z ) と、  A pair of the light beam irradiating means (28 z) disposed on the support pedestal facing the subject in the body axis direction with the subject interposed therebetween;
を備えることを特徴とする医療画像診断装置。  A medical image diagnostic apparatus comprising:
8 . 請求項 1乃至 7において、 前記光ビーム照射手段は、 光ビーム発射手段 (21 x、 21 y, 21 z、 28 x 28 y、 28 z) と該光ビーム発射手段を 移動又は回転する移動回転手段 (22y) とを有し、 前記照射制御手段は前記光 ビーム発射手段と前記移動回転手段とを制御することを特徴とする医療画像診断 8. The light beam emitting means according to claim 1, wherein the light beam irradiating means is a light beam emitting means. (21x, 21y, 21z, 28x28y, 28z) and a moving / rotating means (22y) for moving or rotating the light beam emitting means, wherein the irradiation control means is the light beam emitting means. Medical image diagnosis characterized by controlling
9. 請求項 1乃至 8において、 前記複数の光ビームが前記被検体の体表上にお いて線分光 (23 x、 23 y、 23 z) であり、 該複数の光ビ一ムが該被検体の 前記座標位置で交差するように照射されることを特徴とする医療画像診断装置。 9. The method according to claim 1, wherein the plurality of light beams are subjected to line spectroscopy (23x, 23y, 23z) on the body surface of the subject, and the plurality of light beams are provided to the subject. A medical image diagnostic apparatus, wherein the irradiation is performed so as to intersect at the coordinate position of the sample.
10. 請求項 1乃至 8において、 前記光ビームが前記被検体の体表上において スポット光であることを特徴とする医療画像診断装置。 10. The medical image diagnostic apparatus according to claim 1, wherein the light beam is spot light on a body surface of the subject.
11. 請求項 10において、 いずれか 1つのスポット光が穿刺開始位置を指示 する様に照射され、 このスポット光と対向するスポット光が穿刺方向を把握でき るような位置に照射され、 他のスポット光で穿刺すべき深さが予測可能となるよ うに前記照射制御手段を制御することを特徴とする医療画像診断装置。 11. In claim 10, any one of the spot lights is radiated so as to indicate the puncturing start position, and the spot light opposite to this spot light is radiated to a position where the puncturing direction can be grasped. A medical image diagnostic apparatus, wherein the irradiation control means is controlled so that the depth to be punctured by light can be predicted.
12. 請求項 1乃至 11において、 12. In claims 1 to 11,
前記表示手段に表示された断面像上の撮影対象とする部位を指定する部位指定 手段 (24) と、  Part designation means (24) for designating a part to be imaged on the cross-sectional image displayed on the display means;
前記部位指定手段による指定部位に基づいて、 互いに直交する複数の断面の位 置情報を算出する断面位置計算手段 (8) と、  A cross-section position calculation means (8) for calculating position information of a plurality of cross sections orthogonal to each other based on the specified part by the part specification means;
前記断面位置計算手段によって算出された位置情報に基づき、 前言互いに直交 する複数の断面の撮像シーケンスを実行する手段 (4) とを備え、  Means (4) for executing an imaging sequence of a plurality of cross sections orthogonal to each other based on the position information calculated by the cross section position calculation means,
前記撮像シーケンスで撮像された複数の断面像が前記表示手段に表示されるこ とを特徴とする医療画像診断装置。  A medical image diagnostic apparatus, wherein a plurality of cross-sectional images captured in the imaging sequence are displayed on the display means.
13. 請求項 12において、 前記撮影対象とする部位を含む断面は、 前記部位 指定手段によって指定された 1点或いは 1直線或いは 1点及び 1直線を通る断面 であることを特徴とする医療画像診断装置。 13. The cross-section including the part to be imaged according to claim 12, wherein the section passing through one point or one straight line or one point and one straight line designated by the part designation means A medical image diagnostic apparatus characterized in that:
1 4 . 被検体の断面像を取得する画像取得手段 (2、 3、 4、 5、 6、 8 ) と、 取得した前記断面像を表示する表示手段 (2 0 ) とを備えた医療画像診断装置に おいて、 14. Medical image diagnosis including image acquisition means (2, 3, 4, 5, 6, 8) for acquiring a cross-sectional image of a subject, and display means (20) for displaying the acquired cross-sectional image In the device,
前記表示手段に表示される断面像上の撮影対象とする部位を指定する部位指定 手段 (2 4 ) と、  Part designation means (24) for designating a part to be imaged on the cross-sectional image displayed on the display means;
前記部位指定手段により指定された部位に基づいて、 互いに直交する複数の断 面の位置情報を算出する断面位置計算手段 (8 ) と、  A cross-section position calculating means (8) for calculating position information of a plurality of cross-sections orthogonal to each other based on the part specified by the part specifying means;
前記断面位置計算手段によって出された位置情報に基づき、 前記互いに直交す る複数の断面の撮像シーケンスを実行する手段 (4 ) と、  Means (4) for executing an imaging sequence of the plurality of cross sections orthogonal to each other based on the position information issued by the cross section position calculating means;
を備え、 前記撮像シーケンスで撮像した断面像が前記表示手段に表示されるこ とを特徴とする医療画像診断装置。  A medical image diagnostic apparatus, comprising: a cross-sectional image captured in the imaging sequence, displayed on the display means.
1 5 . 請求項 1 4において、 前記撮影対象とする部位を含む断面は、 前記部位 指定手段によって指定された 1点或いは 1直線或いは 1点及び 1直線を通る断面 であることを特徴とする医療画像診断装置。 15. The medical system according to claim 14, wherein the cross section including the part to be imaged is a point or one straight line or a cross section passing through one point and one straight line designated by the part designation means. Diagnostic imaging device.
PCT/JP2003/006995 2002-06-05 2003-06-03 Medical image diagnostic apparatus WO2003103490A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002164588A JP4110457B2 (en) 2002-06-05 2002-06-05 Medical diagnostic imaging equipment
JP2002-164588 2002-06-05
JP2002307520A JP2004141269A (en) 2002-10-22 2002-10-22 Magnetic resonance imaging apparatus
JP2002-307520 2002-10-22

Publications (1)

Publication Number Publication Date
WO2003103490A1 true WO2003103490A1 (en) 2003-12-18

Family

ID=29738325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006995 WO2003103490A1 (en) 2002-06-05 2003-06-03 Medical image diagnostic apparatus

Country Status (1)

Country Link
WO (1) WO2003103490A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036350A1 (en) * 2005-09-26 2007-04-05 Michael Friebe Magnetic resonance tomograph and method for indicating a puncture site or marking on the body for a biopsy or a therapeutic application during an mrt scan
US20190159859A1 (en) * 2016-05-07 2019-05-30 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Operative assistance system for a magnetic resonance tomograph

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070272A (en) * 1998-08-27 2000-03-07 Shimadzu Corp Insertion guide device for puncture needle for biopsy
JP2000342579A (en) * 1999-06-01 2000-12-12 Ge Yokogawa Medical Systems Ltd Light marking method and x-ray ct device
JP2001299741A (en) * 2000-04-27 2001-10-30 Toshiba Corp Radiodiagnostic instrument and method for stabbing stab needle using the apparatus
JP2002058658A (en) * 2000-06-05 2002-02-26 Toshiba Corp Magnetic resonance imaging device for interventional mri, and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000070272A (en) * 1998-08-27 2000-03-07 Shimadzu Corp Insertion guide device for puncture needle for biopsy
JP2000342579A (en) * 1999-06-01 2000-12-12 Ge Yokogawa Medical Systems Ltd Light marking method and x-ray ct device
JP2001299741A (en) * 2000-04-27 2001-10-30 Toshiba Corp Radiodiagnostic instrument and method for stabbing stab needle using the apparatus
JP2002058658A (en) * 2000-06-05 2002-02-26 Toshiba Corp Magnetic resonance imaging device for interventional mri, and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007036350A1 (en) * 2005-09-26 2007-04-05 Michael Friebe Magnetic resonance tomograph and method for indicating a puncture site or marking on the body for a biopsy or a therapeutic application during an mrt scan
US20190159859A1 (en) * 2016-05-07 2019-05-30 Otto-Von-Guericke-Universität Magdeburg, Ttz Patentwesen Operative assistance system for a magnetic resonance tomograph

Similar Documents

Publication Publication Date Title
US6195577B1 (en) Method and apparatus for positioning a device in a body
EP1383427B1 (en) Mr-based real-time radiation therapy oncology simulator
JP4632508B2 (en) Ultrasonic puncture support device
JP2000197630A (en) Tomographic apparatus
JPH119708A (en) Radiotherapy device
US20240036126A1 (en) System and method for guiding an invasive device
JP4032293B2 (en) Ultrasound-magnetic resonance combined medical device
JP4110457B2 (en) Medical diagnostic imaging equipment
JP2907963B2 (en) Magnetic resonance monitoring therapy device
JP3976845B2 (en) Magnetic resonance imaging system
JP4841434B2 (en) Tomography system
WO2003103490A1 (en) Medical image diagnostic apparatus
JP2004141269A (en) Magnetic resonance imaging apparatus
JP2002085419A (en) Puncture needle insertion control system using medical image diagnosing device
JP2006280921A (en) Magnetic resonance imaging apparatus
JP4046847B2 (en) Magnetic resonance imaging system
JP3300895B2 (en) Magnetic resonance imaging apparatus and table control method thereof
JP3971268B2 (en) Magnetic resonance imaging system
JP3988183B2 (en) Magnetic resonance imaging system
JP4118119B2 (en) Magnetic resonance imaging system
JP3933768B2 (en) Magnetic resonance imaging system
JP6912341B2 (en) Magnetic resonance imaging device, device position detection method using it, and image-guided intervention support device
JPH11225994A (en) Image display method of see-through photographing using magnetic resonance imaging device
JP2011050582A (en) Noise reduction system for operation room
JP4871505B2 (en) Nuclear magnetic resonance imaging system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase